Determination of single molecule diffusion from signal fluctuations

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2014081312705
Open Access logo originally created by the Public Library of Science (PLoS)
Title: Determination of single molecule diffusion from signal fluctuations
Authors: Hahne, Susanne
Thesis advisor: Prof. Dr. Philipp Maaß
Thesis referee: Prof. Dr. Joachim Wollschläger
Abstract: Knowledge of the properties of single molecule diffusion is important for controlling dynamic self-assembly of molecular structures. A powerful experimental technique for determining diffusion coefficients is the recording of diffusion-induced signal fluctuations by a locally fixed point-like probe. Here, the signal becomes modified, whenever a molecule enters a certain detection area on the surface under the probe. The technique is minimal invasive and has a very good time resolution, enabling the investigation of highly mobile molecules. Theories are necessary for the analysis of the fluctuations and the extraction of diffusion properties. In this thesis, three methods are presented, which are based on the autocorrelation function, the distribution of peak widths and the distribution of interpeak intervals. Analytical expressions are derived for the distributions and the autocorrelation function in case of molecules, which can be described by circular or rectangular shapes. For rectangular shaped molecules, rotational diffusion can influence the recorded fluctuations. To allow for a simultaneous determination of rotational and translational diffusion coefficients the analytical treatment is extended. Furthermore, new methods are developed to determine the diffusion tensor for anisotropic stochastic molecular motion, using either one linearly extended probe or two individual probes. Coarse-graining the signal recorded by a point-like probe, which repeatedly moves on a line or a circle, is suggested for experimental implementation. All facets of the evaluation methods are verified against kinetic Monte Carlo simulations. Applications to experimental data, recorded by a locally fixed scanning tunneling microscope tip, are demonstrated for copperphthalocyanine and PTCDA molecules diffusing on Ag(100).
URL: https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2014081312705
Subject Keywords: surface mobility; single molecule diffusion; anisotropic diffusion; rotational diffusion; autocorrelation function; residence time distribution; interpeak time distribution
Issue Date: 13-Aug-2014
License name: Attribution-NonCommercial-NoDerivatives 4.0 International
License url: http://creativecommons.org/licenses/by-nc-nd/4.0/
Type of publication: Dissertation oder Habilitation [doctoralThesis]
Appears in Collections:FB06 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
thesis_hahne.pdfPräsentationsformat5,57 MBAdobe PDF
thesis_hahne.pdf
Thumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons