Auswirkung des Rauschens und Rauschen vermindernder Maßnahmen auf ein fernerkundliches Segmentierungsverfahren

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2006080215
Open Access logo originally created by the Public Library of Science (PLoS)
Title: Auswirkung des Rauschens und Rauschen vermindernder Maßnahmen auf ein fernerkundliches Segmentierungsverfahren
Authors: Gerhards, Karl
Thesis advisor: Prof. Dr.-Ing. Manfred Ehlers
Thesis referee: Prof. Dr.-Ing. Jochen Schiewe
Abstract: Zur Verminderung des Rauschens sehr hochauflösender Satellitenbilder existieren eine Vielzahl von Glättungsalgorithmen. Die Wirkung verschiedener Tiefpaß- und kantenerhaltender Filter auf das Verhalten eines objektorientierten Segmentierungsverfahrens wird anhand zweier synthetischer Grauwertbilder und einer IKONOS-Aufnahme untersucht. Als Rauschmaß hat sich ein modifiziertes, ursprünglich von Baltsavias et al. [2001] vorgeschlagenes Verfahren bewährt, in dem je Grauwert nur die Standardabweichungen der gleichförmigsten Gebiete berücksichtigt werden. In Vergleich mit synthetisch verrauschten Bildern zeigt sich jedoch, daß auf diese Weise das Rauschen im Bild systematisch um fast den Faktor zwei unterschätzt wird. Einfache Filter wie Mittelwertfilter und davon abgeleitete Verfahren verschlechtern die Präzision der Objekterkennung dramatisch, kantenerhaltende Filter können bei stärker verrauschten Daten vorteilhaft sein.Als bester Filter, der bei Ansprüchen an präzise Segmentgrenzen im Pixelbereich sinnvoll einzusetzen ist und dabei mit nur einem Parameter gesteuert werden kann, erweist sich der modifizierte EPOS-Filter, ursprünglich vorgestellt von Haag und Sties [1994, 1996]. Die generellen Bildparameter, wie Standardabweichung oder Histogramm werden durch diesen kantenerhaltenden Filter nur unwesentlich beeinflußt.
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2006080215
Subject Keywords: Rauschen; Mittelwertfilter; Medianfilter; Bilateraler Filter; eCognition; multiresolution segmentation; noise estimation; mean filter
Issue Date: 31-Jul-2006
Type of publication: Dissertation oder Habilitation [doctoralThesis]
Appears in Collections:FB06 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
E-Diss574_thesis.pdfPräsentationsformat6,87 MBAdobe PDF
E-Diss574_thesis.pdf
Thumbnail
View/Open


Items in osnaDocs repository are protected by copyright, with all rights reserved, unless otherwise indicated. rightsstatements.org