Sparse super resolution in microscopy: Condition, diffraction limit and trigonometric approximations

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
Open Access logo originally created by the Public Library of Science (PLoS)
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorProf. Dr. Stefan Kunisger
dc.creatorHockmann, Mathias-
dc.description.abstractThis thesis concerns the development of two ideas to explain the diffraction limit rigidly and it reveals that a deterministic study of the condition shows the same transition behaviour around the classical Rayleigh diffraction limit as a statistical approach using the Cramer-Rao lower bound. Surprisingly, the analysis of both approaches bases on the construction of a certain minorant function with optimal support conditions. After explaining implications towards the analysis of singular values of Vandermonde matrices with clustering nodes, it deals with approaches to solve the super resolution problem through approximation by polynomials and rational functions. For this, estimates for the rate of weak convergence in the 1-Wasserstein distance and for pointwise convergence are shown. In the last part, it is demonstrated how the deterministic and the statistical point of view allow to explain the increased resolution of microscopy techniques like stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (SIM).eng
dc.rightsAttribution 3.0 Germany*
dc.subjectSuper resolutioneng
dc.subjectResolution limiteng
dc.subjectRayleigh limiteng
dc.subjectCramer-Rao lower boundeng
dc.subjectMinorant functioneng
dc.subjectVandermonde matrixeng
dc.subjectChristoffel functioneng
dc.subject.ddc510 - Mathematikger
dc.titleSparse super resolution in microscopy: Condition, diffraction limit and trigonometric approximationseng
dc.typeDissertation oder Habilitation [doctoralThesis]-
thesis.typeDissertation [thesis.doctoral]-
dc.contributor.refereeProf. Dr. Helmut Bölcskeiger
Enthalten in den Sammlungen:FB06 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis_hockmann.pdfPräsentationsformat3,42 MBAdobe PDF

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons