Subdivisions of simplicial complexes

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-202109145342
Open Access logo originally created by the Public Library of Science (PLoS)
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorProf. Dr. Martina Juhnke-Kubitzkeger
dc.creatorBrunink, Jan-Marten-
dc.date.accessioned2021-09-14T11:37:48Z-
dc.date.available2021-09-14T11:37:48Z-
dc.date.issued2021-09-14T11:37:49Z-
dc.identifier.urihttps://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-202109145342-
dc.description.abstractThe topic of this thesis are subdivisions of simplicial complexes, in particular we focus on the so-called antiprism triangulation. In the first main part, the real-rootedness of the h-polynomial of the antiprism triangulation of the simplex is proven. Furthermore, we study combinatorial interpretations of several invariants as the h- and local h-vector. In the second part, we show the almost strong Lefschetz property of the antiprism triangulation for every shellable simplicial complex.eng
dc.rightsAttribution 3.0 Germany*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/de/*
dc.subjectSubdivisions of simplicial complexeseng
dc.subjectantiprism triangulationeng
dc.subjectreal-rootednesseng
dc.subjectLefschetz propertieseng
dc.subject.ddc510 - Mathematikger
dc.titleSubdivisions of simplicial complexeseng
dc.typeDissertation oder Habilitation [doctoralThesis]-
thesis.locationOsnabrück-
thesis.institutionUniversität-
thesis.typeDissertation [thesis.doctoral]-
thesis.date2021-05-03-
dc.contributor.refereeProf. Dr. Tim Römerger
Appears in Collections:FB06 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
thesis_brunink.pdfPräsentationsformat1,28 MBAdobe PDF
thesis_brunink.pdf
Thumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons