Data augmentation and image understanding

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://doi.org/10.48693/71
Open Access logo originally created by the Public Library of Science (PLoS)
Titel: Data augmentation and image understanding
Sonstige Titel: Datenerweiterung und Bildverständnis
Autor(en): Hernandez-Garcia, Alex
ORCID des Autors: https://orcid.org/0000-0002-5473-4507
Erstgutachter: Prof. Dr. Peter König
Zweitgutachter: Prof. Dr. Konrad P. Kording
Prof. Graham W. Taylor, PhD
Prof. Jeffrey Bowers, PhD
Zusammenfassung: Interdisciplinary research is often at the core of scientific progress. This dissertation explores some advantageous synergies between machine learning, cognitive science and neuroscience. In particular, this thesis focuses on vision and images. The human visual system has been widely studied from both behavioural and neuroscientific points of view, as vision is the dominant sense of most people. In turn, machine vision has also been an active area of research, currently dominated by the use of artificial neural networks. This work focuses on learning representations that are more aligned with visual perception and the biological vision. For that purpose, I have studied tools and aspects from cognitive science and computational neuroscience, and attempted to incorporate them into machine learning models of vision. A central subject of this dissertation is data augmentation, a commonly used technique for training artificial neural networks to augment the size of data sets through transformations of the images. Although often overlooked, data augmentation implements transformations that are perceptually plausible, since they correspond to the transformations we see in our visual world–changes in viewpoint or illumination, for instance. Furthermore, neuroscientists have found that the brain invariantly represents objects under these transformations. Throughout this dissertation, I use these insights to analyse data augmentation as a particularly useful inductive bias, a more effective regularisation method for artificial neural networks, and as the framework to analyse and improve the invariance of vision models to perceptually plausible transformations. Overall, this work aims to shed more light on the properties of data augmentation and demonstrate the potential of interdisciplinary research.
URL: https://doi.org/10.48693/71
https://osnadocs.ub.uni-osnabrueck.de/handle/ds-202202186397
Schlagworte: data augmentation; image understanding; deep learning; neural networks; visual perception; computational neuroscience
Erscheinungsdatum: 18-Feb-2022
Lizenzbezeichnung: Attribution-NonCommercial-ShareAlike 3.0 Germany
URL der Lizenz: http://creativecommons.org/licenses/by-nc-sa/3.0/de/
Publikationstyp: Dissertation oder Habilitation [doctoralThesis]
Enthalten in den Sammlungen:FB08 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis_hernandez-garcia.pdfPräsentationsformat11,52 MBAdobe PDF
thesis_hernandez-garcia.pdf
Miniaturbild
Öffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons