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Dendritic plateau potentials can
process spike sequences across
multiple time-scales

Johannes Leugering1†, Pascal Nieters2*† and Gordon Pipa2

1Fraunhofer Institute for Integrated Circuits, Erlangen, Germany, 2Institute of Cognitive Science,

Osnabrück University, Osnabrück, Germany

The brain constantly processes information encoded in temporal sequences of spiking

activity. This sequential activity emerges from sensory inputs as well as from the brain’s

own recurrent connectivity and spans multiple dynamically changing timescales.

Decoding the temporal order of spiking activity across these varying timescales is a

critical function of the brain, but we do not yet understand its neural implementation.

The problem is, that the passive dynamics of neural membrane potentials occur on a

short millisecond timescale, whereas many cognitive tasks require the integration of

information across much slower behavioral timescales. However, actively generated

dendritic plateau potentials do occur on such longer timescales, and their essential

role for many aspects of cognition has been firmly established by recent experiments.

Here, we build on these discoveries and propose a newmodel of neural computation

that emerges from the interaction of localized plateau potentials across a functionally

compartmentalized dendritic tree. We show how this interaction o�ers a robust

solution to the timing invariant detection and processing of sequential spike patterns

in single neurons. Stochastic synaptic transmission complements the deterministic

all-or-none plateau process and improves information transmission by allowing

ensembles of neurons to produce graded responses to continuous combinations of

features. We found that networks of such neurons can solve highly complex sequence

detection tasks by breaking down long inputs into sequences of shorter, random

features that can be classified reliably. These results suggest that active dendritic

processes are fundamental to neural computation.

KEYWORDS

dendritic computation, dendritic plateau potentials, spike-based cognitive processes, place

cells, sequence processing, computing across timescales

Introduction

The ability to recognize patterns of spiking activity across multiple timescales is a remarkable
and crucial function of the brain. For example, consider a rodent searching for food. The
receptive fields of its place and grid cells tile a spatial map of the environment and encode
its current position by their respective population activities (O’Keefe and Dostrovsky, 1971;
Hafting et al., 2005). To navigate successfully, the animal needs to know not only its present
location, but also the path it took to get there. This path is encoded in the sequential firing
of place and grid cells on behavioral timescales that can span hundreds of milliseconds or
more (Eichenbaum, 2017). While the exact timing of these spikes depends on the speed of the
animal, the chosen path through a space is encoded in the sequential order in which these cells
are activated. As another perhaps more familiar modality, consider natural language: We can
understand the same utterances over a wide variety of speech tempos and rhythms, provided
that the order of specific sounds is preserved. In auditory cortex, for example, sequences of brief
phonemes encode longer syllables which can last for around 200 ms (Luo and Poeppel, 2007).
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Early olfactory areas represent odors as ordered sequences on a
similar timescale (Broome et al., 2006; Bathellier et al., 2008). And
visual cortex can learn to reproduce sequential activation patterns on
cue, but on a compressed timescale (Xu S. et al., 2012; Lu et al., 2021).
The sum of these and other findings suggest that sequential patterns
of spiking activity, the precise timing of which can vary across
timescales of up to several hundred milliseconds, are a ubiquitous
occurrence in the brain. Therefore, the ability to detect and decode
such sequences of neural activity is likely crucial for complex behavior
in humans and animals alike (Lashley, 1951). But how neural circuits
implement this is currently unknown.

Point-neurons such as leaky integrate-and-fire models operate on
the fixed timescale of passive membrane potential dynamics, which
is typically on the order of tens of milliseconds or less (Melamed
et al., 2004). Since this is at least one order of magnitude shorter
than the behavioral timescales we are interested in here, there
must be additional working memory to bridge the silent periods
between successive bouts of neural activity in longer sequences.
Often, this longer memory is attributed to network-level effects
such as slow recurrent dynamics (Sandamirskaya and Schöner,
2010) or fast synaptic plasticity (Mongillo et al., 2008). However,
computational properties of neural systems are also dependent
on the structure and dynamics in the neural dendrites of single
neurons (London and Häusser, 2005), which make up the vast
majority of neural tissue (Braitenberg and Schüz, 2013). Early
modeling work on the dynamics of dendritic membrane potentials
showed that sequences of synaptic activation can elicit higher somatic
voltages when they activate different locations of the dendrite
in order, starting from the peripheral dendrite of a neuron and
continuing toward the soma (Rall, 1964). This selectivity was first
attributed to dendritic conductance delays in the dendritic cable
model. More recent experiments suggest that besides these linear
effects, the nonlinear amplification by NMDA channels is crucial
for sequence detection (Branco et al., 2010). In combination with
a pronounced impedance gradient along the dendrite (i.e., thin
distal tips have higher impedance than thick proximal dendrite
segments) and voltage-gated ion channels, this can lead to supra-
linear summation in the centripetal direction (Branco et al., 2010).
Here, we are particularly interested in the longer lasting dendritic
plateau potentials (Milojkovic et al., 2004), a localized all-or-none
response mediated by the very same NMDA channels in dendrites of
pyramidal neurons. Because plateaus are triggered by synchronous
volleys of presynaptic spikes (Gasparini et al., 2004) they can
decode spatial patterns as single elements of sequences. Because
the resulting elevated membrane potentials are actively maintained
for up to hundreds of milliseconds (Milojkovic et al., 2004; Major
et al., 2008) after their initiation, they can decouple the timescale
of sequence recognition from the timescale of passive membrane
potential dynamics. Importantly, plateau potentials are ubiquitous
throughout the brain (Antic et al., 2010; Oikonomou et al., 2014),
and recent in-vivo experiments link the prolonged high internal Ca2+

concentrations caused by dendritic plateaus to various cognitive
tasks (Jia et al., 2010; Xu N.-L. et al., 2012; Takahashi et al., 2016;
Kerlin et al., 2019). As previously suggested (Antic et al., 2010;
Hawkins and Ahmad, 2016), this implies that dendritic plateau
potentials may be the key missing ingredient in current models of
sequence processing in the brain, but their precise role is still debated.

Our main idea is that dendritic plateaus provide the long-lasting
memory traces needed for sequence processing: By generating a

plateau potential, the dendrite quickly reacts to the detection of a
stimulus, i.e., coherent synaptic input, and retains a long-lasting
memory trace of this event in the local membrane potential. The
key mechanism for detecting sequences of such stimuli on behavioral
timescales is the interaction of plateau potentials across nearby
segments, i.e., the depolarizing effect they exert on neighboring
segments (Figure 1A). We propose that localized dendritic plateaus
thus turn the complex dendritic trees of single neurons into reliable
sequence processors with long temporospatial, yet timing-invariant
receptive fields.

In the following, we first derive from recent biological
observations a conceptual model of dendritic computation that is
built on this interaction of plateau potentials. Then we demonstrate
how this mode of computation allows single neurons and networks
to recognize complex sequences across various timescales and
modalities.

Stochastic generation and inhibition of
localized dendritic plateau potentials

Most of a cortical pyramidal neuron’s excitatory synaptic inputs
terminate on dendritic spines (Beaulieu and Colonnier, 1985), where
they activate both AMPAr and NMDAr gated ion channels via

glutamate-carrying vesicles. The AMPAr channel opens immediately,
which leads to a brief depolarization in the corresponding spine
referred to as the excitatory post-synaptic potential (EPSP) (Watkins
and Evans, 1981). The NMDAr channel, however, is blocked by an
Mg+ ion that must first be displaced by sufficient depolarization of
the postsynaptic membrane to become conductive (Monyer et al.,
1994; Götz et al., 1997). This requires the cumulative effect of
coincident EPSPs in multiple nearby spines (Losonczy and Magee,
2006). Experimental as well as simulation studies report that a
volley of 4–20 or even up to 50 spikes within a window of 1 ms
to 4 ms is needed to provide sufficient depolarization, depending
on the location along the dendritic tree (Gasparini et al., 2004;
Gasparini and Magee, 2006; Losonczy and Magee, 2006; Bono and
Clopath, 2017). The opening of NMDAr channels triggers a massive
influx of different ionic currents that lead to a full depolarization
of the local dendritic membrane potential. Although the isolated
NMDAr response itself is reported to only last on the order
of around 25 ms (Rhodes, 2006), in vivo recordings reveal that
voltage-gated channels in the dendritic membrane (Spruston, 2008)
prolong this effect, resulting in an actively maintained depolarization
that can last from tens to hundreds of milliseconds (Major
et al., 2013). This prolonged depolarization is called a dendritic
plateau potential (Figure 1B).

Two further aspects of the interaction between dendritic plateaus
and synapses are noteworthy. Firstly, spikes in presynaptic neurons
only lead to the required glutamate release some of the time
with a synapse specific probability (del Castillo and Katz, 1954;
Stevens, 1993). In hippocampal synapses for example, the median
release probability is only 0.22 (Branco et al., 2008). Secondly,
the activation of inhibitory GABAA and GABAB synapses can
strongly interfere with the dendritic plateau process and outright
stop or prevent plateau generation (Kim et al., 1995; Doron
et al., 2017; Du et al., 2017). The importance of inhibitory
synapses is further emphasized by their locations, which are often
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in critical positions to control dendritic excitability (Gidon and
Segev, 2012) and gate specific dendritic activity from reaching the
soma (Muñoz et al., 2017).

Functional compartmentalization of
dendritic trees

Plateau potentials remain localized to specific sites in the
dendritic tree because their generation and maintenance requires
the binding of external glutamate to NMDAr channels (Silver et al.,
2016). Therefore, the structure of dendritic arbors, which has long
been conjectured to play an important role for neural computation,
is crucial for plateau computation. For example, functional subunits
emerge in the dendrites of various types of retinal ganglion cells
due to impedance mismatches at branching points in the dendritic
tree (Koch et al., 1982). These are regions of roughly equal local
membrane potentials throughout, but they are only weakly coupled
to neighboring regions. Other experiments in rats confirmed
that thin dendrites in neocortical pyramidal neurons can act as
independent computational subunits and provide neurons with
additional non-linear integration sites (Polsky et al., 2004). This
behavior is not limited to pyramidal neurons, but rather appears to be
a general principle that can be found in various forms across different
cell types. For example, Purkinje cells in the cerebellum also generate
localized Ca2+ events in response to coincident input on individual
dendrite segments (Ekerot and Oscarsson, 1981; Zang et al., 2018),
and thalamo-cortical neurons respond to strong synaptic input with
localized plateaus in distal dendritic branches (Augustinaite et al.,
2014). In some neurons, functional subunits can be identified with
individual dendritic branches (Branco and Häusser, 2010). More
generally, these subunits can also stretch across multiple nearby
branches if they are sufficiently strongly coupled so that coherent
synaptic input across the branches can trigger local, regenerative
events such as plateau potentials (Wybo et al., 2019). We view
dendrites as complex structures composed of functional subunits in
the latter sense and will refer to them as dendrite segments1.
Neural cable theory predicts an asymmetric passive propagation
of membrane potentials throughout the dendrite (Rall, 1962;
Goldstein and Rall, 1974). In the anterograde direction, the signal
attenuation is generally so strong that synaptic input onto thin apical
dendrites has little measurable effect of the membrane potential
at the soma (Stuart and Spruston, 1998; Spruston, 2008). On the
one hand, this may suggest that superlinear NMDAr responses
along the dendrite serve to boost distal input signals (Magee and
Cook, 2000; Häusser, 2001). On the other hand, plateau potentials
are also subject to attenuation along the dendritic cable and thus
only have a moderately depolarizing effect on their immediate
neighborhood (Larkum et al., 2009). This can effectively raise the
local resting potential of a neighboring segment closer to the soma
and thus lower the amount of coinciding spikes in presynaptic
terminals required to initiate a plateau potential in it (Major et al.,
2008).

1 We avoid the term “compartment” to prevent confusion with the concept

of multi-compartment neuronmodels, which are commonly used as a spatially

discretized solution to partial di�erential equation models of neurons.

From dendritic nonlinearity to dendritic
computation

Neither stochastically generated active dendritic processes nor the
structure of the dendritic tree are considered in most computational
models of spiking neurons, although there is lively debate about
the appropriate level of abstraction (Herz et al., 2006). Some
authors argue that the dendritic integration of spikes can be largely
explained by a linear stochastic model with one additional non-linear
term (Ujfalussy et al., 2018). Others contend that the computational
function of the dendritic tree is best captured by a non-linear hidden
layer in a neural network model (Poirazi et al., 2003), whereas
modeling the temporal dynamics of the membrane potential would
require significantly more complex temporally convolutional deep
neural networks (Beniaguev et al., 2020). But the long-lasting all-or-
none response characteristic of dendritic plateaus is not captured by
either of these model classes. We therefore take a different approach
and focus entirely on dendritic plateaus and their interactions in the
dendrite. Since only nearby synapses cooperate to trigger plateau
potentials, correlated synaptic inputs have to arrive at the same
dendrite segment at the same time to effectively drive plateau
generation (Gasparini and Magee, 2006). This has been confirmed
in experiments (Larkum and Nevian, 2008), suggesting that some
information in the brain is conveyed by highly synchronized spike
volleys that target individual dendrite segments (Takahashi et al.,
2012) and trigger dendritic plateaus there. We avoid complex non-
linear membrane dynamics in our model and instead conceive of
dendritic computation as fast, local coincidence detection driving the
interaction of long plateau potentials (see the next section). At the
expense of some quantitative accuracy, this simplification affords a
clearer qualitative explanation of the computational mechanism that
may underlie sequence detection in single neurons.

A computational model for dendritic plateau
computation

From the biological observations outlined above, we derive a
simple, qualitative model of active dendrites. At the core of the model
lies the interaction of two types of events on distinct timescales—
short, spike-triggered EPSPs and long, actively generated dendritic
plateau potentials—in a tree structure of dendrite segments. We
define a segment as a minimal functional subunit of the dendritic
tree, a single physical branch or multiple branches that have the
following properties: Firstly, synaptic inputs to a segment can
cooperatively generate a plateau potential. Secondly, the plateau
potential is actively maintained locally within a segment and
spreads passively to neighboring segments in the dendritic tree.
The passive spread of plateau potentials is attenuated along the
dendritic cable in centripetal direction, in particular at branching
points with mismatched impedances. The dendrite segments form a
tree structure with proximal dendrites and the soma at its root and
thin, distal branchlets as leaves.

First, consider the function of one individual dendrite segment
i in more detail (see Figure 1C for a schematic). We distinguish
excitatory and inhibitory synapses, which, respectively, produce
excitatory (EPSPs) and inhibitory (IPSPs) postsynaptic potentials.
An excitatory synapse from neuron k to segment i only successfully
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FIGURE 1

Generation and interaction of dendritic plateau potentials. (A) A

stylized neuron with dendritic arbor. (B) Summary of the biological

processes involved. A spike (1) releases glutamate, which opens

AMPAr-gated ion-channels that depolarize the post-synaptic spine

and cause an EPSP (2). If su�ciently many EPSPs coincide with

up-stream dendritic input (0), the local membrane potential rises (3)

and NMDAr-gated ion-channels activate, causing a further localized

depolarization (4). Additional voltage-gated calcium channels can

amplify and prolong this process (5) and cause a plateau potential,

which can in turn moderately depolarize the parent segment (6 & 0).

(C) An algorithmic approximation of a dendrite segment in our model.

If a dendrite segment is depolarized by su�ciently strong input from

its child segments (1) and receives su�ciently strong excitatory input

from its stochastic synapses (2), a local plateau potential is initiated. If

the plateau is not interrupted by shunting inhibitory input (3), it

depolarizes the parent segment for an extended period of time. The

root segment comprising proximal dendrite and soma lacks the ability

to generate plateau potentials – instead, it generates somatic action

potentials in response to super-threshold excitation.

transmits each presynaptic spike with probability pi,k. A successfully
transmitted presynaptic spike induces EPSPs κE(t) with duration τE

and magnitude wi,k where wi,k depends on the synaptic efficacy. At
inhibitory synapses, the duration τI of the IPSP was set to be slightly
longer than the τE EPSP. We model the shape of the post-synaptic
potentials by rectangular pulses:

κE(t) =

{

1 if 0 ≤ t ≤ τE

0 otherwise
, κI(t) =

{

1 if 0 ≤ t ≤ τI

0 otherwise

We use exci and inhi to represent the set of excitatory and
inhibitory neurons targeting segment i, we denote the time of the
mth spike by neuron k with tm

k
, and introduce the i.i.d. random

variables ξm
i,k ∼ Bernoulli(pi,k) to simplify notation. We can then

define the combined effect of excitatory as well as inhibitory input
for segment.i2

2 We assume that spike arrival times tmi,k are at least τE apart.

EPSPi(t) =
∑

k∈exci

∑

m|tm
k
≤t

ξmi,kwi,kκE(t − tmk ) (1)

IPSPi(t) =
∑

k∈inhi

∑

m|tm
k
≤t

ξmi,kwi,kκI(t − tmk ) (2)

PSPi(t) = EPSPi(t)− IPSPi(t) (3)

One of the necessary preconditions for generating a dendritic
plateau potential is a sufficiently strong net depolarization of the
dendrite by synaptic input. This means that the coincidence of
multiple synchronous spikes caused depolarization larger than a
segment-specific synaptic threshold TSi. In thin dendrite branchlets,
which are the leaf nodes of our tree structure, this is sufficient
to trigger a plateau potential. But in the general case, additional
depolarizing input from dendritic child branches is required. Here,
we are only interested in the large depolarizing effects that actively
generated plateau potentials have on directly adjacent segments, and
we ignore the much weaker passive propagation of sub-threshold
voltages along the dendrite. We define a segment’s dendritic input

to be the sum of the strongly attenuated, passively spreading
depolarization from plateau potentials in child segments. We
therefore introduce additional notation: parenti denotes the parent
segment of i (if any), childi denotes the set of the direct children of
segment i (if any), and Ok(t), k ∈ childi is the effect that the child
segment k exerts on i at time t. Just like we did for the post-synaptic
potentials, we can then define the total dendritic input Di(t) into
segment i:

Di(t) =
∑

k∈childi

Ok(t) (4)

The segment-specific dendritic threshold TDi determines how
much dendritic input is required in addition to synaptic input to
trigger a plateau potential in segment i. For leaf nodes of the dendritic
tree we set TDi = 0. When both conditions become satisfied,
i.e., there is sufficient synaptic and dendritic input, then a plateau
potential is initiated. We use Tm

i to denote the starting-time of the
mth plateau potential in segment i:

Tm
i = min t ≥ Tm−1

i

such that PSPi(t) ≥ TSi ∧ Di(t) ≥ TDi (5)

The plateau potential then typically ends at time T̃m
i = Tm

i +

τP after a duration τP. The plateau duration is a constant in our
model, but shunting inhibition may interrupt plateaus and thus cut
their duration short. We formalize this special case as follows: The
first inhibitory spike, if any, from neuron k ∈ inhi at time tl

k
∈

[Tm
i ;T

m
i + τP] can end the plateau which means T̃m

i = tl
k
in

that case.
We can now define the output of segment i as a sequence of binary

pulses, the plateau potentials:

Oi(t) =

{

1 if ∃m : t ∈ [Tm
i ; T̃

m
i ]

0 otherwise
(6)

Since the plateau potential is an all-or-none response in our
model, we classify the segments’ membrane potentials into three
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functionally distinct states Vi(t) ∈ {low, elevated, high}: If the
dendrite segment receives no depolarizing input from its upstream
neighbors, it is approximately at resting potential and localized
synaptic input alone is unlikely to trigger a plateau potential—the
dendrite is in the low state. If plateau potential(s) further upstream
from the segment elevate its local voltage, it becomes excitable
by synaptic input—the segment is in the elevated state. If either
the segment itself maintains a plateau or its parent segment is
currently in a high voltage state, the membrane potential in the
segment is fully depolarized, and additional synaptic input has little
effect – the segment is in the high state. This can be expressed
as follows:

Vi(t) =















high if Vparenti (t) = high or Oi(t) = 1

elevated if Di(t) ≥ TDi

low otherwise

(7)

This formalism can be iteratively applied to all dendrite segments
of a neuron3. The root segment of the dendritic tree consists of
the proximal dendrite and soma, which do not generate plateau
potentials themselves. Nevertheless, we use the same formalism as for
other dendrite segments: An action potential, instead of a plateau, is
generated at the soma when sufficient synaptic input coincides with
sufficient dendritic input. The dendritic input from plateau potentials
in child segments causes prolonged depolarization of the somatic
membrane potential also referred to as a neural UP-state (Milojkovic
et al., 2004).

Each action potential is followed by a refractory period τrefrac

during which no further spikes can be generated. Since the somatic
UP-state can persist for the entire plateau duration, which is much
longer than the neuron’s refractory period, multiple spikes or bursts
of spikes might be generated during this period.
Conceptually, each segment in our model acts first and foremost as
a coincidence detector for a volley of synchronized spikes on the
fast timescale of EPSPs. On the second, slower timescale of dendritic
plateaus each segment is gated by its children in the dendritic tree.
Thus, the main computation performed by the neuron is to detect a
sequence of activations of its segments by spike volleys in the correct
order. Each consecutive plateau event extends the memory available
for sequence detection by another plateau duration. Shunting
inhibition can interrupt this cascade of sequential activations by
deactivating a plateau potential before the next sequence element
is detected.

To efficiently simulate this model for the upcoming experiments,
we implemented a fast, event-based software simulator in the Julia
programming language (see Section Materials and methods).

3 In addition to the forward-propagation of membrane potentials that we

focused on so far (i.e., from child branches to the parent), the reverse direction

typically has an even stronger e�ect—strong enough for the parent segment

to depolarize its child segments by itself. To capture this e�ect, we recursively

defined a segment k’s membrane potential to also be high whenever its parent’s

membrane potential is high. However, we focus on the forward-propagation of

plateau potentials and their role for dendritic computation here.

Results

Dendrites can recognize movement
trajectories from place cell activity on
multiple timescales

To illustrate how dendritic plateau computation can be used
in a close-to-real-world example, consider again the sequential
patterns emitted by place cell populations. The location of an
animal in its environment is represented by place-cells (O’Keefe
and Dostrovsky, 1971; Hafting et al., 2005), each of which has a
receptive field centered at a specific location. Navigation naturally
produces sequential activation patterns as different locations are
visited. The timescale of these patterns can be long and is
variable because it is directly linked to the movement speed
of the animal (Eichenbaum, 2017). This variability in timing is
exacerbated during sleep-replay, where the same patterns can be
replayed at significantly compressed timescales (Lee and Wilson,
2002). This makes reliable detection of these sequential place-
cell patterns particularly difficult. Active dendritic processes likely
play an important role in this sequence detection task, since
they frequently occur in cortical pyramidal neurons of freely
moving rats (Moore et al., 2017) and have been shown to be
selective for specific sequences of synaptic inputs (Branco et al.,
2010). Plateau computation can allow single neurons to solve
this detection problem across varying movement speeds and
during replay.

We numerically simulate a rat moving through a small, 2-
dimensional environment by generating stochastic paths at varying
movement speed (more details in Section Materials and methods).
The environment is tiled by the receptive fields of place cell
populations, each 20 neurons strong. These populations emit spike
volleys, the magnitude of which increases as the animal gets closer to
the center of the respective receptive field (Figure 2A). This encoding
could arise from increased firing rates, increased correlation of the
spike timings, or both (Pipa et al., 2013). The task is to recognize
whether the animal followed a specific path leading through the
receptive fields of three place cell populations in the correct order:
from the bottom left (A, in yellow) through the center (B, in blue) to
the top right (C, in purple). A neuron composed of two sequential
dendrite segments and the soma can solve this task reliably if each
of the segments receives synaptic input from one of the place cell
populations (Figure 2A). In this example, a plateau potential is
triggered in segment A if TSi = 13 or more of the 20 neurons in
the associated place cell population fire a synchronous spike volley,
which implies that the animal crossed through the corresponding
receptive field (Figures 2B, C). This detection is memorized in the
elevated membrane potential of segment A for the duration of the
plateau (Figure 2E). This also raises the resting potential of segment
B (Figure 2D) and enables it to respond to a spike volley from
its corresponding place cell population with a plateau of its own.
Likewise for the soma, which can finally fire a spike in response
to a spike volley from place cell population C. Since each of the
successive detections depends on the preceding plateau potential, the
neuron only responds if the three stimuli A → B → C occur in
the correct order. In the reverse direction (Figures 2F–I), segment
C cannot respond to the spike volleys received early on in the trial,
as the child segment B is not yet in a plateau state. Therefore, the
neuron does not spike when the rodent traverses the C location.
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FIGURE 2

A simple neuron with three segments as shown below (A) can detect directed paths on a timescale of hundreds of milliseconds. (A) The receptive fields of

place cell populations tile the environment into a hexagonal grid. The populations A,B and C are each connected to a di�erent segment of the neuron

(color coded). Random trajectories are generated through a stochastic process with randomized initial positions, velocities and angular heading to

simulate the animal’s movements. A random sample of 10 trajectories that elicit a neural response are shown as solid gray lines; all of them follow the

same direction through receptive fields A → B → C. A few randomly sampled paths that did not elicit a spike are shown as dotted lines. (B) As the animal

follows the highlighted path, it passes through receptive fields, and the place cell populations emit spike volleys. (C) The PSPs induced by these spikes

sum up and locally depolarize the dendrite. (D) Additionally, child segments provide depolarizing for a duration τ input to their parents while in a plateau

state. (E) The dendritic input can elevate the local membrane potential of the segment. If there is su�cient synaptic and dendritic input to a segment

(thresholds shown in gray), a plateau potential (or somatic spike) is triggered there. Toward the end of the path, the neuron fires a somatic spike; all times

are aligned to this first spike time. As the soma stays depolarized after the spike until the plateaus have subsided, further spikes may be triggered. (F–I) If

the same path is followed in reverse order, no somatic spike is generated, because while the soma receives strong input from population C early during

the trial, no plateaus have (yet) been triggered in segments A and B.

Therefore, the neuron is highly selective to the correct order of
inputs.

However, because each plateau enables the subsequent segment
for a fixed, prolonged duration, the exact timing of the next sequence
element within this time interval is irrelevant (Figure 3). The model
neuron is invariant to faster movement along the path A → B →

C (Figure 3A) and can even accommodate orders of magnitude
faster replay of the pattern, as can be observed during hippocampal
sleep replay (Figure 3B). Sequence detection via dendritic plateaus
thus combines two distinct timescales: the fast estimation of the
current location through coincident spike volleys and the slower
integration of these events through interacting plateau potentials. The
spatiotemporal receptive field of the neuron can thus be very sensitive
and responsive to changes in location, but largely invariant to the
speed at which the animal travels along the path on a much slower
timescale (see Supplementary material 1).

Because compressed re- and preplay mechanisms are implicated
in planning and skill learning (Ólafsdóttir et al., 2018), we expect
that the robustness of dendritic sequence processing to compressed

pattern representation is critical for theses tasks. However, this timing
invariance also implies that techniques to identify spatiotemporal
receptive fields via temporal averaging, such as the spike-triggered
average (Simoncelli et al., 2004), are inadequate for neurons with
active dendrites. Instead, new techniques are required that identify
individual receptive fields of dendrite segments and compare
the relative timings of the generated plateau potentials (see
Supplementary material 2).

Shunting inhibition can prevent false
positives

The mechanism outlined above only relies on excitatory synapses
and is able to identify specifically ordered sequential patterns of
spike volleys on varying timescales. However, if the same stimuli
are frequently repeated in incorrect order, the likelihood of errors
increases. To illustrate this, consider the sequence A → B → C
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FIGURE 3

The neuron shown in Figure 2 is invariant to the precise timing of spike volleys as long as their order is preserved. It can detect the same path across

timescales that di�er by orders of magnitude. (A) Shows the inputs received when the same highlighted path in Figure 2 is traversed at twice the speed,

and (C) shows a tenfold faster pattern, which can for example occur during compressed sleep replay. In both cases, a somatic spike is triggered and the

path is detected. (B, D) Show the respective internal states of the segments.

