Surface preparation and characterization of CVD and HPHT diamond for quantum computing applications

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016040714394
Open Access logo originally created by the Public Library of Science (PLoS)
Title: Surface preparation and characterization of CVD and HPHT diamond for quantum computing applications
Authors: Dyachenko, Oleksiy
Thesis advisor: Prof. Dr. Michael Reichling
Thesis referee: Prof. Dr. Wolfgang Harneit
Abstract: This work comprises studies addressing fundamental questions of the diamond surface physics for different doping concentrations of nitrogen and boron, and how doping is reflected in the core shell analysis, valance band structure and work function values. A second aspect of the work is the controllable creation of nitrogen-vacancy (NVs) centers accompanied by comprehensive surface spectroscopy studies (XPS,UPS and MIES). Additionally, in order to increase and stabilize NV negative (NV-), which are required for quantum computing system, studies on diverse oxygen termination procedures has been executed. The efficiency of oxygen termination procedures compared and is confirmed by spectroscopy and wet contact angle (WCA) measurements. Furthermore, an alternative method of hydrogen termination of the diamond surface is proposed and compared to the traditional hydrogen plasma termination. As related side aspect, the deposition of C60 molecules on the diamond surface is performed and investigated by means of UPS and MIES spectroscopy. A distinctive experimental capability of studies is the implementation of the Metastable Impact Electron Spectroscopy (MIES) spectroscopy. This unique surface spectroscopy technique and individual instrumentation design for probing the electronic structure of the outermost surface layer, including measurement examples is introduced in this work.
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016040714394
Subject Keywords: diamond; quantum computing; XPS; UPS; MIES; WCA
Issue Date: 7-Apr-2016
License name: Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Unported
License url: http://creativecommons.org/licenses/by-sa/3.0/
Type of publication: Dissertation oder Habilitation [doctoralThesis]
Appears in Collections:FB04 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
thesis_dyachenko.pdfPräsentationsformat13,35 MBAdobe PDF
thesis_dyachenko.pdf
Thumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons