Holographic performance of silicon polymer films based on photoswitchable molecules

Please use this identifier to cite or link to this item:
Open Access logo originally created by the Public Library of Science (PLoS)
Title: Holographic performance of silicon polymer films based on photoswitchable molecules
Authors: Bourdon, Bjoern
Bock, Sergej
Kijatkin, Christian
Shumelyuk, Alexandr
Imlau, Mirco
Abstract: Holographic silicon polymer films based on photoswitchable molecules are studied with respect to their performance for hologram recording, with photoswitchable ruthenium sulfoxide complexes as an example. Our systematic study reveals that it is possible to record elementary holographic lossy gratings with outstanding quality with respect to their dynamics and in- and off-Bragg read-out features. Furthermore, the possibility for the recording of multiple holograms within the same volume element via angular multiplexing as well as the recording with continuous-wave and a fs-laser pulse train is successfully demonstrated. At the same time, a strong limitation of the maximum diffraction efficiency in the order of ∼ 10−3 is found that cannot be counterbalanced by either the tuning of material (thickness, concentration, ...) or recording parameters (repetition rate, wavelength, ...). This limitation – being severe for any type of holographic applications – is discussed and compared with the performance of high-efficient single-crystalline reference holographic media. We conclude that the potential of sulfoxide compounds may be hidden in holography until it becomes possible to synthesize polymer films with appropriate three-dimensional structural arrangement of the photoswitchable compounds.
Citations: Optical Materials Express, Volume 8, Issue 7, 2018, S. 1951-1967
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-201901231023
Subject Keywords: Holographic; silicon polymer films; photoswitchable molecules
Issue Date: 26-Jun-2018
Type of publication: Einzelbeitrag in einer wissenschaftlichen Zeitschrift [article]
Appears in Collections:FB04 - Hochschulschriften

Files in This Item:
File Description SizeFormat 
Optical_Materials_Express_8_7_2018_Bourdon.pdf17,81 MBAdobe PDF

Items in osnaDocs repository are protected by copyright, with all rights reserved, unless otherwise indicated. rightsstatements.org