FIGURE 4

Shunting inhibition can prevent false detections. A neuron receives a

sequence of spike volleys from three populations A, B and C. The

internal state of the three segments is shown. (A) A neuron with a

chain of dendrite segments A and B and soma C fires whenever they

are activated in the correct order A → B → C, for example at time t1.

This also results in a false detection at t3 if the desired sequence

A → B → C is contained in fast repetitions of the undesired sequence

C → B → A. (B) By adding shunting inhibition, input for segment C

also stops the plateau at the first segment A at t2 and t3 which

prevents the false detection.

and its reverse C → B → A, i.e., the same path but traveled in the
opposite direction (Figure 4). During sleep replay, or while running
in a circle, this reverse sequence may be presented multiple times
in quick succession. Naturally, the sequence C → B → A →

C → B → A → C → B → A also contains the sub-sequence
A → B → C (highlighted) which would trigger the neuron. Because
the additional excitatory spike volleys cannot prevent the neuron
from firing, the repeated presentation of the reverse sequence will
therefore lead to a false detection (Figure 4A). Anti-patterns such as
this are an inevitable side-effect of the desirable timing-invariance of
sequence detection.

Shunting inhibition can prevent such false positives and restore
the neuron’s high selectivity to sequence order in these situations
(Figure 4B). Consider the same situation as before, but now
additional inhibitory synapses from population C can disrupt
plateaus in the neuron’s first segment. If a spike volley from C

immediately follows a volley fromA, the previously generated plateau
in the first segment is stopped and sequence detection has to start
anew with a novel detection of a spike volley from population A.
However, if populations A, B and C all fire in order the neuron will
fire a spike before the inhibition of the first segment takes effect.
Inhibition therefore acts as an important complementary mechanism
for dendritic plateau computation and can “veto” anti-patterns from
erroneously activating sequence detecting neurons.

Unlike excitatory spikes, which need to be synchronized into
spike volleys to efficiently drive plateau generation, shunting
inhibition can disrupt a plateau potential at any point.

Probabilistic and graded plateau responses
increase information content

In the previous example, each place cell population codes for
a single location. The magnitude of the spike volley encodes the
proximity to the receptive field center, or, in other words, the evidence
for the fact that the animal was close to the specified location. If
the spike volley is transmitted deterministically (p = 1.0), the
receiving dendrite segment detects it if and only if it exceeds a
hard threshold at which a plateau is generated (Figure 5A). If the
spike volley is instead transmitted stochastically (p < 1.0), the
probability of generating a plateau is directly proportional to the
spike volley magnitude (see Section Materials and methods). The
response of an individual dendrite segment to one spike volley is of
course binary in both cases, but if we assume that many segments
respond to the same spike volley with stochastic synapses, then the
expected number of emitted plateau potentials becomes a smooth
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FIGURE 5

Unreliable synapses can improve information transmission for

ensembles of dendrite segments. (A) A single dendrite segment with

20 inputs and deterministic synapses (transmission probability

Psyn = 1.0 and threshold θ = 11) provides a binary classification (1 bit)

of the magnitude X of the incoming spike volley. (B) The expected

number N of plateaus (solid line) in an ensemble of 100 segments with

stochastic synapses (Psyn = 0.39 and θ = 4) is a continuous function of

the volley magnitude X and thus conveys more than 1 bit of

information. Gray shading indicates the probability distribution around

this mean value. (C) Combinations of θ and Psyn that maximize the

mutual information between the magnitude of the incoming spike

volleys and the number of generated plateau potentials for a varying

number of independent segments. Note that increased stochasticity is

beneficial as the ensemble size increases.

sigmoidal function of the volley’s magnitude (Figure 5B). In an
ensemble of neurons with dendrite segments that respond to the same
input probabilistically and independently due to unreliable synaptic
transmission, the number of active plateau potentials can therefore
encode the magnitude of the received spike volleys.

How well this encoding works can be quantified by the mutual
information between spike volleymagnitude and number of triggered
plateaus. While there is clearly no benefit to synaptic stochasticity
if only a single segment receives the spike volley, multiple dendrite
segments can in fact benefit significantly from stochastic synaptic
transmission. For example, a synaptic transmission probability as low
as p = 0.39 maximizes information transmission for an ensemble of
100 dendrite segments that receive spike volleys from a population
of 20 neurons. In this case, unreliable synapses allow an ensemble of
otherwise identical deterministic neurons to exceed the information
capacity of any individual neuron (Figure 5C and Section Materials
and methods).

In our model, consecutive segments gate consecutive plateaus. In
the path-detection example above, three consecutive spike volleys in
a sequence must all be detected for the neuron to fire a spike. The
probability of the spike response is therefore the product of all three
plateau probabilities and thus directly proportional to the combined
evidence for all sequence elements as encoded by the corresponding
spike volleys. This affords another interpretation of the neuron’s

behavior: the probability to fire a spike encodes how closely the
animal passed each of the receptive field centers along the path. An
ensemble of neurons is therefore able to report not only if the animal
followed some desired path, but also how closely its chosen path came
to the three receptive field centers.

In the context of sequence detection, the stochasticity of synaptic
spike transmission serves one other important purpose. Since plateau
potentials endow the neuron with a long lasting internal state, any
neuron that is already engaged in the detection of a sequence is not
ready to detect another until its plateau potentials have subsided.
Consider, for example, that we stimulate a neuron that normally
detects A → B → C with the sequence A → B → A →

B → C instead where subsequent input volleys are each half
a plateau duration apart. On the first two inputs A and B, the
neuron will advance its internal state and then wait for C until
the plateau triggered by B has expired (or has been interrupted by
inhibition). Within that time frame, the third and fourth inputs
A and B arrive, but since the corresponding dendrite segments
are already fully depolarized, they have no effect on the neuron
in our model. Then, the plateau triggered by B expires before the
final volley C arrives, which thus fails to trigger a somatic spike.
Therefore, although this sequence contains the desired sub-sequence
A → B → C at the end, the model neuron would fail to fire.
The neuron is only able to begin the detection of a new sequence
after it has returned to its initial state, i.e., all plateau potentials have
expired or been reset by inhibition. In biology, reduced excitability
of dendrite segments after a plateau potential seems to be related to
the high Ca2+ concentration at the initiation site which can outlast
the plateau depolarization (Milojkovic et al., 2007). The refractory
period of dendritc computation we describe here may thus extend
even beyond the plateau duration. This imposes a strict limit on the
maximum rate at which any sequence could be detected by our model
neurons: the inverse of the plateau duration, which is independent of
the actual length of the sequence. With deterministic synapses, this
limitation also applies to an ensemble of such neurons, because all
neurons, given the same initial condition and synaptic connections,
will operate in lockstep and detect or fail to detect the same instances
of the target sequence. Synaptic stochasticity can help in this situation
because it decorrelates individual detectors such that only some of
the neurons will respond to the misleading initial sequence A → B

and thus fail to detect the later valid sequence A → B → C. The
remaining neurons failed to respond to the first two inputs and are
hence ready to detect the final sub-sequence A → B → C. While
the response of the ensemble is therefore reduced in magnitude due
to the initial misleading input, it is crucially still able to detect the
sequence in question.

Stochastic spike volleys can encode events
in multi-dimensional feature space

So far, we only considered sequences of discrete events, such
as an animal traversing specific receptive fields in order. In many
situations, however, the individual sequence elements may not be
as simple and binary as that. For example, the sequential activation
of dense and overlapping representations of individual odorants in
mitral cell populations gives rise to odor codes (Bathellier et al.,
2008). Unlike place cells, no single population exclusively codes for
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FIGURE 6

Individual neurons can detect sequences of feature combinations.

Consider a sequence of the three elements A, B and C, each of which

is a di�erent normed combination of the three basis features P1,P2 and

P3 and therefore lies in a two-dimensional manifold. (A) shows an

approximately distance preserving projection of that manifold.

Contour lines show the similarity of each point to the three basis

features. (B) Each of a neuron’s segments can be tuned to respond

only to a specific combination of basis features by a corresponding

choice of synaptic transmission probabilities. Heatmaps show the

resulting receptive fields for a neuron designed to detect the sequence

A → B → C.

one odorant in the sequence. Instead, the odorant is encoded by a
weighted combination of different sub-populations each of which
represents one feature of the odorant, e.g., the response of a particular
receptor protein (Malnic et al., 1999). Similarly in vision, where many
complex shapes can be represented by different combinations of the
same simpler features, e.g., oriented edges. It is therefore important
to note that our model of sequence detection, which we framed
in terms of spike volleys and coincidence detection, is also able to
detect sequences of specific linear combinations of simpler features.
This is enabled by stochastic synaptic transmission, which provides
a simple way for each dendrite segment to only detect a specific
multi-dimensional combination of different features.

In the following, we identify each input feature with a spike-
volley from a specific randomly selected subset of a much larger
neuron population. These subsets can overlap for different features,
but the expected overlap is small for sufficiently sparse subsets. By
stochastically co-activating different fractions pi of neurons from each
of these sub-populations i, a single spike volley can thus encode
various combinations of features. This approach is closely related to
hyper-dimensional computing (Kanerva, 2009); see SectionMaterials
and methods for a formal derivation.

Suppose we are interested in combinations (p
j
1, p

j
2, p

j
3) of three

arbitrary features P1, P2 and P3. These could, for example, represent
three different populations of olfactory receptors. For simplicity,
(p

j
1)

2 + (p
j
2)

2 + (p
j
3)

2 = 1 is normed. The possible feature
combinations thus span a continuous two-dimensional manifold,
a sector of the surface of the unit sphere, embedded into the
high-dimensional space of the neuron population’s spiking output.
Figure 6A shows an approximately distance-preserving projection of
this manifold.

Within this manifold, we want to detect a specific sequence A →

B → C, e.g., a sequence of three specific odorants, each of which
is a different combination (pA1 , p

A
2 , p

A
3 ), (p

B
1 , p

B
2 , p

B
3 ) or (pC1 , p

C
2 , p

C
3 )

of the three basic features. The same kind of neuron as described

above can solve this task, if the transmission probability of each
synapse is tuned to the desired strength p

j
i of the corresponding

feature. Each dendrite segment can then selectively respond with a
plateau potential to only one specific combination of features (see
Figure 6B), which allows the neuron to detect the sequence A →

B → C. Note that instead of changing the magnitude of EPSPs for
different synapses, this approach works entirely by tuning synaptic
transmission probabilities.

Populations of plateau computing neurons
improve sequence detection

The sequence detection capabilities of individual neurons can
be extended to networks. As a sequence of interest gets longer and
comprises more elements, it seems increasingly unlikely that the
brain would rely on a single highly complex and specific neuron, or
an ensemble of such neurons, to detect it. It is much more likely that
multiple neurons code for different, shorter sequences—features—
that occur in different combinations as parts of longer sequences. In
analogy to the original Perceptron model (Rosenblatt, 1958), these
features can be task-independent and chosen at random. To detect
a specific long sequence of interest, a neuron would then only need
to detect the right combination of a few of these features in correct
order. A concrete example is the 10 element sequence D → B →

C → A → F → E → D → H → B → F. It contains an enormous
number of possible features such as (D → B → C), (C → A → E),
(D → C → E) and so on, each of which might be detected by
one random sequence detection neuron with just three segments (see
Figures 7F–H). If many of these short features are present in the
stimulus in the correct order, which can be recognized by a specialized
sequence detection neuron, this provides strong evidence for the long
sequence.

We set up a simple experiment to demonstrate how effective
this strategy can be. The task is to classify 10 different sequences of
spike volleys (labeled 1 to 10, see Figure 7A) that are generated by a
population of 100 input neurons. Each of these sequences is a series
of 10 randomly selected symbols with randomized timing. There are
10 symbols (labeled A to J) in total and each is represented by a spike
volley from a randomly selected subset of 30 input neurons. The same
symbols may appear multiple times within a sequence and are shared
across the different sequences which makes classification challenging.
In addition to these stimuli, the input neurons also generate spikes at
random to emulate a backdrop of noise. Figure 7B shows the resulting
spikes from the input population, and Figure 7E zooms in on a single
example of such a sequence.

To solve this task, we construct a network of simple sequence
detection neurons arranged into two layers. All of the neurons
comprise just three segments in series, just like in the examples
above, and are therefore able to detect sequences of up to three
elements. In the first hidden layer of the network, 3, 000 neurons
each detect a random sequence, or feature, composed of three
symbols (Figure 7C). These features are drawn entirely at random
from the set of all possible symbols4. Each segment receives input

4 We discard sequences that are not a sub-sequence of any target sequence.

We call a sequence X a sub-sequence of another sequence T if all elements

from X also occur in T in the same order.
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FIGURE 7

A two layer network of sequence detecting neurons with dendritic plateaus recognizes complex, overlapping, and long sequential patterns. Ten random

sequences (1 through 10) of 10 random code-words (A through J) have to be detected. (A) The di�erent target sequences are presented in random order

(color coded). (B) Each of these instances results in a temporal pattern of spikes across 100 input neurons. Noise is modeled by additional spikes (gray

dots). See also (E) for a close-up of sequence 5, which is composed of the symbols shown in (F). (C) 3, 000 neurons in a first layer each detect a random

sequence of three symbols from the input spikes. (D) 100 Neurons in the output layer detect specific sequences of spike volleys from the hidden layer,

i.e., sequences of sequences of symbols. This leads to a rather reliable detection of the 10 di�erent target sequences by the corresponding output

neurons. (G) Sub-populations of neurons in the hidden layer that code for di�erent sequences ending in the same symbol fire synchronized spike volleys.

(H) Neurons in the output layer can detect specific sequences of these spike volleys that are characteristic of the respective target sequence.

from the 30 input neurons that represent the associated symbol. A
second layer of 100 output neurons (ten for each target sequence,
see Figure 7D) uses the spikes coming from the hidden layer to
classify the 10 different target sequences. To achieve this, each output
neuron needs to detect a sequence of feature-combinations that
is characteristic for the target sequence of interest. Each segment
and soma of an output neuron thus detects a combination of
relevant features, all of which terminate in the same symbol and
thus produce a synchronized spike volley once that symbol appears
in the target sequence. Here, we use a simple algorithm to select
these feature combinations (see Section Materials and methods), but
the same might be realized through a combination of structural
and homeostatic plasticity in the brain. Now, whenever the target
sequence is presented, the corresponding feature detectors in the
hidden layer fire in order, which successively activates the dendrite
segments of the output neurons, ultimately leading to spikes that
signal a detection. Despite noisy inputs and timing variability in
the spike patterns, the results are remarkably robust and each
target sequence is reliably detected. Because the feature detectors
in the hidden layer are agnostic to the target sequences, this
scheme can be extended to another target sequence by adding
just one additional output neuron to detect the right sequence of
feature combinations.

Discussion

Mounting biological evidence suggests that dendritic function
is critical to neural computation. We therefore constructed a

new model of dendritic computation that relies primarily on the
generation and interaction of dendritic plateau potentials. It explains
conceptually how individual neurons with segmented dendritic
trees can robustly detect long sequences of spike volleys in a
particular order—even if they are presented across vastly different
timescales. We also showed that stochastic synapses can turn the
all-or-none response of plateau potentials into a more informative
graded response. This allows individual neurons to detect complex
sequences of stimuli that are themselves combinations of multiple
features. Stacking such sequence detection neurons as features into
a larger population further expands their ability to detect very
long sequential patterns—even when based on generic, randomly
generated feature detectors.

Early theoretical work already predicted that the dendritic tree
would play a crucial role for sequence detection (Rall, 1964),
albeit based on conductance delays that are too short to account
for behaviorally relevant timescales. More recent work confirms
that neurons indeed preferentially respond to sequential activation
of dendritic spines in the centripetal direction along a single
dendrite, but attributes this effect to the voltage-gating of NMDA
channels in combination with a strong impedance gradient along
the dendrite (Branco et al., 2010). Further experimental work has
revealed the important role that NMDA channels play for the
generation of plateau potentials and neural UP states, which endow
the neuron with a much longer timescale (Milojkovic et al., 2004,
2005; Antic et al., 2010). The interaction of active dendrites and
neural UP states was used in the hierarchical temporalmemorymodel
of neural computation (George and Hawkins, 2009) to explain how
networks of neurons can process sequences (Hawkins and Ahmad,
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2016). In contrast, our model takes advantage of the interaction of
plateau potentials across distinct dendrite segments which provides a
robust mechanism for sequence detection in single neurons. In our
model, coincident spikes on neighboring synapses represent spatial
patterns on a fast timescale, whereas plateau potentials act as long-
lasting local memory traces of these short events and thus decouple
the timescale of sequence detection from the timescale of membrane
dynamics. Further, each detected sequence element initiates a new
plateau and therefore extends the memory of the currently ongoing
sequence by another plateau duration. This allows individual neurons
to recognize long sequences with significant timing variability. The
degree of the timing invariance is determined by the length of plateau
potentials, which in turn has been found to be a function of the
amount of presynaptic glutamate released (Milojkovic et al., 2005).
This parameter, which corresponds to the spike volley magnitude
in our model, is likely functionally significant and warrants further
investigation, since it relates the duration of the plateau memory
trace to the amount of evidence for the stored sequence element.
In addition, the structure of the neural dendrite, its functional
compartmentalization, and the location of synapses determine the
neuron’s ability to detect specific sequences in our model. This
provides a different perspective on the functional relevance of the
observed diversity of dendrite morphologies and their potential
ability to adapt compartmentalization in cortex (Wybo et al., 2019).

We limited our discussion to simple examples of dendrites
composed of a single chain of segments, but more intricate
branching patterns can enable individual neurons to detect more
complex sequential patterns such as “A or B and then C” (see
Supplementary material 3). The relevance of such more complex
patterns for neural computation should be investigated in future
work. Since plateau generation requires highly correlated synaptic
input, we also rely on spike volleys as the primary unit of
information transmission. Although new statistical techniques are
being developed to detect such volleys in-vivo, there are competing
ideas about the mechanisms that could cause this synchronization.
A particularly interesting prospect is the emergence of stimulus-
dependent synchronization from recurrent activity (Korndörfer et al.,
2017).

Here, we focused entirely on the role of dendritic plateaus for
computation. Our hypothesis that plateau potentials are an integral
part of neural computation is supported by a growing number of
recent studies that show long-lasting calcium signals in dendrites
to be associated with task relevant information in a variety of
experiments (Takahashi et al., 2016, 2020; Kerlin et al., 2019). Future
work should also address their implications for learning. For example,
it is still unclear how dendrites can learn to detect specific sequences
based on local plasticity mechanisms alone. One recent approach
uses both the somatic and the local dendritic membrane potential
in a two-compartment neuron model to learn temporal patterns
via synaptic plasticity (Brea et al., 2016) but does not yet include
non-linear amplification in active dendrites. However, experimental
result show that localized plateau potentials and the resulting long-
lasting high Ca2+ concentrations appear to be the primary drivers of
synaptic plasticity (Hardie and Spruston, 2009). This is at odds with
most current learning algorithms for spiking neurons, which instead
rely on short somatic feedback signal such as backpropagating action
potential (Song et al., 2000).

Other forms of plasticity also become more relevant in the
context of our proposed model. For example, since the location of

a synapse on the dendrite matters, structural plasticitity (Knoblauch
and Sommer, 2016) is decisive for the neuron’s function. The
localized coincidence detection requires homeostatic processes
to adjust synaptic transmission probabilities (Turrigiano, 2012;
Leugering and Pipa, 2018) in order to appropriately balance the
excitability threshold and synaptic input. And lastly, a recently
proposed mechanisms for tuning transmission delays through
controlled (de-)myelinization (Fields, 2015) might allow neuron
populations to synchronize their spike volleys more precisely.

Beyond its role as a candidate mechanism for sequence
processing in the brain, dendritic plateau computation may also have
applications outside of neuroscience. In particular, the simplicity of
our proposed mechanism lends itself to a hardware implementation
that uses asynchronous communication and complex dendrite
structures, rather than larger networks, to boost computational
efficiency. The prospect of energy efficient dendritic computation
has also motivated others to research potential implementations in
neuromorphic hardware. For example, Intel’s Loihi chip (Davies
et al., 2018) and the DYNAPSE architecture (Moradi et al.,
2018) already support some forms of active non-linear processing
in functionally isolated dendrite segments. Our model provides
a new perspective on how these existing capabilities could be
utilized for computation and extended in future neuromorphic
technologies.

Materials and methods

Simulation framework for dendritic plateau
computation

All simulations are implemented in a custom package
developed in the Julia programming language (Bezanson et al.,
2017), publicly available via the code repository hosted at
https://github.com/jleugeri/DPC.jl. The simulator implements
the neuron model outlined in this paper using a fast and extensible
event-based formalism. All experiments and configuration files can
be found in the examples subfolder of the repository. Further
documentation of the simulator, its interfaces, and implementation
details can be found there as well.

Implementation of the navigation
experiment

To simulate the stochastic movements of an animal in a two-
dimensional environment, random paths are generated with time-
varying location l(t) = (X(t),Y(t)) ∈ R

2 as solutions of the following
system of stochastic differential equations:

dX = cos(2πA)Vdt

dY = sin(2πA)Vdt

dA = 0.25dWA

dV = 10.0(0.25− V)dt + 0.1dWV

(8)

A represents the angular heading of the animal, V represents
its velocity in ms−1 and WA,WV represent independent standard
Brownian motion processes. Each path is generated with a
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randomized initial position within a rectangular domain of 10 cm ×

9.5 cm, a random angular heading and a random velocity according
to the marginal stationary distribution of V in the equation above,
and is simulated for a fixed duration of 200 ms. Three populations
of place cells, each 20 neurons strong, are centered on a hexagonal
grid with center-to-center distance of r ≈ 2.9 cm. Each population
randomly emits spike volleys following a homogeneous Poisson
process with rate λ = 250Hz. The magnitude of each spike volley
is determined by the population’s mean activity at the time which
depends on the animal’s location within the environment through a
receptive field tuning curve. The tuning curves model the probability
of each individual neuron within the population to participate in
a given spike volley by the bell-curves fi(x) = exp(− x−µi

2σ 2 ) with
coefficient σ = 9.7mm, centered on the tiles of the hexagonal
grid. The total number of spikes emitted during a volley from
population i at time t is therefore a random variable distributed
according to a Binomial distribution with population size n =

20 and probability p = fi(l(t)). Additionally, each neuron in the
population emits random spikes at a rate of 10 Hz to emulate
background activity.

Each of the simulated neuron’s dendrite segments receives
spiking input from the 20 neurons of one place cell population and
requires 13 coincident spikes to trigger a plateau potential. The three
segments are connected in a chain that requires sequential activation
by spike volleys from the input populations in correct order to fire
a spike. A random path is considered to be accepted by the neuron
if the neuron responds with a spike at any point in time during the
corresponding simulation run.

Implementation of the stochastic plateau
generation experiment

For a single dendrite segment with K = 20 stochastic
synapse, each with transmission probability Psyn, the total number
of transmitted spikes for an incoming volley of X spikes is a
conditional random variable S|X ∼ Binomial(X, Psyn). Whether
the segment fires a plateau in response to the volley (Z = 1)
or not (Z = 0) is another conditional random variable Z|X ∼

Bernoulli(PZ|X), where PZ|X = P(S ≥ θ) = 1 − FS|X(θ − 1)
is the probability to exceed a fixed threshold θ . In an ensemble of
M i.i.d. segments that receive the same spike volley as input, the
number of triggered plateaus is then again a conditional random
variable N|X ∼ Binomial(M, PZ|X). If the magnitude of the spike
volleys X ∼ PX is chosen at random from some distribution PX
(here a discrete uniform distribution on [1, 20]), the amount of
information conveyed by the number of triggered plateaus can be
computed as

I(N;X) =
M

∑

N=1

K
∑

X=1

p(X)p(N|X) log
p(N|X)

∑

X p(X)p(N|X)
.

For different numbers of segments M from 1 to 100, we perform
a grid search over the parameters Psyn and θ and identify the optimal
parameter combination that maximizes the mutual information. The
two parameters are almost perfectly correlated (see Figure 5C), with
an optimal synaptic transmission probability of 1 (i.e., deterministic
synapses) and a threshold of 11 for M = 1, and a transmission
probability of only 0.39 (i.e., highly stochastic synapses) with a

correspondingly lowered threshold of 4 for M = 100 segments. For
these two extreme cases (see Figures 5A, B), we vary X from 0 to 20
and plot the expected number of plateaus (solid lines) as well as the
conditional probability P(N|X) (gray heatmap).

Implementation of the multi-dimensional
feature space experiment

For a neuron population of N neurons (here N = 1, 000), we can
collect the indices of the neurons associated with a particular feature
i in a sparsely populated binary vector vi ∈ {0, 1}N . The degree to
which feature imatches the current stimulus j can be encoded by the
probability p

j
i that an input neuron coding for feature iwould actually

participate in a spike volley for j. Since the same input neuron k can
be associated with multiple (here M = 3) features i ∈ {1, 2, 3}, its
total probability to fire a spike for stimulus j with coefficients p

j
i is

ω
j

k
= 1−

M
∏

i=1

(1− p
j
i(vi)k) =

3
∑

i=1

p
j
i(vi)k −O(p2).

For small pi, the expected input vector ωj thus approximates a
weighted linear combination of the basis vectors vi with coefficients
νj = (p

j
1, p

j
2, p

j
3). We require that ||νj|| = 1. Using the same

equation, we can fix a set of target coefficients ν̂ with ||ν̂|| = 1
and compute the optimal weight vector ω̂. The total number X of
spikes received for stimulus j by a dendrite segment with synaptic
transmission probabilities ω̂ is then a random variable with expected
value E[X] = 〈ωj, ω̂〉. The expected value is maximized for ωj = ω̂,
i.e., when input and weight vector are perfectly aligned. Since both
ωj and ω̂ are normalized, they lie on a two-dimensional manifold
(the positive sector of the surface of a unit sphere). The probability
that X exceeds a segment’s threshold θ for a stimulus j and thus
causes a plateau is a radially symmetric function on this manifold.
Figure 6B shows an approximately distance preserving projection
of this probability distribution for three different weight-vectors,
the coefficients of which correspond to the coefficients νA, νB and
νC of the three sequence elements A, B and C, respectively. See
Supplementary material for details on the used projection method.

Implementation of the network experiment

There are 3, 000 neurons in the hidden layer, each of which
codes for a different random sub-sequence (three elements long) of
any of the 10 target sequences (ten elements long). The synaptic
transmission probability is 0.5, and 8 coincident spikes are needed
to trigger a plateau (or somatic spike) in the hidden layer. Of the
100 output neurons, each segment (and the soma) receives synaptic
input from a different subset of the hidden layer’s neurons. Since our
model relies on synchronized spike volleys, these inputs are chosen
according to a simple heuristic algorithm: Each segment i (and the
soma) of an output neuron is associated with a specific index Xi of the
neuron’s target sequence in appropriate order, i.e., 1 ≤ Xi < Xj ≤ 10
for i < j. Now consider only the slice of the neuron’s target sequence
that includes the first Xi elements. Any neuron in the hidden layer is
connected to segment (or soma) i, if it codes for a feature that occurs
as a sub-sequence of this slice and ends with the symbol at index Xi.
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All neurons connected to the same segment thus code for features
ending in the same final symbol. Therefore, they form a population
that fires a spike volley when triggered by this final symbol. The
magnitude of the resulting volley depends on the number of features
that were detected by the population for the current stimulus. Since
the size of each of these input populations is random, the synaptic
threshold for plateau or spike generation in a segment or soma is
dynamically set to 40% of the number of synapses.
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