Random Geometric Structures

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-202001302552
Open Access logo originally created by the Public Library of Science (PLoS)
Titel: Random Geometric Structures
Autor(en): Grygierek, Jens Jan
ORCID des Autors: https://orcid.org/0000-0002-2709-2115
Erstgutachter: Prof. Dr. Matthias Reitzner
Zweitgutachter: PD Dr. Matthias Schulte
Zusammenfassung: We construct and investigate random geometric structures that are based on a homogeneous Poisson point process. We investigate the random Vietoris-Rips complex constructed as the clique complex of the well known gilbert graph as an infinite random simplicial complex and prove that every realizable finite sub-complex will occur infinitely many times almost sure as isolated complex and also in the case of percolations connected to the unique giant component. Similar results are derived for the Cech complex. We derive limit theorems for the f-vector of the Vietoris-Rips complex on the unit cube centered at the origin and provide a central limit theorem and a Poisson limit theorem based on the model parameters. Finally we investigate random polytopes that are given as convex hulls of a Poisson point process in a smooth convex body. We establish a central limit theorem for certain linear combinations of intrinsic volumes. A multivariate limit theorem involving the sequence of intrinsic volumes and the number of i-dimensional faces is derived. We derive the asymptotic normality of the oracle estimator of minimal variance for estimation of the volume of a convex body.
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-202001302552
Schlagworte: Malliavin-Stein; random simplicial complex; random polytope; limit theorems; Poisson point process
Erscheinungsdatum: 30-Jan-2020
Lizenzbezeichnung: Attribution 3.0 Germany
URL der Lizenz: http://creativecommons.org/licenses/by/3.0/de/
Publikationstyp: Dissertation oder Habilitation [doctoralThesis]
Enthalten in den Sammlungen:FB06 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis_grygierek.pdfPräsentationsformat2,87 MBAdobe PDF
thesis_grygierek.pdf
Miniaturbild
Öffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons