Self-Organizing Neural Networks for Sequence Processing

Please use this identifier to cite or link to this item:
Open Access logo originally created by the Public Library of Science (PLoS)
Title: Self-Organizing Neural Networks for Sequence Processing
Authors: Strickert, Marc
Thesis advisor: Prof. Dr. Barbara Hammer
Thesis referee: Prof. Dr. Helge Ritter
Abstract: This work investigates the self-organizing representation of temporal data in prototype-based neural networks. Extensions of the supervised learning vector quantization (LVQ) and the unsupervised self-organizing map (SOM) are considered in detail. The principle of Hebbian learning through prototypes yields compact data models that can be easily interpreted by similarity reasoning. In order to obtain a robust prototype dynamic, LVQ is extended by neighborhood cooperation between neurons to prevent a strong dependence on the initial prototype locations. Additionally, implementations of more general, adaptive metrics are studied with a particular focus on the built-in detection of data attributes involved for a given classifcation task. For unsupervised sequence processing, two modifcations of SOM are pursued: the SOM for structured data (SOMSD) realizing an efficient back-reference to the previous best matching neuron in a triangular low-dimensional neural lattice, and the merge SOM (MSOM) expressing the temporal context as a fractal combination of the previously most active neuron and its context. The first SOMSD extension tackles data dimension reduction and planar visualization, the second MSOM is designed for obtaining higher quantization accuracy. The supplied experiments underline the data modeling quality of the presented methods.
Subject Keywords: vector quantization; self-organization; relevance learning; classification; clustering; sequence processing; context; fractal representation; MSOM
Issue Date: 27-Jan-2005
Type of publication: Dissertation oder Habilitation [doctoralThesis]
Appears in Collections:FB06 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
E-Diss384_thesis.pdfPräsentationsformat1,62 MBAdobe PDF

Items in osnaDocs repository are protected by copyright, with all rights reserved, unless otherwise indicated.