Interferometric detection and control of cantilever displacement in NC-AFM applications

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016071114621
Open Access logo originally created by the Public Library of Science (PLoS)
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorProf. Dr. M. Reichling
dc.creatorvon Schmidsfeld, Alexander
dc.date.accessioned2016-07-11T15:22:24Z
dc.date.available2016-07-11T15:22:24Z
dc.date.issued2016-07-11T15:22:24Z
dc.identifier.urihttps://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016071114621-
dc.description.abstractThe interferometric cantilever displacement detection in non-contact atomic force microscopy (NC-AFM) is in fundamental aspects explored and optimized. Furthermore, the opto-mechanical interaction of the light field with the cantilever is investigated in detail. Cantilevers are harmonic oscillators that are designed to have a high sensitivity for the detection of minute external forces typically originating from tip-sample interaction. In this work, however, the high sensitivity is used for detailed studies of opto-mechanical forces due to the radiation pressure of the light interacting with the cantilever. The interferometer in the NC-AFM setup consists of an optical cavity working similar to a Fabry-Pérot interferometer in combination with a reference interference arm working similar to a Michelson interferometer combining multi-beam interference with a reference beam resulting in a complex superposition of beams forming the interferometric intensity modulation signal. The character of the interferometer can be adjusted from predominant Michelson to predominant Fabry-Pérot characteristics by the optical loss inside the cavity. A systematic approach for accurate alignment, by using 3D intensity maps and intensity-over-distance curves, as well as the implications of deficient fiber-cantilever configurations are explored and the impact of the interferometer configuration on the detection system noise floor is investigated. A new physical property, namely, the Fabry-Perot enhancement factor is introduced that is a direct measure for the light intensity interacting with the cantilever compared to the reference beam intensity reflected back inside the fiber. The quantification of the optical loss yields an exact knowledge of the amount of light interacting with the cantilever that is crucial to understand opto-mechanical effects. The resulting opto-mechanical force varies sinusoidally during the course of one oscillation cycle. It is a key result of this work that the sinusoidal modification of the cantilever restoring force can be described analogue to the restoring force of a pendulum. This results in an observable amplitude dependent frequency shift of the cantilever oscillation, allowing a calculation of the ratio of the opto-mechanical force relative to the cantilever restoring force and thus allows an in-situ measurement of the cantilever stiffness with remarkable precision. Further investigation of the cantilever oscillation yields that other characteristic properties of the oscillation are significantly modified by the opto-mechanical interaction. The observed effective fundamental mode Q-factor drops significantly while the cantilever amplitude response to a certain excitation voltage increases. A discrete numerical model describing the cantilever as a 1D linear chain of mass points is implemented, yielding that the additional opto-mechanical force results in a partial pinning of the cantilever at the edges of the interferometric fringes. Pinning efficiently shifts energy from the fundamental mode to higher modes and modes of a pinned cantilever, resulting in a complex modal structure.eng
dc.rightsNamensnennung-NichtKommerziell-KeineBearbeitung 3.0 Unported-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/-
dc.subjectNC-AFMeng
dc.subjectatomic force microscopyeng
dc.subjectinterferometereng
dc.subject.ddc530 - Physik
dc.titleInterferometric detection and control of cantilever displacement in NC-AFM applicationseng
dc.typeDissertation oder Habilitation [doctoralThesis]-
thesis.locationOsnabrück-
thesis.institutionUniversität-
thesis.typeDissertation [thesis.doctoral]-
thesis.date2016-04-12-
dc.contributor.refereeProf. Dr. W. Harneit
dc.subject.bk33.05 - Experimentalphysik
dc.subject.bk33.62 - Mechanische Eigenschaften, akustische Eigenschaften, thermische Eigenschaften
dc.subject.pacs42.25.Hz - Interference
dc.subject.pacs62.25.+g - Mechanical properties of nanoscale materials
vCard.ORGFB4
Enthalten in den Sammlungen:FB06 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis_von_schmidsfeld.pdfPräsentationsformat333,36 MBAdobe PDF
thesis_von_schmidsfeld.pdf
Miniaturbild
Öffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons