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Abstract

In the context of evolutionary robotics and neurorobotics, arti�cial neural networks, used
as controllers for animats, are examined to identify principles of neuro-control, network
organization, the interaction between body and control, and other likewise properties. Be-
fore such an examination can take place, suitable neuro-controllers have to be identi�ed.
A promising and widely used technique to search for such networks are evolutionary algo-
rithms speci�cally adapted for neural networks. These allow the search for neuro-controllers
with various network topologies directly on physically grounded (simulated) animats. This
neuro-evolution approach works well for small neuro-controllers and has lead to interesting
results. However, due to the exponentially increasing search space with respect to the
number of involved neurons, this approach does not scale well with larger networks. This
scaling problem makes it di�cult to �nd non-trivial, larger networks, that show interesting
properties. In the context of this thesis, networks of this class are called mid-scale net-
works, having between 50 and 500 neurons. Searching for networks of this class involves
very large search spaces, including all possible synaptic connections between the neurons,
the bias terms of the neurons and (optionally) parameters of the neuron model, such as
the transfer function, activation function or parameters of learning rules. In this domain,
most evolutionary algorithms are not able to �nd suitable, non-trivial neuro-controllers in
feasible time.

To cope with this problem and to shift the frontier for evolvable network topologies a
bit further, a novel evolutionary method has been developed in this thesis: the Interactively
Constrained Neuro-Evolution method (ICONE).

A way to approach the problem of increasing search spaces is the introduction of mea-
sures that reduce and restrict the search space back to a feasible domain. With ICONE,
this restriction is realized with a uni�ed, extensible and highly adaptable concept: Instead
of evolving networks freely, networks are evolved within speci�cally designed constraint
masks, that de�ne mandatory properties of the evolving networks. These constraint masks
are de�ned primarily using so called functional constraints, that actively modify a neu-
ral network to enforce the adherence of all required limitations and assumptions. Con-
sequently, independently of the mutations taking place during evolution, the constraint
masks repair and readjust the networks so that constraint violations are not able to evolve.
Such functional constraints can be very speci�c and can enforce various network properties,
such as symmetries, structure reuse, connectivity patterns, connectivity density heuristics,
synaptic pathways, local processing assemblies, and much more. Constraint masks there-
fore describe a narrow, user de�ned subset of the parameter space � based on domain
knowledge and user experience � that focuses the search on a smaller search space leading
to a higher success rate for the evolution.

Due to the involved domain knowledge, such evolutions are strongly biased towards
speci�c classes of networks, because only networks within the de�ned search space can
evolve. This, surely, can also be actively used to lead the evolution towards speci�c solu-
tion approaches, allowing the experimenter not only to search for any upcoming solution,
but also to con�rm assumptions about possible solutions. This makes it easier to investi-
gate speci�c neuro-control principles, because the experimenter can systematically search



for networks implementing the desired principles, simply by using suitable constraints to
enforce them.

Constraint masks in ICONE are built up by functional constraints working on so called
neuro-modules. These modules are used to structure the networks, to de�ne the scope for
constraints and to simplify the reuse of (evolved) neural structures. The concept of func-
tional, constrained neuro-modules allows a simple and �exible way to construct constraint
masks and to inherit constraints when neuro-modules are reused or shared.

A �nal cornerstone of the ICONE method is the interactive control of the evolution
process, that allows the adaptation of the evolution parameters and the constraint masks
to guide evolution towards promising domains and to counteract undesired developments.
Due to the constraint masks, this interactive guidance is more e�ective than the adaptation
of the evolution parameters alone, so that the identi�cation of promising search space
regions becomes easier.

This thesis describes the ICONE method in detail and shows several applications of
the method and the involved features. The examples demonstrate that the method can be
used e�ectively for problems in the domain of mid-scale networks. Hereby, as e�ects of the
constraint masks and the herewith reduced complexity of the networks, the results are �
despite their size � often easy to comprehend, well analyzable and easy to reuse. Another
bene�t of constraint masks is the ability to deliberately search for very speci�c network
con�gurations, which allows the e�ective and systematic exploration of distinct variations
for an evolution experiment, simply by changing the constraint masks over the course of
multiple evolution runs.

The ICONE method therefore is a promising novel evolution method to tackle the
problem of evolving mid-scale networks, pushing the frontier of evolvable networks a bit
further. This allows for novel evolution experiments in the domain of neurorobotics and
evolutionary robotics and may possibly lead to new insights into neuro-dynamical principles
of animat control.
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Chapter 1

Introduction

1.1 Motivation

The regulatory, adaptive and behavioral abilities of living organisms have always fascinated
researchers all over the globe. With their capability of self-regulation and their reactive
adaptability these systems maintain robust conditions to survive and reproduce, involving
the acquisition and processing of nutrients, the maintenance of essential inner body states
to provide a stable environment for all body processes (e.g. temperature, acid-base-state),
the protection of the organism from harmful environmental conditions (e.g. predators,
radiation, toxic chemicals) and the ability to reproduce, evolve and to adapt to their
ecological niche. The interplay of regulation is so diverse that even today many questions
regarding even simple organisms are not fully answered. The study of such regulatory
systems, especially of their interaction with their environment through feedback loops,
is called cybernetics (Ashby 1956; Wiener 1948). Among the living organisms, animals
are particularly fascinating to study, because of their ability to strongly in�uence their
environment through interactions, particularly using sophisticated limbs to move and to
manipulate their environment. This also requires corresponding sophisticated sensors and
proprioceptors, which together allow the complex behaviors that we can observe every day
in animals (including ourselves). The basis of that control for the vast majority of animals
has been discovered already in the early twentieth century: the nerve cells (neurons) and
the nervous system (neural networks) (Kandel et al. 2000; López-Muñoz et al. 2006).
Understanding the function and dynamical properties of the nervous systems of animals is
considered an important step towards understanding the nervous system of humans and
eventually also of human cognition with its creative, adaptive and constructive abilities.
This makes the study of nervous systems not only interesting for biology, but also for many,
probably far-reaching future technical applications.

The study of feedback-driven neural control is often referred to as neuro-cybernetics.
As a sub-discipline of biocybernetics, researchers in this �eld try to understand the role,
function and properties of neuro-control with respect to their application in technical sys-
tems. Research in this domain also includes work on interfaces between biological nervous
systems and technical systems (e.g. neuroprosthetics), but for the context of this thesis, the
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1.1. Motivation

term neuro-cybernetics is used to refer primarily to the understanding of feedback-driven
neuro-control by means of their organizational and dynamical principles.

A related discipline with overlapping research goals is neurorobotics. This sub-discipline
of arti�cial intelligence focuses on the understanding and creation of intelligence as a result
of a body-brain-environment interaction. Here, physically grounded robots are used to test
biologically inspired theories on information processing and control, especially including
theories on neuro-control. Experiments in this domain are often used to empirically prove
that certain theories � derived from biological experiments � are also practically applicable
and thus sound (albeit not necessarily correct).

Being highly interdisciplinary, the �elds of (neuro-)cybernetics and neurorobotics in-
volve many disciplines, such as biology, chemistry, physics, ethology, medicine, robotics,
electronics, mechatronics and computer science. So, the problem of understanding neuro-
control can be approached from many di�erent perspectives. While some disciplines con-
centrate on understanding the details of the function of the many di�erent neuron cell
types and their signal transmission, other disciplines focus on the broader principles of
control or the interplay of high-level behaviors. Others investigate how di�erent con�gu-
rations of the required physical body with its sensors, proprioceptors and actuators a�ect
the organization of neural control, to investigate how much (neural) control actually is
necessary for a behavior and how much of it originates from an elaborated body design.
A research focus therefore can also be the understanding of the various feedback-loops
between neuro-control (including feedback-loops within the network), the body (including
its inner states) and the environment (including other organisms). Another interesting
research topic is learning and memory in neural networks, that allows animals to adapt
their behavior during their life-time. These examples of research questions should show
the broadness and complexity of the �eld.

Some researchers approach the problems top-down (biology, ethology), starting with a
working, observable behavior of a living animal and trying to decompose that behavior by
analyzing the underlying biological nervous systems with increasing detailedness. Others
investigate the questions bottom-up (robotics, computer science, physics) by trying to syn-
thesize arti�cial, simulated (and simpli�ed) nervous systems for arti�cial reactive agents,
starting with low-level functions and extending them to more and more complex networks.

The bottom-up approach, involving arti�cial (physical or simulated) animals, is also
called the animat approach (Meyer 1998; Meyer and Guillot 2008; Watts 1998; Wilson
1991) and is a sub-discipline of arti�cial intelligence and arti�cial life (Bedau 2003; Lang-
ton 1989). This approach is a valuable complement to the examination of living organisms.
The arti�cial replication of nervous systems on animats allows a detailed examination of
neural principles in working systems that can be modi�ed and varied quite easily to system-
atically investigate the properties of control networks. The hereby required modi�cations
and variations of the neural networks would not be possible with living animals. Also, the
analysis of an arti�cial neural network is less di�cult, because all inner states of the arti�-
cial neural network can be accessed at any time with absolute accuracy. In contrast, when
examining living organisms, only partial, noisy data of the neural network activities can
be obtained despite the usually high technical e�ort. Thus, arti�cial nervous systems are
also especially suited to be analyzed and understood from the perspective of the dynamical
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Chapter 1. Introduction

systems theory (Beer 1995, 2000; Cruse 2009; Pasemann 1998; Thelen and Smith 1994).
This view recognizes animats as dynamical subsystems embedded in an all-embracing dy-
namical system (environment) and understands behavior and cognition as a result of the
interaction of internal (brain) and external (body, environment) dynamics. Understanding
the neuro-dynamics of arti�cial neural networks of animats in their environmental context
(and not just as isolated system) is considered a promising approach to explain behavior
and cognition.

This thesis focuses on a problem involved with this bottom-up approach: The synthesis
of arti�cial neuro-controllers. As prerequisite for the analysis of neuro-controllers, one
obviously requires a way to design such controllers for a particular animat. Replicating
nervous systems of living beings by simply copying their network structure is � presently �
not possible for many reasons, e.g. the complexity of the networks, the inability to derive
the necessary synaptic weights, and the inability to accurately simulate all details of the
necessary arti�cial body of the animal. Accordingly, networks have to be designed from
scratch, naturally often guided and inspired by knowledge obtained from experiments with
living organisms. Designing such controllers is di�cult because of the parallel, distributed
processing nature of the usually highly interconnected complex neural networks with their
many parameters.

A quite successful approach to this problem are techniques from evolutionary robotics
(ER) and arti�cial life (Bornhofen and Lattaud 2006; Floreano et al. 2008b; Harvey et al.
1997, 2005; Lungarella et al. 2003; Meyer et al. 1998; Nol� and Floreano 2004; Pfeifer and
Bongard 2006). Instead of manually constructing neuro-controllers for arti�cial systems,
neuro-controllers are developed using evolutionary algorithms (see section 2.2). With this
gradient-based class of search algorithms, neuro-controllers are developed by trial-and-
error, inspired by principles of Darwinian evolution (Darwin 1859). This approach has
been successfully used for many years (e.g. Bongard 2003; Capi and Doya 2005; Gomez and
Schmidhuber 2005; Hornby et al. 2003; Hülse et al. 2004; Kodjabachian and Meyer 1998;
Lipson et al. 2006; Meyer et al. 2003; Pasemann and Dieckmann 1997; Pasemann et al.
2003b; Rempis 2007; von Twickel and Pasemann 2007; Walker et al. 2003; Wischmann
and Pasemann 2006). One problem with this technique is, however, that evolutionary
algorithms do not scale well with the size and complexity of the neural networks. This
is often referred to as the scaling-problem of neuro-evolution (Hornby et al. 2003; Maja
J. Matari¢ 1996). As a result, most of the neuro-controllers in this domain are very small
compared to the nervous systems of even simple animals. Using the evolutionary approach
to evolve larger neuro-controllers for complex robots with many sensors and actuators
often fails due to the immense involved search space. Therefore, the approach � although
promising � could not provide the anticipated rich pool of complex neuro-controllers yet.

Therefore, researchers are trying to push the frontier of evolvable network complexi-
ties with new, specialized neuro-evolution techniques. A number of such algorithms have
been proposed during the last 20 years (see section 2.4), speeding up the evolution of
neuro-controllers and increasing the probability of successful experiments. However, the
complexity of the evolved networks still remains comparably small.

With this thesis, a new evolution technique is introduced, that pushes the frontier of
evolvable network complexities again a bit further, opening the research area for new in-
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teresting experiments that require larger networks and may involve more complex animats
with richer sets of sensors, proprioceptors and actuators. The expectation is that this
method may help to gain new insights into neuro-cybernetic, neurorobotics and evolution-
ary robotics problems, that have not been explored so far.

1.2 Approach and Delimitations

Problems to Solve. Evolving larger neuro-controllers in the context of neuro-cybernetics
and neurorobotics comes with a number of problems. First, as already mentioned, the
search space for the evolutionary algorithms increases drastically with every new neuron
in the network. At some point, the search space becomes too large to provide a reason-
able chance to �nd a suitably working network at all. A reduction of the search space
therefore seems mandatory to keep the search space in a feasible domain. An important
observation that can be made when evolving larger networks is, that often large parts of
the networks are of regular, repetitive nature, such as repeating structures, symmetries or
the repeated utilization of speci�c organization principles. In cases where the existence of
such properties is known or assumed, a free evolution without any restrictions unnecessar-
ily increases the search space and reduces the probability of �nding suitable controllers.
A mechanism to induce such regularities to the evolving networks can signi�cantly re-
duce the search space. Furthermore, it can be observed that similar neural structures are
required over and over again in di�erent (independent) experiments, for instance motor
control structures, sensor processing, memory functions and pattern generators. Evolving
such structures from scratch in each experiment again blows up the search space without
leading to new insights regarding the actual, intrinsic problem. So it would be bene�cial
to provide such structures as building blocks during evolution to relieve evolution from
reinventing already known structures. In the same spirit, it seems reasonable to divide
networks into structures, which are the focus of interest of an evolution (focus structures),
and those structures, that are � in principle � already known, but are still required for the
fully working neuro-controller (peripheral structures). Being able to de�ne such periph-
eral structures in advance relieves evolution from the time-consuming search for structures
whose development does not contribute to answering the scienti�c questions underlying
the experiment. In the context of neurorobotics research, these questions are usually very
clear and detailed, so that it also would be bene�cial to guide or to bias the evolution
towards very speci�c solution approaches. Evolutionary algorithms have the tendency to
solve problems with the most probable, often most simple solutions, that frequently are not
the ones the experimenter is looking for. This becomes especially important, if controllers
are evolved to replicate or realize a given concept, e.g. a control hypothesis derived from
biological organisms. Here, some kind of guidance is indispensable.

The evolution method presented in this thesis addresses all mentioned problems to
reduce the search space, to increase the success rate also for larger networks, and to allow
the guidance of the evolution with domain-knowledge and interactive supervision.
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Approach. The proposed method, called Interactively Constrained Neuro-Evolution
(ICONE), primarily focuses on strategies to reduce the search space and to in�uence the
possible network structures in advance. This allows the induction of domain knowledge to
the networks and a guidance of the evolution towards preselected subspaces of the overall
search space. To achieve this, ICONE uses so called functional constraints to de�ne a
constraint mask on the networks, forcing all evolving networks to remain within the given
limitations. Di�erent from passive constraints, which are often used with evolutionary
algorithms and are merely used to calculate a degree of constraint violation for a solution,
functional constraints can actively modify a neural network to enforce the given limita-
tions. With such constraints, it becomes quite easy to exploit regularities in the network
(symmetries, structure repetitions, speci�c connectivity patterns) and to apply domain
knowledge to the evolving networks. The functional constraints in ICONE are not limited
to a �xed set, so that even complex, very speci�c constraint functions can be de�ned on
demand.

Constraints are not applied globally to the entire network, but merely on freely se-
lectable groups of neurons. This allows a simple selection of a�ected neurons and a �exible
de�nition of the constraint mask by constraining only relevant neurons. A special case
of neuron groups are the so called neuro-modules. Unlike ordinary groups, these neuro-
modules do not allow intersections with other neuro-modules. However, they allow a hier-
archical stacking (as submodules) and provide a neural interface. Only neurons that are
part of this neural interface can have connections to neurons outside of the module. Thus,
neuro-modules separate a network into hierarchical network areas with well-de�ned con-
nectivity. Due to these properties, neuro-modules are suitable as neural building blocks,
that can be used during evolution or during network preparations to extend a network
by fully functional units. Since such modules are usually well-designed (section 5.1.2) and
equipped with functional constraints, such modules extend the search space only marginally
and avoid the reinvention of already known neural structures. Due to the constraints, these
modules are still mutable to some extent, but their function is preserved by the constraints
to avoid a destruction of the module's purpose through mutations. Modules are also the
base of a new crossover operator that allows the exchange of neural structures between
lineages (see section 3.3.3).

To guide an evolution experiment, the experimenter has to de�ne one or more initial
networks manually, hereby structuring the networks into neuro-modules, de�ning periph-
eral structures and attaching functional constraints. This process is called constrained
modularization (section 5.1). Such an initial network describes a constraint mask, that
de�nes the set of all network structures that are possible to evolve. For this, the exper-
imenter obviously requires domain knowledge and experience. In addition, a graphical
software tool is mandatory to de�ne and test such networks e�ciently. The initial net-
works � once de�ned � can be used to perform various variants of evolution experiments
by slightly diversifying the evolution parameters or the constraint masks of the initial
networks.

ICONE approves the conduction of interactive, iterative evolutions, i.e. step-wise evo-
lution experiments under supervision. This allows the constant guidance and adaptation
of the evolution process and the reaction to unforeseen problems during the course of an
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experiment. Once a promising subspace of the search space is identi�ed, unsupervised
evolutions can further help to quickly exploit that search area and �nd variations to the
solutions.

ICONE allows a wide range of constrained evolutions. Depending on the constraint
masks, evolutions with ICONE can reach from unconstrained evolutions similar to many
other evolution methods, over slightly constrained search spaces excluding only obviously
faulty controllers or inducing simple heuristics, up to very strongly constrained search
spaces used to only con�rm very speci�c assumptions. In all cases, the approach allows a
very detailed in�uence of the networks to be evolved and increases the chance of �nding
not only working controllers, but also varieties of very speci�c kinds of controllers. This
makes the method valuable for the neurorobotics approach.

Delimitations. The proposed method does not claim to solve the scaling problem of
neuro-evolution. However, the method opens the domain of neuro-evolution to new exper-
iments that have been out of scope so far. The focus of the method, unlike many other
evolution methods, has not been on performance, but instead on a good success rate, the
induction of domain knowledge and the guidance of the neuro-evolution process. Hence,
the focus is on its practical applicability in the domain of mid-scale (section 2.3) networks.

1.3 Contributions

ICONE Neuro-Evolution Method. The main contribution of this thesis is the gen-
eral evolution method ICONE, that allows the application of modularization, functional
constraints and other measures to enforce arbitrary network features to heterogeneous, re-
current neural networks. With this method new kinds of experiments can be designed that
may lead to novel insights into the dynamical principles of neuro-control. This is achieved
through four major e�ects:

(1) The search space of the experiments can � problem-speci�cally � be greatly reduced,
which makes neuro-evolution applicable to more complex animats and allows the evolution
of larger, non-trivial neuro-controllers.

(2) The outcome of the neuro-evolution can be biased by the experimenter towards
very speci�c results. This allows the use of neuro-evolution to con�rm or explore given
(theoretical) approaches of the organization of neural networks.

(3) With step-wise variations of the constraint masks it becomes quite easy to system-
atically explore the search space to also �nd such neuro-controllers, that would be very
unlikely to be discovered in a global, unconstrained search space.

(4) Principles of neural organization can easier be transferred to new animats, when
these principles � once identi�ed � are described as functional constraints. Such constraints
can then be used for the constraint masks of the new animats, leading to evolved networks
using the given principles.

(5) Evolved neural structures can be worked up as constrained neuro-modules. These
neural building blocks can be collected in a module library, from which they can be shared
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with other researchers and be used as primitive building blocks for the design of initial
networks or for macro-mutations during neuro-evolution.

Put together, this method increases the control over the evolution and the related search
space of neuro-controllers for the experimenter and simpli�es the work with functional
subnetworks.

NERD Toolkit. The ICONEmethod has been implemented as a reference framework for
the so-called Neurodynamics and Evolutionary Robotics Development Toolkit (NERD
Toolkit). This open-source software provides an extensible, well documented implementa-
tion of the ICONE method, an integrated physical general-purpose simulator, a sophisti-
cated neural network editor and various analysis tools for neuro-controllers. Details on the
framework can be found in appendix D.

Demonstrators. The method has been applied to various experiments. Two examples
are described in detail: The evolution of a bipedal walking behavior for a humanoid robot
(chapter 7) and the evolution of variations of locomotion behaviors with a multi-segmented
closed-chain animat (chapter 8). The experiments serve as demonstrations of the method
and give a �rst impression on how the method can be applied.

1.4 Thesis Overview

After motivating the work at hand, the remainder of this thesis is structured as follows.
Chapter 2 describes the major related topics that are required to set the main part of

the thesis into context. The chapter starts by describing arti�cial neural networks as they
are used to control animats, followed by a description of evolutionary algorithms in general
and the related terminology. In the next section the scaling problem for neuro-evolution is
addressed and the application domain of the ICONE method � namely mid-scale networks
� is de�ned. The chapter is completed by a review of the state-of-the-art in neuro-evolution,
describing the current major approaches and their ability to cope with the problem of large
search spaces.

The next four chapters describe the ICONE method and its application.
Chapter 3 focuses on the main ICONE algorithm. Sections 3.1 to 3.3 give details on

the requirements for the genome encoding, the actual evolution algorithm, the role of neu-
ron groups and neuro-modules, a new modular crossover operator, functional constraints
and additional measures to de�ne a constraint mask for a neural network.

Chapter 4 gives detailed information on all currently implemented functional con-
straints and their e�ects during the mutation phase. This section is required for an under-
standing of the applications in chapters 7 and 8.

Chapter 5 focuses on the main procedures involved when evolving neuro-controllers
with the ICONE method. This covers the modularization of initial networks (section 5.1),
including the optimal re�nement of neuro-modules for the structure reuse through a module
library (sections 5.1.2 and 5.1.3) and the practice of interactive (section 5.2) and iterative
(section 5.3) evolution.
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Chapter 6 then concludes the method description by listing a number of useful ex-
tensions to the basic ICONE method. These extensions, among many others that can be
realized for the method in future work, increase the expressiveness of the constraint masks
and enhance the usability of evolved neuro-controllers.

Chapters 7 and 8 demonstrate the application of the ICONE method to several real-
world problems. Two experiments are described in detail to demonstrate the experiment
design and the evolution process. In the �rst experiment (section 7) a walking behavior
is evolved for a physical humanoid robot with 42 motor neurons and 37 sensor neurons.
The second experiment (section 8) demonstrates the systematic search for variations of the
locomotion behavior of a multi-segmented closed-chain-animat with up to 30 motor and
120 sensor neurons.

Chapter 9 discusses the ICONE method and suggests corresponding future work.
Chapter 10 �nally concludes the thesis and brie�y evaluates the potential impact of

the ICONE method on the �eld of neuro-evolution.
The Appendix �nally gives an overview on the symbols used to visualize the network

graphs (Appendix A), provides details on the evolution operators (Appendix B), network
tags (Appendix C, see also section 3.2.4) and the reference implementation of the method,
called the NERD Toolkit (Appendix D).
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Chapter 2

Foundations

This chapter provides the basic foundations needed to understand and relate the neuro-
evolution method described in the subsequent chapters. First, the essentials of arti�cial
recurrent neural networks, as they are used to control arti�cial agents, are brie�y reviewed.
Then, the basics of the general evolutionary search algorithms are summarized, introducing
the related terminology used in the remainder of the thesis. In the third section, the scaling
problem of neuro-evolution is discussed and the term mid-scale networks as application
domain for the proposed neuro-evolution method is de�ned. The �nal section of this
chapter contains a review on the current state-of-the-art neuro-evolution techniques. This
section also highlights the problems of current neuro-evolution approaches, so that the
proposed neuro-evolution approach can be appraised in the appropriate context.

2.1 Arti�cial Neural Networks for Control

Arti�cial neural networks (ANN) are a widely used class of (computational) calculation
models inspired by biological nerve cells. Since their �rst appearance in the early twentieth
century (Hebb 1949; McCulloch and Pitts 1943; Rosenblatt 1958), many di�erent neural
network models have been proposed over the years that serve di�erent purposes, such
as simulating biological, spiking neurons as close as possible, to train networks as data
classi�ers, to learn the prediction of time-series or to control technical systems. Despite
their di�erences, the core components of such neural networks are usually the same: The
networks are composed of parallel processing nodes, the so called neurons, connected with
directed links, called synapses. These two main components correlate to the biological
neurons and their synaptic connections between their dendrites and axons.

The actual implementation and the properties of the neurons and synapses can be
very di�erent, depending on the detail level that has to be simulated. Additional network
properties, for instance single spikes (Brette et al. 2007), membrane potentials, ion chan-
nels (Hines and Carnevale 1997), neural gas (Fritzke 1995; Martinetz and Schulten 1991)
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or direct electric in�uences between neurons can be modeled. A complete and detailed
overview on the di�erences of the many ANN models and the history of ANNs cannot be
given in this section. The interested reader is referred to the vast literature on the topic
(e.g. Livingstone 2008; Rojas 1996)).

For the domain of behavior control of animats, one aspect of the ANN models has to
be pointed out. The more details a model considers, the more di�cult and more time-
consuming its calculation becomes. In many applications, especially for the control of
physical technical systems, the response of a neural control network has to be very fast to
allow an acceptably reactive control. Thus, the choice of a suitable simulation model is
crucial for the application: It should re�ect all neuro-dynamical features required for the
task or desired to be examined, without being too complex and hence too computationally
extensive for a given context.

For this reason, relatively simple models of ANNs are used in the domain of control.
One advantage of such elementary ANN in the domain of control is that the networks
consist of very basic building blocks (neurons and synapses) and therefore are simple to
implement and fast to calculate, even on embedded systems. A second advantage is that
many of these networks can be trained with numerous learning algorithms (e.g. Anthony
(2009), Haykin (2008)), such as backpropagation (Werbos 1990) or evolutionary search
algorithms (section 2.2 and 2.4), so that the networks (and therefore the control programs)
can be automatically designed based on data samples of the control problem. But also from
the perspective of the biological control theory such simple ANN models are interesting,
because they still re�ect many (dynamical) properties assumed to be responsible for the
behavior of biological nervous systems (Beer 2000; von Twickel et al. 2011). This makes
them interesting targets for the study of structure and organization of general neural
control with the help of arti�cial systems, which are much easier to analyze and observe
than biological systems (Beer 1995; Wischmann and Pasemann 2006).

Recurrent Additive Discrete-Time Neuron Model. In the context of this thesis,
one such simple neuron model is used to control animats: the standard additive discrete-
time ANN model. This model is described by two functions, the activation function a
(equation 2.1) and the output function o (essentially de�ned by the transfer function τ)
(equation 2.2).

ai(t+ 1) = θi +

n∑
j=1

wij oj(t)); i = 1, . . . , n; t ∈ {0, 1, 2, . . .};

oi, ai, θi, wij ∈ R

(2.1)

oi(t) = τi(ai(t)); i = 1, . . . , n; t ∈ {0, 1, 2, . . .};
oi, ai ∈ R

(2.2)
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Here, oi is the output of neuron i, ai is the activity of neuron i, wij is the weight of the
synaptic connection from neuron j to neuron i, and θi denotes its �xed bias term. The
bias term can be interpreted as a �xed synapse coming from an always active neuron and
provides a constant base excitation or inhibition for a neuron. The output oi of a neuron
i is given by applying the transfer function τi(ai) of neuron i on its current activation ai.

This neuron model is clearly not thought to be an exact model of biological nervous
systems; the output of a model neuron may be interpreted as the mean activity (�ring rate)
of a biological neuron's axon for a certain time interval and the model synapses may be
interpreted as the combined e�ect of all excitatory and inhibitory biological synapses that
would exist between the axon of a source neuron and all dendrites of the target neuron. This
simple recurrent model, however, already shows many interesting dynamical properties
(Beer 2005; Hülse et al. 2007; Pasemann 1998, 2002) that allow insightful experiments on
dynamical principles of reactive behavior control with arti�cial neural networks.

Transfer Function. The transfer function τ often is a bounded, nonlinear, di�erentiable
function like the commonly used logistic function or hyperbolic tangent. Bounded transfer
functions limit the neuron's output range, which is an important property of biological
neurons. Nonlinear transfer functions can lead to much more interesting neuro-dynamics
compared to the sole use of linear transfer functions. On the other hand, linear trans-
fer functions can also be useful when nonlinear e�ects on a signal are not desired. The
di�erentiability is a prerequisite for many learning methods, so it is required when such
methods are applied. Apart from these features, each transfer function obviously also pro-
duces a di�erent kind of output and thus de�nes a di�erent class of dynamical systems
with di�erent network dynamics.

(a) (b)

Figure 2.1: Comparison of di�erent transfer functions and their impact on the neuron
output. Note the di�erent axis ranges of (a) and (b).

The hyperbolic tangent, for instance, allows a positive and negative output and thus
a dynamic switching of inhibition and excitation of a neuron's in�uence. The standard
logistic function, in di�erence, has an output range of [0,1] and is in this respect biologically
more similar to a single neuron, but its output behavior provides a quite high output for
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low and even negative activations, which di�ers from biological neurons. Other transfer
functions, such as the sigmoid functions shown in �gure 2.1 may be biologically more
plausible, but results with these functions are di�cult to compare to the results using the
main-stream transfer functions. Because of the advantages and potential capacities of the
many transfer functions, the given neuron model here does not � di�erent from most ANN
implementations in ER � assume a single transfer function to be used for all neurons of
the network. Instead the transfer function τi can be chosen separately for each neuron
i, allowing heterogeneous networks that support � if desired � the combination of the
strengths of di�erent transfer functions. This widens the range of supported experiments
by the interesting �eld of heterogeneous networks, with homogeneous networks still being
supported as a special case.

Activation Function and Synapse Function. The activation function in equation 2.2
is used in all experiments of this thesis. However, the evolutionary method proposed in this
thesis also supports the use of di�erent activation functions and of heterogeneous networks,
where not only the transfer function, but also the activation function can di�er from neuron
to neuron. Also, the weights of the synapses are not necessarily �xed (as in the equation),
but may also be represented by a separate function σi for each synapse, here called the
synapse function. This mix of neuron and synapse models in a single, heterogeneous
network allows powerful networks combining the strengths of di�erent models where they
are most bene�cial.

2.2 Evolutionary Algorithms

Evolutionary algorithms (EA) with their many variants � such as genetic algorithms (Gold-
berg 1989; Holland 1992), genetic programming (Koza 1992, 1994; Koza et al. 1999), evo-
lutionary strategies (Back et al. 1991; Rechenberg 1994), evolutionary programming (Fogel
and Fogel 1996; Fogel et al. 1966) and neuro-evolution (Scha�er et al. 1992; Yao 1992) �
are search algorithms performing a gradient ascent search on populations of candidate so-
lutions. All such algorithms have a common basic search strategy, analogue to Darwinian
evolution (Darwin 1859):

EAs maintain a pool of candidate solutions to a given problem, each solution candidate
representing a distinct point in the multi-dimensional search space. EAs iteratively modify
this pool by replacing bad performing candidates by new ones, following a simple heuristic:
Given the problem provides performance gradients relative to the search space, then good
solution candidates are likely to be found close to even better candidates. Therefore, the
replacement of the worst solution candidates of a population with slightly varied well per-
forming candidates results in a local search around the points in search space that already
have shown to have a good performance and that are likely to include also better candi-
dates. EAs therefore follow the performance gradients by sampling promising subspaces of
the search space, converging to (local) optima.

The general EAs iteratively run in �ve phases, called � inspired by natural evolution �
evaluation, selection, reproduction, recombination and mutation. Following this analogy,
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the candidate solutions are often called individuals, the evolving solutions a population,
and a set of competing candidates during one iteration a generation.

In the evaluation phase, the individuals of an (initially often randomly created) gen-
eration are rated for their e�ciency to solve the problem. This requires a performance
measure, often called a �tness function, that is problem speci�c and actually encodes the
problem to be solved.

In the selection phase, the candidates are chosen to be either replaced or to be used
as basis to create new candidates. In the latter case, such selected candidates are often
referred to as parents.

A number of di�erent selection methods have been proposed for this process (Jong
2006), commonly involving selection probabilities based on the measured performance of
an individual. Usually, the better an individual is, the more o�spring is created based on
that individual.

During the reproduction and recombination phases the new individuals are derived from
their parents. For this, the genomes of the parents (i.e. their parameter representations)
are duplicated and (optionally) recombined during the so called crossover , where parts of
the parents' genomes are exchanged. The individuals resulting from a crossover therefore
share parameters of both parents. This corresponds to the local search around promising
points in the search space.

During the mutation phase, the parameters of each individual are randomly modi-
�ed, moving the represented point in search space slightly in di�erent dimensions. For
evolutionary algorithms without a crossover operator � which is common in the �eld of
neuro-evolution � this is the only measure to alter the genome.

These �ve phases are repeated until convergence, which corresponds either to a solution
of the problem or to a local undesired optimum. Accordingly, EAs are not guaranteed to
solve a given problem, but have still proven to be quite e�cient for many problem domains.

EAs have been used for many di�erent applications (for examples see the Applications
of Evolutionary Computing series, e.g. Cagnoni et al. 2000; Giacobini et al. 2009), because
their general algorithms makes them suitable for a wide variety of problems, such as engi-
neering, art, program design, function approximation and agent control. The use of EA in
most domains is simple, because the problem speci�c parts of the algorithm are limited to
the genome representation (with appropriate mutation operators) and the �tness function.

Despite their many successful applications, EAs have several problems that limit their
usability. First, the characteristics of the problem, especially the genome representation
and the used �tness function, strongly in�uence the performance of the EAs. Obviously,
the more parameters have to be optimized, the more time-consuming the search becomes.
But also the structure of the so called �tness landscape (Langdon and Poli 2002, chapter
2), i.e. the characteristics of the �tness space, has a major impact (Peliti 1996), as for
all gradient based search methods. If the �tness landscape does not provide su�cient
gradients, then the search performance can drop down to that of a random search. If the
landscape provides too many local optima, the search easily gets stuck prematurely. Also,
the mutation settings have to be suitably low to ensure that the mutated candidates still
represent points in search space close to that of their parents. But on the other hand,
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they should be large enough to allow an escape from local optima. Also, the crossover
operators should only produce individuals that are still representing candidates close to
their parents, which is often di�cult to achieve (see section 3.3.3).

2.3 Mid-Scale Networks and the Scaling Problem

During the last decades, many interesting neuro-evolution experiments have been published
in the evolutionary robotics (ER) community (for examples see the From Animals to An-
imats series, e.g. Doncieux et al. 2010; Meyer and Wilson 1990). The �rst experiments
started out successfully with simple animats and very small �xed-topology networks. With
the computers getting faster, more sophisticated experiments have been performed, but the
reported sizes of the evolved neural networks (with and without topology evolution) are
usually still small. To give a rough order of magnitude, non-developmental neuro-evolution
(NE) algorithms work with less than about 30 neurons (developmental NE algorithms (e.g.
Gruau 1994) can provide larger, but structurally limited networks, e.g. by structure rep-
etitions). Using much more neurons increases the search space signi�cantly, because the
number of parameters grows quadratic with the number of neurons due to the many addi-
tionally available synapses. Most NE algorithms are not able to �nd appropriate networks
in such large search spaces. Also, recurrent neural-networks are highly dynamic and there-
fore can change their overall behavior signi�cantly as the result of a single small parameter
change. The larger the networks are, the more severe such drastic e�ects of the mutations
can become, because often such larger networks are neuro-dynamically much richer than
small networks.

This severe di�culty to evolve larger neural networks � despite the many successes with
small networks � is also known as the scaling problem of neuro-evolution (Hornby et al.
2003; Maja J. Matari¢ 1996).

Many di�erent NE algorithms have been developed since the �rst approaches (see sec-
tion 2.4). Such algorithms can solve the classical benchmark problems, like pole-balancing,
the XOR problem, the parity function or simple navigation tasks, with ever increasing per-
formance (e.g. Gomez et al. 2008; Gruau 1994; Moriarty 1997; Stanley 2004), but the
overall number of involved neurons is still small.

At the current state we are able to evolve small neuro-controllers very fast. But the
now really interesting neuro-controllers with novel (neuro-dynamical) properties, that are
not already described and examined, are expected to be found in the domain of � here
called � mid-scale networks, i.e. networks with about 50 to 500 neurons. The class of
mid-scale networks has been introduced in this thesis to separate that complexity class
from small networks, as well as from very large networks (with thousands of neurons), as
they are used in di�erent contexts of neural networks research (e.g. modelling of biological
neural networks, data analysis, time series prediction).

The scaling problem and the lack of appropriate NE methods hinder the development
of such larger, interesting networks of the mid-scale domain and hereby slow down the
progress of ER (Hornby et al. 2003).
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2.4 State of the Art in Neuro-Evolution

Neuro-Evolution for Control

The evolution of neural networks as controllers for autonomous robots has a long tradition
in the evolutionary robotics community (Floreano et al. 2008a; Harvey et al. 1997, 2005;
Kodjabachian and Meyer 1995; Lungarella et al. 2003; Miikkulainen 2010; Nol� and Flore-
ano 2004). Embodied neural networks utilizing the sensors of a robot (sensori-motor loop,
see Pfeifer 2002) can result in astonishingly robust behaviors in noisy environments. Also,
using neural networks for behavior control may give insights into the neural organization
of biological organisms. However, the construction of such networks is � apart from simple
behaviors like tropisms (Braitenberg 1984; Hülse et al. 2005; Salomon 1997) � di�cult to
design by analytical approaches. This requires algorithms and techniques to create and
optimize neural networks in an e�cient manner. Robot control tends to rely on recur-
rent neural networks, because behaviors are usually dependent on inner states and require
the use of feedback loops in the network and through the environment. As a promising
approach to create such networks, a number of di�erent types of evolutionary algorithms
have been developed over the last decades.

Types of Neuro-Evolution. Evolutionary approaches for arti�cial neural networks can
be roughly divided into �xed topology algorithms and topology evolving algorithms. The
former class of algorithms usually works with networks having a �xed number of fully
interconnected neurons or with layers of neurons with a �xed interconnection pattern.
One problem with �xed topology algorithms is that the chosen number of neurons and
their interconnection structure may not be appropriate and thus may not allow a solution
at all. Second, the search space is usually very large right from the beginning, because
all potential neurons and synapses of the network in its maximal dimensions are always
included. Accordingly, it is di�cult to �nd the optimal balance between a minimal search
space and a topology that in the �rst place includes solutions to the problem.

Topology evolving algorithms on the other hand mostly have the ability to start with
a small network (Elman 1993) and to add neurons and synapses to gradually increase the
search space slowly over time or when it seems necessary (Hülse et al. 2004; Stanley 2004).
Such algorithms keep the search space small without restricting the size and topology of
the network over the course of the evolution. So, if solutions in small networks cannot be
found, then the evolution can continue to search in larger network topologies, so that the
initial network topology can be chosen much less thoroughly.

Many topology evolving algorithms can also be used to shrink already well performing
larger solutions to smaller, easier comprehensible and easier to generalize network struc-
tures (Giles and Omlin 1994; Hülse et al. 2004)).

Genome Encoding. The genome representation of neural networks di�ers widely be-
tween the various algorithms. Common representations are matrices of synaptic weights,
object structures of parameterized neuron types, lists of weights and nodes, binary strings,
graph descriptions, trees and lists of construction rules, and much more. In the literature,
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the genome encodings are commonly separated into two classes: direct encoding and in-
direct encoding. Direct encoding genomes directly represent the weights of all synapses
of the network. One advantage of this approach is its simplicity, which makes it easy
to use and implement. Also, most directly encoded networks are, in principle, free of a
representation bias, because all kinds of networks can be encoded with this method. The
mapping between genotype and phenotype is simple and works �ne in both directions.
This is relevant, if one wants to evolve a network structure not from scratch, but instead
on top of an existing, manually prepared network structure.

In contrast, indirect encoding genomes evolve parameters that are used to indirectly
derive the network topology and/or synaptic weights. Often, this involves the application
of grammars or rule sets to construct the network. Such algorithms are often referred
to as developmental algorithms (Bongard and Pfeifer 2003; Downing 2007; Eggenberger
1996; Gruau 1995; Hornby and Pollack 2001; Inden 2007; Lucas 1995; Meyer et al. 2003;
Nol� and Parisi 1995) or algorithms with arti�cial embryogeny (Bentley and Kumar 1999;
Bongard and Pfeifer 2001; Stanley and Miikkulainen 2003a). Developmental approaches
have the advantage that the genome size is often much more compact compared to direct
encoding if applied to larger networks. This can speed up evolution, but usually also in-
duces a strong representation bias to the evolution, because often not all kinds of networks
can be encoded (with similar likeliness) with this type of algorithm. Also, whereas the
construction of a phenotype from a given genotype is relatively easy using a developmen-
tal algorithm, the de�nition of the genotype from a given phenotype is often di�cult and
complicated. In addition, even the construction of a phenotype from a given genotype
can already be time-consuming. Some indirectly encoding NE algorithms, like simulated
growing synapses (Nol� and Parisi 1991) or those using compositional pattern-producing
networks (CPPNs) (Stanley 2007), may even slow down evolution, because the mapping
from genotype to phenotype is computationally expensive.

Crossover. Although crossover is generally a valuable operator of evolutionary algo-
rithms (Herrera et al. 1998; Langdon and Poli 2002), it is rarely used for the evolution
of neural networks. The (arbitrary) combination of two well performing neural networks
most often creates networks that behave very di�erent from their parents. One reason is
that the same functionality can be produced by very di�erent neural structures, so that
two equally well performing networks may be structurally very di�erent. This is called
the competing conventions problem (Belew et al. 1992; Hancock 1992; Scha�er et al. 1992).
Combining such networks usually destroys the functionality of both networks, so that the
created network performs much worse than its parents. Algorithms, that used variants of
this simple crossover include e.g. Angeline et al. (1994); Bongard (2003); de Garis (1991);
Doncieux and Meyer (2003); Spears and Anand (1991)

An algorithm that introduced crossover to neuro-evolution again was the NEAT algo-
rithm (Stanley and Miikkulainen 2002a, b) and it is used by all derivatives of that algorithm
(e.g. HyperNEAT (Stanley et al. 2009), Modular NEAT (Reisinger et al. 2004), NEON (In-
den 2007, 2008), NEAT�elds (Inden et al. 2010)). The crossover here successfully enhances
the evolution performance, because the crossover does not combine arbitrary network areas
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of two networks, but instead uses historical markings to �nd exchangeable sections with
comparable evolutionary history. Exchanging such network sections is much less destruc-
tive than arbitrary crossover. Using crossover in NEAT has been shown to improve the
evolution process measurably (Stanley 2004).

Diversity. The conservation of a certain level of diversity is very bene�cial for any kind
of evolution, including neuro-evolution. One reason is that networks with very di�erent
topologies and weight distributions can show a similar �tness rating. Furthermore, even
small enhancements of a behavior may require large changes to the network structure. To
�nd an improvement, evolution often has to cross subspaces of the search space with a lower
�tness �rst to end up with a higher �tness, i.e. it has to cross from one local optimum
to another. Therefore, a premature convergence to a single class of solution candidates
easily leads to an invincible local optimum. Although the diversity can be in�uenced
for most evolution methods at the selection level (Horn 1997; Mahfoud 1995; Sareni and
Krähenbühl 1998) or with classical diversity measures (e.g. �tness sharing, niching, see
Sareni and Krähenbühl 1998), some neuro-evolution methods provide speci�c features to
increase the diversity. To protect di�erent lineages during evolution, NEAT uses a niching
method based on historical markings (Stanley 2004), which allow a dynamic grouping of
the networks into similarity classes. So, only similar networks have to compete against
each other. ESP (Gomez 2003) and SANE (Moriarty and Miikkulainen 1994) increase the
diversity by not evolving complete neural networks, but instead by evolving single neurons,
that are assembled to a full network for each evaluation (cooperative co-evolution). Because
the neurons are always combined in other ways, the resulting networks remain diverse
longer. In addition ESP makes use of �xed niches that further enhance diversity. Using a
similar approach on the synaptic level, CoSyNE (Gomez et al. 2006, 2008) also uses niches
to delay convergence.

Network Shaping. Shaping (also called iterative or incremental evolution) is a quite
common strategy (Bongard 2003; Dziuk and Miikkulainen 2011; Hülse et al. 2005; Miikku-
lainen et al. 2006; Mouret and Doncieux 2008) to simplify the evolution of a complex task
by subdividing it into multiple, easier to solve sequential experiments and to combine their
results. This obviously in�uences the order of development and the organization of the
evolved controllers through the experimental setup. Shaping can be used with almost all
neuro-evolution algorithms, because it only requires the iterative conduction of separate
evolution experiments and the ability to evolve new structures on top of previously evolved
ones.

With network shaping , on the other hand, I refer to the ability of a NE algorithm to
allow shaping on the network level. This means that the network itself, not only the exper-
imental settings, can be in�uenced with external measures (based on domain knowledge)
to evolve structures iteratively in certain orders and organizations. This is very useful, if
one wants to examine very particular neuro-controller approaches or if one wants to guide
evolution into promising regions of the search space.

Examples are HyperNEAT (Stanley et al. 2009) and HybrID (Clune et al. 2009), where
the evolving structures can be in�uenced by di�erent choices of the positions and distribu-
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tion of (sensor and motor) neurons. The same holds for algorithms with simulated growing
synapses (Nol� and Parisi 1991). In these algorithms, an elaborated choice of the neuron
positions can signi�cantly in�uence the network topology and the evolution success.

A simple way of network shaping is provided by the ENS3 algorithm (Dieckmann
1995; Hülse et al. 2004). It provides a protection mechanism that allows the prevention of
all mutations from selected neurons, so that (initial) network structures can selectively be
included or excluded from mutations over the course of a series of consecutive experiments.

More control over the evolving network structures is provided by the SGOCE method
(Kodjabachian and Meyer 1998; Meyer et al. 2003). SGOCE is a developmental algorithm,
where the user can choose the number of evolving structure construction programs and
specify in an editor, at which positions of the network these programs start to construct
their subnetworks. Also, the orientation of the initial seeds of these programs can be speci-
�ed, which allows the de�nition of symmetric, modular networks, which is especially useful
for repetitive structures, such as multi-legged walking machines. A di�erent approach uses
the modular evolution algorithm ModNet (Doncieux and Meyer 2004a). Here, networks
are composed of non-hierarchical evolvable neuro-modules with one or two �xed input and
output neuron. Whereas the network structure of these modules can be fully evolved, it is
also possible to specify prede�ned neuro-modules to be used during evolution, so that the
evolving network structure can be in�uenced (Doncieux and Meyer 2005). Also, ModNet
supports connectivity patterns to in�uence the module connections (Doncieux and Meyer
2004b) in the initial generation.

Bootstrapping. One important problem with evolutionary algorithms and with neuro-
evolution of controller design in particular, is the bootstrapping of the evolution. As for
all gradient based search algorithms, the �rst few generations are especially important for
NE algorithms, because until then, promising candidates should have been found that are
within the range of an acceptable local optimum. If so, the gradient based search will
have a good chance to converge to such a desired local optimum. If, however, there are
no promising candidates in the entire generation, then the search will take very long or
will not succeed, because new candidates are preferably generated close to the best, but in
this case bad performing individuals. This is particularly severe the more low performing
local optima exist in the �tness landscape. Then it becomes more and more likely that
the evolution gets stuck in one of these undesired optima. Therefore, it is important to
start with � and preferably to keep � a high diversity in the population. One approach to
tackle this problem is shaping and iterative evolution (see above), because the simpler the
experiments are, the smoother the �tness landscapes usually become. Finding a proper
order for such iterative sub-tasks, however, is not always easy. To avoid �xed sequences
of sub-tasks at all, Mouret and Doncieux (2008) perform a multi-objective evolution (van
Veldhuizen and Lamont 2000) on all sub-tasks at once, leading to an increased diversity.

A second important approach is network shaping, notably the prede�nition of network
structures, so that it becomes more likely that random extensions of such an initial network
results in promising candidates. In combination with suitable search space restriction
measures, this increases the likeliness for good candidates.
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Also, an e�ective strategy is to use very large populations to guarantee many di�erent
randomly initialized candidates. But then the performance of the algorithm drops down.
A good compromise is the use of interactive evolution algorithms, such as ENS3, where
the population size and the probabilities for mutations can be adapted after the �rst few
generations as a reaction to the observed progress.

A similar e�ect can also be achieved using an explicit initialization generation in the
algorithm, so that the population in the �rst generation is larger than in the remaining
generations. The additional computational e�ort then is only required in the �rst gener-
ation to �nd suitable initial candidates with a broad search space sampling, whereas all
following generations only evaluate the normal, lower number of individuals.

With the same goal, the very di�erent strategies novelty search (Lehman and Stanley
2011; Risi et al. 2009) and behavioral distance measures (Mouret and Doncieux 2009a, b)
can be used to actively search for di�erently behaving controllers with non-zero perfor-
mance. This helps to create an early and long-lasting diversity in the population.

Coping with Large Networks

As the experiments in evolutionary robotics become more di�cult and the corresponding
neural networks become larger, neuro-evolution approaches try to increase the success rate
of the evolutionary search with di�erent strategies. Three important strategies should be
mentioned here: structure reuse, incremental complexi�cation and search space restriction.

Structure Reuse and Modularity. Structure reuse means, that a single neural struc-
ture encoded directly or indirectly in the genome, can be reused in di�erent parts of the
network. This often relates to modular structures, or neuro-modules (Auda and Kamel
1999; Happel and Murre 1994; Pasemann 1995, 1996). The main advantage of reusing
subnetworks is the possibility to develop functional building blocks, which can be reused
in multiple parts of the network, without having to be reinvented by evolution multiple
times. An example in biological systems are the cortical columns in the brain of mam-
mals (Horton and Adams 2005)). Modular subnetworks are explicitly addressed in algo-
rithms like Modular NEAT (Reisinger et al. 2004), ModNet (Doncieux and Meyer 2004a),
CoSyNE (Gomez et al. 2008), Cellular Encoding (Gruau 1994, 1995) and its derivatives
(e.g. Christoph M. Friedrich 1996), ENSO (Valsalam 2010; Valsalam and Miikkulainen
2009), ESP (Gomez and Miikkulainen 1997), in SGOCE (Meyer et al. 2003) and in Cal-
abretta et al. (2000). Another approach to reuse structures is the generation of networks
with CPPNs (Stanley 2007) and the related evolution method HyperNEAT (D'Ambrosio
and Stanley 2007; Gauci and Stanley 2007; Stanley et al. 2009). HyperNEAT does not
evolve neural networks directly, but evolves function networks (CPPNs) that generate the
weights of a �xed network topology, resulting in often repetitive, symmetric structures
similar to neuro-modules.

Incremental Complexi�cation. Structure reuse is one e�cient method to reduce the
search space. Another common strategy is the incremental complexi�cation of networks,
as done in NEAT and its derivatives (Stanley 2004), ESP (Gomez and Miikkulainen 1997),
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ModNet (Doncieux and Meyer 2004a), ENS3 (Dieckmann 1995; Hülse et al. 2004; Pase-
mann et al. 1999), NEAT�elds (Inden et al. 2010) and most developmental approaches.
Evolution is started with small or minimal networks � for instance only including the sen-
sor and motor neurons � and explores this search space until no further improvement is
observed. Then, repeatedly, the search space is extended by adding additional neurons and
synapses, and the new search space is explored. The assumption is that if solutions with
simple network structures exist, then it would be bene�cial to �nd them �rst, because they
are expected to evolve faster than complex networks with the same functionality. This
strategy has been shown to accelerate the evolution process in a number of experiments
(Stanley 2004).

Further Search Space Restriction and Topology Heuristics. Another way to re-
duce the structural search space is the consideration of symmetries and other topological
peculiarities � like the positions of neurons � and the application of heuristics for the
topology. Developmental approaches with growing synapses, for instance, usually implic-
itly implement the heuristics, that local, close-by neurons should have a higher probability
to be connected than neurons further apart (Cangelosi et al. 1994; Meyer et al. 2003; Nol�
and Parisi 1991), leading to less densely connected networks with locally connected groups
of neurons. Also strongly depending on the positions of the neurons is HyperNEAT, which
can exploit topological neighborhoods. Symmetries can be used in many experimental sce-
narios, because the bodies of most animats have one or more axes of symmetry. This can be
re�ected in the network topology and strongly reduces the search space. ENSO (Valsalam
and Miikkulainen 2009) is an example of an algorithm that systematically breaks down
symmetries step by step, starting with a prede�ned, highly symmetric network, hereby
exploring the more symmetric � and thus smaller � search spaces �rst.

Another � already mentioned � search space restrictions is the manual exclusion of
certain neurons or synapses from being changed during evolution, as it is possible with the
ENS3 algorithm.

To summarize, the number and variations of neuro-evolution algorithms proposed dur-
ing the last years is astonishingly high. But this is understandable, taking the anticipated
impact on the �elds of neuro-control, neuro-cybernetics and evolutionary robotics into ac-
count. Each evolutionary method has its own bene�ts for a speci�c application area, where
it outperforms other methods. The neuro-evolution method proposed in this dissertation
is in this spirit similar in that it focuses on a speci�c niche of neuro-evolution problems:
the systematic search for neuro-controller variations in the domain of mid-scale networks.
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ICONE

Interactively Constrained

Neuro-Evolution

This chapter introduces the Interactively ConstrainedNeuro-Evolution (ICONE) method,
developed to tackle the problems described in the previous sections. ICONE has to be un-
derstood as a general method, that can be combined with di�erent selection methods,
genome representations and mutation operators. Section 3.1 discusses the aim and ap-
plication domain of the method to point out why and in which context the method is
applicable and how it can enhance the network evolution process. That section also gives
a brief summary of the method, so that the method details can be understood in context
right from the beginning. Section 3.2 then describes the genome structure as it is used
for the experiments of this thesis. The chapter is concluded by a description of the actual
algorithm (section 3.3), giving details about the mutation phase, constraint resolving and
the used crossover operator.

3.1 Overview

Application Domain. Despite the many available neuro-evolution approaches (compare
section 2.4) there is still a lack of methods practically applicable for the evolution of
complex neuro-controllers in the context of evolutionary robotics (ER), neuro-cybernetics
and neurorobotics research. The aim of this research is to develop neuro-controllers for
animats, such as robots or simulated creatures, and to understand the underlying neural
and neuro-dynamical principles. In its quite long history (Floreano et al. 2008b; Harvey
et al. 1997, 2005; Meeden and Kumar 1998; Meyer et al. 1998; Nol� and Floreano 2004;
Walker and Oliver 1997) this research �eld has made much progress using varieties of
neuro-evolution methods. But due to the large search spaces, the controllers are restricted
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to relatively small and comparably simple networks controlling simple agents. To gain
new insights into the neural organization of control, larger, more complex networks are
desired, preferably recurrent networks with non-trivial topologies. Also, the controlled
agents should be more complex, providing rich sets of di�erent sensors and actuators. This
allows for a complex interplay of internal and external stimuli, a�ecting multiple, partially
independent motor systems. Evolving neuro-controllers in this highly interesting domain
is very di�cult, because � as already mentioned � the search space exponentially increases
with every new neuron in the controller. Consequently, evolving interesting, non-trivial
neuro-controllers for animats requiring mid-scale networks (50 to 500 neurons, see section
2.3) is still a problem and the success rates are very low.

A second problem in the context of ER and neurorobotics is that it is often not just
desired to �nd the most likely solution to a control problem, that usually comes up dur-
ing neuro-evolution. Instead, any new distinct solution approach, even those not optimally
solving the problem, are of interest due to their potential of providing new neuro-dynamical
or organizational principles. As a result, the evolution should provide ways to bias the
search in di�erent directions to also explore less likely solution spaces. This is especially
important for problems where theories have been proposed � e.g. by biologists or ana-
lytical reasoning � that should be systematically tested. This is very intricate to achieve
with most neuro-evolution methods, because such problems require the compliance with
given assumptions and restrictions. These somehow have to be enforced onto the evolving
controllers, usually done through the �tness function or by writing specialized evolution
algorithms for the investigated approach (e.g. von Twickel 2011). This is often di�cult to
do, restricts the �exibility of the evolution and makes it di�cult to dynamically react to
results or failures of the neuro-evolution rapidly.

To tackle these problems, the ICONE method has been developed. The basic idea of
the method is to allow the supervised induction of arbitrary constraints and restrictions
on the evolving networks, a�ecting the structure and the weights of the developing neu-
ral networks. With such constraints the search space can be greatly restricted based on
domain knowledge, user experience and guessing, to render successful evolutions possible
even with larger networks. So, although the evolving networks can be quite large, the
corresponding search spaces are not larger than that of small, unconstrained networks, for
which a successful evolution is feasible. With this, ICONE is suitable for the evolution of
mid-scale networks, which today is still a di�cult domain in the context of ER. In addition
to a pure search space reduction, ICONE also allows to bias the search towards speci�c
solution approaches, allowing the investigation or application of known or assumed neural
control principles. The induced restrictions and constraints can be interactively controlled
by the user, so that an adaptation as a reaction to intermediate results during the course
of an evolution is possible.

Generality. In di�erence to other search space restricting methods (see section 2.4), the
ICONEmethod was designed to be applicable to a wide range of scenarios without requiring
speci�c prerequisites, such as inherent symmetries, special regularities, size restrictions or
�xed topologies. However, with this evolution method many of such restricting features
can be fully exploited where available. To achieve this, the method has been devised to be
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easily extensible and adaptable to many di�erent functional, structural and organizational
conditions, such as di�erent animats, research foci, control approaches and neural network
models. Furthermore, the method was designed to minimize the structural bias originating
from the algorithm itself (not to be mistaken with intentional biasing by the user), so that
all kinds of networks are, in principle, evolvable.

The core of the ICONE method focuses primarily on the reproduction and mutation
phase of the evolutionary algorithm, leaving all other parts of the algorithm open. Thus,
the method can be combined with di�erent selection methods, �tness measures, niching
techniques, multi-objective evolution approaches and the like. This is important, because
their individual strengths and weaknesses for the evolution progress strongly depend on
the task. Therefore, they should not be �xed in the algorithm, but instead be allowed to
be used wherever this enhances the evolution success for a particular experiment.

The overall generality of the method allows a wide application of the method, but
comes with a price regarding performance. Accordingly, the focus of this method is not
to provide yet another and faster method to solve the same (already solved) benchmark
problems, but instead to allow the guided search of neuro-controllers in domains where most
other evolution algorithms simply fail due to the large search spaces. This means, that
performance is considered less important than getting varieties of complex solutions at all.
Also, this method should not be expected to be an unsupervised universal problem solver,
but merely an interactive assistant tool to support a user to �nd varieties of controllers in
iterative, supervised steps. This is also the reason why this thesis does not try to directly
compare and benchmark the method with other neuro-evolution approaches, because each
evolution run is strongly biased by the ideas, experiences and preferences of the user. This
makes a formal, objective comparison with other methods very di�cult and vulnerable to
criticism.

Method Overview. Evolution with the ICONE method usually requires the following
steps. First, as for all evolutionary algorithms, the user has to design the experiment for the
given problem, including an evaluation environment � such as a simulation � and a �tness
function. The approached problem may be the search for a behavior controller, but also
more elaborate questions, like the application of a speci�c control structure, the use of a
neural paradigm or the con�rmation of a given (control) hypothesis. As a second step, one
or more initial networks have to be prepared, which is here called modularization (Rempis
and Pasemann 2010). Hereby, the initial networks are structured into modules and groups
to enhance comprehension, to restrict possible synaptic connections and to encapsulate
and group functional and logical parts of the network. Also, prede�ned structures (here
called peripheral structures, see section 5.1.1.2) can be added to the network to simplify the
bootstrapping of the evolution and to bias the search towards speci�c solution approaches.
As part of the modularization phase, the initial networks are further constrained by adding
so called functional constraints to the groups and modules. These functional constraints
can be used to enforce any desired structural feature on the network. They ensure that only
compatible networks can evolve, i.e. networks that do not violate any of these constraints.
This leads to a strong reduction of the search space and biases the search to very speci�c
con�gurations. Such initial netoworks are called constraint masks, because they de�ne the
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restricted search space the evolution takes place in. The �nal step then is the actual �
iteratively and/or interactively conducted � evolutionary search.

The described steps are, of course, not as sequential as described. Iterative evolution
often requires the user to redesign the initial networks, the �tness function, the evaluation
environment and sometimes even the experiment itself. Hereby, the user can learn by
direct observation of the experiments, which modi�cations may be necessary to locate the
promising subspaces of the search space that may contain the desired solutions.

Graphical Auxiliary Tools. Working directly with large neural networks, especially
during the preparation of initial networks and during interactive evolution, requires graph-
ical tools to do so e�ciently. Without such a tool networks easily become inconvenient
to work with, especially when modularizing and constraining the networks. Therefore,
a graphical network editor has been implemented that allows the construction, modular-
ization, constraint control and analysis of neural networks. Details on this editor can be
found in appendix D.2. The availability of such a network editor should be kept in mind
when reading the sections about the � at �rst glance seemingly quite complicated � topics
of constrained modularization and manual network preparation.

The next sections describe the ICONE method and its related components in detail. The
focus of this thesis is the method itself, not its actual implementation. However, to test
the method and to perform the experiments described in chapters 7 and 8, the ICONE
method was implemented as part of the NERD toolkit, which is described in appendix
D. This open source project can be used to replicate the results and to start with own
evolution experiments.

3.2 Genome

The genome encoding for the ICONE method may vary from implementation to imple-
mentation. This ensures that the method can be applied in combination with features
from other evolution algorithms and problem-speci�c operators. However, some require-
ments are mandatory and are described in detail in the next sections. The overall genome
encoding, that is used in this thesis, is then summarized in section 3.2.6.

3.2.1 Neural Network Encoding

Direct Encoding of Large Networks. As described in section 2.4 genomes can encode
neural networks directly or indirectly. While the main opinion today is that indirect
encoding is more e�ective and better scaling than direct encoding when used with larger
networks (Gruau et al. 1996; Meyer et al. 2003; Yao 1999), ICONE uses a direct encoding
scheme. For the research context ICONE is used in, the direct encoding has signi�cant
advantages over indirect encodings:

� The direct encoding does not add an encoding bias to the evolved networks, i.e. it
does not restrict the possible (or likely) network structures that may evolve.
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� Direct encoding allows a much better comprehension of the relation between genotype
and phenotype, especially when a partial initial network should be designed manually.
The mapping from an indirect genome encoding to its phenotype representation
usually is easy, while the other way round is often not de�nite, very di�cult or
sometimes simply not possible. In the given context, this is a problem, because we
want to seed the evolution with partially working networks, for which the indirect
encoding may not be known in advance.

� To achieve small changes in a network phenotype, only small changes are required in a
direct encoding schema, too. The same small desired modi�cations of the phenotype
may require an entirely di�erent indirect encoding. This further hinders the inter-
active evolution paradigm fostered by the ICONE method. Also, indirect encoding
makes the de�nition of constraints (see section 4) very di�cult, because constraints,
seen from the user perspective, should constrain the phenotype. But they have to
do this by adjusting the genotype. Automatically �nding the proper indirectly en-
coded genotype that represents a certain change in the phenotype is di�cult and
time-consuming and thus is a problem for the proposed approach.

The major problem of direct encoding genomes for larger networks is its comparably
large parameter space, which makes evolution more di�cult. Indirect encodings usually
have a smaller parameter space because they compress the genome at the cost of a reduced
set of representable phenotypes (Yao 1999). However, ICONE uses explicit constraints to
reduce the search space and therefore is not so much a�ected by that problem. Because
of the relatively easy de�nition of constraints with direct encoding genomes, properly
constrained genomes often provide even much smaller search spaces than unconstrained,
indirectly encoded representations.

General Genome Requirements. Genome encodings for ICONE should be as ex-
pressive as possible to allow many di�erent network architectures and accordingly the
investigation of many research questions, including heterogeneous networks with mixed
transfer functions, di�erent activation functions, higher-order synapses, adaptive synapses
and learning rules. The hereby increasing search space is not a problem per se, because
ICONE allows constraints on the networks to pick only those components of the possible
genome variations that are actually needed for a certain experiment. Moreover, the con-
straints also allow the restriction of any parameter variability only to di�erentiated, local
areas of the network, so that the search space is only increased in a few, well de�ned areas.

A second requirement for all genome representations is that each network element (neu-
ron, synapse, neuron-group, neuro-module; see next sections) has a unique identi�er. This
identi�er is important, because constraints usually work with element IDs to refer to cer-
tain elements in the network. It is further important that these identi�ers remain valid
when network elements are replaced by others having di�ering unique IDs, for instance
during a crossover. For this, the implementation of the ICONE method requires a mech-
anism to notify all constraints if such a replacement takes place, so that they can adjust
their references accordingly to remain functionally valid.
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Element Attributes

Neuron Bias
Transfer Function
Activation Function

Synapse Weight
Synapse Function

Neuron-Group Member Neurons
Constraints

Neuro-Module Member Neurons
Member Modules
Constraints

All Elements Position in the Network

Table 3.1: An overview of the basic network elements and some of their evolvable attributes.
The element position is an optional, but very useful attribute, that is required for many
connectivity heuristics and position dependent constraints.

3.2.2 Neurons and Synapses

The basis of the direct encoding schema of each ICONE genome is a representation for
neurons and synapses. All parameters of these network elements, such as the synapse
weight, neuron bias, activation function, synapse function and transfer function (see table
3.1), should be evolvable and parameters of the genome. These parameters should be ad-
justable independently of each other, so that arbitrary heterogeneous networks with mixed
neuron models are possible. This increases the supported evolvable network structures and
the scope of feasible experiments. The larger search space coming with these additional
parameters can be reduced again during evolution via constraints, so that the search space
is not necessarily blown up.

The bias value of the neurons hereby should be a separate parameter of each neuron,
instead of a synapse connecting an always active bias neuron to the a�ected neuron, as
many neuro-evolution algorithms do. This allows a separate control of the insertion and
removal of bias terms and that of synapses. This is especially important for larger net-
works, because the probability to add a synapse between a neuron and such a bias neuron
diminishes with the increasing number of available neurons, making bias connections more
and more unlikely, the larger the networks become.

Neurons and synapses, like all other network elements, also provide a list of so-called
network tags, that are described in detail in section 3.2.4, and the mentioned unique iden-
ti�er to allow an unambiguous addressing of each network element. The details of the
genome representations are summarized in �gure 3.3 on page 34.
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Figure 3.1: Basic neural network elements and their main properties. The �gure also shows
the symbols used in the neuro-controllers depicted in this thesis. A full overview on all
symbols can be found in appendix A.

3.2.3 Neuron-Groups and Neuro-Modules

On top of the basic neural network an additional layer is de�ned, consisting of so-called
neuron-groups and neuro-modules. These additional network elements are used to organize
the network logically and hierarchically and to enable the de�nition of constraint masks
by the user. However, the e�ects of these optional elements are limited to the mutations
during evolution and do not have a direct e�ect on the overall function of the network.
Hence, the removal of this layer always leaves a still intact, fully operational neural network.
This allows an unproblematic use of evolved neuro-controllers in environments that only
support the common neuron models, for instance when a controller is transferred to a
physical robot or has to be evaluated in a simulator with a �xed neural network model.

Neuron-Groups. A neuron-group is simply a set of neurons with the following proper-
ties:

� Neuron-groups can be restricted by constraints (see section 3.2.5), that only a�ect
the members of that group.

� Neuron-groups, like all network elements, provide a list of so-called network tags (see
section 3.2.4).

� Neuron-groups make the represented set of member neurons addressable via a single,
unique identi�er, that can be used (e.g. by constraints and network tags) to refer to
all member neurons of that group at once.

� Neuron-groups may provide a human-readable name for the represented group of
neurons, which enhances the comprehensibility of the network and simpli�es the
handling of larger networks.

Neuron-groups are the basis and the contact point for the main search space restriction
mechanism of ICONE: the functional constraints (section 3.2.5). Neuron-groups also allow
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a logical grouping of neurons, for instance to de�ne network layers, or they can be used
in functional constraints to refer to the sets of corresponding neurons (e.g. to refer to all
sensor neurons, all motor neurons, all neurons belonging to one side or a single body part
of an animat, all neurons with a certain function or role, etc.).

A neuron-group is represented in the genome as a list of member neurons, a list or
parameterized constraints, a list of property tags and a unique identi�er (see �gure 3.3 on
page 34).

Neuro-Modules. Neuro-modules are extended neuron-groups. In addition to the fea-
tures of neuron-groups, neuro-modules have the following properties:

� In di�erence to neuron groups, neuro-modules cannot overlap with other neuro-
modules, i.e. each neuron can only be member of a single neuro-module at the
same time.

� Neuro-modules provide a well de�ned neural interface of input and output neurons.

� Neuro-modules can be stacked hierarchically, i.e. neuro-modules can be members of
other neuro-modules and form hierarchies of submodules.

With these properties neuro-modules encapsulate distinct subnetworks and separate
these structures from other parts of the network. Neurons inside of a neuro-module cannot
be connected to neurons outside of that module. Exceptions are the interface neurons.
These neurons are specially marked to be visible outside of the module, either for outgoing
synapses (output neurons), incoming synapses (input neurons) or both. A normal interface
neuron is only visible outside of its own module. If an interface neuron is a member of a
submodule, then its visibility can be increased, so that a neuron additionally belongs to the
neural interface of the parent modules of its own module. The depth of this visibility, i.e.
the number of parent module levels the neuron is visible at, can be chosen separately for
each neuron and direction. Put together, neuro-modules are especially useful to structure
a network not only logically, but also hierarchically and spatially.

The extensive use of neuro-modules also biases evolution towards local synaptic con-
nections, because most neurons only can connect synapses to a small set of local neurons
or the interface neurons of neighboring neuro-modules. This is a powerful mechanism to
bias the evolutionary search towards a local processing of related neurons, instead of allow-
ing arbitrary synaptic connections. This is considered to be important because the larger
the networks become, the more probable it becomes that global synapses will connect un-
related neurons and network areas, rather disturbing useful (local) processing structures
than enhancing them. These global connections can be reduced by using neuro-modules
to encapsulate and shield their member neurons and submodules. A properly modularized
network (see section 5.1) does not only bias search towards a more local processing, but
also restricts the search space by removing a signi�cant number of possible, but most often
obstructive connections. Furthermore, controllers are expected to evolve functional struc-
tures distributed over � and interacting with � a much smaller part of the network, which
makes the isolation, analysis and comprehension of these structures easier. Of course, one
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should not expect that functional structures evolve nicely within a single neuro-module,
but nevertheless � due to the restricted connectivity � functional units have the tendency
to be less interweaved.

In the genome, neuro-modules are represented as a list of member neurons, a list of
parameterized constraints, a list of property tags, information about the interface neurons
and a unique identi�er (see �gure 3.3 on page 34).

(a) Examples of neuron-groups, showing the logical grouping of neurons according to their role, their
associated locations on the animat body and their type. The �gure also shows the human-readable
names of the overlapping neuron-groups.

(b) Examples of neuro-modules illustrating the hierarchical and spatial separation of the same
network. Interface neurons of the neuro-modules are indicated with an I (input) and an O
(output). The shown synapses illustrate the visibility of interface neurons in the submodule
hierarchy and the resulting tendency for a local processing.

Figure 3.2: Examples for neuron-groups and neuro-modules and their di�erent use on the
same neural network. Both, the neuron-group and neuro-module de�nitions can coexist
on top of the same network.
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Advantages of using Neuro-Modules and Neuron-Groups. Neuro-modules � as
they are used with ICONE � are functionally di�erent from those used in other NE ap-
proaches, where the modules are usually used to represent repeatable or exchangeable net-
work structures and to compress the genome. Although, with suitable constraints, neuro-
modules in ICONE can also serve a similar purpose, the here proposed neuro-modules (and
neuron-groups) are much more �exible and allow very diverse ways of reducing the search
space and of controlling the evolution process:

� Neuro-modules structure a network to enhance comprehensibility and to reduce the
search space by reducing the number of valid synaptic connections.

� The use of submodules organizes a network hierarchically leading to an increased
control of the interaction of functional structures by the user.

� Neuro-modules are a suitable way to reuse previously evolved network structures
during evolution (see section 5.1.3).

� Neuro-modules allow a crossover operator that is less destructive than standard
crossover (see section 3.3.3).

� Neuro-modules clearly separate functional neural structures behind well de�ned in-
terfaces, which helps to preserve the function of a module during evolution and to
avoid harmful synaptic connections to 'internal' processing neurons.

� Neuro-modules and neuron-groups allow very detailed, complex restrictions and a
shaping of the desired network structure with constraints (see section 4 and 5.1).

Limitations of Neuro-Modules and Neuron-Groups. Structuring networks with
neuron-groups and especially with neuro-modules naturally is not without certain limi-
tations and potential drawbacks. The most obvious one is that a good structuring of a
network requires domain knowledge and therefore has to be done manually in advance. Al-
though modules � in principle � can also be de�ned automatically during evolution, their
expressiveness concerning the above advantages would be quite limited. Also, as a problem
of the strictly distinct sets of neurons in neuro-modules, the length of synaptic pathways
can increase. To connect two separate neuro-modules, an additional synapse between an
output of the �rst and an input of the second module is required, that could be avoided
by merging the two neuro-modules instead (such as in the SGOCE method (Kodjabachian
and Meyer 1998)). However, such merging can lead to side-e�ects and makes the use of
functional constraints more di�cult. As a countermeasure for a longer signal processing
time caused by these longer synaptic pathways (i.e. the number of update steps required
to propagate a signal through the network), selected synapses may be replaced by special
order-dependent neurons (section 6.9) to increase the responsiveness of a neuro-controller,
if this turns out to be a considerable problem for a speci�c experiment.
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3.2.4 Network Tags

A unique characteristics of ICONE networks is that all network elements (neurons, synapses,
neuron-groups, neuro-modules and also the network itself) can have arbitrary lists of so-
called network tags. These tags are simple string-string pairs that can be used to add
additional information to each element. Adding or changing such a network tag is here
called tagging. The names and meanings of the tags may di�er from implementation to
implementation, because the meaning and function of each tag is de�ned solely by the op-
erators, scripts or constraints that read and interpret the tags. Because of this, tagging is a
universal way to add arbitrary information to network elements. It allows the introduction
of new tags at any time without the need to change the genome implementation. This
simpli�es the rapid introduction of new mutation operators, constraints and scripts, that
often require additional information embedded to the network. A list of useful network
tags, as they are used with the NERD Toolkit for the experiments of this thesis, is given
in appendix C.

Network tags in�uence the evolution, function and appearance of neural networks in
many ways:

Simple Constraints and Property Protection. Network tags can be used to directly
limit the number of evolvable parameters of an element, which results in a simple reduction
of the search space. This is similar to the protection mechanism of the ENS3 algorithm
(Hülse et al. 2004), but is much more detailed, because any parameter of the network
elements can be protected separately. These protection tags are read by the corresponding
mutation operators (section 3.3.1) leading to an exclusion of accordingly tagged elements
with respect to certain mutations. For instance, a bias term of a neuron can be �xed, a
synapse may be protected against removal, a module may be protected against the insertion
or removal of neurons, or any change to an entire network sub-structure may be prohibited.

Hints for Mutation Operators. Tags can also be used to in�uence mutation operators,
e.g. to de�ne preferred synapse targets for new synapses, to limit the number of synapses
for certain neurons, to de�ne preferred connection pathways between modules, to mark
a new neuron to be initially connected to the network, to in�uence the interconnectivity
density within a module or to restrict the number of neurons of a module. Special network
tags are also required to con�gure the modular crossover operator (section 3.3.3) for a
network.

Fine-Control of Evolution. Global parameters of the evolution, such as mutation rates
and change deviations for bias terms and synaptic weights, can be locally overwritten with
network tags. Also, the valid range of such network attributes can be locally rede�ned, for
instance to keep a synapse weight within very speci�c limits. These tags are very useful
to realize a mix of evolution operator settings throughout the network. This is important,
because in large networks, some network areas are much more fragile to variations than
others. So having only a single parameter setting for all network elements always leads to
a con�ict between such fragile areas and such that require very large changes to have an
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e�ect at all. Tagging such network areas based on domain knowledge reduces this problem.
In the NERD implementation of ICONE such local settings can be given in absolute values
(e.g. �xed probabilities) or as a percentage rate relative to the current global setting. The
latter preserves the important (interactive) adjustments of the evolution settings during
the course of an evolution experiment, whereas the required relative di�erences of the
evolution settings between network areas of di�erent mutation sensitivity is kept intact.

Function Control of the Network. Some network tags can also be used to change
the behavior of a network element. An already mentioned example are order dependent
neurons (section 6.9), whose update order is in�uenced via network tags to improve the
reactivity of neuro-controllers. Another important tag is used to �ip the activation range
of neurons, which means, that their output is reversed. The �ipping of activation ranges
of motor and sensor neurons is an important measure during modularization (section 5.1)
to make networks compatible with symmetries and regularities.

Identi�cation and Con�guration of Elements. Network tags of this kind provide
tracking and tracing information (such as creation date, origin of elements), that can be
used to analyze the evolution progress. Some constraints also require special identi�ers
in addition to the common unique identi�ers to automatically collect a�ected elements
according to a role or type, that can be provided as network tags.

Auxiliary Tags. Such tags are used for instance by a network editor or during the export
of networks into other formats (e.g. machine code for a robot). They may hold the location
and size of an element in an editor, the hardware addresses of sensor and motor neurons
on a target robot, and the like.

Temporary Tags. Mutation operators, constraints and scripts can also use tags to tem-
porarily leave information during the mutation phase, so that a complex interaction of the
operators becomes possible. Examples are markers to identify newly inserted elements or
hints left by operators to a�ect subsequent operators. Temporary tags are automatically
removed after the mutation phase and therefore are rarely noticed by users.

3.2.5 Constraints

Functional constraints are the primary feature of ICONE used to restrict the search space
and to bias the search towards speci�c network structures. A constraint hereby is a hard
requirement of the network structure, its organization or its weight distribution that cannot
be violated during evolution. In di�erence to other constraint based algorithms, that
in�uence the selection of individuals based on their degree of violation of constraints (Coello
2002; Deb 2000; Michalewicz and Schoenauer 1996), ICONE does not allow any constraint
violations at all (see section 3.3.2). Networks not meeting all given constraints are removed
from the evolving population.

However, evolution does not have to �nd the proper network con�gurations that �t
all constrains simply by trial and error of mutations, which would be much too time-
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consuming. Constraints in ICONE are called functional constraints, because they do not
only describe certain limitations and requirements, but also provide functions to enforce
these requirements on a network by actively changing it. This means that a single mutation
may trigger a cascade of constraint function activations to restructure the entire genome to
enforce the compliance of all given assumptions. As a result, any arbitrary mutation usually
automatically results in a valid network con�guration, after the functional constraints
of the network have been executed. If there are con�icting constraints in the network
and the constraints cannot be resolved, then the network is discarded. Networks with
con�icting constraints therefore cannot evolve, but due to miscon�gurations during the
modularization phase by the user, such networks are still possible. Because networks
outside of the constraint limitations cannot evolve, the choice of the constraint mask is
very important for a successful evolution to avoid irresolvable constraint con�gurations or
too restrictive constraint masks that prevent a solution for a certain control problem.

Functional constraints are of algorithmic nature, therefore they have to be implemented
in the evolution software. Standard constraints (see section 4 for an overview on the
implemented constraints) can be implemented natively to the software, while other, more
speci�c constraints should be made possible via scripting or other dynamic extensions of
the software. Otherwise the power and applicability of constraints is reduced. Constraints
usually are parametrized, so that their function can be adapted to a given problem.

The search space restriction with constraints can be very e�ective, because many de-
grees of freedom in a networks become dependent on each other. This means that, in
principle, all attributes of the network can still be mutated during evolution, but because
each mutation may lead to the adaptation of dependent attributes, in the end only a limited
set of attribute combinations are possible. To e�ectively use this search space restriction
during evolution, domain knowledge has to be applied to the networks. These domain
knowledge based constraints however can not only be used to restrict the search space,
but also to allow the direction of evolving controllers towards very distinct topologies or
organizational principles.

Constraints in ICONE are limited in scope to simplify their application and con�gura-
tion in larger networks and to avoid side-e�ects between di�erent network areas. Therefore,
constraints only operate on neuron-groups and neuro-modules, usually only a�ecting the
network elements of their corresponding group. This simpli�es the usage and con�gura-
tion of constraints in large networks, because only a subset of the network is a�ected. It
also allows the de�nition of constrained neuro-modules as building blocks (see section 5.1),
that � equipped with suitable sets of constraints � allow mutations within well de�ned
limitations. Because each constraint belongs to a speci�c module or group, all constraints
are automatically moved and adjusted whenever a module or group is relocated, removed,
copied or exchanged.

3.2.6 Final Genome Encoding

The complete genome representation of a neural network is schematically summarized in
�gure 3.3.
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Figure 3.3: Overview on the object structure of the genome. The elements highlighted
with a gray color indicate parts of the genome that actually are mutated during evolution.

Here, it also becomes clear, which parameters typically can be varied (inserted, re-
moved, exchanged or modi�ed) by mutation operators during evolution (gray elements)
and which parameters can only be modi�ed by a user, by functional constraints or � in
case of the IDs � not at all. The constraint function of a constraint object represents
the actual implementation of the functional constraint, that has to be realized according
to the used programming language, e.g. as a script, a function pointer or a function ob-
ject. Similarly, the synapse functions, activation functions and transfer functions refer to
corresponding functions implemented in the programming language.

3.3 General Algorithm

The general algorithm of ICONE is - similar to most evolutionary algorithms - a cyclic
application of evaluation, selection, reproduction and variation to a population of individ-
uals (Algorithm 1). The evaluation and selection of the individuals is not a rigid part of
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the ICONE method and can be varied according to the performed experiments. Many
evolution experiments can be signi�cantly enhanced by using suitably selected evaluation
and selection methods, like shared �tness, multiple-try evaluation, niching, multi-objective
selection, migration models, and the like. The ICONE speci�c part of the algorithm is the
reproduction and variation phase. This phase is composed of a module-based crossover
operator during o�spring generation, a variation chain with an extensible number of mu-
tation operators, and a constraint resolver as part of that variation chain, used to apply
constraints on the mutated networks. The details on these speci�c parts are described in
the remainder of this section.

Algorithm 1: Main Evolution Loop
Data: Iinit a set of domain speci�c, constrained initial networks

1

2 begin

3 P ←− Iinit
4 if sizeOf(P ) < popSize then
5 P ←− P ∪ completeInitialPopulation(popSize− sizeOf(P ))
6 repeat

7 foreach individual pi ∈ P do

8 Evaluate(pi)

9 Pbest = keepBestIndividuals(P )
10 Pnew = CreateOffspring(P, popSize− sizeOf(Pbest))
11 foreach individual pni ∈ Pnew do

12 VariationChain(pni)

13 P ←− Pbest ∪ Pnew

14 until su�cient solution found

3.3.1 O�spring Generation and Variation Chain

Initial Generation. The population of the �rst generation is created based on a number
of prede�ned initial networks. These networks have to be prepared manually by the user
(see section 5.1) and usually provide � in addition to the basic network structures � an
elaborated constraint mask , that de�nes the search space of the experiment. Alternatively,
the initial generation may also be composed of the individuals of a previous evolution
experiment, which is a common case when performing iterative evolution experiments (see
section 5.3). If the number of the given initial networks is lower than the desired size of
the initial generation, then that generation is �lled up with slightly varied versions of these
initial networks. For this, the a�ected networks are passed on to the variation chain even
in the �rst generation, so that these networks are slightly mutated. Accordingly, the initial
generation usually contains both, the unchanged initial networks and variations of these
networks.
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Selection. In all further generations, the individuals of a new generation are determined
by a separate selection method . A small fraction of the new generation is comprised of
the best individuals of the previous generation (elitist selection). These individuals are
not mutated and pass on to the next generation unchanged. The number of preserved
individuals can be adjusted as a parameter of the algorithm. Elitist selection can prevent
the loss of good solutions by inauspicious mutations, especially when the mutation rates
are very high. In such cases, it can happen, that all new individuals are worse than their
parents and good (partial) solutions are lost, so keeping the best individuals helps to
carry the best individuals through the generations independently of the mutation success.
However, elitist selection is not a guarantee to preserve already good working approaches,
especially in randomized evaluations with a low number of tries per individual, where the
best individuals can represent local optima of a speci�c evaluation instead of the global
problem. Consequently, the settings of the elitist selection have to be chosen problem
dependent.

All other individuals of the generation are discarded and replaced by newly created
ones. For this, the selection method chooses individuals of the previous generation as

Algorithm 2: VariationChain(P)
Data: P a set of individuals
Data: M an ordered list of mutation operators

1 begin

2 foreach individual pi ∈ P do

3 if hasNoGenome(pi) then
4 setGenome(pi, CloneFirstParent(pi))

5 if hasTwoParents(pi) then
6 ModularCrossover(pi)

7 n←− maxIterations
8 repeat

9 valid←− true
10 foreach mutation operator mj ∈M do

11 executeOperator(mj , pi)
12 if isNotV alid(mj , pi) then
13 valid←− false

14 execute ConstraintResolver(pi)
15 if ConstraintResolver failed then

16 valid←− false
17 n←− n− 1

18 until valid = true or n = 0
19 if valid = false then
20 remove pi from P
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parents for each new individual. The underlying selection strategy hereby depends on the
used selection method. Usually, individuals with a higher �tness have a higher probability
to be chosen as a parent. The details of the selection strategies, however, are manifold
(for examples, see Hancock 1994; Jong 2006). ICONE does not restrict the used selection
method, so that the user can choose the most appropriate strategy for each experiment.

Variation Chain. After the selection phase, the variation chain (Algorithm 2) is applied
to any new individual of the new generation to create and vary their genome. The variation
chain comprises an ordered sequence of evolution operators and �lters, that are speci�cally
implemented for a given genome encoding. Each individual of a generation is passed
through that operator chain, allowing all operators to apply mutations and variations to
its genome.

Genome Rejection. As a unique feature of ICONE, evolution operators can also reject
a genome, i.e. operators may indicate that an individual should not be evaluated with its
current genome con�guration. This is useful to realize �lters that prevent costly evalua-
tions of networks known to be faulty or to violate requirements, for instance when essential
sensors are not properly connected so that a proper behavior is impossible. Such a pre-
vention of super�uous evaluations is especially useful when the evaluation of individuals is
computationally expensive, as is true for most non-trivial animat experiments.

To allow further mutations after a rejection and herewith a potential correction of
the detected �aw, the execution of the variation chain is repeated as long as at least one
operator still rejects the genome. To avoid in�nite loops, operators can only be executed
a limited number of times per individual, which can be adjusted by the user depending
on the problem. If the maximal number of executions for an individual is exceeded and
there is still an operator rejecting the genome, then that individual is removed from the
generation. Therefore, the choice of this setting is always a compromise between worst
case performance and resolvability of the �lters and constraints.

Evolution Operators. The evolution operators of the mutation chain are genome spe-
ci�c functions, which can mutate arbitrary attributes of the genomes, such as the insertion
of network elements or variations to synaptic weights. Such operators can be quite com-
plex, for instance implementing speci�c insertion heuristics for synapses. Because of their
importance and specialization, the set of used evolution operators can be chosen freely for
each evolution experiment. Appendix B gives an overview on the mutation operators used
with the NERD Toolkit implementation of the ICONE method.

Among the evolution operators of the variation chain, three operators are special:
the genome clone operator, the modular crossover operator and the constraint resolver.
Although these operators are � in principle � not di�erent than other evolution operators of
the variation chain, they are separately shown in algorithm 2 to underline their important
role for the ICONE method.

The clone operator is required to create a genome for any new individual by cloning
the genome of its �rst parent. The subsequent modular crossover operator exchanges parts
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of the individual's cloned genome by genetic material of a second parent (section 3.3.3).
This, of course, only works with selection methods that provide more than one parent per
individual. After this, all further mutation operators and �lters are executed in a �xed,
adjustable order. The �nal operator of the variation chain is the constraint resolver (section
3.3.2), which triggers the execution of all constraints of the mutated individual to readjust
the genome to �t the given constraints. If this is not successful, then the constraint resolver
rejects the genome. Such networks are then further mutated with repeated applications
of the variation chain until they are either matching the constraints, or are � after the
maximal number of mutation attempts � removed from the generation.

3.3.2 Constraint Resolver

The constraint resolver is a relatively simple operator required to apply the functional
constraints of a genome after all other mutations have taken place. Therefore, this operator
is usually the last one in the variation chain. The resolver operator simply executes all
constraints of a network one by one in a non-deterministic order. The constraint functions
hereby verify the compliance of the required genome properties and � if necessary � adjust
the network to repair detected constraint violations. If after the execution of all constraints
one or more of them had to do any modi�cation to the genome (or was not satis�ed with
the current state of the genome), then the constraint resolver is rerun. This is important,
because when modifying a genome, a constraint may violate other constraints, that may
already have been satis�ed. These other constraints then require an additional run to
correct the new constraint violations again. Hence, structure changes often have to be

Algorithm 3: ConstraintResolver(p)
Data: p a single individual
Data: C the set of all constraints used in the network of individual p

1 begin

2 n←− maxIterations
3 repeat

4 modified←− false
5 foreach constraint ci ∈ C do

6 applyConstraint(ci)
7 if ci made changes to the network then
8 modified←− true

9 n←− n− 1

10 until modified = false or n = 0
11 if modified then
12 report resolver failed

13 else

14 report success
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propagated through the network over several iterations before all constraints are satis�ed.
This resolved state is reached when all constraints could be executed without any of them
having to change the genome.

The advantage of this algorithm is that its implementation is very simple and does
not require a complicated backtracking or coordination (for classical approaches see Coello
2002; Dechter 2003). Also, functional constraints are easy to implement for such a resolver,
because each constraint can be implemented as an independent entity. This matters if
(scripted) constraints should also be implemented by users with limited programming skills.
On the other hand, such a system can lead to in�nite loops when a network comprises
con�icting constraints. For that reason, the constraint resolver has an adjustable maximal
number of repetitions per run, that has to be chosen as a compromise between worst
case performance and resolvability of complicated, stacked constraints. In practice this
number can be kept low (< 10) in most cases, which does not stress performance much.
If the resolver has to rerun more often than the chosen maximal number of runs, then
the genome is considered to be incompatible with the constraints and thus is rejected. As
described in the previous section, a rejected genome is passed to the variation chain again,
so that the network gets further mutated and possibly can �nally reach a resolved state.

With this approach, genomes with violated constraints cannot evolve, because they are
either 'repaired' by further runs of the variation chain, or removed from the generation
if even additional mutations did not lead to a resolved state. This guarantees that all
evaluated individuals are fully compatible with the chosen constraint mask.

3.3.3 Inheritance and Modular Crossover

The genome of a new individual is created by cloning the genome of its �rst parent. Without
a crossover operator, this genome is then mutated to obtain a variation of the parent
network. With this widely used technique the solution of an experiment is approached in
many iterative, consecutive steps. An obvious disadvantage of this is, that there is only
a transfer of information from one parent to its direct children and thus only separate
lines of development in the population. Speci�cally, this means that any partial solution
to a problem has to be found independently by each direct lineage. A direct exchange of
di�erent approaches or partial solutions between individuals of a population is herewith
not possible. For small networks with a single task or a low number of subtasks this is not
so much of a problem, but when we try to evolve larger networks comprising necessarily the
interaction of functional subnetworks and the combination of subtasks, this is a limiting
factor for evolution. Consequently, in the domain of mid-scale networks, the exchange of
information between di�erent lineages is considered bene�cial, and can be realized with a
crossover operator.

Crossover. In the �eld of genetic algorithms crossover denotes the combination of genetic
material of two parents when a new child is created. This is inspired by genetics where
this happens during the reproduction of bi-sexual animals. Hereby, during the meiosis,
the compatible female and male chromosomes exchange equally long parts, usually longer
continuous segments. In genetic algorithms, this mechanism is adopted and used with

39



3.3. General Algorithm

varieties of di�erent combination approaches. The most prominent ones (Mitchell 1996)
are the one (two, multiple) point crossover, where the chromosomes are exchanged at
one (two, multiple), in both chromosomes similar position(s), and the bitwise crossover,
where each bit of the chromosome is either exchanged or not. In the �eld of neuro-
evolution, crossover has been used only in a few methods, for instance by exchanging
sub-matrices in matrix representations of neural networks. However, most neuro-evolution
algorithms ignore crossover for a simple reason: the uncoordinated, random exchange of
genetic material does � in case of neural networks � mostly produce networks performing
much worse than their parents, because the exchanged attributes often alter the entire
network dynamics. Evolution therefore does not perform well, because the created networks
do not work similar enough like their parents to bene�t from the local search. The larger
and more diverse the parent networks are, the more severe this problem is. This is why
this simple crossover can often be used successfully with small and topologically identical
networks, but fails with larger, topologically heterogeneous networks.

Modular Crossover. ICONE approaches this problem by making use of the modu-
larized networks (section 5.1) and the herewith used neuro-modules. Neuro-modules are
already used to structure and constrain the network. Since the network's modules represent
very speci�c network areas, often already comprising a speci�c function or organizational
role, they are ideal candidates for the exchange of genetic material. This approach fol-
lows the heuristics, that compatible modules should have similar function in both parents,
which makes them more likely to be exchangeable.

Conditions for Modular Crossover. To exchange two modules in ICONE, both mod-
ules have to be compatible. This means, that they have a similar neural interface (input
and output neurons) and have a compatible type. The neural interface is important, be-
cause during the exchange, all connections to and from the replaced module are kept intact
and are rerouted to the new module, which is only possible when the new module provides

Algorithm 4: Modular Crossover(p)
Data: p a single individual
Data: N1 the neural network of individual p
Data: N2 the neural network of the second parent of p

1 begin

2 M1←− all unprotected modules of N1

3 M2←− all unprotected modules of N2

4 foreach module mi ∈M1 do
5 if rand() < crossoverProbability then
6 Mmatch ←− all modules of M2 matching type and interface of mi

7 mflip ←− randomly chosen module from Mmatch

8 replace mi in M1 with a copy of mflip
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the same interface as the replaced one. The type compatibility is de�ned via property tags
(section 3.2.4). A special tag contains a list of types the module belongs to, and another
tag de�nes a list of types the module is compatible with. Both lists can be de�ned freely
by the user. A module A is compatible for a replacement by module B, if its compatibility
list contains a type name found in the type list of module B.

Optionally, modules can have a role tag, that de�nes the role(s) of the speci�c place a
module is located at. If present, module B in our example must have a type name listed in
the role tag of module A to be compatible. If a replacement takes place, then the role tag
is copied to the new module and removed from the replaced one, because it belongs to the
speci�c place the module is used at. Using a role tag avoids type drifts, which may occur
after several successive replacements with modules having very di�erent compatibility lists.
In the course of such successive replacements previously incompatible modules can become
valid for a module location. The role tag that always remains static for a speci�c module
location, hereby guarantees that the speci�c module location is occupied only by modules
of types compatible with that role tag.

Selection and Exchange of Modules during Crossover. In the crossover phase, the
crossover operator decides for each new individual randomly whether crossover takes place
or not. If so, the operator decides for each neuro-module at random, whether it should
be exchanged with a compatible module of the individual's second parent. The module
exchange probability can be chosen globally by the user, but can also be locally overwrit-
ten via property tags at the module level. Therefore, neuro-modules can have di�erent
probabilities of being exchanged, which allows a �ne control of exchange preferences. Once
a module is chosen for exchange, a compatible partner from the second parent is selected
according to the described compatibility rules. From all matching candidates, one is ran-
domly selected. This new module now replaces the old module with all of its submodules,
keeping its position in the network and module hierarchy intact. All synapses connected
to the old module are hereby rewired to the new module.

Limitations. Modular crossover only works in properly modularized networks. Crossover
without an experiment-speci�c de�nition of compatibility tags is not recommended and will
not lead to better results than random crossover. Therefore, all networks have to be pre-
pared properly by the user. The better the modules are typed and organized, the more
crossover may enhance evolution.

In some cases, crossover can destroy or remove constraints, e.g. when replacing con-
strained modules with unconstrained ones. This should be avoided by the user by proper
settings of compatibility lists and roles. Also, con�icts of constraints may be induced, for
instance when incompatible constraints are exchanged together with their modules. How-
ever, the worst that may happen in this case is that the constraints of the genome cannot
be resolved any more, which leads to a removal of this genome. As a consequence, faulty
networks still cannot evolve.
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Advantages. The main advantage is obviously, that crossover is possible at all, which
leads to more diversity and the possibility to exchange partial solutions between di�erent
lineages. This crossover strategy may not be optimal, because of its need of supervision
and preparation, but it is still better than no crossover at all.

The network preparation is quite simple using network tags. It often can be done with
little extra e�ort along with the network modularization (section 5.1), that has to be done
anyway. With the compatibility lists, modules can also be excluded from crossover, if an
exchange of speci�c modules is not desired. Crossover therefore can be limited to such
modules where an exchange may potentially be useful, once again allowing the application
of domain knowledge to the evolution.

Ludwig (2011) has shown in a �rst evaluation of the modular crossover operator that
it can enhance the e�ciency of the evolution for suited experiments � especially those
comprising independent functional modules � and that the performance never su�ered
from the use of modular crossover. As a result, it is recommended to enable modular
crossover when a modularized network provides modules suitable for an exchange.

Exchange of Modules from a Module Library. With little modi�cations, modu-
lar crossover can also be used to allow the exchange of modules between a network and
separate module pools, instead of a second parent. This allows the exploration of com-
patible modules from a prede�ned module-library (section 5.1.3) or the co-evolution of
neuro-controllers and separate populations of speci�c types of neuro-modules.
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Functional Constraints

This chapter describes the main functional constraints that are implemented and tested
for the ICONE method. The understanding of these constraints is important to follow the
experiment descriptions in sections 7 and 8. The constraints described in this chapter are
only a subset of the realizable functions. They form a basic set of standard constraints
that are useful for many experiments. Additional constraints, however, can also be added
when needed to �t more speci�c needs.

Constraint Masks. Functional constraints are the main search space restriction mech-
anism of ICONE. Such functional constraints allow the de�nition of constraint masks for
the evolving networks to enforce the compliance of speci�c topological and parametric de-
mands. With a proper constraint mask the parameter space of the evolutionary search can
be signi�cantly reduced and the search can be biased towards desired solution approaches.
Furthermore, the evolving networks can be forced to evolve within limitations given by
the desired target systems, for instance by the network capabilities of a target robot. The
network size, layout, general organization, neuron distribution and neuron model can be
accordingly constrained so that only networks evolve, that are actually compatible with
the target system and therefore can be transferred.

Active and Passive Constraints. Constraints can be roughly separated into active
and passive constraints. Passive constraints are very easy to implement, because they
only check for certain violated conditions. If these conditions are not met, then such a
constraint simply reports a failure, without trying to adapt the network to �t its need. In
contrast, active constraints can also actively modify the network to make it compatible
with the constraint again. Passive constraints should only rarely be used to express dif-
�cult limits that cannot be resolved in an automatic, reasonable way. The main problem
with passive constraints is that a detected constraint violation can only be resolved by
suitable additional random mutations of the variation chain, which is in many cases un-
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likely. Consequently, networks violating a passive constraint are very often removed from
the generation. This implies, that passive constraints should be carefully used, because if
such constraints are easily violated, many individuals of a generation are removed, which
may lead to a signi�cant loss of diversity. Active constraints are preferred to be used wher-
ever possible, because they can solve a constraint violation instantly without the need of
further mutations.

Dynamic and Static Constraints. Another distinction can be made between dynamic
and static constraints. Static constraints are constraints that do not a�ect the function
of the network during evaluation. These constraints are the default in ICONE and are
exclusively used in the experiments presented in this thesis. However, dynamic constraints
are possible (and implemented) as an interesting future feature, for instance to add ad-
ditional search heuristics to the networks. Active constraints are executed as part of the
neuro-controller during its evaluation and can alter the network at runtime. This allows
many new scenarios, for example the application of di�erent kinds of neural learning algo-
rithms on a module, or the collection of information about the network activations during
the evaluation, which both can be used as a base for heuristics to change the genome later
during the mutation phase. Like passive constraints, active constraints are not essential
for the function of the �nally evolved network and as a result can be removed safely with
the rest of the constraint mask, leaving a fully functional network. Such networks therefore
can still be exported to target systems, that only support the standard network models,
which is important for many robotic systems.

Most constraints in ICONE should be implemented natively in the programming lan-
guage of the evolution program, because the execution of constraints requires access to
all parts of the genome and a high performance. Because the constraint resolver may
execute a single constraint multiple times per individual, the constraint functions should
be suitably fast to prevent a time-consuming mutation phase. However, many custom
constraints cannot be de�ned in advance, because they are very speci�cally designed for a
single, sometimes unique purpose. Therefore, the de�nition of constraints via (often slower)
script or plug-in should be possible to increase the utility for the user and to enhance the
expressiveness of the constraints.

In the following, all constraints used for the experiments of this thesis are brie�y ex-
plained. All constraints have been implemented as part of the NERD Toolkit (see appendix
D). In the experiment descriptions in the application sections (chapters 7 and 8), only the
names of the used constraints are given to avoid duplications of descriptions.

44



Chapter 4. Functional Constraints

4.1 Cloning

TargetId The ID of the master module or group that is to be cloned
Mode The execution mode
References A list of ID pairs describing the reference pairs between the neurons

of the master module and the cloned module

Table 4.1: Parameters of the cloning constraint

The clone constraint can be used to replicate a network structure in di�erent places of
the network. The neurons and synapses of the a�ected neuro-module or neuron group are
restructured to �t the cloned neuro-module or neuron group.

The cloned master group is speci�ed with the TargetId parameter. The cloning behav-
ior can be in�uenced with the Mode parameter: Di�erent settings lead to an identical copy
of the master group, to a copy of the structure only (not controlling the weights), or to a
copy with slight weight variations between the master and the copied group (O�set Sym-
metry constraint, section 4.4). Also, the sign of the copied weights can be reversed. Other
modes control how incoming, outgoing and mutual synapses of the groups are treated.
Each direction can independently be set to symmetric, reversed sign, variable sign, varia-
tion o�set or una�ected.

The References parameter contains pairs of unique IDs of the member neurons of the
groups, so that for each neuron of the master group there is a corresponding neuron in the
copied group. This reference list usually is created and maintained automatically by the
constraint. In some cases, for instance if motor and sensor neurons are part of the groups,
some of the references have to be given manually to ensure the correct reference relation
between the neurons.

The clone constraint is useful if the same network structure is expected to be used in
di�erent places of the network. This reduces the corresponding search space to a single
prototype (master) group. The parameters of all cloned network elements are excluded
from the search space, because their structure, bias terms and weights are not indepen-
dently evolved any more, but instead are fully (or depending on the selected mode only
partially) speci�ed by the master group.

4.2 Symmetry

TargetId The ID of the group this module / group is symmetric to
Mode The execution mode
Layout The axes of the symmetry
References A list of ID pairs describing the reference pairs between the neurons

of the master module and the symmetrized module

Table 4.2: Parameters of the symmetry constraint
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4.3. Connection Symmetry

The symmetry constraint is very similar to the clone constraint, with the major di�erence,
that this constraint allows the speci�cation of axes of symmetry. The symmetrized neuron
group can have a horizontal axis, vertical axis or both axes of symmetry. These axes are
de�ned with the Layout parameter.

Like the clone constraint, the symmetry constraint often reduces the search space sig-
ni�cantly, especially when the target animat has a symmetric motor-sensor layout and the
evolved behavior is to be expected to be symmetric as well (walking, squatting, pointing,
etc.). With the symmetry constraint, such networks often require only half of the usual
search space during evolution.

4.3 Connection Symmetry

TargetId The ID of the group the connections of this group are symmetric
to

Mode The execution mode
References A list of ID pairs describing the reference pairs between the neurons

of the target and the dependent group

Table 4.3: Parameters of the connection symmetry constraint

Connection symmetry is a symmetry constraint that only a�ects the synapses between the
member neurons of the a�ected neuron-groups. The involved groups hereby may overlap,
so that a neuron may be part of both the master group and the a�ected group. This
overlap allows for interesting con�gurations, for instance to realize motifs (Bullmore and
Sporns 2009; Wang and Chen 2003) in a grid network or to realize overlapping connectivity
structures in multi-segment animats.

The parameters are similar to the other symmetry constraints, apart from the fact,
that the References property accepts reference pairs where the same neuron ID is used
both in the role of the source and that of the target.

4.4 O�set Symmetry

O�set Limit The maximal o�set a weight or bias term may diverge from its
master element

Excluded Type Exclude either neurons or synapses from the e�ects

Table 4.4: Parameters of the o�set symmetry constraint

O�set symmetry is a variation of cloning, symmetry and connection symmetry and can
be activated as part of these constraints. With this addition, the structure of the master
module is still enforced on the a�ected neuron group, but the weights and bias terms
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are not simply copied. Instead, the weights and bias terms of the a�ected synapses and
neurons can be mutated freely with the standard mutation operators. However, if the
weights or bias terms of the master module are mutated, then all neurons a�ected by the
o�set symmetry are adapted as well. The bias or weight is increased or decreased by the
same amount the reference neuron or synapse was changed. This strategy has similarities
to delta encoding (Gomez and Miikkulainen 1997; Whitley et al. 1991) and comes in handy,
when a module should be cloned or be symmetric, but requires a slight local adaptation.
The local o�sets should not be too large (depending on the application), because if the
weight deviations become too large, then the probability increases, that changes of the
master module destroy the functionality of at least one of the dependent modules. In
this case the performance drops down and these mutations do not get a chance to prevail
during evolution. Therefore, this constraint provides a parameter to limit the o�set to a
�xed amount or to a proportion of the master element. This keeps the variations small to
ensure that the cloned modules remain similar to their master modules.

4.5 Network Equations

Scope The scope of the equation constraint

Table 4.5: Parameters of the network equations constraint

The network equation constraint can be used to calculate neuron bias terms and synaptic
weights depending on other bias terms and weights in the neuron-group. For this, property
tags can be added to neurons and synapses to de�ne variables and equations. The variable
tag de�nes a variable name that refers to the current value of the bias term or the weight
of the tagged neuron or synapse. These variable names can be used as part of equations to
calculate the bias term or synaptic weight of other neurons and synapses by tagging these
network elements with an equation tag. Such a tag de�nes an equation that may use any
arithmetic expression, including all variable names de�ned with the variable tag that are
visible in the scope of the constraint.

The scope is de�ned by the Scope parameter of the network equation constraint. By
default the scope includes only neurons and synapses of the same neuron-group, module
or of its submodules. The scope however can be in�uenced, e.g. to exclude all submodules
of a module or to exclude only those submodules that provide their own network equation
constraint. As a result, it is possible to de�ne multiple, independent modules with network
equation constraints, that do not a�ect each other, even if the de�ned variable names are
identical within their scope. This allows multiple instances of the same module equipped
with equation constraints (e.g. from the module library) to work independently of each
other during evolution.

The network equation constraint is a powerful way to de�ne all kinds of relations
between synaptic weights and bias terms. Hereby, all a�ected synapses and neurons become
dependent on other synapses and neurons and thus are not freely evolvable parameters of
the search space any more.
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4.6 Prevent Connections

This constraint prevents all connections between the neurons of a group. This constraint
can be used to avoid known ine�ective connections between individual neurons. A variation
of this constraint can also be used to avoid only self-couplings for the member neurons.

4.7 Enforce Directed Path

TargetGroup The group containing the neurons to connect the own member
neurons to

PathLength A range specifying the minimal and maximal allowed path length
ModuleTransitions A range specifying the minimal and maximal number of modules

that are crossed on the path
Mode The execution mode
References An optional list of neuron pairs that have to be connected

Table 4.6: Parameters of the enforce directed path constraint

In many cases domain knowledge demands that there should be certain directed connection
paths between speci�c neurons to have any chance to solve the control problem. For
instance, if the sensors in a network are not in�uencing the motors, then a sensor-driven
behavior simply is not possible. Or if an experiment is designed to prove that certain
subnetworks can work together, then these subnetworks should be connected, because
otherwise, the question underlying the experiment is not really addressed. Evaluating
such networks would most likely be a waste of resources and, worse, often leads to local
optima that prevent a further development towards a more desired connectivity structure.
In both cases, giving adequate connections manually in advance often biases the outcome
of the experiment too much and hence is often avoided.

To solve this problem, this constraint can be used to enforce directed paths between
neurons. In this context a directed path means any directed connection chain from a source
neuron to a target neuron, allowing any number of neurons in between. The minimal and
maximal path length and the number of traversed modules can be speci�ed separately,
for instance to avoid too short directed connections, that may lead to trivial solutions
only. This constraint is almost passive, i.e. the network is not directly modi�ed by the
constraint. However, the constraint leaves control tags as hints for the mutation operators
on the a�ected neurons, that increase the probability for these operators � for instance
the synapse insertion or removal operators � to do the proper changes during the next
execution of the variation chain.

The constraint allows for several execution modes. In the default setting, any neuron
of the a�ected neuron group requires at least one directed connection to any neuron of the
target group, without further restrictions. In many cases it also makes sense to specify the
desired neuron pairs for a connection, which can be done using the References parameter.
This parameter contains a list of ID pairs that have to be connected, the �rst ID belonging
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to a neuron of the source group and the second ID belonging to a neuron of the target
group.

4.8 Restrict Number of Neurons

Maximum The maximum number of neurons in this module
Minimum The minimal number of neurons in this module

Table 4.7: Parameters of the restrict number of neurons constraint

Often it makes sense to restrict the number of neurons in a module to avoid too complicated
and incomprehensible modules. Furthermore, size restrictions are sometimes mandatory
because the target system (e.g. the robot hardware) has size limitations for the networks
running on the controller boards. In these cases this constraint can be used to limit the
number of neurons for a module. Also, the minimal size of a module can be adjusted to
avoid trivial modules without any potential function. This constraint is an active con-
straint that adds missing neurons and removes the most recently added neurons if the size
limitations are exceeded.

4.9 Enforce Connectivity Pattern

Pattern The connectivity pattern to be enforced
Parameters Optional parameters of the selected connectivity pattern

Table 4.8: Parameters of the enforce connectivity pattern constraint

This constraint can be seen as a connectivity pattern generator that creates, maintains
and repairs a certain standard connectivity pattern on the members of a group. Patterns
include feed-forward structures, chains (with or without self-connections), layered network
structures with �xed layer sizes, or fully connected subnetworks. When neurons or synapses
are inserted in or removed from a module having this constraint, the corresponding connec-
tivity pattern is restored, integrating the new network elements or �xing the occurred gaps
in the pattern. The modules therefore are still open for mutations concerning their size
and neuron distribution, whereas the desired pattern always remains valid. The constraint
can be extended by additional patterns when needed.
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4.10 Connect Groups with Pattern

Target Group The ID of the group to connect to
Pattern The connectivity pattern to be enforced
Parameters Optional parameters of the selected connectivity pattern

Table 4.9: Parameters of the connect groups with pattern constraint

This constraint is quite similar to the enforce connectivity pattern constraint, with the
di�erence, that the pattern is not maintained between the member neurons of a single
group, but for all connections between two groups. Therefore, the ID of the target group
has to be given as a parameter. The connectivity pattern is created only between visible
neurons according to the module visibility rules, i.e. only between interface neurons of
modules, if modules are involved. The patterns also only create direct connection patterns
without inter-neurons between the neurons of both groups. Possible connectivity patterns
are fully connected (unidirectional, bidirectional), single connections only (unidirectional,
bidirectional) or arbitrary connections unidirectional. Additional patterns can be added
on demand.

4.11 Restrict Weight and Bias Range

Mode Indicates, whether neurons or synapses are restricted. For
synapses, the constraint can be restricted to incoming, outgoing
or group-internal synapses

Scope A list of group IDs. Restricts the scope of the constraint to
synapses to and from certain external groups only

Range The valid range (min, max) for the weights or bias terms
Recursive Applies constraint also to submodules

Table 4.10: Parameters of the restrict weight and bias range constraint

With this constraint, the valid ranges of synaptic weights and bias terms can be enforced
for all members of a neuron-group. Such a constraint is useful to limit certain synapses to
have only excitatory or inhibitory e�ects, or to allow only dampening (negative) bias terms
in certain neurons. This active constraint automatically corrects violations. If possible,
the new bias term or synaptic weight is calculated as

wnew =


2min− w if w < min
2max− w if w > max
w else

(4.1)

If wnew is still out of range, then wnew simply is set to min (if w < min) or max (if
w > max). With this strategy, it becomes less likely that the weights and bias terms get
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saturated at the given minimum or maximum over time, so it helps to increase variations.
The constraint supports di�erent modes, that determine, which network elements are af-
fected. The constraint can selectively a�ect the bias terms, the synapses of the member
neurons of the constrained group, or also synapses going to and coming from external
neurons. In the latter case, the a�ected synapses can be further limited with the Scope

parameter, which holds a list of groups. All synapses that come from these groups (input
mode) or go to these groups (output mode) are a�ected. The constraint only restricts
network elements of the group itself, so in case of a module, submodules are treated like
external modules. This behavior can be changed with the Recursive parameter to include
all submodules.

4.12 Synchronize Network Tags

Network Tags A list of parametrized network tags that are automatically added
to each a�ected network element, or the ID of a prototype network
element to synchronize with

RequiredTags A list of parametrized network tags that have to be present at an
element to include it to the list of a�ected elements

Mode Indicates, whether neurons or synapses are a�ected. For synapses,
the constraint can be restricted to incoming, outgoing or group-
internal synapses

Scope A list of group IDs. Restricts the scope of the constraint to certain
external groups only

Recursive Applies constraint also to submodules

Table 4.11: Parameters of the synchronize network tags constraint.

This constraint is useful to add network tags to newly inserted network elements, for in-
stance to a�ect their mutation during evolution (see section 3.2.4) or to add tags required
by other constraints to work properly, e.g. to add equations for the Network Equations
constraint. The network tags are speci�ed either manually as a list of parametrized tags,
or by specifying a network element as prototype. In the latter case, all tags of the af-
fected network elements are synchronized with this prototype, following the tag pre�x
rules described in appendix C. The a�ected network elelements can be further restricted
by specifying a list of required network tags. If this list is present, then only network
elements are synchronized, that provide the network tags in that list. The constraint sup-
ports di�erent modes that determine, which network elements of the group are a�ected.
The constraint can selectively a�ect the neurons, the synapses of the member neurons, or
also synapses going to and coming from external neurons. In the latter case, the a�ected
synapses can be further limited with the Scope parameter, which holds a list of groups. All
synapses that come from such groups (input mode) or go to such groups (output mode)
are a�ected. The constraint only restricts network elements of the group itself, so in case
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of a module, submodules are treated like external modules. This behavior can be changed
with the Recursive parameter to include all submodules.

4.13 Connectivity Density

Min Density The minimal accepted density
Max Density The maximal accepted density
Mode Allows the application of density restriction to each neuron or on

the whole group
Removal Policy The removal policies include newest, oldest, random

Table 4.12: Parameters of the connectivity density constraint

In�uencing the connectivity density of a group of neurons is a valuable feature. Using
structure evolution, it is often di�cult to get networks that are neither too sparsely, nor too
densely connected. Highly connected networks are often di�cult to understand and provide
many, usually highly dependent degrees of freedom, whereas too sparse connections often
simply do not provide the desired functionality. With the connectivity density constraint,
it becomes much easier to choose the density of the entire network or of separate neuro-
modules or groups of neurons. The constraint provides parameters to choose the desired
connectivity density, either as a proportion of all possible connections of the neuron group,
or as a �xed number of synapses. The desired density is speci�ed as a range [Min, Max],
so that the density can be de�ned quite �exibly. The mode parameter chooses whether the
connectivity density is enforced per neuron or for the whole group of neurons. The removal
policy speci�es how synapses are removed in case the connectivity has become too dense.
Policies support the removal of the oldest, the newest or a random synapse. The constraint
does not insert synapses itself, but rather leaves a temporary hint for the insert synapse
mutation operator (appendix B) as network tag on the neuron group. The constraint then
signals the mutation chain algorithm that the individual has to pass the variation chain
again. The insert synapse mutation operator then adds the missing synapses according to
the validity rules of module boundaries and synaptic pathways.

4.14 Custom Constraints

The standard constraints described in the previous sections cover large parts of the practical
limitations needed for evolutions with ICONE. Though, in some cases very special con-
straints are needed, because without such constraints, an expressive constraint mask would
be too complicated or even impossible to be constructed with a combination of standard
constraints. Such custom constraints are therefore explicitly supported and should also be
supported by implementations of the ICONE method, e.g. by allowing the de�nition of
constraints as scripts or plug-ins.
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Custom constraints are very useful, if speci�c regularities and dependencies should be
described. In the following some examples of such constraints are described:

Neural Fields. Dynamic neural �eld theory (Coombes 2005; Spencer and Schöner 2006;
Venkov 2009) is an approach to model working memories and task coordination with a
biological vastly plausible approach. Neural �elds � networks with a special connectivity
pattern of short-range excitation and long-range inhibition � are used to sustain temporary
events as prolonged activations in a �eld of neurons, preserving a (spatial) relation between
these events. Neurons in such a �eld have a very speci�c connectivity pattern towards
their neighbor neurons: at a short range, synapses are excitatory, getting weaker with
increasing distance, �nally turning to inhibition for longer range synapses. The maximal
distance for such connections hereby is restricted, so that only a limited �eld area around a
neuron is a�ected by the long-range inhibition. This distribution pattern, whose underlying
function looks like a Mexican hat, allows multiple self-sustaining activation bumps. Such
neural �elds can be valuable for neuro-controllers, where a dynamic short-term memory is
bene�cial or where noisy, uncontinuous signals have to be stabilized. To use such networks
with ICONE, a special custom constraint can be designed, that creates and maintains the
neural �eld. As a result, new neurons inserted during evolution can directly be integrated
into the �eld structure by adding adequate synapses with corresponding weights. Gaps
resulting from removed neurons can automatically be repaired. And the parameters of
the underlying weight distribution function (radii of the excitation and inhibition) can be
derived from three reference synapses, that can be regularly mutated (but not removed)
within limited ranges during evolution.

A neuro-module implementing a neural �eld cannot be described as a combination of
standard constraints. But with a suitable custom constraint, the usage of neural �elds be-
comes simple, because a module representing such a �eld with arbitrary size can be de�ned
with a single constrained module. The advantage of using such a constraint compared to
the prede�nition of its structure as peripheral structure, is, that the size and properties of
the �eld can still develop during the evolution, without the risk of destroying its function.
This, in the �rst place, allows a proper focusing on experiments using neural �elds.

SO2 and Other Oscillators. Oscillations are an important neuro-dynamical feature
that can be used in many contexts, for instance as pattern generators, as internal clock or
for a behavior coordination. Oscillations (periodic and quasi-periodic) can be generated
with many di�erent structures and neuron models, each providing advantages and disad-
vantages with respect to size, reactivity, frequency or dynamical attributes. SO2 oscillators
(Pasemann et al. 2003a), for instance, are small and provide two phases of the oscillation
(with a shift of 90 degrees), which is useful to shape a repetitive motion by combining the
two phases. Limitations of that oscillator are the relatively high frequency and its inability
to be adjusted dynamically. Consequently, the frequency and shape is determined by its
weights, which have to be evolved to be changed. An unconstrained network easily loses its
oscillation capability during evolution, because the oscillation requires speci�c ranges and
relations of the weights to work properly. A custom constraint here can help to ensure, that
no mutations of the neuro-module can destroy its oscillation capabilities, whereas the re-
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sponsible synapses still can be altered to in�uence the frequency. Such custom constraints
can be de�ned for most kinds of oscillators, so that it becomes easy to provide a whole set
of specialized, mutable, but functionally stable oscillators in a module library to be used
in forthcoming experiments.
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Chapter 5

Neuro-Evolution

with the ICONE Method

This chapter describes details on how to evolve neuro-controllers with the ICONE method.
The primary focus is on the most essential requirement, the so-called constrained modu-
larization of neural networks. In this preparation step constraints, limitations, heuristics
and domain knowledge are combined to de�ne a constraint mask as a base for the initial
population of the evolution experiment. With this step, the search space is restricted and
the search is biased towards speci�c classes of solutions. The chapter also addresses pos-
sible problems in that phase and how to cope with them. As part of the modularization,
this chapter also describes the re�nement of evolved neuro-modules, so that results of ex-
periments can be reused and shared through a neuro-module library. The remainder of
this chapter then describes the application of the ICONE method in iterative, interactive
experiments.

General Practice. Evolving neuro-controllers with the ICONE method requires domain
knowledge and user interaction to restrict the search spaces of the quite large evolving
neural networks. This restriction is very di�cult to achieve automatically and therefore
has to be done manually. A typical evolution experiment with ICONE involves the following
steps:

1. Plan experiment

2. Prepare the evaluation scenario(s) and the �tness function

3. Prepare the initial networks (with constrained modularization)

4. Test the initial networks for plausibility

5. Iteratively evolve the (partial) solutions to the problem in a usually interactive way
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Phase 1: Planning of the Experiment. The �rst step of any evolution experiment is
its overall planning: What should be shown and how can this be achieved? With ICONE
this also requires the decision whether the experiment can and should be broken down
into multiple, successive experiments and with this the order and scope of the single sub-
experiments. For such successive, simpler experiments it is usually easier to successfully
�nd solutions, because these experiments often comprise much smaller search spaces com-
pared to a single-step search for the overall problem.

Also, by stepwise approaching the overall problem, the evolution 'path' and with this
the �nal approach can be in�uenced better.

Another bene�t is that all successful intermediate experiments can be used as fallback
positions from which one can search systematically into di�erent directions, especially
if some initially planned experiments turn out to be unsuccessful. So instead of failing
with the whole experiment, only a small step towards the desired goal fails and allows a
reconsideration of the approached subsequent experiments.

Solutions to intermediate experiments are also interesting with respect to the search for
variations to a problem, because they allow, starting from such intermediate solutions, to
approach the problem with di�erent varied successive experiments, leading to more diverse
solutions to the overall problem.

Therefore, iterative evolution often simpli�es the evolutionary search, gives more con-
trol over the evolved solution approach and increases the likeliness of successful varieties
of solutions. Iterative evolution (section 5.3) as such can be performed with most evo-
lution methods. However, with ICONE the single consecutive experiments do not only
shape the evolution by choices of di�erent experimental scenarios, but additionally by the
de�nition of di�erent constraint masks (network shaping, see section 5.1) and herewith of
di�erent, deliberately chosen subspaces of the overall search space. This strongly increases
the e�ectiveness of the iterative approach.

Phase 2: Preparation of the Evaluation. Once the course of an experiment is roughly
planned, the evaluation methods have to be created. In the context of neuro-control, this
usually is the preparation of a simulator with proper scenarios. However, in some cases,
for instance for the evolution of separate functional modules, also simple function-based
evaluations will do, which may lead to a better evaluation performance compared to a
computationally expensive physical simulation.

The evaluation scenarios should not be realized in detail before all required previous
experiments have succeeded. Experience shows that during interactive, iterative evolution,
the initial plan of the overall experiment often changes as a result of the observed progress
of the evolution experiments. Often, undesired local optima and unforeseen problems are
only identi�ed during the execution of an evolution experiment. As a result, experiments
scheduled far ahead may become unnecessary or turn out to be unsuitable for the task long
before they could be performed, superseding their design e�ort. As a result, the planning
and the design of the evaluation scenarios should always allow �exible adaptations with
short iterations instead of a �xed experiment plan.
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Phase 3: Modularization of Initial Networks. The major measure with ICONE to
control the search space for the evolution and to guide the evolution is the preparation
of suitable constraint masks for the evolving neuro-controllers. In accordance with each
evaluation scenario, a (set of) initial network(s) has to be prepared. These initial networks
are used as initial seed for the population of the �rst generation and to restrict the search
to a limited subspace of the search space. Therefore, it often makes sense to run a single
evaluation scenario multiple times using di�erent constraint masks. This allows the search
for di�erent controller variants within a single evaluation scenario, which reduces the e�ort
for the experiment design and often leads to di�erent intermediate alternative solutions, of
which the best can be chosen for the subsequent experiments. The experiment in chapter
8 is such an example, where numerous experiments have been conducted within a single
evaluation scenario, but with very di�erent constraint masks, which lead to a large number
of partially very distinct solutions to the approached problem.

Because of its importance to reduce the search space, to bias the search towards a
speci�c solution approach and to bootstrap the evolutionary search, the preparation of the
initial networks with their constraint masks should be done particularly thorough. This
preparation is called constrained modularization and is described in detail in section 5.1.

Phase 4: Testing of Initial Networks. Modularized networks are often equipped with
numerous, interweaved functional constraints, which de�ne the constraint mask for the
entire experiment. Because of this exclusive selection of the search space, it is particularly
important to ensure that the resulting search space really is the desired one. The larger
the initial networks are and the more constraints are involved, the easier it becomes to
make mistakes and accordingly to focus on the wrong parts of the search space. This
may accidentally prevent the evolution of a desired approach, blow up the search space
by including undesired network properties or prevent the creation of su�ciently diverse
valid individuals due to constraint con�icts. Therefore initial networks should be tested
for plausibility before starting any evolution (see section 5.1.1.6).

Phase 5: Interactive Evolution. Most evolution methods run evolution experiments
in an unsupervised way. Hereby, the evolutions are started with a �xed set of parameters
and the result of the experiment then is collected when the algorithm terminates. This
approach is pro�table especially when successful results are known to exist and are likely
to be found within the search space. If the existence of such controllers is not known, then
many of such experiments fail, so that the experiment has to be performed multiple times
with slight variations. For the evolution of mid-scale networks in the �eld of neuro-robotics,
where the evaluation of individuals is computationally expensive, this can signi�cantly slow
down evolution.

Therefore, ICONE facilitates the conduction of interactive evolution experiments (sec-
tion 5.2). With such supervised evolution experiments, the user can guide evolution directly
by adapting the evolution parameters, constraint masks and the evaluation at runtime.
This allows not only a prompt reaction to unforeseen problems, but also to explore and
experience the dynamics of the evolution for the particular experiment, so that the choice
of good parameter settings for the evolution becomes easier. Furthermore, frequent local
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optima and undesired developments can be identi�ed rapidly and be avoided promptly
with countermeasures.

For ICONE, bot approaches are considered bene�cial. The interactive approach is
useful in the early stages of an experiment, when the potential problems and the evolution
dynamics are still unknown. Once, the �rst (partial) controllers have been found, the
experience gained from the interactive experiments (parameter settings, countermeasures
to undesired local optima, revised constraint masks) can be transferred to unsupervised
experiments, that then can explore the identi�ed promising search spaces automatically to
�nd variations to the interactively found solutions.

Backtracking. All described steps do not necessarily have to be performed in this �xed
order. As indicated by the suggested rough planning of the experiments, changes in the
evaluation scenarios, the �tness function, the initial networks and the overall experiments
often are necessary to react on the evolution progress. In many cases, the evolution and
its (intermediate) results reveal unexpected problems or suggest new ways to approach a
problem that may not have been considered before. This then requires a backtracking to
previous steps to account for these new aspects.

Evolution Results. Iterative neuro-evolution with the ICONE method provides di�er-
ent kinds of results. One result, obviously, should be a solution to the overall problem,
which was the target of the experiment. However, using iterative, constrained evolution
usually provides additional results as byproducts. First of all, every partial solution, i.e.
a solution to an intermediate experiment, is a result on each own, that may lead to new
insights. Furthermore, with network shaping, it is much easier to systematically search
for variations of solutions, which often helps to �nd much more, even unlikely to develop
variations, compared to an unconstrained evolution. The identi�ed controllers additionally
are often easier to understand, because the evolved focus structures are � despite the size
of the whole network � often comparably small and less interweaved. Therefore, it is also
easier to identify the underlying principles of these structures and to isolate and reuse
them. This reuse of developed network structures is facilitated with ICONE by deriving
functional neuro-modules from these structures (section 5.1.2). Such neuro-modules can
then be collected in a module library and be reused in future experiments. Consequently,
such re�ned neuro-modules are especially valuable results of the experiments.

5.1 Constrained Modularization and Network Shaping

Working with mid-scale neuro-controllers involves large search spaces for evolutionary
search algorithms. For that reason, the evolvable degrees of freedoms, i.e. the number
and range of network parameters, have to be reduced to increase the chance of getting
proper results. The larger the networks, the more important this search space restriction
becomes. Hereby, the application of domain knowledge is required to limit the evolvable
parameters in a suitable, problem dependent way. That is why the search space restriction
in ICONE is done manually by the user. The term constrained modularization here denotes
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the task of creating a suitable constraint mask for the initial networks. This constraint
mask should exclude all super�uous and avoidable parameters and limit the search space
towards explicitly chosen parameter domains, hereby intentionally biasing the evolutionary
search. This process is also called Network Shaping because the networks are outlined and
'shaped' in very speci�c, experiment dependent ways.

The actually used constraints depend on the goals, preferences and experiences of the
user. Highly constrained networks, that eliminate major parts of the search space, can lead
to results in shorter time, because � if a solution is within the search space � it is more
likely to be found. On the other hand, such highly constrained networks only allow a low
variation of solution networks and therefore often already partly contain the (assumed)
solution. Having fewer constraints on the network opens up evolution to more diverse, less
predetermined solution approaches, that are, for instance, not so intuitive for the user.
Such networks, however, easily comprise search spaces that are too large and prevent the
development of proper results. So, the user has to carefully decide from case to case which
and how many constraints are necessary to succeed evolving the desired neuro-controllers.
Examples of di�erent constraint masks are described in chapters 7 and 8.

5.1.1 Preparation of Initial Networks

The major step when setting up an evolution experiment with ICONE is the preparation
of a suitably constrained initial network or of a set of such networks. This step has to be
done carefully, because it strongly in�uences the evolution progress, the kind of evolvable
solutions and the probability of getting a suitable result. Creating an initial network is
equivalent to the induction of domain knowledge to the evolving population of networks.
The domain knowledge is used to form a (functional) constraint mask on top of the initial
network to force the adherence of certain, user speci�ed criteria. In addition, forming
an initial network also means to provide (peripheral) network structures in advance (see
section 5.1.1.2). That way, evolution is relieved from evolving network structures that are
already known and are assumed by the user to be needed in some places.

Put together, a detailed control of the search space and the possible resulting networks
is achieved. The creation of initial networks involves the following steps:

5.1.1.1 Basic Modularization

The search space for neuro-controllers grows quadratic with every new neuron, because
in an unconstrained network, every neuron can have connections to any other neuron in
the network. So, keeping the number of neurons low, and therewith avoiding processing
neurons, is a major strategy in many evolution approaches to keep the search spaces
feasibly small. Though, the number of neurons can obviously not arbitrarily be reduced,
because even if no processing neurons are involved, the animat still needs all motor and
sensor neurons to connect the controller with the body. So, in the anticipated domain
of mid-scale networks involving non-trivial animats with rich sets of motors and sensors,
even minimal networks can already comprise a large number of possible synapses and
therefore a large initial search space. Also, the more sensors and motors an animat has,
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the more likely disruptive connections between unrelated sensor and motor neurons become.
These connections are unlikely to contribute to a successful behavior or even hinder the
development of e�cient controllers. Such unrelated connections are in many experiments
quite easy to predict by experience and reasoning. So by preventing such connections
based on domain knowledge, the search space can be reduced to a subspace that is more
likely to contain working controllers. One step to do this and to bias evolution towards
local processing units is to structure the network with modules. This groups related motor
and sensor neurons together and shields them from potentially harmful connections with
unrelated network areas. This heuristic is often helpful, because related neurons are more
likely to produce expedient structures together than unrelated ones. For example, letting
the sensors of a �nger of a humanoid robot connect to the motors of its knees, will in most
experiments not make much sense and � if at all � have a disturbing e�ect. In di�erence, if
that knee motor is connected to the sensors of the knee itself and the sensors of its close-by
joints, it is much more likely to end up with a meaningful behavior. Such considerations
are often not necessary when evolving small neuro-controllers for simple agents, because
these animats are usually designed to provide only related sensor and motor neurons (e.g.
inverted pendulum experiments, tropism behaviors with di�erential-drive robots).

In larger networks, however, a grouping into related sets of neurons is necessary and
has to be done manually based on domain knowledge. This can be realized at the network
level by separating the network into distinct neuro-modules. So, modularization can be
used to group related neurons behind �xed interfaces to prevent undesired connections and
to favor local, related connections.

A special case, where neuron grouping with neuro-modules also has a technical rel-
evance, are target animats that require a certain topological network distribution, for
instance if the network is executed on a distributed processing system with limitations
of the connectivity and the neuron visibility. Such network distributions can be enforced
with a suitable segmentation of the network into distinct neuro-modules that re�ect the
distribution of the network on the processing system, so that only compatible networks
can evolve (for an example see chapter 7).

5.1.1.2 Preparation of Peripheral Structures

In the context of neurorobotics and neuro-cybernetics it is particularly interesting to inves-
tigate speci�c network properties, organizational principles or the interaction of functional
network areas. In the majority of such experiments, large parts of the networks are just
peripheral structures, that are � with respect to the examined properties � relatively un-
interesting, yet not omissible. The hereby really interesting parts of the networks � the
remaining, evolving network structures � are here called focus structures, because these
structures are a (usually previously unknown) solution to the problem the experiment
actually focuses on.

Peripheral structures are often needed, for instance as motor controllers, to derive high
level information from sensors or to use known structures to generate oscillations, working
memories or signal �lters. In an experiment with a focus on a certain neural coordination
hypothesis, for example, it usually does not make sense to let evolution � in addition

60



Chapter 5. Neuro-Evolution with the ICONE Method

to the herewith interesting coordination structures � also search simultaneously for the
required motor controllers and the coordinated functional structures. This is especially
true if structures for these required functions are already known. And even if the required
structures are not yet known, then it is often easier to develop these structures �rst in
separate, simpler experiments. This is expected to be much more successful than evolving
a large network with multiple unknown functional areas in a single experiment.

Giving peripheral structures in advance does, of course, not only limit the search space,
but also the possible results. However, it should be kept in mind that the main goal of
evolutions in the domain of mid-scale networks primarily is to �nd results at all. This
often demands a narrow focus on a limited functionality of the network and to �nd limited
solutions �rst. Then, the related search space can be further explored with variations of
the experiment to �nd alternatives to the already identi�ed solutions. Otherwise the search
spaces remain too large and successful evolutions are entirely prevented, which is obviously
worse than limitations of the evolvable networks. With ICONE, the desired variations of
the networks can still be evolved, but this has to be done systematically by purposely
focusing the search on very speci�c parts of the search space. In fact, intentionally focus-
ing the search on slightly di�erent search spaces even increases the number of evolvable
variants, because di�erent search space con�gurations often have di�erent solutions to be
the most likely to evolve.

So, all structures, that are not of primary interest for the evolution experiment, but are
nevertheless needed for a proper function of the network (the peripheral structures), should
be given in advance to achieve a number of advantages: Evolution does not have to reinvent
already known structures, the search space is reduced signi�cantly, the bootstrapping of
the evolution experiment is sped up and the experiment is easier to be biased towards a
desired solution approach.

Forcing evolution to reinvent already known structures never seems to be a good idea,
except if new solutions to already solved problems are the target of the evolution experi-
ment. In all other cases, letting evolution recreate such peripheral structures only blows up
the search space and reduces the chance to solve the actual evolution problem. If variations
in the peripheral structures are desired, then this can still be achieved, for instance by pro-
viding multiple initial networks with di�erent peripheral structures, by letting evolution
replace known structures by other known structures from a neuro-module library (section
5.1.3), or by allowing evolution to choose from prede�ned alternatives (section 6.3). Fol-
lowing the modularization approach, peripheral structure should also be encapsulated into
separate modules. This enables the use of speci�c constraints on these structures and al-
lows a �ne control of the valid connections between the peripheral and the focus structures.
Peripheral structures that are encapsulated into neuro-modules are also especially suitable
for hierarchical architectures, where modules are placed as functional submodules within
other modules to control the visibility of neurons and their connectivity.

Peripheral structures also include network elements that de�ne the frame for the focus
structures, for which the experiment is designed to evolve. Such framing structures of-
ten include 'empty' neuro-modules only equipped with �xed interface neurons, to control
the connectivity of these new structures with the remaining peripheral structures and to
in�uence the evolving structures via constraints.
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5.1.1.3 Low-Level Constraints with Network Tags

The search space should be restricted by excluding all evolvable properties of the network
that are already known or that should not change. This can be achieved by adding suitable
network tags (section 3.2.4 and appendix C) to those network elements. Network tags
allow for a detailed selection of evolvable parameters on each separate network element.
In addition to these protection measures, network tags should be used to specify plausible
ranges for selected synapse weights or bias terms, if such ranges are known or assumed in
advance. This, for instance, can avoid an evolutionary search in parameter domains with
too large weights for synapses that need to be small to contribute reasonably, or to limit
synapses to be excitatory or inhibitory.

Along with such range limitations for network attributes, the global settings for evolu-
tion operators (probabilities, rate of change) can be overwritten locally with network tags,
so that distinct network areas can have di�erent mutation rates. This allows a �ne-control
of the mutations throughout the network. In larger networks, it is common, that some
synapses are very sensitive to even small weight changes whereas other synapses require
large changes to have an e�ect at all. This contradiction is di�cult to match with a global
setting of the mutation rates. A reduction of the global rate of change for all synapses
would lead to the desired small changes in the sensitive regions, but would also only allow
such small changes in areas that would need large mutations. So, whenever such discrepan-
cies are known in advance, then this should be speci�ed in the initial network with network
tags, so that each region has its own suitable settings. A suitable ICONE implementation
should allow the de�nition of such settings not only by plain numbers, but also as propor-
tion of the global setting. With this, the settings can still be adapted during (interactive)
evolution, whereas the required relative setting di�erences between such network areas is
kept intact.

5.1.1.4 Preparation for Modular Crossover

The modules of the network also should be prepared to be compatible with the modular
crossover operator (section 3.3.3). For this, the required network tags should be added
to the modules that de�nes their type, role and compatibility lists. Properly con�gured,
the exchange candidates for the modules become more reasonable and the crossover less
destructive. The same tags are also useful to make the modules compatible with extensions,
like module insertions from a module library (section 5.1.3).

5.1.1.5 High-Level Constraints

Functional constraints (section 3.2.5) are the major measures used to restrict the search
space. One reason for this is that constraints a�ect many neurons and synapses at once
in an often complex, but well de�ned way. Because of their potentially strong impact on
the network elements of a neuro-module or neuron-group, many degrees of freedom of the
network are reduced to a few remaining evolvable parameters. The resulting network struc-
tures, however, can be organized in quite complex ways (examples are shown in chapters 7
and 8). Therefore, the user should impress functional constraints to the initial network to
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clearly outline the desired network topologies. Functional constraints are a �exible way to
restrict the search space and the network topology without losing the potential for large
mutations, network extensions and topological modi�cations. Based on domain knowledge,
functional constraints can much better and less restrictively describe the desired network
topologies than network tags and peripheral structures alone.

5.1.1.6 Testing

Mid-scale networks with many interacting functional constraints and network tags can
become complex and sometimes also confusing. In such cases, it easily happens that
the outlined network topology diverges from the one the user wanted to describe. Further-
more, poorly con�gured or wrongly combined constraints can lead to irresolvable constraint
masks. Such initial networks never produce valid o�spring, because irresolvable networks
are removed from the population.

To avoid such problems, the preparation of initial networks should always include a
testing phase. All constraints should be manually resolved to prove their resolvability and
to check if the resulting networks are within the expected and desired set of topologies. For
this, brief test-evolutions with high settings for insertions of neurons and synapses (and
later with high settings for their removal) should be used to check if the maximal network
(minimal network) still comprises the desired topological features.

5.1.2 Module Re�nement

When using neuro-modules with given structures to create the peripheral structures for an
experiment, these neuro-modules should have a high quality, be small and allow adaptive
mutations without increasing the search space too much. Many of such modules are the
results of isolated evolution experiments and consequently often are not optimal. Before
such structures can be reused as building blocks they should be re�ned to signi�cantly
enhance their quality and usability. In the following the main measures to re�ne neuro-
modules are described in detail.

Functional Separation and Minimization. Evolved structures are often interweaved
and not neatly separated from each other. To use the structures as reusable building
blocks, their functional network elements have to be isolated and separated from each
other. Super�uous neurons and synapses should be removed to minimize the structure.

Generalization, Completion and Repair. Evolved structures are often not working
perfectly under all circumstances. Therefore, it makes sense to examine the functional
properties of a module and to create a generalized version that works properly in all
application domains. Also, many structures can be further optimized according to size or
performance, for instance by using order dependent neurons (see section 6.9) to reduce the
processing time of a module.
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Footprint Reduction. Because most re�ned neuro-modules provide a very speci�c func-
tion, most of their internal neurons and synapses are not of interest for other parts of the
network. Connections with these neurons would either disturb the function of the module,
or are unlikely to lead to a useful interaction. Therefore, only a few neurons are required to
be accessible from outside of the module. These neurons should form its neural interface.
As a result, adding a module with many internal neurons, but with a small neural inter-
face, extends the possible synaptic connections only by these few interface neurons and
therefore has a much smaller footprint than allowing connections to all internal neurons.

Search Space Minimization. Adding a fully mutable neuro-module with many neurons
still can signi�cantly increase the search space. Therefore, re�ned neuro-modules should
use network tags to protect all attributes of all network elements that are not required to
be mutated during evolution. Network tags can also be used to restrict certain synaptic
weights or bias terms to plausible ranges, which avoids search in undesired parameter
domains. In addition, functional constraints should be used to induce dependencies of
network elements to further reduce the search space to the essential evolvable parameters
only.

Functionality Protection. Mutations of functional neuro-modules are often required
to allow an adaption of the module to the special context. But such mutations can easily
destroy the function of the module. Therefore, re�ned modules should be equipped with
functional constraints that protect the functionality of the module. Such constraints can
be used to automatically repair the module if mutations destroy or violate the function or
organization of the module.

Enhancements for Evolution. In re�ned neuro-modules the function of the module
and the parameter domains of its network elements are usually known and well understood.
For that reason, such networks can be tagged with suitable network tags to optimize the
evolution on and with these modules. For instance, mutation probabilities for crucial pa-
rameters may be tagged to be more rough or more �ne than for the rest of the network.
Also, a proper setting of the module type and compatibility lists simpli�es the use of the
re�ned neuro-modules with modular crossover.

Re�ning neuro-modules pays o� soon, because once re�ned, the modules can be reused
in any forthcoming experiment. There, the initial networks get more compact, are easier
to compose and provide a smaller search space. A well re�ned neuro-module can extend
a network instantly with a fully working function composed of many network elements,
but extend the overall search space only as much as the insertion of one or a few neurons
would do. Another advantage is that anyone can reuse such a module, even without
fully understanding its internals, so that persons with di�erent backgrounds can work
together and share results more easily. And �nally, re�ned neuro-modules allow the use of
a functional neuro-evolution with algorithms that compose networks from building blocks
during evolution (see next section).
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5.1.3 Neuro-Module Library

Re�ned neuro-modules should be collected in a module library . Such a library can be main-
tained by a work-group or community to collect new useful neural building blocks. With
such a module library it becomes easier to build initial networks, because the peripheral
structures can largely be composed from modules of the library. Most of the neuro-modules
are already equipped with constraints, hints for evolution and proper search space reduc-
tion measures, so the user can fully concentrate on the constraints and limitations of the
desired focus structures.

With future extensions of the algorithm, operators may also use such a module library
to insert neuro-modules from the library to extend the networks with already working,
functional subnetworks. Algorithms like that would allow evolutionary experiments simi-
lar to genetic programming (Banzhaf et al. 2001; Koza 1992, 1994; Koza et al. 1999), but
with neural networks as functional elements. Another related algorithm extension is the
initial insertion of compatible modules from the library as replacements for placeholder
modules to increase the variations in the initial population. This also allows the sponta-
neous replacement of existing modules by compatible ones from the module library as a
new type of mutation. Rapid changes of a neural structure are then possible without the
need to convert a structure slowly into another by successive, random mutations, which
seldom happens successfully during evolution.

The neuro-module library therefore is not only a valuable way to collect, re�ne, preserve,
store and share neuro-modules, but also the basis for future enhancements of the evolution
algorithm.

5.2 Interactive Evolution

Evolution with the ICONE method is not meant to be (only) an unsupervised evolution
method, that � once prepared � is simply started and run until convergence. Although the
method can be used in that manner, especially when used in combination with short, well
de�ned iterations (section 5.3), the method is merely meant as an assistance tool to support
the designer of a neuro-controller to �nd suitable results. This means that the method is
used interactively while the network is supervised and guided by the user. At any point in
time, evolution experiments can be altered, stopped and in�uenced to react to the current
evolution progress. This includes adaptations of the parameters of the evolution operators,
changes of the �tness function and modi�cations at the evaluation system.

Advantages. The advantage of interactive evolution is that the dynamics of the evolu-
tion, i.e. the impact of the evolution operators and their parameter settings, becomes more
transparent to the user. This is important, because with the constraint masks on the evolv-
ing networks, the evolution can take much di�erent routes in search space than expected
or desired by the user. Interactive evolution allows an early estimation of whether the
parameter settings and constraint masks are suitably con�gured, before time-consuming,
long-running evolutions have been conducted. Experience suggests the strategy to run a
new evolution experiment interactively for a while to �nd the proper settings, and then
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reduce the interactivity (up to fully unsupervised evolution runs) over time. Experience
collected from interactive evolution for a speci�c experiment can then also be transformed
to control scripts that apply the found heuristics for parameter changes automatically in
unsupervised evolution runs. Such an approach makes sense especially when a successful
experiment is repeated multiple times with slight variations to search for network variants
for an already solved problem. Such variation searches can then run on the computer
equipment without supervision.

A second advantage of interactive evolution is, that necessary changes of the parameter
settings during an evolution experiment can be induced in a highly �exible way at the
'correct' time, i.e. when the user recognizes that the search focus should be shifted to a
slightly di�erent area of the search space. Such readjustments are helpful, for instance
to start with relaxed constraints and high mutation rates and then get to more speci�c
constraints with lower mutation rates over time, or vice versa. Interactive adjustments
can also help to detect and overcome observed local, undesired optima. Such interactive
modi�cations can also give hints on how to change the experiment for the next run to
avoid such a local optima right from the beginning, based on the strategies examined and
re�ned during the interactive evolution.

Limitations of Interactive Evolution. Supervising an evolution experiment can be
very time-consuming, especially if the evaluation involves the simulation of complex an-
imats. Interactive evolution requires a quite �uent evolution progress so that the user
can interact in real-time. If the evaluation of a generation requires many hours, then in-
teractive evolution becomes di�cult to do. Therefore, the evaluation method should be
designed to allow a fast evaluation, if necessary by using a computer cluster. The eval-
uation phases of evolutionary algorithms are highly suited for parallel processing, which
makes the implementation of a cluster evaluation quite simple.

Because the evolution progress of interactive evolution is strongly in�uenced by the
guidance of the user, that user should have a good understanding of the evolution dynamics
and experience in using constraints and evolution operator parameters. Consequently, the
evolution success is very dependent on the user.

Interactions can also lead to performance decrease, because the user may lead the evo-
lution badly. This can, for instance, be the case when constraints or evolution operator
settings are poorly chosen, so that the desired results are simply not possible or very un-
likely to occur. Also, interference by the user may prevent evolution from �nding solutions,
when undesired behavior is prematurely terminated or excluded via constraints, although
that undesired behavior was a necessary step towards the desired behavior. Premature
adaptations can easily prevent evolution from overcoming a local optimum on its own or
to elaborate the networks over several generations. Therefore, user experience should be
gained patiently and di�erent intensities of interaction should be tested for each experi-
ment.

Performing Interactive Evolution. The software for interactive evolution requires two
main features: observation facilities and adjustment mechanisms. The evolution program
should provide multiple ways to observe and analyze a running evolution, for instance vari-
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ous statistics about �tness, network properties and the population diversity. Furthermore,
it should be possible to view intermediate results, i.e. to display the networks graphically
and to observe the resulting behaviors in a simulator. This observation should, for perfor-
mance reasons, not be done for every single individual, but only for a representative subset
of the individuals, for instance the best individual or the individuals with the highest num-
ber of o�spring. For adjustments, the user should be able to work interactively with the
parameter settings of the evolution operators, with the �tness function and preferably also
with the evaluation method (e.g. the simulation scenario).

Interactive evolution then is the ongoing observation of the statistics developments, the
examination of intermediate networks and, if appropriate, the adaption of parameters. In
the reference implementation of the ICONE method (Appendix D) all interactive changes
are, optionally extended by user comments, logged along with the evolution statistics
and intermediate networks. With this, interactive evolutions become easier to analyze
afterwards, to learn for future evolutions and to probe di�erent paths through the search
space. The latter can be achieved by restarting the evolution with di�erent settings using
any generation of a previous experiment as initial generation, for instance to try di�erent
settings for the same generation until the desired progress is achieved.

5.3 Iterative Evolution and Shaping

Evolving large networks comprising functionally complex subnetworks from scratch is �
even with constraint masks � di�cult to achieve, because the search space still can be very
large. One way to overcome this problem is called shaping (Dorigo and Colombetti 1998;
Gomez 2003; Karpov et al. 2011) or task decomposition (Hülse 2006; Kassahun et al. 2009;
Perkins and Hayes 1997). The idea is to break the overall problem down into smaller,
easier to evolve subtasks. This decomposition is done by the experimenter and requires
domain knowledge on the problem. The subtasks then can be evolved separately with
simpler experiments and correspondingly simpler, lower dimensional search spaces. In each
iteration, subnetworks from previous experiments can be given as peripheral structures,
so that the dimensionality of the evolved focus structures remains low. This approach is
often called iterative or incremental evolution.

The approach has several advantages. First, the search spaces of the single experiments
become smaller and the probability of success increases. Second, evolved subnetworks can
be analyzed separately before they are used in forthcoming experiments. So, the overall
analyzability of the networks increases, because even in larger networks combining several
previously evolved subnetworks, most of the network structures are already understood.
Evolved subnetworks can also be re�ned (section 5.1.2) before they are used as peripheral
structures, which additionally reduces the search space and helps to keep the networks close
to the desired topology. The module identi�cation and re�nement also is simpli�ed by this
approach, because it is much easier to rework a relatively small network with a single,
known function, compared to the disassembling of a large network with many interweaved
functions.
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The evolution experiments also become simpler, including the evaluation scenario and
the �tness function. This is, because a single task is easier to describe with a �tness
function than a complex task with many subgoals. The fewer parameters are required for
a �tness function, the smoother the �tness landscape can get, which increases the chance
to �nd solutions in shorter time.

Iterative evolution also automatically provides fallback positions for the overall ex-
periment. From each evolution step several distinct evolution attempts with di�erent
constraints and parameter settings can be started, always with the safe fallback to the
previous experiments, in case the experiment did not succeed. So, each successful partial
experiment already provides reusable results, even if the overall experiment �nally fails.

Evolving controllers iteratively also has the advantage that the evolution can be biased
strongly towards a very speci�c development path. Therefore, it is often bene�cial also
to break the evolution of a single-function network down into a sequence of consecutive
experiments. This allows a �ne control of the evolution focus for the same network over
time. In fact, the user should plan an evolution story, starting with the evolution of
required, and still unknown peripheral structures up to the �nal experiment. Such a story
does not have to be �xed right from the beginning, so that each iteration can �exibly react
on the results of the previous experiments. Intentional variations of the development paths
can also lead to very di�erent results, because each di�erent partial experiment can result
in new ideas on how to proceed from the currently evolved point.
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ICONE Extensions

The basic ICONE method, as described in the previous sections, can be extended by a num-
ber of useful additional algorithmic features, that allow a better adaption of the method
to speci�c experiments. Such extensions can easily be implemented and added to the
method. These algorithmic extensions should not be confound with custom constraints,
that already allow a functional extension on the constraint mask level. Algorithmic exten-
sions have a larger impact on the ICONE method itself and modify the basic algorithm
by new strategies and features. Such extensions include additional evolution operators,
heuristics for network element insertions, extensions of the neuron model and changes of
the evaluation and selection phase, just to mention a few applications. This section brie�y
describes some of the ICONE extensions, that have been implemented for and used with
the ICONE method. Note, that not all of these extensions are actually used for the ex-
periments shown in this thesis. The thorough investigation of the e�ects of some of these
extensions are considered future work.

6.1 Synaptic Pathways

In large or mid-scale networks, that comprise multiple distinct functional subnetworks, the
network areas that should be interconnected are often known in advance. This also means
that many possible interconnections are known to be super�uous or even harmful. The
hierarchical structure of the modularized networks (section 5.1) already prevent many of
such undesired connections by hiding local neurons behind well de�ned module interfaces.
The interface neurons of the modules, however, can still be connected arbitrarily. This can
be limited in more detail using the synaptic pathway extension.

Synaptic Pathways. Synaptic pathways are established by allowing or forbidding con-
nections between certain modules explicitly. The direction of the synaptic connections
hereby can be considered as well, so that connections from one module to another can be
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allowed, whereas synaptic connections in the opposite direction are forbidden. Synaptic
pathways can be described in di�erent ways to make it convenient for the user. A simple
way is to give the ids of modules explicitly to de�ne lists of desired or forbidden module
pairs. This, however, only works for �xed modules, that are not replaced or added to the
network during evolution. A more �exible way is to specify such lists based on the network
tags of the modules, such as the type tag or custom permanent tags (Appendix C).

The de�nition of synaptic pathways allows very clear descriptions of the desired network
interconnections without the need to give all desired synaptic connections in advance.
Evolution therefore still can search for the 'right' connections within the connection frame
speci�ed by the user.

Probabilistic Synaptic Pathways. A variant of the simple synaptic pathways is an
extension that allows the de�nition of probabilities for connections between certain mod-
ules. With this extension, new synapses are not uniformly distributed between all modules
within the pathway descriptions. Rather, the location of each new synapse depends on an
additional probability that is attached to each approved module pair. A user can therefore
express a preference for certain synaptic pathways and make other connections less likely,
without preventing these connections completely.

6.2 Typed Connections

This extension is a way to further in�uence the interconnectivity of neurons and modules.
The synaptic pathways extension (see above) is easy to use and allows the simple exclusion
of certain inter-module connections. However, the valid connections between the speci�ed
modules can be arbitrary. If more control is required, then the typed connections extension
may help.

This extension requires the de�nition of type tags on neurons and modules. Such type
tags group network elements in type classes, that are speci�ed by simple names. Then, the
valid connections can be speci�ed by lists of such class names, to which � or from which �
connections are allowed. Such lists can be added as network tags to single neurons, but also
to entire modules. This, especially in combination with the synaptic pathways extension,
allows a very detailed control over the connections between neurons. As an example, a
neuron input of a module may be restricted to get only inputs from neurons of type sensor
or processed sensor to make sure that this special input receives a sensor signal, and not
an arbitrary input such as a motor signal. Another input of the same module may be
con�gured to get input only from special control outputs of speci�c modules.

As the example shows, the typed connections extension allows to add meaning to
a neuron, i.e. what type of input it is supposed to process or what kind of output it
produces.
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6.3 Hidden Elements

Constraints can e�ectively limit the possible neurons and synapses evolution may add to a
network and thus reduce the search space to a well de�ned subspace. However, the use of
constraints may be too unspeci�c or complicated in some cases where � based on domain
knowledge � most optional network variations are already known or assumed. This is
useful, if only a few alternative con�gurations should be tested. To avoid to give all these
optional network elements in advance and accordingly starting with a large and potentially
functionally redundant initial network, one would like to specify all potentially new neurons
and synapses in advance without forcing the network to use these elements right from the
beginning. The hidden elements extension can achieve this.

Hidden Elements. The hidden elements extension allows the speci�cation of a network
with all of its neurons and synapses in its maximal dimension, and then to hide a subset
of these network elements. These hidden elements are no longer functional parts of the
network. However, during evolution a special operator can uncover hidden elements (or
hide visible elements), with the same e�ect a simple insertion or removal of a neuron or
synapse would have. The di�erence is only, that the uncovered elements are not randomly
inserted, but have previously been placed and con�gured by the user. This allows an
evolutionary search on given alternatives for the problem without considering other, more
random options, that are not of interest for the user. Note, that hidden elements are fully
compatible with constraints and the other search space restriction features of ICONE.

Hidden Sets. In addition to neurons and synapses, also entire modules or neuron groups
can be marked to be considered as hidden elements. This leads to an activation and
deactivation of (functional) subnetworks that are always uncovered or hidden together.
This makes it easy to specify complex structural alternatives for a problem in advance.

Probabilistic Hidden Elements. A variant is the introduction of probabilities for each
hidden element. That way, the likeliness to uncover a network element is di�erent for each
network element, so that elements assumed to be more important are uncovered with a
higher probability than elements assumed to be less important.

Mixing Hidden Elements with Standard Operators. Hidden elements do not nec-
essarily replace the standard operators for insertion and removal. Both types of operators
can coexist. One way to do this is to apply constraints on selected modules to prevent the
insertion and removal of network elements. Then, hidden elements can be de�ned in these
modules. As result, these modules only allow the use of combinations of hidden elements,
whereas in other parts of the network neurons and synapses are inserted and removed as
usual.
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6.4 Expiring Constraints

Interactive (and iterative) evolution has the advantage, that constraints can be changed
and in�uenced over the course of an evolutionary search. Whenever it seems appropriate,
constraints can be removed, added or adapted to give the network more or less evolvable
degrees of freedom. Especially the stepwise increase of the search space over time seems
to be useful. It allows a narrow search in the beginning to get roughly working solutions
fast, and then stepwise allow more variations to optimize these rough solutions. Adding
the many degrees of freedom required for an optimization of the controller already in
the beginning often slows down the search for networks that do anything useful and thus
prevent solutions at all.

In some special cases, this stepwise constraint release can be automatized, so that slowly
extending search spaces can also be achieved in unsupervised experiments. For this, groups
and modules can be tagged with a (probabilistic) constraint release plan. Such a plan can
be realized with a simple list that speci�es for each removable constraint, when it should
be removed. The event for the removal of a constraint may be triggered when a speci�c
generation is reached or a threshold of the �tness is exceeded. The release plan may also
contain probability information, so that constraints, when the trigger event is reached, are
not directly removed, but instead only increase their removal probability with the excess of
the given thresholds. The decision of their removal is then done by an additional evolution
operator.

Expiring constraints allow interesting experiments, for instance the stepwise, systematic
break-down of symmetries, as shown with the ENSO method (Valsalam 2010; Valsalam
and Miikkulainen 2009), or the stepwise individualization of previously cloned modules
during the optimization phase of the evolution. Due to the diversity and extendability of
constraints, this approach allows very complex and experiment-speci�c release scenarios.

6.5 Automatic Parameter Scheduling

Similar to the expiring constraints, this extension allows to automatically in�uence the
evolution process. During the evolution, the 'ideal' settings of the evolution operators
(mutation rates, population size, selection pressure) are not constant and depend on the
current progress of the evolution. In the early generations, for instance, mutation rates
are usually higher than in later phases, in which controllers are primarily optimized rather
than constructed. Also, higher rates may be required occasionally to escape local optima.

In interactive evolution such adaptations of the evolution parameters are easy to do.
In unsupervised experiments, in contrast, the experimenter has to decide for a single set
of parameters that are used throughout the entire evolution experiment. This limitation
can be overcome using this extension. The automatic parameter scheduling allows the
de�nition of events at which settings of the evolution operators are changed. So, the
evolution can be divided into di�erent phases or states, in which di�erent settings are
used. The transitions between the states can be de�ned based on the generation count,
the �tness development or the attributes of the evolving neural networks.
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6.6 Mutation Plans for Individuals

The creation of the initial generation is of a high signi�cance, because the �rst generation
is used to probe the search space broadly to locate promising regions of the search space.
This �rst generation therefore should be as various as possible. With an extension like
the previously mentioned automatic parameter scheduling, the �rst generation can be
created using exceptionally large mutation rates (especially for the topology manipulation
operators) to promote the creation of a wide spectrum of initial network con�gurations.
However, probabilistic mutations lead to a Gaussian distribution of the results, so most
initial networks will be of a certain mean complexity, and only a low number of networks
will be particularly small or large. In many highly constrained networks this is not desired,
especially not in the �rst stages of a new experiment. In that phase, the ideal topology
(network size and connectivity density) is usually not known and has to be explored with
many separate experiments with di�erent settings of the parameter settings. Here, it can
save time when a non-Gaussian distribution is used, that covers the search space more
uniformly and allows more variants of a desired kind in the �rst generation (or throughout
the evolution). For this, the mutation plan extension can be used. Such a mutation plan
describes multiple sets of mutation settings, that are alternated during the creation of
the same (initial) generation. For each separate individual, one of these sets is chosen at
random and used during its mutation phase. Individuals therefore will be created based on
di�erent mutation settings, which leads to a broader, but still fully de�nable distribution
of the (initial) individuals.

6.7 Evolving Constrained Learning Rules

The evolution of static neuro-controllers, i.e. neuro-controllers whose synaptic weights and
topology remain static during their evaluation, requires evolution to optimize all relevant
synaptic weights in a series of many, consecutive mutations. Therefore, the number of
generations needed to �nd and optimize a controller requires relatively many generations,
because for these required changes accordingly many mutation steps are needed to converge
to the desired behavior.

An alternative can be the evolution of neuro-controllers with learning abilities in form
of adaptive synapses (Floreano and Urzelai 1999; Gruau and Whitley 1993; Stanley and
Miikkulainen 2003b; Urzelai and Floreano 2001; Zahedi and Pasemann 2007). Such adap-
tive synapses are often based on learning rules that describe the strategy used to adapt
the synapses during the network evaluation. The variety of possible learning rules is very
wide, so that this extension is suitable to investigate learning rules for di�erent types of
experiments. The learning rules can be treated as simple properties of neurons, synapses
and neuro-modules, so that heterogeneous networks can be evolved, mixing static synapses
with di�erent types of adaptive synapses. This makes evolution quite �exible and avoids
the problem of having adaptive synapses in the entire network. Furthermore, the mutation
and distribution of learning rules is fully compatible with constraint masks, so that the
search space of networks using learning rules can be restricted like any other network. By
allowing heterogeneous networks that mix di�erent learning rules and static synapses, evo-
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lution can choose � within the constrains and limitations given by the user � the appropriate
locations for adaptive synapses to �nd the best learning strategy for each subnetwork.

Adaptive synapses have many potential advantages. With suitable learning rules, evo-
lution merely has to evolve the structure and the rough starting con�guration for a network,
instead of optimizing all detailed synaptic weights. The �ne-tuning then can be learned
during the evaluation phase. This can speed up evolution, because, at least in theory, less
generations should be needed to �nd the optimized controllers. The evolution of adaptive
networks may also bene�t from the Baldwin e�ect (Baldwin 1896; Downing 2009, 2010;
Mitchell and Forrest 1994). Hereby, it is assumed, that in the beginning of an evolution,
highly adaptive networks evolve, that are capable of solving the problem by learning during
the evaluation time. In later generations the networks continue to evolve such that the
required learning e�ort with respect to the problem is minimized, so that the �nal networks
do (almost) not need a learning phase any more.

In addition to the Baldwin e�ect, also Lamarckian learning strategies (de Lamarck
1819) can be implemented. In such an evolution one could translate the evaluated network
after its learning phase back to the genotype, so that the learned strategy can be inherited
to the children. A less drastic strategy would be to evaluate a network and then change all
the synaptic weights of the original network towards the direction of the synaptic weights
of the learned network, ideally combined with an adjustable learning rate parameter. This
would shift the networks slowly into the direction of the learned synaptic weights, avoiding
a too strong adaption to outliers and special cases of the evaluation.

In combination with the constraint masks of ICONE, these e�ects can be exploited by
evolution even for larger networks, because the a�ected network areas can be systematically
speci�ed based on domain knowledge, leading to smaller search spaces and a better focus
of the learning features to those network structures that are expected to bene�t most.

6.8 Morphology Co-Evolution

The co-evolution of animat morphologies and control networks is a promising and often
applied approach (Bongard and Paul 2001; Floreano et al. 2008b; Hornby and Pollack
2001, 2002; Paul and Bongard 2001; Pollack et al. 2000; Sims 1994a, b) to evolve neuro-
controllers for robots with variable morphologies. Many control problems can signi�cantly
be simpli�ed by using especially suited morphologies (mass, center of gravity, arrangement
of body parts) for the robot. The problem is, that in most cases, these optimal morphology
con�gurations are not known. Therefore, it makes sense to evolve the morphology of the
animat as well.

ICONE supports the evolution of morphology parameters via special networks, whose
nodes represent the adjustable morphology parameters. These networks can be constrained
like any other neural network. Thus, it is easy to evolve morphologies with symmetries,
cloned limbs and the like. Because the morphology parameters are simply described by
networks with nodes similar to neurons, both types of networks can be represented and
managed together in the same network (but in separate modules), so that neuro-controller
and morphology are evolved together in the same genome. Mutation operators, modular
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crossover and even constraints (e.g. symmetries) then can a�ect the animat morphology,
as well as the corresponding neuro-controller, as a single unit.

6.9 Order Dependent Neurons

The reactivity of a synchronously updated neural network, as it is used as neuron model
for this thesis (section 2.1), is limited by the number of synapses a signal has to cross until
it has an e�ect. This crossing of pathways results in a delay between an (input) signal and
its e�ect. For highly reactive controllers, such as motor controllers of a robot, this delay
has to be preferably short, so that the state of the overall system (e.g. the animat) at the
time of the e�ect is still close to the state when the causative input signal was received.
Otherwise, the reactions always come too late and can destabilize the system. This is a
common problem of signal processing in general (Proakis and Manolakis 2007).

One source for long synaptic pathways is the structure of a controller itself. So when
super�uous, avoidable neurons and synapses are part of a controller, then the delay becomes
inappropriately long. Such longer pathways can easily develop during evolution. But when
a neuro-module is later re�ned as building block (section 5.1.2), the pathway lengths can
often be minimized manually.

A second important source for long pathways is the extensive use of neuro-modules.
Each neuro-module provides its own set of input and output neurons as part of its interface.
If modules are connected, an additional synapse is required, that connects the output of
one module with the input of a second module. This can lead to quite long delays, that
are not necessarily required for functional reasons (apart from connecting the modules). In
other module based methods, e.g. in Doncieux and Meyer (2004a), such delays are avoided
by merging the input and output neurons of two neighboring modules. This, however, is
not possible in ICONE because of potential side e�ects with constraints.

A countermeasure for long synaptic pathways is the order dependent neurons (ODN)
extension. Neurons can be tagged with the ODN network tag to add an order information
(execution level) to that neuron. Neurons without an ODN tag are assumed to be on level
0. In a single update step, the neurons are then not updated synchronously, but instead
depending on their ODN level. Only neurons with the same ODN level are updated
synchronously, starting with the lowest ODN level, until all neurons on all levels have been
updated. Thus, neurons on higher levels already use the updated state of the neurons of the
lower levels. Signals therefore can be propagated over several neurons of ascending levels in
a single step. A network without ODN tags still behaves exactly like a normal synchronous
network, because all neurons are on the same level and thus are updated synchronously.
With ODN levels, synaptic pathways can be reduced greatly, not only to compensate for
the connective synapses between modules, but also to further reduce the delay of complex
functional modules. Many multi-neuron modules can be re�ned to calculate their output
signal in a single step, which increases their reactivity.

Order dependent neurons are primarily suited for peripheral structures, because there
the user can fully control the properties of each neuron. An automatic de�nition of update
levels during evolution is not easy, because the choice of the levels is dependent on the
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function and context of a neuron. The peripheral structures are the only structures where
the required context knowledge is available. An exception may be the direct connections
between modules. These can, if desired, be automatically set to a high ODN level when
inserted to avoid the additional delay of these purely module-connecting synapses.

Another way to use ODN levels in a semi-automatic way is the inclusion of such levels
during the re�nement of neuro-modules. This is possible, because in this phase the function
and context of all neurons is known. If such modules are then instantiated during evolution,
then the ODN levels are already provided and the controller can bene�t from the shorter
delays instantly.
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Application:

Walking with a Humanoid Robot

7.1 Experiment Description

7.1.1 Approach

The goal of this experiment is the development of a neuro-controller for a walking behavior
of a physical humanoid robot. The target platform is the so-called A-Series humanoid
(Hild et al. 2007, �gure 7.1), a 45 cm high robot that was developed at the Neurorobotics
Laboratory of the Humboldt University of Berlin. The robot is based on the commercial
BIOLID robotics kit1. Each robot is about 45 cm high and equipped with 21 servo motors,

1http://www.robotis.com

Figure 7.1: The A-Series humanoid robot and its simulation. The arrows in the �rst picture
show the locations of the eight AccelBoards.
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21 angular sensors and 16 acceleration sensors. Eight so called AccelBoards, small electronic
boards responsible for the control of the motors, for reading the sensors and for calculating
the activity of the arti�cial neural network controllers, are distributed on the body. The
boards communicate over a synchronized bus with an update rate of 100 Hz. During each
update step, each board receives information about the state of all motors and sensors
of the robot. Because of the limited capacity of the AccelBoards, the neural controller
networks have to be distributed over the available boards. Accordingly there is no central
control, but rather a number of interacting autonomous networks. To allow the exchange
of state information between the networks and accordingly synaptic connections between
the networks, each AccelBoard can communicate the state of up to four of its neurons to
all other boards.

Evolving a controller for such a robot is a challenging task. One reason are the lim-
itations of the supported network structures due to the distributed architecture of the
AccelBoards. Furthermore the robot provides a comparably large number of sensors and
motors. Each motor is controlled by two motor neurons (desired torque and desired an-
gular position), which results � including the 21 angular sensors and the 16 acceleration
sensors � in a minimal network with 79 neurons. In principle, additional sensors, like a
gyroscope or foot contact sensors, can optionally be added to the robot, so that di�erent
control strategies can be realized. This is a considerably large search space, even without
additional neural structures to realize the behavior.

This experiment is a suitable problem to be solved with the ICONE method: The
search space of the problem can be signi�cantly reduced by domain knowledge, for instance
by choosing, which sensor and motor neurons are actually required at which step of the
experiment. Furthermore, the limitations of the AccelBoards can be forced on the network
with functional constraints, so that all evolvable networks automatically are suitable for
an upload to the physical robot. Those parts of the network, whose function is already
understood from previous experiments, can be given as peripheral structures in advance so
that the focus can remain on the evolution of the structures for the walking pattern. With
di�erent choices of peripheral structures and neuron exclusions, the control approach can
also be in�uenced to examine di�erent variations.

The overall experiment is divided into several, iterative evolution steps, to shape the
evolution process, to get more control over the evolution and to increase the likeliness
of successful evolutions. The �rst iteration evolves di�erent controllers in simulation to
make the robot march in place. Based on one of the solutions of that experiment, the
actual walking behavior, still in simulation, is evolved. The �nal evolution step increases
the behavioral robustness of the controller to allow the successful transfer to the physical
machine.

For this experiment, evolutions have been run interactively �rst. Once successful set-
tings have been found, the experiments have also been repeated as unsupervised batch
processes. This was done, besides of the chance of �nding variations of the interactively
developed controllers, to collect data to provide a rough impression on the method's per-
formance. To account for the 100 Hz update rate of the controller boards and to allow a
later transfer to the physical robot, the update rate of the simulation as well as that of the
neural network updates have been set to 100 Hz for all experiments in this section.
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7.1.2 Involved Techniques

The experiments in this section apply the ICONE techniques listed in table 7.1. Details
on these techniques can be found in the corresponding sections given in the table.

Type Technique Section

Evolution Interactive 5.2 p. 65
Iterative 5.3 p. 67
Unsupervised for Variation Exploration 5.2 p. 65

Crossover Active 3.3.3 p. 39
Constraints Cloning 4.1 p. 45

Symmetry 4.2 p. 45
Connection Symmetry 4.3 p. 46
Restrict Number of Neurons 4.8 p. 49
Restrict Weight and Bias Range 4.11 p. 50
Maximal Number of Outgoing Synapses 4.13 p. 52
(as a part of Connection Density)

Extensions Synaptic Pathways 6.1 p. 69
Order Dependent Neurons 6.9 p. 75

Property Tags Protection 3.2.4 p. 31
Network Symmetrization (Neuron Flipping) 3.2.4 p. 32
Order Dependent Neurons 3.2.4 p. 32
Mutation Control 3.2.4 p. 31
Mutation Hints 3.2.4 p. 31
Module Types 3.2.4 p. 32
Auxiliary Tags (Code Export Information) 3.2.4 p. 32

Table 7.1: ICONE techniques involved in the humanoid walking experiments.

7.1.3 Search Space

To better comprehend the involved search space, �gure 7.2 shows the plain, unconstrained
network of the full A-Series humanoid robot. The network shown in �gure 7.2(a) is the
minimal network that can be uploaded to the hardware. The plot also shows that it is
quite di�cult to handle such an unconstrained, arbitrarily arranged network, even if the
names of the motors and sensors would be given. As a contrast, a network after the
constrained modularization phase (�gure 7.4 on page 83) is much easier to understand
due to the inherent layout and the ordering of neurons according to their function and
location on the robot (although that network has twice the number of neurons compared
to �gure 7.2(b)). Figure 7.2(b) also shows that the unconstrained search space even in a
minimal network is already very large, so that successful evolutions become unlikely for
many non-trivial experiments.
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In the forthcoming experiments, the search spaces of the constrained networks are in
each case given as comparison, so that the di�erences of the involved search spaces between
the constrained and the unconstrained networks becomes clearer.

(a) Unconstrained Initial Network
Parameters: B: 42 W: 3318

(b) Search Space (+11 Neurons)
Network: N: 90 S: 4770
Parameters: B: 53 W: 4770

Figure 7.2: Search space of an unconstrained network for the A-Series humanoid robot.
In (b) the search space of a network with 11 additional neurons is shown. This number
of neurons is comparable to the networks evolved with the constrained networks in the
forthcoming experiments.

The detail �gures of each controller also gives information about its complexity, in
particular the number of neurons (N) and the number of synapses (S) of the entire network,
and the number of actually mutable parameters of the network, i.e. bias terms (B) and
weights (W) (compare �gure 7.2).

7.2 Marching in Place

Due to its physical constraints the physical A-Series humanoid robot cannot stand stable
on a single leg. The motors of the A-Series, especially in the ankles, are too weak to
simultaneously counteract the weight of the robot and to do �ne control of a desired angular
position. Therefore, walking is not assumed to be a static movement from a stable one-
legged standing position to another, as often seen with humanoid robots that are controlled
by zero-moment-point (ZMP) approaches (Peterka 2009). Instead, a dynamic, pendulum-
like walking is implemented. The stability for the A-Series robot has to originate primarily
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from the dynamics of the pendulum-like lateral swinging of the robot while staggering from
one leg to the other.

As a starting point for walking it is assumed that the robot should be able to lift its
legs in a regular, periodic way. To achieve this, the �rst task for the robot is to step from
one leg to the other on the spot without falling over.

7.2.1 Experiment

Simulation Environment. The environment of the simulated robot consists of four
balks at a height of 10 cm that restrict the operational range of the robot (�gure 7.3).
These balks support the development of stepping behaviors that keep the robot near its
starting position. All collisions between the robot and the balks or the ground (except
with its feet) stops the evaluation immediately. The approach to stop evaluation at the
violation of hard constraints has shown its bene�t in many other evolutions (Pasemann
et al. 2003b; Rempis 2007; von Twickel et al. 2011). It speeds up evolution by preventing
wasteful evaluation time on controllers, that do not ful�ll all requirements on the behavior.
Combined with a suitable �tness function that prefers individuals with longer evaluation
time, the evolution of controllers outside the desired speci�cations can be avoided right
from the beginning.

Figure 7.3: The simulated A-Series robot in its evaluation environment for marching in
place with constrained operational range.

Fitness Function. The �tness function combines several aspects of the stepping motion,
that can be weighted separately with parameters δ and γ. The �rst aspect is the maximal
stepping height h during one step. This favors controllers that lift the legs as high as
possible. The second aspect is the step duration d. The longer a footstep takes, the better,
because for walking large steps are desired, which require some time.

To use footsteps j as the measuring unit in the �tness function, and due to missing foot
contact sensors, footsteps are detected monitoring the height of the feet. A new footstep is
assumed to take place, when the di�erence between the minimal height of both feet changes
its sign. To avoid the false detection of footsteps caused by noise or vibrating behaviors,
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the feet have to reach a minimal distance |dmin| after the sign change. dmin hereby can be
adjusted as a parameter of the �tness function. The current footstep count at time step i
is s.

The �tness f at time step i is then given by

f(i) =

s−1∑
j=0

(δhj + γdj) , (7.1)

that is, f(i) is the sum of the maximal heights hj at footsteps j and their duration dj
up to the previous footstep (s − 1). Only summing up to the previous footstep avoids
controllers that try to maximize duration or height in an uncorrectable one-time attempt,
such as lifting the leg very high by falling over to the side. Fitness therefore is only gained
for motions that lead to another footstep.

7.2.2 Modularization

The starting network for this behavior is modularized and constrained with the techniques
described in section 5.1. As can be seen in �gure 7.4 the basic neural network with its
38 sensor and 42 motor neurons would be di�cult to understand without structuring the
network.

All modules with names starting with AB (abbr. for AccelBoard) represent the hard-
ware controller boards on the robot. Using modules to structure the network according to
the hardware boards allows an intuitive understanding of the location of the sensors and
motors. Furthermore, constraints on these modules enforce evolved networks to satisfy
all constraints originating from the hardware, like the maximum number of neurons and
synapses per board (limited by memory and execution time), and the maximum number
of neurons visible to other boards (limited by the communication bus). Therefore, the
number of neurons with synapses leaving each AB module, and the number of neurons
per AB module have been restricted via constraints. Obviously, neurons outside of the
AB** modules are prevented, because otherwise the network could not be transferred to
the hardware.

To restrict the search space for the evolutionary algorithm, all motors and sensors not
needed for the transversal movements, have been protected and hence cannot be targeted
by mutation operators. This a�ects all motors and sensors, except the transversal hip and
ankle motors, including their corresponding angular sensors, and the transversal acceler-
ation sensors at one shoulder and the feet. Arms and knees have been �xed with bias
terms at suitable angles to support the task statically. The motor torque neurons have
been �xed with a bias of 1.5, so the networks in this experiment are forced to control the
motor angles with maximum torque. As stated in chapter 5 this biases the search towards
a certain solution approach, here to control the motion with the angular motors, based on
acceleration sensors. Di�erent constraints would lead to very distinct solutions, e.g. when
the motors would be forced to be controlled by torque or by including other sensors (see
section 7.2.5).
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Figure 7.4: The modularized initial network for marching in place. Neurons with names
are interface neurons of the robot (motors and sensors). Neurons marked with an F have
been �ipped to symmetrize the network.

As an additional constraint the lower six AB modules have been organized into two
larger groups to support a symmetry constraint between the left and the right side. The
elements on the left side are horizontally mirrored to the right side. All incoming synapses
of these two modules have been chosen to be anti-symmetric, i.e. they get synapses coming
from the same external neurons, but with reverse signs. All mutual synapses between both
sides have been chosen to be symmetric. The physical robot is not fully symmetric with
respect to the motor and sensor arrangements, because the motors and sensors have been
assembled with focus on a suitable positioning, rather than on the activation ranges. Thus,

83



7.2. Marching in Place

when actuating, for instance, both arms with the same activation, then one arm moves
forwards and the other one backwards. For a symmetric behavior, both arms should do
the same thing when activated similarly. Therefore, all asymmetrically assembled motors
and sensors have been �ipped with a network tag (neurons marked with an F in �gure
7.4) to reverse their activation range, so that the robot behavior again is symmetric for
symmetric neuron activations.

The MotorAngle neurons of the A-Series represent the desired joint angles of the motors.
Accordingly, no additional controller is required to hold a given angle. Nonetheless, it
makes sense to connect each motor neuron with a controller, that limits the rate of change of
an angle setting to smoothen the motions, to protect the motors and to simplify the transfer
of the controllers to the hardware later on. The latter is the case because the motors behave
less predictably near their operational limits and hence are di�cult to simulate adequately
for this case. The structure of these controller modules is given as peripheral structures
in advance, but the synapse weights are open for mutations to manipulate their reactivity
and characteristics. Because each motor neuron should be equipped with such a controller,
it makes sense to use only a single mutable controller prototype in the network (module
Controller), and a clone of this prototype in each place where a controller is needed.
That way, only a single controller module is part of the search space. The same holds
true for the �lter modules used at each acceleration sensor. The signals of the acceleration
sensors are not smooth and consequently di�cult to use. Filtering the signal reduces the
e�ect of spikes, but induces a delay. Therefore, the �lter properties of one prototypic �lter
module should be open for evolution to �nd the best suitable �lter behavior, while every
other acceleration sensor is �ltered by a clone of this mutable module. In both cases, the
function-relevant synapses have been tagged to restrict their weights to plausible ranges
and to reduce the mutation variance to only 50 percent of the global setting, which ensures
that the mutations of these weights are comparably small.

The reactivity of these prede�ned modules has been increased with order dependent
neurons (section 6.9) to compensate for the longer synaptic pathways involved with these
modules. This includes also the synapses connecting these modules with the main focus
structures and the sensors and motors of the robot.

The main focus structures are forced to develop within separate submodules (Upper- ,
Mid- , Lower-Controller). These modules can be exchanged by the modular cross-over
operator and additionally de�ne a neural interface limiting the number of connections
between the control modules. The interface neurons have been extended in their visibility
depth so that direct connections between these six control modules and the upper body
module are possible.

Finally synaptic pathways (section 6.1, black dotted arrows) have been introduced to
restrict the possible connections between the speci�ed modules. These pathways force all
new synaptic connections to be added only between the speci�ed modules, including visible
interface neurons of their submodules. Here, only connections from the shoulder sensors
to the hip and feet modules, and between the feet and the hip modules, are allowed.

The evolvable neurons and modules are illustrated in �gure 7.4: All modules that can
be modi�ed during evolution are highlighted with thicker, black lines. All other modules
are either �xed (protected), or depend on one of the other modules due to a constraint.
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Figure 7.5: Parameter Space. The bold network elements are subject to mutations.
Search Space (+1 Neuron per Module)
Network: N: 180 S: 319 Parameters: B: 17 W: 113

However, in this graphics, not all degrees of freedom can be visualized, but it gives a
good impression on the involved search space. Details on the maximal search space with
1 additional neuron per processing module are shown in �gure 7.5.

7.2.3 Parameter Settings

The experiments have been conducted with a variety of parameter settings for the evo-
lutionary algorithm (see table 7.2). These parameters were interactively adapted during
the evolution according to the convergence behavior of the algorithm. Therefore, instead
of exact parameter settings for each experimental run, only general ranges are given, in
which the parameters have been varied during each evolution run.

As a rule of thumb, all operators mentioned in table 7.2 have been active, starting with
very low probabilities for search space extensions (Add Neuron, Add Synapse) and with
a relatively high potential for changes of synapse weights and bias values (Change Bias,
Change Weight). During evolution the probabilities for structural changes were increased
when the results converged to an undesired local optimum, so that more complex structures
could evolve to overcome the local optimum. The probabilities of weight and bias changes
and their average amount of change were decreased when a promising area of the solution
space was reached, so that the behavior of the network could be �ne-tuned.

The probability for modular crossover was 0.5 to support the transfer of genetic material
between lines of ancestries. The number of trials indicates how often each individual is
evaluated with slightly randomized environments, e.g. alterations of the starting angles.
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Operator Parameter Interactive Unsupervised

General Population Size [100, 200] 150
Max Simulation Steps per Trial [500, 3000] 3000
Number of Trials per Evaluation [2, 5] 3

Tournament Selection Tournament Size [3, 5] 4
Keep Best Parents (Elitist) 1 1

Modular Crossover Crossover Probability 0.5 0.5
Crossover Probability per Module 0.5 0.5

Remove Neuron Probability [0, 0.005] 0.002
Number of Removal Trials [0, 2] 1

Remove Synapse Probability [0, 0.01] 0.002
Number of Removal Trials [0, 5] 5

Remove Bias Probability [0, 0.01] 0.004
Number of Removal Trials [0, 3] 2

Add Neuron Probability [0, 0.005] 0.002
Number of Insertion Trials [0, 2] 2

Add Synapse Probability [0, 0.02] 0.01
Number of Insertion Trials [0, 5] 2
Init. Insertion Probability [0.01, 0.1] 0.01

Add Bias Probability [0, 0.02] 0.005
Number of Insertion Trials [0, 3] 2

Initialize Synapses Min [-20, -1] -5
Max [1 - 20] 5

Initialize Bias Min [-5, -1] -2
Max [1 - 5] 2

Change Bias Change Probability [0.005, 0.015] 0.01
Deviation [0.005, 0.2] 0.1
Reinitialization Probability [0, 0.005] 0.001

Change Weight Change Probability [0.01, 0.2] 0.05
Deviation [0.005, 0.2] 0.1
Reinitialization Probability [0, 0.005] 0.002

Table 7.2: Settings of the main evolution operators. The settings are given as ranges in
which the parameters have been varied during interactive evolution, and as �xed settings
for the unsupervised evolution runs. The functions of the operators are listed in appendix
B on page 177

.
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As the selection method an implementation of the standard Tournament selection
(Miller and Goldberg 1995) was used.

After evolving several networks with the interactive evolution approach, the experiment
has been re-run on the computer cluster for approximately 30 times in unsupervised mode.
The evolutions have been run with �xed parameter settings given in the last column of
the parameter table. These unsupervised evolution runs have been performed to search for
varieties of networks and to produce a simple form of performance analysis, that should
give a rough indication of the algorithm performance.

7.2.4 Results

The evolution was performed 33 times for about 100 to 300 generations per evolution,
depending on the observed progress.

The evolution experiments have been terminated either manually, or automatically
when the �tness did not increase further for at least 50 generations. In 21 cases, networks

Figure 7.6: Maximal and mean �tness of the best evolution run for the march-in-place
task.

Figure 7.7: Maximal �tness of the 10 best evolution runs not including the very best run
(�gure 7.6) for scaling reasons. Fitness curves dropping to zero indicate evolution runs
that were interactively stopped due to stagnation.
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have been found that solve the task and provide a valid starting condition for the next
evolution scenario. The �tness progress during the evolution (maximal and mean �tness,
variance) for the best solution is shown in �gure 7.6. The progress of the maximal �tness
for the next best 10 evolution runs are shown in �gure 7.7.

Because of the constrained network the implemented strategies are not too surprising
(�gure 7.9). In the networks driven by the acceleration sensors, the main strategy was
to destabilize the robot with the transversal hip or ankle motors according to the swing
phase. Once swinging, the transversal acceleration sensors provide an oscillatory signal,
that is used to control the hip or ankle motors. An example of such an acceleration sensor
driven behavior is shown in the motion sequence in �gure 7.8.

Figure 7.8: Motion sequence of the robot controlled by the network of �gure 7.9 for the
march-in-place task. The picture series shows every 100th simulation step.

However, 12 evolutions did not come up with satisfactory solutions. Even with the
symmetry constraints between the left and the right side, many behaviors resulted in
unstable, irregular motions. This was especially the case when the acceleration sensors of
the feet were connected to the ankle motors. As the movement of the ankle motors directly
in�uences the acceleration sensors on the feet, this leads to an isolated, unsynchronized
swinging behavior locally to each leg, which could not generate a stable global behavior.
This suggests that the feet sensors may only be useful if the feet remain at �xed angles while
their sensor signal is used to control the hips. Such solutions can be avoided interactively
during evolution by preventing these kind of connections and therefore by excluding this
type of frequent local optimum. This example also indicates, that, if even a related sensor
can disturb the behavior so signi�cantly, such disturbances can be expected to be much
worse for connected unrelated sensors, which underlines the importance of restricting the
valid connections between the distinct body parts.

Figure 7.7 gives a rough overview on the performance of the algorithm for this exper-
iment. As comparisons with other algorithms are di�cult due to the involved constraint
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Figure 7.9: Network of a successful marching-in-place network using the acceleration sen-
sors at the shoulders to control primarily the hip motors and slightly the feet motors to
destabilize the robot during the swing phases.

Network: N: 177 S: 163 Parameters: B: 9 W: 31

masks and the interactive approach � and therefore due to the involved user experience �,
these graphs should give a general idea about the usability of the method. Nevertheless,
one observation can be made: applying the ENS3 algorithm or NEAT to an unconstrained,
empty starting generation with networks of this size, solutions for this problem have not
been found at all.
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7.2.5 Experiment Variants

The experiment has been conducted in several variants to �nd di�erent controllers to solve
the task. Because the identi�cation of controller variants using network shaping is the focus
of chapter 8, no details on these variations are given in this section to avoid a disruption
of the sequential, iterative evolution approach. However, a short list of conducted variants
should give an impression of how the search space can be explored systematically.

One series of experiments examined whether an oscillator can be used as a central
pattern generator to let the robot swing from one leg to the other. For this, the initial
network provided several, exchangeable types of oscillators, that could be integrated by
the evolution. Some of the oscillators had a �xed frequency, which could be adjusted
during evolution, while others had a more �exible con�guration that allows the change of
frequency and amplitude at runtime as part of the network dynamics. All these approaches
could indeed make the robot swing, but in all cases the swinging did not last very long.
This was due to the di�culty to react on small deviations of the swinging phase and hence
the resulting desynchronization of the oscillation with respect of the body swinging. Such
solutions therefore are not suitable for the next evolution step.

A second variant was the examination of di�erent sensors and motors enabled for the
evolution. This includes di�erent sets of enabled angular and acceleration sensors, but also
the introduction of new sensors. The A-Series robot is designed to be extensible by foot
contact or force sensors in the feet, that allow the robot to detect when the foot touches
the ground. Evolutions with these sensors also led to well performing controllers. Another
alternative sensor was a gyroscope sensor that was attached to the body. With this sensor,
the robot can detect the orientation of its upper body with more accuracy compared to the
acceleration sensors, but also with a di�erent characteristics curve of the sensor, leading to
di�erent networks compared to networks based on acceleration sensors. These additional
sensors, although being nice case studies for future robot con�gurations, cannot be used
with the current version of the robot hardware and therefore are also not suitable for the
next evolution step.

Figure 7.10: Motion sequence of a controller that maximizes the height of the feet during
each step. The motion sequence shows the maximal de�ections of the legs, so the pictures
are taken in irregular intervals. The elapsed simulation steps between the pictures of this
series are therefore given in the pictures.
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A last variant was the extension of evolved controllers with respect to the height of the
steps, allowing additional motors and sensors to use the hip and knee motors to raise the
legs further. In these experiments, also a mixture of di�erent neuron models (a mixture of
linear and sigmoidal transfer functions) was tested with the expectation, that the suppres-
sion of neurons would become easier. Due to the dominating approach to lift the entire,
straight leg like a soldier (�gure 7.10) in irregular heights and durations, and because of
the use of neuron models not available on the physical robot, solutions of this evolution
have also not been considered as a base for the forwards movement.

Other variants, that have not yet explicitly been performed, include the examination
of di�erent symmetries, di�erent motor controllers (e.g. torque driven), varying periph-
eral structures, alternative synaptic pathways to enforce a speci�c signal �ow, and other
variants of the neuron models.

This list should brie�y inspire the reader, that even in simple experiments, many vari-
ations are possible, that all can lead to interesting results. With the network shaping
features of ICONE, such variants can be explored in a systematic, stepwise and uniform
way (see chapter 8).

7.3 Humanoid Walking

Based on the results of section 7.2 the next iterative step towards walking was conducted:
modifying a stepper network to move forwards. Adding forward movement is only one
next possible step. A possibility could have been �rst to stabilize the stepping behavior to
make it more robust to small bumps on the ground or a shaking �oor. Another next step
could have been an optimization of the leg lifting by involving the motors and sensors of
the sagittal plane of the knees, ankles and the hip. However in this document the next
step is to continue directly with walking forward due to space limitations.

7.3.1 Experiment

Simulation Environment. The environment for the walking experiment (�gure 7.11)
gives the robot space to walk forwards, but still restricts its operational range to the
sides and backwards. In these directions balks obstruct the path of the robot. As in the
experiment before, collisions with these balks immediately stop evaluation. In consequence,
undesired behaviors, like moving backwards or in circles, can be avoided e�ciently. To
avoid a common local optimum during evolution, namely moving by vibrations instead of
steps, obstacles have been introduced in regular intervals. To overcome these obstacles,
the robot has to lift its legs high enough to get the feet over the obstacle. To avoid the
robot from tilting when the obstacle gets below the feet, the obstacles are implemented
as sliders, that are lifted to their target height with a soft spring. Stepping on such an
obstacle just makes it slide back below the ground without resulting in a bump. Therefore
the obstacles hinder the feet only when colliding horizontally, not vertically.
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Figure 7.11: The simulated A-Series robot in its evaluation environment for walking with
constrained operational range and obstacles.

Fitness Function. In the �tness function a new term is introduced: xmax is the maxi-
mally reached distance along the x-axis during the entire trial. The �tness function extends
the one from section 7.2.1 by a weighted factor that rewards moving along the x-axis:

fi = σxmax

s−1∑
j=0

(δhj + γdj) , (7.2)

that is, fi is the sum of feet height and footstep duration multiplied by the weighted
distance xmax. The distance from the origin at time step i, xi, is the minimum of the
distances of the head, waist and both feet from the origin at that time step. Taking the
minimum distance of several parts of the body prevents the robot from becoming easily
trapped in a common local optimum, where the robot catapults the single relevant body
part � e.g. the head or one of the feet � as far as possible. Such optima have to be avoided
right from the beginning, because they are often dominant in the beginning of the evolution
and in general do not provide a suitable path towards desired solutions.

7.3.2 Modularization

The initial network for the walking experiments has been derived from a solution network
of the previous task (�gure 7.12).

It was chosen to use one of the accelerator sensor driven solutions. Here, three simple
hysteresis neurons are used to sustain the signal from the acceleration sensor of the shoul-
der, so that the two swing phases are more persistent and can in�uence the motors more
enduringly. The swinging is solely generated by motions of the lateral hip motors and
thus a corresponding shifting of the center of gravity. The base network was pruned to get
the smallest working version of the network, so that evolution may start with a minimal
network again. That network is not the best evolved solution to the march-in-place task,
but it was chosen because of its simplicity. And because now, additional joints (ankles,
knees, arms) can be used, this simple swinging mechanism seems to be a better basis than
a complicated, di�cult to extend network with many synapses.
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Figure 7.12: The initial neural network with its constraint mask for walking, based on a
pruned, strongly simpli�ed solution of the march-in-place task.

The major modi�cation of the constraint mask is the enabling of additional motors and
sensors by removing their protection tags. The networks now can also connect synapses to
the sagittal motors of the hip, the feet, the knees and the arms, and to their corresponding
angular sensors. This enables the robot to bend its knees to make higher steps, to move
the legs forwards and backwards, to use the feet tilt to push the robot forwards, or to use
the arms to keep balance during walking.

To prevent evolution from destroying the already achieved basic motion, the existence
of all involved synapses and neurons have been protected. However the weights of these
synapses and the bias values of the neurons have not been �xed and remain mutable.
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In the upper modules additional module interface neurons have been introduced. This
new interface facilitates new neural structures in the upper part of the body to make use of
the arm motors and sensors. To include these arm control modules, the synaptic pathways
have been adapted, so that a new pathway leads to these modules. It is assumed that the
arm movement may depend on the state of the hip joints, so the synaptic pathway runs
from the middle module to the arm module.

7.3.3 Parameter Settings

The evolution settings were similar to the previous experiments (see table 7.2 on page 86).
Again, for the evolution no �xed parameter sets have been used, because the parameters
are targets of an on-line observation and modi�cation.

7.3.4 Results

Evolution was able to generate walking control networks in 26 of 100 performed evolution
runs. The �tness progress of the best 10 evolution runs is shown in �gure 7.13. The higher
number of unsuccessful evolution runs may be partly a result of the interactive evolution.
Undesired approaches, that do not seem to lead to a solution, can be stopped in early
generations. Therefore, evolution runs may have been stopped prematurely to focus the
search on more promising areas of the search space. In fact, all unsuccessful evolutions
together had a average runtime of 44 generations, which is low compared to the successful
evolution runs, that had an average runtime of 156 generations.

Figure 7.13: Maximal �tness of the 10 best evolution runs to solve the walking problem.
Fitness curves dropping to zero indicate evolution runs that were interactively stopped due
to stagnation or runtime limitations (at 150 generations).

As expected the sagittal hip or feet motors usually were used to realize the forward
motion. Also, in some networks (like the one shown in �gure 7.16 on page 99) the knees and
arms were utilized to get a better walking performance (�gure 7.17 shows the corresponding
motion sequence). Surprisingly, in addition, some quite e�ective controllers solely used the
arms to accelerate the body forwards using the inertia of the body (�gure 7.15). In such
networks, the arms are moved forwards and backwards to slightly rotate the robot on its
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Figure 7.14: Time series of the robot controlled by a network using the arms for the
forwards motion. The picture series shows every 150th simulation step.

supporting leg, so that the lifted leg touches the ground a bit further ahead than without
the arm swinging. Because such controllers rely strongly on the friction between the feet
and the ground, such solutions are not suitable for a �nal transfer to the robot. The picture
series of such a behavior is shown in �gure 7.14, the corresponding network in �gure 7.15.

The evolved walking behaviors still are not very human-like or elegant. Also, depending
on noise and the obstacles on the ground, the robot turns from time to time by a few degrees
and continues its movement in the new direction. This behavior is di�cult to overcome,
because the robot does not have feedback sensors for the direction and therefore is not
able to correct such deviations. On the other hand, taking the robot's limited motor and
sensor equipment into account, these behaviors seem quite satisfactory.
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Figure 7.15: Network of a successful walker network, that primarily uses the forwards and
backwards swinging of the arms to accelerate the robot forwards.

Network: N: 179 S: 169 Parameters: B: 8 W: 34

7.4 Transfer to Physical Robot

Controllers evolved in the simulator usually cannot be transferred to the physical robot
without modi�cations, because the di�erences between the simulated robot model and the
physical machine are signi�cant. Although the main behavior in simulation and on the
physical robot is very similar, even small di�erences between the two target platforms may
disrupt a dynamic behavior like walking, where body and control are highly adapted to
each other and may depend strongly on even �ne particularities. Some di�erences may be
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reduced by implementing more and more detailed models of the motors, the sensors and
the body structure. In practice however this approach is limited by the performance of
the utilized computers and the time spent for the implementation of such a model. Some
aspects may not be taken into account at all, like small variations during the assembly of
the robot, fabrication related di�erences in the motor or sensor behavior, or just behavioral
di�erences caused by aging or heat. Other aspects are restricted by the utilized physics
engine, which may not support elastic material, such as the plastic material of the robot's
body parts.

Therefore adaptations of the behaviors to the target robot are usually unavoidable.

Evolving Adaptations to Physical Robot. Using simulated robots during evolution
will provide neuro-controllers, that adapt to the simulated robot, but not necessarily to
the physical one. Controller networks will optimize for all aspects of the simulated system,
taking advantage of any implementation detail. This includes modeling errors and simpli-
�cations of the model. Because a convenient, error free robot model is not feasible, any
model will have implementation details that can � and will � be exploited by evolution.
This problem is called the reality gap (Jakobi et al. 1995).

To reduce this e�ect, a number of approaches have been proposed, such as adding sensor
noise (Jakobi 1997; Jakobi et al. 1995; Lipson et al. 2006), (post-)evolving or adapting
individuals directly on the hardware (Pollack et al. 2000) or co-evolving the simulation
properties along with the behavior controllers (Bongard and Lipson 2004a, b; Koos et al.
2009). Here, our Model Rotation approach is used. The idea is not to evolve controllers
for a single simulated robot, but for a variety of similar, but slightly di�ering robots.
The �tness of a controller is then the minimum achieved on all of the target platforms.
Consequently, the �tness corresponds to the robot model with the weakest performance.
To get a high �tness, a neuro-controller has to perform well on all given robot models.

Because of this, the behaviors cannot exploit �aws of the models, as long as each model
has di�erent weaknesses and strengths. Resulting controllers are expected to work on a
variety of similar robots, which means, that they are robust to small variations between
the robots. Such robust networks have a higher chance to work also on other similar robots
not used during evolution, including the physical robot.

The robot models used during model rotation should not be seen just as random vari-
ations (noise). Simple randomization works out only for some parameters, like the angles
at which body parts are assembled to each other or the absolute size of the body parts.
Randomly changing parameters of more complex parts of the robot, like the motor and
sensor models, often does not lead to behaviors similar to the physical robot. This is due
to the high dependencies between parameters. Therefore, entire sets of parameters, or
even di�erent model implementations, have to be found that produce a similar behavior,
but have signi�cant modeling di�erences. During evolution each controller then can be
evaluated with each of the given model parameter sets.

Model rotation can be used during the entire evolution. This avoids partial solutions
that are too dependent on a speci�c motor model. On the other hand, model rotation
results in a much higher number of evaluations and slows down the evolution process.
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Therefore it is often useful to start without or with a limited model rotation and do a
separate �nal evolution with full model rotation to optimize the results for robustness.

Final Manual Adaption. The �nal step to transfer a controller to the physical robot
is manual adaption. Even robust controllers often do not work out-of-the-box and require
some �ne-tuning. During this step, the hierarchical, modular structure of the modularized
networks is advantageous. The structured networks are easier to understand, they assist
in identifying the subnetworks responsible for speci�c functions, and help to isolate the
synapses that have to be modi�ed to optimize the performance of the controllers for the
physical robot.

7.4.1 Modularization

For the transfer to the physical A-Series humanoid, the network in �gure 7.16 was chosen
because of its combined utilization of the legs, knees, feet, arms and hips. Figure 7.17
shows the motion sequence of the behavior. The network has been simpli�ed by pruning all
super�uous network structures, so that it is comparably easy to understand and manually
adaptable if necessary. All constraints from the previous experiment have mostly been
kept, so that modi�cations are still symmetric. The cloning constraints on the controller
and �lter modules have been relaxed so that only their structure is cloned. This allows
a �ne-optimization of the synaptic weighs of these modules depending on their actual
location on the robot.

7.4.2 Parameter Settings

The evolution parameters have been chosen to allow only small changes of synaptic weights
and bias terms. The structure modi�cation operators have been disabled to prevent major
changes of the evolved controllers. Table 7.3 lists the settings.

Operator Parameter Setting

General Population Size 200
Max Simulation Steps per Trial 3000
Number of Trials per Evaluation 10

Tournament Selection Tournament Size 5
Keep Best Parents (Elitist) 1

Change Bias Change Probability 0.01
Deviation 0.005

Change Weight Change Probability 0.01
Deviation 0.005

Table 7.3: Settings of the main evolution operators. All operators not mentioned here have
been disabled.

.
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Chapter 7. Walking with a Humanoid Robot

Figure 7.16: Network of a successful walker network using knees, arms and hip to accel-
erate the robot forwards. This simpli�ed network has been used for the �nal robustness
optimization. As can be seen, the remaining parameter space is very small.

Network: N: 158 S: 121 Parameters: B: 8 W: 15

7.4.3 Results

Figure 7.19 shows the time series of the walking controller running on the physical hard-
ware. This network was optimized for robustness with model rotation. Five distinct pa-
rameter sets for the motors have been used during the optimization, each behaving closely
to the physical machine for some test behaviors, but each di�ering in friction and control
parameters. Figure 7.18 shows the �tness progression of the model rotation optimization.
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Figure 7.17: Time series of a robot controlled by the network in �gure 7.16 that is used
as initial network for the �nal optimization. The network uses the feet, knees, hips and
arms to produce a quite dynamic looking behavior. The picture series shows every 150th
simulation step.

As can be seen the �tness started low compared to the �tness achieved without model
rotation. This is due to the fact that the minimal performance determines the �tness of a
controller, therefore a single failing attempt reduces the �tness signi�cantly. During evo-
lution the �tness increased to a �tness level close to the one without model rotation. This
indicates that the controllers became more robust with respect to small di�erences in the
motor model.

Figure 7.18: Fitness progress of a walking network during robustness evolution using model
rotation.

For some solutions, adaptations were necessary due to the �exible body parts and the
stronger friction on the ground. The legs had to be straddled wider and the upper part of
the body had to be bent a bit forwards. Apart from these small changes of some bias terms,
the behavior control performed well on the physical robot. Some solutions, like the one
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Chapter 7. Walking with a Humanoid Robot

Figure 7.19: Time series of the physical robot controlled by the �nal walking network.

shown in �gure 7.19, did not require any changes to the network at all and worked directly
on the physical robot. Nevertheless, due to friction, elastic body parts and a missing
vertical stabilization behavior, walking on the physical robot is by far not as stable as in
simulation, where the simulated robot could walk hundreds of footsteps without falling
over.
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Chapter 8

Application:

Evolving Controller Variants for a

Closed-Chain Animat

8.1 Experiment Description

8.1.1 Approach

The experiments of this section focus on the application of network shaping (see section 2.4
on page 17), i.e. the restriction and guidance of the neuro-controller development on the
network level. For this, a relatively simple animat with a nonetheless quite large number
of sensors and motors was designed, that allows the demonstration of the ICONE shaping
features.

The agent is composed of a variable number of plates that are connected with motor
driven joints to a closed chain (see �gure 8.1). Thus, each movement of a joint indirectly
in�uences the other joints through the physical interaction of the connected plates.

Each motorized joint is controlled by two motor neurons: the �rst neuron controls the
desired angular position of the motor and the second neuron controls the maximal torque
applicable to reach the desired angular position. With this con�guration, the torque neuron
can be used to in�uence the passive �exibility of the chain, because the less torque on the
joint, the easier it is to move the joint against its desired movement direction by its neighbor
segments through the body.

In addition to the number of body segments, many other parameters of the animat
can be adjusted to realize many di�erent body variations. Among the parameters used
for the described experiments are those that control the availability of certain sensors, the
dimensions of the plates and the angular positions of the dead-stops of the joints. This
allows the generation of animats with di�erent sizes and di�erent degrees of �exibility (see
�gure 8.1). The animat can be equipped with angular sensors in each joint, a force sensor
on each plate, and � also per plate � acceleration sensors (3 axes) and gyroscope sensors
(3 axes).
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8.1. Experiment Description

Figure 8.1: Di�erent con�gurations of the smallest closed-chain animat (15, 12, 20 seg-
ments). The �gure also shows the motors and sensors of the animat. Each shown motor
and sensor type is available on each segment and can separately be enabled or disabled.

The networks of the animats belong to the mid-scale networks with � as used in these
experiments � minimal network sizes (i.e. only counting input and output neurons) of
approximately 30 (10 segments with angular sensors only) to over 150 (15 segments with
full sensor equipment) neurons. The animat can be scaled to much larger con�gurations
so that many more segments are possible, which further increases the number of neurons.
For practical reasons, i.e. to reduce the computational e�ort for the physical simulation
of such large animats, the animats have been limited to 15 segments for the experiments.
However, for this regularly constructed animat, the ICONE method scales nicely with any
number of segments.

The goal of the experiments of this section is the evolution of di�erent kinds of control
networks for forwards locomotion of the animat. In di�erence to a wheel-driven robot,
where a single joint has to be actuated to result in a rolling behavior, the animat here has
to coordinate the bending of all joints to result in a rotating forwards motion. A single
disruptively operating joint can prevent this motion entirely, which makes the task very
di�cult for unconstrained, plain neuro-evolution.

Because the focus of this section is on the network shaping, rather than on the shap-
ing through iterative experiments with varying objectives, a single �tness function is used
throughout all experiments. Also, only a single experimental setting is used, with only a
few con�guration versions of the animat. Accordingly, the di�erences in the locomotion be-
haviors and the underlying neural control strategies for each con�guration should primarily
originate from the in�uences of the constraint masks used for the initial networks.
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Chapter 8. Evolving Controller Variants for a Closed-Chain Animat

(a) Unconstrained
Initial Network

(b) Search Space
Network: N: 30 S: 600
Parameters: B: 20 W: 600

(c) Search Space (+40 Neurons)
Network: N: 70 S: 4200
Parameters: B: 60 W: 4200

Figure 8.2: Search space of an unconstrained network for the closed-chain animat (10
segments, only using the angular sensor) . In (c) the search space of a network with 40
additional neurons is shown. That size is comparable to the networks evolved with the
constrained networks in the forthcoming experiments.

As a rough comparison, evolution experiments with a minimal con�guration using only
10 segments with only the angular sensors active, but with an unconstrained initial network
(620 degrees of freedom, see �gure 8.2) has been performed, in which not a single su�ciently
working controller was found in over 100 evolution experiments. That experiment therefore
is not shown here in detail, but should make clear that the domain of the experiment is
already a challenging one.

The neuro-controllers evolved in the remainder of this chapter nicely demonstrate, how
very di�erent solutions can be evolved even with such a seemingly simple experiment,
and how the ICONE method can be used to systematize this search for solution variants
with network shaping. The experiments described in this thesis are only a subset of the
successfully conducted and possible experiment variations. However, due to space reasons,
only this subset can be shown here in detail.

8.1.2 Involved Techniques

The experiments in this section apply the ICONE techniques listed in table 8.1. Details
on these techniques can be found in the corresponding sections given in the table.
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Type Technique Section

Evolution Interactive 5.2 p. 65
Unsupervised for Variant Exploration 5.2 p. 65

Crossover Active (if more than one module is evolved) 3.3.3 p. 39
Constraints Cloning 4.1 p. 45

Symmetry 4.2 p. 45
Connection Symmetry 4.3 p. 46
Network Equations 4.5 p. 47
Prevent Connections 4.6 p. 48
Enforce Directed Path 4.7 p. 48
Enforce Connectivity Pattern 4.9 p. 49
Restrict Weight and Bias Range 4.11 p. 50
Synchronize Network Tags 4.12 p. 51

Extensions Synaptic Pathways 6.1 p. 69
Automatic Parameter Scheduling 6.5 p. 72

Property Tags Protection 3.2.4 p. 31
Mutation Control 3.2.4 p. 31
Mutation Hints 3.2.4 p. 31
Module Types 3.2.4 p. 32

Table 8.1: ICONE techniques involved in the closed-chain animat experiments.

8.1.3 Experiment

Simulation Environment. Most locomotion experiments with the closed-chain animat
are evolved in a simulated hurdle track (�gure 8.3). The hurdle track is framed by solid
walls that keep the animat straight aligned. This is necessary to prevent the animat
from tipping over and from leaving the hurdle track, when collisions with objects result
in impacts and a slight change of the heading. Because of the missing joints and sensors
needed for the agent to steer intentionally towards a speci�c direction, the agent has to
be kept on track with such external measures. Also, once tipped over, the animat has no
chance to get up again, so tipping over must be prevented. Collisions with the walls at
the sides hereby do not terminate the evaluation, as was done in the humanoid walking
experiment. Instead, they just passively push the animat back on the path. The reason
for this strategy is, that such slight variations of the heading happen frequently as a result
of the physics simulation and can a�ect all controllers. As a result, it is not possible to
infer from wall collisions that a controller is improper. The wall at the back, however, can
be used to terminate the evaluation at contact, because we are interested in a forwards
movement and thus do not want to waste evaluation time on agents moving in the wrong
direction.

The hurdle track is divided into four zones. In the �rst zone (1) a variable, not too
short of a distance is kept free before the �rst hurdle is placed. This distance is required to
support the development of a forwards locomotion as a �rst step in the evolution. Every
controller with forwards locomotion, even those not able to overcome any obstacle, are still
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Chapter 8. Evolving Controller Variants for a Closed-Chain Animat

Figure 8.3: Simulation scenario for the locomotion experiments with the closed-chain an-
imat. The placement of the hurdles and the four zones along the track are qualitatively
shown in the lower right diagram.

considered interesting solutions. Consequently, this �rst part of the track must be long
enough to allow at least one complete rotation of the animat. The hurdles themselves are
arranged in an order with an (assumed) increasing di�culty to be overcome. Figure 8.3
shows such a hurdle track exemplarily in the lower right diagram. So, in the second zone
(2) horizontal objects with increasing height have to be overcome, followed by ramps of
di�erent steepness (zone 3). The track is completed in the fourth zone (4) by objects of
varied size, height and mutual distance (including tightly arranged obstacles). The exact
positions and orientations can be varied during the evolution, so that each individual is
evaluated in several, varied hurdle tracks to avoid an over�tting of the controllers with
respect to a certain hurdle con�guration.

The update rate of the physical simulation and of the neural network update have been
set to 100 Hz to get a reasonably accurate behavior.

Fitness Function. For all experiments a single, parametrized �tness function is used.
This experiment is primarily designed to get rolling behaviors, i.e. locomotion similar
to caterpillar tracks. The �tness function therefore does not simply rate the distance
traversed by the animat, because this includes also other forms of locomotion and known
local, undesired optima, such as locomotion through very fast vibrations. The �tness
function describes the desired plate-after-plate behavior more speci�cally: The �tness f at
time step i is given by

f(i) = (1− δ)g(i) + δ
i−1∑
j=0

g(j) , δ ∈ [0, 1] (8.1)

g(i) = g(i− 1) +


0.1 if maxi > maxi−1

−0.1 if maxi < maxi−1

0.0 else
, g(0) = 0 , (8.2)

that is, f(i) is the sum of all increments g up to the current step, where the ratio between
current increment g(i) and the increment history can be adjusted with parameter δ. This
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allows the control of how important the speed of the agent is considered by the �tness
function. If δ is high, then the �tness increases faster the earlier the agent increases the
increment term. This increment g(i) is based on the state of the positions of the animat's
body parts. maxi denotes the index of the body part with the largest distance from
the origin (in positive x axis) at time step i. If that index is higher than the previously
furthest body part, then the increment is increased. If the index is lower, the increment is
decreased. Otherwise no change takes place. The implementation of the �tness function
considers that index 0 is the valid successor after the highest index and therefore is treated
as being larger than the maximal index.

This �tness function may seem to have the disadvantage � compared to measuring the
traversed distance � that also rolling on the spot is rewarded, e.g. when an obstacle cannot
be overcome and the animat is still doing its rolling motion. But this is intended, because
rolling on the spot is considered to be better than just stopping at an obstacle. An animat
that is trying over and over to overcome an obstacle clearly has a better chance to �nally
overcome that obstacle eventually in comparison to an agent that is completely stopped by
a hurdle. As the experiments demonstrate, this �tness function indeed helps to �nd very
active animats that almost seem eager to overcome every obstacle by undertaking attempt
after attempt, sometimes even with explicit run-ups in between.

8.1.4 Parameter Settings

For all experiments, similar evolution parameter settings have been chosen (see table 8.2).
The parameters for interactive evolutions are listed as ranges, from which the settings have
been taken as required. Most of the evolutions, however, have been done with unsupervised
evolution runs to �nd variants of networks. In most of these evolution runs, the parameter
scheduling extension (see section 6.5) has been used to change the parameter settings at
�xed states of the evolution: the �rst parameter set (init) is used for the initial generation,
the second set (main) starting with the second generation, and the third (longrun) starting
with a high generation (depending on the experiment, e.g. the 150th generation). The
signi�cant increase of the �tness at that generation in many experiments is caused by an
increase of the number of steps per evaluation try during this setting change. The settings
of the di�erent parameter sets are given in the last column of the table as slash-separated
values. Evolutions have been stopped automatically when the �tness did not increase for
more than 50 generations, therefore many evolutions did not reach the point where the
longrun parameter set became active.

As the selection method, again an implementation of the standard Tournament selec-
tion (Miller and Goldberg 1995) was used.

A remark is necessary concerning the �tness development plots shown in the experiment
descriptions of this chapter. Due to variations of the evolution parameter settings � such
as the number of steps per try, the number of tries per individual and the weighting
parameter δ of the �tness function � �tness values from di�erent evolution experiments
cannot be directly compared. A valid comparison of the gained �tness is only meaningful
between several runs of the same evolution experiment. However, a qualitative comparison
concerning the �tness development still is possible between di�erent experiments.
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Operator Parameter Interactive Unsupervised

General Population Size [100, 200] 300/50/40
Simulation Steps per Trial [500, 3000] 500/1500/3000
Trials per Evaluation [2, 10] 1/3/6

Tournament Selection Tournament Size [3, 7] 8/4/4
Keep Best Parents (Elitist) 1 10/1/1

Modular Crossover Crossover Probability 0.5 0.5
Probability per Module 0.5 0.5

Remove Neuron Probability [0, 0.005] 0.002
Number of Removal Trials [0, 2] 1

Remove Synapse Probability [0, 0.01] 0.005
Number of Removal Trials [0, 5] 5

Remove Bias Probability [0, 0.01] 0.004
Number of Removal Trials [0, 3] 2

Add Neuron Probability [0, 0.005] 0.01/0.002/0.002
Number of Insertion Trials [0, 2] 2/2/2

Add Synapse Probability [0, 0.02] 0.1/0.01/0.01
Number of Insertion Trials [0, 5] 10/2/1
Init. Insertion Probability [0.01, 0.1] 0.1/0.1/0.1

Add Bias Probability [0, 0.02] 0.02/0.005/0.005
Number of Insertion Trials [0, 3] 5/2/1

Initialize Synapses Min [-20, -1] -5
Max [1 - 20] 5

Initialize Bias Min [-5, -1] -2
Max [1 - 5] 2

Change Bias Change Probability [0.005, 0.025] 0.05/0.02/0.02
Deviation [0.005, 0.2] 0.5/0.1/0.1
Reinitialization Probability [0, 0.005] 0.001

Change Weight Change Probability [0.01, 0.2] 0.2/0.05/0.05
Deviation [0.005, 0.2] 0.2/0.1/0.05
Reinitialization Probability [0, 0.005] 0.005/0.002/0.002

Table 8.2: Settings of the main evolution operators. The settings are given as ranges in
which the parameters have been varied during interactive evolution, and as �xed settings
for the unsupervised evolution runs (init/main/longrun). The functions of the operators
are listed in appendix B on page 177.
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8.1.5 General Modularization

The initial networks of the agent are separated into modules, each encapsulating the neu-
rons belonging to motors and sensors of one single body segment (�gure 8.4). This re�ects
the heuristic, that local, meaningful network processing is more likely to emerge when in-
teractions between locally related motors and sensors take place, in contrast to interactions
between arbitrary, unrelated motors and sensors. In addition to this general modulariza-
tion, each experiment has its own varied constrained mask, that is described along with
the corresponding experiment. Usually, experiments use a clone constraint on all but the
�rst module (used as a master module) to restrict the search space.

Figure 8.4: The general modularization for all experiments of this chapter. The number
of modules depends on the number of segments used in the experiment (10, 12, 15 or 20).
The large module at the left shows the �rst (master) module in detail.

Figure 8.4 shows the full sensor equipment of the animat. In the experiments, usually
only a subset of these sensors is used. Hereby, the interface neurons can only be activated
or deactivated in whole sets, i.e. the motor provides the MotorJoint, MotorTorque and
JointAngle neurons, the force sensor a single Force neuron, and the acceleration and gyro-
scope sensors each three neurons for the measurements on all three axes (AccelerationX-Z,
GyroscopeX-Z). So, when only one sensor of a set is needed, then the unwanted sensors of
the corresponding set have to be disabled in the network using protection tags.

As a general practice, all neurons of the master module are additionally tagged to be
treated like newly inserted neurons. This helps with the bootstrapping of the evolution,
because newly inserted neurons have a di�erent, usually much higher chance of being
connected to the rest of the network (compare the insert synapse operator in appendix B,
p. 181). This is done to initially connect a new neuron with the network to increase the
probability, that the new neuron directly has an in�uence on the network. This is exactly
what we also want for the neurons of the initial network, especially in the �rst generation,
in which the creation of an initial pool of individuals rich in variants is desired.
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8.1.6 Overview on Experiments

The rest of this chapter is structured as follows. The experiments are conducted in three
series of experiment variants. For each series, only a subset of the performed experiments
are described in detail to demonstrate the usage of the ICONE method. These shown
neuro-controllers are the unpruned, unmodi�ed networks as they have been evolved in the
experiment. Hence, these controllers partially also contain super�uous network elements,
that do not contribute to the behavior. These network elements have been kept to show
the actually evolved network topologies and the hereby a�ected comprehensibility of the
networks. The layouts of the controllers, however, have been adapted with the network
editor to increase their readability.

Some of the more interesting resulting controllers are also brie�y analyzed to show, that
the evolved controllers signi�cantly di�er in their function and organization. However, it
should be kept in mind, that the focus of this chapter is not the in-depth analysis of
di�erent neural control concepts, but merely the exempli�cation of the ICONE method,
particularly with respect to network shaping. Therefore, the network analyses are kept
super�cial and do not cover all aspects of the neuro-dynamics.

The detail description of each controller also gives information about its complexity,
in particular the number of neurons (N) and the number of synapses (S) of the entire
network, and the number of actually mutable parameters of the network, i.e. bias terms
(B) and weights (W). These mutable parameters do not include additional synapses and
bias terms, that may be inserted during further evolution. That information is given
for each experiment by a search space plot, showing the maximal network with all possible
synapses and bias terms (not considering potential additional neurons). These plots provide
information about the number of neurons and synapses of the entire network, and the
maximal number of mutable network parameters. An example of such a plot is found in
�gure 8.6.

The �rst series of experiments (section 8.2) focuses on the e�ects of di�erent intercon-
nections between the segments of the animat. In the second series of experiments (section
8.3) the e�ects of di�erent sensor sets and of their usage is examined exemplarily. The
�nal series (section 8.4) then shows how di�erent control paradigms can be induced to the
networks using peripheral structures.
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8.2 Interconnectivity Variations

The �rst series of experiments explore the in�uence of the inter-module connections be-
tween the main modules, that encapsulate the motors and sensors of each body segment.
As a base for the experiments, the modularized network described in section 8.1.5 has
been used. All main modules clone a single master module, so that only that single master
module is part of the search space. Such a master module has to be evolved as part of
the large network and cannot be evolved separately on its own, as it would be possible for
a separate, local function (e.g. a neural PID controller or an oscillator (Pasemann et al.
2012)). This is, because the overall behavior is generated only as a result of the complete
network and the body dynamics of the animat.

Over the course of the experiments, the connections between these modules have been
varied in the initial networks. Starting with no connections between the main modules,
a �rst experiment examines whether a forward-movement without any communication
between the modules is � in principle � possible. The next experiment provides a simple
interface between each module and its direct neighbors, speci�cally two synapses going to
and coming from each of the two neighbors. This allows a module to use the signals of its
neighbors in addition to its own sensors. A variant of this experiment is shown hereafter,
where a communication between the adjacent modules is enforced by preventing the use of
the own sensors. This demonstrates how signal pathways can be in�uenced with ICONE
constraints. In the fourth experiment each module now can only communicate with its
neighbors exactly two segments away. Because every second module is skipped now, two
neurally independent circuits are formed, which requires a di�erent kind of control. The
last example demonstrates the use of the connection symmetry constraint by allowing the
evolution of arbitrary, but symmetric interconnections between all modules.

8.2.1 Experiment 1: Prevented Segment Connections

The �rst experiment should show that a general locomotion behavior without any neural
communication between the separate segments of the animat is possible. The necessary
communication and coordination � if needed at all � has to come from the physical coupling
of the body parts. This experiment uses an agent with 10 identical segments, each equipped
only with the angular sensor of its joint. Additional experiments, allowing di�erent sensors,
have also been conducted, but are not shown here for space reasons. The experiment has
been simpli�ed because of the expected di�culty to generate a locomotion behavior without
communication, therefore this experiment has been done without the hurdles.

Modularization. The network is composed of ten modules, each encapsulating the mo-
tor and sensor neurons of one segment. To prevent connections between these modules,
no interface neurons have been de�ned. Synapses therefore can only be inserted between
neurons of the same module. Recall, that in all experiments of this section, only a single
master module is evolved, whereas all other modules are clones of that master module.
The resulting search space is shown in �gure 8.7(b) on page 114.
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Results. In 67 evolution runs, 8 experiments resulted in su�ciently working neuro-
controllers. Another 6 managed at least to move around, though they changed the moving
direction from time to time. All others were either forming static shapes, or did useless
motions on the spot.

Figure 8.5: The �tness development of the 10 best evolution runs. The right diagram
shows the distribution of controllers (0 failure, 1 locomotion with changing directions, 2
locomotion in one direction).

As a remark on the low success rate it should be mentioned, that in this experiment
no walls have been used to prevent the animat from tipping over. So, many of the failed
controllers tipped the animat over and then slipped over the ground doing fast movements,
resulting in quite high �tness. In fact, the controller with the highest �tness is one of those.
Therefore, only valid controllers have been considered in the �tness plot in �gure 8.5.

All successfully evolved controllers produced a regular, pulsing behavior by alternating
contraction and stretching of the body (�gure 8.6). This is realized using torque modulation
to allow a segment to either actively control a joint, or passively follow the forces applied by
its neighboring segments. Stretching body parts actively in one place leads to a contraction
of (passive) body parts in other places (or the other way round), which eventually leads to
a synchronization of the overall motion through the body.

In the example shown in �gure 8.7(a) each contraction is realized actively by setting the
motor to a high torque and the desired angle to a pointed one. Once, a certainly pointed
angle is reached, the torque is greatly reduced, so that the joint can passively be stretched
by the pulling of the neighboring joints. The synchronization takes a few contractions,
but once reached, the animat moves. The speed of the contractions is determined by a
hysteresis e�ect, so that the contractions are not too fast or too slow, which both would
end the movement.

Due to the missing neural feedback from the neighboring segments, the motion can
be in both directions, backwards or forwards. The actual direction is determined by the
starting conditions, but can � for some controllers � change spontaneously as a result of
the interaction between the body and its environment.
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Figure 8.6: Motion sequence of the controller shown in �gure 8.7. The pictures show every
20th simulation step.

(a) Network Details
Network: N: 110 S: 170
Parameters: B: 0 W: 17

(b) Search Space (+4 Neurons)
Network: N: 70 S: 420
Parameters: B: 6 W: 42

Figure 8.7: (a) Details of the locomotion controller without inter-module communication
and (b) the maximal search space of the modularized network with 4 additional neurons
per module.

8.2.2 Experiment 2: Direct Neighbor Communication

In this experiment the communication between direct neighbors is enabled. The communi-
cation is bidirectional, thus each module can in�uence its precursor and successor module.
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As variants, this experiment can be further in�uenced with peripheral structures and con-
straints, for instance to allow only the communication in one direction or by specifying the
number of connections between the modules. In this �rst experiment, the focus is only on
the development of di�erent kinds of forwards motions, thus no hurdles are involved. The
agent is allowed to use its own sensors and additionally signals coming from the adjacent
modules using 8 interface neurons per module (4 input neurons, 4 output neurons). A
variation to this is shown in the next section (8.2.3), in which the hurdles then also had
to be overcome. In that experiment, the agent is also forced to use the signals of adjacent
modules and is prevented from using its own. This, in direct comparison, should illustrate
how the outcome of the evolution can be directly biased with ICONE techniques.

Modularization. The initial network builds upon the previous experiment, so the mo-
tors and sensors of each segment are encapsulated together in one module per segment,
using one module as master module and all other modules as clones of that master module.
In addition, (4 - 8) interface neurons have been added to each module and tagged as input
or output neurons to allow synaptic connections between the modules (see �gure 8.8). In
this �rst experiment, the direct connections to the neighbors have been added manually
as peripheral structures. To reduce the search space, only one set of synapses between
the modules are evolved, whereas all other inter-module synapses are directly derived from
this set. For this, the network equations constraint has been used. The synapses of the
evolvable synapses have been tagged with variable names and all dependent synapses have
been tagged with the simple equation w = var to calculate the synaptic weight w. var is
the name used for the variable tag of the corresponding evolvable synapse.

Figure 8.8: The modularization of the initial network for the direct neighbor communica-
tion experiment. The bold network elements are subject to mutations. All other network
elements are dependent due to constraints and thus not part of the search space.

Results. In this experiment, 21 of 24 experiments resulted in successful forwards-rolling
behaviors. The �tness development of the 10 best evolutions is shown in �gure 8.9.
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Figure 8.9: The �tness development of the 10 best evolution runs. For a better readability
the best four evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to move forwards.

Most evolved neuro-controllers produced an e�cient locomotion, some of them aston-
ishingly even able to pass the �rst two or three zones of the hurdle track when tested
in such an environment. The most frequent behavior evolved in this experiment was a
capsule-shaped, regular motion (see next section for such a behavior). However, some
controllers also resulted in more organic-looking motions, such as the one shown in �gure
8.10. Here, the agent moves indeed slower, with a less precisely formed shape, but still
covers a large distance, even on the hurdle track. The underlying control approach hereby
is interesting:

Figure 8.10: Motion sequence of the animat with the neuro-controller shown in �gure
8.11(a). The picture sequence shows every 40th simulation step.

The dynamics of the network (�gure 8.11(a)) is characterized by modulated period-two
oscillators, i.e. period two oscillators, whose two states are modulated by the environment
through the sensors.

Interestingly, the MotorAngle neuron is directly controlled by an inhibitory synapse
coming from the MotorTorque neuron, which in turn oscillates. Most of the time that
MotorTorque neuron oscillates between -1 and 1, which results � due to the integrative
capabilities of the motors � in an e�ective medium torque applied to the motor. Because
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(a) Network Details
Network: N: 110 S: 190
Parameters: B: 0 W: 19

(b) Search Space (+4 Neurons)
Network: N: 150 S: 2140
Parameters: B: 14 W: 214

Figure 8.11: (a) Details of the locomotion controller with a connection range of 1 and
(b) the maximal search space of the modularized network with 4 additional neurons per
module.

of the negative coupling, the MotorAngle neuron also oscillates between its two maximal
settings -1 and 1. However, relevant for the motor control is only the desired angle that is
active when torque is actually applied to the motor. This is always a positive activation.
The motor therefore actively stretches. In a later phase, the behavior changes and the
oscillation of the MotorTorque neuron shifts towards the positive activation domain (see
�gure 8.12, starting approx. at step 150 in the upper �gure). At some point, the activation
only oscillates in the positive domain, which leads to a constantly negative activation of
the angular motor neuron. This results in a contraction of the joint. Accordingly, the
oscillator realizes a switch between contraction and stretching. The contraction phase is
entered, when the preceding module already is in that phase and its measured angle is
low enough (is bent beyond a certain angle). Once entered, that phase is stable until the
measured angle of the predecessor exceeds a certain angle (is stretched) again.

Interestingly, there is only one such contraction zone in the network, periodically
traversing over the modules. So, if there is one end of the animat contracting and all
other parts actively stretching, how can the second bending arise? This can be explained
with the torque levels. As explained, the torque during the stretching phase is only ap-
proximately half of the strength during the contraction phase, because the torque neuron
is positive for twice the time during that latter phase. The contraction is therefore much
stronger than the stretching. The weakest point in the animat is in the end opposite to
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Figure 8.12: Activity plot of the sensors and motors of two successive segments. The
upper �gure shows the relation of torque and motor angle of a module and the angular
sensor of its preceding segment. The lower �gure shows the angular sensor and the torque
neuron of the preceding segment synchronous to the upper �gure to show the relation of
the contraction phases.

the contraction area. Here, the segments are passively bent against their desire to stretch,
because of the strong forces coming from the contraction area through the closed chain.
Therefore, although each module contracts only once per animat rotation actively, there
are two bending zones (see the angular sensors in �gure 8.12). This also explains the more
organic, richer motion, because the second bending area is not well de�ned and can vary
depending on the forces coming from the environment.

8.2.3 Experiment 3: Enforced Neighbor Communication Variants

As a variation of the previous experiment, the impact of the direct communication between
the neighboring modules has been further investigated. In this experiment, communication
is enforced by preventing the direct use of the local sensors, so that local solutions are not
possible any more.

Modularization. The initial network is derived from the previous experiment with all
its constraints and peripheral structures. In addition an Enforce-Directed-Path constraint
was added, con�gured to enforce all paths between sensors and motors to transit at least
one module boundary, thus e�ectively preventing direct synaptic paths between the sensors
and motors of a single module.
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As further variations, four control variants have been examined: In the �rst experiment
(1) the MotorTorque neuron was protected (so evolution could not add synapses to this
neuron) and equipped with an initial, irremovable positive bias term. Evolution could still
mutate that bias term, but the overall behavior had to be realized using the MotorAngle

neuron only. In the other three experiments, the MotorAngle neuron was protected and
also provided with a bias term. The behavior now had to be realized using only the
MotorTorque neuron. The bias term of the angular motor neuron has been varied in the
three experiments with �xed bias terms corresponding to (2) a straight joint alignment, (3)
a joint fully bent to the inner side of the animat, and (4) a joint fully bent to the outside
of the animat. This should show, how di�erent (interesting) variants can systematically
be explored with the constraint evolution approach.

All four experiments resulted in successfully working neuro-controller variants. How-
ever, for space reasons, only the results of one experiment is shown (variant 3), in which
the MotorAngle neuron was protected and biased to bent the joint inwards.

Results. In 20 of 65 evolution runs, controllers were able to overcome all hurdles of the
obstacle track. In 19 cases the behavior was not showing any forwards motion at all. In all
other cases, the controllers could partially solve the task, e.g. by moving forwards (zone 1,
12 cases), passing the easy �at hurdles (zone 2, 7 cases) or by even overcoming the ramps
(zone 3, 7 cases). The �tness of the 10 best networks is shown in �gure 8.13.

Figure 8.13: The �tness development of the 10 best evolution runs. For a better readability
the best three evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to overcome obstacles.

The evolved behaviors look often very similar: The animat is stretched to a capsule-like
shape that does not change much during the movement (�gure 8.14). A common strategy
of the controller modules is to in�uence the relaxation of their subsequent joints. Such a
network is shown in �gure 8.15(a).

The basic desired angular position of all joints is � as it was �xed in the initial networks �
the inwards bent state. Initially, the gravitation helps to �atten the body to the capsule-
like shape, because with the gravitational support, the joints at the sides can bend easier
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Figure 8.14: Motion sequence of the animat controlled by the network shown in �gure
8.15(a). The picture sequence shows every 60th simulation step.

(a) Network Details
Network: N: 108 S: 84
Parameters: B: 2 W: 7

(b) Search Space (+2 Neurons)
Network: N: 108 S: 888
Parameters: B: 7 W: 58

Figure 8.15: (a) Details of the locomotion controller with an enforced connection range of 1
(variant 3) and (b) the maximal search space of the modularized network with 2 additional
neurons per module.

than the ones at top and bottom. This starts the network dynamics that leads to the
actual forwards motion:

When a joint gets stretched (initially via gravity) it strongly inhibits the MotorTorque
neuron of its subsequent neighbor, which leads to a relaxation of that joint. A relaxed
joint is passively stretched by the remaining actively bending segments through the force
transmission of the chain and thus also starts to relax its successor. On the other side of
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the animat, the still bent segments exhibit the MotorTorque neurons of their subsequent
neighbors, that hereupon bend again.

So, in the lower front and the upper back of the animat, segments are relaxed, while at
the upper front and the lower back the joints are contracted, resulting in a fast and stable
forwards movement. The activations of the MotorTorque neurons of three subsequent
modules in relation to the angular sensor of their middle module are shown in �gure 8.16.
The plot shows how the two relaxation phases (upper and lower) traverse over the modules.

Figure 8.16: Plot of the angular sensor of a module and the torque neurons of that module
and of its neighboring modules. The lower the angular sensor is, the more the joint is bent
inwards. MotorTorque neurons with an activation of less than zero result in a relaxed joint
that is not actively controlled.

8.2.4 Experiment 4: Connecting Every Second Segment

For an animat with 12 segments a variant with a communication range of two was realized.
This con�guration is interesting, because this creates two identical, but neurally indepen-
dent circuits, each comprising six modules. The inter-module communication only takes
place within these (neuro-dynamically independent) subnetworks and, of course, through
the body.

Modularization. The initial network was almost identical to the previous one, but with
prede�ned synapses not between directly neighboring modules, but instead connecting
every second module (�gure 8.17).

Results. Evolving controllers in this variation turned out to be more di�cult for the
evolution than the previous ones. Over one third of the experiments failed. And among
the more successful ones, not a single controller could master the entire hurdle track.
Figure 8.18 shows the �tness development of the 10 best experiments. The large fraction
of controllers not being able to pass even the easy hurdles in the beginning seems to cohere
with a fast hopping behavior that dominates the behavior approaches in this experiment.
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(a) Network Modularization (b) Search Space (+4 Neurons)
Network: N: 132 S: 1344
Parameters: B: 10 W: 112

Figure 8.17: (a) The modularization of the network, showing the interconnection pattern
between the modules and (b) the maximal search space of the modularized network with
4 additional neurons per module. The �gure also highlights the two independent circuits
with dotted lines.

This behavior has problems to overcome obstacles, but seems to be a local optimum for
this constraint mask.

Figure 8.18: The �tness development of the 10 best evolution runs. For a better readability
the best three evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to overcome obstacles.
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However, as hoped, also such controllers have been found, in which the separated
circuits contribute to the overall behavior in an interesting way. The network shown in
�gure 8.20 is an example of such a network, that does not only exploit the independent
circuits, but also implements three coexisting, di�erently looking behaviors (see �gure
8.19). Depending on the starting conditions, the motion can either be an eight-shaped
rolling motion, a pulsing forwards motion similar to the behaviors in the �rst experiment
or a wheel-shaped, ine�cient rolling.

(a) Bouncing Locomotion

(b) Eight-shaped Rolling Locomotion

(c) Circle-shaped Rolling Locomotion

Figure 8.19: Motion sequences of the three coexisting locomotion behaviors of the neuro-
controller shown in �gure 8.20. The picture sequence shows every 40th simulation step.

The main behavior is the pulsing behavior that enables the animat to traverse all obsta-
cles up to the steepest ramp. The behavior is generated by regular, very fast contractions
of the segments, alternating with relatively short relaxation phases. Each separate cir-
cuit with its 6 segments provides 3 contraction phases. During each phase, both opposite
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(a) Network Details
Network: N: 192 S: 336
Parameters: B: 0 W: 28

Figure 8.20: Details of the locomotion controller with a connection range of 2.

segments contract almost simultaneously, which makes sense because in the capsule-like
shape the opposed segments should always do the same. The three contraction phases
synchronize each other by forwards and backwards communication: The relaxation phase
is entered when the predecessor joint is maximally stretched (angle sensor high) and the
successor module is almost fully contracted. The contraction phase is entered when the
predecessor module enters the relaxation phase. Here, successor and predecessor refer to
the neighbors in the circuit, not in the body, i.e. every second module. As long as a module
is in relax mode, it blocks its predecessor from entering that phase as well. Together, this
leads to an exclusive phase locking, where each of the three relaxation phases cannot over-
lap (�gure 8.21(a)). Because of the missing neural connections between the two circuits,
the phase shift between the circuits can vary (upper graph in �gure 8.21(a)) and is only
synchronized through the body of the <animat.

With the proper starting conditions, the network shows a stable, eight-shaped behavior.
The eight-shaped motion is created because the dynamics of one of the two independent
circuits gets stuck in a �xed point, leading to a continuously active contraction of every
second joint. The forwards motion now has to be realized by the six remaining modules,
which astonishingly still works. Figure 8.21(b) shows the angular sensor of the active
circuit. Interestingly, the phases are now much more precise compared to the quite fuzzy
angular sensor output of the previous behavior, which may be caused by the missing
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(a)

(b)

(c)

Figure 8.21: Comparisons of the contraction phases for each of the three coexisting be-
haviors. The activation of the angular sensor increases during the relaxation phase and
decreases when the joint actively contracts. (a) Angular sensors of 3 successive modules
of each of the two circuits (mid and lower plot). The plot at the top shows the variability
of the phase shift between the two circuits. (b) The angular sensors of the eight-shaped
behavior (only one active circuit) showing the more accurate, stronger stretching of the
joints. (c) The bursts of the relaxation phases of the circle-shaped motion.

disruptions from the second, unsynchronized circuit. Also, the behavior is slower and the
active segments have to be stretched much further to compensate for the continuously
contracted segments of the �xed circuit. The behavior bene�ts from this and is even more
e�cient on the hurdle track than the main behavior.

The third behavior is a slightly pulsing circle with the capability to move forwards.
However, this behavior only works on plain ground. Even the easiest obstacles are impass-
able. In this behavioral state, the relaxation phases are not interlocked as before, where
each relaxation phase only started then the relaxation phase of the preceding segment was
completed. Instead, the three relaxation phases follow shortly after each other as a burst,
followed by a phase where all joints are contracting (�gure 8.21(c)). Sometimes one of the
circuits may enter a stable �xed point due to environment interactions, which leads to a
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transition to the eight-shaped behavior. Thus, the third behavior has to be considered
being unstable.

8.2.5 Experiment 5: Arbitrary Symmetric Connections

After exploring other prede�ned interconnection patterns between the modules (e.g. com-
munication of range 3, of 4, of 1 and 2 combined, of 2 and 3 combined) it seems that the
probability to successfully solve the locomotion problem decreases with the range of com-
munication. Detailed results on these experiments are not shown here for space reasons.

In a next step, the inter-connections between the modules have been opened up for free
evolution. However, to keep the search space still manageable, the connections still have
to be symmetric, i.e. all external connections added to the master module also have to
be added to any other module with the partner modules chosen relative to each module's
position. So, adding a synapse from module 0 to 5 also adds synapses from module 1 to 6, 2
to 7, 3 to 8 and so forth. Hence, any inter-module connection added to the master module
extends the network by 12 new, similar synapses. For this experiment, an additional set of
sensors has been enabled for an animat con�guration with 10 segments. The body segments
of the animat should now use their acceleration sensors instead of their angular sensors
to realize the locomotion behavior (compare also to the sensor variation experiments in
section 8.3).

Modularization. The basic con�guration of the initial network again provides one evolv-
able master module and 9 cloned modules. The acceleration sensors of the animat now
have been enabled to allow new control approaches. The animat provides three accelera-
tion sensors for all three dimensions. For this experiment, the z-axis has been protected
(and herewith has been excluded from evolution), because accelerations lateral to the agent
should not be considered. In that direction the agent has no degrees of freedom to in�uence
the lateral motions, so a sensor in this direction is considered harmful or at least super-
�uous. To force the animat to use the acceleration sensors instead of its angular sensors,
the JointAngle neurons have been protected as well. Each main module was con�gured
to have four input and four output neurons, through which connections to other modules
can be established. To enforce a symmetric interconnection pattern, the connection sym-
metry constrained was used. Properly con�gured, this constraint ensures that the same
relative connection pattern present at the master module is also present for any other mod-
ule, including the weights of the synapses. Figure 8.22 shows the initial network and the
search space with all independently evolvable synapses 8.22(b). The maximally connected
network is shown in �gure 8.22(c).

Results. Despite the larger involved search space, evolutions with this constraint mask
are quite successfully solving the problem. 7 of 24 controllers fully master the hurdle track,
some of them with astonishing speed. Only 3 evolutions could not develop a forwards
movement. Figure 8.23 shows the �tness progress for the 10 best evolution runs.

All successful controllers, including the ones that only partially overcome the obstacles,
all show a behavior rich in variations. One reason is surely the use of the acceleration
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(a) Initial Network (b) Evolvable Synapses (c) Search Space
Network: N: 140 S: 2640
Parameters: B: 10 W: 264

Figure 8.22: (a) The initial network with the connection symmetry constraint and a mod-
ule interface of 4 input and 4 output neurons per module. (b) The maximal number of
independent synapses. (c) The fully connected network showing the maximal search space.

Figure 8.23: The �tness development of the 10 best evolution runs. For a better readability
the best three evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to overcome obstacles.

sensors, because these allow the animat to react much stronger on interactions between
agent and environment, especially when approaching obstacles. But also the various ways
of interaction between the modules plays a role.

Here, two evolved networks are shown, both very e�ciently able to pass the entire
hurdle track. The controller in �gure 8.25(a) shows an interesting behavior, having the
tendency to raise the front a bit to form a ramp, so that obstacles can be approached more
easily (see �gure 8.24(a)). The second controller, that is shown in �gure 8.25(b), uses a
di�erent strategy. Instead of a continuous forwards movement, this controller moves the
animat forwards in intermittent attempts, hereby lifting its front, which helps to approach
the obstacles (�gure 8.24(b)). During the irregular slowdowns, the body of the animat
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(a) The ramp-shaped motion generated by the controller shown in �gure 8.25(a). The picture series shows
every 40th simulation step.

(b) The intermittent moving motion generated by the controller shown in �gure 8.25(b). The picture series
shows every 60th simulation step.

Figure 8.24: Motion sequences of two evolved neuro-controllers using arbitrary, symmetric
module interconnections.

can settle back on the ground, so that ine�cient loops are reduced. In fact, despite of the
intermediate slowdowns, this controller is one of the fastest solutions to cross the entire
hurdle track.

Both controllers have � like most controllers of this experiment � a quite complex
topology, not to talk about the resulting neural dynamics. Such controllers cannot be
analyzed roughly like the previous controllers and require an in-depth analysis of their
neuro-dynamics, that is out of scope in the context of this thesis. However, even if these
networks are not easy to analyze, this still nicely demonstrates that such neuro-dynamically
non-trivial controllers can be found even in such a simple evolution experiment using
constrained neuro-evolution.

Further Variants. Each of the experiments of this �rst series has only been shown
with a single set of sensors. However, each experiment can also be repeated with a dif-
ferent sensor equipment instead of the angular sensors. This leads to other interesting
solutions. The next section shows some of the sensor variations for networks allowing
only a communication between directly neighboring segments. Surely, any of these experi-
ments can be combined with the variations of this section to search for additional variants.
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(a) Detail of the Ramp-Shaped Motion Controller.

(b) Detail of the Intermittent Movement Motion Controller.

Figure 8.25: Two evolved motion controllers using acceleration sensors and an unrestricted,
symmetric inter-module communication. The thick lines in the miniature plots of the whole
networks in the upper right corner of the plots denote the evolvable inter-module synapses
belonging to the master module.
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This illustrates, how many di�erent combinations of sensors, motors, peripheral structures,
connectivity paradigms, control theorems and the like are possible even in such a simple
animat, and how these can be systematically explored with the ICONE method.

8.3 Sensor Variations

The second series of variation experiments explores the role of di�erent sensors in a less
uniform variant of the animat. A simple variation of the sensors has already been antici-
pated by the previous experiment. But now, the animat provides a richer, heterogeneous
combination of di�erent sensors that can be explored by evolution in di�erent ways. The
animat provides three di�erent body segment types, that are arranged alternately (�gure
8.26(a)). Each of the now 15 body segment (5 x 3) has, like in the �rst series of experiments,
one motor-driven joint connecting the segment to its successor. Each motor also provides
its corresponding angular sensor for its controlled joint. The actual di�erence between the
segment types is their size and their additional sensor equipment. The �rst segment has
dimensions comparable to the body parts of the �rst experiments and provides a force sen-
sor, that measures the force applied perpendicularly to that segment. The second segment
is smaller and equipped with an acceleration sensor measuring accelerations in three axes.
The third segment is larger and has a gyroscope sensor, that provides information about
the orientation of that segment in three axes (see �gure 8.26(a)).

The focus of this series of experiments is to investigate, how the behaviors di�er due to a
specialization of the modules with respect to size and sensor equipment. Multiple successful
experiments have been conducted and again, only a subset of these experiments can be
shown here in detail due to space reasons. In this section, two of these experiments are
shown to illustrate the general practice of how in such a con�guration ICONE techniques
may be used to shape the networks, to reduce the search space and to guide the search.

The �rst experiment starts with a network con�guration, in which all sensors can be
used arbitrarily in a symmetrized network. A variant of this experiment, that is not shown
here, prevented the use of the angular sensors to force the animat to use the new sensors. A
further class of variants was the restriction of the sensors to a single type (force, acceleration
or gyroscope), that had to be used to control all segments, including those that now do not
have any sensors. One of these experiments, in which only the �ve gyroscope sensors of
the animat have been used for the locomotion, is described in detail as second experiment
of this section. All variation experiments so far evolved successful behavior controllers
that, due to the additional sensors, signi�cantly di�er from the controllers evolved in the
previous experiments.

General Modularization. In di�erence to the �rst experiments, it is now not possible
to evolve a single master module and clone all other modules. Because of the di�erences
between the body segments, three master modules are needed now. Figure 8.26(c) shows
the arrangement of the master modules (the top) and their cloned counterparts. To enhance
the comprehensibility of the network and to point out its ring-shaped arrangement, some
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(a) Arrangement of the modules with
respect to the animat

(b) Order, interconnectivity and
symmetries of the controller
modules in the networks

(c) Search Space
(+1 Neuron per Module)
Network: N: 155 S: 1135
Parameters: B: 21 W: 243

Figure 8.26: (a) Relation between the modules, the animat and the enabled sensor equip-
ment (force sensors (F), acceleration sensors (A) and gyroscope (G)). (b) The module
organization in the network, showing the symmetries with vertical (V), horizontal (H) or
both (HV) axes for a better readability. (c) The maximal search space of the modularized
network with one additional neuron per module.

modules use horizontal or vertical symmetry instead of cloning. This symmetry here only
a�ects the layout, so it can also be omitted.

Each module was extended by four interface neurons through which connections to its
neighbors can be created. For the connections between the modules, the connection sym-
metry constraint may be used, but now there are three di�erent symmetries to consider,
one between each neighboring segment type. In the two experiments shown in this thesis,
the network equation constraint has been used instead, because here only six �xed connec-
tions between the master modules are used. In this con�guration the networks equations
constraint was favored because it does not a�ect the positions of the a�ected synapses
(which increases the readability), but both constraints are valid here.

In addition to this general modularization, each experiment de�nes its own speci�c
constraint mask, which is described separately for each experiment.

8.3.1 Experiment 6: Sensor-Rich Heterogeneous Controller

This �rst experiment of the sensor variation series does not restrict the new animat con-
�guration further than described in the previous section. With this con�guration the
experiment examines, what kind of behaviors and motions develop without further guid-
ance. Starting with a modularized initial network like the one described in the previous
section, a search space is explored that � in principle � contains all outcomes of the later
variation experiments. Thus, with this experiment, it should be tested, in how far the
results of later experiments really are a matter of the constraint masks, or whether they
would also have been found using the general modularization.
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Since only one additional experiment is shown here for space reasons, it should already
be noted at this point, that the variation experiments all came up with motions and network
structures, that have not been found with this experiment. On the other hand, it should
be kept in mind, that this experiment was only conducted 33 times and therefore cannot
claim to have covered all likely outcomes. But a tendency towards dominant solutions
could be identi�ed.

Modularization. The modularization used for the initial network of this experiment is
essentially the same as described in the previous section. In this �rst experiment, even
potentially harmful sensors, like the lateral acceleration sensor (AccelerationZ) and the
lateral gyroscope sensor (GyroscopeZ), have been kept unprotected to allow all kinds of
results. As before, all neurons in the network have been marked to be treated like new
neurons to foster a tighter initial interconnection of the neurons.

Results. Despite of the now larger search space (compare �gure 8.26(c)) the experiment
was quite successful. Only 7 experiments did entirely fail to generate a forwards locomotion.
Five evolved controllers could even pass the entire hurdle track. The Figure 8.27 shows
the �tness development of the 10 best evolution runs.

Figure 8.27: The �tness development of the 10 best evolution runs. For a better readability
the best three evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to overcome obstacles (3*
stands for the ramp zone excluding the steepest ramp).

A noteworthy observation is that most controllers could not pass the steepest ramp
of the third zone. Ten controllers could pass all hurdles except for the most di�cult one.
All of these controllers and many of those that got stuck after the second zone, belong to
the same class of controllers, that seems to be the dominant local optima of this starting
con�guration: a star-shaped (or gearwheel-shaped) rolling motion (�gure 8.28). This shape
might be bene�cial for the early hurdles, because the notches can gear into the edges of the
hurdles to prevent to slip o� the hurdle. However, this shape results in a quite compact
circle, that can only be bent to a small extent when an obstacle has to be overcome that
requires a shifting of the weight (see middle image of �gure 8.28). The steeper the ramps
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become, the more the animat has to be elongated to lean forwards in order to overcome the
hurdle, which seems to be the reason why those controllers failed here. Only one controller
of this kind could pass the entire track: a �attened version of the star-shaped motion.

Figure 8.28: The most common behavior class of this experiment: the star-shaped rolling.
The picture series shows every 60th simulation step.

A minority of evolved controllers produced di�erent behaviors. While some were using
almost 'classical' approaches (i.e. approaches already encountered qualitatively in previous
experiments), there were also some novel approaches. The behavior shown in �gure 8.29
is able to elongate and stand on its 'tiptoe' (one of the small segments), leading to an
overturning of the animat, that can be used to propel it over an obstacle.

Figure 8.29: A controller that frequently raises on a small body part to overcome obstacles.
The picture series shows every 60th simulation step.

A third interesting controller realizes a slackly, limp-looking motion, where the plates
are bent in unspeci�c angles during the motions, forming a predominantly slender silhouette
(�gure 8.30). Nonetheless, the applied forces are quite high, so that the animat is almost
catapulted forwards. The neuro-controller of this behavior is shown in �gure 8.31. A
rough analysis could not identify the underlying principles yet, but pruning experiments
show, that all types of sensors are mandatory to preserve the behavior. Though, some
of the sensor neurons (1 joint angle, 2 acceleration sensors and 2 gyroscope sensors) can
be removed from the master modules, but the performance of the remaining behavior �
although the basic motion is still observable � greatly su�ers.
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Figure 8.30: The slender motion controller, whose network details are shown in �gure 8.31.
The picture series shows every 60th simulation step.

(a) Network Details Network: N: 150 S: 360 Parameters: B: 0 W: 72

Figure 8.31: Details of the slender motion controller, that e�ectively uses all types of
sensors available on the animat.
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8.3.2 Experiment 7: A Gyroscope per Segment-Triplet

A mini-series of experiments was conducted to �nd controllers that use only one type of
the available sensors. The animat con�guration hereby still provides each sensor type only
once per segment-triplet (except of the angle sensors), so that 15 joints of the animat have
to be controlled based on the signals of only 5 sensors of the chosen type, located on 5
equally distributed segments of the animat.

One way to approach this is to create 5 large modules containing all sensors and all
motors of each segment-triplet. Then, only one of these large master modules has to
be evolved and the other modules could just be cloned. In this experiment, however, the
distributed architecture of the segments with their limited communication pathways should
be preserved. Because of their encapsulation and the required longer synaptic pathways,
the motor neurons of the sensor-less modules are expected to be a�ected by sensor signals
that are more strongly modi�ed and have a greater delay. This may promote novel control
concepts in which we are interested in here.

The experiment described in this section explores the usage of the gyroscope sensor
in that manner, because that sensor was not used in one of the other experiments before.
However, the experiment was conducted similarly for each of the sensor sets, each with
successful results.

Modularization. In addition to the general modularization, that was described above,
all sensors except of the GyroscopeX neuron have been protected to prevent evolution from
using their signals. To ensure that all motor neurons of all evaluated controllers are at least
slightly a�ected by that single sensor neuron, an enforce directed path constraint has been
added. This constraint was con�gured to enforce a directed, arbitrary long synaptic path
from the sensor neuron to each of the motor neurons of the module-triplet. That way, all
evaluated controllers are guaranteed to have at least one directed chain of synapses going
from the sensor neuron to each of the motor neurons. Controllers that do not ful�ll that
condition are not considered and removed, because such controllers are unlikely to control
all joints in the desired way. However, as variants, this constraint may be relieved, e.g. to
enforce a path only to the MotorTorque neurons or only to the MotorAngle neurons, and
to permanently activate the other motor neuron type with an initially given bias term (like
in the experiment of section 8.2.3). This would again bias the search towards a di�erent
direction with potentially novel solutions.

Results. Finding suitable controllers with this con�guration was a di�cult challenge for
the evolution. Not a single neuro-controller has been found that could pass the entire
hurdle track. Only two controllers were able to pass some (but not all) ramps in the third
zone, all other controllers already failed before the �rst ramp or earlier. Six of the 19
evolved controllers did not even learn to persistently move forwards. The �tness progress
of the 10 best evolution runs is shown in �gure 8.32.

With these numbers at hand, it is all the more astonishing, that among the � with
respect to the hurdle track � poor performing controllers not fewer than three interesting,
novel control approaches have been found. Without a protecting constraint mask, such
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Figure 8.32: The �tness development of the 10 best evolution runs. For a better readability
the best three evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to overcome obstacles (3*
stands for the ramp zone excluding the steepest ramp).

controllers would have been dominated by easier to evolve, better performing solutions,
like the star-shaped motion of the previous experiment, and thus would very likely not
have evolved.

Figure 8.33: The 'horse-shaped' locomotion controller. The picture series shows every 60th
simulation step.

These approaches could be called humorously the "animal parade", because their shapes
and motion patterns remind of that of animals, like a horse (�gure 8.33), a pinniped (�gure
8.34) or a tadpole (�gure 8.35).

The controller of the tadpole-shaped motion is shown in �gure 8.36. This controller
is interesting, because it produces a regular, repeating body motion, that reminds of an
animal using its 'tail' to push itself forwards. In reality, the controller still performs a rolling
motion, but the pushing of the 'tail' helps the animat to overcome obstacles. Hereby, the
'virtual' body parts, e.g. the 'head' and the 'tail', remain well de�ned throughout the
entire motion.
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Figure 8.34: The 'pinniped-shaped' locomotion controller. The picture series shows every
50th simulation step.

Figure 8.35: The 'tadpole-shaped' locomotion controller. The picture series shows every
30th simulation step.

Looking at the neural network (�gure 8.36) it becomes clear, that � as expected � the
pathways between the sensor and the motor neurons are quite long. The motor neurons
of both, the preceding and the successive sensor-less modules have a minimal synaptic
path length of between 5 and 7 synapses. But really astonishing is, that the gyroscope
sensor only provides a single synapse, that feeds with a very high weight into an oscillatory
structure (formed by the neurons N1, N2, N3 and N4), from where the signals are distributed
to all other parts of the network. The oscillatory behavior of this structure is shown in
�gure 8.37 in relation to its corresponding gyroscope sensor.

It can be seen, that the behavior is composed of six strictly consecutive phases (step
0 - 780). The transitions of these phases are controlled by the gyroscope sensor and
therefore ultimately by the body. In the �rst phase (steps 0 - 290) the structure (neurons
N1 and N2) oscillates in-phase, which results in an activation pattern for the four involved
body segments (the light-gray lead segment corresponds to the module with the gyroscope
(segment 3) and is at the second position of that quadruple), such that the four controlled
segments try to form an s-shape. The �rst joint hereby is bent inwards, the other two
joints outwards. Because of the involved oscillations, the MotorTorque neurons are only
activated every second update step, which results in an applied medium torque (see also
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(a) Network Details Network: N: 150 S: 360 Parameters: B: 0 W: 72

Figure 8.36: Details of the gyroscope-based neuro-controller producing a tadpole-shaped
motion.

section 8.2.2) that can easily be overruled by stronger forces coming through the segment
chain.

When the lead segment reaches the front of the animat and points almost perpendicu-
larly towards the ground, the inhibitory e�ect of the gyroscope sensor becomes too strong,
so that the oscillation is stopped. In that phase (steps 290 - 370), all three joints are
relaxed by setting their MotorTorque neurons to negative activations. Due to the forces
in the body chain the three joints are passively bent inwards, so that the tight 'head' is
formed. The oscillation remains inactive until the lead segment is oriented almost hori-
zontally. This is due to a hysteresis e�ect inherent to the structure formed by the four
processing neurons (N1-N4) of that module.

In the third phase (steps 370 - 560), the oscillation is restarted and the quadruple again
approaches the s-shape. In the 'tail' of the animat, the lead segment is again tilted towards
the ground as a result of to the successful realization of that s-shape. This again stops the
oscillation because of a too strong inhibitory in�uence of the gyroscope sensor.

The fourth phase (steps 560 - 680) is similar to the second, so the segments are all
relaxed and are passively bent inwards, forming the 'lifted tail' as preparation for the
pushing motion. During this phase, the lead segment is getting horizontal again. This
leads to a transition to the �fth phase, in which the segments again try to form the s-
shape.
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Figure 8.37: The phases of the motion controller of �gure 8.36(a). The gray areas represent
period-2 oscillations of neuron N2, which largely hides a second period-2 oscillation of the
N1 neuron (black areas). The small images of the animat on top of the �gure show the
motion states reached at the end of the corresponding phase. The actively approached
s-shapes are indicated in the small animat images with black lines. Starting with step 780
the �rst phase is entered again. Due to interactions with the body, every animat rotation
is a bit di�erent, but the six main phases are always observable.

Due to the forces of the body, this phase of oscillation now is much shorter, because
the lead segment is quickly pushed steeply upwards. The resulting high output of the
gyroscope again stops the oscillation, but now with an excitatory in�uence. In the hereby
triggered sixth phase (steps 680 - 780), the quadruple now approaches the opposite s-shape,
bending the �rst joint outwards and the other two joints inwards. This causes the typical
pushing motion of the 'tail'. During this motion, the lead segment reaches a horizontal
orientation again. This triggers the �rst phase, in which the quadruple approaches the
s-shape again.

This brief look at the network dynamics also explains, why the animat moves so com-
pactly �attened. In the 'head' and the 'tail', the plates are almost fully bent passively,
forming a narrow ring. And in the middle part, two s-shapes are pushed towards each
other, i.e. towards the inner side of the body against each other. Hereby, the segments of
the opposite sides often collide and shortly get stuck because of friction, which makes this
animat look very organic and life-like.

Other Variants of the Experiment. As stated above, the experiment has been per-
formed with di�erent con�gurations and with di�erent enabled sensors. To show, that the
local optima of the di�erent constraint masks signi�cantly di�er and because that behavior
nicely �ts into the "animal parade" analogy, �gure 8.38 shows the dominant behavior of
a constraint mask, where all sensors except the angular sensors have been enabled. This
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motion looks like a camel or dragon, persistently keeping two humps (or spikes) on its back.
Hereby, the controller e�ectively crosses the entire hurdle track without any backtracking.

Figure 8.38: The 'camel-shaped' locomotion controller evolved with all but the angular
sensors. The picture series shows every 60th simulation step.

8.4 Peripheral Structure Variations

The third series of experiments demonstrates the guidance of the evolution through the def-
inition of peripheral structures and the use of very speci�c constraints. This strongly biases
the search space far more than in the previous sections, because these constrained initial
networks focus the search on very speci�c structures and network organizations. Such ini-
tial networks are useful in many contexts, for instance when a control approach should be
replicated, veri�ed, varied or simply given a try. The search with highly constrained net-
works usually focuses on quite complex network con�gurations, that are unlikely to evolve
on their own and that often are so speci�c, that the corresponding network con�gurations
are scattered incoherently across the unconstrained search space. An evolutionary search
on such a class of networks can only be performed successfully, if the search space is re-
shaped in such a way, that all the previously scattered con�gurations are now dominating
or better exclusively de�ning the search space. Then, evolution cannot drift away from
those normally unlikely con�gurations, so that � if the evolution succeeds � all results are
guaranteed to solve the problem in the desired way.

This section shows three examples for such highly constrained networks. The �rst ex-
periment forces the evolution to integrate a previously developed oscillator from the module
library as a base for the locomotion behavior. The second experiment prede�nes a struc-
ture with rotating activity centers, that should be used by the controller to synchronize the
body segments in a suitable way. In the third experiment a very speci�c, quite arti�cial
structure is examined: This structure only allows a vertical, excitatory processing of the
module-internal sensors, which in turn can be modulated by inhibitory synapses horizon-
tally coming from the neighbor modules. Independently of whether such a structure makes
sense at �rst glance, it nicely demonstrates how speci�c the constraint masks with ICONE
can be, and that once again, novel successful neuro-controllers could be found, even with
such a 'strange' initial network.
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8.4.1 Experiment 8: An Oscillator as Pattern Generator

The regular, repetitive motion of some evolved neuro-controllers inspires to examine,
whether a rolling locomotion behavior may also be realized as combination of modulated
pattern generators, such as oscillators. For this, an oscillator structure, that has been
developed in a previous experiment, has been taken from the neuro-module library (Pase-
mann et al. 2012). This module is shown in �gure 8.39(a) in the middle (Adjustable
Oscillator). The oscillator allows the control of its frequency during the execution of
the network. The more activated the Frequency neuron is, the lower the frequency of the
oscillation becomes. The frequency can be determined either statically by specifying a
bias term on the Frequency neuron, or dynamically by adding synapses to that neuron.
A second way to in�uence the oscillation is given by the second input neuron. Through
this neuron, the current state of the oscillation can directly be in�uenced, which allows for
instance to reset the oscillation.

This oscillator module is fully con�gured with constraints and network tags (see section
5.1.2 for more information about module re�nement), so that only a few parameters of that
subnetwork are mutable. In the �gure, these mutable neurons and synapses are drawn with
solid black lines. Only one bias term and two synapses can be a�ected by mutations. These
parameters are additionally restricted in their range to reduce the probability of destructive
settings. This largely protects the function of the oscillator during evolution.

In this experiment, such an oscillator module has been added to the master module of
the initial network to force its usage for the behavior generation. The primary challenge of
this experiment is, that due to the clone constraints, all oscillators are identical and will
also produce an identical output, if the individual oscillators are not somehow in�uenced
by sensor signals. For a locomotion, a phase shift between the oscillations is expected to
be required, so the oscillation needs to be modulated by the sensors.

Modularization. As shown in �gure 8.39(a) the oscillator module from the module
library has been added to the master module. To force evolution to use the oscillator
for the locomotion and hence to prevent that the motors are controlled without using the
oscillator, synaptic pathways have been added. The sensor signals (Sensors module) may
be connected to the Previous or the Next module through a �xed interface, so that these
signals may in�uence their direct neighbors. Both, the sensor signals and the signals from
the neighbor modules are allowed to connect to the Adjustable Oscillator module or to
each other. The motors can only get input from the oscillator module. This ensures, that
all signals from the sensors have to pass through the oscillator.

In all submodules except of the oscillator module, new neurons are allowed for a pro-
cessing of the signals. The connections between the main modules have been realized using
�xed connections and the network equations constraint, like in the experiments before. The
self-coupling of the Phase neuron has been limited to the range of [0.8, 1.2] to preserve the
required integrative properties of the neuron. The mutation probability of the bias term of
the Frequency neuron, that de�nes the base frequency of the oscillator, has been increased
to 200% and its change variance has been reduced to 25%.
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(a) Modularization details of the master module of the
oscillator-based controller.

(b) Search Space
Network: N: 230 S: 560
Parameters: B: 12 W: 45

Figure 8.39: The initial network for the oscillator-based controller experiment. (a) The
modularization of the master module and (b) the maximal search space of the modularized
network.

Results. Only 6 out of 26 experiments did not manage to �nd controllers with a suitable
forwards motion. Two controllers have even been able to pass the entire hurdle track. The
�tness development of the 10 best experiments is shown in �gure 8.40.

Figure 8.40: The �tness development of the 10 best evolution runs. For a better readability
the best three evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to overcome obstacles.
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Figure 8.41: The motion sequence of the oscillator-driven locomotion controller shown in
�gure 8.42. The picture series shows every 40th simulation step.

Figure 8.42: Network details of the neuro-controller using a damped, driven oscillation.
Network: N: 270 S: 350
Parameters: B: 2 W: 24
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right from the beginning, using the angular sensors, the body dynamics and a surprising
recon�guration of the oscillator into a damped oscillator.

The base of this recon�guration is the reduction of the self-coupling of the State neuron.
With this weaker self-coupling, the oscillator is not able to oscillate with its full amplitude
anymore. Instead, the initial oscillation is barely measurable and thus not enough to have
an e�ect on the motor neurons. However, if the StateControl neuron is activated, then
the oscillation is initiated, but decays after a short while. The same e�ect can be observed,
when the previously activated StateControl neuron becomes inactive again. Then the
oscillation is again initiated and quickly decays. As a result, the oscillator is a damped
oscillator now, that can be innervated by alternating, strong activation changes of the
StateControl neuron.

(a) Modulation of the oscillation output of segment 1 through its StateControl neuron.

(b) The activation of the MotorAngle neurons of all 10 segments during a rolling motion. The
segments are colored with increasing lightness the higher their indices are, starting with segment
1 having a black color. After a short while, there are �ve pairs of almost synchronous oscillations,
each belonging to two opposite joints.

Figure 8.43: Activity plots of the neuro-controller in �gure 8.42.

The trick for the synchronization now is to activate and deactivate the StateControl
neuron based on the angle sensor signal of the successive segment, and thus to keep the
oscillation running by frequent, angle dependent impulses to the State neuron (�gure
8.43(b)). So, starting again with the gravity deforming the animat in the beginning and the
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hereby emerging di�erent joint angles in the animat, the oscillators of the single segments
are initiated one after the other and soon (re-)synchronize with each other, so that segments
at opposite positions oscillate almost in synchrony (�gure 8.43(a)).

8.4.2 Experiment 9: Coordination via Token Passing

Another experiment focusing on a speci�c control approach examines the performance of
a sensor-less joint coordination based on a token passing strategy. This should con�rm,
that a successful, robust locomotion behavior can also be generated entirely without any
sensors. Instead, an inner rhythm is used to drive the behavior. For this, a peripheral
structure was added, that spans over all main modules and is able to generate this inner
rhythm (see �gure 8.45(a)). The structure uses neurons with linear transfer functions that
are limited to an output range of [0,1]. With their strong self-connections, the Token

neurons of that structure remain persistently active once they get activated beyond a
certain threshold and can then only be suppressed again by an active Token neuron of the
successive body segment. Accordingly, there may be multiple Token neurons active in the
entire network, but never simultaneously in directly neighboring segments. While active,
a Token neuron slowly increases the activity of the Output neuron of its successive module
and decreases the activation of its own Output neuron. The rate of activation change hereby
is determined by the weight of the excitatory/inhibitory synapses between a Token neuron
and the a�ected Output neurons. That weight is assumed to be similar (for inhibitory
synapses with reversed sign) for all synapses of that type in the entire network, so that
the generated inner rhythm is constant throughout the entire body. Once the activity of
an Output neuron exceeds a certain threshold, it activates its corresponding Token neuron
strong enough and that Token neuron gets fully active because of its self-coupling. This
inhibits the preceding Token neuron, slowly deactivates the now active Output neuron and
slowly activates the successive Output neuron.

Accordingly, the Token neurons are activated and deactivated in a cyclic way, that may
be interpreted as passing one or more tokens (or activation centers) from one segment to
the next with a steady, �xed speed. Figure 8.44 shows the activation of two successive
Token neurons and their corresponding Output neurons, while an activation center passes
through those two body segments.

Modularization. As in the experiments before, only one master module is evolved and
the modules of the other body segments are clones of that master module. The neurons
and synapses of the token passing structure have been protected to prevent its destruction
during the course of the evolution. Only the weight of one synapse (marked as Var1) can
be mutated, limited to a range of [0.005, 0.2]. This range corresponds to plausible rhythm
frequencies. That weight is used as a variable with the network equations constraint to
calculate the weights of all other synapses that control the speed of the activity forwarding.
These other synapses are tagged each with a network equation, either w = V ar1 or w =
−1 ∗ V ar1 to calculate their weights (see �gure 8.45(a)).

The valid synaptic connections are restricted with synaptic pathways. Only synapses
going from the output of the token forwarding structure of the master module towards its
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(a) Weight V ar1 = 0.1. (b) Weight V ar1 = 0.03.

Figure 8.44: Activation of the Output and Token neurons of two successive modules for
two di�erent choices of Var1.

(a) Modularization details of the master module of the
token passing network.

(b) Search Space (+2 Neurons)
Network: N: 62 S: 271
Parameters: B: 7 W: 31

Figure 8.45: Details of the modularization for the token-passing experiment. (a) The
modularization of the master module and (b) the maximal search space of the modularized
network.
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inner neurons are allowed. In addition, connections from the middle module (Spike) to
each of the input neurons of the token forwarding structures (Token neurons) in all main
modules can be added during evolution. These connections are used to activate one or more
Token neurons when the network starts. The middle module creates a single activation
peak during the �rst simulation steps, which is su�cient to activate a connected Token

neuron. This initial activation is necessary. Otherwise the entire network remains inactive.
Instead of giving a single activated Token neuron in advance, the number and distribution
of such activations are left open for evolution to get more varieties of the locomotion
coordination. The synapses towards these Token neurons are limited to a positive range
of [0, 10]. The visibility depth of the Token neurons as module input neurons have been
increased to 2, so that the neurons are visible for the output neuron of the Spike module.

The maximal search space with two additional processing neurons in the main module
is shown in �gure 8.45(b).

Results. Starting with this constraint mask, only a single experiment failed to develop
a forwards locomotion. Most evolved controllers (25 of 34 experiments) could fully master
the hurdle track. This indicates, that with the given peripheral structures, successful
locomotion behaviors are quite easy to �nd. In fact, all that is necessary is the selection
of a suitable number of active tokens, a suitable rotation speed for the tokens and an
appropriate motor response to an active token in each segment. Actually, among the
evolved neuro-controllers of this simple, sensor-less behavior was the fastest solution of all
experiments. The �tness progress of the 10 best evolution experiments is shown in �gure
8.46.

Figure 8.46: The �tness development of the 10 best evolution runs. For a better readability
the best three evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to overcome obstacles.

Interestingly, although any combination of tokens has been possible, almost all con-
trollers used either a single token or two tokens in opposite segments. This makes sense,
because as a reaction to an active token, a segment can only either stretch, contract or
relax. And the chosen strategies cannot be mixed due to the clone constraints, therefore
the animat has either only contraction zones, stretching zone or relaxation zones. A single
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Figure 8.47: The motion sequence of the token-passing neuro-controller shown in �gure
8.48. The picture series shows every 60th simulation step.

Figure 8.48: Details of an evolved token-passing controller. The Spike neuron is here
connected to the master module for a better comprehension, although the evolved controller
had a connection to one of the other main modules. Functionally, there is no di�erence.

Network: N: 82 S: 182
Parameters: B: 0 W: 13
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zone of any kind is already su�cient to generate a fast forwards motion (�gure 8.47 shows
the behavior of such a controller). Two zones are also suitable, as long as they are approx-
imately opposite of each other, but any other combination disturbs the motion pattern or
deforms the animat so that the hurdles become di�cult to pass. The only combination of
more zones would make sense for relaxation zones, in particular, if all segments except for
one or two opposite segments are in a relaxed state. But because tokens cannot exist in
directly neighboring segments, this scenario cannot evolve.

Figure 8.48 shows one example of the evolved controllers. This controller uses a single
rotating activation center and contracts the body segment when the Output neuron be-
comes active. When the Output neuron is inactive, then the segment is stretched. This
already is su�cient � in combination with the closed chain of the body � to move the
animat forwards (see �gure 8.47).

8.4.3 Experiment 10: A Feed-forward Processing Column

The next experiment shows another example of how ICONE constraints can be used to
restrict the organization of a network to �t very speci�c requirements. Signals are here
assumed to be forwarded excitatory from the local sensors to the corresponding local
motors. The signals are hereby modulated by inhibitory signals that come from the further
away sensors of the neighbor modules. This model is arbitrarily chosen and does not try
to prove a speci�c hypothesis. However, such a model nicely demonstrates the use of
the ICONE constraints and shows that even in such an arti�cial structure, interesting
neuro-controllers can be found.

Modularization. For the modularization of this network, a number of additional sub-
modules have been added to allow a �ne control of the synaptic pathways. Figure 8.49
shows the modularized organization of the network.

The desired network structure should consist of a pure feed-forward structure with
only excitatory synapses between the sensors and the motors of each main module. For
this, three modules have been added. The one named Input (I) represents the beginning,
the Output (O) module the end of the processing column. The Controller (C) module
between the two is the subnetwork meant for the actual processing. The other modules at
the right and the left (PI , PO, NO, NI) are the interface modules for the communication
with the neighboring modules (previous and next).

The transfer function of all neurons are changed to prevent their activity from becoming
negative. This would undo all e�orts of forcing excitatory and inhibitory synapses, because
depending on the neuron activity, the in�uence of a synapse can be of both, inhibitory or
excitatory, when using the hyperbolic tangent. The transfer function here is de�ned by

oi(t) =
1

1− e−10aj+5 ; (8.3)
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with aj being the activation of the neuron (compare section 2.1). This transfer function
(shifted sigmoid) is shown in �gure 2.1(b) on page 11. The function is nonlinear and limited
to a range of [0, 1]. Thus, the output of all neurons is always positive.

The signal �ow of the network is de�ned using the synaptic pathways extension. The
valid synaptic connections for this network are depicted in �gure 8.49 by the thick black
arrows. The sensor signals have to �ow vertically from the Sensors module (S) over I, C
and O to the motor neurons in Motors module (M). Horizontally, the sensor signals can
be connected through the interface modules to the column modules C of the previous and
the next neighbor.

The synapses between the main modules are, as before, prede�ned and their weights
are controlled with a network equations constraint, so that only one set of weights has to
be evolved to de�ne the connective synapses between all main modules.

The submodules of the master module are strongly constrained. In all modules ex-
cept of the C module, new neurons are prevented. Using a restrict-weight-and-bias-range
constraint, all synapses between I, C and O are limited to a range of [0, 10] (excitatory)
and all synapses between PI , C and NI to a range of [-10, 0] (inhibitory). All synapses
within modules C, PI , PO, NI and NO also are restricted to be excitatory in a range of [0,
10]. Furthermore, module C is constrained by an enforce connectivity pattern constraint
to guarantee a feed-forward structure. So, all new synapses added to that module will
together form a valid feed-forward network without recurrences. Because new neurons are

(a) Modularization details of the master module. (b) Search Space
Network: N: 260 S: 1140
Parameters: B: 22 W: 114

Figure 8.49: Details of the initial network for the feed-forward processing column experi-
ment. (a) The modularization of the master module and (b) the maximal search space of
the modularized network.
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allowed to be added to the middle module, a synchronize tag constraint was added to au-
tomatically tag any new neuron as module input, so that it instantly becomes part of the
module interface and thus can be a target of synapses coming from the interface modules
at the sides. The resulting search space is shown in �gure 8.49(b).

Results. With this constraint mask, the development of controllers was quite successful.
8 of 65 controllers could master the entire hurdle track, only 9 experiments failed com-
pletely. The majority of controllers (35) could at least pass the easy obstacles in zone 2
and partially some of the ramps. The �tness progress of the 10 best evolutions is shown
in �gure 8.50.

Figure 8.50: The �tness development of the 10 best evolution runs. For a better readability
the best three evolution runs have been highlighted with a darker color. The right diagram
shows the distribution of controllers with respect to their ability to overcome obstacles (3*
stands for the ramp zone excluding the steepest ramp).

Most of the evolved controllers use the inhibitory in�uence between the neuro-modules
to coordinate the locomotion behavior. Surprisingly, some controllers, like the one shown
in �gure 8.52, only use the inhibitory synapses for a �ne-tuning, whereas the main behavior
is generated by a solely local processing. This novel solution, however, has some properties
not observed at other evolved controllers so far. First of all, the main 'shape' of the
locomotion behavior is dominated by a circle, that from time to time elongates a bit. In
previous experiments, such circle shaped behaviors have shown a limited performance on
the ramps, because the round shape does not allow a su�cient forwards leaning to overcome
the obstacles. This particular controller, in di�erence, masters the entire hurdle track with
an above-average speed. One reason is, that the animat rolls quite fast on plain ground
by keeping a circular shape and by using only brief elongation impulses to accelerate the
rolling. With this approach, the animat can exploit the passive rolling capabilities of a
wheel. Hindered by an obstacle, however, the animat can elongate explicitly to shift its
center of gravity forwards.

At obstacles the behavior is quite rich in variation: The animat sometimes tries to
reach out more and more forwards to overcome an obstacle, but it may also track back a
bit and then lean forwards again with momentum. Sometimes, the animat also just moves
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Figure 8.51: Wheel-shaped locomotion with elongation at hurdles and backtracking capa-
bilities (pictures 4-7). The picture series shows every 60th simulation step.

backwards a short distance and then approaches the obstacle again with a higher velocity
and thus with an additional run-up, that often is enough to propel the animat over the
obstacle.

The controller (�gure 8.52) and the output of the activation of the motors and sen-
sors (�gure 8.53) hereby are interesting, although at a rough analysis, the neuro-dynamical
cause of the rich backtracking behavior could not be absolutely identi�ed yet. As indicated
before, the inhibitory synapses from the neighbor modules are optional and do not con-
tribute essentially to the overall behavior. Furthermore, most of the feed-forward synapses
in the middle module can also be removed, which only slightly reduces the performance of
the behavior. So, the main behavior is not generated � as was expected � in the middle
module, but instead in the Input and the Output modules of that processing chain (mod-
ules I and O in �gure 8.49(a)) and in the motor layer (module M). The input and output
modules preprocess the noisy acceleration sensors and integrate their noisy sensor peaks
to more coherent, better de�ned patterns. In the motor layer, the integrative self-coupling
of the MotorTorque neuron seems to be especially important, because it causes the charac-
teristically slowly decaying torque patterns shown in the activation plot of �gure 8.53(c).
This slowed decay of the torque activation sets the joints of the animat permanently (with
varying intensities) under a constant tension, which results in the approximately round
shape. However, the acceleration driven peaks shift the tension always a bit between the
segments, so that the short elongation impulses form. At obstacles, the rolling of the
animat is stopped and thus, due to the now less varying acceleration signals, some seg-
ments remain in the state with the torque and angle peak, while the MotorTorque of the
other segments without new torque impulses decays to zero. During a normal circle-shaped
motion, the torque outputs of the segments never become fully inactive and most often,
the majority of the joints are active at a medium strength, which leads to the rounder
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Figure 8.52: Details of the wheel-shaped feed-forward controller with backtracking capa-
bilities.

Network: N: 192 S: 336
Parameters: B: 0 W: 28

shape (compare �gures 8.53(c) and 8.53(d)). Now, when some joints become fully passive
while others are strongly activated, a pronounced elongation appears, that often helps to
overcome the obstacle. During this elongation, the acceleration sensors with their quite
noisy output (�gure 8.53(b)) disturb the elongation in unpredictable ways, which leads to
the rich behavioral repertory at the obstacles. In this context, the backtracking and the
preparation of a run-up might also be just e�ects of a disturbed elongation process, at
which the then wheel-shaped animat simply gets a backwards impulse, whereupon it rolls
backwards for a short distance.
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(a) The activation of the MotorAngle neurons of all
10 segments

(b) The AccelerationX and AccelerationY sensors
of segment 1

(c) The activation of the MotorTorque neurons of all
10 segments

(d) The activation of the JointAngle sensor neurons
of all 10 segments

Figure 8.53: Activity plots of the neuro-controller shown in �gure 8.52 while the animat
is moving on plain ground. The segments are colored with increasing lightness the higher
their index are, starting with segment 1 having a black color.

Conclusions. This experiment illustrates again, that even with very speci�c constraint
masks, the outcome can be surprising and may exploit a di�erent approach than the ex-
pected one. However, the probability of �nding such a particular controller di�ers between
di�erent constraint masks, and therefore, without that speci�c constraint mask, its discov-
ery would have been unlikely. So it seems, that the de�nition of constraint masks does not
necessarily have to be guided by an elaborated plan, strategy or heuristics, but that even
arbitrary, su�ciently restricting constraint masks may do the trick to �nd novel controllers.
This suggests, that having a constraint mask at all is more important than providing a
particularly 'clever' one.
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Discussion

This chapter discusses the ICONE method as a search tool for the domain of mid-scale
neuro-controllers with non-trivial animats. The discussion covers issues with respect to
the method's features, its applicability, the evolution performance and the quality of the
evolved neuro-controllers. The chapter is then concluded with a brief outline of the ICONE
related future work.

9.1 ICONE Features

This section discusses the e�ects of selected features of the ICONE method. This ad-
dresses especially the mechanisms for search space restriction, the guidance of evolution
experiments and the in�uencing of the evolution process.

9.1.1 Search Space Restriction

The high dimensionality of the search space has been identi�ed as the major reason for the
scaling problem in neuro-evolution. However, referring to the sheer number of parameters
only re�ects the problem at the surface. In detail, successful variants of larger, non-trivial
neuro-controllers are seldom spaciously distributed over the search space, but instead tend
to be largely clustered in a comparably small set of subspaces of the global search space.
Thus, with increasing size of the neural networks, it becomes also increasingly more dif-
�cult to �nd such promising clusters at all, especially when these clusters only account
for a very small percentage of the search space. This clustering is often due to inherent
organizational features of mid-scale networks, for instance regularities, symmetries, a sep-
aration of function into specialized network areas, a hierarchical organization (of behaviors
or signal processing), structure reuse, the tendency to prefer local over global processing
(small world properties, compare Bassett and Bullmore 2006; Newman 2000; Sporns and
Honey 2006), just to name a few of the features. In biological nervous systems, the exis-
tence of such organizational features is common knowledge (Amaral 2000). I argue, that
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these features become more and more important and severe the larger the networks become
and the more (distinct) functional and behavioral capabilities are combined in the same
network.

This certainly means that the assumed existence of such organizational features in
mid- and large-scale networks can be used as heuristics to focus the search on promising
subspaces of the parameter space instead of performing a global search. This does, in
fact, exclude some valid network con�gurations from being found, but the overall search
space often can be signi�cantly reduced, so that it becomes more likely to actually �nd
a successful controller. As a reminder, the focus here is primarily on �nding successful
neuro-controllers at all, which already is a di�cult task in that domain. About this fact
and about the necessity of a search space reduction, there is not much of a debate. The
debate starts when the 'correct' heuristic, measure or technique is discussed. I argue,
that up to now, no general heuristic method has been proposed, that �ts all experimental
scenarios and that can be used solely to reduce the search space. Instead, all proposed
measures show strengths in some experiments and severe weaknesses in others. This is the
reason why ICONE was designed to be as open as possible for di�erent heuristics regarding
the search space restriction, so that the best heuristics for each experiment can be combined
to bene�t from their strengths and to avoid their weaknesses.

With its many search space reduction features � such as modules, functional constraints,
synaptic pathways, network tags, interactive and iterative evolution � ICONE does not pro-
vide a single search space reduction heuristics, but instead a very �exible, �ne-adjustable
and controllable way to realize various restriction heuristics speci�cally de�ned for each
single experiment. These heuristics are also not necessarily static over the course of the
experiments, but can be adapted �exibly, leading to a context sensitive search space reduc-
tion. Because of its speci�city with respect to the experiments, heuristics in ICONE can
combine very complex and experiment speci�c features that would not be possible with
any general search space reduction heuristic.

9.1.2 The Power of Peripheral Structures

A common and very e�cient search space reduction measure in ICONE is the distinction
between peripheral and focus structures in the evolving neuro-controllers. The prede�ni-
tion of peripheral structures condenses the evolutionary search problem to those unknown
network parameters that are the focus of the experiment. This avoids the costly search for
network structures that are considered necessary, but that are � with respect to the ex-
periment � trivial accessory structures. Starting evolution with an initial network already
providing such known structures as (optionally mutable) peripheral structures results in
a much smaller search space, a simpler �tness landscape and therefore a higher chance of
�nding a solution.

Also obviously, larger networks evolved using peripheral structures are often neuro-
dynamically richer than smaller networks without peripheral structures evolved in search
spaces with comparable dimensionality. This is because peripheral structures contribute
own, often well developed and elaborated dynamical properties to the networks, resulting
in more complex global dynamics of the evolved networks. So, although both types of net-
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works are evolved within similarly large search spaces, networks with peripheral structures
have a greater potential to show interesting neuro-dynamical properties.

As a side e�ect of using peripheral structures, the search is biased towards speci�c
solution approaches. At �rst glance, this may seem as a drawback, especially from the
perspective of scientists that think of neuro-evolution as a universal, 'miraculous' problem
solver that produces surprising and ingenious solutions without any guidance. In prac-
tice, however, without some guidance many valid questions cannot be approached with
neuro-evolution in an acceptable way. In that context, peripheral structures can be used
explicitly and on purpose to induce domain knowledge and to in�uence the direction in
which controllers are to be searched. Many systematic explorations of speci�c control ap-
proaches are in the �rst place only possible using peripheral structures. Therefore, the
power of guidance inherent to peripheral structures should not be underestimated.

9.1.3 Structure Evolution vs. Fixed Topology Evolution

NE algorithms with the capability of evolving both the topology and synaptic weights
of the network are considered much more powerful, especially in �nding interesting con-
trollers, than those only evolving the synaptic weights on a �xed-topology network. This is
especially common in the context of ER and neuro-cybernetics, because many interesting
features of the network dynamics and network organization are considered results of a suit-
able network topology. This view, however, is only valid when the involved �xed-topology
networks are classical standard networks, such as fully connected or layered networks. If
applied to �xed, but complex networks with already interesting topologies, a sole weight
optimization without structural modi�cations can still lead to interesting scienti�c results.
This is especially true for experiments, in which a certain control approach is merely to
be con�rmed, than to be developed. For such experiments, the entire structure of the net-
work can be given in advance (e.g. based on reasoning), whereas the de�nition of proper
weights for the structure often is too di�cult to be done analytically. The evolutionary
algorithm here can search the typically comparably small search space to �nd a solution
that in turn proves the validity of the approach. ICONE supports this practice natively
with the de�nition of constrained initial networks.

9.1.4 Local Coexistence and Mixing of NE Approaches

With functional constraints, many valuable features of published NE approaches, related
extensions and network models can be used with the ICONE method. Examples are learn-
ing rules (Urzelai and Floreano 2001; Zahedi and Pasemann 2007), the use of delta encoding
(Whitley et al. 1991), topology regularities (D'Ambrosio and Stanley 2007), specialized
neuron models, �xed connectivity patterns (Wilimzig and Schöner 2004) and topology
construction heuristics.

A major di�erence compared to using the corresponding NE approaches or NE exten-
sions directly is, that with ICONE all the approaches can be combined and mixed within
the same evolving network using constraints. Moreover, the e�ects of each feature can
be limited to arbitrary subsets of network elements via neuron-groups and neuro-modules.
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Therefore, each feature is only applied to those network areas where its e�ects are expected
to be bene�cial, avoiding potentially harmful e�ects on other network areas.

A neat feature when using NE extensions via constraints is the ability to attach these
extensions as functional constraints directly to a neuro-module. As a result, each neuro-
module may provide its own set of extensions optimized for its use in the evolving network.
If collected in a module library, such optimized neuro-modules can be reused including the
associated extensions, usually without side e�ects to other parts of the network.

9.1.5 Control of Evolution Parameters

A major challenge in the �eld of evolutionary algorithms is still the identi�cation of proper
settings for the evolution operators. Clearly, these parameters have a strong in�uence on
the evolution performance. Finding the correct settings is di�cult because the 'optimal'
settings strongly depend on the evolution experiment and often on the currently involved
search space. Large mutation probabilities, for instance, are needed in the beginning of an
evolution to start with a large variety of di�erent initial networks and therefore a broad
sampling of the search space. Lower mutation rates are required for �ne optimizations
when the search is close to an optimum. On the other hand, if such an optimum is an
undesired local optimum, then larger mutation rates are mandatory to escape from such
an optimum. Consequently, the main di�culty is to choose settings that are applicable for
the entire evolution experiment, because these settings have to be a compromise between
these scenarios.

In detail, it is even more di�cult to �nd the proper settings. An example is the
stepwise complexi�cation of networks (Pasemann et al. 2001; Stanley and Miikkulainen
2002a), i.e. the stepwise extension of minimal networks by insertions of new neurons and
synapses. If the probabilities for such insertions are set low, then the evolution requires
many generations only to collect enough network elements to solve a task. If higher inser-
tion probabilities are used, then the necessary network complexity is reached earlier, but
before these network structures can be adapted to solve the task, the networks already
comprise too many neurons and synapses, that hinder the further optimization.

A di�erent, but also severe problem is that in larger networks, di�erent network areas
may be disparately sensitive to changes and thus would need di�erent mutation settings to
optimally evolve. So again, the global operator settings have to be a compromise between
such highly sensitive and insensitive network areas, which can prevent both from evolving
acceptably.

To avoid the selection of a single parameter set, di�erent strategies have been pro-
posed to adapt the settings over the course of the evolution experiment. Such adaptation
is considered to signi�cantly enhance the quality of evolved solutions (Back et al. 1991;
Hinterding et al. 1997).

ICONE supports three measures to in�uence the settings of the evolution operators.
The �rst is interactive evolution (section 5.2). Hereby, the user can adjust the evolution
parameters interactively during the evolution. This measure is the most time-consuming
one, but the results can be very good due to the involved domain knowledge and the ability
to react directly on the observed evolution progress.
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The second way to in�uence the evolution settings � at least in the reference implemen-
tation of the ICONE method � are automatic scripts, that adapt the evolution settings
according to prede�ned rules (section 6.5). Certainly, this strategy is compatible with
most NE methods, but with the optional interactivity of ICONE evolutions, it becomes
easier to de�ne such experiment-speci�c rules: The experiences gained from interactive
evolutions for the same (class of) experiment(s) can be condensed to such sets of rules to
enable a rough adaption also for unsupervised evolutions, e.g. when variants of an already
successfully evolved controller are further explored with unsupervised experiments. These
rules can still be speci�c for a certain experiment, which can be more e�ective than the
use of standard rules.

The third measure, that is unique for the ICONE method, is to locally overwrite the
evolution settings with network tags (section 3.2.4). This addresses the need to allow dif-
ferent evolution settings throughout the evolving networks. Overwriting evolution settings
implies domain knowledge to decide, which network areas require a special treatment dur-
ing mutations. This is especially given when using re�ned neuro-modules, whose function
and desired mutation behavior is usually well understood.

Together, these measures allow a �exible adaptation of the mutation settings to reduce
the problem of �nding a single 'optimal' set of settings suitable for the entire networks and
all phases of the evolution.

9.2 Evolvability and Performance

This section discusses the performance of the method regarding the successful evolution of
neuro-controllers in the domain of mid-scale networks.

9.2.1 Increased Success Rate

The experiments performed with the ICONE method show that evolution often succeeds
�nding suitable neuro-controllers even in the domain of mid-scale networks. The success
rate is, for this domain, comparably high, as long as the networks are su�ciently con-
strained. This is not surprising, because � presuming a suitable experiment with a proper
�tness function � the success rate depends, to a large extent, on the dimensionality of the
search space. The constraining of a mid-scale network does actually reduce that search
space to a complexity commonly involved with the evolution of smaller networks and thus
both kinds of evolution should roughly have a comparably high success rate. In the case
of a constrained network, however, a new factor strongly in�uences the success rate. This
factor is the constraint mask itself. A poorly designed constraint mask may not only lead
to an unmanageable search space, but may also lead to search spaces that do not contain
a suitable solution at all. This can happen inadvertently, e.g. when a constraint mask is
faulty, but also when striving for a control approach that is not feasible in the anticipated
way. This is why � when systematically exploring di�erent control approaches � such bad
con�gurations are almost inevitably encountered, demanding for a high frustration toler-
ance. On the other hand, a very restrictive constraint mask can already almost contain a
solution, so that a success is virtually inevitable. In short, the success rate is highly depen-
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dent on the experience of the experimenter and (as always with evolutionary experiments)
on the way the experiment is conducted.

Therefore, it is very di�cult to compare the success rate and performance of ICONE
to other evolution methods. Comparing the algorithm on the basis of known benchmark
problems has several problems. First, such problems do not cover the actual target domain
of ICONE (evolution of mid-scale neuro-controllers), so either the required networks are
too small or the task is too abstract (e.g. pattern recognition, classi�cation). A second
problem would be the choice of the constraint mask. Not using a constraint mask at all
would not evaluate the full ICONE method. But since a constraint mask can focus the
search by so many di�erent degrees � also directly on an already known solution � all
constraint masks may be vulnerable to criticism and in some cases considered 'cheating'.
And a third problem is the (optional) interactivity of the method, which is also strongly
dependent on the experience of the experimenter and therefore is not comparable.

Consequently, this thesis has to be content with the inconclusive statement, that the
ICONE method does allow successful evolutions of non-trivial animat control in the domain
of mid-scale networks, but nothing more.

Though, most experiments mentioned in this thesis have been conducted multiple times
with di�erent constraint masks to explore di�erent kinds of controllers. A notable common
observation was made concerning the evolvability of mid-scale controllers: Reducing the
constraint mask too much or removing it completely, and thus turning the evolution into
an (almost) unconstrained structure evolution, always lead to unsolvable con�gurations
without successful solutions. This, at least, indicates the importance of the constraint
masks for the evolution success in this domain. A proper proof for this, however, is still
outstanding.

9.2.2 Performance of the ICONE Method

As described in the previous section, the performance of the ICONE method is di�cult to
compare to other neuro-evolution methods. In the literature, such comparisons often rate
the method performance according to aspects like,

� the success rate of evolution experiments,

� the number of generations required to �nd a solution,

� the overall number of evaluations required to �nd a solution,

� or the runtime in seconds to complete.

Being designed with focus on the practical applicability and a good success rate when
applied to mid-scale networks, rather than on performance, the ICONE method can, if it
would be compared based on classical benchmark problems, certainly not be ranked as one
of the top performing algorithms.

One reason is the reference implementation, the NERD Toolkit (Appendix D). This
software was designed to allow rapid extensions (plug-ins, scripts) and an easy to use
graphical user interface, needed for the preparation of initial networks, the analysis of
neuro-controllers and the conduction of interactive evolution. This overhead naturally has

160



Chapter 9. Discussion

a negative impact on performance compared to compact console programs implementing
only the plain algorithm in a native programming language such as C.

A second reason for a lower performance is the variation chain with the constraint
resolver and the corresponding genome rejection mechanism (section 3.3). The mutation
phases of other NE methods are con�ned to the rapid mutation of a few genes of each
individual, whereas during the mutation phase of the ICONE method an often complex
interplay of functional, computationally expensive constraints has to be resolved. More-
over, many constraints have to be executed multiple times to reach a resolved state for an
individual, or worse, cannot be resolved due to a con�ict. Unresolved genomes are then
further mutated before a new constraint resolution is attempted, and the whole procedure
can be repeated multiple times. In detail, the mutation of a single individual takes cf
non-trivial function calls, where

cf = cm(nm + ccnc); cm = 1, . . . ,maxm; cc = 1, . . . ,maxc, (9.1)

with cm being the number of calls of the variation chain, nm the number of mutation
operators, cc the needed number of constraint function calls per resolution attempt, and
nc the number of constraints in the genome. maxm and maxc are adjustable parameters
of the algorithm and determine the maximal number of applications of the evolution op-
erators per individual and the maximal number of constraint executions during a single
constraint resolution attempt. So, depending on the settings of maxm, maxc and the num-
ber of involved constraints, the creation of a new generation can, in the worst case � i.e.
involving individuals that cannot be satisfactory mutated and thus are discarded � require
several minutes to complete. Of course, in the mean case the performance is much better,
because the variation chain and often also the constraint resolver are only executed once
per individual.

However, this should illustrate that, the more interacting constraints are used � and
herewith the main search space restriction of ICONE �, the slower the creation of a new
generation becomes, caused by a larger nc, a higher probability for needing more constraint
executions per resolution attempt (a higher cc) and an increasing probability for irresolvable
individuals.

In practice, this overhead only is considerable when the evaluation of individuals is
very fast. In that case, the time for the generation creation is disproportionately high
compared to the evaluation time and accordingly slows down the evolution progress signif-
icantly. In the domain of neuro-evolution for complex animats, this is usually not the case,
because there, the evaluation of a single individual already requires � due to the hereby
involved necessary physical simulations � substantially more time than the creation of a
new generation.

In the context of mid-scale networks, the performance overhead originating from the
constraint resolver also is outweighed by the increased focusing on promising search space
areas, which helps to prevent many super�uous evaluations. And because evaluations
are considered costly in this domain, the avoided unnecessary evaluations should more
than compensate for the overhead of the constraint resolutions. The real strength of the

161



9.2. Evolvability and Performance

ICONE method is not its computational performance, but its ability to �nd successful
neuro-controllers in the domain of mid-scale networks, where most other neuro-evolution
methods have severe problems of �nding solutions at all.

9.2.3 Modularization with the Network Editor

The modularization phase of the method with the de�nition of constrained initial networks
may look complicated and time-consuming at �rst glance. So, one might expect that it
takes a long time before a planned experiment can actually begin. It is clear, that the
modularization requires experience, so � as always � the �rst steps are the most di�cult
ones. However, the creation of initial networks soon becomes an appreciated routine, once
the main constraints and network tags are familiar.

The di�culty of the modularization, admittedly, depends strongly on the involved
software tools. Trying to modularize a network using a plain matrix representation or a
text �le (e.g. XML) to describe groups, modules, network tags and constraints, would
certainly be error-prone, time-consuming and frustrating. On the other hand, a graphical,
feature rich network editor, like the one shipped with the reference implementation of the
method, can signi�cantly help to keep a clear view1 on the network organization and on
the e�ects of the used constraints. Ideally, an editor like this is not a separate tool, but
instead tightly integrated with the animat simulator and the evolution system, so that
networks can directly be tested in the context of a physically grounded animat and with
respect to mutations during evolution. This helps to avoid con�icting constraints and
miscon�gurations of the constraint masks, so that invalid evolutions can be minimized.
The inclusion of additional supportive tools, that help to cope with the larger networks,
their con�guration and their analysis, can signi�cantly reduce the time needed for the
modularization phase.

9.2.4 Bootstrapping the Evolution

Finding a promising search space region with adequate gradients in the corresponding
�tness space as soon as possible is a crucial goal for any evolution experiment. If the
individuals of a generation are distributed inappropriately, i.e. in regions of the search
space without such gradients or with undesired local optima, it is very di�cult and time-
consuming to �nally converge to the anticipated solution. Evolutionary algorithms belong
to the gradient ascent algorithms and consequently do not work well without suitable gra-
dients (see section 2.2). Accordingly, the strategy of how to move the evolutionary search
initially into promising search space regions strongly in�uences the success of an evolution
experiment. This initial localization of the �rst gradients is often called bootstrapping
(compare section 2.4). In the context of neuro-control, this bootstrapping means to �nd
neuro-controllers that show the �rst signs of the desired behavior and thus start to di�er-

1Examples of the graphical network representations, as they are produced by the network editor of the
NERD toolkit, can be found in sections 7 and 8. All depicted network graphs of that section have been
taken from the editor with only minor modi�cations.
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entiate in a meaningful way with respect to the �tness measure. Before this happens, the
evolution cannot follow gradients and any progress is prevented.

Bootstrapping evolution experiments with ICONE is facilitated with several mech-
anisms. A major impact on the distribution of the initial individuals has obviously a
properly prepared initial network with its constraint mask. Modularized and suitably con-
strained, such an initial network only produces new individuals that lay within the search
space de�ned by its constraint mask, even in the �rst generation. This can signi�cantly
increase the chance that one of the created individuals is in a promising region of the
search space, compared to an initial generation based on a pure random sampling. No-
tably useful here is the extensive use of peripheral structures with prede�ned functional
subnetworks, which further reduces the number of mutations required to �nd a (partially)
working network.

In this connection, initial networks should be con�gured such a way, that they spawn
only individuals with really promising network structures, i.e. networks that at least
provide all required network elements to actually be able to solve the problem. Di�erent
from most NE methods, networks in ICONE can be mutated multiple times per generation
if required to resolve all constraints. This also holds for the �rst generation. As a result,
with suitably strict constraints, the �rst generation can already contain individuals with a
degree of mutation that normally would need several generations to develop. This acts as a
kind of short-cut to instantly move the search to a valid search region, hereby avoiding the
evaluation of several generations of 'defective' intermediate network con�gurations, that
simply do not provide the necessary network elements for the task.

Consequently, it is not su�cient to outline the expected topological speci�cations and
start with a minimal network within that constraint mask. It is better to provide ad-
ditional constraints to enforce the existence of plausible (not minimal) initial network
structures right in the beginning. This can be achieved with constraints a�ecting the con-
nection density of modules, the speci�cation of synaptic pathways, peripheral structures
or by enforcing directed paths between neurons that are expected to be connected. This
contradicts the wide-spread suggestion of complexifying algorithms to start with minimal
networks (Stanley and Miikkulainen 2002a), i.e. without processing neurons. A better
suggestion would be to start with (minimal) plausible networks, or even better, using a
network con�guration with a minimal distance to an assumed solution. This reduces the
number of mutations needed to �nd a solution and thus can be expected to evolve faster
compared to starting with a minimal network.

With these measures, the probability of �nding promising networks in the �rst gener-
ation can be increased considerably. In such a con�guration, an additional strategy can
be used to increase the bootstrapping success. The population size of the �rst generation
can be set very high, so that the initial search space is sampled densely. Starting with the
second generation, the population size can be reduced again to the actually desired pop-
ulation size to reduce the evaluation e�ort for the remaining generations. This approach
can also be combined with shorter evaluation times in the �rst generation, so that the
overall evaluation time of that �rst generation is only marginally longer than that of the
other generations. This is viable, because the �rst generation merely serves as a �rst initial
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probing of the search space. So, a long evaluation is not required here. The evaluation just
has to be long enough to identify those individuals that show the �rst signs of a suitable
behavior and thus represent candidates for promising search regions.

Experience with the conducted experiments shows that the combination of these mea-
sures indeed helps to �nd solutions faster and to reduce the number of evolution runs that
entirely fail.

9.3 Quality of Evolved Neuro-Controllers

This section discusses how and to what extent the ICONE method in�uences the qual-
ity of evolved neuro-controllers. The term quality, here, refers to the value a resulting
neuro-controller has for the experimenter. This may include any of the following: The
comprehensibility of the controller, the knowledge gained from it, its performance with
respect to an experiment and the reusability of the results.

9.3.1 In�uencing and Biasing the Network Topology

Networks evolved with the ICONE method can be biased towards speci�c solution ap-
proaches, network topologies and organizational heuristics in many ways. Therefore, the
resulting neuro-controllers are often closer to what the experimenter is looking for, which
increases the value of the results for the experimenter. In most other NE methods, the
experimenter has only limited control over the evolution process and can only hope for the
emergence of certain kinds of solutions. So the role of the experimenter is a quite passive
one. In di�erence, ICONE can � without losing the capability of evolving surprising solu-
tions � also be used as a tool to con�rm very speci�c neuro-control approaches, which can,
in such cases, increase the quality of the evolved controllers.

The ability to bias the search also makes it easier to search for variants of controllers.
Instead of waiting for the evolution to come up with di�erent solutions, one can intention-
ally change the constraint mask (slightly) and in�uence the focus of the search. Starting
in di�erent subspaces of the search space increases the probability to converge to di�erent
solutions, so the variability of controllers can be increased. This is especially useful in the
context of neuro-cybernetics, where the goal is not only to �nd a working controller for
a particular application, but also to investigate di�erent ways to realize this. Biasing the
search also allows a search for variants in a rather systematic than a purely random way,
as has been shown in the example in section 8. Furthermore, this leads to a larger number
of di�erent controllers (?) and therefore often to an increased quality.

9.3.2 Comprehension of Evolved Neural Structures

The quality of evolved neuro-controllers with respect to their comprehensibility is increased
by the ICONE method as part of several (side-) e�ects. First, complex neuro-controllers
evolved with ICONE often involve large parts of peripheral structures. These peripheral
structures are usually well understood, so the � at �rst glance � complex networks often
contain only quite manageable additional network structures. Subsequently, the experi-
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menter can concentrate on understanding these new structures and their interaction with
the already known peripheral structures.

Second, the constraint masks often keep the complexity of the evolved focus structures
low, for instance by forcing symmetries, module repetitions, synaptic pathways and the like.
Knowing the applied constraints simpli�es the identi�cation of network areas with relevance
for a behavior and may be used to guide the analysis of a network. For instance, if repeating
structures (or symmetries) are involved, it makes sense to analyze one instance of these
structures �rst to understand its function, and then to examine the other instances (e.g.
for their role), already knowing the underlying function. When using highly constrained,
evolvable neuro-modules, the possible evolvable functions of such modules are also often
limited. So, knowing the constraints used for a particular module can point one to the
underlying neural principles and speed up the analysis.

In addition, many experiments are constrained towards a speci�c control approach.
Herewith, the experimenter often has a certain expectation of the outcome that certainly
helps the experimenter during the analysis.

A �nal positive e�ect should be mentioned. The analysis of larger neuro-controllers
always requires a way to visualize a network. For ICONE, a comfortable neural network
editor is provided (Appendix D.2), which allows a graphical visualization and layout of
the networks and helps to understand the networks visually by providing suitable layouts
for the controllers. In this context, the constrained neuro-evolution approach additionally
helps to keep controllers comprehensible. Because all networks are based on a set of mod-
ularized initial networks, a basic layout is inherent to all evolved controllers. Accordingly,
the locations of the sensor and motor neurons and the overall organization of the networks
in modules and groups are preserved throughout the evolution process. In addition, many
constraints also a�ect the layout of network elements (e.g. symmetries, cloning), which
also applies to newly inserted network elements. This makes it easier to instantly get
an overview on an evolved network, its basic organization and apparent regularities. Of
course, newly inserted network elements are not neatly laid out � which is not possible
because of the required domain knowledge �, but they are at least placed within the lay-
out frame formed by modules and constraints. This frame usually re�ects the principle
network organization, so that the locations of new network elements still give clues about
their function and their relation to other network parts.

9.4 Future Work

The experiments conducted with the ICONE method up to now are still only the �rst
steps to explore the possibilities of network shaping and search space control. Many future
experiments can be expected, not only with other complex animats, but also with a focus
on novel questions. This is facilitated by the guidance abilities of the ICONE method that
simpli�es the focusing of the search on very speci�c questions concerning network topology,
network organization and the realization of speci�c approaches.

Further experiments may also focus on new constraints and additional extensions of
the ICONE method. Chapter 6 already introduced some of these extensions, which should
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be thoroughly examined as future work. Especially the extensions regarding the further
control over mutations on the neuro-module level, such as module insertions, module re-
placements, hidden elements and typed connections have a promising potential to enhance
the expressiveness of the method.

Another wide �eld of experiments can be the combination of di�erent neuron models
in constrained, heterogeneous networks, so that the �exible combination of approaches
like learning rules, higher-order synapses, di�erent neuron models and adaptive synapses
may lead to networks with specialized neurons in specialized subnetworks, as they can be
observed in most biological nervous systems. Mixing such neuron models during evolution
and allowing the free mutation of all related parameters of the models increases the search
space severely and therefore requires a search space restriction like the constraint masks
of ICONE to reduce the search space back to a feasible dimensionality.

In addition to these suggestions, many further applications, extensions and explorations
of the ICONE method can be imagined. In this section, three of these suggestions are
explicitly mentioned and are outlined brie�y.

9.4.1 Increasing Control Over Weight Mutations

One of the most crucial problems of the evolution of larger networks is the search for
suitable synaptic weights. Many controllers require quite large synaptic weights (w � 1)
to amplify signals or to inhibit neuron activations. On the other hand, interesting neuro-
dynamics often require comparably small weights (w < 1), because if only large weights are
used, then the network dynamics are mostly generated as an interplay of predominantly
saturated neurons, which only represents a very small class of possible network dynamics.
So, both kinds of synapses are useful, but it is di�cult to �nd proper settings of the
evolution operators to generate and preserve both kinds of weights. In practice, if the
development of larger weights is not explicitly prevented, then most weights converge to
a medium strength over time, which is usually already very high, leading to networks
with saturation-based dynamics (see many of the controllers in section 8). If, in contrast,
large weights are explicitly forbidden, then the useful stronger ampli�cation weights are
prevented as well.

Another related problem is the selection of a proper variance setting for weight changes
during evolution. Some parts of the networks are often more sensitive to weight changes
than others, so that di�erent settings would be required in those areas. A strategy to cope
with this problem in known network areas was already discussed in section 9.1.5. But for
synapses that are added during evolution, this measure does not work out.

Therefore, additional strategies should be examined for the ICONE method to gain
more control over the weight distribution of an evolving network. One suggestion would be
the introduction of new constraints with focus on the weight distribution. Such constraints
could control the weights within a network according to some heuristics, e.g. to keep the
sum of all weights within a module constant. Such a constraint could use network tags to
in�uence the weight modi�cation operator to prefer an increase or a decrease of weights.
So, when a weight gets stronger, then the probability for a subsequent decrease of another
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weight in the module is raised, so that a balance between strong and weak weights is
maintained.

Another strategy would be to change weights proportional to their strength, so that
small weights are only slightly changed and large weights by larger amounts. This would
prevent the rapid change of a small weight into a large weight, but would also allow fast
changes of strong weights. Then, allowing even very large weights (w � 100) would not
be a problem.

A third strategy could be the introduction of di�erent synapse classes. When a new
synapse is added, a special type tag could be added, that groups the synapse into a group
(e.g. strong, medium, small, �ne). Then, corresponding mutation operators could mutate
the di�erent classes with distinct sets of parameters settings, so that the weight range,
change probability and variance may be selected individually for each class. These op-
erators could also allow a change of the weight class as a mutation variant, so that the
classes can be varied as well. Such synapse classes then could also be enforced for certain
neuron-groups with constraints.

9.4.2 Onion Skin Evolution

Working with constraint masks has indicated another interesting aspect. When looking for
controller variants, it does not seem so important what kind of constraint mask is used, as
long as the constraint mask is restricting the search space to a feasible size. Evolution will,
if proper controllers are su�ciently numerous, �nd a solution. That solution, however, is
in most cases the most likely, prevalent solution of that search space. So manipulating the
search space changes the probability of the �ndable solutions and accordingly determines,
which solutions are dominant and consequently most likely to be found.

