Fast and approximate computation of Laplace and Fourier transforms
Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016040414362
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016040414362
Title: | Fast and approximate computation of Laplace and Fourier transforms |
Other Titles: | Schnelle und approximative Berechnung von Laplace- und Fourier-Transformationen |
Authors: | Melzer, Ines |
Abstract: | In this thesis, we treat the computation of transforms with asymptotically smooth and oscillatory kernels. We introduce the discrete Laplace transform in a modern form including a generalization to more general kernel functions. These more general kernels lead to specific function transforms. Moreover, we treat the butterfly fast Fourier transform. Based on a local error analysis, we develop a rigorous error analysis for the whole butterfly scheme. In the final part of the thesis, the Laplace and Fourier transform are combined to a fast Fourier transform for nonequispaced complex evaluation nodes. All theoretical results on accuracy and computational complexity are illustrated by numerical experiments. |
Citations: | Dissertation. Universität Osnabrück, 2016. Berlin, Logos Verlag, 2016 |
URL: | https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016040414362 |
ISBN: | 978-3-8325-4226-9 |
Subject Keywords: | fast Laplace transform; fast Fourier transform; nonharmonic Fourier series; real and complex exponential sums; trigonometric approximation |
Issue Date: | 4-Apr-2016 |
License name: | Namensnennung-NichtKommerziell-KeineBearbeitung 3.0 Unported |
License url: | http://creativecommons.org/licenses/by-nc-nd/3.0/ |
Type of publication: | Dissertation oder Habilitation [doctoralThesis] |
Appears in Collections: | FB06 - Hochschulschriften |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
dissertation.pdf | Dissertation | 2,32 MB | Adobe PDF | dissertation.pdf View/Open |
This item is licensed under a Creative Commons License