Spektraltheorie gewöhnlicher linearer Differentialoperatoren vierter Ordnung

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2001072513
Open Access logo originally created by the Public Library of Science (PLoS)
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorProf. Dr. H. Behncke
dc.creatorAbels, Otto
dc.date.accessioned2010-01-30T14:50:25Z
dc.date.available2010-01-30T14:50:25Z
dc.date.issued2001-07-25T09:05:44Z
dc.date.submitted2001-07-25T09:05:44Z
dc.identifier.urihttps://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2001072513-
dc.description.abstractIn this thesis the spectral properties of differential operators generated by the formally self-adjoint differential expression Τy = w⁻₁[(ry″)″ - (py′)′ + qy] are investigated. The main tools to be used are the theory of asymptotic integration and the Titchmarsh--Weyl M-matrix. Subject to certain regularity conditions on the coefficients asymptotic integration leads to estimates for the eigenfunctions of the corresponding differential equation Τy = zy. According to the theory of asymptotic integration the regularity conditions combine smoothness with decay, i.e. admissible coefficients are (in an appropriate sense) either short range or slowly varying. Knowledge of the asymptotics (x → ∞) of the solutions will then be used to determine the deficiency index and to derive properties of the M-matrix which is closely related to the spectral measure of an associated self-adjoint realization Τ. Consequently we can compute the multiplicity of the spectrum, locate the absolutely continuous spectrum and give conditions for the singular continuous spectrum to be empty. This generalizes classical results on second order operators.ger
dc.language.isoger
dc.subjectfourth-order selfadjoint equation
dc.subjectasymptotic integration
dc.subjectTitchmarsh-Weyl M-Matrix
dc.subjectasymptotic formulae
dc.subjectsolutions
dc.subject.ddc510 - Mathematik
dc.subject.ddc530 - Physik
dc.titleSpektraltheorie gewöhnlicher linearer Differentialoperatoren vierter Ordnungger
dc.title.alternativeSpectral Analysis of Fourth Order Differential Operatorseng
dc.typeDissertation oder Habilitation [doctoralThesis]-
thesis.locationOsnabrück-
thesis.institutionUniversität-
thesis.typeDissertation [thesis.doctoral]-
thesis.date2001-07-19T12:00:00Z-
elib.elibid148-
elib.marc.edtfangmeier-
elib.dct.accessRightsa-
elib.dct.created2001-07-21T22:08:24Z-
elib.dct.modified2001-07-25T09:05:44Z-
dc.contributor.refereeProf. Ph. D. D. Hinton
dc.subject.dnb27 - Mathematikger
dc.subject.dnb29 - Physik, Astronomieger
vCard.ORGFB6ger
Appears in Collections:FB06 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
E-Diss148_thesis.tar.gz608,42 kBGZIP
E-Diss148_thesis.tar.gz
View/Open
E-Diss148_thesis.ps.gz222,72 kBGZIP
E-Diss148_thesis.ps.gz
View/Open


Items in osnaDocs repository are protected by copyright, with all rights reserved, unless otherwise indicated. rightsstatements.org