Enhancing Similarity Measures with Imperfect Rule-based Background Knowledge

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2006051214
Open Access logo originally created by the Public Library of Science (PLoS)
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorProf. Dr. Volker Sperschneider
dc.creatorSteffens, Timo
dc.date.accessioned2010-01-30T14:55:56Z
dc.date.available2010-01-30T14:55:56Z
dc.date.issued2006-06-07T11:15:37Z
dc.date.submitted2006-06-07T11:15:37Z
dc.identifier.urihttps://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2006051214-
dc.description.abstractClassification is a general framework that can be applied tovarious tasks such as object recognition, prediction, diagnosis or learning. There exist at least two different approaches for classification, namely rule-based and similarity-based classification. The two approaches have different strengths and weaknesses. The former requires a domain theory in order to make inferences from the test instance to its class. The latter does not have this requirement and approximates the class of a test instance via its similarity to a set of known instances.In this thesis the above two approaches are integrated in the realm of Case-Based Reasoning (CBR). CBR treats new cases according to their similarity to stored cases. Similarity is calculated by a similarity measure, which is the crucial factor for classification accuracy. In this work, rule-based domain knowledge is incorporated into the similarity measures of CBR in order to increase classification accuracy. Several novel integration methods are introduced, implemented and evaluated. Since knowledge about real world domains is typically imperfect, the approach does not assume that the domain theories are accurate or complete. Rather, a systematic analysis of different knowledge types is presented that shows the effect of imperfect knowledge on classification accuracy. The analysis is conducted partly empirically in artificial and in real world domains, and partly formally.eng
dc.language.isoeng
dc.subjectsimilarity
dc.subjectclassification
dc.subjectcase-based reasoning
dc.subject.ddc004 - Informatikger
dc.titleEnhancing Similarity Measures with Imperfect Rule-based Background Knowledgeeng
dc.typeDissertation oder Habilitation [doctoralThesis]-
thesis.locationOsnabrück-
thesis.institutionUniversität-
thesis.typeDissertation [thesis.doctoral]-
thesis.date2006-05-05T12:00:00Z-
elib.elibid552-
elib.marc.edtjost-
elib.dct.accessRightsa-
elib.dct.created2006-05-12T11:40:53Z-
elib.dct.modified2006-06-07T11:15:37Z-
dc.contributor.refereeProf. Dr. Ute Schmid
dc.contributor.refereeProf. Dr. Ralph Bergmann
dc.subject.dnb28 - Informatik, Datenverarbeitungger
vCard.ORGFB8ger
Enthalten in den Sammlungen:FB08 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
E-Diss552_thesis.pdfPräsentationsformat1,26 MBAdobe PDF
E-Diss552_thesis.pdf
Miniaturbild
Öffnen/Anzeigen


Alle Ressourcen im Repositorium osnaDocs sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt. rightsstatements.org