Algebraic Methods for the Estimation of Statistical Distributions

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-202107155198
Open Access logo originally created by the Public Library of Science (PLoS)
Title: Algebraic Methods for the Estimation of Statistical Distributions
Authors: Grosdos Koutsoumpelias, Alexandros
Thesis advisor: Prof. Tim Römer
Thesis referee: Prof. Kaie Kubjas
Abstract: This thesis deals with the problem of estimating statistical distributions from data. In the first part, the method of moments is used in combination with computational algebraic techniques in order to estimate parameters coming from local Dirac mixtures and their convolutions. The second part focuses on the nonparametric setting, in particular on combinatorial and algebraic aspects of the estimation of log-concave distributions.
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-202107155198
Subject Keywords: algebraic statistics; moment methods; log-concave distributions
Issue Date: 15-Jul-2021
License name: Attribution 3.0 Germany
License url: http://creativecommons.org/licenses/by/3.0/de/
Type of publication: Dissertation oder Habilitation [doctoralThesis]
Appears in Collections:FB06 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
thesis_grosdos_koutsoumpelias.pdfPräsentationsformat6,45 MBAdobe PDF
thesis_grosdos_koutsoumpelias.pdf
Thumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons