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A B ST R AC T

Concepts are mental representations of categories and lie at the core

of human cognition: They allow us to generalize from individual

sensations, which is a requirement for both logical reasoning and

effective communication. The cognitive framework of conceptual spaces

proposes to represent concepts as convex regions in low-dimensional

similarity spaces with interpretable dimensions. It has received attention

from a wide variety of disciplines, including psychology, philosophy,

linguistics, neuroscience, and artificial intelligence. Conceptual spaces

can be interpreted as an intermediate representational layer bridging

the traditional dichotomy into symbolic and subsymbolic approaches.

As such, the conceptual spaces framework promises to solve the symbol

grounding problem by relating symbols to regions in the conceptual

layer, whose dimensions are grounded in subsymbolic processes.

This dissertation investigates how conceptual spaces can be applied

in artificial agents. Using the distinction of three representational layers

(subsymbolic, conceptual, and symbolic), we identify three core prob-

lems that need to be solved, namely, the formalization of the conceptual

layer and learning processes for attaching it to the subsymbolic and the

symbolic layer, respectively.

In order to implement conceptual spaces in artificial agents, one needs

a thorough mathematical formalization of the framework which closes

many of the remaining degrees of freedom of the general proposal. For

instance, instead of only requiring conceptual regions to be convex, we

need a parametric description of these regions such that they can be

easily represented in a computer program.

The first major contribution of this dissertation consists in providing

such a mathematical formalization of the conceptual layer, along with

a publicly available implementation. This formalization makes use of

star-shapedness instead of convexity in order to encode correlations

between domains in a geometric way. It furthermore offers a wide

variety of cognitive operations, both for creating new concepts and for

quantifying relations between concepts.

The second problem concerns the grounding of the conceptual space

in subsymbolic processing: We need to find an automated way of

mapping raw perceptual input (such as camera images or other sensor

values) into the conceptual layer. Only if such a mapping is available,

an artificial agent can successfully conceptualize its surroundings and

harness the representational power of the conceptual layer.

In this dissertation, we introduce two important approaches for

grounding the dimensions of a conceptual space. On the one hand, we

consider machine learning techniques for dimensionality reduction,
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with a special focus on representation learning with deep neural

networks. The mapping learned by this approach can be applied to

novel inputs but has little to no psychological grounding. On the other

hand, we consider an approach which is based on dissimilarity ratings

obtained from human subjects in psychological experiments. These

ratings can be translated into a spatial representation with a technique

called multidimensional scaling. Here, a psychological grounding of

the similarity space is obvious, but an application to novel inputs is

very difficult.

The second major contribution of this dissertation consists in the pro-

posal of a hybrid procedure, which attempts to combine the advantages

of these two traditional approaches: The structure of the conceptual

space is initialized based on human dissimilarity ratings, and deep

neural networks are then subsequently used to learn a mapping from

raw inputs to coordinates in this space. We support this proposal by

two experimental studies on two different datasets.

Thirdly, we cannot assume that the designer of an autonomous

system can foresee all possible circumstances in which this system may

operate. Therefore, a fixed set of manually created concepts will not

be sufficient for an autonomous system – the artificial agent needs to

be equipped with the ability to learn and adapt concepts based on the

observations it makes. In other words, we need an automated way of

extracting symbols from the conceptual layer.

In this dissertation, we discuss several ways of making current ma-

chine learning algorithms more cognitively plausible. This includes the

need for incremental processing (observations are typically made one

after another) and unsupervised or semi-supervised learning (not all

observations come with an explicit label). We furthermore consider the

grounding of concepts in language games (where a group of agents

needs to negotiate a common conceptualization of their environment)

and the incorporation of explicit top-down constraints from the sym-

bolic layer (reflecting the influence of abstract background knowledge).

Overall, the content of this dissertation presents progress with respect

to all three core issues. It illustrates how conceptual spaces can be used

as a neural-symbolic approach to cognitive AI, which is able to integrate

many ideas from different strands of research.



Z U SA M M E N FA S S U N G

Konzepte sind mentale Repräsentationen von Kategorien und bilden

den Kern menschlicher Kognition: Sie erlauben es uns von einzelnen

Wahrnehmungen zu generalisieren, was eine Voraussetzung für lo-

gisches Schließen und effektive Kommunikation ist. Das kognitive

Framework der Conceptual Spaces schlägt vor, Konzepte als konvexe

Regionen in niedrigdimensionalen Ähnlichkeitsräumen mit interpre-

tierbaren Dimensionen darzustellen. Es hat große Aufmerksamkeit in

verschiedenen Disziplinen erfahren, unter anderem Psychologie, Phi-

losophie, Linguistik, Neurowissenschaften und künstliche Intelligenz.

Conceptual Spaces können als eine intermediäre Repräsentationsschicht

interpretiert werden, welche die traditionelle Zweiteilung in symboli-

sche und subsymbolische Ansätze überbrückt. Das Conceptual Spaces

Framework verspricht das Symbol Grounding Problem zu lösen, indem

Symbole mit Regionen in der konzeptuellen Schicht verknüpft werden,

deren Dimensionen in subsymbolischen Prozessen verankert sind.

Diese Dissertation untersucht wie Conceptual Spaces in künstlichen

Agenten angewendet werden können. Mithilfe der Unterscheidung

in drei Repräsentationsschichten (subsymbolisch, konzeptuell, sowie

symbolisch) identifizieren wir drei Kernprobleme, die gelöst werden

müssen, nämlich die Formalisierung der konzeptuellen Schicht sowie

Lernprozesse zur Verknüpfung mit der subsymbolischen und der sym-

bolischen Schicht.

Um Conceptual Spaces in künstlichen Agenten zu implementie-

ren benötigt man eine gründliche mathematische Formalisierung des

Frameworks, die viele der im generellen Ansatz verbliebenen Freiheits-

grade schließt. Anstatt nur zu fordern, dass konzeptuelle Regionen

konvex sind, benötigt man beispielsweise eine parametrische Beschrei-

bung dieser Regionen, sodass sie in einem Computerprogramm gut

repräsentiert werden können.

Der erste Hauptbeitrag dieser Dissertation besteht darin solch eine

mathematische Formalisierung der konzeptuellen Schicht bereitzu-

stellen, gemeinsam mit einer öffentlich verfügbaren Implementierung.

Diese Formalisierung benutzt Sternförmigkeit statt Konvexität, um Kor-

relationen zwischen Domänen in einer geometrischen Art und Weise

darzustellen. Sie bietet außerdem eine große Bandbreite an kognitiven

Operationen, sowohl um neue Konzepte zu erzeugen, als auch um

Beziehungen zwischen Konzepten zu quantifizieren.

Das zweite Problem bezieht sich auf die Verankerung des Conceptual

Space in subsymbolischen Prozessen: Wir benötigen einen automatisier-

ten Weg um perzeptuellen Input (wie zum Beispiel Kamerabilder oder

andere Sensorwerte) in die konzeptuelle Schicht zu projizieren. Nur
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wenn eine solche Funktion verfügbar ist, kann ein künstlicher Agent

erfolgreich seine Umgebung konzeptualisieren und das Repräsentati-

onsvermögen der konzeptuellen Schicht ausnutzen.

In dieser Dissertation stellen wir zwei wichtige Ansätze für die

Verankerung der Dimensionen eines Conceptual Space vor. Einerseits

betrachten wir Techniken des maschinellen Lernens zur Dimensionsre-

duktion mit einem besonderen Augenmerk auf Repräsentationslernen

mit tiefen neuronalen Netzen. Die Funktion, die von diesen neuronalen

Netzen gelernt wird, kann auf neue Stimuli angewendet werden, hat

aber nur wenig bis keine psychologische Plausibilität. Andererseits

betrachten wir einen Ansatz, der auf Ähnlichkeitsbewertungen von

Teilnehmern psychologischer Experimente basiert. Diese Bewertungen

können mithilfe einer Technik namens Multidimensional Scaling in

eine räumliche Repräsentation überführt werden. In diesem Fall ist eine

psychologische Verankerung des Ähnlichkeitsraumes offensichtlich,

allerdings ist eine Anwendung auf neue Stimuli sehr schwierig.

Der zweite Hauptbeitrag dieser Disseration besteht aus dem Vor-

schlag einer hybriden Vorgehensweise, welche versucht die Vorteile der

beiden traditionellen Ansätze zu verbinden: Die Struktur des Concep-

tual Space wird basierend auf menschlichen Ähnlichkeitsbewertungen

initialisiert und tiefe neuronale Netze werden anschließend verwendet,

um eine Funktion von rohen Inputs zu Koordinaten in diesem Raum zu

lernen. Wir untermauern diesen Vorschlag mit zwei experimentellen

Studien auf zwei unterschiedlichen Datensets.

Drittens können wir nicht annehmen, dass der Entwickler eines auto-

nomen Systems alle möglichen Umstände vorhersehen kann, in welchen

dieses System agieren wird. Deshalb wird eine festgelegte Menge an

manuell erstellten Konzepten für autonome Systeme nicht ausreichen

– der künstliche Agent muss mit der Fähigkeit ausgestattet sein, Kon-

zepte aufgrund der gemachten Beobachtungen zu erzeugen und zu

modifizieren. In anderen Worten: Wir benötigen einen automatisierten

Weg, um Symbole aus der konzeptuellen Schicht zu extrahieren.

In dieser Dissertation diskutieren wir verschiedene Möglichkeiten,

um aktuelle Algorithmen des maschinellen Lernens kognitiv plausi-

bler zu machen. Dies schließt die Notwendigkeit für inkrementelle

Verarbeitung (Beobachtungen werden typischerweise sequentiell ge-

macht) und unüberwachten oder semi-überwachten Lernens (nicht

alle Beobachtungen haben ein explizites Label) ein. Wir betrachten

außerdem die Verankerung von Konzepten in Language Games (wo

eine Gruppe von Agenten eine gemeinsame Konzeptualisierung ihrer

Umgebung aushandeln muss) und die Berüchsichtigung expliziter

top-down Beschränkungen aus der symbolischen Schicht (was den

Einfluss abstrakten Hintergrundwissens widerspiegelt).

Insgesamt präsentiert der Inhalt dieser Dissertation Fortschritte

bezüglich aller drei Kernprobleme. Er zeigt, wie Conceptual Spaces als

ein neurosymbolischer Ansatz kognitiver KI genutzt werden kann, der

es ermöglicht, verschiedene Forschungsstränge zu integrieren.
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P R E FAC E

This dissertation marks the end of a long PhD journey, which started

with first ideas for a PhD project in late 2015: I had the ambitious plan to

create an overall system for connecting the symbolic to the subsymbolic

layer through a complex concept formation algorithm. Of course, things

turned out to be much more complicated than I initially thought, so I

got quickly sidetracked into several sub-projects which contained even

more hidden complexity.

My aim of implementing conceptual spaces in software required a

mathematical formalization of the framework. What I had originally

estimated to be an easy one-month task quickly led down a rabbit hole

and kept me quite busy for almost two years.

Also the idea of grounding conceptual spaces in deep learning

seemed straightforward in the beginning, but required much more

experimentation and engineering than I had initially expected. A collab-

oration with Elektra Kypridemou, which started at the AIC workshop

in 2017, sparked the idea for an hybrid approach: Why not combine

deep learning with psychological similarity spaces? Combining two

approaches of course also doubled the workload, so this sub-project

has kept me busy for another two years and was finished just in time

for submitting this dissertation.

Along the way, I had somehow managed to collect several other

project ideas, on which I was eager to work on, but which unfortunately

never made it to the top of my priority list: After having read about

neural networks that could discover interpretable features from unla-

beled data, I tried to use them for my purposes. However, replicating

the results from the original paper was not very successful. Despite

the assistance from several students, the project never made it off the

ground and finally had to be abandoned.

At a Dagstuhl seminar in 2017, I was introduced to Logic Tensor

Networks, a neural framework for incorporating background knowledge

in the form of logical formulas into machine learning. I was immediately

hooked by the idea and started playing around with this approach in

the context of conceptual spaces. As it turned out, my initial setup was

not working very well, and while I had some good ideas about how to

improve things, I also had to put a (temporary) end to this project in

order to finish my dissertation.

Also creating the concept formation algorithm I had originally en-

visioned turned out to be infeasible given my finite time budget and

my plethora of sub-projects. Nevertheless, I am fairly satisfied with

the outcome of my PhD studies: I was able to cover a broad range of

interesting topics and I feel that I made meaningful progress on most

of them. In addition to the sub-projects I had to abandon, there are
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Recent years have seen great successes of artificial intelligence systems Recent successes of

deep learning
based on deep neural networks. These include areas such as computer

vision (e.g., superhuman performance in image classification [193]),

natural language processing (e.g., language models capable of generat-

ing fluent texts in various styles [83]), and reinforcement learning (e.g.,

superhuman performance in the ancient game of Go [371]). However,

in all of these cases, the input-output mapping learned by the neural

networks is quite opaque and cannot be easily analyzed or interpreted

by human experts. The recent successes of deep neural networks have

thus been accompanied with an urge for more human-like, explainable

AI [113, 133, 259, 273, 274].

On the other hand, classical AI approaches based on formal logics and Symbolic approaches

to artificial

intelligence

hand-coded rules have already for decades been successfully applied to

various tasks such as planning [165], automated theorem proving [355],

and representing information in a structured way for the semantic web

[171]. These approaches result in systems which can be easily debugged

and which consist of interpretable components. However, they are

usually ill-equipped to deal with noise, uncertainty, and inconsistencies.

Moreover, it is unclear how to link their abstract symbolic descriptions

to perception and action in the real world.

Their individual successes indicate that both the connectionist and Neural-symbolic

integration
the symbolic paradigm have their merits while at the same time facing

considerable limitations. The paradigm of neural-symbolic integration

[61, 111, 112, 279] proposes to devise hybrid systems encompassing

both neural and symbolic aspects in order to combine the strengths of

both approaches while eliminating their weaknesses. Our research can

1



2 introduction

be seen in the context of neural-symbolic integration with an emphasis

cognitive AI, i.e., intelligent systems inspired by and based on findings

from cognitive psychology [177, 259, 273, 274]. By using human cog-

nition as a starting point for artificial systems, cognitive AI attempts

to avoid the limitations and pitfalls of purely mathematically derived

models. In this dissertation, we will focus on the psychological notion

of concepts, which are mental representations of categories in the world

allowing the human mind to abstract from individual observations.

More specifically, we employ a geometric representation of conceptual

knowledge in order to build a bridge between connectionist and sym-

bolic AI systems.

This introductory chapter sets the stage for the research contribu-Overview

tions described in the remainder of this dissertation. In Section 1.1, we

present different psychological theories about the mental representation

of conceptual knowledge and consider several important empirical ob-

servations with respect to the processes involved in learning and using

concepts. This serves as a starting point for our research on concept-

based cognitive AI. We then give a broad overview of the conceptual

spaces framework in Section 1.2, describing its main components and

its relation to psychological theories, the symbol grounding problem,

machine learning, and neuroscience. Moreover, we summarize four

important example applications of this framework in the context of

artificial intelligence. Finally, in Section 1.3, we preview the structure of

this dissertation and its main research contributions, namely, a novel

mathematical formalization of the conceptual spaces framework and a

hybrid approach for grounding its dimensions.

The content of this chapter is partially based on material published

in [50] (Section 1.1) and [44] (Section 1.3.1).

1.1 concepts from the view of psychology

It is impossible to talk about human cognition without talking aboutWhat are concepts?

concepts since they form an abstraction of reality that is central to

the functioning of the human mind. A concept can be defined as a

"nonlinguistic psychological representation of a class of entities in the

world" [298, Chapter 11]. According to Goldstone [170], one of the

most important functions of concepts is that they allow us to treat all

members of a given category as equivalent for a given task, even though

we might be well aware of differences between them. This way, concepts

allow us to communicate efficiently, to make predictions (e.g., about

unobserved features of a category member), and to generalize beyond

individual objects and observations. But how are concepts represented

mentally? How are they acquired? How does the human mind use concepts

in cognitive tasks? Such questions have been a subject of discussion

since antiquity and remain highly relevant in multiple fields, including

(cognitive) psychology, philosophy, linguistics, and artificial intelligence

(see [49, 114, 189, 272, 275, 298]).



1.1 concepts from the view of psychology 3

The remainder of this section is mainly based on the thorough

overview of psychological concept research provided by Murphy [298].

We first introduce different psychological theories about the mental

representation of concepts in Section 1.1.1. Afterwards, we summarize

empirical observations about concept usage in Section 1.1.2 and discuss

to what extent they can be explained by the different theories.

1.1.1 Psychological Theories of Concepts

In the following, we will briefly describe four broad views from the

psychological literature about how concepts are mentally represented.

We will also highlight connections to other disciplines, especially artifi-

cial intelligence and machine learning.

The classical view of concepts dates back to Aristotle and has been The classical view on

concepts
the predominant approach held implicitly by many psychologists in

the beginning of concept research (e.g., [204]). It can be summarized

as follows [298, Chapter 2]: Concepts are mentally represented as

definitions, which provide a list of necessary and jointly sufficient

conditions for membership in the category. If one of these conditions

does not apply to an observation, this observation cannot be a member

of the category (necessity). Moreover, if an observation fulfills all of

the listed conditions, then it must be a member of the category (joint

sufficiency). In other words, the definition includes everything that

belongs to the category and excludes everything that does not. The

membership in the category is assumed to be binary, i.e., any given

observation either belongs to the category or it does not belong to

the category – there are no borderline cases. Moreover, the classical

view does not make any distinction between category members – all

observations meeting the definition are equally good representatives of

the category. Finally, since concepts are based on definitions, one can

use logical connectives like AND, OR, and IF to define more complex

concepts based on simpler ones. The resulting set of conditions for

such a complex concept can also be interpreted as a set of logical

rules determining category membership. The classical view of concepts

is thus tightly connected to formal logics, where concepts can be

interpreted as well-defined sets and logical connectives can be used to

combine them with each other.

The classical view has been challenged on theoretical grounds, for Challenges for the

classical view
instance by Wittgenstein [437] who noted that it is very difficult to

provide a definition of many everyday concepts such as sports based

on a set of necessary and jointly sufficient conditions. If concepts were

represented mentally by definitions, one would, however, not expect

such difficulties in listing the respective conditions. We will see in

Section 1.1.2 that the classical view also fails to account for many em-

pirical observations related to concept learning and concept use. It has

therefore been essentially abandoned in the field of psychology.
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Nevertheless, logic-based representations are still used in other sub-Relation to artificial

intelligence
fields of cognitive science which are concerned with concepts: For

instance, theoretical linguists pursue the goal of assigning more precise

meaning to natural language expressions by mainly applying logic-

based formalisms [17]. Moreover, the conceptual core of the semantic

web [59] is based on large ontologies [171] containing hierarchies of

concepts formulated in description logics. Finally, formal logics are also

prevalent in symbolic approaches to artificial intelligence [341].

The prototype theory of concepts dates back to the pioneering work ofThe prototype view

on concepts
Rosch [336]. It assumes that a concept is not represented by a logical

definition, but that it is based on a prototypical member. Category mem-

bership is then not based on the fulfillment of a list of conditions, but

on the similarity of the observation to the category prototype. Murphy

[298, Chapter 3] distinguishes two interpretations of this general idea:

On the one hand, one may interpret the prototype as the best example

of the category. This best example can either be an actual observation

or inferred from multiple observations (e.g., by defining an average).

However, this interpretation may be of limited practical usefulness, for

instance because it cannot encompass information about the variabil-

ity of the category. A different interpretation sees the prototype as a

summary representation of the whole category, describing typical and

possible features of its members.

The most straightforward implementation of the prototype theoryPrototypes as feature

lists
represents each concept by a list of features which are weighted accord-

ing to their relative importance [298, Chapter 3]. Classification can then

be conducted by comparing the features of the observed object to the

feature list representing the concept. This can be as rudimentary as

checking whether the weighted sum of matching features minus the

weighted sum of non-matching features exceeds a given threshold.

A more advanced model is based on schemata [298, Chapter 3]: ASchema-based

representations of

prototypes

schema is a set of slots with possible fillers. Each slot can also have

restrictions on the possible fillers, both with respect to their general type

and with respect to their actual values. As each slot can only be filled

with a single filler, the different fillers applicable to one slot compete

with each other. This prevents concrete examples from containing

conflicting information such as having both features flies and does not

fly. The different slots can furthermore be connected to each other by

constraining each others values, thus encoding correlations. If a concept

is represented as a schema, then its slots define the relevant features

(which can again be weighted based on relevance), and the possible

fillers can be weighted based on their frequency.

This idea of schema-based representations is quite similar to Minsky’sRelation to artificial

intelligence
frames [294], a knowledge representation framework from artificial

intelligence that has also been adopted in cognitive science [32]. These

frames have a potentially recursive attribute-value structure, which

can be augmented by structural invariants and constraints [393]. Also

ontologies in the area of the semantic web [171] often make use of

similar representational structures when defining features of a concept.
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In the field of machine learning, a naive Bayes classifier [295, Chapter

6] can be seen as a probabilistic variant of the "weighted feature list"

approach: Each class is represented by its list of possible features and

their respective probabilities, as estimated based on frequencies in a

given dataset.

In contrast to both the classical and the prototype view, the exemplar The exemplar view

on conceptstheory of concepts [287] rejects the idea that concepts are represented

by using summary representation of the whole category. Instead, the

exemplar theory argues that each concept is represented as the set of

all observations of category members that have been made so far. For

instance, the dog concept is represented by the set of all encounters

with actual dogs. A clear argument for this exemplar view is that in the

beginning of learning a concept, i.e., when the first example is observed,

there is not enough information for forming an abstraction, so one has

to memorize this example itself. The exemplar theory, however, goes

further by postulating that forming an abstraction is not necessary at

all, even after many examples have been observed.

Concept membership in the exemplar view is based on the similarity Concept membership

with exemplars
of the observation to the stored exemplars of the concept. It can be

calculated as follows [298, Chapter 3]: The similarity of an observation to

a given exemplar is based on their similarity with respect to individual

features. For each feature, a matching score is defined, where a value of

one indicates a perfect match and a value of zero represents the greatest

possible mismatch. Based on the importance of a feature, this score can

be raised or lowered – for instance, a large difference on an unimportant

feature can still result in a similarity score close to one. These scores of

individual features are then aggregated through multiplication in order

to obtain the overall similarity between the given observation and the

given exemplar. By summing over all exemplars of the given concept,

one can obtain an overall similarity measure. In this way of computing

observation-concept similarity, it is better to have a high overlap with

few exemplars than moderate overlap with many exemplars. The overall

similarity score can then be compared to a given threshold in order to

determine whether the given observation belongs to the given concept.

The exemplar view can be linked to so-called lazy learning algorithms Relation to artificial

intelligence
in the field of machine learning [295, Chapter 8]: For instance, in a k
nearest neighbor classifier (to be introduced in Chapter 5)) each class is

represented by a set of examples. A newly observed observation is then

classified by finding the k most similar examples seen so far and by

choosing the class with the highest frequency among these k examples.

Although the exact mechanism of assigning class membership differs

from the procedure described above, the underlying idea is quite similar.

The fourth approach to representing concepts we will consider here The knowledge view

on concepts
can be called the knowledge view. It emphasizes that concepts do not

occur in isolation, but always stand in relations to other concepts and

to our general knowledge about the world [299]. It is based on the

observation that category learning is not only inductive (i.e., based
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Observa-

tion

Classical

View

Prototype

View

Exemplar

View

Knowledge

View

Typicality

Effects

✕ ✓ ✓ –

Exemplar

Effects

✕ ✕ ✓ –

Correlations ✕ – ✓ ✓

Hierarchies ✕ ✓ ✕ –

Basic Level – – ✕ –

Induction ✕ ✓ ✕ ✓

Concept

Combina-

tion

✕ ✓ ✕ ✓

Knowledge

Effects

– – – ✓

Table 1.1: Overview of empirical observations about concept learning and

concept usage, and their relation with different psychological theo-

ries ("✓" means "predicted", "✕" means "conflicting", and "–" means

"neutral").

on observations) but often influenced by prior knowledge (e.g., for

determining which features are relevant). The knowledge view focuses

mainly on knowledge-based learning while largely ignoring empirical

learning. Individual concepts are often interpreted as mental "micro-

theories" about specific aspects of the world [298, Chapter 3]. These

micro-theories are often incomplete and only partially integrated, but

they provide explanations and relations to other micro-theories. For

example, under the knowledge view the concept dog represents the

role dogs play in our broader theories about biology, family life, and

hunting. Moreover, the dog concept contains micro-theories about the

anatomy of dogs (e.g., using the tongue to regulate body temperature)

and their behavior (e.g., circumstances under which dogs bark).

The knowledge view is again related to ontologies [171] from theRelations to artificial

intelligence
semantic web area, which provide a formal way of describing networks

of concepts. Moreover, in artificial intelligence it can be related to re-

search on commonsense reasoning [113], which tries to overcome the

limitation of purely logic-based symbolic systems by incorporating

general world knowledge in order to draw plausible conclusions even

if they are not justified by logical deduction.

1.1.2 Empirical Observations about Concepts

In this section, we will summarize several empirically observable effectsOverview

regarding the learning and use of concepts by humans. For each of

these effects, we will also argue to which extent it is compatible with the
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different views presented in Section 1.1.1. Table 1.1 shows an overview

of this analysis. As one can see, the classical view is not able to explain

any of these effects while the three other approaches have different

strengths and weaknesses. Let us now take a look at the individual

effects in more detail. Again, we base our summary mainly on Murphy’s

comprehensive overview [298].

One of the strongest and most reliable effects in the categorization Typicality effects:

some category

members are more

typical than others

literature is the so-called typicality effect [298, Chapter 2]. Roughly

speaking, the typicality effect is the observation that the members of

a category differ with respect to their typicality – there are category

members with are more typical than others. For example a robin is a

very typical bird, but a penguin is a very atypical one. The typicality

effect is also closely related but not identical to the observation that

there are borderline cases for which no clear membership decision can

be made. For instance, it is debatable whether tomato is a fruit or a

vegetable. Such borderline cases often are atypical members of one

category which have some features in common with other categories.

A tomato is technically a fruit, albeit a very atypical one which shares

many features with members of the vegetable category. In general,

a membership judgment for such borderline cases is slower than for

typical members or typical non-members of a category. The typicality

effect influences also many other behaviors and judgments which are

based on relating an observation to a category. For instance, typical

category members are produced more frequently and earlier than

atypical members when giving examples for category members. They

are also learned faster and are more useful for making inferences about

other category members.

The classical view cannot explain such typicality effects since all Typicality effects and

theories of concepts
category members are assumed to be equally good examples of the

category. The prototype view on the other hand was explicitly devel-

oped in order to explain these typicality effects – the more similar an

observation is to the category prototype, the more typical it is consid-

ered to be. However, also the exemplar view predicts typicality effects:

A typical member is expected to have a high similarity to most or all

exemplars of the category, while an atypical member is only similar to

a very small number of exemplars. Finally, the knowledge view does

not explicitly predict typicality effects, but it also does not have any

conflicting assumptions.

With respect to both category learning and categorization, one can Exemplar effects:

individual examples

matter

also observe exemplar effects [298, Chapter 4]: While learning a category,

the order in which examples are observed can influence the perfor-

mance when making classifications. For example, if three consecutive

observations share a certain subset of features, test items which also

have this subset of features are classified quite fast. If the same three

observations during learning do, however, not appear right after one

another, the same test item is classified considerably slower. Moreover,

superficial similarities between examples from the learning phase can
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influence which other commonalities among them are enforced when

extracting a general category description. For example, when learning

about groups of people, Ross et al. [337] presented participants of their

study with two exemplar members: One was described as liking ice

cream and having bought nails, while the other one was described as

liking Westerns and having bought a swim suit. The third exemplar

was always described to have bought both wood and a towel. If it was

furthermore described as liking sherbet, participants were reminded of

the first exemplar and generalized that all members of this group like

carpentry. However, if the third exemplar contained information about

liking cowboys, the overall group was interpreted as liking swimming.

Ross et al. noted that both generalizations were equally justified by

the three exemplars in both conditions and that therefore the third

exemplar’s value of the otherwise irrelevant feature has determined

the resulting generalization.

Also when classifying novel observations, one can observe effectsExemplar effects in

classification
based on individual examples from the learning phase. For instance,

observations which are superficially similar to a category member seen

during training tend to be classified more accurately than observations

without such a matching exemplar. Moreover, even when an explicit

categorization rule is given, superficial similarity to an exemplar from

another category increases the risk of misclassifications. Finally, if

a known exemplar is categorized right after an observation that is

similar to this exemplar, classification takes place faster than if the same

exemplar was preceded by an unrelated observation.

Exemplar models naturally incorporate exemplar effects during clas-Exemplar effects and

theories of concepts
sification. However, they have difficulties explaining the exemplar

effects observed during learning, since these effects seem to relate

to a generalization of the exemplars. Such a generalization beyond

exemplars is, however, explicitly refuted by the exemplar view. The

prototype theory on the other hand struggles to explain the catego-

rization effects discussed above as it assumes classification to be based

solely on the similarity to the category prototype. The exemplar effects

with respect to learning do not directly conflict with the prototype

view, although prototype models typically do not make any concrete

claims about the process of inferring a prototype from examples. Finally,

the knowledge view has little to say about exemplar effects, although

some of the generalizations discussed above seem to involve at least

some degree of background knowledge. The classical view identifies

concepts with rule-based definitions and can therefore not explain that

exemplar effects are present even if such a classification rule is explic-

itly given. Finally, one should note that exemplar effects are strongest

for artificial categories with a poor internal structure. It is thus un-

clear how relevant they are for natural categories with a richer structure.

Another important aspect of concepts are correlations among featuresCorrelations: feature

values don’t vary

independently from

each other

[298, Chapter 5]: Concepts typically contain clusters of correlated

features which play an important role both for learning [66] and

reasoning [298, Chapter 8]. Murphy [298, Chapter 5] argues that such
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correlations are always implicitly encoded if we define concepts based

on a set of features: Typically, the features associated with a particular

concept are not associated with other concepts. Thus, if we observe some

of the features considered typical for the bird concept (e.g., has feathers

and has wings), we expect that also other features associated with the

bird concept are present (e.g., flies and has beak). Moreover, certain

subsets of features within a have have even stronger correlations with

one another [395]. For instance, within the bird concept, the features

sings and small are strongly correlated with each other, even though

both may not be very important to the overall concept.

Murphy, however, notes that correlations usually do not influence Task and context

matter
typicality judgments or classification performance. Moreover, humans

tend to consciously notice such correlations during learning only

if they are encouraged to do so through a secondary task such as

predicting missing features based on a list of given ones. Murphy

explains this by the assumption that the main task during category

learning is to associate features with categories, not features with

other features, which would be more demanding due to the much

larger number of possible combinations. The correlations between

features are then learned not directly, but indirectly through their

common association with the same category. In a series of simulations

and experiments, Billman et al. [65, 66, 220] have highlighted that

individual, unrelated correlations (e.g., having four features A, B, C,

and D, with high correlations between the feature pairs A–B and C–D,

but no other correlations) are less helpful in learning than systems of

such correlations (e.g., three features A, B, and C having high pairwise

correlations in all combinations). In natural categories, one can expect

that features come in such clusters of correlations.

Correlations also play an important role in concept combinations: Correlations and

concept combinations
For instance, spoons in general are considered to be small, but wooden

spoons are expected to be large [288]. In this case, a correlation between

material and size is used to make additional inferences.

The exemplar view predicts correlations among features, since they Correlations and

theories of concepts
are implicitly encoded in the set of exemplars: Most bird exemplars

that have the feature sings also have the feature small, hence one can

state that small birds tend to sing and vice versa. Please note that in

the exemplar view, this conclusion is not drawn for all birds in general.

Instead, whenever making an individual observation (e.g., a small

bird), only the exemplars relevant to this observation are retrieved

(i.e., bird exemplars which have the feature small) and other features

they have in common (e.g., sings) are used to make predictions for this

individual observation. The prototype view is able to explain the overall

correlation of features with categories (e.g., birds having features has

wings and flies), but it does not necessarily predict strongly correlated,

but relatively infrequent features within a concept (e.g., small birds

tending to sing). However, schema-based prototype models contain

mechanisms for explicitly encoding also such intra-conceptual correla-

tions. The knowledge approach is in principle also in line with feature

correlations as at least some of these correlations can be explained based
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on an underlying theory. For example, color and taste of a banana are

correlated due to the underlying process of riping. The classical view

can in principle account for general feature-category correlations if

features are used as conditions in the definition of a concept. However,

it struggles to accommodate correlations within a concept, since they

cannot be adequately represented by a set of necessary and jointly

sufficient conditions.

One can furthermore observe that concepts tend to be arrangedConceptual

hierarchies: all dogs

are mammals

in a conceptual hierarchy which can be represented by a directed "isa"

relation (e.g., dog isa mammal isa animal) [298, Chapter 7]. This relation

is typically assumed to be asymmetric and transitive, and to inherit

features (i.e., if all mammals have blood, then also all dogs have blood).

When modeling a concept hierarchy in an explicit way (similar to the

ontologies mentioned above), then each concept can be represented

with a node and each isa relationship by a directed edge between two

nodes. The resulting graph is then expected to represent a taxonomy

in the form of a tree (i.e., any category can have only one immediate

superordinate). Based on the principle of cognitive economy, common

features can then be stored at the highest abstraction level possible (e.g.,

having blood would not be associated with the dog concept, but with

the mammal or animal concept).

However, there is experimental evidence indicating that transitivity isViolations of

transitivity
often violated: For instance, people agree that a car seat is a chair and

that a chair is furniture, but they insist that a car set is not furniture.

This indicates that conceptual hierarchies may (at least sometimes)

be computed on the fly by comparing the relevant features among

concepts. For example, by observing that dog has all important features

of mammal, we can conclude that dog is a special kind of mammal.

Murphy [298, Chapter 10] furthermore notes that while children’s word

usage is taxonomic (associating dog with cat), their sorting behavior is

often thematic (associating dog with bone). The same can be observed to

some degree in adults, highlighting that not only hierarchical relations

but also thematic relations are relevant when using concepts in cognitive

tasks.

Associated strongly with the conceptual hierarchy is the basic levelThe basic level of

categorization: a

default level of

abstraction

of categorization, which is for instance often used when naming objects

(e.g., describing something as a "picture of a dog" instead of a "picture

of an animal" or a "picture of a Labrador") [298, Chapter 7]. Moreover,

humans are also faster in verifying claims about basic level concepts

(e.g., "birds have feathers") than about superordinate or subordinate

concepts (e.g., "robins have feathers"). The basic level seems to be a

compromise between informativeness and distinctiveness. Concepts at

the basic level therefore are both easy to distinguish from each other and

informative enough for making practically useful inferences. In general,

subordinate concepts refine the basic level concept by adding more

information while leaving the general picture unchanged. Also the

intra-category similarity only increases slightly when going from the

basic level to the subordinate level. Murphy [298, Chapter 7] also notes
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that superordinate categories tend to be described by mass nouns (e.g.,

furniture, fruit), whereas basic level concepts tend to be described by

count nouns (e.g., chair, apple), which may correspond to a distinction

into collections and classes [298, Chapter 10].

The classical view is consistent with an explicit encoding of concep- Conceptual

hierarchies, basic

level effects, and

theories of concepts

tual hierarchies where definitions for subordinate concepts are simply

special cases of the definitions for their respective superordinate. How-

ever, it is unable to explain violations of the transitivity assumption

as observed in the car seat example from above. Moreover, it does

not predict any basic level effects. Also the prototype theory does not

predict basic level effects, but it is consistent with them. Moreover,

it can explain violations of transitivity in the conceptual hierarchy if

this hierarchy is constructed dynamically by comparing prototypes:

While the overlap of features between car seat and chair as well as

between chair and furniture may be sufficiently large to relate them

hierarchically, the overlap between car seat and furniture may be

too low. The exemplar theory has problems with reflecting concept

hierarchies in general: It is unclear how to make statements such as

"all dogs are animals" based on exemplars unless every dog exemplar

is also annotated as being a animal exemplar. This would, however,

require that each exemplar is annotated with all possible categories

it may belong to, which seems infeasible or at least highly inefficient.

Finally, also the knowledge view does not predict conceptual hierar-

chies or basic level effects, but is in principle able to accommodate them.

Induction is the reasoning process of inferring information or knowl- Induction: making

educated guesses
edge about objects or categories [298, Chapter 8]. One important variant

is called category-based induction which describes that by knowing

to which category an object belongs, one can make predictions about

unobserved features based on the general information associated with

this category. For instance, by knowing that Wilbur is a dog, we can infer

that Wilbur probably has four legs and a tail, barks, and likes to play

fetch. These inferences can be mainly explained based on intra-category

similarity: As all members of the category are similar to each other,

any category member can be expected to share their common features.

Category-based induction can therefore also be related to the general

correlations between features and categories as discussed above.

Another aspect of induction is the transfer of knowledge between Knowledge transfer

between categories
categories (e.g., the presence of a given feature). This transfer is influ-

enced by different factors: Firstly, the typicality of the source category

plays a crucial role in making generalizations. A certain disease is more

likely to effect all birds if it has been observed for robins than if it has

been observed for penguins. Moreover, the similarity of the source

and the target category increases the likelihood of the induction: A

disease infesting ducks is more likely to also affect a geese than eagles.

If multiple source categories are given, their diversity can also give

important information. For example, if duck, penguin, and eagle all

have a certain feature in common, we expect that this feature can also

be observed for robin. Finally, also the type of feature plays a role in
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making inductions: While biological features (such as the chemical

composition of an animal’s blood) are generalized from rabbit to whale,

but not from tuna to whale, the opposite effect can be observed for

behavioral features (such as feeding strategies).

While the classical view can explain category-based induction (sinceInduction and

theories of concepts
all features are given in the concept’s definition), it cannot account for

the effects based on similarity and typicality observed for inductions

across categories. Prototype models on the other hand can account for

both types of inductions. In fact, prototype-like representations are

often implicitly assumed in studies about induction. Also the exemplar

view can in principle also account for similarity effects. However, it

has problems to account for a generalization across hierarchy levels

(e.g., from robin to bird), since conceptual hierarchies cannot be well

represented with exemplars. Moreover, explicitly adding features to a

category based on cross-category induction is difficult in an exemplar-

based representation since all individual exemplars would need to be

updated with this information. All other views which make use of a

summary representation can easily incorporate such pieces of informa-

tion. The knowledge approach is supported by the effects observed with

respect to the feature type, where background knowledge is required

in order to decide that physiological features can be generalized based

on a common biological background (e.g., from rabbit to whale), while

behavioral features require a common habitat (e.g., tuna and whale).

In addition to transferring information between concepts, one canConcept

combination:

creating new

concepts based on

existing ones

also directly combine them in order to arrive at novel concepts. This

process of concept combination has received considerable attention in

the literature (see e.g., [187, 189, 288, 379]), also since it can be related

to the interpretation of natural language phrases [298, Chapters 11

and 12]. Especially conjunctive concept combinations in the form of

so-called modifier-head phrases have been investigated. A naive model

of conjunctive concept combination could use the intersection of the

concept’s extensions (i.e., the sets of their respective members). However,

this simple intersection-based approach faces various difficulties [298,

Chapter 12]: It can neither deal with relative adjectives in examples

such as large baby nor model non-predicating adjectives as in atomic

engineer. Also noun-noun combinations such as movie psychiatrist

cannot be modeled by simple set intersections. Moreover, while the

set intersection is commutative (i.e., A ∩ B = B ∩ A), this does not

hold for concept combinations, where bird dog and dog bird are clearly

not identical. Furthermore, one can often observe conjunction effects,

where for example a picture of brown apple is judged to be more typical

for brown apple than for both brown thing or for apple. A related effect

are overextensions, where for instance chess is not considered to be a

sport, but it is judged to be a sport which is a game [187]. Also prior

knowledge seems to play an important role in concept combinations:

A tiger squirrel is typically interpreted as a squirrel with stripes,

hence taking only a single feature from the modifier. Moreover, a

mountain jacket is presumably a jacket one wears while being in the
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mountains, while a mountain magazine is expected to be a magazine

about mountains and hiking.

As concept combination under the classical view is based on set inter- Concept combination

and theories of

concepts

section, it cannot account for the variety of effects described above. One

should, however, note that there have been recent attempts to model

typicality effects in concept combination (as observed in the brown

apple example) with special variants of description logics [263, 333],

which are implicitly based on the classical view on concepts. Again,

most of the models used for explaining concept combination (such as

the selective modification model by Smith et al. [379]) implicitly make

use of a prototype-based representation where information about the

overall concept is given in a schema-like structure and where concept

combination operates on the individual slots and fillers. The exemplar

theory of concepts has difficulties in modeling concept combination

since it assumes that no summary representation is necessary. Modeling

the effects mentioned above only based on exemplars is therefore quite

challenging. Finally, almost every concept combination example from

above involves some sort of background knowledge in order to decide

which modifications to apply to the original concepts. This is a very

strong support for the knowledge view, which can also explain the

emergence of additional features (such as an empty store making a

deficit) based on causal explanations.

Let us finally consider knowledge effects as a topic cutting across all Knowledge effects:

background

knowledge plays a

role

the above-mentioned empirical observations. As we have seen above,

prior knowledge influences the selection of relevant features, learning

categories and applying them in categorization, making inductions,

and combining concepts. Typically, everyday knowledge can be used

to explain a category, but not to predict its existence [298, Chapter 6].

The knowledge employed when it comes to learning and applying

conceptual knowledge is also usually quite shallow: One knows that

knives are made of metal, because metal is hard. However, the reason

implying that metal is hard is typically unknown and irrelevant. Natu-

rally, knowledge effects are the strong suit of the knowledge view, while

all other approaches have little to say about them.

As Murphy [298, Chapter 13] argues, the overall picture emerging Taking stock

from Table 1.1 and the discussion above indicates that the prototype

theory (especially in the schema-based variant) seems to be a good start-

ing point for future research. The knowledge approach is in some sense

complementary to it, since it emphasizes the relations between concepts

instead of the way individual concepts are represented. Murphy thus

argues for a combination of these two approaches. However, he notes

that also the exemplar view should not be neglected since the learning

of prototypes needs to start from individual examples. Also Lieto et al.

[260] have argued for an approach integrating multiple views in order

to arrive at a more complete model of conceptual knowledge.
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1.2 the conceptual spaces framework

In this section, we present the cognitive framework of conceptualOverview

spaces [179, 181] which proposes to represent concepts as convex

regions in psychological similarity spaces. Moreover, at different points

in this section, we will refer to example applications of conceptual

spaces in artificial intelligence. After presenting the main aspects of

the framework in Section 1.2.1, we relate it to other psychological

theories of concepts in Section 1.2.2. We then introduce the two classical

layers of representation along with the symbol grounding problem in

Section 1.2.3, before illustrating how conceptual spaces can serve as

an intermediate representation format for integrating the two classical

layers in Section 1.2.4. Afterwards, we show how conceptual spaces

can be related to feature spaces from machine learning in Section

1.2.5. Finally, in Section 1.2.6, we discuss how conceptual spaces can be

grounded in neural processing.

1.2.1 Overview of the Framework

In the following, we summarize the main points of the conceptual

spaces framework as presented by Gärdenfors [179, 181].

A conceptual space is a similarity space spanned by a number ofQuality dimensions

and semantic

similarity

interpretable quality dimensions (e.g., temperature, time, hue, pitch)

which are cognitively relevant and typically assumed to be based

on perception. One can measure the semantic distance between two

observations with respect to each of these dimensions. By aggregating

these individual distance measures, one can obtain a global notion

of semantic distance. Semantic similarity is assumed to be inversely

related to semantic distance. More specifically, Gärdenfors uses an

exponentially decaying function of distance in order to define similarity

as Sim(x, y) = e−c·d(x,y) with a sensitivity parameter c > 0.

We furthermore assume that the conceptual space is structured intoDomains contain

dimensions which

inherently belong

together

so-called domains. Typically, each perceptual modality (e.g., color,

shape, size, taste, weight, and sound) is represented by one domain,

which consists of the dimensions immediately relevant to this modality.

The color domain for instance can be represented by the three dimen-

sions hue, saturation, and lightness (see Figure 1.1), while the sound

domain is spanned by the two dimensions pitch and loudness. Based

on psychological evidence [19, 211, 367, 368], Gärdenfors defines that

distance within a domain is measured with the Euclidean metric, and

that the domain-wise distances are then aggregated with the Manhattan

metric into a global notion of semantic distance.

Gärdenfors defines properties like red, round, and sweet as convexProperties are convex

regions
regions within a single domain (namely, color, shape, and taste,

respectively). A property thus corresponds to a set of observations from

a single perceptual modality. By requiring that the regions must be
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Figure 1.1: A conceptual space for the color domain (based on [364], image

license CC BY-SA 3.0) with dimensions hue, saturation, and

lightness, and with conceptual regions for blue and sky blue.

convex, Gärdenfors enforces a certain well-formedness: If both x and z
belong to the property red, then any linear interpolation y = t·x+(1−t)·
z (with t ∈ [0, 1]) also belongs to red. Even though it is not necessary to

restrict properties to being convex, Gärdenfors argues that the convexity

assumption gives rise to many empirical predictions. Moreover it is

supported by the principle of cognitive economy since convex regions

are easier to store and process than arbitrarily shaped regions. For

instance, the intersection of two convex regions is guaranteed to be

again convex. Concept hierarchies as introduced in Section 1.1.2 are an

emergent property of this spatial representation: If the sky blue region

is a subset of the blue region (cf. Figure 1.1), this implicitly encodes that

sky blue is a special shade of blue.

Based on properties, Gärdenfors now defines full-fleshed concepts Concepts involve

multiple domains
like apple or dog as involving multiple domains. More specifically,

a concept is represented by one convex region per domain, a set of

salience weights (which represent the relevance of the given domain to

the given concept) and information about cross-domain correlations.

The apple concept may thus be represented by the red region in the

color domain, the sweet region in the taste domain, and the round

region in the shape domain. Presumably, the salience weight for the

shape domain would be highest, since shape information is crucial in

determining membership to the apple concept. Please note that these

salience weights can also be used to represent the current context. For

example, when eating an apple, its taste is much more prominent than

when throwing it – in the latter case, size and weight are more relevant.

As Murphy [298, Chapter 11] has argued, word classes can be Word classes in

conceptual spaces
grounded in different types of concepts: Nouns, verbs, and adjectives,

arise from concepts for objects, events, and properties, respectively. This

is also captured in the conceptual spaces framework: Generally, adjec-

tives like red, round, and sweet are represented by properties in their

respective domains, while nouns such as apple and dog are represented

by concepts. Events are defined as composite structures consisting of

agent, patient, force vector, and result vector [181, Chapters 8, 9, and
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10]. Here, agent and patient are concepts, the force vector describes a

pattern of forces in the force domain, and the result vector describes

a change of state in the patient’s properties. Verbs like push and move

then refer to the force vector and the result vector of such an event,

respectively. Finally, prepositions such as above and towards can be

interpreted as regions and directions in physical space [181, Chapter 11].

Even under the constraint of convexity, there are still infinitely manyDesign criteria for

conceptual regions
ways to partition a given similarity space into different conceptual re-

gions. Douven and Gärdenfors [137] have listed several design criteria

for a good conceptual system. More specifically, they consider parsi-

mony (being memory efficient), informativeness (good coverage of the

underlying domain), representation (availability of representative pro-

totypes), contrast (difference between concepts), and learnability (being

learnable from a small number of examples). Douven and Gärdenfors

argue that convexity by itself covers parsimony and representation,

and to some extent also learnability. However, in order to also cover

informativeness and contrast, a second principle called well-formedness

needs to be introduced, which essentially requires a high similarity

of observations belonging to the same concept and a low similarity

between observations belonging to different concepts. Douven and Gär-

denfors illustrate using the color space that the constraints of convexity

and well-formedness can together with asymmetries in the perceptual

similarity space determine an optimal partition of this similarity space

with respect to their design criteria.

Gärdenfors [182] identifies two different types of learning processesTwo types of learning

processes
in his framework. He argues that the first learning process consists

of constructing the dimensions and domains of the conceptual space,

whereas the second learning process focuses on finding meaningful

regions in this space.

Gärdenfors [182, 183] argues that the domains of a conceptual spaceLearning domains

and dimensions
are based on invariants of the sensory input that help to drastically

reduce its dimensionality. The process of learning these domains

involves a transformation from rapidly changing raw sensations to

more stable, invariant representations of the environment. For instance,

an egocentric representation of physical space is invariant with respect

to the position of one’s own head. An allocentric representation of

physical space is in addition to that independent of one’s own location

in physical space. Gärdenfors argues that these invariants are the basis

for identifying and learning domains. We would like to emphasize

that the separation of domains seems to be at least partially based on

learning and not completely innate. This is for example indicated by the

observation that young infants have difficulties in separating domains

such as shape and color from each other [298, Chapter 9].

With respect to the process of learning conceptual regions, GärdenforsLearning conceptual

regions
argues that perceptual information is not random but comes in clusters:

There are certain combinations of properties which tend to co-occur in

objects (cf. the discussion on correlations in Section 1.1.2). Therefore,
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objects tend to form clusters in the conceptual space. By generalizing

these sets of points to regions, one can learn the concepts describing the

underlying categories. In his book [179] Gärdenfors has illustrated this

learning process with a supervised algorithm, but later [182] he has

also argued for unsupervised methods like k-means clustering (both to

be described in more detail in Chapter 5).

1.2.2 Relation to Psychology

Gärdenfors argues that the convexity requirement allows us to relate Conceptual spaces as

a spatial variant of

prototype theory

the conceptual spaces framework to the prototype theory of concepts.

Recall from Section 1.1.1 that the prototype view states that concepts

can be described by a prototype and that concept membership is based

on similarity to this prototype. This can explain why some members

of a category are deemed to be more typical than others. Gärdenfors

[179, Section 3.8] now argues that if concepts are represented by convex

regions, one can assign a degree of centrality to each of the points in

this region by measuring its distance from the center of the region.

Thus, a prototype (in the "best example" sense) can be obtained by

computing the center of gravity for the conceptual region. Conversely,

Gärdenfors [179, Section 3.9] shows that by assuming a prototype-based

representation, one can easily generate convex region. For instance,

if color properties such as red and orange are represented by their

prototypical points in color space (e.g., their corresponding focal

colors), one can partition the overall space into convex regions by

assigning each point in the space to its closest prototype. This way

of partitioning a space is called a Voronoi tessellation and is used by

Gärdenfors for most of his arguments and illustrations. Using this

prototype-based interpretation of conceptual spaces, one can easily

model concept learning by defining the prototype as an average across

all examples seen for the corresponding concept.

Recently, Lewis and Lawry [253] have argued that such a Voronoi Limitations of

Voronoi tessellations
tessellation of the space has, however, the disadvantage that each

individual point in the conceptual space has to be assigned to exactly

one prototype and hence to exactly one concept. If instead points are

assigned to a concept if their distance to this concept’s prototype is

below a given threshold, one can also model cases where an observation

can be described by multiple concepts at once or by none at all.

Strößner [393] has furthermore highlighted the similarities and differ- Conceptual spaces

and frames
ences between conceptual spaces and frames: Both approaches analyze

concepts in terms of attributes and values. Frames use a symbolic

representation of these values, which can be quite restrictive in compar-

ison to the quantitative information represented in conceptual spaces.

However, frames allow for complex and recursive structures, while the

structure of conceptual spaces is limited to domains and dimensions.

Strößner emphasizes that combining frames and conceptual spaces may

create many synergies. For instance, one can use conceptual spaces for

modeling individual properties, and then define a frame-like structure
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Observa-

tion

Classical

View

Prototype

View

Exemplar

View

Knowledge

View

Conceptual

Spaces

Typicality

Effects

✕ ✓ ✓ – ✓

Exemplar

Effects

✕ ✕ ✓ – –

Correlations ✕ – ✓ ✓ ✓

Hierarchies ✕ ✓ ✕ – ✓

Basic Level – – ✕ – –

Induction ✕ ✓ ✕ ✓ ✓

Concept

Combina-

tion

✕ ✓ ✕ ✓ ✓

Knowledge

Effects

– – – ✓ –

Table 1.2: Overview of empirical observations about concept learning and con-

cept usage, and their relation with different psychological theories,

including the conceptual spaces framework ("✓" means "predicted",

"✕" means "conflicting", and "–" means "neutral").

on top of this in order to represent fully fleshed concepts which may

also include recursive part-whole structures. Moreover, conceptual

spaces may provide a useful way for modeling prototype effects within

a frame-based approach.

Let us now discuss to which extent conceptual spaces are capableConceptual spaces as

a theory of concepts
of modeling the empirically observed effects from the psychological

literature as discussed in Section 1.1.2. Table 1.2 shows an overview of

the different effects, the psychological models from Section 1.1.1, and

the conceptual spaces framework.

As argued above, conceptual spaces can be seen as a geometric variantTypicality effects

of prototype models. They are thus able to explain typicality effects based

on distances in the similarity space.

While exemplar effects are not easily explained by Gärdenfors’ account,Exemplar effects

one can imagine to extend his framework by adding a small number

of exemplars to the representation of both properties and concepts. A

concrete example for such an extension will be discussed below.

Correlations between domains are explicitly included as an importantCorrelations

component of the definition of a concept. Although Gärdenfors does

not specify how exactly these correlations should be represented, some

extensions of his work (e.g., [329]) have proposed concrete mechanisms

for representing these correlations.

As noted above, conceptual hierarchies are implicitly represented inConceptual

hierarchies and basic

level

conceptual spaces through the subsethood relation of the respective

conceptual regions. The basic level of concepts can be modeled by trans-

lating informativeness and distinctiveness into spatial terms, namely,

a low intra-class distance and a high inter-class distance, respectively.

Essentially, the work by Douven and Gärdenfors [137] discussed in

Section 1.2.1 tries to capture this with their proposed well-formedness
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Figure 1.2: Simple spatial representation of the pet fish example.

principle. The basic level then corresponds to a set of conceptual re-

gions which optimize the trade-off between being small and being

separated from each other by a clear margin. As we will see in Chapter

7, the underlying principle can be related to clustering techniques from

machine learning.

All induction effects based on typicality and similarity can also be Induction

explained with conceptual spaces by resorting to the distances in the

underlying similarity spaces. Recently, Osta-Vélez and Gärdenfors [311]

have demonstrated how this can be achieved with a relatively simple

mathematical model, which is able to account for many empirically

observed effects.

The conceptual spaces framework also provides a geometric ground- Concept combination

in conceptual spaces
ing for many concept combinations. Lieto et al. [260] use the pet fish

example by Osherson and Smith [309] to illustrate how concept combi-

nations in the conceptual spaces framework are capable of preserving

typicality structures: A guppy is neither a typical pet nor a typical fish,

but it is considered to be a very typical pet fish. In a conceptual space,

one can define typicality based on the distance to the center of the

respective region. Moreover, in a simplified version of the framework,

we can define the region describing pet fish as the intersection of the

regions representing pet and fish (see Figure 1.2). As we can see, guppy

is a subset of both fish and pet, but it lies quite far away from the center

of both regions (marked by crosses). However, it is located quite close

to the center of the pet fish region. Thus, the geometric representation

of conceptual knowledge provides an intuitive way of explaining the

pet fish example. We will take a closer look at concept combination

in conceptual spaces in Chapter 3 in the context of our mathematical

formalization of the framework.

Knowledge effects are not considered in conceptual spaces. One can, Knowledge effects

however, imagine that background knowledge can be incorporated

in the form of external constraints on the way in which conceptual

regions are formed and combined. One way of incorporating such

external constraints is offered by the salience weights which define the

importance of the individual domains in the current context. Knowledge
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effects will resurface in Chapters 4 and 7 in the context of defining

concept similarity and learning conceptual regions, respectively.

Overall, one can see that conceptual spaces are able to accommodateTaking stock

almost all of the effects described in Section 1.1.2. This is mainly caused

by conceptual spaces being a geometric variant of the prototype theory.

Lieto et al. [258, 264, 265, 266] have used the conceptual spacesThe Dual-PECCS

system
framework in order to build a computational model of conceptual

categorization which unifies prototype theory, exemplar approaches,

and the classical view of concepts. They made use of the distinction of

cognitive processes into two types (cf. [217]): System 1 processes are

unconscious, parallel, fast, and based on associations, while system 2

processes are conscious, sequential, slow, and based on explicit rule

following. Lieto et al. mapped both exemplar and prototype theories to

commonsense reasoning strategies (which are a system 1 process) and

the classical view of concepts to deductive reasoning (i.e., a system 2

process). In their Dual-PECCS system, they used a hybrid knowledge

base which employed conceptual spaces for representing information

about prototypes and exemplars and which used the OpenCyc ontology
1

[281] to represent classical definitional information about concepts.

Their example implementation focuses on finding the correct ani-The conceptual space

of Dual-PECCS
mal category (e.g., cat) for short linguistic descriptions such as "the

mice hunter with whiskers and long tail". In order to prepare their

knowledge base accordingly, they extracted information about nine

domains (namely, size, shape, color, location, feeding, locomotion,

hasPart, partOf, and manRelationship [262]) from ConceptNet [267].

Essentially, they scanned ConceptNet for relevant associations which

were then mapped onto the individual dimensions of the conceptual

space, using in some cases a translation dictionary to map symbolic

terms such as red onto a numeric representation such as coordinates in

the color space [266]. The points obtained for basic level categories such

as cat were interpreted as prototypes for the respective concept, while

points obtained for subordinate categories such as Canadian Sphynx

were interpreted as exemplars for their associated basic level category.

In order to find the correct category for a given linguistic description,Classification

procedure
Lieto et al. first extracted the relevant pieces of information from

the query using standard tools for natural language processing. The

extracted information was then fed into their system 1 process which

operates on the prototypes and exemplars in the conceptual space. If

an exemplar was close enough to the given query point (taking only

into account dimensions for which there is information on the query

point), the category associated to this exemplar was used as system 1

response. If no matching exemplar was found, the system picked the

closest match among all prototypes and exemplars as system 1 response.

This preference for exemplars over prototypes had been motivated by

findings reported in the psychological literature [287]. The output of

1 OpenCyc was a publicly available subset of the commercial Cyc ontology (see https:
//cyc.com/), which has been discontinued in 2017.

https://cyc.com/
https://cyc.com/
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system 1 was then validated by a system 2 process, which essentially

checked whether the query and the category identified by system

1 matched the definition from the ontology. One can thus say that

prototypes and exemplars were used to generate candidate responses

while the ontology was used to filter them.

Lieto et al. evaluated their system on a dataset of 112 linguistic Evaluation results

descriptions [265]. In a preliminary study with human subjects, Lieto

et al. established that 56 of these descriptions were interpreted as

referring to a prototype while the categorization of the remaining 56

descriptions was based on an exemplar. Lieto et al. were able to show

that their system identified the correct category more frequently than

standard search engines such as Google, Bing, and Wolfram Alpha when

considering their first ten responses [266]. In most cases, Dual-PECCS

used the expected representation (prototype or exemplar) for making its

response. The most confusions with respect to the representation type

arose when a prototype-based response was expected, but the system

used an exemplar to come to its conclusion. This can, however, easily

be explained by the preference given to exemplars when determining

the system 1 response. Since the implementation of this preference in

their cognitive model resulted in outputs that were not in line with

human responses, this observation can be seen as a contradiction to the

psychological data that motivated this design choice. It therefore urges

for more psychological research on this topic.

The Dual-PECCS system has successfully been integrated into four Integration into

cognitive

architectures

cognitive architectures [265, 266], namely, ACT-R [13], CLARION [398],

SOAR [239], and LIDA [160]. Each of these cognitive architectures has

its own set of underlying assumptions about human cognition. For

example, the SOAR architecture assumes that cognition can be explained

mainly by symbol manipulation while CLARION emphasizes the tight

integration of symbolic and connectionist approaches in each of its

modules. Since Lieto et al. were able to integrate their representation

and reasoning mechanisms in all of these architectures despite their

different underlying assumptions, they argue that their approach can be

used as a common ground for knowledge representation and reasoning

in cognitive architectures in general (cf. also [260]). Finally, there was a

recent proposal for replacing the ontology used in Dual-PECCS with

a theory-based approach [258]. The resulting updated system then

computes a degree of consistency of the system 1 response with its

background knowledge in the form of theories instead of making a

binary decision based on necessary and sufficient criteria. Thus, in this

extension of the Dual-PECCS system, the classical view is discarded in

favor of the knowledge view.

The work by Lieto et al. makes an important contribution to concept Relevance

research: They propose a concrete way of combining different views

on concepts, considering both their representational mechanisms and

their classification procedures. Moreover, their system provides an

actual implementation of this proposal which makes it easy to validate

theoretical claims by practical experiments. Finally, their system shows

the value of conceptual spaces as a modeling tool for cognitive AI.
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1.2.3 The Classical Layers of Representation

Generally speaking, models of human cognition can be distinguishedA general dichotomy

of models
into two broad classes, namely symbol systems and connectionist sys-

tems [190]. In the field of artificial intelligence, this is reflected by the

dichotomy of knowledge representation into the symbolic and the

subsymbolic layer. Gärdenfors [179, Chapter 2] notes that in biological

systems, the distinction into symbolic and subsymbolic representations

corresponds to different ways of describing the same object, based

on different levels of granularity. In artificial systems, however, they

usually map to separate modules or layers. In the following, we will

describe these two classical layers in more detail.

The subsymbolic approach (often also called connectionism) views cogni-Subsymbolic models

tion as dynamic patterns of activity in a complex network of individual

nodes [190]. This definition originally also encompassed graph-based

representations where events and concepts are represented as nodes

and activation is spread among their connections [179, Chapter 2]. In the

recent past, it has, however, mostly been equated with artificial neural

networks which are a mathematical model for learning associations

between a given set of inputs and outputs [179, Chapter 2]. The input

to these neural networks is usually based directly on sensory input

[260] and the computations involved are mostly concerned with pattern

recognition [179, Chapter 7].

Connectionist models are capable of learning patterns by applying aStrengths and

weaknesses of

subsymbolic models

relatively small class of algorithms to a wide variety of tasks [190]. They

are therefore quite flexible and relatively robust to noise [179, Chapter

2]. Depending on the actual model, they can also be mapped to the

structure and activity of human brains (see e.g., [106, 443]). However,

connectionist models are in general incapable of modeling systematic

symbolic properties such as compositionality [260] which seem to im-

portant for many cognitive tasks [190]. As not all cognitive operations

reduce to pattern learning, connectionism can therefore not account for

all cognitive phenomena. Moreover, artificial neural networks tend to

require large amounts of training data [179, Chapter 2] and typically

result in black box solutions, which are hard to interpret [260].

The symbolic approach interprets the human mind as a symbol systemSymbolic models

and the process of cognition as symbol manipulation [190]. A symbol

system is based on a set of arbitrary atomic tokens (called symbols)

which can be combined with each other based on certain rules in order to

construct composite symbol strings. These rules are exclusively based on

the syntactical structure of these symbol strings. All of these entities (i.e.,

atomic symbols, composite symbol strings, and rules) are semantically

interpretable in the sense that one can systematically assign a meaning

to them based on the underlying syntax. More generally speaking,

symbolic representations tend to be based on logical formalisms [260]

and are typically processed through recursion, the application of rules,

tree traversal, and search algorithms [179, Chapter 7].
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Symbolic models have the full computational power of Turing ma- Strengths of symbolic

models
chines [190] and are well-suited for complex reasoning tasks [260], e.g.,

the computation of logical consequences [179, Chapter 2]. Moreover,

they are able to model compositionality [260], which is for example

required when processing language. Symbolic AI systems such as

SOAR [239], but also ontologies from the semantic web [171] can be

seen as practical implementations of this approach [260]. Overall, the

symbolic approach has strong ties to the classical view on concepts due

to their common dependence on formal logics.

However, symbolic models also come with severe limitations. For Weaknesses of

symbolic models
instance, they are often ad-hoc in the sense that the rules and symbols

need to be handcrafted for the specific task [190]. Furthermore, they

cannot account for typicality effects (such as robin being a more typical

example of the bird category than penguin) [260]. Moreover, the indi-

vidual symbols are mostly specified a priori and cannot be changed

[179, Chapter 2], which limits their flexibility. Finally, the symbols used

in symbolic models do not have any connection to the real world and

are thus subject to the symbol grounding problem [190].

Inspired by Searle’s Chinese room argument [356], Harnad [190] The symbol

grounding problem
describes the symbol grounding problem as the task of learning Chinese

by only using a Chinese-Chinese dictionary. This dictionary contains

a definition for each Chinese word in terms of other Chinese words.

However, it is arguably impossible to learn the underlying meaning of

the Chinese words only based on this dictionary. Harnad argues that

purely symbolic systems face a similar problem since their symbols are

only defined in terms of each other without a reference to the external

world. The symbol grounding problem can thus be formulated as the

following question:

How is symbol meaning to be grounded in something other

than just more meaningless symbols? [190, Section 2.2]

One may note that most symbolic systems can still be interpreted Interpretability of

symbolic models

depends on the

symbol names

by humans in practice. However, this is usually only possible be-

cause the symbols have been chosen in such a way the human inter-

preter can easily connect them to their own perceptual experience.

If the symbols in the system are for example named red, sweet, and

apple, then an interpretation of this system inadvertently triggers

the sensory experiences associated with this specific color, taste, and

object, respectively. This enables humans to interpret rules such as

apple(x)∧ red(x) ⇒ sweet(x) and to judge their meaningfulness. How-

ever, if the symbols in such a system were consistently replaced with

meaningless tokens (such that for example red would be replaced

everywhere in the system with 42xh8qw), then the corresponding rule

42xh8qw(x) ∧ 4c89(x) ⇒ 29f4quz(x) would be completely opaque to

a human interpreter. Even with access to all rules in the system, one

would not be able to understand the meaning of atomic symbols such

as 42xh8qw, let alone complex symbol strings.



24 introduction

Although there have been several concrete proposals for solvingContinued relevance

the symbol grounding problem, it still remains highly relevant today

and cannot yet be considered to be solved in its entirety (see e.g.,

[85, 109, 249, 404]).

As one can see from this brief discussion, both classical approachesTowards a hybrid

approach
have complementary advantages and disadvantages. Both from the

perspective of cognitive science in general (which aims for a holistic

understanding of the human mind) and of artificial intelligence in

specific (where one aims for good and robust performance in a variety

of tasks), it is thus desirable to combine of both approaches with the

aim to conserve their strengths and to eliminate their weaknesses.

Harnad [190] does not only note and describe the symbol groundingHarnad’s solution to

the symbol

grounding problem

problem, but he also sketches a possible solution. This solution is

based on the two fundamental cognitive processes of discrimination

and identification. Discrimination corresponds to judging whether two

stimuli are the same or different and to determine how much they differ

from each other. Harnad argues that this essentially requires a way of

judging the similarity of two stimuli. Identification on the other hand

corresponds to assigning a unique response (i.e., a name or a symbol)

to a class of inputs, treating them as equivalent in the current context.

Essentially, this corresponds to classification.

Based on these two cognitive processes, Harnad argues for two typesIconic and

categorical

representations

of representations. Iconic representations (or icons) are simple analog

transformations of the raw sensory information. They are sufficient

for determining similarity between stimuli by simply superimposing

them and determining their degree of disparity. Iconic representations

can thus in principle support discrimination. As the sensory appara-

tus of humans is fixed, iconic representations can be assumed to be

mostly innate. Icons are, however, in general not sufficient for identifi-

cation as there are too many of them which can blend into each other

continuously. Also Murphy [298, Chapter 2] has argued that a clear

separation of objects into different categories would only be possible if

the world consisted "distinct clumps of objects", i.e., if no continuous

blending between stimuli could occur. Therefore, Harnad [190] pos-

tulates categorical representations as a second representational type.

Categorical representations are the output of category-specific feature

detectors which compress the iconic representations in such a way that

the invariant features of the respective category are emphasized while

irrelevant variations are filtered out. Using these invariant features,

categorical representations thus provide a way to distinguish category

members from non-members. As the categories which may be relevant

in a given environment cannot be anticipated by evolution, categorical

representations can be assumed to be mostly learned.

The distinction into iconic and categorical representations can alsoSupport from

psychology
be supported from a psychological point of view: Native speakers of

a language with only two color terms (distinguishing light from dark

colors) have a similar perception and memory of colors as native speak-

ers of languages with a larger inventory of color terms [298, Chapter
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Figure 1.3: (a) Conceptual spaces as an intermediate layer for translating

between symbolic and subsymbolic representations. (b) Mental

image of three people sitting at a small round table and a modified

to the right of relation.

11]. It thus seems that the overall perception of color is shared among

different cultures (i.e., same iconic representation) while different color

categories have been learned (i.e., different categorical representations).

Harnad [190] now argues that the categorical representation can Symbol grounding

with categorical

representations

be used to ground atomic symbols of a symbol system such as horse

and striped. The meaning of these symbols then corresponds to the

category selected by the corresponding categorical representation, i.e.,

to the set of stimuli which are members of the given category. Thus,

atomic symbols are linked to categories of perceived objects. The symbol

system can then operate on top of these atomic symbols by using rules

to express more complex symbols for which no perceptual grounding

is available. For instance, one could define the symbol zebra as follows:

zebra(x) :⇔ horse(x)∧ striped(x). The symbol zebra is then indirectly

grounded in perception through the categorical representations of

horse and striped. Thus, a person who had never seen a zebra could

nevertheless identify one based on this definition and the prior sensory

experiences of horses and striped things.

Harnad proposes to use connectionist approaches for learning the Summary

categorical representations by pattern matching. His overall proposal

thus provides a principled way of using both symbolic systems and con-

nectionism while combining their advantages and largely eliminating

their individual weaknesses.

1.2.4 Using the Conceptual Layer to Solve the Symbol Grounding
Problem

The general solution to the symbol grounding problem sketched by Conceptual spaces as

an intermediate layer

of representation

Harnad [190] is still quite abstract, since it does for instance not specify

how categorical representations look like. A more concrete proposal has
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been made by Gärdenfors [179] who proposes to use conceptual spaces

as an intermediate layer of representation, the so-called conceptual

layer (see Figure 1.3a). Individual observations, which correspond

to high-dimensional activation vectors in the subsymbolic layer, are

represented by points in the lower-dimensional conceptual space and

can be mapped onto constants and variables from the symbolic layer.

Predicates from the symbolic layer (such as apple and red) can be

mapped onto concepts and properties in the conceptual layer. Each

predicate is thus mapped onto one or more convex regions in the

conceptual space which describe sets of observations that are similar to

each other and dissimilar from other observations. One can therefore

easily see that the symbols from the symbolic layer can be indirectly

grounded in subsymbolic perception through the conceptual layer.

According to Gärdenfors [179, Chapter 2], this overall architectureConceptual spaces

and Harnad’s

proposal

can be roughly aligned with Harnad’s proposal [190] by mapping

the iconic representation to the subsymbolic layer and the categorical

representation to the conceptual layer. We would, however, like to

point out that this is only a rough alignment since the underlying

mechanisms are of different nature. Harnad’s iconic representation

mainly targets similarity judgments between pairs of stimuli. As simi-

larity is measured as inverse distance in Gärdenfors’ framework, the

iconic representation can also be mapped onto points in the conceptual

layer. Harnad’s categorical representation on the other hand focuses

on concept membership and is thus closely related to regions in the

conceptual space. Even though the two proposals do not align perfectly,

they clearly have a strong relationship to each other.

It has been argued that this intermediate layer with geometric repre-Advantages of

conceptual spaces
sentations has several advantages over both symbolic and subsymbolic

approaches [179, 181, 260]. In addition to providing a connection be-

tween the two classical layers, the conceptual spaces approach thus has

its own merit in modeling and explaining certain aspects of cognition.

When comparing the conceptual layer to the subsymbolic layer,Advantages over

purely connectionist

models

one can note that the number of dimensions in the conceptual space

is considerably lower than the dimensionality of a neural network’s

activation vector. When learning classification boundaries for concepts,

one therefore needs to estimate a considerably smaller amount of free

parameters, which can lead to faster learning and better generalization

[179, Chapter 7]. Moreover, the artificial neural networks used in

the subsymbolic layer often tend to be black box models which are

hard to interpret by humans. In many domains (e.g., medicine), it

is, however, not only desirable to make correct predictions, but also

to give an explanation for this prediction. This is the focus of the

growing body of research in explainable AI [113, 133, 274]. By lifting

information from the subsymbolic to the conceptual layer, where we

have interpretable dimensions and a meaningful domain structure, AI

systems can become more interpretable. Lieto et al. [260] argue that in

principle, one can interpret the individual layers of an artificial neural

network as a conceptual space, where the activation of each individual
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node determines the coordinate with respect to one of the coordinate

axes. This way, conceptual spaces can be used as a way to analyze

and interpret the inner workings of artificial neural networks such as

self-organizing maps or RBF networks.

Most advantages of the conceptual layer become apparent when Advantages over

purely symbolic

models

comparing it to the symbolic layer [181, Chapter 14]: As we have seen

in Section 1.2.1, a conceptual hierarchy does not need to be explicitly

coded in conceptual spaces, but it emerges based on the subsethood

relation between regions. Also the identity of two concepts or objects

emerges naturally based on the identity of the underlying regions

or points. Moreover, also property characteristics (such as "green is

a color" or "nothing is both completely red and completely green")

emerge directly from the structure of the underlying conceptual space

(namely, the region describing green being defined only on the color

domain, and red and green being represented by disjoint regions). All

three of these effects need to be explicitly modeled in symbolic systems

which considerably increases the modeling effort associated with these

approaches. Furthermore, Gärdenfors argues that in the conceptual

layer no symbolic inference engine is needed since all relevant pieces

of information are encoded geometrically and can thus be accessed by

straightforward geometric computations. Another key advantage of

conceptual spaces over symbolic systems is the inherent representation

of semantic similarity which allows for approximate reasoning.

Lieto et al. [260] note that conceptual spaces provide also a unifying Diagrammatic and

alaogical models
framework for many diagrammatic and analogical representations.

These types of representations typically involve mental images or

mental models of specific contexts and can be more intuitive than

symbolic approaches especially in spatial domains. For example, the

relation to the right of is usually assumed to be transitive. However,

one can easily imagine three people sitting at a small round table, where

the to the right of relation is reinterpreted based on a counterclockwise

order. By visualizing the scene as a mental model (see Figure 1.3b),

this violation of transitivity can be easily predicted, while formal logics

require additional complex assertions to capture this case. Lieto et al.

argue that the geometric nature of the conceptual spaces approach

provides a way to easily embed these mental images.

Since the conceptual layer offers advantages over both the symbolic Conceptual spaces as

"Lingua Franca"
and the subsymbolic layer and is capable of integrating diagrammatic

approaches, Lieto et al. [260] have argued that it should be seen as a

"Lingua Franca" for cognitive architectures. As Gärdenfors [181, Chap-

ter 14], however, points out, the main limitation of the conceptual

spaces framework is that one needs to correctly identify and describe

its underlying domains and dimensions.

One of the first applications of conceptual spaces in artificial intel- Conceptual spaces

for perceptual

anchoring in robotics

ligence was the work by Chella et al. [95, 96, 97, 98] on perceptual

anchoring in robotics. Perceptual anchoring is the problem of linking

symbols for individual objects to the corresponding sensory data and

maintaining this connection over time [95]. As such, perceptual anchor-
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Figure 1.4: Different superquadrics based on varying form factors ϵ1 (rows,

ranging from 0.2 to 1.5) and ϵ2 (columns, ranging from 0.2 to 1.5).

Figure taken from [97], reprinted with permission.

ing can be seen as a special case of the symbol grounding problem.

For example, if the symbol cup-22 is used by a symbolic planner in the

context of preparing a breakfast table, this symbol needs to be connected

to the sensory input in order to identify the cup’s location and in order

to generate appropriate motor commands for manipulating it. Chella et

al. used handcrafted conceptual spaces as a way for translating between

sensory input and symbolic descriptions. They distinguish three types

of different conceptual spaces [96]:

The perceptual space represents static information about the scene,Perceptual space:

static information
where each object is represented by one point. Its dimensions are based

on color information (using the HSV color space), position information

in the spatial domain, and shape information [95]. The dimensions of

the shape domain are based on the parameters of so-called superquadrics

[97], which describe three-dimensional shapes based on their width,

height, and depth, as well as two form factors (see Figure 1.4). Objects

with multiple parts are represented as sets of points in the perceptual

space with one point per part. The perceptual space is connected to the

sensory system through specialized feature extractors which extract the

coordinates (e.g., the shape parameters) from the raw perceptual input.

The situation space captures dynamic information and is built on topSituation space:

dynamic information
of the perceptual space. In the situation space, each point represents

a simple motion, i.e., a continuous ongoing movement of one simple

object. Again, a complex movement involving multiple parts can be

represented by a set of points in the situation space [98]. The situation

space can be connected to situation calculus [283], which is a symbolic

formalism for describing the state of a given scene.

Finally, the action space represents changes in movement. Each pointAction space:

changes in movement
in the action space corresponds to a pair of points in the situation space,

describing the situation immediately before and immediately after

the change. For instance, if the movement slows down, accelerates,
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or changes its direction, the corresponding point in the situation

space moves instantaneously to a different location. This "scattering"

is captured in the action space. Processes such as moving a finger can

then be represented by two actions [98], one for the beginning of the

movement and a second one for the end of the movement.

Chella et al. [95] have devised various anchoring functions in this Anchoring with

conceptual spaces
setting, which includes establishing an anchor both in a top-down and a

bottom-up manner (based on a symbol that needs to be grounded, and

a perception that needs to be classified, respectively). Their work also

covers functions for updating the anchors over time and reacquiring

them if necessary (e.g., because the object was occluded in the camera

image for a short amount of time). In these anchoring functions, they

use a mapping of properties from the symbolic layer (where cup-22 is for

example annotated with the property red) to a region in the conceptual

space (in this case to the color domain of the perceptual space) in order

to constrain the set of candidate observations that can be matched to the

given symbol. They do, however, not explicitly require these conceptual

regions to be convex. Chella et al. have also applied their approach to

imitation learning [96], where they use k-means clustering to discover

prototypes for different concepts. In this case, they follow Gärdenfors’

proposal of representing conceptual regions by a single prototypical

point.

The work by Chella et al. has given a first proof of concept for the Relevance

usefulness of the conceptual spaces framework in artificial intelligence,

especially with respect to the symbol grounding problem. We will revisit

their work in Chapters 2 and 10, where we discuss their proposals for

representing part-whole relations and the shape domain in more detail.

1.2.5 Relation to Machine Learning

Classification problems in machine learning are often interpreted as the Geometric

interpretation of

classification

problems

search for good classification boundaries between two or more classes

in a feature space. In such a setting, each observation is annotated with

its values for a fixed set of features and its correct class assignment. If

one interprets each feature as a dimension, each observation can be

interpreted as a point in a high-dimensional space spanned by these

features. Any decision rule for separating the observations belonging

to different classes can then be visualized as a decision boundary in

this feature space. Solving the classification problem is thus equivalent

to partitioning the feature space into different regions corresponding

to the different classes. Some machine learning algorithms such as k
nearest neighbor compute the distance between points in this feature

space to make their classifications [295, Chapter 8], other algorithms

such as linear support vector machines attempt to separate the classes

with a hyperplane [73, 110].
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One can easily see that a conceptual space can thus be interpretedConceptual spaces as

a special kind of

feature space

as a special kind of feature space, which is spanned by semantically

meaningful features and where conceptual regions are required to

be convex. The process of obtaining the dimensions of a conceptual

space for a particular application can therefore be linked to feature

engineering procedures in machine learning, while concept learning

is just a constrained version of learning classification boundaries in a

feature space. This strong link between conceptual spaces and feature

spaces gives further motivation to our research which tries to make

conceptual spaces usable for artificial intelligence applications.

One should, however, note that despite their similarities, there are aConceptual spaces

and feature spaces

have different

objectives

number of differences between conceptual spaces and feature spaces.

Chella et al. [97] have argued that the objective of feature spaces is

to enable the classification of objects into a set of given categories,

whereas conceptual spaces aim to give a cognitive grounding of sym-

bolic representations on perceptual data. Therefore, the dimensions

of a feature space serve the main function of allowing for good dis-

crimination, whereas the dimensions of a conceptual space also allow

for the generation of a rich symbolic description. Also Sileno et al.

[370] argue that the discriminatory power of a given quality dimension

with respect to a given concept should be reflected by its respective

salience weight rather than being inherent in the conceptual space itself.

Banaee et al. [26, 27], however, have put a stronger emphasis on the

discriminative power of the quality dimensions by considering only

highly discriminative features as candidates for quality dimensions.

Chella et al. [97] furthermore observe that feature spaces are oftenConceptual spaces

and feature spaces

use different levels of

abstraction

based on low level features which are closely related to sensory input.

Conceptual spaces on the other hand are based on cognitively salient

dimensions which might be more abstract. Moreover, feature spaces

typically treat objects as wholes without being able to represent their

individual parts. Conceptual spaces by themselves are also limited to

whole objects, but there have been extensions to the framework making

it possible to represent part-whole relations [97, 158].

Another important difference in our opinion is the structure of theConceptual spaces

have a domain

structure, feature

spaces typically don’t

spaces. Feature spaces from machine learning are typically assumed

to form one big, unstructured Euclidean space, where distance is com-

puted with the Euclidean metric. Conceptual spaces, on the other hand,

group their dimensions into domains. In order to compute the distance

between two points in the conceptual space, one first computes their

Euclidean distance within each domain before combining these intra-

domain distances with the Manhattan distance (i.e., by simply summing

them up). These different notions of distance may result in different

notions of similarity and thus in different classification behavior.

A first example application of conceptual spaces in machine learningA first example

application
is given by Banaee et al. [26, 27], who consider the bottom-up process of

creating linguistic descriptions of numerical data. Their work consists

of two important contributions, namely the extraction of conceptual

spaces from machine learning datasets, and the generation of linguistic
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descriptions based on conceptual spaces. We will now give a brief

high-level summary of their work, which will be discussed in more

detail in later chapters of this dissertation

In order to extract a conceptual space from a machine learning dataset, Obtaining a

conceptual space

from a machine

learning dataset

Banaee et al. assume that not all features from the dataset are necessary

and only a subset is needed for generating meaningful descriptions. In

order to identify this subset of features, they measure the predictive

power of each feature for each of the different classes. A domain is then

defined as a set of features which have a high predictive power for a

set of classes. Banaee et al. iteratively select such sets of features until

at least one such domain has been identified for each class. Now, the

domain structure of the conceptual space has been identified and all

remaining features can be discarded. Banaee et al. have shown on two

example datasets (leaves and time series) that the resulting domains

tend to group together features with a common underlying meaning

(e.g., various features describing the convexity of a leaf). The examples

from the dataset are then mapped onto points in the conceptual space

by removing the unused features. Banaee et al. then construct for each

class a convex hull of its example data points.

In order to extract a linguistic description of a given observation, Creating linguistic

descriptions with

conceptual spaces

Banaee et al. first project this observation into the conceptual space and

then analyze it with respect to the different domains. In each domain,

they first check whether the point is contained in any conceptual region.

If this is the case, they annotate the observation with the respective class

label. Otherwise, they use annotations with respect to the individual

dimensions (such as elongated referring to the upper end of the aspect

ratio feature of the leaves dataset). After having collected a list of such

annotations, Banaee et al. use handcrafted templates to generate an

overall linguistic description. For both of their datasets, Banaee et al.

found that human subjects were successful in identifying the correct

observation based on the generated description. Moreover, for most of

the incorrect responses the incorrectly selected observation was quite

close to the target observation in the conceptual space which provides

an intuitive explanation for the observed human behavior.

The work by Banaee et al. provides bottom-up procedures for con- Outlook

necting the subsymbolic to the conceptual layer through the creation

of conceptual domains and for connecting the conceptual layer to the

symbolic layer through the generation of linguistic descriptions. More-

over, it highlights the strong relation between conceptual spaces and

machine learning. We will revisit their work in Chapters 3 and 6, in the

context of concept combination and machine learning, respectively.

Another important research contribution in the context of machine Commonsense

reasoning with

conceptual spaces

learning has been made by Derrac and Schockaert [122, 123], who use

the conceptual spaces framework as a way to implement commonsense

reasoning strategies. Commonsense reasoning is here seen in contrast

to classical deductive reasoning, which often fails in contexts where

only insufficient knowledge is available. Commonsense reasoning aims

to draw plausible conclusions which may be unsound from a strictly
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logical perspective, but which nevertheless are useful in practice. In

their work, Derrac and Schockaert extract conceptual spaces from text

corpora, identify interpretable directions in these spaces, define several

commonsense reasoning strategies based on geometric relationships,

and empirically evaluate classifiers based on these strategies.

Derrac and Schockaert base their conceptual spaces on textual data,Extracting

conceptual spaces

from textual data

which is generally available in large quantities. They consider three

domains, namely, movie, place type, and wine. For a set of candidate

entities in each domain (i.e., individual movies, place types, and wine

variants), they collected bag of words representations (i.e., a list of

all words associated with the respective entity) based on review texts

(for movies and wines) and image tags (for place types). These bag

of words representations are then transformed into coordinates in a

similarity space, using among others the technique of multidimensional

scaling, which will be described in more detail in Chapter 8. Essentially,

multidimensional scaling represents each entity as a point in a low-

dimensional space and arranges these points in such a way that their

Euclidean distances accurately reflect the pairwise dissimilarities (which

are in this case based on the bag of words representation). As a result,

Derrac and Schockaert obtain one conceptual space for each of the three

domains under consideration.

These conceptual spaces reflect the pairwise similarities of the under-Identifying

interpretable

directions

lying entities, but the coordinate axes of their coordinate system are not

necessarily interpretable. In order to identify interpretable directions

in these conceptual spaces, Derrac and Schockaert identify a set of

candidate terms (e.g., adjectives such as "funny" in the movie domain)

and try to find directions in the similarity space which separate all

entities associated with the given candidate term from all other entities.

After having extracted these conceptual spaces, Derrac and Schock-Defining different

commonsense

reasoning strategies

aert provide geometric definitions for several commonsense reasoning

strategies: Similarity-based reasoning (which generalizes properties

from similar observations) can directly be based on distances in the

conceptual space – the smaller the distance between two entities, the

more similar they can considered to be. In addition to this, Derrac and

Schockaert also formalize a degree of betweenness for triples of points

(e.g., quantifying to which extent wine shop is conceptually between

gourmet shop and liquor store) in order to allow for interpolative

reasoning (such as concluding that if both a gourmet shop and a liquor

store have to pay a certain tax, a wine shop will have to do so as well). In

order to support analogy-based reasoning of the type "medical school

is to sanatorium as military school is to military barracks", they also

propose different ways of measuring the parallelism of directions.

All of these definitions are put to use in classifiers targeting com-Implementing

commonsense

reasoning as

classifiers

monsense reasoning. Derrac and Schockaert identify similarity-based

reasoning with a k nearest neighbor classifier. Moreover, they devise

a betweenness-based classifier which is based on the assumption that

conceptual regions are convex. If the betweenness-based classifier is

asked to classify a point b, it tries to find two points a and c which have

an identical class label and for which b has a high degree of betweenness.
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Also the analogy-based reasoning can be used for a classifier as follows:

Given a query point a, find three points b, c, d such that

−→
ab has a high

degree of parallelism with

−→
cd. By analyzing the class labels assigned

to b, c, and d, one can infer a class label for a (e.g., if both b and d are

classified as action movies and c is labeled as comedy, then by analogy

also a should be classified as comedy). Finally, Derrac and Schockaert

propose to implement a fortiori reasoning of the type "if x is more scary

than the shining, then x is a horror movie" by extracting such rules

based on the ranking of the entities with respect to the interpretable

directions they had identified before.

In several experiments, Derrac and Schockaert found that for the Experimental results

conceptual spaces of place type and wine, where only a limited amount

of observations is available, betweenness-based and analogy-based

classifiers seem to perform best, defeating similarity-based and a fortiori

reasoning as well as standard machine learning techniques. On the

other hand, on the conceptual space of the movie domain, where many

observations are available, the betweenness-based and analogy-based

classifiers cannot be efficiently used due to a combinatorial explosion of

candidate tuples to consider. Here, a standard support vector machine

outperformed the a fortiori classifier.

The work by Derrac and Schockaert makes several valuable contri- Relevance

butions to the research area of conceptual spaces and will resurface

in later chapters of this dissertation. Their definition of conceptual

betweenness as a meaningful relation for commonsense reasoning will

be incorporated into our formalization of conceptual spaces in Chapter

4. Moreover, we will discuss their approach towards extracting a concep-

tual space from textual data and for identifying interpretable directions

in this space in Chapter 8 in the general context of multidimensional

scaling. Finally, their experiments with respect to machine learning in

conceptual spaces will be reviewed in more detail in Chapter 7.

1.2.6 Neural Grounding

The idea that neurons in the human brain encode spatial structures has

been proposed by various authors [25, 144, 191]. In the following, we

summarize three recent proposals, which may provide some neural

grounding of the conceptual spaces framework.

Balkenius and Gärdenfors [25] claim that psychological similarity Neural populations

can encode

psychological

similarity spaces

spaces naturally emerge from neural activity spaces through the process

of dimensionality reduction. In order to illustrate their hypothesis, they

note that individual neurons in the motor cortex seem to be tuned

to particular movement directions. The activity of such a neuron is

strongly correlated to the degree to which the movement matches this

neuron’s preferred direction. This preferred direction can be interpreted

as a prototype. If one considers a whole population of such neurons, and

if the activation of each of these neurons is represented as a real number,

then the overall activation of the neural population can be interpreted
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as a vector of individual activation values. This activation vector lies

in a space which one could call the neuron space or the activation space.

Based on the activation vector and the preferred directions of the

individual neurons, it is possible to reconstruct the original movement

direction (which can be represented as a vector in three-dimensional

physical space): One simply needs to compute a weighted sum over

the neurons’ preferred directions, using their activation as a weight.

Balkenius and Gärdenfors therefore argue that the population coding

in the brain is just a high-dimensional, redundant representation of

a low-dimensional space. The large amount of redundancy within a

neural population makes it more robust against both noise and the

deletion of individual neurons. Balkenius and Gärdenfors note that

population coding implicitly ensures that similar activation vectors

correspond to similar low-dimensional psychological vectors. This

means that similarity relations are preserved – which is quite important

for the framework of conceptual spaces.

Balkenius and Gärdenfors make several other examples that illustrateMore examples:

physical space,

emotions, and colors

how psychological spaces can be mapped onto brain activities: External

physical space seems to be represented by the activity of so-called place

cells and grid cells, a three-dimensional emotion space can be grounded

in the neurotransmitters serotonin, dopamine, and noradrenaline, and

the psychological color space is based on so-called opponent channels

(black-white, red-green, and blue-yellow) which can be grounded in

the three types of color cones in the human retina.

Balkenius and Gärdenfors also argue that a spatial representation ofImportant

mathematical

properties

perceptions and actions is useful from a cognitive point of view. If one

views cognition as a mapping function from perception to action, then

this mapping function should according to Balkenius and Gärdenfors

fulfill the following three properties:

• Monotonicity: An increase in the perceptual variable always leads

to an increase in the action variable.

• Continuity: Small changes in the perceptual variable only lead to

small changes in the action variable.

• Convexity: Closed regions in perceptual space are mapped onto

closed regions in action space.

According to Balkenius and Gärdenfors, these restrictions on theMaking the learning

problem feasible
mapping function constrain it in such a way that learning such a

mapping becomes feasible. The three restrictions especially help to

generalize to unseen perceptions by extrapolation (monotonicity), sim-

ilarity (continuity), and interpolation (convexity). This relates to the

different commonsense reasoning strategies discussed by Derrac and

Schockaert [123] (cf. Section 1.2.5). Moreover, Balkenius and Gärdenfors

argue that if both perceptions and actions are spatially represented, then

continuity implies both monotonicity and convexity. Taken together,

their work provides an argument that the conceptual spaces framework

is not only psychologically and cognitively useful, but that it also can
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be connected to activity in the human brain.

Also the semantic pointer architecture (SPA), a cognitive architecture The semantic pointer

architecture
by Eliasmith [144], is based on the hypothesis that populations of

neurons encode a single cognitive dimension. Also Eliasmith makes a

distinction between the state space (which describes the mathematical

object that is being represented) and the neuron space (which describes

the activity of the neural population representing this object). The

central notion of the SPA is the notion of a semantic pointer: A semantic

pointer is a high-dimensional vector in state space which is represented

by a neural population in neuron space. Eliasmith assumes that these

semantic pointers are a compressed version of the full representation of

a given observation or concept. For example, one could use the activation

of the highest level of a deep artificial neural network as a semantic

pointer which in some sense "summarizes" the original visual input.

The key idea here is that the semantic pointer can be "dereferenced"

or "decoded" into lower-level information, e.g., by reconstructing the

lower-level input that led to the observed high-level activation.

Eliasmith assumes that all semantic pointers have unit length, and The conceptual golf

ball
that each concept is associated with a prototypical vector as well as a

certain attractor region: All vectors that fall within this attractor region

are classified as belonging to the corresponding concept. Eliasmith

visualizes this as a conceptual golf ball: The surface of this golf ball

corresponds to a conceptual similarity space, the dimples represent

the concepts, and points on the surface of the ball correspond to

individual observations. While this conceptual space also allows us to

compute similarities between observations and between concepts, it

uses the angular distance between the vectors instead of an Euclidean

or Manhattan distance of the points.

In order to combine information from multiple domains and modali- Combining multiple

domains
ties, Eliasmith introduces a binding operation ∗ which can be used to

combine multiple semantic pointers in the same space. He shows that

if circular convolution is used as binding operation, then one can also

reconstruct the individual constituents from a composite. Eliasmith

proposes that one can then encode concepts as follows:

dog = perceptual ∗ (visual ∗ dogVisual

+ auditory ∗ dogAuditory

+tactile ∗ dogTactile + . . . )

+ isa ∗ mammal + . . .

Here, ∗ denotes the binding operation and + denotes the vector Relation to frames

and conceptual

spaces

addition. One can think of the resulting composite concept as a frame-

like structure, where the vectors perceptual, visual, etc. are the slot

names, which are then connected with the semantic pointer which fills

this slot (e.g., dogVisual). While this is in some degree reminiscent of

the domain structure of conceptual spaces, it is important to note that

all computations here take place in the same space: All the semantic

pointers involved in the dog concept lie in the same space as the dog
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concept itself. In the conceptual spaces framework, however, properties

are defined in individual domains whereas concepts span multiple

domains and thus inhabit a different space.

Although the semantic pointer architecture is not a direct imple-Relevance

mentation of the conceptual spaces theory, it makes use of spatial

representations and connects them to neural activity. As Eliasmith has

demonstrated, the SPA is capable of reproducing various psychological

and neuroscientific results, offering thus a way to bridge those two

disciplines. It adds support to the general idea that cognition can be

expressed through similarity spaces and it provides concrete ideas

about how such similarity spaces can arise from neural computations.

The SPA is heavily inspired by the earlier work of Smolensky [380],Tensor product

binding
who also considered the variable binding problem. More specifically,

he raised the question, how symbolic data structures such as lists and

trees can be mapped into a vector space. His proposed solution is the

so-called tensor product binding. Smolensky defines a symbolic structure

as a set of roles with possible fillers, and an object as a conjunction of

concrete filler/role bindings. He points out, that conjunction can be

represented in connectionist systems by simple vector addition, which

is both associative and commutative. He then proposes to represent

both roles and fillers as vectors in a given vector space, and to represent

the variable binding of a given role vector r⃗ ∈ Rn and a given filler

vector f⃗ ∈ Rm with the tensor product Aij = r⃗i · f⃗ j .
Smolensky also introduces an unbinding mechansim for reconstruct-Unbinding

ing f⃗ , given r⃗ and A: He assumes, that the set of role vectors r⃗(k) spans

a subspace of the overall vector space Rn, and that one can find a

dual basis consisting of vectors u⃗(k), such that r⃗(k) · u⃗(k) = 1, while

r⃗(k) · u⃗(l) = 0 for k ̸= l. Then, the filler value f⃗
(k)

associated with the

role r⃗(k) can be obtained as f⃗
(k)

= s · r⃗(k) with a scaling factor s. Smolen-

sky argues, that by using r⃗(k) instead of u⃗(k) for the unbinding, one

obtains a superimposition of all fillers based on the respective cosine

similarity between r⃗(k) and r⃗(l). This allows for graceful degradation,

where a potentially infinite number of roles can be represented in

a finite-dimensional vector space. Both the binding and unbinding

mechansim can be implemented with so-called sigma-pi units, which

are specialized artificial neurons. Unfortunately, the number of these

units quickly becomes prohibitively large with increasing problem size.

Recently, Jiang et al. [210] have applied Smolensky’s ideas to modernRecent usage

deep learning approaches. Considering the use case of abstractive

summarization, they modified the transformer architecture [417] (which

is the basis of modern large language models such as GPT-3 [83]) based

on Smolensky’s proposal. They report better results with respect to

both abstractive summarization and other related tasks such as named

entity recognition and part of speech tagging.

Overall, the tensor product binding approach by Smolensky canRelation to SPA and

conceptual spaces
be seen as a precursor to the semantic pointer architecture discussed

above. Its main strength lies in the representation of part-whole struc-
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tures. While Smolensky’s approach combines fillers and roles into more

complex product spaces (and can do so recursively), the SPA confines

itself to a single space, which considerably reduces representational

complexity. This is achieved by using circular convolution rather than

the tensor product for filler/role bindings, coming at the disadvantage

of a higher potential for noise in the unbinding process. In compar-

ison to Smolensky s proposal, conceptual spaces offer interpretable

dimensions, intuitive notions of conceptual betweenness and semantic

similarity, and a clear cognitive grounding.

Recently, Hawkins et al. [191] have made an argument for spatial Grid cells for

representing physical

space

representations in the human brain based on grid cells. They start

their discussion by noting that grid cells have been associated with the

representation of an animal’s location in the environment. In difference

to other neurons, which typically exhibit their maximal activation only

for one specific prototypical input, grid cells seem to have a grid of

such prototypical inputs which are roughly equally spaced. A grid

cell fires if the input is close to any of these prototypical points. When

representing physical space, these prototypical points correspond to

specific locations of the animal in a given environment. The output of a

single grid cell does by itself not identify the exact location of the animal.

However, if one combines the output of multiple grid cells, one can

identify the animal’s position – there is usually only a single location in

physical space that excites a given set of grid cells simultaneously.

Hawkins et al. suggest that such grid cells exist everywhere the Grid cells for

representing

semantic spaces

neocortex and that they are used to represent also other properties in

the form of locations in a semantic space. Since neuroscientific research

has indicated that there is a unique representation for each different

environment (e.g., each room in a building), Hawkins et al. postulate

that also each object has its own representation. Instead of moving in

the environment, we move our sensors (e.g., our eyes) over the object

of interest (e.g., a pen) where we can again identify different locations

(e.g., the cap). Thus, also the properties of objects can be represented in

a spatial way, for instance through grid cells.

According to their proposal, part-whole relations can be described Part-whole relations

as displacement

vectors

with displacement vectors. For instance, if a logo is somewhere on a

coffee cup, then a particular location can be represented either with

respect to the cup or with respect to the logo. As the difference between

these two locations is always constant, their difference vector can be

used to describe the spatial arrangement of parts. This hypothesis of

representing part-whole relations through displacement information

on parts can be related to extensions of the conceptual spaces framework

that use a similar approach for representing the configuration of parts

[158] (see also Chapter 2 for a discussion of part-whole relations in

conceptual spaces). Hawkins et al. hypothesize that this displacement

vector can be learned with so-called displacement cells which are

usually employed to compute the difference between two locations in the

same space (namely three-dimensional physical space) for navigation,

but which can also be used to compute the difference between two
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non-physical location in two different spaces. Also recent ideas by

Goldowsky [168] in the context of place cells go in a similar direction

by considering the encoding of landmarks in two different brain areas

(which are linked with a so-called Laplace transformation) and the

computation of differences in order to model trajectories.

Hawkins et al. furthermore argue that there is no single centralRelation to the

exemplar view
model of a concept (such as cup), but that there exist hundreds of

decentralized models for each concept, each one based on slightly

different perceptions. A new observation is then classified as belonging

to a given concept, if all or most models agree on the classification. This

can be related to the exemplar view on concepts which also emphasizes

that there is no central abstract representation for concepts.

The work by Hawkins et al. differs from the work by Eliasmith inComparison to the

SPA
several ways: While Eliasmith represents a concept by a single semantic

pointer, Hawkins et al. propose the usage of hundreds of distributed

models. Moreover, they use grid cells as basis of their analysis, whereas

Eliasmith focuses on population coding. Finally, Hawkins et al. do not

explicitly differentiate between domains, which Eliasmith does when

using the binding operator to construct composite representations.

While the proposal by Hawkins et al. is at the current point in time quite

speculative, it nevertheless adds independent support to the claims by

Balkenius and Gärdenfors by proposing an alternative mechanism by

which psychological spaces could be represented in the human brain.

1.3 contributions of this dissertation

The framework of conceptual spaces has already been applied in a wideExisting applications

of conceptual spaces
variety of contexts, ranging from linguistics [70, 69] over the semantic

web [4, 129, 180] and psychology [238] to cognitive science in general

[124, 128, 136, 369, 370] (cf. also [218, 454]). As we have seen in Section

1.2, the conceptual spaces framework has also been successfully used

in various areas of artificial intelligence. Table 1.3 summarizes the four

main applications discussed in Section 1.2. As one can see, despite using

the same underlying framework, these approaches differ with respect

to their concrete interpretation of conceptual spaces, e.g., concerning

the grounding of the domains and dimensions. Moreover, each of these

applications tends to have some idiosyncratic assumptions, preventing

it from being easily extended to other use cases. Our research attempts

to fill this gap by providing general tools for applying conceptual

spaces in artificial intelligence. In Section 1.3.1, we describe our overall

envisioned AI system, which serves as a motivation for the concrete

research contributions presented in this dissertation. While our overall

motivation is strongly tied to the symbol grounding problem, we do

not confine ourselves to any specific subtopic.

We can divide the overall problem of using conceptual spaces forThe three core

problems
artificial intelligence into three subproblems: Firstly, we need a proper

mathematical formalization of the framework which lends itself to-
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Lieto et al.

[258, 264,

265, 266]

(Section

1.2.2)

Chella et al.

[95, 96, 97,

98] (Section

1.2.4)

Banaee et al.

[26, 27]

(Section

1.2.5)

Derrac and

Schockaert

[122, 123]

(Section

1.2.5)

Application Classification

Perceptual

Anchoring

Description

Generation

Common-

sense

Reasoning

Data Source

Structured

Linguistic

Resources

Sensory

Data

Machine

Learning

Datasets

Textual Data

(Tags and

Reviews)

Grounding

of

Conceptual

Space

Handcrafted

Feature

Extractors

Handcrafted

Feature

Extractors

Feature

Selection

Multi-

dimensional

Scaling

Repre-

sentation of

Concepts

Prototype,

Exemplars,

Definition

Arbitrary

Region /

Prototype

Convex Hull

of

Exemplars

Exemplars

Table 1.3: Overview of four applications of conceptual spaces in the area of

artificial intelligence.

wards an actual implementation in software. This first requirement

is motivated in more detail in Section 1.3.2. Secondly, one needs to

determine the dimensions spanning the conceptual space and relate

them to sensory input in order to map individual perceptual observa-

tions into the conceptual space. We will give a brief overview over this

research problem in Section 1.3.3. Thirdly, we need to specify how these

individual observations can give rise to conceptual regions. A short

introduction into cognitively plausible ways of learning concepts is

given in Section 1.3.4. These three central requirements for a successful

application of the conceptual spaces framework in artificial intelligence

will then resurface in the three parts of this dissertation:

In Part I of this dissertation, we provide a thorough mathematical Formalizing the

conceptual layer
formalization of the conceptual layer along with a publicly available

implementation of this formalization. Since many applications of con-

ceptual spaces use an ad-hoc implementation of the framework, our

work can be used as a common basis for future applications, making it

possible to integrate them with each other. In Chapter 2, we develop

a formal description of conceptual regions, before providing several

operations for creating new concepts based on existing ones (Chapter

3) and for quantifying relations between concepts (Chapter 4).

Part II of this dissertation then provides a thorough overview of Machine learning

and optimization

background

several approaches in machine learning and optimization which are

relevant to the two learning processes identified by Gärdenfors [182]

(cf. Section 1.2.1). This includes a general introduction to important

concepts in machine learning in Chapter 5 and a more detailed dis-

cussion of artificial neural networks for representation learning in

Chapter 6. Moreover, we describe how dissimilarity ratings elicited in

psychological studies can give rise to psychological similarity spaces
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in Chapter 8, where we introduce the technique of multidimensional

scaling. Finally, we comment on several research strands aiming for a

more human-like way of learning concepts in Chapter 7.

In Part III of this dissertation, we then report the results of twoExperimental studies

on domain

grounding

experimental studies aimed at automatically extracting the dimensions

of a conceptual space from a given dataset of observations. More specif-

ically, we explore a hybrid approach which combines the psychological

grounding provided through multidimensional scaling with the gen-

eralization capabilities of artificial neural networks. In Chapter 9, we

describe a first feasibility study for this hybrid approach, which was

conducted on a dataset of novel and unknown objects. We then put

our focus on the domain of shapes, whose internal structure is still

poorly understood: In Chapter 10, we provide a brief overview of ways

for modeling the shape domain in different scientific disciplines. We

furthermore introduce a psychological dataset on shape perception

and provide a first analysis of the raw data. In Chapter 11, we then

apply multidimensional scaling on this dataset to extract psychological

similarity spaces, which are then thoroughly analyzed with respect

to three core predictions of the conceptual spaces framework. Finally,

in Chapter 12, we apply artificial neural networks to learn a mapping

from raw images into the extracted shape similarity spaces, considering

both transfer learning and multi-task learning settings based on both a

classification and a reconstruction task.

1.3.1 The Envisioned AI System

In this section, we sketch an envisioned AI system which motivates theMotivation

research presented in this dissertation. Please note that in the course of

this dissertation, we will not be able to build such a complete system.

However, we lay important groundwork for the practical implementa-

tion of such an approach. The individual contributions made by this

dissertation can then be combined with each other as well as with other

existing tools and approaches to implement a system similar to the one

sketched in this section.

Before we describe the overall envisioned architecture, we need toScope of this research

comment on its intended scope. Our research is intended to focus pri-

marily on physical objects. This means that we will not consider abstract

concepts like friendship or illegal which do not directly correspond

to observable objects in the real world. Moreover, we will not take

into account temporal concepts including actions and events. Finally,

while we understand our work in the context of cognitive AI, neither

our envisioned system nor the foundational research presented in this

dissertation attempt to make any claims about the inner workings of the

human mind.
2

They should therefore not be interpreted as a faithful

psychological model of human cognition, but rather as a cognitively

inspired approach for machine intelligence.

2 Thanks to Igor Douven for urging me to explicitly clarify this.
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Figure 1.5: Illustration of the envisioned AI system.

Figure 1.5 illustrates our envisioned overall system. It is compromised The envisioned

system in a nutshell
of the three layers introduced in Section 1.2 as well as concrete ways of

translating between them. Overall, we target a bottom-up process, but

top-down connections can be established as well.

For the sake of simplicity, we show only two domains, namely color Two example

domains
and shape. color can be represented by the HSL space from Figure

1.1 using the three dimensions hue, saturation and lightness. This

information can be extracted from an input image by using a specialized

hard-coded procedure. The structure of the shape domain on the other

hand is less well understood. We therefore assume that it needs to

be learned, for example by using an artificial neural network. The

activation of the output layer of this network can be used as dimensions

of the shape domain.

Both example concepts apple and banana are available as symbols in Two example

domains
the symbolic layer, but can also be described by their respective regions

in the color and shape domain. Intuitively, apple covers red, yellow,

and green tones in the color domain, while banana includes shades of

green, yellow, and brown. This is illustrated in Figure 1.5 by overlapping

regions in the color domain. In the shape domain, however, we expect

little overlap between apple (which tends to be round) and banana

(which is typically elongated and curved).

After having described the overall structure of our envisioned system, System dynamics

let us now consider some of its potential dynamics. More specifically,

we will now sketch how classification, incremental concept learning,

nonmonotonic reasoning, and top-down processes can be implemented.

If the system makes a new observation (e.g., an apple as depicted in Classification

Figure 1.5), it can convert this observation into a point in the conceptual

space by applying the translation mechanisms outlined above. For the
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color domain, this is done by a hard-coded conversion to the HSL

color space. Moreover, the observation is fed into the neural network,

which predicts the coordinates for the shape domain. In order to classify

this observation, the system then needs to check whether the resulting

data point is contained in any of the conceptual regions. In our example,

the data point belongs to the apple region in both the color and the

shape domain and is thus classified as an apple.

Each new observation can potentially also lead to an update of theIncremental learning

respective conceptual regions. If the observation was classified as apple,

but it is not close to the center of the apple region in one of the domains,

this region might be enlarged or moved by a small amount, such that

the observation is better matched by the concept description. If the

observation does not match any of the given concepts at all, a new

concept might be created. Please note that the updates considered above

only concern the connections between the conceptual and the symbolic

layer. The connections between the subsymbolic and the conceptual

layer are expected to remain fixed in our architecture. The neural

network thus only serves as a preprocessing step in our approach: It

is trained before the overall system is used and remains unchanged

afterwards. Simultaneous updates of both the neural network and the

concept description might be desirable, but would probably introduce

a great amount of additional complexity.

As already mentioned at various points in Section 1.2, the conceptualNonmonotonic

reasoning
layer lends itself towards different types of nonmonotonic reasoning,

including similarity and typicality judgments as well as concept com-

binations and commonsense reasoning. All of these processes can be

included in our envisioned architecture as well: The classification of

an observation with respect to the classes from the symbolic layer can

be annotated with typicality information based on distances in the

conceptual layer. The concepts from the symbolic layer can be combined

with each other by combining their respective regions in an appropriate

way. In simple cases such as red apple, this corresponds to restricting

the conceptual region of apple in the color domain to red colors, which

can be geometrically implemented by an intersection of regions. Finally,

approximate reasoning can be implemented based on the relations

between conceptual regions: If we have the symbolic annotation that

Alice likes to eat apples, and if the conceptual regions representing

apple and pear are quite close to each other in all domains, then is may

be plausible to assume that Alice will also enjoy eating a pear. This

conclusion cannot be drawn from symbolic knowledge alone, but is

based on the spatial representation in the conceptual layer.

So far, we have only considered bottom-up processes and processesTop-down processes

involving only the conceptual layer. We would, however, like to point out

that also top-down processes can be incorporated into our envisioned

AI system. For instance, imagination can be seen as a translation from the

symbolic to the subsymbolic layer: One starts for instance with the apple

concept in the symbolic layer, activates its spatial representation in the

conceptual layer, picks a point representative of the respective regions
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(e.g, the centroid) and feeds it through the reverted conversion pro-

cesses to arrive at a subsymbolic representation. Depending on the type

of neural network used, such a reconstruction of raw input based on a

compressed representation can be easily obtained. Another important

top-down process is zero shot learning, where a new concept together

with its grounding can be learned without any observations but only

based on a logical description in the symbolic layer. This corresponds

to the zebra example from Harnad [190] discussed in Section 1.2.3. In

our case, information from the symbolic layer is used to construct a

representation in the conceptual layer from existing conceptual regions.

One can see that our overall envisioned system is basically an im- Outlook

plementation of the three layer architecture introduced by Gärdenfors

[179]. It is capable to include many different types of learning and

reasoning processes and can thus potentially unify the individual ex-

isting applications of conceptual spaces to artificial intelligence in a

single system. However, building such a system in practice is quite

challenging as many different parts and their interactions need to be

properly specified. Especially the concrete setup of the conceptual layer

and its relations to the subsymbolic and the symbolic layer is of crucial

importance. Only if this overall setup is sound, a successful integration

of the different learning and reasoning mechanisms is possible. This

dissertation focuses on providing a comprehensive formalization of

the conceptual layer as well as principled ways of connecting it to the

subsymbolic and the symbolic layer. It therefore lays the groundwork

for practical applications of the conceptual spaces framework which

can then use this overall setup to implement the different cognitive

processes described above.

1.3.2 A Comprehensive Formalization of the Framework

In order to implement the conceptual spaces framework for practical Motivation

AI applications, one needs to specify how concepts are represented.

Gärdenfors argues that concepts should be modeled as convex regions,

but this restriction still leaves many degrees of freedom. For an actual

implementation, we need a parametric description of conceptual regions

such that each conceptual region can be represented by a small number

of parameters. Moreover, developing a thorough mathematical formal-

ization and a practical implementation forces one to be explicit about

many details of the framework. This can provide further insight into

theoretical relationships between different aspects of the framework.

There have already been several proposals for a mathematical for- Criteria for a good

formalization
malization of conceptual spaces [3, 10, 11, 253, 327, 329], all of which,

however, have certain limitations and shortcomings. In our opinion,

a thorough formalization of the conceptual spaces framework should

fulfill the following criteria:

• Concepts and properties should be described in a parametric way

in order to allow for a straightforward implementation.
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• Concepts and properties should be represented with the same

formalism. This makes it easier to devise mechanisms for learning

and reasoning that are applicable to both properties and concepts

without major modifications.

• The formalization should provide a concrete way for representing

cross-domain correlations, because these correlations contain

important information about the concept.

• Conceptual boundaries should be imprecise in order to reflect

borderline cases.

• The formalization should come with a publicly available imple-

mentation such that other researchers can use it right away for

their own research projects.

• There should be a large set of operations that can be applied

within this formalization in order to support both learning and

reasoning processes.

Unfortunately, none of the existing formalizations satisfies all of theseThe need for a new

formalization
requirements and combining different formalizations with different

strengths and weaknesses is not easily possible. This justifies the de-

velopment of a new formalization aiming to fulfill all of the above

mentioned desiderata.

Starting from the desire to represent correlations between domainsConcepts as

star-shaped regions
in a geometric way, we notice a problem with Gärdenfors’ convexity

requirement in combination with the usage of the Manhattan metric for

combining domains in Chapter 2. In order to resolve this problem, we

loosen the convexity requirement by replacing it with star-shapedness.

This leads us to a definition of concepts as star-shaped fuzzy sets based

on axis-parallel cuboids.

In Chapter 3, we enrich our formalization with several operationsOperations for

concept creation
that can be used to create new concepts based on existing ones. More

specifically, we discuss the intersection, union, negation, and projection

of concepts, as well as an operation for splitting a concept into two parts.

Each of these concept creation operations is expected to return a valid

concept according to our parametric definition. However, the naive set

intersection of two star-shaped sets is for example not necessarily star-

shaped. We therefore propose to employ a repair mechanism reflecting

the psychological effect of overextensions (cf. Section 1.1.2).

In Chapter 4, we then put our focus on different measures for speci-Relations between

concepts
fying various relations between concepts. This includes concept size,

subsethood, implication, similarity, and betweenness. Many of the

remaining measures are directly or indirectly based on the size of a con-

cept, which can be defined quite easily by equating it with the integral

over the concept’s membership function. However, as we are interested

in a practical implementation of the framework, this level of abstraction

is not satisfactory: We need a concrete procedure for computing this

integral. We therefore derive a closed formula for the size of a concept
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which can be evaluated significantly faster than approximating the

integral with numerical optimization algorithms.

Overall, we provide a fairly comprehensive formalization of the Summary

conceptual spaces framework, taking into account not only representa-

tional desiderata, but also providing a plethora of useful operations and

measures. Our publicly accessible implementation of this formalization

not only serves as a proof of concept, but provides other researchers

with the opportunity to use our formalization off the shelf for their

own experiments. Throughout Part I of this dissertation, we compare

our definitions to prior formalizations of the framework. Moreover, we

sketch how the different operations can support a variety of learning

an reasoning mechanisms.

1.3.3 Obtaining the Dimensions of a Conceptual Space

One general issue that arises when defining a conceptual space concerns How many

dimensions do we

need?

the number of its dimensions. A low-dimensional space corresponds to

a very compact representation which is efficient with respect to both

storage and computation. Constraining the space to a small number of

dimensions can furthermore help to filter out irrelevant noise through

information compression. A high-dimensional space on the other hand

is usually capable of representing finer nuances of cognitive similarity.

Following Occam’s razor, one therefore generally aims to optimize

this trade off by selecting as many dimensions as necessary but as few

as possible. Determining the optimal number of dimensions is often

based on analyzing the interpretability of the space and its capability

of accurately representing similarities in a spatial manner.

From a machine learning perspective, this is related to feature engi- The machine

learning perspective
neering: If the feature space contains not enough features, a classifier

might not be able to make important distinctions between classes. If

the feature space is, however, too large and only sparsely populated,

the classifier might be led astray by irrelevant features, confusing noise

for valuable information. We will revisit this issue in Chapter 5, when

talking about the "curse of dimensionality" and various dimensionality

reduction techniques.

In order to define the dimensions of a conceptual space, one needs, Grounding

dimensions in

perception

however, not only to define how many dimensions there should be, but

also how these dimensions should be interpreted and how their values

can be extracted from raw sensory data.

Overall, our research focuses on obtaining a conceptual space for The domain of shapes

the shape domain. It is well known that the shape of objects contains

important information for their classification [298, Chapter 10] and

that children exhibit a strong shape bias when making generalization

[212, 242]. Hence, shape information can be expected to be crucial for any

artificial agent with visual input. However, despite its importance, the

internal structure of the shape domain is still not understood very well

[146]. Using the shape domain as an example, we investigate different
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ways of learning a shape space in this dissertation. Our proposed

procedures are formulated in a general way which is expected to

generalize to other domains as well, hence providing general tools for

obtaining conceptual spaces for poorly understood domains.

In his book [179, Sections 1.7 and 6.5], Gärdenfors identifies three basicThree principled

approaches
ways for constructing a conceptual space: Handcrafting, machine learn-

ing, and multidimensional scaling. We will summarize them shortly in

the following, discussing also their individual strengths and limitations.

Handcrafting a conceptual space usually consists in manually definingHandcrafting a

conceptual space
the dimensions of the conceptual space based on the available sensors.

Moreover, it entails specifying a mapping function from sensory input

to values on these dimensions [179, Section 1.7]. This approach was

for example taken in the anchoring system by Chella et al. [96] (cf.

Section 1.2.4). Similar proposals have been made in the area of cognitive

robotics by Thosar et al. [407] and Jäger et al. [214] who investigate

perceptually grounded knowledge bases for robots, using both physical

and functional features. Although their work is not directly linked to

the conceptual spaces approach by the authors, it would be relatively

straightforward to transform the contents of their data bases into a

conceptual space. Both Lieto et al. [266] and Banaee et al. [27] made use

of such pre-existing data bases for defining their conceptual spaces (cf.

Sections 1.2.2 and 1.2.5).

A clear advantage of the handcrafting approach is that the resultingAdvantages of

handcrafting
dimensions are interpretable, since they have been manually defined

by domain experts. Moreover, by manually defining the mapping

function, one can ensure a high quality, for instance by using smoothing

techniques to reduce sensor noise. Another advantage relevant in the

field of AI is the ability to generalize to unseen inputs: If the sensors

produce previously unseen values (e.g., a camera image that has not

been seen before), then the mapping function can easily convert this

novel observation into a point in the conceptual space. The system

using this conceptual space is therefore not limited to a fixed set of

inputs and is potentially able to generalize to new situations.

The handcrafting approach does, however, also come with some draw-Disadvantages of

handcrafting
backs: First of all, it can be quite time consuming to manually define the

mapping function for complex input, for instance when working with

camera images as input modality. The mapping function might in this

case involve different computer vision algorithms, requiring a certain

expertise in this domain. Scaling this approach up to multiple complex

domains might thus not be possible due to the prohibitive amount

of work involved. Furthermore, the dimensions defined by a domain

expert might be useful to solve the problem at hand, but by themselves

they cannot claim any psychological validity. Moreover, this approach

is only applicable to domains with a well understood internal structure

such as the color domain. However, handcrafting becomes quite diffi-

cult for more complex domains such as shape that are based on complex

sensors such as cameras. As we focus our research on the shape domain,
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Figure 1.6: Structure of an autoencoder.

we will therefore not consider the handcrafting approach in more detail.

The second approach for obtaining the dimensions of a conceptual Machine learning

techniques for

dimensionality

reduction

space uses machine learning techniques for dimensionality reduction. Gär-

denfors [179, Section 6.5] argues that raw perceptual input is too rich

and too unstructured for direct processing. It is thus necessary to lift

the input to a more economic form of representation, which typically

involves a drastic reduction in the number of dimensions. There exists

a large variety of dimensionality reduction algorithms in the machine

learning field. Our focus in this dissertation lies on artificial neural

networks (ANNs) which are capable of conducting a multi-layered and

non-linear dimensionality reduction.

One example for such a neural network is the structure of an autoen- Autoencoders

coder [172, Chapter 14] illustrated in Figure 1.6. The high-dimensional

input of the network (e.g., the raw pixel values of an image) is com-

pressed in multiple steps by the encoder network until it reaches the

bottleneck layer which consists of a very small number of neurons.

This compressed representation from the bottleneck layer is then sub-

sequently decompressed by the decoder network until it reaches the

output layer which has the same size as the input layer. Based on a large

dataset of observations, the parameters of the individual compression

and decompression steps in this network are adjusted in such a way

that the activation of the output layer is a faithful reconstruction of the

original input. If the network succeeds in this reconstruction task, then it

has learned a low-dimensional representation of the high-dimensional

input. One can then interpret this bottleneck layer as a conceptual space

by interpreting each of the neurons as one dimension and its activation

for a given stimulus as the value of this stimulus on this dimension.

Training such a neural network for extracting a low-dimensional Advantages of

dimensionality

reduction

representation usually requires only little prior knowledge about the

domain. It is thus applicable if handcrafting specific features is not

feasible due to a lack of domain knowledge. Moreover, once they are

trained, neural networks are able to generalize to unseen inputs, which

is an important requirement for practical AI applications. Since neural

networks are in principle agnostic about the type of input data, they

can furthermore be applied to a wide variety of domains.
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However, a certain expertise in defining the exact structure of theDisadvantages of

dimensionality

reduction

network and the appropriate training scheme is crucial for success.

Moreover, adjusting the parameters of the neural network typically

requires large amounts of data and computation time. The most serious

drawback of neural network models in the context of conceptual spaces

is, however, their lack of interpretability and psychological grounding.

In Chapter 5, we provide a more thorough introduction to machine

learning and dimensionality reduction, and in Chapter 6, we survey

research in artificial neural networks for the purpose of representa-

tion learning. In this context, we especially pay attention to recently

proposed network structures such as InfoGAN [101] and β-VAE [196]

which claim to learn interpretable features from unlabeled data.

A third way of obtaining a conceptual similarity space is based onMultidimensional

scaling on

psychological

dissimilarity ratings

psychological dissimilarity ratings [179, Section 1.7]. These dissimilarity

ratings are collected for a fixed set of stimuli in a psychological experi-

ment. They are then fed into an algorithm called multidimensional scaling

(MDS) which computes an n-dimensional geometric representation of

the stimulus set, where geometric distances between pairs of stimuli

reflect their psychological dissimilarity [71]. While typically used in

the area of psychophysics to understand and visualize the similarity

of perceptual stimuli, the research by Derrac and Schockaert [123] (cf.

Section 1.2.5) has shown that MDS can also be applied to other data

sources such as text corpora.

The similarity spaces obtained through MDS have the advantage ofAdvantages of

multidimensional

scaling

being psychologically grounded since distances in the spaces relate to

the findings from psychological experiments. Multidimensional scaling

is especially useful for exploratory studies in domains which are poorly

understood since the resulting arrangement of points in the similarity

space can provide valuable insight about potentially relevant features.

Multidimensional scaling has, however, two considerable drawbacks:Disadvantages of

multidimensional

scaling

On the one hand, the data collection process through psychological

studies is quite time-consuming as it requires carefully designed ex-

periments with a sufficiently large number of participants. Moreover,

the similarity spaces obtained through MDS are limited to the given

stimulus set. This means that novel stimuli cannot be easily mapped

into the similarity space unless additional dissimilarity ratings are

collected. Finally, the individual coordinate axes of an MDS solution

are not necessarily interpretable.

In Chapter 8, we explain in more detail how conceptual spacesA hybrid approach

combining MDS and

ANNs

can be obtained through multidimensional scaling, considering the

collection of psychological data, different MDS algorithms, and ways of

evaluating the quality of the resulting similarity spaces. Moreover, since

both neural networks and multidimensional scaling allow us to obtain

similarity spaces for poorly understood domains, we propose a hybrid

procedure which combines these two approaches with each other.

Essentially, we propose to initialize the similarity space by applying

MDS to psychological dissimilarity ratings and to train a neural network

afterwards on the task of mapping raw stimuli into this psychological
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similarity space. This way, we combine the psychological grounding of

MDS with the generalization capabilities of artificial neural networks.

We report results of a first feasibility study in Chapter 9, where we apply

our proposed approach to a dataset of novel objects. Afterwards, we

conduct a psychological study on the domain of shapes in Chapter 10,

and analyze the resulting shape spaces with respect to their alignment

with the conceptual spaces theory in Chapter 11. Finally, we train

different neural networks on the mapping task in Chapter 12.

1.3.4 Learning Conceptual Regions

Once the domains and dimensions of a conceptual space have been Concept learning as

a machine learning

problem

defined, learning regions in this space is very similar to classical ma-

chine learning problems. These can be broadly divided into two classes:

Supervised approaches make use of labeled datasets where each training

example is annotated with its correct classification. Their main target is

to maximize classification accuracy which can be achieved by partition-

ing the feature space into multiple regions, each one belonging to one of

the given classes. Unsupervised approaches on the other hand can also

be applied to unlabeled datasets, where no classification information is

given for the individual observations. Clustering algorithms typically

sort the observations into multiple clusters by maximizing the similarity

within clusters while minimizing the similarity between clusters.
3

Just

like in conceptual spaces, similarity is assumed to be inversely related

to distance in the feature space. As each cluster of observations is just a

set of points in the feature space, one can easily generalize from this set

of points to a region (e.g., by computing their convex hull).

In both cases, the parameters of the respective model are usually Properties of typical

machine learning

approaches

estimated based on a large dataset of observations which is processed

at once in a batch-like manner. Moreover, the parameters are optimized

in such a way that they implicitly or explicitly optimize a given target

function (e.g., minimizing the number of misclassifications).

While the task of learning concepts in a conceptual space is quite Constraints on the

learning procedure
related to these machine learning problems, it has an additional con-

straint. Namely, the regions being learned should be convex (if one

follows Gärdenfors’ original approach) or star-shaped (following our

own formalization of conceptual spaces). Moreover, as our research

is seen in the context of cognitive AI, we are interested in cognitively

plausible learning processes. One the one hand, we therefore favor

incremental processes over batch-learning. On the other hand, we are

interested in scenarios where only scarce or indirect feedback about the

correct classification is available.

3 Again, we would like to point out the strong connection to the basic level of categoriza-

tion [298, Chapter 7] (cf. Section 1.1.2) and the well-formedness criterion proposed by

Douven and Gärdenfors [137] (cf. Section 1.2.1)
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In Chapter 7, we focus on several problems and approaches especiallyMaking machine

learning more

cognitively plausible

relevant to our envisioned application of conceptual spaces in artifi-

cial intelligence. These include knowledge-based constraints, concept

formation, and language games.

Standard machine learning techniques learn their class boundariesLearning with

knowledge-based

constraints

from a blank slate, i.e., in a purely inductive manner. The incorporation

of additional knowledge-based constraints, e.g., in the form of background

knowledge from the symbolic layer, can be interesting in the context of

conceptual spaces, since it provides a way to account for the knowledge

view on concepts. We focus our discussion of this idea on the framework

of logic tensor networks (LTNs) [21, 358] which combines supervised

machine learning with logical constraints in the form of rules. We

sketch a path towards conceptual logic tensor networks, i.e., a fruitful

combination of LTNs and conceptual spaces.

While most approaches in machine learning (including LTNs) relyLearning in an

incremental and

unsupervised way

on a batch-processing of labeled datasets, concept formation [164] aims at

incrementally creating a meaningful hierarchical categorization based

on unlabeled observations. Concept formation implicitly solves the

symbol grounding problem through a bottom-up process, since the

emerging categories (symbols) are generalizations of actual observa-

tions. We will introduce COBWEB [159], ART [90], and SUSTAIN [270]

as an important examples of concept formation algorithms.

Finally, since concepts need to be shared among a population ofLearning through

communication
agents in order to enable efficient communication, we will furthermore

discuss language games [389] as an interesting avenue of research: In this

approach, a group of artificial agents is simulated which repeatedly

interact with each other in a given common environment. Each agent

has its own conceptualization of the world as well as a dictionary

mapping its concepts to words. Both the conceptualization and the

dictionary are updated based on the communicative success in the

simulated interactions, where typically one agent "describes" a target

object in a jointly observed scene, while the other agent needs to cor-

rectly identify this target object based on the utterance. Through the

indirect feedback from these interactions, the population of agents can

converge to a common conceptualization of the world. While this is

certainly interesting from the viewpoint of language evolution, it can

also be interpreted as an incremental machine learning process which

uses only indirect feedback.

Although this dissertation does not provide any crucial new insightsOutlook

into cognitively plausible concept learning (neither in a theoretical nor

in an experimental way), it gives a good overview of several relevant

topics. This overview can then serve as a useful starting point for future

research endeavors.



Part I

FO R M A L I Z I N G C O N C E P T UA L S PAC E S

In the first part of this dissertation, we present our thorough

mathematical formalization of the conceptual spaces frame-

work, which is able to encode correlations between domains

in a geometric way. In Chapter 2, we define concepts as

fuzzy star-shaped regions, before introducing various oper-

ations for creating novel concepts based on existing ones in

Chapter 3. Finally, in Chapter 4, we provide several ways

for quantifying relations between concepts.





2
D E F I N I N G C O N C E P T UA L
R E G I O N S

2.1 The Original Conceptual Spaces Framework . . . . . . . 54

2.1.1 The Structure of a Conceptual Space . . . . . . . 54

2.1.2 Conceptual Regions . . . . . . . . . . . . . . . . 56

2.2 An Argument Against Convexity . . . . . . . . . . . . . 60

2.2.1 Convex Sets Cannot Encode Cross-Domain Cor-

relations . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.2 Potential Solutions . . . . . . . . . . . . . . . . . 62

2.3 A Parametric Definition of Concepts . . . . . . . . . . . 65

2.3.1 Formalizing Conceptual Similarity Spaces . . . . 66

2.3.2 Crisp Conceptual Regions . . . . . . . . . . . . . 67

2.3.3 Fuzzy Conceptual Regions . . . . . . . . . . . . . 69

2.3.4 Implementation and Example: Fruit Space . . . 74

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.1 Related General Ideas . . . . . . . . . . . . . . . 79

2.4.2 Prior Formalizations of Conceptual Spaces . . . 82

2.4.3 Composite Concepts . . . . . . . . . . . . . . . . 86

2.5 Detailed Comparison to Other Formalizations . . . . . 88

2.5.1 Comparison to Adams and Raubal . . . . . . . . 91

2.5.2 Comparison to Rickard . . . . . . . . . . . . . . . 93

2.5.3 Comparison to Lewis and Lawry . . . . . . . . . 95

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

In this chapter, we lay the groundwork for our mathematical for-

malization of the conceptual spaces framework and its open source

implementation. The research presented in this chapter has been previ-

ously published in [41, 42, 46].

We begin by presenting more details about the representational Overview

aspects of the conceptual spaces fraemwork in Section 2.1. In Section

2.2, we then argue that Gärdenfors’ convexity requirement prohibits a

geometric representation of correlations between domains. We present

different solution approaches and argue that a relaxation of the con-

vexity criterion is the most promising choice. Based on this insight, we

provide a parametric definition of concepts as fuzzy star-shaped regions

in Section 2.3. This forms the basis of our mathematical formalization

of the overall framework. In Section 2.4, we provide an overview of

relevant literature and show how it relates to our work. We then give

a more thorough comparison of our proposed formalization to three

prior formalization proposals in Section 2.5. Finally, in Section 2.6, we

summarize the contributions of our work and sketch possible directions

for future research.

53
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2.1 the original conceptual spaces frame-
work

This section is largely based on the book "Conceptual Spaces: The

Geometry of Thought" by Peter Gärdenfors [179], where the cognitive

framework of conceptual spaces is described in great detail. We provide

here only a short summary of the formal representational aspects. We

first consider the overall structure of the similarity space in Section 2.1.1

before discussing conceptual regions in Section 2.1.2.

2.1.1 The Structure of a Conceptual Space

Please recall from Section 1.2.1 that a conceptual space is a similarityQuality dimensions

space spanned by so-called quality dimensions. Each of these dimensions

represents an interpretable and cognitively meaningful way of judging

the similarity of two given observations. Examples for quality dimen-

sions include temperature, weight, time, pitch, and hue. We assume

that each of these dimensions is equipped with a distance measure

such that we can compute the semantic difference of two stimuli with

respect to this dimension. In machine learning terms, each of the di-

mensions represents an interpretable feature, and together they span a

meaningful feature space.

A pair of dimensions can be either called integral or separable.Integral dimensions

and separable

dimensions

Integral dimensions are dimensions that inherently belong together: If

one assigns a value to one of the dimensions, one also has to assign a

value to the other dimension as well – they are perceived holistically.

This also means that focusing on only one of the dimensions while

ignoring the other is difficult. If a pair of dimensions is not integral, it

is called separable. In this case, one can selectively attend to one of the

dimensions – the two dimensions are perceived as being independent

from each other. For instance, the dimensions of pitch and volume

are integral, because they cannot be perceived separately from each

other. On the other hand, the dimensions of pitch and brightness are

separable, as one can perceive pitch without perceiving brightness (e.g.,

when hearing a bell ringing while having one’s eyes closed).

This distinction between integral and separable dimensions is usedDomains

to introduce the notion of a domain: A domain is a set of integral

dimensions that are separable from all other dimensions. Each percep-

tual modality (like color, shape, sound, or taste) is represented by

such a domain. In other words, the dimensions of one domain jointly

describe one meaningful aspect of the world. The color domain for in-

stance consists of the three dimensions hue, saturation, and brightness.

Grouping dimensions into domains also provides a logical structure

for the overall conceptual space – something that is typically absent

from the feature spaces used in machine learning (cf. Section 1.2.5).

When measuring the overall distance between two points within theThe weighted

Minkowski metric
conceptual space, one needs to aggregate the dimension-wise distances.
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Gärdenfors advocates the use of the weighted Minkowski metric (with

r > 0) for this purpose:

Definition 2.1 (Weighted Minkowski Metric)

Let x, y ∈ CS. Their distance according to the weighted Minkowski metric of

order r > 0 with weights wi is defined as follows:

dr(x, y) =

(︄
n∑︂
i=1

wi · |xi − yi|r
)︄ 1

r

The fixed positive weights wi represent the importance of the respec- Euclidean metric and

Manhattan metric
tive dimensions in the current context. A large wi corresponds to an

important dimension whereas a small wi indicates a less important

dimension. Both the Euclidean metric dE and the Manhattan metric dM
are special cases of dr (for r = 2 and r = 1, respectively).

dE(x, y) = d2(x, y) =

⌜⃓⃓⎷ n∑︂
i=1

wi · |xi − yi|2

dM (x, y) = d1(x, y) =

n∑︂
i=1

wi · |xi − yi|

Gärdenfors argues based on psychological evidence [19, 211, 367, Euclidean distance

within domains,

Manhattan distance

between domains

368] that integral dimensions should be combined with the weighted

Euclidean metric, whereas separable dimensions should be combined

with the Manhattan metric. Intuitively, the (weighted) Manhattan metric

is just a (weighted) sum of the individual distances and is thus well

suited for combining separable dimensions which can be perceived

separately. The (weighted) Euclidean metric on the other hand cannot

be conceptualized as a (weighted) sum of distances and thus can be

thought of as computing a more holistic distance. This seems to be a

better fit for integral dimensions which are perceived holistically.

Please note that the usage of r = 2 for integral dimensions and of Reality may be more

complexr = 1 for separable dimensions is of course a simplification of the actual

results obtained in psychological studies. Usually a value of r ∈ (1, 2)
is found to best reflect the similarity judgments made by humans [367].

However, one typically observes that the optimal value of r for separable

dimensions is much smaller than the optimal value of r for integral

dimensions. In order to get a more faithful approximation of the psycho-

logical results, one could also allow arbitrary values of r for combining

dimensions. However, then one would need to specify this value r
for each possible combination of dimensions in the conceptual space,

increasing the number of parameters in the overall model dramatically.

We therefore follow Gärdenfors’ broad distinction by using r = 2 for all

sets of integral dimensions and r = 1 for all sets of separable dimensions.

A central aspect of the conceptual spaces framework is the notion of Semantic similarity

semantic similarity. The similarity of two points in a conceptual space

is inversely related to their distance within this space: The smaller

the distance between two points in the conceptual space, the larger
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Figure 2.1: (a) Euclidean betweenness for stimuli on integral dimensions. (b)

Manhattan betweenness for stimuli on separable dimensions.

the semantic similarity of the observations they represent. In order to

formalize the connection between distance and similarity, Gärdenfors

proposes to use an exponentially decaying function:

Sim(x, y) = e−c·d(x,y)

The parameter c > 0 is a general sensitivity parameter and controlsSensitivity parameter

and psychological

evidence

the rate of the exponential decay. Shepard [368] has argued that this

exponential relation between similarity and distance can be found for a

wide variety of stimulus sets and that it is not only confined to human

perception but also applies to other species such as pigeons.

This geometrical and intuitive definition of semantic similarity is aRelation to artificial

intelligence
key feature of the conceptual spaces framework that makes it an inter-

esting complement for traditional logic-based AI approaches which are

incapable of representing such similarities. The definition of similarity

as inverse distance is also in line with the feature spaces in machine

learning, where this assumption is used for instance in clustering

algorithms (see Chapter 7).

2.1.2 Conceptual Regions

Gärdenfors bases the definition of conceptual regions on the notionGeometrical

betweenness
of geometrical betweenness. Betweenness is a logical predicate B(x, y, z)
that is true if and only if y is geometrically between x and z. It can be

defined based on a given metric d:

Definition 2.2 (Betweenness)

Let x, y, z ∈ CS and d be a metric on CS. The point y is said to lie between x
and z (denoted as Bd(x, y, z)) if and only if d(x, y) + d(y, z) = d(x, z).

A point y is considered to be between two other points x and z, if theBetweenness under

the Euclidean

distance

path from x through y to z is not longer than the direct path from x
to z. The Euclidean metric measures the distance of two points as the

length of the straight line segment connecting them. One can easily
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Figure 2.2: Betweenness under the Minkowski metric for different values of r.

see that BdE (x, y, z) is true if and only if y lies on the straight line

segment connecting x and z. Figure 2.1a shows stimuli which differ on

the integral dimensions of hue and brightness. The stimulus labeled y
can therefore not be considered to lie between x and z.

The Manhattan metric on the other hand measures the distance Betweenness under

the Manhattan

distance

of two points by simply adding up the distances with respect to the

individual dimensions. This also means that all points in the bounding

box spanned by x and z can be considered to lie between x and z. Figure

2.1b shows stimuli that differ with respect to two separable dimensions,

namely size and hue. As size and hue are separable dimensions (i.e.,

they belong to different domains), they should be combined with the

Manhattan distance. In this example, the stimulus y can therefore be

treated as an intermediate case between x and z.
As we can see in Figure 2.1, betweenness corresponds to a linear Betweenness as

interpolation
interpolation between the two endpoints in both cases. In the Euclidean

case, this interpolation takes place in the overall space, i.e., considering

all dimension jointly. In the Manhattan case, the interpolation takes

place for each dimension individually. This corresponds to the intuitive

notion that one can attend to separable dimensions individually while

integral dimensions are always processed jointly.

As one can see in Figure 2.2, intermediate values of r ∈ (1, 2) result Intermediate notions

of betweenness
in intermediate versions of betweenness that lie between the Euclidean

(r = 2) and Manhattan (r = 1) cases. Interestingly, although r = 1.01 is

quite close to r = 1, the betweenness relation for r = 1.01 is much more

similar to the one for r = 2 than to the one for r = 1. We can also see in

Figure 2.2 that there exists a certain subset relation for the betweenness

relations for different values of r: If a point y is between points x and

z for a Minkoswki metric with r ∈ [1, 2], then y is also between x and

z for any r′ ∈ [1, r). In the following, we focus our discussion on the

cases of r = 1 and r = 2, which are much easier to model than r ∈ (1, 2).
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Figure 2.3: Illustration of convexity and star-shapedness as based on the

Euclidean vs. the Manhattan metric.

Based on the betweenness relation, we can now define two criteriaConvexity and

star-shapedness
that can be used to constrain conceptual regions in a meaningful way,

namely convexity and star-shapedness.

Definition 2.3 (Convexity)

A set C ⊆ CS in a conceptual space CS is convex under a metric d⇔
∀x ∈ C, z ∈ C, y ∈ CS : (Bd(x, y, z) → y ∈ C)

Definition 2.4 (Star-Shapedness)

A set S ∈ CS in a conceptual space CS is star-shaped under a metric d with

respect to a set P ⊆ S ⇔
∀p ∈ P, z ∈ S, y ∈ CS : (Bd(p, y, z) → y ∈ S)

If we require a conceptual region C to be convex, we require thatInterpretation of the

definitions
all interpolations between two members x, z ∈ C of the concept also

belong to this concept. If we only require a conceptual regionS to be star-

shaped, then we only require interpolations between any prototypical

example p ∈ P and any other concept member z ∈ S to also belong

to this concept. As one can easily see, convexity is a special case of

star-shapedness (where P = S) and is thus a stronger constraint on the

conceptual region.

As both the notions of convexity and star-shapedness are based onConvexity and

star-shapedness

depend on the

distance metric

the notion of betweenness (which is in turn based on the metric being

used), we can also distinguish Euclidean versions of convexity and

star-shapedness from their Manhattan-based counterparts. Figure 2.3

illustrates the differences between these notions with some examples.

We would like to point out that only axis-parallel cuboids are convex

under the Manhattan metric. Moreover, since Euclidean betweenness

is a special case of Manhattan betweenness (cf. Figure 2.2), all sets

that are convex (star-shaped) in the Manhattan sense are also convex

(star-shaped) in the Euclidean sense: Consider any two points x, z ∈ C.
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If C is convex under dM , then all points y with BdM (x, y, z) must also

belong to C. As we have seen in Figure 2.2, Bdr(x, y, z) ⇒ BdM (x, y, z)
for r ∈ [1, 2]. If we include all y with BdM (x, y, z) in C, then we also

include all points for which the special case Bdr(x, y, z) holds true.

It is a traditional assumption in cognitive science that any observation Properties as convex

sets under the

Euclidean metric

or concept can be described by a combination of different properties

(e.g., Minsky’s frames [294] or the schema-based variant of prototype

theory, cf. Section 1.1.2). For instance, an apple could be described as

being red, round, and sweet. Gärdenfors’ hypothesis is that most of

these properties can be described as geometric regions within a single

conceptual domain. In our example, the property red can be described

as a region in the color domain, whereas round and sweet belong to

the domains of shape and taste, respectively. Gärdenfors furthermore

argues that these regions are expected to be convex – if two points in

the color space are classified as red, then any other point between

them should also be classified as red. As domains consist of integral

dimensions, we apply the Euclidean sense of convexity. This leads to

Gärdenfors’ definition of a property:

Definition 2.5 (Criterion P)

A natural property is a convex region of a domain in a conceptual space.

As stated above, concepts can be expressed as a combination of Concepts and

salience weights
properties from different domains. However, not all of these properties

might be of equal importance to a given concept. For instance, the

smell of an apple is less prominent than its color and shape. This can

be reflected by so-called salience weights: Every domain that is part

of the respective concept has an associated weight. Larger weights

indicate important domains, whereas smaller weights indicate less

crucial domains. These salience weights can of course be influenced

by the current context. For instance, when eating an apple, the taste

domain becomes much more prominent than the shape domain.

Moreover, the different properties of a concept are not completely Correlations between

domains
independent of each other: A red apple tends to be sweet, while a green

apple tends to be sour. These correlations between different domains

are an important aspect of concepts [288]. Recall from Section 1.1.2 that

systems of such correlations can significantly aid learning processes [66]

and play an important role in reasoning [298, Chapter 8]. For instance,

if we know that a given banana is green, we can use the correlation

between the color and the taste domain to infer that it is probably not

sweet. From a linguistic perspective, these cross-domain correlations

can be indicated by natural language patterns such as "The dish was

excellent but not expensive": They involve properties from different

domains and state that a certain expected correlation between these

domains (in this example between the quality and the price of a dish)

have been violated [455].

Gärdenfors uses these three components (properties, weights, and Definition of

concepts
correlations) to define a concept as follows:
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Definition 2.6 (Criterion C)

A natural concept is represented as a set of convex regions in a number of

domains together with an assignment of salience weights to the domains and

information about how the regions in different domains are correlated.

2.2 an argument against convexity

Based on the notion of convexity under the Manhattan distance, weOverview

encounter a problem when trying to encode cross-domain correlations

through the form of the conceptual region. We introduce this problem

in Section 2.2.1, before discussing several potential approaches towards

solving it in Section 2.2.2.

2.2.1 Convex Sets Cannot Encode Cross-Domain Correlations

In the following, we will assume that concepts can be representedConcepts as regions

in the overall

conceptual space

as regions in the overall conceptual space. This assumption is never

mentioned in the original work by Gärdenfors. However, we think that

it is quite intuitive from the perspective of knowledge representation

and machine learning: Properties are regions within particular domains.

If concepts are represented by regions in the overall space, then they

can be represented with the same formalism as properties. This in turn

enables us to use the same learning and reasoning mechanisms for

both properties and concepts. The only difference between concepts

and properties is then the space on which they are defined (i.e., the

overall space or a single domain).
1

Gärdenfors [179] argues for the importance of cross-domain corre-Representing

correlations in a

geometric way

lations, but he does not propose any concrete way for representing

them. If we assume that concepts are represented as regions in the

overall space, it is natural to represent the correlations between different

domains in a geometric way. Consider the sketch in Figure 2.4a. In

this example, we consider two dimensions, age and height, in order to

define the concepts of child and adult. We expect a strong correlation

between age and height for children, but no such correlation for adults.

An intuitive sketch of these concepts results in the two elliptical regions

shown in Figure 2.4a.
2

As one can see, the values of age and height

constrain each other: For instance, if the value on the age dimension is

low and the point lies in the child region, then also the value on the

height dimension must be low.

Please note that age and height are separable dimensions: TheyA representation

with convex regions
can be perceived independently of each other, unlike e.g., hue and

saturation. We should therefore combine them by using the Manhattan

metric. As argued in Section 2.1.2, convex regions under the Manhattan

metric are axis-parallel cuboids. If we assume conceptual regions to

1 Thanks to Peter Brössel for challenging me to explain this (previously tacit) assumption.

2 Please note that this is a very simplified, artificial example to illustrate our main point.
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Figure 2.4: (a) Intuitive way to define regions for the concepts of adult and

child in a conceptual space spanned by the dimensions age and

height. (b) Representation of these concepts as convex regions. (c)

Representation of these concepts as star-shaped regions.

be convex (as proposed by Gärdenfors), we have to represent the two

concepts by axis-parallel cuboids. This is illustrated in Figure 2.4b.

In our point of view, this representation is, however, highly prob- Manhattan convexity

cannot express

correlations

lematic: All information about the correlation of age and height in

the child concept is lost in this representation – the values of age and

height do not constrain each other at all. According to the convex set

representation, a child of age 2 with a height of 1.80 m would be totally

conceivable – which does not make any intuitive sense. This example

illustrates that we cannot geometrically represent correlations between

domains if we assume that concepts are convex and that the Manhattan

metric is used. We think that our example is not a pathological one

and that similar problems will occur quite frequently when represent-

ing concepts For instance, there is an obvious correlation between a

banana’s color and its taste. If one replaces the age dimension with

hue and the height dimension with sweetness in Figure 2.4, one can

observe similar encoding problems for the banana concept as for the

child concept.

Also Hernández-Conde has argued against the convexity constraint Other criticisms of

convexity
in conceptual spaces, although from a different point of view [195]. His

arguments are mainly of a theoretical and indirect nature, essentially

criticizing that there is currently no sufficient support for the claim

that conceptual regions are convex. Moreover, his criticism is at least

partially based on misunderstandings of the conceptual spaces theory.
3

In contrast to that, our example highlights a representational deficit of

the original theory from the perspective of artificial intelligence and

machine learning: The most natural way of representing cross-domain

correlations in a geometric setting is not possible when using convex

sets under the Manhattan distance.

3 For example, he argues that some objects (such as apples) have a non-convex shape,

hence the region of the apple concept in the shape domain cannot be convex. This

argument, however, misses the main point of the quality dimensions used to span

the shape space: They do not correspond to physical dimensions, but to meaningful

shape-related features of an observation, such as its aspect ratio or degree of curvature

(see Chapter 10 for more information on how the shape domain can be represented).
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2.2.2 Potential Solutions

One potential remedy for our problem is the notion of star-shapedness:First option:

replacing convexity

with star-shapedness

If we require conceptual regions only to be star-shaped instead of

convex, we can represent the correlation of age and height for the child

concept in a geometric way. Figure 2.4c illustrates this approach: The

sketched sets are star-shaped under the Manhattan metric with respect

to a central point, illustrated as a cross in the center of the conceptual

region.
4

Although this representation does not exactly correspond to

our intuitive sketch in Figure 2.4a, it is a clear improvement over the

convexity-based representation from Figure 2.4b. The weaker require-

ment of star-shapedness allows us to "cut out" some corners from the

rectangular region. This enables us to geometrically represent correla-

tions through the form of the conceptual region. Therefore, by relaxing

the convexity requirement, a geometric representation of cross-domain

correlations becomes feasible.

One could argue at this point that instead of shar-shapedness, weConnected regions

are too unconstrained
should consider an even weaker constraint, for instance connectedness.

A set C is connected if for all points x, z ∈ C, we can find an arbitrarily

shaped path from x to z such that all points on this path also lie in

C.
5

If the regions representing concepts only have to be connected,

then we can define the concepts of adult and child as in Figure 2.4a –

which would be even closer to our intuition. However, the notion of

connectedness is relatively weak and permits e.g., also ring-shaped

sets that have a "hole" in the middle. This, however, does not seem

convincing for representing concepts. Star-shapedness prevents such

"holes". Star-shaped regions furthermore have a well defined central

point or region that can be interpreted as a prototype. Thus, the connec-

tion that Gärdenfors [179] established between the prototype theory of

concepts and the framework of conceptual spaces (cf. Section 1.2.2) is

preserved. Replacing convexity with star-shapedness is therefore only

a minimal departure from the original framework while enabling us to

geometrically represent correlations between domains.

The problem illustrated in Figure 2.4 could also be resolved bySecond option: using

only the Euclidean

distance

replacing the Manhattan metric with a different distance function for

combining domains. A natural choice would be to use the Euclidean

distance everywhere.
6

We think, however, that this would be a major

departure from the original framework.

4 Please note that although the sketched sets are still convex under the Euclidean metric,

they are star-shaped but not convex under the Manhattan metric. Please also note that

the region for the adult concept in Figure 2.4a is star-shaped under the Manhattan

distance. Thanks to Luciano Serafini for pointing out the latter observation.

5 Please note that all convex sets are connected (in this case the path between x and z
needs to be a shortest path) and that also all star-shaped sets are connected (here, we

fix an intermediate point p ∈ P , which must lie on the path from x to z and require

the subpaths from x to p and from p to z to be shortest paths).

6 One could of course also replace the Manhattan metric with some non-Euclidean

metric (e.g., the Mahalanobis distance). However, there is currently no strong evidence

supporting the usage of any particular other metric.
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In conceptual spaces, the distance between two points in the overall A representational

argument for keeping

the Manhattan

distance

space does not only depend on their coordinates with respect to the

individual dimensions, but also on the way that these dimensions are

grouped into domains: The overall distance in the space is computed

using the (weighted) Manhattan metric on the (weighted) Euclidean

distances within the respective domains. If we replace the Manhattan

distance with the Euclidean distance, then we get a (weighted) Euclidean

distance based on (weighted) Euclidean distances. This is, however,

equivalent to computing a single weighted Euclidean distance on

the overall space (see Lemma A.1 in Appendix A.1). In this case, the

structure of the conceptual space loses its importance for computing

distances. It is therefore not quite clear whether using domains to

structure the conceptual space would be useful any more – it seems

that the framework would lose one of its central parts.

Moreover, there exists some psychological evidence [19, 211, 367, 368] Psychological and

computational

arguments for

keeping the

Manhattan distance

which indicates that human dissimilarity ratings are reflected better by

the Manhattan metric than by the Euclidean metric if separable dimen-

sions are involved (e.g., stimuli differing in both size and brightness,

cf. also Figure 2.1). Since a psychologically plausible representation of

similarity is one of the core principles of the conceptual spaces frame-

work, these findings should be taken into account. Furthermore, the

Manhattan metric provides a better relative contrast between close and

distant points in high-dimensional spaces than the Euclidean metric [7].

If we expect a large number of domains (each consisting only of a small

number of dimensions), this also supports the usage of the Manhattan

metric from a computational point of view.

Also multivariate Gaussians might seem to be a good candidate for Third option:

representing

conceptual regions as

multivariate

Gaussians

representing concepts that could solve our representational problem:

They contain both a prototypical element (the mean µ) and information

about correlations (the positive semi-definite covariance matrix Σ). The

membership function of a multivariate Gaussian can be expressed as a

specific type of similarity to the mean µ:

Sim(x, µ) = e−
1
2
(x−µ)TΣ−1(x−µ)

Mathematically speaking, multivariate Gaussians compute an ex- The Mahalanobis

distance and

conceptual spaces

ponentially decaying similarity to a prototype based on the squared

Mahalanobis distance dS(x, y) =
√︁
(x− y)TΣ−1(x− y). The Maha-

lanobis distance, however, corresponds to the Euclidean metric in a

transformed space: Since the covariance matrix Σ is positive semi-

definite, one can write Σ−1 = GTG for some matrix G [167, 236]. We

can now make the following transformations:

dS(x, y) =
√︂

(x− y)TΣ−1(x− y) =
√︂
(x− y)T (GTG)(x− y)

=

√︂
(G(x− y))T (G(x− y)) =

√︂
(Gx−Gy)T (Gx−Gy)

One can easily see that dS(x, y) = dE(Gx,Gy). Overall, we thus get Squared distance in a

transformed space
that Sim(x, µ) = e−

1
2
·dE(Gx,Gy)2

. Both the implicit transformation of the
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similarity space and the usage of squared distances are in our opinion,

however, not in line with the original conceptual spaces framework.

Our representational problem also disappears if we assume the twoFourth option:

considering

intermediate cases of

the Minkowski

metric

dimensions of age and height are not completely separable.
7

So in-

stead of using the Manhattan metric (where r = 1), we could use the

Minkowski metric with r > 1. In Section 2.1.1, we have already noted

that values of r ∈ (1, 2) are the usual case in psychological analyses.

As we have seen in Figure 2.2, even a value of r = 1.01 already leads

to a betweenness relation that is much more similar to the Euclidean

case than to the Manhattan case. When replacing r = 1 with r > 1,

we can either use a different r for each pair of separable dimensions

(which adds many free parameters to the framework, cf. Section 2.1.1)

or use a single global value r > 1. The latter option seems to be prefer-

able to the first one as it implies less additional complexity. However,

even using the same r > 1 for all pairs of separable dimensions has

a major disadvantage: While betweenness under both the Euclidean

and the Manhattan metric can be described in a very concise way (as

a straight line segment and as an axis-parallel cuboid, respectively),

this is not easily possible for intermediate cases with r ∈ (1, 2). The

subsequent analysis of convexity and star-shapedness as well as the

parametric description of conceptual regions might thus become quite

complex. As we have seen in Figure 2.2, betweenness for r ∈ (1, 2] is a

special case of betweenness for r = 1. This means that any set that is

star-shaped/convex for r = 1 is also star-shaped/convex for r ∈ (1, 2].
By basing our formalization on the Manhattan metric, we therefore

take into account the limiting case of r = 1.

Finally, there is a potential solution that allows us to keep both theFifth option:

redefining

betweenness

constraint of convexity and the usage of the Manhattan metric: If we

define betweenness always in the Euclidean sense (i.e., as the straight

line segment connecting two points), then the problem sketched in

Section 2.2.1 does not arise any more, since the regions sketched in

Figure 2.4a would already be considered convex under any distance

metric.
8

This approach, however, breaks the tight connection of be-

tweenness and distance (and thus similarity) in a conceptual space and

is therefore a quite strong modification of the original framework. By

using Euclidean betweenness also for separable dimensions, we can no

longer say that stimulus y in Figure 2.1b is between stimuli x and z. As

we can see by this example, the redefinition of the betweenness relation

also has direct effects on points in the conceptual space, i.e., on the way

individual stimuli are treated. As mentioned already for several other

candidate solutions, such side-effects are also to be expected when

changing the underlying notion of distance in the space.

Overall, it seems that from a representational point of view, theSummary

7 Thanks to Peter Gärdenfors for this helpful comment.

8 Thanks to the audience at the DCLPS colloquium in Düsseldorf for this idea.
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relaxation of the convexity criterion is the cleanest solution – it causes

only a small departure from the original framework with no unintended

side effects or major complications.

Please note that the example given above is intended to highlight Disclaimer: this is

not about psychology
representational problems of conceptual spaces in the context of artificial

intelligence, if a geometric representation of correlations is desired.

We do not make any claims that star-shapedness is a psychologically

plausible extension of the original framework and we do not know about

any psychological data that could support such a claim.
9

Moreover,

our example does not preclude that properties in a conceptual space

are convex sets within a single domain.
10

The convexity requirement

only caused problems for concepts which are defined across multiple

domains, not for properties within a single domain. As all convex

sets are also star-shaped, properties may be convex regions without

contradicting our formalization – they would simply constitute a special

case. For the sake of simplicity, we will use the same type of star-shaped

sets for representing both concepts and properties in the remainder of

this dissertation. Investigations about the psychological plausibility of

our formalization would be certainly interesting, but lie outside of the

scope of this dissertation.

Finally, one should mention that one can circumvent the representa- Non-geometric

representation of

correlations

tional problem described above by representing correlations between

domains in a non-geometric way: Concepts can be represented by a list

of individual properties instead of being represented by a region in the

overall space (cf. frames and schema-based variants of prototype theory,

Sections 1.1.1 and 1.2.1). Then, all regions are defined as convex regions

within individual domains. Correlations between these domains can

then be represented in a different way, e.g., as co-occurrence statistics

of properties [329] (see also Sections 2.4.2 and 2.5.2). However, as al-

ready stated in Section 2.2.1, we think that a geometric representation

of correlations in the overall space is more intuitive. Moreover, this

approach allows us to treat properties and concepts in the same way.

This is especially useful if we aim to learn the conceptual regions with

machine learning algorithms.

2.3 a parametric definition of concepts

Based on our insights from Section 2.2, we now provide a formaliza- Overview

tion of conceptual similarity spaces (Section 2.3.1) and star-shaped

conceptual regions both in a crisp and a fuzzy variant (Sections 2.3.2

and 2.3.3). We then introduce our open source implementation of this

formalization in Section 2.3.4.

9 Thanks to Igor Douven for pointing this out to me.

10 Strößner [395] has recently argued, that convexity is empirically supported mostly for

single-domain concepts, but not for multi-domain concepts, which may, however, be

more crucial for human cognition.
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2.3.1 Formalizing Conceptual Similarity Spaces

Before we can derive a mathematical definition of conceptual regions,Formalizing

dimensions
we first need to formalize the underlying conceptual space. LetD be the

set of quality dimensions d ∈ D that span the conceptual space. Then,

the overall conceptual space CS can be defined as the product space of

all these dimensions. We denote the distance between two points x and

y with respect to a dimension d as |xd−yd| (or, equivalently, |yd−xd|).11

These dimensions are now grouped together into domains. EachFormalizing domains

domain δ is defined as subset of D. Taken together the set of all

domains ∆ is a partition of D (i.e., each dimension d belongs to exactly

one domain δ). Distance within a domain δ ⊆ D is measured by the

weighted Euclidean metric dδE (cf. Definition 2.1):

dδE(x, y,Wδ) =

√︄∑︂
d∈δ

wd · |xd − yd|2

The parameterWδ contains positive weightswd > 0 for all dimensionsDimension weights

d ∈ δ, representing their relative importance within the domain. These

weights are assumed to sum to one, i.e.,

∑︁
d∈δ wd = 1. This normaliza-

tion requirement prevents that the number of dimensions in a given

domain has a great impact on the numeric value of the distances. It is

intended to make distances within small and large domains comparable.

Now let ∆ be the set of all domains δ that are part of the conceptualCombined metric in

the overall space
space. Distance within the overall conceptual space is measured by the

weighted Manhattan metric of the intra-domain distances (henceforth

called the combined metric):

Definition 2.7 (Combined Metric)

LetCS be a conceptual space based on dimensions d ∈ D, which are partitioned

into domainsD ⊇ δ ∈ ∆. LetW∆ be the set of positive domain weights wδ for

all δ ∈ ∆ with

∑︁
δ∈∆wδ = |∆|. Let moreoverWδ be the set of positive domain

weights wd for all d ∈ δ with

∑︁
d∈δ wd = 1. Let furthermore x, y ∈ CS.

Their distance according to the combined metric is defined as follows, where

W = ⟨W∆, {Wδ}δ∈∆⟩:

d∆C (x, y,W ) =
∑︂
δ∈∆

wδ · dδE (x, y,Wδ) =
∑︂
δ∈∆

⎛⎝wδ ·√︄∑︂
d∈δ

wd · |xd − yd|2

⎞⎠
The parameter W = ⟨W∆, {Wδ}δ∈∆⟩ contains both the dimensionDomain weights

weights as introduced above and a set of domain wights W∆. The

weights in W are not globally constant, but they (and thus also the

notion of distance) depend on the current context. Observations and

11 For linear dimensions, this distance can be simply computed by taking the absolute

value of the difference between xd and yd. If the underlying dimension is circular (e.g.,

representing a rotation angle in [0◦, 360◦), the distance computation needs to take

into account this circularity, such that for example the distance between 10◦ and 350◦

equals 20◦ rather than 340◦.
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concepts that are defined on a larger number of domains can have a

larger psychological distance from each other than observations and

concepts defined on a small number of domains. For example, points in

the conceptual space can differ from the property red only with respect

to their color. If we compare them, however, to the apple concept,

then also differences with respect to shape, taste, and size matter. By

requiring

∑︁
δ∈∆wδ = |∆| instead of

∑︁
δ∈∆wδ = 1, we can enforce this

intuition mathematically.

Lemma 2.1 (Metric Properties of d∆C )

d∆C with a fixed parameter W is a metric.

Proof. See Appendix A.2.

We call this overall metric d∆C for the conceptual space the combined Relation to Euclidean

and Manhattan

distance

metric, because it is a combination of the Euclidean and the Manhattan

metric. Note that both dM and dE are special cases of d∆C : If every

domain contains only a single dimension, then d∆C is equivalent to dM .

On the other hand, if there is only a single domain which contains all

dimensions, then d∆C is equivalent to dE .

2.3.2 Crisp Conceptual Regions

Our mathematical formalization of concepts is based on the following A union of

intersecting convex

regions is star-shaped

insight, which relates convex regions to star-shaped regions:

Lemma 2.2 (Union of Convex Sets)

Let C1, ..., Cm be convex sets under some metric d and let P =
⋂︁m
i=1Ci. If

P ̸= ∅, then S =
⋃︁m
i=1Ci is star-shaped under d with respect to P .

Proof. See Appendix A.3.

Lemma 2.2 states that every union of convex sets with a nonempty The reverse direction

intersection is star-shaped with respect to this intersection. Moreover,

one can also approximate any star-shaped set by a union of convex sets

with a nonempty intersection (cf. [245, 378]):

If the original set S is star-shaped with respect to the region P , each Approximating

star-shaped regions

as union of convex

regions

of the convex setsCi to be constructed will be a superset of P . Define for

each point x on the surface of S a minimal convex set Cx that contains

both P and x. As S is star-shaped, all the points inCx are also contained

in S. The union over all Cx is thus a subset of S. Moreover, this union

of all Cx covers all points in S: Every point y ∈ S is either a surface

point or lies between a surface point x and the central region P . We can

thus for every y ∈ S find a Cx such that y ∈ Cx. Thus,

⋃︁
Cx = S. Please

note that in practical applications, one is limited to a finite number of

convex sets Cx, hence only enabling an approximation, but not a perfect

representation of S.

If we ensure that our sets C1, ..., Cm from Lemma 2.2 are convex Manhattan distance

as limiting case
under the Manhattan distance dM , we are guaranteed that they are also

convex under dr with r ∈ [1, 2] (cf. Section 2.1.2). Then, the resulting set

S is not only star-shaped under dM , but also under dr. Using convexity
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under dM thus can be considered a limiting case (cf. Section 2.2.2) –

if in practice the actual value of r for a given conceptual space lies

in the open interval (1, 2), a formalization based on convexity and

star-shapedness under dM is still applicable.

Please recall from Sections 2.1.2 and 2.2.1 that convex sets under theAxis-parallel cuboids

as building blocks
Manhattan distance correpond to axis-parallel cuboids. They can be

formally defined in the following way:
12

Definition 2.8 (Axis-Parallel Cuboid)

We describe an axis-parallel cuboid
13 C as a triple ⟨∆C , p

−, p+⟩. C is

defined on the domains ∆C ⊆ ∆, i.e., on the dimensions DC =
⋃︁
δ∈∆C

δ. We

call p−, p+ the support points of C and require that p+, p− ∈ DC . This means

that p+ and p− have an entry p+d , p
−
d for each dimension d ∈ DC . For all

d ∈ D \DC , we can for convenience assume that p+d = +∞ and p−d = −∞.

If for any d ∈ DC we have p−d > p+d , then the cuboid C is empty, i.e., C = ∅.

Then, we define the cuboid C in the following way:

C = {x ∈ CS | ∀d ∈ D : p−d ≤ xd ≤ p+d }

Intuitively, the interval [p−d , p
+
d ] describes the set of admissible valuesInterpretation

for a given dimension d. A cuboid C thus restricts the values on the

dimensions in ∆C into intervals specified by p− and p+.

Lemma 2.3 (Cuboids are Convex)

A cuboid C is convex under d∆C
C , given a fixed set of weights W .Cuboids are convex

under dC
Proof. See Appendix A.3.

Since dM and dE are special cases of dC , cuboids are also convex

under both dM and dE .

By comining Lemma 2.2 with Lemma 2.3, we can see that any unionConceptual regions

as union of

intersecting cuboids

of intersecting cuboids is star-shaped under d∆C . We use this insight

to define crisp cores for our conceptual regions (see Figure 2.5 for an

illustrative example):

Definition 2.9 (Core of a Conceptual Region)

We describe a core S as a tuple ⟨∆S , {C1, . . . , Cm}⟩ where ∆S ⊆ ∆ is a set

of domains on which the cuboids {C1, . . . , Cm} (and thus also S) are defined.

Again, we can deriveDS =
⋃︁
δ∈∆S

δ, i.e., the set of all dimensions on which S
is defined. We further require that the central region P =

⋂︁m
i=1Ci ̸= ∅. Then

the coret S is defined as follows:

S =
m⋃︂
i=1

Ci

We have defined a core S as a union of a (potentially very large) num-How many cuboids

per core?
ber of cuboids with nonempty intersection. In an actual implementation,

however, we might need to restrict the number of cuboids m in order to

12 All of our definitions and propositions hold for any number of dimensions.

13 We will drop the modifier "axis-parallel" from now on.
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Figure 2.5: Illustration of a core. (a) Three cuboids C1, C2, C3 with nonempty

intersection. (b) Core S based on C1, C2, C3 with central region P .

limit both computation time and memory requirements. One could for

instance base this on the number of domains or dimensions on which

S is defined, i.e., m ∝ |∆S | or m ∝ |DS |. As a potential restriction on

the number of cuboids does not influence our mathematical definitions,

we leave this decision to the concrete application. We will, however,

revisit this point in Sections 3.1.3, 4.1.3, and 4.5.3, when considering

the runtime of different operations in dependence on the number of

cuboids used to represent each concept.

Since cores are defined as a union of cuboids, we can interpret them Cuboids as

sub-concepts
as consisting of several sub-concepts (the individual cuboids) which

are defined based on ranges of possible feature values. Requiring a

non-empty intersection of the cuboids thus means that these ranges

of admissible values need to overlap for each dimension: There must

be at least one observation that falls into the range of possible values

for all cuboids. A correlation between domains and dimensions is

also expressed through the cuboid structure: The ranges of admissible

feature values may co-vary, such that certain combinations of sub-ranges

exist while others do not.

2.3.3 Fuzzy Conceptual Regions

In practice, it is often not possible to define clear-cut boundaries Crisp set cannot deal

well with borderline

cases

for conceptual regions. As Murphy [298, Chapter 2] argues, clear-cut

conceptual boundaries are only usefuly if the world has "distinct clumps

of objects" (cf. Section 1.2.3). However, if the world consists of shadings

and if objects can have a rich mixture of different kind of properties, then

one will encounter borderline cases with no clear concept membership.

Figure 2.6a shows a simple example from the color domain for the

property red. No matter where the crisp conceptual boundary is put, it

is always possible to find two points x ̸= x′ that are very close to each

other perceptually, but which lie on different sides of the boundary.

They represent borderline cases that lie close to the decision boundary.

One can then argue that these two specific colors are very similar to
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Figure 2.6: (a) Crisp conceptual boundaries lead to abrupt changes in member-

ship. (b) Fuzzy conceptual boundaries allow for smooth changes

in membership.

each other (as d∆C
C (x, x′,W ) is very small) and that the decision to call x

red and x′ not red is quite arbitrary. If we decide to solve this problem

by moving the conceptual boundary in such a way that both x and x′

belong to the conceptual region of red, then we immediately face a

similar problem with respect to x′ and x′′.
The underlying problem is that the membership to the property redCrisp membership is

not continuous
is crisp (i.e., a given point either is a full member of the conceptual

region, or it is not a member at all). At the conceptual boundary, we thus

have a sudden jump from full membership to no membership at all.

The membership function which maps points in the conceptual space

to their membership to the property red is therefore not continuous: A

small change in the input (i.e., the coordinates of the point) can lead to

a large change in the output (i.e., membership to the property red).

The theory of fuzzy sets [448] tries to solve this problem by allowingFuzzy sets use

continuous degrees of

membership

intermediate degrees of membership: Points are also allowed to be par-

tial members of a region. As we can see in Figure 2.6b, the membership

function can now become continuous – small changes in the input only

lead to small changes in the output. The sudden jump between x and

x′ has been replaced with a smoother transition between members and

non-members. As we do no longer have a clear threshold separating

members from non-members, we can say that the conceptual boundary

has become imprecise. Please note that using fuzzy sets to represent

imprecise knowledge about conceptual boundaries has already a long

tradition in cognitive science (cf. [55, 136, 310, 340, 450]).

Definition 2.10 (Fuzzy Set)

A fuzzy set
˜︁A on CS is defined by its membership function µ ˜︁A : CS → [0, 1].

For each x ∈ CS, µ ˜︁A(x) is interpreted as degree of membership of x in
˜︁A, with

µ ˜︁A(x) = 1 indicating full membership and µ ˜︁A(x) = 0 indicating complete

non-membership.

Fuzzy sets contain crisp sets as a special case where µ ˜︁A : CS → {0, 1}.Relation to crisp sets

In analogy to the crisp power set P(CS), we denote the set of all fuzzy

sets on CS as F(CS) and call this the fuzzy power set of CS.
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Definition 2.11 (α-Cut)

Given a fuzzy set
˜︁A on CS, its α-cut

˜︁Aα for α ∈ [0, 1] is defined as follows:

˜︁Aα = {x ∈ CS | µ ˜︁A(x) ≥ α}

The special case of
˜︁A1

is called the core of
˜︁A.

Intuitively, an α-cut returns a crisp set of all the points that have a α-cuts turn fuzzy

sets into crisp sets

based on a threshold

certain minimal membership to the underlying fuzzy set. Definition

2.11 also gives a hint why the crisp conceptual regions from Section 2.3.2

are called cores: The points inside these regions will be the ones that

receive a full degree of membership in our fuzzy conceptual regions.

The notion of convexity can be generalized from crisp sets to fuzzy Quasi-concavity as

fuzzy version of

covexity

sets as follows, resulting in a property that is commonly called quasi-

concavity [394, 395, 411] (see also [179, Chapter 3.5]):

Definition 2.12 (Quasi-Concavity)

A fuzzy set
˜︁A on CS is called quasi-concave under a metric d, if for all points

x, y, z ∈ CS with Bd(x, y, z), we have µ ˜︁A(y) ≥ min(µ ˜︁A(x), µ ˜︁A(z)).
Equivalently, each α-cut of

˜︁A is either empty or convex under d.

Also the notion of star-shapedness can be generalized from crisp sets Fuzzy

star-shapedness
(see Definition 2.4) to fuzzy sets by using α-cuts:

Definition 2.13 (Fuzzy Star-Shapedness)

A fuzzy set
˜︁A on CS is called star-shaped under a metric d with respect to a

crisp set P ⇔
∀α ∈ [0, 1] :

(︂ ˜︁Aα = ∅ or
˜︁Aα is star-shaped under d with respect to P

)︂
.

We can now define concepts as fuzzy sets based on the crisp cores Concepts as fuzzified

cores
from Section 2.3.2: The membership of a point x ∈ CS to a concept

˜︁S is

based on the maximal similarity of x to any point y ∈ S in the core S.

Definition 2.14 (Concept as Fuzzy Region)

A concept
˜︁S is described by a quadruple ⟨S, µ0, c,W ⟩. The components of

this quadruple are the following:

• S = ⟨∆S , {C1, . . . , Cm}⟩ is a non-empty core as described in Definition

2.9.

• The parameter µ0 ∈ (0, 1] controls the highest possible membership to˜︁S and is usually set to 1.

• The sensitivity parameter c > 0 controls the rate of the exponential

decay in the similarity function and thus the overall fuzziness of
˜︁S.

• Finally, W = ⟨W∆S
, {Wδ}δ∈∆S

⟩ contains positive weights for all

domains in ∆S and all dimensions within these domains. These weights

are used when computing the combined metric d∆S
C and reflect the

relative importance of the respective domains and dimensions. As

argued in Section 2.3.1, we assume that

∑︁
δ∈∆S

wδ = |∆S | and that

∀δ ∈ ∆S :
∑︁

d∈δ wd = 1.
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Figure 2.7: (a) Two concepts
˜︁S and

˜︁S′
in a one-dimensional conceptual space.

(b) A concept
˜︁S in a two-dimensional conceptual space along with

two of its α-cuts.

The membership function of
˜︁S is then defined as follows:

µ˜︁S(x) = µ0 ·max
y∈S

(︂
e−c·d

∆S
C (x,y,W )

)︂
One can show that concepts as defined in Definition 2.14 are star-Concepts are fuzzy

star-shaped regions
shaped under d∆S

C in the sense of Definition 2.13. This requires the

insight that each α-cut of
˜︁S is equivalent to an ϵ-neighborhood of S.

Lemma 2.4 (α-Cut is an ϵ-Neighborhood)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept and let α ≤ µ0. Then, the α-cut

˜︁Sα is

equivalent to an ϵ-neighborhood of S with ϵ = −1
c · ln

(︂
α
µ0

)︂
.

Proof. See Appendix A.4.

Proposition 2.1 (Concepts are Fuzzy Star-Shaped)

Any concept
˜︁S = ⟨S, µ0, c,W ⟩ is star-shaped with respect to P =

⋂︁m
i=1Ci

under d∆S
C .

Proof. See Appendix A.4.

Figure 2.7a illustrates the membership functions of two conceptsExample concepts ˜︁S and
˜︁S′

in a one-dimensional conceptual space. Here,
˜︁S has a large

core S, a high maximal membership value µ0, and a large sensitivity

parameter c, while the respective parameters of
˜︁S′

(namely, S′
, µ′0, and

c′) are relatively small. Figure 2.7b shows a two-dimensional concept˜︁S that is based on the core S from Figure 2.5. In this illustration, the x
and the y axis belong to different domains, and are thus combined with

the Manhattan metric. Moreover, the x axis has a lower salience weight

than the y axis.

As we can see in Figure 2.7, both the weights W and the sensitivityControlling the

fuzziness
parameter c directly influence the fuzziness of

˜︁S: The sensitivity param-

eter c controls the overall fuzziness of
˜︁S by determining how fast the

membership drops to zero. Larger values c c cause steeper membership

functions (i.e., "crisper" fuzzy sets). This can be seen in Figure 2.7a. The
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weightsW on the other hand represent not only the relative importance

of the respective domain or dimension to the represented concept, but

they also influence the relative fuzziness with respect to this domain or

dimension: If the weight of a given dimension
14 d is relatively large in

comparison to the weights of another dimension d′, the membership

function with respect to d will be steeper than with respect to d′. In

short: Larger weights cause less fuzziness. We can see this in Figure

2.7b, where the x axis receives a lower salience weight than the y axis

and consequently the membership function drops faster on the y axis

than on the x axis.

How can these salience weights be determined? There are at least

three possible ways:

Due to the effect of the weights on the fuzziness of the resulting Basing salience

weights on the size of

the core

concept, one may want to base the salience weights on the size of

the underlying crisp set S in the respective dimension: If S is already

relatively "large" (i.e., it covers a relatively large part of the space) in

a given dimension d, this means that many different values on d can

lead to a full membership in the corresponding concept
˜︁S. We would

then also expect many different values on d to lead to high partial

memberships (e.g., membership values of 0.8 and higher). This means

that the respective α-cuts should also be large, i.e., the membership

function should decay relatively slowly with respect to d. This effect

can be achieved by using a small salience weight wd for this dimension

– which also indicates that d is not very important for determining

concept membership. Analogously, we can link a small size of S to a

steep drop in the membership function and a large salience weight.

Alternatively, one can use the diagnosticity of each dimension to Obtaining salience

weights from

diagnosticity

determine its salience weight: If the given concept has a large distance

to other concepts with respect to a given dimension d, then the values

on d are very informative for making a classification. Therefore, the

salience weight wd should be large. Sileno et al. [370] have made a

concrete proposal along these lines: In their work, all concepts of the

same hierarchy level (e.g., apple, pear, lemon) are contrasted with their

superordinate concept (e.g., fruit) by computing the direction in which

the given concept differs from typical examples of the superordinate.

The dimensions in which this difference is large receive a larger salience

weight than the dimensions with only small differences.

Finally, one can also jointly optimize all parameters of a given concept Estimating salience

weights with

machine learning

in order to achieve an optimal fit to a given data set. This approach

treats the salience weights as yet another model parameter in a ma-

chine learning context and does not make use of a particular intuitive

motivation. However, one may expect that also in this case the weights

are tuned in a way that optimizes classification performance, hence

resembling somewhat the diagnosticity-based approach.

14 For better readability, we only refer to dimension weights here. The same applies of

course also to domain weights.
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Figure 2.8: Class diagram of our implementation.

Note that if |∆S | = 1, then
˜︁S represents a property (since it is onlyProperties and

concepts can use the

same formalism

defined on a single domain), and if |∆S | > 1, then
˜︁S represents a concept.

This way, we can represent both properties and concepts with the same

formalism. As we only discovered problems with the convexity criterion

for the combination of multiple domains, we might still want to follow

Gärdenfors’ convexity assumption for regions within a single domain

(i.e., for properties). This, however, forces us to represent properties

with a single cuboid, which might be too coarse-grained for practical

applications. Again, we leave this decision up to the specific application

scenario.

2.3.4 Implementation and Example: Fruit Space

We have implemented our formalization in Python and have madeOverview of the

implementation
it publicly available on GitHub

15
[41, 51]. Figure 2.8 shows a class

diagram illustrating the overall structure of our implementation. Each

of the components from our definition (i.e., weights, cuboids, cores,

and concepts) is represented by an individual class.
16

Moreover, the

cs module contains the overall domain structure of the conceptual

space (represented as a dictionary mapping from domain identifiers to

sets of dimensions) along with some utility functions (e.g., computing

distance and betweenness of points). The concept_inspector package

contains a visualization tool that displays 3D and 2D projections of the

concepts stored in the cs package.

15 See https://github.com/lbechberger/ConceptualSpaces.
16 Most of the methods implemented for the Concept class refer to operations from our

formalization which will be introduced in Chapter 3 and 4.

https://github.com/lbechberger/ConceptualSpaces
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In order to illustrate the definitions made in this chapter, we introduce A three-dimensional

fruit space
a very simplified conceptual space for fruit. This space consists of only

three domains, each containing only a single dimension. We restrict

ourselves to three dimensions in total in order to visualize the conceptual

structures sufficiently well. Using only one-dimensional domains might

be a considerable limitation of this example’s expressiveness, but we

hope that it nevertheless helps to complement this chapter’s formal

results with some concrete examples. We will return to this example

fruit space in Chapters 3 and 4, where we will use it to illustrate

operations on concepts.

Our overall conceptual space for fruits can be defined based on the Domains and

dimensions
following domains and dimensions:

∆ = {δcolor = {dhue}, δshape = {dround}, δtaste = {dsweet}}

The three dimensions of this space have the following semantics:

• dhue describes the hue of the observation’s color, with focal values

of 0.00 for purple, 0.25 for blue, 0.50 for green, 0.75 for yellow,

and 1.00 for red.
17

• dround is computed by calculating the bounding circle of the object

and measuring the percentage of its area that is covered by the

object. Its values range thus from 0.00 (e.g., for a line segment) to

1.00 (for a perfect circle).

• dsweet represents the relative amount of sugar contained in the

fruit. We assume that it is normalized to a range between 0.00 (no

sugar) and 1.00 (highest sugar content).

In our implementation, we can define this conceptual space as follows:

domains = {’color’:[0], ’shape’:[1], ’taste’:[2]}
dimension_names = [’hue’, ’round’, ’sweet’]
space.init(3, domains, dimension_names)

Table 2.1 contains definitions for several concepts and properties. Some example fruit

concepts
When giving coordinates for points, we assume that the dimensions

are ordered like this: dhue, dround, dsweet.

Note that we have assigned the domain weights according to the Domain and

dimension weights
prominence of the respective domain to the respective concept. For

instance, the taste of a lemon sets it clearly apart from all the other fruit

concepts (it is not sweet at all), while its color is not that unique (e.g.,

also a banana or an apple can be yellow). Therefore, in
˜︁Slemon, the taste

domain receives a much higher weight than the color domain. As all

domains are one-dimensional, the dimension weights wd are always

equal to 1, thus identical for all concepts, and therefore not listed in

Tables 2.1. In the code, we can define concepts as follows:

c_pear = Cuboid([0.5, 0.4, 0.35], [0.7, 0.6, 0.45], domains)
s_pear = Core([c_pear], domains)

17 hue should actually be viewed as a circular dimension. For the sake of simplicity, we,

however, treat it here as linear dimension.
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Figure 2.9: Screenshot from the ConceptInspector tool illustrating the fruit

concepts in our example space. The concepts are labeled as follows:

pear (1), orange (2), lemon (3), Granny Smith (4), apple (5), banana

(6).
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

pear ∆ (0.50, 0.40, 0.35) (0.70, 0.60, 0.45) 1.0 24.0 0.50 1.25 1.25

orange ∆ (0.80, 0.90, 0.60) (0.90, 1.00, 0.70) 1.0 30.0 1.00 1.00 1.00

lemon ∆ (0.70, 0.45, 0.00) (0.80, 0.55, 0.10) 1.0 40.0 0.50 0.50 2.00

Granny

Smith

∆ (0.55, 0.70, 0.35) (0.60, 0.80, 0.45) 1.0 50.0 1.00 1.00 1.00

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

apple ∆ (0.65, 0.65, 0.40) (0.85, 0.80, 0.55) 1.0 20.0 0.50 1.50 1.00

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

(0.50, 0.10, 0.35) (0.75, 0.30, 0.55)

banana ∆ (0.70, 0.10, 0.50) (0.80, 0.30, 0.70) 1.0 20.0 0.75 1.50 0.75

(0.75, 0.10, 0.50) (0.85, 0.30, 1.00)

red {δcolor} (0.90,−∞,−∞) (1.00,+∞,+∞) 1.0 40.0 1.00 – –

green {δcolor} (0.45,−∞,−∞) (0.55,+∞,+∞) 1.0 40.0 1.00 – –

blue {δcolor} (0.20,−∞,−∞) (0.30,+∞,+∞) 1.0 40.0 1.00 – –

nonSweet {δtaste} (−∞,−∞, 0.00) (+∞,+∞, 0.20) 1.0 14.0 – – 1.00

Table 2.1: Definitions of several fruit concepts and properties.

w_pear = Weights({’color’:0.50, ’shape’:1.25, ’taste’:1.25},
{’color’:{0:1.0}, ’shape’:{1:1.0},

’taste’:{2:1.0}})
pear = Concept(s_pear, 1.0, 12.0, w_pear)

Because all single-cuboid concepts are not only star-shaped, but also Central regions

convex, their central region P is identical to their cuboid C. For the

concepts of apple and banana, however, these central regions need to

be computed:

Papple =

3⋂︂
i=1

Capple,i = ⟨∆, p−
apple

= (0.70, 0.65, 0.45),

p+
apple

= (0.80, 0.80, 0.50)⟩

Pbanana =

3⋂︂
i=1

Cbanana,i = ⟨∆, p−
banana

= (0.75, 0.10, 0.50),

p+
banana

= (0.75, 0.30, 0.55)⟩

While this numeric representation is clearly well suited for automated Visualization

processing in a computer, it is intuitively hard to grasp for a human. Fig-

ures 2.9 and 2.10 therefore show screenshots of the ConceptInspector
tool for the concepts and properties from Table 2.1, respectively. Each

figure shows both the crisp cores in a three-dimensional space and

three two-dimensional visualizations of both the cores and the 0.5-cuts.

We would finally like to note that nonSweet is a rather artificial

property – it would be more natural to define sweet as a property on

the taste domain. However, for the examples we will make in Chapters

3 and 4, we will need a taste property which intersects with the lemon

concept. As we only use the sweetness dimension to define the taste

domain, we hence introduced nonSweet for illustrative purposes.
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Figure 2.10: Screenshot from the ConceptInspector tool illustrating the prop-

erties in our example space. The properties are labeled as follows:

red (1), green (2), blue (3), nonSweet (4).
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2.4 related work

Our proposed formalization relates of course to a large body of research Overview

about conceptual spaces. In Section 2.4.1, we first show how our formal-

ization relates to general ideas proposed by other researchers, before

providing a high-level comparison to other formalizations in Section

2.4.2. Finally, we will comment on two proposals for representing com-

posite concepts in Section 2.4.3 and discuss their possible incorporation

into our work.

2.4.1 Related General Ideas

The need for imprecise conceptual boundaries has been articulated and Imprecise concept

boundaries
analyzed by Douven et al. [136]. They propose an extension of the

conceptual spaces framework in order to explicitly consider borderline

cases. In Gärdenfors’ original proposal [179], each concept is represented

by a single prototypical point (cf. Section 1.2.2). Conceptual regions are

then created by assigning each point in the space to its closest prototype.

Douven et al. argue that the resulting Voronoi diagram comes with a

poor representation of borderline cases: Only the points that have the

exact same distance to two or more prototypes lie on such a border

line. They then propose to extend Gärdenfors’ original proposal by

representing prototypes not as single points but as sets of points. They

then aggregate all possible Voronoi diagrams that can be created by

picking one point from each prototypical region. Borderline cases are

now represented as points that belong to different conceptual regions

for different Voronoi diagrams.

Although Douven et al. provide an account of vagueness in con- Limitations of

Voronoi-based

approaches

ceptual spaces, their approach still makes a sharp distinction between

borderline cases and non-borderline cases. This shortcoming has later

been addressed by Decock et al. [118], who provide a fuzzy degree of

concept membership for points in the borderline area. We will revisit

this approach in more detail in Chapter 7. Moreover, they keep the

assumption that concepts can be interpreted as Voronoi tessellations

of the conceptual space. While this may be true for properties (e.g.,

every point in the color space supposedly belongs to a certain color

property), it seems more likely that the overall conceptual space is

populated much more sparsely (cf. Section 1.2.2). In our opinion, there

are points in the overall conceptual space that are far away from all

concepts and should not be classified as members of any of those

concepts – they rather represent an unusual or exceptional observation

[395, 453]. Moreover, Voronoi tessellations cannot represent overlapping

conceptual regions, which are needed to encode conceptual hierarchies

such as chestnut being a particular shade of brown.

Imprecise concept boundaries can of course also be represented by Non-partitional

approaches
fuzzy sets that are not based on Voronoi tessellations. As already men-

tioned in Section 2.3.3, a popular fuzzy generalization of the convexity

constraint is the notion of quasi-concavity, which has for instance been
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proposed by Strößner [394, 395] and Tull [411]. In his work, Tull [411]

extends the framework by Bolt et al. [69] (which combines conceptual

spaces with category theory) from crisp sets to fuzzy sets, using a

special type of quasi-concave membership functions. Also some prior

formalizations of the conceptual spaces framework (to be discussed in

Sections 2.4.2 and 2.5) explicitly consider fuzzy concept boundaries.

From a somewhat different perspective, also Dessalles [124] hasContrast in

conceptual spaces
criticized the usage of a Voronoi tessellations. He argues that such a

categorization rule does not provide a fine-grained judgment of concept

membership: It only allows to refuse membership to a given concept if

the observation is closer to a prototype of a different concept. Moreover,

he argues that justifications for membership or non-membership in a

given category are essential for the categorization process. By looking

at examples like "This is a book, because it has been properly published"

and "This is not a book, because it is too thin", Dessalles motivates the

need for a contrast operation for comparing an observation to a prototype.

In a conceptual space, this contrast can be simply represented as the

vector denoting the difference between two points. The direction of

this contrast vector then indicates which domains and dimensions are

relevant. One can use this contrast vector then to select the property used

to describe the observation. For example, a red face can be interpreted

as a face which differs from a prototypical face mostly by its color

(which is redder than usual). In a similar way, one can interpret big

flea and small elephant. This provides an elegant account of relative

properties and differs from the one proposed originally by Gärdenfors

[179], which will be introduced in the context of concept combination

in Chapter 3.

Moreover, Dessalles [124] notes that also concept membership can beConcept membership

based on contrast
expressed based on contrast vectors: An observation can be defined as

being a member of a concept if the length of the contrast vector is less

than a given threshold. This supports the idea that concepts should be

star-shaped: If a point x is a member of a concept with prototype p, then

the contrast vector
−→px is shorter than some threshold ϵ. This means that

for any point y between x and p, −→py is shorter than
−→px and thus y is also

a member of the concept. If we now allow for a set of prototypical points

and if we use a fuzzy degree of membership (where shorter contrast

vectors yield larger memberships), we arrive at a description of concepts

quite similar to our formalization. In our case, the set of prototypical

points is the core S of a concept, the length of the contrast vector is

determined by the combined metric d∆C , and the degree of membership

is an exponentially decaying function of this length.

As Sileno et al. [370] have argued, the approach based on predicationAn egg-yolk model of

conceptual regions
and contrast vectors has a number of additional advantages: While the

standard approach to conceptual spaces typically requires a distance

computation over all possible dimensions, the predicative approach

does not need such a holistic perspective. It moreover does not need

definite regions to describe concepts – prototypical points and some

rough regional information are sufficient. Sileno et al. [370] have formal-
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ized the idea of contrast vectors using the egg-yolk model: A concept

is described by its prototypical point p and two threshold vectors σ
and ρ. If the distance of a given observation o to the prototypical point

p of a concept is less than σi for each dimension i, then it belongs to

the yolk region and is considered a typical member of the concept. If

the distance between o and p is less than ρi, then o belongs to the egg

region and is considered a member of the concept, although not a very

typical one. All observations with a distance of more than ρi are not

associated with the given concept at all. This representation makes it

possible to distinguish membership from typicality: All elements in the

egg region are full members of the concept, but only the ones in the

yolk region are considered typical. One can in some sense compare the

yolk to the prototypical region P in our formalization and the egg to

the core S. Our formalization adds the ability to also express imprecise

boundaries by allowing for degrees of membership.

A third issue that relates our formalization to other work from the Correlations through

non-orthogonal

dimensions

literature is the representation of correlations in conceptual spaces. For

instance, Derrac and Schockaert [123] (whose work has been introduced

in Section 1.2.5) do not assume that interpretable directions in the

conceptual spaces they extract from textual data are orthogonal to

each other. Also Jameel et al. [207] use a conceptual space with non-

orthogonal dimensions for illustrating their approach. If the quality

dimensions of a conceptual space are not orthogonal to each other, this

means that changing a value on one of the dimensions also induces

changes to the values on other dimensions. Especially when the dimen-

sions of the conceptual space are not linearly independent (i.e., if we

have n quality dimensions but they only span an n′-dimensional space

with n′ < n), we get such interdependency effects.

Encoding correlations directly in the structure of the conceptual Representational

advantages and

disadvantages

space asserts that the given correlation exists for all concept in the space

to an equal degree. This makes sense if one considers a certain group

of concepts for which this correlation holds. For example, if we limit

ourselves to fruit concepts, then encoding a correlation between color

and taste at a global level is both meaningful and efficient: The encoded

correlation is expected to hold for all concepts we might ever describe

in this conceptual space and storing it only once is more elegant than

storing it locally for each concept. However, if our conceptual space

does not only include fruit concepts but also other food items (e.g.,

different types of ice cream) or other household objects (such as plate

and bowl), then the globally encoded correlation might not hold for all

concepts and might be even misleading in some cases.

Moreover, computing the distance between two points in a concep- Potential proglems

with distance

computations

tual space (and thus their similarity) is a very basic operation. If our

conceptual space consists of orthogonal dimensions, then we can simply

use the combined metric dC as defined in this chapter. However, if the

dimensions of the conceptual space are not orthogonal to each other

and maybe not even linearly independent, computing distances might

become more complicated.
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There is only one other formal discussion of correlations in conceptualCorrelations as

co-occurence

statistics

spaces that we are aware of, namely, the mathematical formalization

of the framework by Rickard [329]. Essentially, he represents correla-

tions between domains through co-occurence statistics about different

properties involved in the concept. We will discuss his non-geometric

appraoch of encoding correlations in Sections 2.4.2 and 2.5.2.

2.4.2 Prior Formalizations of Conceptual Spaces

In order to compare different prior formalizations of the conceptualCriteria for a good

formalization
spaces framework to our own proposal, we use the following list of

criteria, which has already been briefly mentioned in Section 1.3.2:

• Parametric description of conceptual regions

Concepts and properties should be described in a parametric

way, i.e., through a mathematical formula with a clear set of

parameters. This parametric description of concepts is a crucial

requirement for an actual implementation of the framework.

• Properties are a special case of concepts

Concepts and properties should be represented with the same

formalism. This makes it easier to devise mechanisms for learning

and reasoning that are applicable to both properties and concepts

without major modifications.

• Correlations between domains

The formalization should provide a concrete way for representing

cross-domain correlations, because these correlations contain

important information about the concept.

• Imprecise concept boundaries

Conceptual boundaries should be imprecise in order to reflect

borderline cases and a continuous degree of membership.

• Implementation

The formalization should come with a publicly available imple-

mentation such that other researchers can use it right away for

their own research projects.

In the following, we briefly introduce various formalizations from

the literature and argue to which extent they fulfill our criteria. Table

2.2 gives an overview of our results. The three strongest competitors to

our own work will be reviewed in more detail in Section 2.5.

An early and quite thorough formalization was developed by AisbettAisbett and Gibbon:

too abstract for

practical use

and Gibbon [11]. They used pointed metric spaces and a generalized

form of betweenness as a basis for their formalization. Like we, they

considered concepts to be regions in the overall conceptual space.

However, they kept Gärdenfors’ assumption of convexity. Although

their formalization targets the interplay of symbols and geometrically
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Formali-

zation

Parametric

Description

Properties

are Concepts

Correlations

Imprecise

Boundaries

Implemen-

tation

Aisbett and

Gibbon [11]

– ✓ – – –

Raubal [327] – – – – –

Ahlqvist [10] – ✓ – ✓ –

Rickard [329] ✓ – ✓ ✓ –

Rickard et al.

[330]

✓ – ✓ ✓ –

Adams and

Raubal [3]

✓ ✓ – – –

Lewis and

Lawry [253]

✓ ✓ – ✓ –

Our Formal-

ization

✓ ✓ ✓ ✓ ✓

Table 2.2: Overview of different formalizations of the conceptual spaces frame-

work based on our list of criteria ("✓" means "fulfilled" and "–" means

"not fulfilled").

represented concepts, it is still relatively abstract. For instance, they

did not define concepts in a parametric way, which prevents a direct

implementation. They also did not comment on the issues of imprecise

concept boundaries and cross-domain correlations. Taken together,

their formalization seems to be quite incomplete with respect to our

list of criteria.

In Raubal’s formalization [327], the normalization of all dimensions Raubal: too

incomplet to count as

a formalization

via the z-transformation (i.e., by substracting the mean and dividing

through the standard deviation) is highlighted as important preprocess-

ing step. Raubal defines a conceptual space as a vector space spanned

by domains and dimensions. For calculating semantic distance, he uses

only the Euclidean metric in contrast to Gärdenfors’ original proposal

of combining the Euclidean and the Manhattan metric. Moreover, prop-

erties and concepts, which are very important parts of the conceptual

spaces framework, are not formalized in Raubal’s proposal, which

makes it quite incomplete. Overall, it does not fulfill any of our criteria.

Ahlqvist [10] bases his formalization of conceptual spaces on rough Ahlqvist: concepts as

rough fuzzy setsfuzzy sets, which are characterized by two membership functions serving

as a lower and upper bound for concept membership. Concepts are rep-

resented by one rough fuzzy set per domain. Alhqvist’s formalization

does not consider correlations between different domains. Moreover,

the class of rough fuzzy sets is not restricted to a parametrically describ-

able subclass, which limits the direct implementability of his proposal.

However, the usage of rough fuzzy sets provides a powerful way for

describing imprecise conceptual boundaries. Moreover, properties can

be treated as special cases of concepts.

Also Rickard [329] provides a formalization based on the idea of Rickard: concepts as

co-occurence

statistics of

properties
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fuzziness. In his notation, each concept is represented as a graph: Nodes

in this graph correspond to properties which are represented as convex

regions in their respective domains. Directed edges between these

nodes indicate the co-occurrence of the respective properties. Weights

on these edges represent the strength of the respective co-occurrence.

The overall graph can also be seen as a matrix of edge weights. By

concatenating the rows of this matrix, Rickard obtains a vector that can

be interpreted as a point in a hypercube. This point is then assumed

to represent a fuzzy set which is defined on the universe of ordered

property pairs. The observed co-occurrence of a pair of properties

corresponds to this pair’s membership in the concept.

Rickard’s representation nicely captures the correlations betweenLimitations of

Rickard’s

formalization

different properties, but these correlations are not represented geomet-

rically: Rickard first discretizes the domains (by defining properties)

and then computes co-occurrence statistics between these properties.

Depending on the discretization, this might lead to a relatively coarse-

grained notion of correlation. Moreover, as properties and concepts are

represented in different ways, one has to use different learning and

reasoning mechanisms for them. Furthermore, Rickard does not restrict

properties to a parametrically describable subclass, again limiting the

direct implementability of this proposal. Finally, this formalization has

the disadvantage that it is not easy to work with due to the complex

mathematical transformations involved.

Rickard et al. [330] combine the approaches of Rickard [329] and Ais-Rickard et al.:

combining Rickard

with Aisbett and

Gibbon

bett and Gibbon [11]. They define properties as fuzzy sets and describe

concepts by a quadratic matrix of property associations. These property

associations correspond to Rickard’s co-occurrence statistics. Again,

there is no parametrically describable subclass of fuzzy sets that is

considered. Moreover, no constraint like convexity or star-shapedness is

enforced on the concepts and properties. In general, the same criticism

that applied to Rickard [329] is also applicable to Rickard et al. [330].

Adams and Raubal [3] provide another important formalization ofAdams and Raubal:

concepts as sets of

convex polytopes

conceptual spaces. They define a concept as a set of properties which

are represented as convex regions on their respective domains. These

convex regions are represented by convex polytopes, i.e., sets of linear

inequations which define their confining hyperplanes. This allows for

efficient computations while being potentially more expressive than

our cuboid-based approach. Adams and Raubal use the Manhattan

metric to combine different domains. However, correlations between

different domains are not taken into account as each convex polytope is

only defined on a single domain. Also imprecise conceptual boundaries

are not a part of their formalization.

One could generalize their approach by using polytopes that areLimitations of their

work
defined on the overall space and that are convex under the Euclidean

and star-shaped under the Manhattan metric. However, as we will

discuss in more detail in Section 2.5.1, we have found that this requires

additional constraints in order to ensure star-shapedness. The number
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of these constraints grows exponentially with the number of dimen-

sions. Each modification of a concept’s description would then involve

a large constraint satisfaction problem, rendering this representation

unsuitable for learning processes.

Lewis and Lawry [253] formalize conceptual spaces using random set Lewis and Lawry:

concepts as random

sets

theory. A random set can be characterized by a set of prototypical points

P and a threshold ϵ. Observations that have a distance of at most ϵ to the

prototypical set are considered to be elements of the set. The threshold

ϵ is, however, not exactly determined – only its probability distribution

δ is known. Based on this uncertainty, a membership function µ(x) can

be defined that corresponds to the probability Pδ(d(x, P ) ≤ ϵ). Lewis

and Lawry define properties as random sets within single domains and

concepts as random sets in a boolean space whose dimensions indicate

the presence or absence of properties. In order to define this boolean

space, a single property is taken from each domain. This is in some

respect similar to the approach of Rickard [329] where concepts are

also defined on top of existing properties. However, while Rickard uses

two separate formalisms for properties and concepts, Lewis and Lawry

use random sets for both – only the underlying space differs.

Lewis and Lawry show that under some assumptions concepts can be Limitations of this

formalization
described as weighted sums of properties and that concept combination

can also be formalized as weighted sums of concepts. They illustrate

how their mathematical formalization is capable of reproducing some

effects from the psychological concept combination literature. However,

they do not develop a way of representing correlations between domains

(such as "a red apple is typically sweet, while a green apple is typically

sour"). One possible way to do this within their framework would be to

define two separate concepts redApple and greenApple and then define

on top of them a disjunctive concept apple = redApple ∨ greenApple.

This, however, is a quite indirect way of defining correlations. Nev-

ertheless, their approach is similar to ours in using a distance-based

membership function to a set of prototypical points while using the

same representational mechanisms for both properties and concepts.

Many practical applications of conceptual spaces (e.g., [98, 123, 129, Many applications

are not based on

formalizations

327]) use only partial ad-hoc implementations of the conceptual spaces

framework which usually ignore some important aspects (e.g., the

domain structure). As they do not come close to a formal mathematical

treatment, we do not consider them any further.

Moreover, all formalizations discussed so far come without an imple- Implementations of

concetual spaces
mentation. The only publicly available implementation of the conceptual

spaces framework that we are currently aware of is provided by Lieto

et al. [262, 265] for their Dual-PECCS system discussed in Section 1.2.2.

It is, however, not based on a thorough mathematical formalization. In

Dual-PECCS, each concept is represented in the conceptual space by

a single prototypical point and a number of exemplar points. Corre-

lations between domains can therefore only be encoded through the

selection of appropriate exemplars. In contrast to our work, the current
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implementation of their system
18

, however, comes without any publicly

available source code
19

due to the dependence on third-party code in

the form of the ACT-R cognitive architecture [13].

Finally, let us comment on our own formalization with respect toOur own

formalization
our desiderata: Both concepts and properties are represented through

a parametric description of fuzy conceptual regions with imprecise

borders. By using star-shapedness instead of convexity, we are able to

encode cross-domain correlations. As described in Section 2.3.4, we

also provide a proof-of-concept implementation of our formalization.

Therefore, all criteria outlined above are fulfilled.

2.4.3 Composite Concepts

Many objects encountered in the world can be viewed not only asWhy do part-whole

structures matter?
wholes, but also as a configuration of parts. For instance, a chair can be

regarded as one overall object, or it can be viewed as an assemblage of

its legs, seat, and back. Without doubt, the ability to focus on individual

parts of an overall object is quite important for both learning and

reasoning. The presence or absence of certain parts might be crucial for

distinguishing different categories (e.g., birds have a beak, but mammals

do not). It is therefore desirable that a formal theory of concepts offers

ways to represent the part-whole structure of composite concepts.

The original framework of conceptual spaces as presented by Gärden-Part-whole

structures and

conceptual spaces

fors [179, 181] (and as formalized in this chapter) does not make any

statements about part-whole structures. Also none of the formalizations

discussed in Section 2.4.2 (including our own) considers composite

concepts in a general way. In this section, we review the proposals by

Fiorini [157, 158] and Chella et al. [97] and discuss how they fit in with

our formalization.

Fiorini [158] argues that psychological findings (e.g., [152]) indicateHolistic and

structural processes
the existence of two complementary cognitive processes in object

recognition: a holistic process which focuses on the whole object and a

structural process which focuses on the object’s parts. Moreover, within

the structural process, the shape of parts and their arrangement seem

to be processed separately.

Based on this, Fiorini proposes to extend the conceptual spacesAdditional spaces for

part-whole relations
framework as illustrated in Figure 2.11: The conceptual space that is

used to represent a concept such as apple in a holistic way (i.e., based on

its overall shape, size, color, weight, etc.) is called the holistic space. This

is the conceptual space described in Gärdenfors’s original framework.

The concept representation is enriched by another space, called the

structure space. This structure space contains for each part a separate part

space, which encodes the properties of the part, along with a structure

18 See http://www.dualpeccs.di.unito.it/download.html.
19 The source code of an earlier and more limited version of their system can be found

here: http://www.di.unito.it/~lieto/cc_classifier.html.

http://www.dualpeccs.di.unito.it/download.html
http://www.di.unito.it/~lieto/cc_classifier.html
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Figure 2.11: Illustration of Fiorini’s proposal for representing part-whole

relations in conceptual spaces.

domain, which encodes this part’s role within the overall concept (e.g.,

by providing information about the part’s typical location within the

whole object). In Figure 2.11, we only consider two parts of an apple,

namely its stem and its flesh. The shape, size, color, etc. of an apple’s

stem is described as a region in the stem part space. The typical location

of an apple’s stem with respect to the whole apple is depicted as a region

in the stem structure domain.

So in a nutshell, Fiorini proposes to represent concepts by three types Three types of

information
of information: information about the properties of the overall object

(holistic space), information about the properties of the object’s parts

(part spaces), and information about how these parts are arranged

(structure domains).

A problem may arise if the parts themselves are again composite Recursive part-whole

relations and

dimensional filters

concepts that consist of smaller parts: For instance, the flesh of an

apple consists of a certain amount of cells arranged in a specific way,

each of these cells consists of molecules, and each molecule consists of

atoms. If all these part-whole structures were imported to the apple

concept, the number of dimensions involved would grow infeasibly

large and the concept would thus very quickly become unusable. In

order to avoid these problems, Fiorini proposes so-called dimensional

filters. These dimensional filters define which aspects of a part (i.e.,

which domains) are used in the definition of the overall concept. In the

example made above, a dimensional filter applied to the concept of an

apple’s flesh could for instance only keep the taste and color domain

while removing all other domains (including the information about its

parts).

A slightly different, but related approach for representing composite Composite objects as

sets of points
objects was used by Chella et al. [97] when applying conceptual spaces

to computer vision (cf. Section 1.2.4). They describe each simple object

by a single point in the conceptual space and composite objects by a set

of such points in the conceptual space. Each of the points in this set can

be thought of as representing one part of the overall object. Because their

conceptual space also contains a domain representing displacement

information, Chella et al. implicitly encode the arrangement of the parts
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through their respective coordinates in the displacement domain. In

contrast to Fiorini, they do not explicitly separate the part space from

the structure domain. While Fiorini allows the different part spaces

to differ (e.g., by involving different domains), Chella et al. use the

same conceptual space for all parts. Moreover, their proposal does not

explicitly consider holistic information. Overall, the approach proposed

by Chella et al. therefore seems to be a special case of Fiorini’s proposal

with more limited capabilities.

Fiorini’s proposal [158] can be easily integrated in our formalization:Part-whole relations

and our

formalization

He simply introduces additional domains in order to represent the

properties and configurations of parts. As our formalization works

with any number of domains, we can use all the definitions made

in this chapter on this extended space as well. One might, however,

need to distinguish the different types of domains in order to interpret

them accordingly. For instance, a structure domain might need to be

interpreted differently than a regular domain when reasoning about

concepts. Fiorini’s dimensional filters can be easily implemented by

removing irrelevant domains from the part concepts before attaching

them to the whole. In Chapter 3, we will define a projection operation

that can be used for this purpose. Therefore, introducing part-whole

structures to our formalism would not require a major rework, but only

some manageable additions.

Fiorini mentions that the domains of different parts might be cor-Correlations and

part-whole structures
related, but he does not fully develop this idea. A formalization of

his proposal in our formalism would provide means to also specify

correlations between wholes, their parts, and the configuration of these

parts: For instance, by using our definition of a concept, we would be

able to encode that cars with scissor doors usually have a powerful

engine (think of expensive sports cars), and that cars with sliding doors

in the rear usually have a large body (think of mini vans).

2.5 detailed comparison to other formal-
izations

Three of the formalizations presented in Section 2.4.2 deserve a moreThe competitors

detailed discussion: The formalization by Adams and Raubal [3] pro-

poses a parametrized definition of concepts as geometric regions, but

fails to account for correlations between domains. The formalization

by Rickard [329] puts its focus exactly on such correlations, but does

not offer a parametrizable geometric representation of concepts. Finally,

the formalization by Lewis and Lawry [253] uses random set theory

and a set of prototypical points for defining concepts. However, it also

does not consider cross-domain correlations.

In order to contrast these three approaches with our own, we considerA modified fruit

space
a variant of the fruit space introduced in Section 2.3.4. This modified
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Concept ∆S p− p+ µ0 c

red {δcolor} (0.70,−∞,−∞) (1.00,+∞,+∞) 1.0 40.0

yellow {δcolor} (0.40,−∞,−∞) (0.60,+∞,+∞) 1.0 40.0

green {δcolor} (0.00,−∞,−∞) (0.30,+∞,+∞) 1.0 40.0

sour {δtaste} (−∞, 0.50, 0.00) (+∞, 1.00, 0.40) 1.0 14.0

sweet {δtaste} (−∞, 0.00, 0.50) (+∞, 0.40, 1.00) 1.0 14.0

(0.10, 0.50, 0.10) (0.55, 0.90, 0.50)

apple ∆ (0.30, 0.30, 0.40) (0.70, 0.60, 0.55) 1.0 20.0

(0.45, 0.10, 0.45) (0.90, 0.50, 0.90)

Table 2.3: Definitions of conceptual regions of several fruit concepts and

properties for comparing different formalizations.