Therefore, a possible hypothesis is, that for �nding variants, it is not so important what
kind of constraint mask is used, but rather that (di�ering) constraint masks are used at all,
so that each search is performed in a su�ciently small con�guration space with di�ering
dominant outcomes.

As a result, a novel evolution strategy could be examined in future work that may
be termed 'Onion Skin Evolution'. The procedure would be as follows: The evolution
takes place with an initial constraint mask that restricts the search space to a feasible size.
After running multiple evolutions on that search space, solutions should have been found
and the dominant approaches should have been identi�ed. Then the constraint mask is
altered such, that the dominant solutions are excluded or become unlikely to evolve. Then
evolution is again run multiple times to �nd novel solutions in the remaining search space
and to identify the now dominant approaches. This is repeated until the initially chosen
major subspace of the search space is widely explored. So, like an onion, where skin after
skin is removed to get to previously unreachable layers, the search space is more and more
reduced by excluding already found approaches, so that other, less likely approaches can
come to the surface.

In di�erence to most evolutions performed with the ICONE method so far, where the
constraint masks have been primarily used to focus on speci�c approaches, constraint masks
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then would be used primarily to exclude approaches without requiring much thought about
the remaining possible outcomes.

9.4.3 Evolving More Controllers for Complex Robot Hardware

The described experiments in this thesis are only a small subset of the experiments that
can be approached for complex animats with the ICONE method. In addition to the
A-Series humanoid, a much more complex humanoid robot, the Myon robot (Hild et al.
2011, 2012), has been used as a hardware platform for numerous behaviors and functional
neuro-modules. The Myon humanoid comprises 173 sensors (63 acceleration sensors, 8
force sensors, 62 angular sensors, 40 current consumption sensors), 80 motor neurons to
control the torque of the 40 motors and to switch between motor modes (Siedel et al. 2011),
and a camera with a corresponding neural interface. Without search space restrictions to
drastically limit the number of evolvable parameters, the evolution of neuro-controllers
for this class of robots is very unlikely to succeed. Up to now, several behaviors have
been successfully developed for this robot, involving highly restrictive constraint masks
and peripheral structures, for instance to hide the raw motor torque neurons behind lower-
dimensional and easier to use angular controller modules. With the ICONE approach, it
is comparably easy to focus the evolutionary search on speci�c questions without the over-
head of evolving already known functions. Consequently, questions can focus on the motor
control layer (e.g. position control, force control, antagonistic control, energy e�cient con-
trol), on sensor processing (pose estimation, instability detection, reliable behavioral state
detection, motor stall detection, collision handling), on the coordination and transition of
behaviors, or on control paradigms (e.g. with perception control theory (Gräuler 2011;
Powers 1973)). Only a small part of the possible (and realistically evolvable) experiments
have been approached so far and are left for future work.

Another very interesting class of animats is the class of walking machines of all kinds,
such as the Octavio robot (von Twickel 2011; von Twickel et al. 2012). Experiments with
such machines have been conducted in several variants, for instance walking insects with
six, eight and twenty legs, with a sti� body or with controllable joints between each pair
of legs. Hereby, with ICONE, the involved search space does not necessarily grow with the
number of legs, which makes the approach scalable even to animats with many legs. With
proper constraints, most legs can be controlled with subnetworks that are dependent on
other parts of the network, so that the evolvable search space remains quite small. With
ICONE, di�erent questions can be systematically approached, for instance by focusing
solely on the development of suitable single leg-controllers (not on isolated legs, but merely
as part of a fully working animat, e.g. using a clone constraint), on the specialization of leg
controllers according to their position and role in the animat (e.g. with symmetry, structure
symmetry, module classes), on the leg coordination (e.g. with �xed single leg controllers
and connection symmetry), on the integration of body motions (turning and lifting of
segments) in addition to the leg motions, on the sensor processing (pose estimation, obstacle
detection), on internal states (e.g. short-term memory for obstacles to avoid collisions
for the successive legs), or on the development of di�erent gaits and behaviors. These
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and many other experiments can be approached by explicitly focusing the search on the
required properties with appropriate constraint masks.

To summarize, with the search space restriction and experiment focusing that is possible
with the ICONE constraint masks, the animats involved in the evolution experiments can
be equipped with more sensors, proprioceptors and actuators and still provide feasibly small
search spaces. Therefore, neuro-evolution can also start now to explore the capabilities of
sensor-rich, complex robots, which should allow many novel experiments and applications.
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Chapter 10

Conclusion and Impact

on the Field of Neuro-Evolution

ICONE provides a uni�ed, generalized approach for the evolution of mid-scale neuro-
controllers in the domain of evolutionary robotics. It provides measures for the major chal-
lenges of neuro-evolution in that domain (see section 2.4), including search space restriction,
bootstrapping, network shaping, (interactive) guidance of the evolution, crossover, diver-
sity maintenance, (systematic) variation exploration, exploitation of animat regularities
and peculiarities, the incorporation of domain knowledge, and structure reuse / knowl-
edge transfer between experiments. With these measures, larger networks focusing on very
speci�c experimental questions can be successfully approached.

The focus hereby is clearly on the practical applicability of neuro-evolution for non-
trivial neuro-controllers and speci�cally on the systematic, guided search for controller
variants. The algorithm has shown its practicality in the domain of mid-scale neural
networks, which enables novel evolution experiments that have so far been impractical due
to the large involved search spaces. However, the features of the ICONE method are not
only suitable to reduce the search space and to increase the chance of �nding successful
neuro-controllers, but they also provide a set of � in this context � novel techniques to
structure and control the shape and organization of evolving neural networks. Among
these techniques, the guidance of evolution towards speci�c network organizations and
solution approaches has an especially high potential for interesting results, enabling the
exploration of new scienti�c questions. This already allows for a class of novel experiments
on its own.

The future experiments are not only expected to cover neural behavior controllers for
increasingly complex physical animats equipped with many sensors and actuators, but also
to focus on the further understanding of dynamical principles of neuro-control and on the
realization of particular functions as neuro-modules, such as di�erent motor control ap-
proaches, sensor processing, (short-term) memory and (behavior) coordination approaches.
This has the potential to lead to novel insights regarding properties of neuro-controllers
with richer neuro-dynamics and more complex neural organizations.
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As part of this thesis, a reference implementation of the method has been published as
open-source software. With this high-quality software framework the ICONE method is
o�ered as ready-to-use tool for the evolutionary robotics community. Herewith, the ICONE
technique can be used directly for experiments without bothering the experimenter with a
prior laborious implementation of the method.
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Appendix A

Network Symbols

Neural networks in this thesis are visualized graphically as graphs. The symbols used in
these diagrams are named in �gure A.1. The di�erent network elements are described in
detail in the corresponding chapters of this thesis. Named neurons, neuro-modules and
neuron groups used in the text are printed in a Typewriter font to highlight, that these
names refer to network elements in a network graph.

Figure A.1: Symbols used to visualize the neural networks in this thesis.
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Appendix B

Mutation Operators

The variation chain of the ICONE algorithm (section 3.3.1) provides a number of mutation
operators that modify the network genomes during the variation phase. The operators are
executed in a �xed, ordered sequence during each mutation phase. This section describes
the mutation operators of the ICONE method, as they are used with the reference im-
plementation of the NERD Toolkit for the experiments of this thesis. The chapter gives
details about their function and the various parameters that can be used to in�uence their
behavior. The order, in which the operators are described here, corresponds to their order
in the variation chain. In addition to the standard mutation operators, the chapter is
concluded by a brief description of some experimental operators that are used to extend
the ICONE method with new functions, such as module insertions, hidden elements and
mixed neuron models (for an overview on ICONE extensions see section 6).

ICONE Standard Mutation Operators

Initial Network Creation

This operator is part of the genome creation phase, together with the modular crossover
and the clone parent operator. This operator is executed for any new individual without
parents. This usually only happens when the �rst initial generation is created.

The operator allows three di�erent ways to describe the preferred network con�guration
for a new individual. The �rst two ways, the speci�cation of an initial network or a directory
with such networks, is the preferred way to start an ICONE evolution. An initial network
is usually modularized and con�gured with a constraint mask, so that the search is biased
and the search space is restricted. Most commonly, a single constrained network is given as
a blue-print for the initial generation. That network is cloned for each new individual and
hereafter slightly varied by the subsequent mutation operators, so that the new networks
di�er from each other. Instead of a single network, also a directory with initial networks
can be speci�ed. This directory can either contain di�erent alternative initial networks, or
more often, the generation of a previously stopped evolution experiment. This allows the
continuation of the evolution with every generation of a previous experiment, as long as
the networks of that generation are still available.
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Network File or
Directory

String The �le containing the initial network, or the directory
containing multiple initial network �les

Preserve Initial
Network

Boolean Determines whether an unchanged version of the initial
network should be part of the �rst generation

Input Neurons Integer The number of input neurons (sensors) of the new net-
work

Output Neurons Integer The number of output neurons (sensors) of the new net-
work

Activation Func-
tion

String The activation function used for all neurons of the new
network

Transfer Function String The transfer function used for all neurons of the new
network

Table B.1: Parameters of the Create Initial Network operator

Alternatively, this operator also can create minimal networks from scratch, which is �
in the context of the ICONE method � not recommended because of the missing constraint
masks and the herewith involved large search spaces. In this case, a number of parameters
have to be speci�ed to de�ne the number of motor and sensor neurons and the used neuron
model.

Parent Cloning

This operator is applied to any new individual with at least one parent. It simply copies
the genome of the that �rst parent. Due to the subsequent mutation operators, that cloned
network is then lightly modi�ed hereafter.

Modular Crossover

The crossover operator is only applied for new individuals that provide at least two par-
ents. The operator exchanges modules of the genome, which was cloned with the previous
mutation operator, with modules of the second parent. Details of the modular crossover
can be found in section 3.3.3.

The operator has two parameters: The �rst one speci�es the probability of whether
the crossover operator is applied to a new individual. If so, then the probability of each
exchangeable module to be exchanged is given by the second parameter. This global
probability setting can be overwritten locally with network tags on the modules, so that
each module may have a di�ering probability to be exchanged.

Neuron Removal

This operator removes neurons from the network. This only a�ects neurons whose existence
is not protected by network tags or by their owner module. The latter is the case when a
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Crossover Proba-
bility

Float
[0,1]

The probability that the crossover operator is executed

Probability per
Module

Float
[0,1]

Probability per module to perform the crossover with a
compatible module

Table B.2: Parameters of the Modular Crossover operator

module itself is protected against structural changes, which also excludes the removal of
neurons.

Number of Tries Integer The maximal number of neurons that can be removed
during a single call of the variation chain

Probability per
Try

Float
[0,1]

Probability per try to remove a neuron

Table B.3: Parameters of the Remove Neuron operator

The parameters of the operator specify the maximal number of removal attempts for
each execution of the operator, and the probability for a successful removal per attempt.
If a removal should take place, then an unprotected neuron is chosen at random and is
removed.

Synapse Removal

This operator removes synapses from the network. This only a�ects synapses whose ex-
istence is not protected by network tags or by their owner module. The latter is the
case when a module itself is protected against structural changes, which also excludes the
removal of synapses.

Number of Tries Integer The maximal number of synapses that can be removed
during a single call of the variation chain

Probability per
Try

Float
[0,1]

Probability per try to remove a synapse

Table B.4: Parameters of the Remove Synapse operator

The parameters of the operator specify the maximal number of removal attempts for
each execution of the operator, and the probability for a successful removal per attempt.
If a removal should take place, then an unprotected synapse is chosen at random and is
removed.

Bias Removal

This operator removes bias terms from neurons. This does only a�ect neurons whose bias
is not protected by network tags.
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Number of Tries Integer The maximal number of bias terms that can be removed
during a single call of the variation chain

Probability per
Try

Float
[0,1]

Probability per try to remove a bias term

Table B.5: Parameters of the Remove Bias operator

The parameters of the operator specify the maximal number of removal attempts for
each execution of the operator, and the probability for a successful removal per attempt.
If a removal should take place, then an unprotected bias term is chosen at random and is
removed.

Neuron Insertion

This operator inserts neurons to the network. For this, the operator �rst determines the
number of new neurons that are actually inserted to the network during the current execu-
tion of the operator. Each new neuron is then placed at random positions in the network.
New neurons can only be inserted to modules that are not protected against structural
changes and that do not violate given size restrictions, which both can be speci�ed with
network tags on the modules. Neurons that cannot be placed at a valid place due to
restrictions are discarded.

The distribution of new neurons can be in�uenced with network tags on modules. With
such tags, modules can be con�gured to be more often or less frequently considered for a
neuron insertion.

The transfer and activation function of a new neuron is derived from the default settings
of the network. However, both functions can be changed by constraints of the neuro-module
to which the new neuron was added to, so that heterogeneous networks with coexisting
neuron models can also be evolved.

Number of Tries Integer The maximal number of neurons that can be inserted
during a single call of the variation chain

Probability per
Try

Float
[0,1]

Probability per try to add a new neuron

Add to Module
Probability

Float
[0,1]

Probability per inserted neuron to add it to a module
(default is 1.0)

Max Network Size Integer The maximal number of neurons in the network
Initial Connection
Proportion

Float
[0,1]

Determines the proportion of valid synaptic connections
that can be added to the new neuron during the initial
connection phase (default is 1.0)

Table B.6: Parameters of the Insert Neuron operator

A new neuron without synaptic connections is quite useless. To avoid a long delay
between a neuron insertion and the development of new synapses connecting the new
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neuron with the remaining network, each neuron is initially connected with the network.
These initial synapses are inserted by the specialized Synapse Insertion operator. To
trigger such an initial connection in that operator, each new neuron is tagged with a special
network tag. This tag speci�es the maximal desired connectivity of the new neuron, i.e.
the maximal number of synapses that may develop during that initial connection step as
a proportion of all valid synapses for that neuron.

Synapse Insertion

This operator inserts synapses to the network, considering module boundaries, neuron
visibilities, protection tags, synaptic pathways and other limiting or heuristic rules.

Number of Tries Integer The maximal number of synapses that can be inserted
during a single call of the variation chain

Probability per
Try

Float
[0,1]

Probability per try to add a new synapse

Initial Insertion
Probability

Float
[0,1]

Insertion probability per possible initial synaptic con-
nection of new neurons

Table B.7: Parameters of the Insert Synapse operator

The operator runs in two phases. First, initial connections of new neurons are created.
New neurons are identi�ed by a special network tag that speci�ed the proportion of initial
connections for the neuron. For each such neuron, the operator determines, which synaptic
connections are valid according to the rules and restrictions mentioned above. Based on
these valid connections, the maximal number of new synapses for that neuron is derived as
the proportion of the number of valid connections. The probability for each new synapse
to be actually inserted is given as a parameter of this operator. That probability di�ers
from the probability for the insertion of other synapses, so that the initial connections
can be controlled independently from the normal synapse insertions. This is important,
because the insertion of initial synaptic connections should usually be much more probable
than the insertion of other synapses. This ensures, that new neurons are rapidly connected
to the network without the need to have a high synapse insertion probability for existing
network structures, which would lead to densely (or fully) connected networks in a short
time. The network tag for the initial connection is removed by this operator, so that initial
connections are only added once.

In the second phase, the operator inserts synapses to neurons that have not been newly
inserted to the network. The maximal number of insertion attempts per operator execution
can be speci�ed as a parameter of the operator. For each such attempt, the operator decides
based on the given insertion probability, whether a new synapse is inserted. If so, a valid
synapse is added to the network. Hereby, the above mentioned rules and restrictions are
considered.

The synapse function of new synapses is taken from the default settings of the network.
Constraints on neuro-modules can modify the synapse function, so that also heterogeneous
networks with mixed synapse functions are possible to evolve.
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Bias Insertion

This operator adds new bias terms to neurons. It only a�ects neurons without a bias term,
that are not protected against bias insertions with network tags.

Number of Tries Integer The maximal number of neurons that can get a new bias
term during a single call of the variation chain

Probability per
Try

Float
[0,1]

Probability per try to add a new bias term

Table B.8: Parameters of the Insert Bias operator

The number of bias insertion attempts per operator execution can be speci�ed as a
parameter of the operator. For each attempt, the operator decides based on the probability
parameter, whether a new bias term is inserted. If so, then a valid neuron is chosen at
random and a new bias term is added. Each new bias is set to 0.0 and has to be initialized
by a subsequent operator.

Synapse Initialization

This operator initializes all synapses with a weight of 0.0 with a random value in the given
range of [Min, Max]. This range can be in�uenced for each separate neuro-module or
neuron-group with network tags, so that synaptic weights can be sensitive to a context
where domain knowledge is available.

Min Double The lower boundary of the range of initial weights
Max Double The upper boundary of the range of initial weights

Table B.9: Parameters of the Initialize Synapse operator

Bias Term Initialization

This operator initializes all bias terms with a weight of 0.0 with a random value in the
given range of [Min, Max]. This range can be in�uenced for each separate neuro-module
or neuron-group with network tags, so that bias terms can be sensitive to a context where
domain knowledge is available.

Min Double The lower boundary of the range of initial weights
Max Double The upper boundary of the range of initial weights

Table B.10: Parameters of the Initialize Bias operator
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Bias Term Modi�cation

This operator modi�es existing bias terms of neurons. It only a�ects neurons that are not
protected against bias changes via network tags. For each neuron with a bias term the
application of the operator is separately determined according to the application probabil-
ity. If the bias term is modi�ed, then the value of change is calculated using a Gaussian
distribution with the given standard deviation. That value is then added to the bias term.
The standard deviation and the change probability can be locally in�uenced per neuron
or neuro-module with network tags.

Probability per
Bias

Float
[0,1]

The change probability for each bias

Deviation Double The standard deviation for bias changes
Min Bias Double Minimal bias of changeable bias terms
Max Bias Double Maximal bias of changeable bias terms
Re-initialization
Probability

Float
[0,1]

The probability to randomly re-initialize a bias term.

Table B.11: Parameters of the Change Bias operator

Parameters Min and Max de�ne an absolute limit for bias terms that cannot be violated
by changing a bias. This only applies when a bias term is changed, so protected or initial
bias terms may violate these limits.

The re-initialization probability parameter de�nes a (low) probability that a
bias term is randomly re-initialized with a new random value. This allows rare, but rapid
bias changes.

Synaptic Weight Modi�cation

This operator works similar to the bias term modification operator and changes the
weight of synapses.

Probability per
Weight

Float
[0,1]

The change probability for each synaptic weight

Deviation Double The standard deviation for weight changes
Min Double The minimal weight of all changeable synapses
Max Double The maximal weight of all changeable synapses
Reinitialization
Probability

Float
[0,1]

The probability to randomly reinitialize a weight

Table B.12: Parameters of the Change Synapse Weight operator
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Neuro-Module Insertion

Inserts a neuro-module from the neuro-module library (5.1.3). In the library, only neuro-
modules that are relevant for the experiment should be enabled for insertions, so that
the search space is kept small. Neuro-modules are only inserted as submodules, if their
insertion is valid for the target module. This can be in�uenced with network tags on the
modules. Each module can separately specify lists of permitted or prohibited module types
(details on module types can be found in section 4).

As a variant, this operator can also exchange existing modules of the network by com-
patible neuro-modules from the module library. This allows the evolutionary search for
the best suited alternative for a module, when multiple versions of that module or neural
function are available in the module library.

Higher-Order Synapse Insertion

This operator inserts higher-order synapses (Koch and Poggio 1992), i.e. synapses that
connect the output of a neuron with another synapse, instead of another neuron. These
higher-order synapses then modulate the function of the target synapse, for instance to
regulate the weight of a synapse with the dynamic output of the neuron.

Hide / Uncover Network Elements

This operator is part of the Hidden Elements extension (section 6.3) and hides (disables) or
uncovers (enables) network elements, such as synapses, bias terms or entire neuro-modules.
The e�ect of hiding is similar to that of the removal operators, with the di�erence, that
the hidden network elements remain being (a disabled) part of the network and thus can
be uncovered again later. So the main di�erence is when the operator uncovers hidden
elements, which is � as e�ect for the network � similar to the insertion operators. In dif-
ference to a random insertion, the uncovered structures are not new network elements, but
instead the previously de�ned, fully con�gured network elements. This makes it possible
to explore di�erent permutations of prede�ned (complex) network structures, instead of
trying to �nd the network structures with random mutations.

Change Synapse Functions, Activation Function and Transfer Function

These three operators can be used to evolve attributes of the network models for neurons
and synapses of the network. This leads to heterogeneous networks, in which the neurons
and synapses may have di�erent underlying network models (activation function, transfer
function, synapse function).
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Network Tags

Network tags (introduced in section 3.2.4) are simple string-string pairs that can be at-
tached to network elements to in�uence the network function, the evolution process, the
function of mutation operators and other aspects of the network handling in various ways.
This section lists the major network tags used in the NERD toolkit � and herewith for
the experiments of this thesis � and describes them in detail. The list ignores a number
of additional minor network tags that are used to exchange or leave information on the
network genome, for instance during the mutation phase, the constraint resolving phase or
for analysis purposes.

Each network tag can have a parameter string to specify required attributes. Although
every network element can, in principle, be tagged with any network tag, most tags only
make sense when used with a speci�c network element. Therefore, these valid target
elements are listed for each network tag. Network tags are given in the following format:

Tag Name(s)
Parameter Name (Type) Valid Network Elements

Description

Network Tag Pre�xes

Network tags support an extensible, simple pre�x system to in�uence, how a network tag
is treated when constraints manipulate tagged network elements or when con�icts between
network tags arise. Because network tags are only simple attached information that is used
by various external program parts, such as mutation operators, the network editor, code
exporters and functional constraints, such con�icts can in rare cases lead to unexpected
behavior. In these cases, tag pre�xes can help to preserve a deterministic network setup
without unexpected side-e�ects.
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_ Hidden Network tags starting with an _ are hidden and not shown
directly to the user. Such tags are often just ancillary tags that
are usually not directly de�ned or manipulated by the user.

+ Essential When using the tagged element as reference for a copy proce-
dure (e.g. cloning, symmetry), the tag is copied to the depen-
dent elements.

- Singular When using the tagged element as reference for a copy proce-
dure, this tag is not allowed in the dependent elements.

! Major If more than one tag with the same name is found in a group
of elements, then the setting of this tag is prefered.

% Permanent If a module is replaced during evolution, then this property is
copied to the replacement of the module.

Table C.1: Network Tag Pre�xes

Protection Tags

Protected
Any Element

Protects all attributes of the network element, including
its existence. For neurons, no synapses can be directed
to that neuron. Modules do not allow the insertion of
additional modules and neurons.

ProtectExistence
Any Element

Prevents the removal of the network element during evo-
lution.

ProtectBias Neuron, Synapse
ProtectWeight Prevents changes to the neuron bias or synapse weights.
ProtectActivationFunction Neuron, Synapse
ProtectTransferFunction Prevents all changes to the speci�ed aspect of the neuron
ProtectSynapseFunction model.

NoSynapseSource Neuron, Synapse
NoSynapseTarget Prevents a neuron from being the source of a synapse, and

prevents a neuron (or higher order synapse) from being
the target of a new synapse.
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Hints for Mutation Operators

InitConnectionProportion
Proportion [0,1] Neuron
Speci�es the proportion of new initial connections that
may maximally be added. This tag is automatically
added to any new neuron to initially connect it to the net-
work, but it can also be used manually to foster stronger
initial connections. The tag is removed right after the
synapse insertion phase, so it a�ects a neuron only once.

SynapticPathways
List of Ids Network
Speci�es a list with pairs of module ids that specify path-
ways at which synapses are valid to be added. Once this
tag is present in a network, then connections between
modules are con�ned to those between the given pairs.
Each pair consists of the source followed by the target
module, so to allow bidirectional connections between two
modules, two separate pairs have to be speci�ed.

MaxNumberOfNeurons
Maximum (int) Module
Speci�es the maximal number of neurons that are allowed
in the neuro-module.

MaxNumberOfModules
Maximum (int) Module
Speci�es the maximal number of submodules that are al-
lowed in the neuro-module.

ModuleType
List of Type Names Module
De�nes the types the module belongs to. This informa-
tion is used to �nd exchangeable modules during crossover
or for module replacements.

CompatibilityList
List of Type Names Module
Lists all types the module is compatible with. This in-
formation is used for crossover and other module replace-
ments.

Role
Type Name Module
Speci�es a type that has to be used in the speci�c place
the module is used at. If replaced, the new module is
tagged with the same role tag, so that this tag remains
at the speci�c location.
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Evolution Control Tags

ChangeProbability
Probability [0,1] Any Element
Overwrites the global mutation probability for the main
parameter of a network element (bias term, weight, neu-
ron insertion) with the new probability. This probability
may be either given as an absolute value or as percentage
of the global setting.

ChangeDeviation
Deviation (double) Any Element
Overwrites the global deviation setting for mutations of
the main parameter of a network element (bias term,
weight, neuron insertion) with the new deviation. This
deviation may be either given as an absolute value or as
percentage of the global setting.

Min Limit (double) Synapse, Neuron
Max Overwrites the global range limitations for a weight

(synapse) or a bias term (neuron).
InitBiasRange Range [min,max] Module
InitWeightRange Overwrites the global range for the initialization of newly

inserted weights and bias terms for all neurons and
synapses of a module.

NeuronInsertionProbability Probability (double) Module
NeuronRemovalProbability Increases of decreases the neuron insertion or removal

probability with respect to the other modules.
SynapseAdditionProbability Probability (double) Neuron, Module
SynapseRemovalProbability Increases of decreases the addition or removal probability

for the tagged neuron or the neurons of a tagged module
with respect to the other neurons.

Functional Tags

ODN
Level (int) Neuron
Converts the a�ected neuron into an order dependent neu-
ron that is executed on the given level.
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Flip
Neuron

Reverses the output of the neuron.

Input Neuron
Output Marks the neuron as sensor (input) or motor (output)

neuron. Such neurons are directly connected to the sen-
sors and actuators of the animat.

ModuleInput Visibility Depth (int) Neuron
ModuleOutput Marks the neuron as interface neuron (input and output)

for a module. The visibility depth of the interface neurons
can be further speci�ed. The default visibility level is 1.

Identi�cation and Tracing Tags

EQ_VAR
Variable Name Neuron, Synapse
De�nes a named variable within the scope of a Network
Equation constraint. The variable refers to the bias term
(neuron) or weight (synapse) of the tagged element.

EQ
Equation Neuron, Synapse
De�nes an equation within the scope of a Network Equa-
tion constraint to calculate a synapse weight or bias term.
The equation may use any arithmetic operation and ac-
cess all variables de�ned with EQ_VAR in the same equa-
tion context.

_RDOF
List of Dependencies Any Element
This (hidden) tag (reduced degrees of freedom) is auto-
matically updated by the constraint resolver and holds
a list of all dependent parameters for each network el-
ement. This tag is useful to visualize the search space
and to derive the number of evolvable parameters of the
network. The dependency list simply contains a char-
acter per dependent parameter, such as e (existence), c
(content), b (bias), w (weight), t (transfer function), a
(activation function), s (synapse function).
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Accelboard Identi�er Module
SpinalCordAddress The Accelboard tag associates a neuro-module with a spe-

ci�c AccelBoard on the A-Series robot (see section 7).
The SpinalCordAddress associates a neuron with a hard-
ware address for a motor or sensor variable on the hard-
ware. Both are required for an export of NERD networks
to the native code of the A-Series hardware.

BDN_In ID Neuron
BDN_Out De�nes an input or output address to convert a NERD

network into a BrainDesigner network, used to operate
physical robots like the A-Series or the Myon humanoids.
The hardware addresses are required to connect the net-
work to the physical hardware.

_Location
Coordinates (x,y,z) Any Element
This (hidden) tag holds the current position of the net-
work element in the network editor. The position tag is
automatically adapted when the network element is ma-
nipulated in the editor. The position information is not
only needed for the visualization, but also for mutation
operators working on the relative positions of network el-
ements.

_ModuleSize
width, height (double, double) Module
This (hidden) tag holds the size of a module. This is
primarily used for layout purposes, but can also be used
by mutation operators to decide where to put new neurons
(e.g. by adding more neurons to larger modules)

_CreationDate
Generation (int) Any Element
This (hidden) tag is automatically added and keeps track
on the generation at which the element has been added
to the network.

_ModuleOrigin
List of Individual IDs Module
This (hidden) tag maintains a list of individual ids that
can be used to reproduce the migration path of a module
from individual to individual through crossover.

190



Appendix C. Network Tags

Auxiliary Network Tags

Layer
Layer (int) Any Element
Assigns a network element to one or more named layers.
The NERD network editor allows to hide selected layers
to increase the readability and handling of large networks.

FadeInRate
Milliseconds Motor Neurons
Only for exported networks. Replaces the motor neuron
with a special neuron type that allows a slow fading in
of the torque to protect the robot hardware from harmful
initial conditions.
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Appendix D

Neurodynamics and Evolutionary

Robotics Development Toolkit

As part of this thesis, the Neurodynamics and Evolutionary Robotics Development Toolkit
(NERD Toolkit) has been developed since 2008. The toolkit is still under constant devel-
opment and available as an open source project at nerd.x-bot.org under the general public
license (GPL). At the time of this writing, the NERD Toolkit is available in version 3.5
Rev.2790. As project lead, the overall concepts and software organization have been de-
veloped and supervised by myself. The implementation of the now over 150K lines of code
was assisted by Verena Thomas (03.2008 - 02.2009), Ferry Bachmann (09.2008 - 01.2010)
and other contributors (a complete list of contributors and details on their contributions
can be found in the project folder at nerd.x-bot.org).

The NERD toolkit was designed to provide libraries and applications to rapidly design
experiments in the context of evolutionary robotics and neuro-control. Such experiments
can either be developed within a set of given applications, that allow the evolution of neuro-
controllers for simulated animats, or can be implemented as custom applications based on
the NERD libraries. The �rst approach is fast and provides all common tools needed for
the typical experiments in the context of our workgroup. Due to a scripting interface, the
experiments can be designed solely with QScript (ECMA-262 Standard 2009), so no com-
pilation of C++ code is required. The second approach for more experienced users allows
very speci�c, non-standard experiments in C++ without the need to (re-)implement and
test common software parts, like visualizations, monitoring tools, graph plotters, neural
networks, evolution algorithms or the simulation of rigid body systems. In the current
version, the libraries comprise a scriptable simulator for animats, an extensible neural net-
work library with a comfortable network editor, a �exible (neuro-)evolution framework
with several evolution algorithms and diagram plotters for the analysis of neural networks
with methods of dynamical-systems theory. The next sections describe the main compo-
nents used for the experiments of this thesis. Further details can be found at the nerd
homepage at nerd.x-bot.org and in Rempis et al. (2010).
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D.1 NERD Simulator

A simulator is an essential part of the evolution of neuro-controllers for animats. Because
of the many necessary evaluations, it is unpractical to test controllers directly on hardware
during the evolution. The e�ort for maintenance and (comparable) setup of the experi-
ments would be very high and time-consuming. With a simulator, thousands of evaluations
can be performed parallel and often much faster than in real-time without the need to have
physical robots at all. Also, even such animats can be simulated, that cannot practically
be built as physical machines, thus increasing the range of possible experiments (e.g. by
including morphology co-evolution (Bongard 2010; Bongard and Paul 2001; Dellaert and
Beer 1994) or arti�cial ontogeny (Bongard and Pfeifer 2003)).

Figure D.1: Examples of scripted evolution experiments with the NERD simulator.

The performance of a simulator strongly depends on the underlying physics engine,
the level of simulated detail, and the degree of accuracy of the simulation. Obviously, the
more accurate and the more complex a simulated scenario is, the longer its computation
takes. The evolution of controllers for physical robots requires highly accurate simulations,
because most often evolved neuro-controllers do not work on the physical robot if the
simulation details di�er too much. On the other hand, many experiments, for instance
ones that examine network organizations or qualitative tasks (e.g. short-term memory or
behavior coordination), allow a much less accurate simulation or sometimes do not require
a physical simulation at all. Such experiments can be simulated much faster, which reduces
the runtime of the evolution experiment. Therefore, the NERD simulator does not include
a �xed physics engine, but instead implements a physics abstraction layer, that allows a
simple switching between physics engines without the need to change the descriptions of
the experiment scenarios. The simulation performance can be adapted to the accuracy
requirements by switching between di�erent rigid body physics engines (IBDS (Bender
2007), ODE (Smith 2001)), a simple 2D physics engine, a simple geometric collision model
or the representation of simulations by equations only.

The simulator provides a visualization engine with di�erent camera perspectives based
on the Open Graphics Library (OpenGL, Segal and Akeley 1993), that works with the
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representations of the physics abstraction layer and therefore is compatible with all physics
options. All parameters of the simulation, including all parameters of the simulated objects,
can be viewed, changed and plotted over time (see �gure D.2), so that the manipulation,
analysis and setup of simulations is fast and simple.

Figure D.2: The graphical user interface to manipulate, observe, plot, log and examine all
parameters of the application at runtime.

The simulation scenarios can be scripted with a language similar to QScript. The
language allows the de�nition of simulation experiments, including the speci�cation of
rigid or dynamic objects, and the de�nition of (parametrized) animat models as assemblies
of primitive building blocks. The script also includes descriptions of randomizations, that
are needed to vary the simulation during the evolution in a comparable, deterministic way.
Herewith, experiments can be de�ned and varied rapidly. New physical objects, such as
speci�c motors and sensors, can be added with a simple plug-in mechanism, so that the
NERD standard applications can be adapted to very speci�c robot hardware.

All experiments described in sections 7 and 8 have been realized with the NERD sim-
ulator.

D.2 Neural Network Editor

For the ICONE method, an interactive graphical network editor with appropriate func-
tionality is mandatory. Without such an editor, it becomes very tedious and di�cult to
modularize networks and to keep track of constraints and network tags. The network
editor implemented as part of the NERD toolkit eases the construction, modularization,
analysis, comprehension and handling of neural networks in many ways and is a valuable
part of the NERD toolkit.

Network Construction. When designing an evolution experiment with ICONE, not
only the simulation experiment, but also the initial networks have to be prepared. This
preparation involves the construction of peripheral structures, that are needed for the net-
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Figure D.3: Screenshot of the NERD neural network editor.

work to function, but that are not a (primary) target of the evolution experiment. But
also when insights gained from experiments should be transferred to new applications, it
is important to design an often complex neuro-controller by hand.

The NERD network editor provides a number of tools to construct, visualize and layout
networks. Especially for large networks, where it becomes di�cult to keep a clear view
on the network, NERD provides handy features, like di�erent zoom settings, bookmarks
for a fast navigation between network areas, search and highlighting of network elements
by selected properties (network tags, weights, names, constraints) and hiding of network
elements according to freely de�nable layers. Networks can be constructed and aligned
intuitively with mouse and keyboard while simultaneously observing the e�ects of network
changes on the network dynamics and on the behavior of an animat in real-time.

Network Modularization. Also, the modularization of neural networks is assisted by a
number of tools. Modules and groups can be de�ned, organized and con�gured to structure
networks and to manage constraints on the network. The editor can visualize e�ects of
constraints, for instance to show the de�ned synaptic pathways (section 6.1) or to highlight
all independently evolvable parameters of the constrained network to get an impression on
the remaining search space. Also � because many constraints reference network elements by
their unique identi�er � a number of tools help to ease the handling of such ids. Herewith,
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the separation of large networks with respect to regularities (e.g. similar subnetworks of
an animat with many legs) into modules becomes fast and robust.

Constraints can be de�ned and parametrized through comfortable user interfaces. To
test the constraints, all or a selection of constraints can be executed manually. Their
e�ects and their optional error messages can be examined to �nd a proper, con�ict-free
con�guration for a given task.

Module Library. As part of the network editor, a neuro-module library (section 5.1.3)
can be accessed. Thus, fully con�gured neuro-modules from previous experiments can be
inserted to the network as easy as single neurons or synapses. Each module instance can
be separately con�gured and constrained further to integrate an inserted module smoothly
to the network. Also, it is simple with the editor to create new neuro-modules for the
library. The modules can be prepared and con�gured with the editor like any other net-
work structure. Then, the corresponding network structures � thoroughly constrained and
tagged � simply have to be selected and de�ned as a named module with a single mouse
click to add it as a new prototype to the module library.

Analysis of Neuro-Controllers. One goal of the experiments in the context of evo-
lutionary robotics and neurocybernetics is to understand the organization and dynamical
principles of neuro-controllers. Therefore, the NERD network editor provides many tools
for the examination and analysis of neural networks. The activations and many other dy-
namical aspects of the neurons, synapses, weights and other parameters can be observed
in real-time while the animat interacts with its simulated environment. Di�erent types
of graph plotters can be used to analyze and compare the activations or output of the
neurons. Such plotters are not only valuable during the analysis phase, but also during the
manual construction, to debug networks or to shape the output of neurons or modules.

With its undo mechanism, modi�cations of the network (including virtual pruning) can
be undone so that it becomes easy to play around with a network to examine the impact
of changes.

Finally, NERD also provides an extension to create plots useful for the analysis from
the perspective of dynamical systems theory, such as bifurcation diagrams, �rst-return
maps, attractor plots and iso-periodic plots. These diagrams allow an in-depth analysis of
the dynamics of network structures and a systematic examination of their limitations and
application ranges for certain tasks.

D.3 Evolution Framework and ICONE Implementation

General Evolution Framework. The NERD toolkit provides a �exible evolution frame-
work that can be extended with various evolution algorithms. The main focus is clearly on
neuro-evolution, but the framework also supports any other kind of evolution that requires
a physical simulation. This includes not only morphology (co-)evolutions, but also the
evolution of functional controllers for animats (e.g. with genetic programming or parame-
ter optimization). The frameworks allow many di�erent evaluation scenarios, such as local
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evolutions, evaluations distributed on a computer cluster, the use of external simulators
via custom interface plug-ins, and more. Because these evaluation methods are provided
by the framework, a developer of a new evolution method does not have to cope with
these issues and can directly use these evaluation types. Therefore, all evolution methods
automatically support a distributed evaluation on multiple computers or processing cores
to speed up the evolution process.

Neuro-Evolution. For the evolution of neuro-controllers, several evolution methods
have been implemented. Each evolution method can reuse the graphical user interface
to con�gure, adjust and analyze the evolution process. Figure D.4 shows some of the main
windows of that user interface.

Figure D.4: Screenshots of the main evolution parameter panel, which can be used to
interactively control and monitor evolution experiments.

The user interface allows, in addition to the con�guration of experiments, also the
observation of the evolution progress in various ways. The �tness progress can be monitored
on-line, for instance to react on the �tness progress during an interactive evolution run.
The �tness function can also be directly implemented in an own editor window to develop
and change the �tness function (not only parameters of the function) interactively.

In a summary window, various statistics on the evolving networks are listed. This makes
it easy to keep an overview on the size, performance, inheritance relations and network
properties of each network. Furthermore, any network of the lastly completed generation
can be re-run with a single mouse-click in the simulator under the same conditions that were
used to evaluate the individual during the evaluation phase. Subsequently, the user can
pick networks with signi�cant statistical properties and examine these networks directly
without interrupting the running evolution. This is especially important in combination
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with evaluations on a computer cluster, because then this is the only way to examine the
networks visually, which is a prerequisite for interactive evolution.

During the evolution, all the various statistics on the networks and the evolving gen-
erations are stored in �les, so that the evolution process itself can be analyzed in detail
after each experiment. All parameter changes of an interactive evolution run are hereby
stored together with the statistics and optional user comments, so that each evolution run
can be replicated in detail. This also allows the identi�cation of useful parameter changes
of an interactive experiment to derive parameter adaption rules for similar, unsupervised
experiments (see section 6.5).

ICONE Implementation. The ICONE method has been implemented as part of the
NERD toolkit in a way that allows a �exible extension of the method by new functional
constraints, network tags and mutation operators. That way, the algorithm can be adapted
to many new experiments and approaches. The neural network genomes are implemented
as object structures, following the object oriented programming paradigm. This provides a
fast manipulation of the network elements (e.g. by mutation operators and functional con-
straints) and keeps the genome open for future extensions. In addition, a scripting interface
was implemented that allows the manipulation of networks via simple QScript programs,
so that new constraints and mutation operators can also be developed (prototypically)
without C++ programming.

The mutation chain operator is realized with an ordered list of mutation operator
objects, that are executed during the mutation phase. New operators can be inserted to
that list to de�ne their proper execution position within the mutation chain.

Both, constraint objects and mutation operators support an error reporting mechanism,
which collects all problems and warnings during their execution. These errors can then be
logged or displayed in a human readable form. So, if problems are detected, e.g. when a
constraint could not be resolved, then the reason for that problem can be accessed by the
user to allow a fast recti�cation of the problem.

Extensibility. The NERD toolkit implements multiple ways to extend the evolution ap-
plications without the need to implement an own, separate evolution program. Additional
constraints, mutation operators, statistics generators, experiment schedulers and even en-
tire new evolution methods can be implemented as plug-ins and can be loaded at runtime
to extend the standard NERD applications. Some of these extensions can also be realized
with simple QScript programs, so that these extensions do not even require programming
skills in C++.
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Glossary

Glossary

Bootstrapping

The �rst phase of an evolution experiment, in which the �rst promising gradients
have to be identi�ed based on random mutations. Details can be found in chapter
2.4 and 9.2.4.

Complexi�cation

Starting with a small network, neurons and synapses are incrementally added a little
at a time, in contrast to �xed-topology evolutions, where all (or most) network
elements are given in advance. Complexi�cation starts the search with fewer mutable
parameters and often leads to faster, simpler solutions (see section 2.4 at page 19).

Constrained Modularization

See Modularization.

Constraint Mask

A network structured with network tags and a layer of constrained neuron-groups
and neuro-modules. The functional constraints of the groups and modules, as well
as the limiting network tags, together de�ne a speci�c subspace of the search space,
in which the search exclusively takes place. This reduces the search space and biases
the search towards speci�c topologies. Details can be found in section 5.1.

Evolvability

Describes how well the evolution performs with respect to the success rate, the run-
time performance and the quality of the evolved solutions.

Fitness Landscape

The characteristics of the �tness with respect to the provided �tness gradients for
every point in the search space (see sections 2.2 and 2.4).

Focus Structures

The part of the neural network that is the focus of the experiment and therefore the
unknown part of the network. This is in contrast to peripheral structures, that are
only of supportive nature (see section 5.1.1.2).
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Glossary

Generation

In the context of evolutionary algorithms, a generation is a set of individuals that
directly compete against each other in terms of performance and therefore for the
chance to produce o�spring.

ICONE

Abbreviation for Interactively Constrained Neuro-Evolution, the name for the pro-
posed neuro-evolution method.

Individual

In the context of evolutionary algorithms, an individual is a single genome, i.e. one
speci�c set of parameters.

Mid-Scale Networks

A class of networks with a network size of approx. 50 - 500 neurons. This class was
de�ned as target domain for the proposed method to distinquish it from the class of
small networks and from very large networks (with thousands of neurons), which are
used in a very di�erent research area (e.g. vision, statistical analysis, modelling of
biological data). See also section 2.3.

Modularization

The process of preparing a neural network for an ICONE evolution experiment by
structuring the network and by de�ning a constraint mask on that network. For
details see section 5.1.

NERD Toolkit

The Neurodynamics and Evolutionary Robotics Development Toolkit is the reference
implementation of the ICONE method. Details can be found in appendix D.

Network Element

In the context of this document, a network element is one of the major building
blocks of the neural networks: a synapse, a neuron, a neuron-group, a neuro-module
and the network instance itself.

Network Shaping

The procedure to shape and restrict the set of valid network topologies and weight
distributions. With ICONE, network shaping is a cornerstone of the search space
restriction measures and is realized by de�ning constraint masks. For details see
section 5.1.

Network Tag

A string-string pair added to a network element to annotate it with additional infor-
mation. Network tags are interpreted by mutation operators, constraints and other
program parts to adapt their behavior accordingly. Details can be found in section
3.2.4.
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Parameter Dependency

During evolution, some parameters of network elements are dependent on other pa-
rameters of the network and therefore are fully de�ned by these parameters. As a
result, a dependent parameter is not part of the search space any more.

Peripheral Structures

Supportive network structures that are known in advance and that are used to prepare
the frame for the focus structures of the evolution experiment. Peripheral structures
are part of the constraint mask in that they contribute to shaping the search space
towards a speci�c network topology (see section 5.1.1.2).

Phenotype and Genotype

The genotype is the genetic representation of an individual, the phenotype the ac-
tual instantiation of an individual. Phenotypes are generated based on genotypes. In
static, deterministic evolutionary methods, every genotype represents a single phe-
notype. However, a genome can, in principle, also produce di�erent phenotypes, for
instance when the mapping function involves stochastic elements or when an adap-
tion of the individual to its environment is supported. Also, a single phenotype can
often be encoded with di�erent genotypes. Therefore, individuals with the same
genotype may di�er in their phenotype from each other and vice versa.

Search Space

The set of all valid parameter settings of a search. The search space is limited by the
number of variable parameters and by the number of di�erent values of a parameter
(e.g. limited by a range, or given by a set of values).

Tagging

The process of adding network tags to a network element.
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