Concept W

wδcolor
wδtaste

wdhue
wdsour

wdsweet

red 1.00 – 1.00 – –

yellow 1.00 – 1.00 – –

green 1.00 – 1.00 – –

sour – 1.00 – 0.70 0.30

sweet – 1.00 – 0.30 0.70

apple 0.67 1.33 1.00 1.00 1.00

Table 2.4: Definitions of domain and dimension weights of several fruit con-

cepts and properties for comparing different formalizations.

space consists of two domains, namely color and taste. The color

domain is modeled by a single dimension (hue), whereas the taste

domain is modeled by two dimensions (sweetness, measurable as sugar

content, and sourness, measurable as acidity). We again assume that

all dimensions are scaled between 0 and 1.

We will now consider how the different formalisms represent the The apple concept

concept of apple. Let us start with our own formalism and let us assume

that the dimensions are ordered as follows: dhue, dsour, dsweet. Tables

2.3 and 2.4 show the definition of three color properties, two taste

properties, and the apple concept. The definition of the apple concept

encodes that a red apple tends to be sweet, whereas a green apple tends

to be sour. Moreover, an apple tend not to be sweet and sour at the same

time. Our encoding thus expresses correlations within and between

domains. Figure 2.12 illustrates this representation.

In the following, we contrast our own representation to the ones used

by Adams and Raubal [3] (Section 2.5.1), Rickard [329] (Section 2.5.2),

and Lewis and Lawry [253] (Section 2.5.3).
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Figure 2.12: Screenshot of the ConceptInspector tool for our proposed en-

coding of the apple concept. There are correlations within the

taste domain as well as between the taste and the color domain.

The intersection of apple (1) with green (2) has a large overlap

with sour (3), indicating that green apples tend to be sour.



2.5 detailed comparison to other formalizations 91

Figure 2.13: Illustration of the apple concept encoded under the formalization

of Adams and Raubal [3]. There are correlations within the taste

domain, but not between the taste and the color domain.

2.5.1 Comparison to Adams and Raubal

Let us first consider the formalization by Adams and Raubal [3]: In their Regions as convex

polytopes
formalism, every concept γ is defined as a pair ⟨♢, P ⟩ with a finite set ♢
of convex regions and a prototypical member P . Each convex region

⋄ ∈ ♢ is defined as a convex polytope within a single domain. Convex

polytopes can be expressed by a set of linear inequalities. Let us for our

current example define the polytopes of the apple concept as follows:

⋄color =

(︄
xcolor ≤ 0.9

xcolor ≥ 0.1

)︄

⋄taste =

⎛⎜⎜⎜⎜⎝
11 · xsour + 14 · xsweet ≥ 910

7 · xsour + 0.5 · xsweet ≤ 795

−xsour + xsweet ≤ 65

−xsour + xsweet ≥ −60

⎞⎟⎟⎟⎟⎠
Figure 2.13 illustrates this encoding by showing the individual poly- Convex polytopes are

more fine-grained,

but limited to

individual domains

topes on their respective domains. As one can see by comparing Figure

2.13 to the two-dimensional visualizations of our encoding in Figure

2.12, convex polytopes offer a much more fine-grained way of describ-

ing the regions associated to a concept within a single domain. Our

cuboid-based approach is less elegant in this respect. However, the

formalization of Adams and Raubal is not capable of representing cor-

relations between different domains. It provides no way of expressing

the fact that a green apple tends to be sour while a red apple is expected

to be sweet. The main reason for this is the fact that concepts are not

represented as a single region in the overall conceptual space, but as

a set of regions in the individual domains. If we visualize the overall

conceptual space as the product space of the domains (see Figure 2.14),

the lack of cross-domain correlations becomes apparent immediately.
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Figure 2.14: Visualization of the overall conceptual space as product space of

the domains from Figure 2.13. The intersection of apple (1) with

green (2) has only a small overlap with sour (3), highlighting that

this representation cannot encode cross-domain correlations.

Figure 2.15: Three-dimensional illustration of the encoding of the apple con-

cept using a modified version of the formalization by Adams

and Raubal [3]. The overall concept is defined as a polytope

that is star-shaped with resect to a prototypical point under the

combined distance.

Figure 2.16: A polytope defined by a number of inequalities that is not star-

shaped under the Manhattan metric.
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The formalization by Adams and Raubal could be generalized by A possible

generalization for

incorporating

correlations

defining each concept as a polytope on the overall conceptual space. As

argued in Section 2.2, one should then only require star-shapedness in

order to encode correlations. This is illustrated in Figure 2.15, where the

apple concept is encoded as a three-dimensional polytope that is star-

shaped with respect to a central point under the combined metric. This

representation clearly allows to encode cross-domain correlations such

as a green apple being sour. However, one needs additional constraints

in order to ensure star-shapedness under the combined metric. Figure

2.16 shows a polytope in a two-dimensional space. One can easily see

that this region is not star-shaped with respect to its central point under

the Manhattan metric – if it were, then the blue rectangle would be

completely contained inside the set. In order to ensure star-shapedness,

one needs to formulate constraints on the inequalities that define the

polytope. Unfortunately, the number of necessary constraints grows

very fast as the number of dimensions increases. Updating not only a

set of inequalities during a learning process but also taking into account

a large number of constraints might quickly become infeasible.

Overall, it thus seems that the approach by Adams and Raubal Summary

is inherently limited in its capabilities of representing cross-domain

correlations. Its definition of conceptual regions as polytopes is more

expressive than our cuboid-based approach, while our formalization

can express cross-domain correlations, also includes imprecise concept

boundaries, and comes with a publicly available implementation.

2.5.2 Comparison to Rickard

Let us now look at the formalization by Rickard [329]. This formalization Co-occurrence

statistics of

properties

requires properties to be crisp convex regions, but does not propose

a parametric description. For the sake of simplicity, we will use the

cores of the properties red, yellow, green, sour, and sweet as we have

defined them above in the context of our own formalization. According

to Rickard, a concept is defined by a matrix of co-occurrence values

of different properties. The co-occurrence value C(S1, S2) indicates for

two properties S1 and S2 how often S2 occurs if S1 is observed. These

co-occurrence values can be understood as conditional probabilities

P(S2 | S1). They can be estimated based on observed frequencies in a

given set of observations. If we start from a geometric representation

like ours, one could also define C(S1, S2) as the degree to which S2 is a

subset of S1. We will revisit this thought in Chapter 4, when we define

a degree of subsethood for fuzzy concepts.

Let us assume we have the following co-occurrence values for the Example

representation of the

apple concept

apple concept based on the properties defined above:

C(Ssour, Sred) = 0.0 C(Sred, Ssour) = 0.0

C(Ssour, Syellow) = 0.4 C(Sred, Ssweet) = 1.0

C(Ssour, Sgreen) = 0.6 C(Syellow, Ssour) = 0.5
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C(Ssweet, Sred) = 0.6 C(Syellow, Ssweet) = 0.5

C(Ssweet, Syellow) = 0.3 C(Sgreen, Ssour) = 1.0

C(Ssweet, Sgreen) = 0.1 C(Sgreen, Ssweet) = 0.0

Note that in general C(S1, S2) ̸= C(S2, S1). For example, we haveCo-occurences may

be asymmetric C(Sred, Ssweet) = 1 > 0.6 = C(Ssweet, Sred). This reflects that all red

apples are sweet, but only 60 % of the sweet apples are red. If we

assume that C(S1, S1) = 1 and that different properties within the

same domain cannot co-occur, we can write the apple concept as a

matrix:

C =

⎛⎜⎜⎜⎜⎜⎜⎝
1.0 0.0 0.0 0.0 1.0

0.0 1.0 0.0 0.5 0.5

0.0 0.0 1.0 1.0 0.0

0.0 0.4 0.6 1.0 0.0

0.6 0.3 0.1 0.0 1.0

⎞⎟⎟⎟⎟⎟⎟⎠
Each entry Cij of this concept matrix can be interpreted as C(Si, Sj),Interpreting the

concept matrix
assuming that the properties are ordered as follows: red, yellow, green,

sour, sweet. Please note that the first and the fourth quadrant of the

matrix C correspond to identity matrices and express that different

properties within the same domain do not co-occur. Rickard argues

that we can interpret the entries of this matrix as membership values

of the respective property pair to the concept under consideration.

For example, the property pair sweet-yellow would be assigned a

membership of 0.3 to the apple concept, indicating that a sweet apple

may be yellow, but that this is not a very typical expectation.

This representation nicely captures the correlation between differentRepresentation of

correlations
properties. For instance, if we consider a green apple, we can simply

select the row in the matrix corresponding to the property green to

obtain the expected correlation of green with sweet and sour in the

context of the apple concept.

However, this representation of concepts is not geometrical and com-Computing concept

membership
puting membership values for observations is therefore more complex.

If we would like to judge wheter a given observation (represented as a

point in the overall conceptual space) is a member of the apple concept,

we cannot simply check whether it is contained in the overall conceptual

region. We first need to classify it with respect to the given properties

and then somehow compare the resulting vector of classifications to

the matrix given above. In a nutshell, Rickard proposes to compute the

similarity of the given point to all properties involved in the concept
20

and then to aggregate these similarities to individual properties into

similarities to pairs of properties. These can then be used as entries for

an observation matrix. This observation matrix has the same shape as

the concept matrix. Concept membership of the given observation is

then defined as the fuzzy subsethood of the observation matrix and

the concept matrix, i.e., by checking to which extent the entries of

20 If properties were defined as fuzzy sets, this would correspond to simply computing

the respective membership values.
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the observation matrix are smaller than the corresponding entries of

the concept matrix. Overall, this membership computations involves

multiple complicated transformations. Therefore, checking for concept

membership is not as intuitively graspable in Rickard’s formalization

as the geometrical inclusion used by most other works (including our

own). We think that this additional complexity is the main drawback

of Rickard’s formalization.

One can also criticize Rickard’s assumption that different properties Co-occurrence is

limited to properties

from different

domains

from the same domain cannot co-occur. This assumption may be valid

when using crisp sets for defining properties. However, if we represent

properties with fuzzy sets, we can easily imagine that the fuzzy bor-

derline regions of neighboring properties such as green and yellow

overlap. In this case, a point lying in this borderline region would

receive a partial membership to both properties. We think, however,

that this limitation of Rickard’s formalization can be overcome: If we

allow properties from the same domain to co-occur, then the parts of

the matrix C that used to correspond to identity matrices might also

contain non-zero elements off the diagonal.

Overall, the work by Rickard is the only formalization from the litera- Summary

ture that explicitly represents correlations between domains. However,

the representation used in this formalization makes the simple task

of computing the membership of an observation to a concept quite

complicated. We therefore think that our geometric representation of

correlations is superior, especially since it allows us to treat properties

and concepts in the same way.

2.5.3 Comparison to Lewis and Lawry

Let us now discuss the formalization of Lewis and Lawry [253]. As Random sets

stated in Section 2.4.2, they define properties to be random sets within

a given domain. A random set is characterized by a set P of prototypical

points and a probability distribution δ of the distance threshold ϵ. Each

point x in the underlying space is assigned a membership value to the

random set based on the probability that it is closer to the prototypical

set P than the threshold ϵ:

µ(x) = P(d(x, P ) ≤ ϵ) =

∫︂ ∞

d(x,P )
δ(ϵ) dϵ (2.1)

Lewis and Lawry do not provide any strict constraints on the pro- Relation to our

membership function
totypical region P and the probability distribution δ. If we identify P
with a core S from our definition, then we can obtain our definition of a

concept by using δ(ϵ) = c · e−c·ϵ, which is a probability density function

on the interval [0,∞), since all values are non-negative and its integral

equals one. By inserting this definition into Equation 2.1, we get:

µ(x) = P (d(x, S) ≤ ϵ) =

∫︂ ∞

d(x,S)
δ(ϵ)dϵ =

∫︂ ∞

d(x,S)
c · e−c·ϵdϵ
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=
[︁
−e−c·ϵ

]︁ϵ→∞
ϵ=d(x,S)

= 0−
(︂
−e−c·d(x,S)

)︂
= e−c·d(x,S)

= e−c·miny∈S d(x,y) = max
y∈S

(︂
e−c·d(x,y)

)︂
This is equivalent to the definition of µ(x) in Definition 2.14 if weOur formalization as

a special case
assume that µ0 = 1 and that the combined distance dC is used. If

we only consider properties, i.e., regions within a single domain, our

formalization is thus a special case of the proposal by Lewis and Lawry.

In the following, we can therefore use the properties from Tables 2.3

and 2.4 for illustrating their definition of concepts.

In order to represent concepts, Lewis and Lawry construct a binaryThe combination

space
combination space: From each domain δ, a single property

˜︁Sδ is selected.

This property is used to define a binary dimension zδ in the combination

space, where a value of 1 indicates that the respective property is

present, whereas a value of 0 encodes the absence of this property.

Since properties are represented by random sets, any given observation

will match any given property only with a certain probability (which is

expressed by the membership function described above). So in turn,

observations will not map onto points in the combination space, but

to probability distributions in this space. It is important to emphasize

that the only possible values on the dimensions of the combination

space are zero and one. If a given observation xδ has a membership

value of µ(xδ) = 0.7 to a given property Sδ, this is therefore not

translated to a coordinate value of 0.7 on the respective dimension

zδ in the combination space. It is rather reflected by specifying that

P(zδ = 1 | xδ) = 0.7 and P(zδ = 0 | xδ) = 0.3
Lewis and Lawry now define concepts as random sets in this combi-Concepts as random

sets in the

combination space

nation space, i.e., by a prototypical point and a probability distribution

of the concept’s threshold ϵ. In order to compute the membership of a

given observation x in a given concept α, Lewis and Lawry propose to

use the following formula:

µα(x) =
∑︂
z

(︄
µα(z) ·

∏︂
δ∈∆

P(zδ | xδ)

)︄

For each possible point z in the combination space, we multiply itsInterpretation

membership to the concept α (which can be computed with Equation

2.1) with the probability of observing this point z. This probability is

based on the membership values of the observation xδ in the respective

properties zδ for the different domains δ.
Lewis and Lawry show that under some assumptions concepts can beConcept combination

as weighted sum
described as weighted sums of properties and that concept combination

can also be formalized as weighted sums of concepts. They illustrate

how their mathematical formalization is capable of reproducing some

effects from the psychological concept combination literature.

In our fruit space example, we have to pick a single property fromFruit space example

each domain in order to define the combination space. Let us choose
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˜︁Sred and
˜︁Ssweet. Then, the concept αapple can be defined using the

prototype (1, 1) in this combination space (i.e., both properties are

required to be present), and a distribution of the concept’s threshold

with δ(ϵ) = c · e−c·ϵ. For this example, we pick c = 2 and assume that

both dimensions in the combined space are weighted equally.

If we make an observation x = (0.8, 0.2, 0.6)21
, one can easily see that A red and sweet

apple has a high

membership

µ˜︁Sred

(x) = µ˜︁Ssweet

(x) = 1, since this point lies inside the cores Sred and

Ssweet. Therefore, the observation x is translated into a point z = (1, 1)
in the combination space with a probability of one. As this is equivalent

to the prototype of the apple concept, we get that µαapple
(x) = 1. Hence,

x is a perfect example of the apple concept.

However, for x′ = (0.2, 0.6, 0.5), which lies in the core Sgreen and A green and sour

apple has a low

membership

between the cores Ssweet and Ssour, we get µ˜︁Sred

(x′) ≈ 2.06 · 10−9
and

µ˜︁Ssweet

(x′) ≈ 0.2158. Therefore, the different vectors z′ in the combina-

tion space have the following probabilities:

P
(︁
(0, 0) | x′

)︁
= (1− µred(x

′)) · (1− µsweet(x
′)) ≈ 0.7842

P
(︁
(0, 1) | x′

)︁
= (1− µred(x

′)) · µsweet(x
′) ≈ 0.2156

P
(︁
(1, 0) | x′

)︁
= µred(x

′) · (1− µsweet(x
′)) ≈ 1.62 · 10−9

P
(︁
(1, 1) | x′

)︁
= µred(x

′) · µsweet(x
′) ≈ 4.45 · 10−10

For the membership of x′ in αapple we now get the following result, Combining the

individual

probabilities

computing µαapple
according to Equation 2.1:

µαapple
(x) = P

(︁
(0, 0) | x′

)︁
· µαapple

((0, 0))

+ P
(︁
(0, 1) | x′

)︁
· µαapple

((0, 1))

+ P
(︁
(1, 0) | x′

)︁
· µαapple

((1, 0))

+ P
(︁
(1, 1) | x′

)︁
· µαapple

((1, 1))

≈ 0.7852 · 0.0591 + 0.2156 · 0.1353
+ 1.62 · 10−9 · 0.1353 + 4.45 · 10−10 · 1.0000

≈ 0.0756

Since we were forced to take only a single property from each domain No encoding of

correlations
for defining the apple concept, we cannot represent that apples are

either red and sweet (like x) or green and somewhat sour (like x′).
There are two potential remedies for this problem:

On the one hand, we can simply define the combination space based Taking all properties

from all domains
on all properties from all domains and allow concepts to have multiple

prototypical points in this combination space. This would, however, be

a relatively strong modification of the work by Lewis and Lawry. It is

especially unclear whether their theoretical results regarding concept

combination would still hold under these conditions.

On the other hand, one could define two separate concepts redApple Representing

correlations with

sub-concepts

and greenApple and combine them disjunctively. This approach is

somewhat reminiscent of our own formalization, where the individual

cuboids can be interpreted as sub-concepts, whose union makes up the

21 Please recall that the dimensions are ordered as follows: dhue, dsour, dsweet.
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crisp core of the overall concept (cf. Section 2.3.2). Lewis and Lawry

propose to use higher-level combination spaces for combining concepts

(i.e., two-dimensional spaces based on the memberships to the two orig-

inal concepts). However, they again are limited to a single prototypical

point for defining a combined concept. This limits their formalization

to conjunctive concept combinations, since a disjunctive combination

of concepts would require at least two prototypical points, namely

(0, 1) and (1, 0) (and arguably also (1, 1) in some cases). A potential

workaround for this would be to choose (0, 0) as a prototypical point

and to invert the membership function. This, however, would be again

a major departure from their original proposal.

Although their formalization is not capable of representing correla-Summary

tions, Lewis and Lawry are able to reproduce a variety of psychological

findings on conjunctive concept combination. Moreover, their usage of

random sets seems to be a fairly general approach for defining member-

ship functions (including our own membership function as a special

case)– an aspect that will resurface in Chapter 7, where we will discuss

several membership functions from a machine learning perspective.

2.6 summary

In this chapter, we proposed a new formalization of the conceptualLessons learned:

fuzzified star-shaped

sets ...

spaces framework. We aimed to geometrically represent correlations

between domains, which led us to consider the more general notion of

star-shapedness instead of Gärdenfors’ favored constraint of convexity.

We defined concepts as fuzzy sets based on intersecting cuboids and a

similarity-based membership function.

Moreover, we introduced the implementation of this formalization,... and an

open-source

implementation

which is publicly available and can be used by any researcher interested

in conceptual spaces. We think that our implementation can be a good

foundation for practical research on conceptual spaces and that it will

considerably facilitate research in this area.

Although we argued that our formalization is superior to any ofOpen ends:

part-whole

structures, ...

its predecessors, there are certain ways in which it can be further

improved: We have sketched in Section 2.4.3 how part-whole structures

could be included in our formalization, but we have not given a full

mathematical treatment of this topic. Future work could consist in

formalizing Fiorini’s proposal [158] in the context of our approach.

Moreover, we have not specified how conceptual regions and salience... salience weights, ...

weights can be obtained. We will consider this problem to some extent

in Chapter 7. Future research could compare different ways of deriving

salience weights for existing conceptual regions and their respective

advantages and shortcomings. As mentioned in Section 2.3.3, the work

by Sileno et al. [370] on contrast in conceptual spaces seems to be a

promising avenue of research.

Finally, our formalization currently does not make any difference... and typicality
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between concept membership and typicality. However, as for instance

Hampton [188] has argued, a given observation can be a full member

of a concept without being very typical (e.g., a penguin is definitely

a bird, but not a very typical one). Another possible extension of our

formalization would thus be the definition of a typicality function,

which could for instance be based on the distance to the concept’s

central area P . This could to some extent be based on the egg-yolk

model proposed by Sileno et al. [370].

So far, we are limited to representing concepts – with the formalization Outlook

laid out in this chapter we are not yet able to manipulate and combine

different concepts, or talk about their relations to each other. This is the

content of Chapters 3 and 4, respectively.
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Any representation of concepts is only useful if it can be applied in Motivation

cognitive tasks. This requires that there are certain operations which can

be applied to these concepts. When giving our definition of concepts as

fuzzy star-shaped sets in Chapter 2, we have already provided a way

of determining the membership of a given observation x in a given

concept
˜︁S, namely, by evaluating the concept’s membership function

µ˜︁S(x). This is, however, clearly not sufficient, since we also need ways

to modify, create, and combine concepts. In this chapter, we provide

mathematical definitions for several operations aiming at creating new

concepts based on existing ones.

Some conjunctive concept combinations such as green banana can be Intersection

represented by intersecting the conceptual regions of green and banana.

In Section 3.1, we propose a method for ensuring that the intersection

of two star-shaped regions is again star-shaped. This method is then

used in conjunction with numerical optimization methods to define an

intersection operation for concepts.

Just as multiple observations can give rise to a concept such as Union

orange, a set of concepts from the same abstraction level (e.g., orange,

lemon, and grapefruit) can be used to construct higher-level categories

(e.g., citrus fruit). In Section 3.2, we provide a definition of the union

operation in order to enable concept creation processes of this type.

101
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Since intersection and union can be related to logical conjunctionNegation

and disjunction, it seems worthwhile to also provide a geometric

definition for the logical negation. In Section 3.3, we discuss that the

set complement as most obvious candidate in our geometrical setting

can, however, not result in valid conceptual regions.

When using concepts in a given cognitive task, it may sometimes beProjection

necessary to focus on some specific subset of domains. For instance,

when seeing only the shadow of an object, the information from the

color domain is irrelevant and can be ignored. The salience weights

introduced in Section 2.3.3 can be used to reflect this to some extent,

but they cannot be set to zero. In Section 3.4, we therefore introduce an

operation for projecting a given concept onto a subset of its domains.

Finally, we consider the need for splitting a concept into two sub-Cut

concepts. This may be necessary if a given concept is too general for

the given task and needs to be divided into finer-granular subordinate

concepts. In Section 3.5, we consider the most straightforward case

where a concept is split into two parts based on a threshold with respect

to a single dimension. For example, the concept citrus fruit could be

split based on the sweetness dimension in order to distinguish the

sub-concept orange from the sub-concept lemon.

For each of these operations, we provide a formal mathematicalExamples,

application scenarios,

and related work

definition, which is accompanied by illustrative examples based on the

fruit space from Section 2.3.4. We furthermore illustrate the usefulness

of these operations by sketching two application scenarios (namely,

concept formation and concept combination) in Section 3.6. In Section

3.7, we compare our approach to other formalizations of the conceptual

spaces framework, before concluding this chapter in Section 3.8.

The research contributions presented in this chapter have previously

been published in [41, 42, 46].

3.1 intersection

The intersection of two concepts can be interpreted as the geometricIntersection as

logical conjunction
equivalent of the logical conjunction: Intersecting green with banana

should result in a concept for green banana. If concepts are represented

by convex regions, then the intersection of two concepts is guaranteed

to be convex as well. However, as we will see in Section 3.1.1, the

intersection of two star-shaped regions is not necessarily star-shaped.

We therefore propose a repair mechanism in order to ensure that the

resulting region is a valid core. In Section 3.1.2, we then also specify how

to determine the remaining parameters µ0, c, and W of the intersection

result. Finally, we describe our implementation of the intersection in

Section 3.1.3 and provide an illustrative example using the fruit space

from Section 2.3.4.
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Figure 3.1: (a) The intersection of two cores in not necessarily star-shaped or

even connected. (b) P1 ∩ P2 ̸= ∅ is not a necessary condition for a

star-shaped intersection result.

3.1.1 Intersection of Cores

Let us first attempt to define the intersection of two cores (i.e., crisp sets) Intersection of cores

is not necessarily

star-shaped

before generalizing this to concepts (i.e., fuzzy sets). One can easily

see that the intersection of two star-shaped sets is not necessarily star-

shaped (see e.g., Figure 3.1a). The intersection of two cores is therefore

not necessarily a valid core. However, we can show the following:

Lemma 3.1 (Intersection of Cores is Union of Cuboids)

Let S1 =
⟨︂
∆S1 ,

{︂
C

(1)
1 , . . . , C

(1)
m1

}︂⟩︂
and S2 =

⟨︂
∆S2 ,

{︂
C

(2)
1 , . . . , C

(2)
m2

}︂⟩︂
be

two cores. Then S = S1 ∩ S2 can be written as union of cuboids, namely,

S =
⋃︁
i∈I Ci.

Proof. See Appendix B.1.

In order for the intersection result to be a valid core, its cuboids also When does the

intersection result in

a valid core?

need to have a nonempty intersection. One can easily show that the

following condition is sufficient:

Lemma 3.2 (Sufficient Condition for Star-Shaped Intersection Result)

Let S1 =
⟨︂
∆S1 ,

{︂
C

(1)
1 , . . . , C

(1)
m1

}︂⟩︂
and S2 =

⟨︂
∆S2 ,

{︂
C

(2)
1 , . . . , C

(2)
m2

}︂⟩︂
be two cores with central regions P1 and P2, respectively. Let furthermore

S = S1 ∩ S2 =
⋃︁
i∈I Ci, where Ci are the cuboids of the intersection result. If

P1 ∩ P2 ̸= ∅, then P =
⋂︁
i∈I Ci ̸= ∅

Proof. See Appendix B.1.

Corollary 3.1 (Intersection of Orthogonal Cores)

If two cores S1 and S2 are defined on completely different domains (i.e.,

∆S1 ∩∆S2 = ∅ and thereforeDS1 ∩DS2 = ∅), then P1 ∩P2 ̸= ∅ and S1 ∩S2
is a core.

While P1 ∩ P2 ̸= ∅ is a sufficient condition for S1 ∩ S2 being star- Sufficiency and

necessity
shaped, it is not a necessary condition.

1
Consider for example the two

cores shown in Figure 3.1b: Their intersection consists of a single cuboid,

which means that it is star-shaped by definition. However, the central

regions of the original cores do not intersect.

1 Thanks to Martha Lewis for pointing this out to me.
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In general, it might happen that S = S1 ∩ S2 has an empty centralThe case of empty

central regions
region P and is therefore not star-shaped and consequently not a valid

core. This is for example illustrated in Figure 3.1a. In order to ensure that

the intersection of two cores results in a valid core (i.e., in a star-shaped

set based on cuboids), we thus need to apply some sort of "repair

mechanism" in these cases.

In principle, there are three ways of ensuring star-shapedness, namely,Two principled repair

mechanisms
by removing cuboids, by extending cuboids, and by treating the inter-

section result as multiple independent cores.

If cuboids are removed, the result is still guaranteed to be a properRemoving cuboids

causes

underextensions

subset of both original cores. However, there are points that belong to

both cores and are not included in the intersection result. This effect is

called underextension in the psychological literature [298, Chapter 12] and

reported only infrequently for conjunctive concept combination [187].

Moreover, removing cuboids might involve some arbitrary choices. For

instance, in Figure 3.1a, it is unclear which of the two cuboids should

be removed from the intersection result.

On the other hand, if cuboids are extended, then all points thatExtending cuboids

causes

overextensions

belong to both cores also belong to the intersection results. However,

the intersection result also may contain points that did not belong to

one or both of the original cores. This effect is called overextension in

the psychological literature [298, Chapter 12] and much more common

than underextensions in the context of concept combination [187]. In

Section 1.1.2, we gave the example of chess not being a sport, but a

sport which is a game. Also the pet fish example from Section 1.2.2 can

be seen in this context.

Finally, returning multiple cores (each one potentially only based onReturning multiple

cores may be

unintuitive

a single cuboid) as an intersection result ensures that we only return

star-shaped sets. However, it may be unintuitive to receive multiple

results from a single intersection operation, especially if these results

are geometrically speaking not connected.

For our current purpose, we would like to ensure that a single star-Using overextension

shaped set is returned as a result. We choose to extend cuboids rather

than removing them in order to be more in line with the psychological

literature. When merging multiple cuboids C1, . . . , Cm (all defined on

∆S or equivalently DS) into a single core, we furthermore aim for an

extension of the cores that minimizes the size of the resulting core.

It is intuitively clear that requiring the cuboids Ci to contain a regionMinimal extension

by including a

central point

P ∗
leads to a larger resulting core than requiring them to meet in a

single point p∗ ∈ CS. We can obtain the extended version C
′
i for every

cuboid Ci by defining its new support points like this based on p∗:

∀d ∈ D : p−
′

id = min
(︁
p−id, p

∗
d

)︁
, p+

′

id = max
(︁
p+id, p

∗
d

)︁
The intersection of the resulting C ′

i contains at least p∗, i.e., it is not

empty. This means that the resulting set S′ =
⋃︁
i∈I C

′
i is a core.
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Figure 3.2: Finding the minimal star-shaped hull of two cuboids C1 and C2.

(a) A point pA outside of the bounding cuboid is dominated by

another point pB on the border of the bounding cuboid. (b) Two

optimal solutions pC and pD which minimize the resulting volume.

(c) Using pE , the midpoint of the cuboids’ centers.

We will now argue that there exists such a point p∗ which minimizes Existence of an

optimal solution
the size of the resulting core. For the sake of simplicity, we confine our

argument to two cuboids C1 and C2. For this purpose, let us define a

size function f(p) that returns for each potential midpoint p the size of

the resulting core:

f(p) = f (C1, p) + f (C2, p)− f (C1 ∩ C2, p)

withf(C, p) =
∏︂
d∈D

(︁
max(p+d , pd)−min(p−d , pd)

)︁
The size f(p) of the resulting core is computed based on the inclusion- Interpretation of

f(p)
exclusion formula |A∪B| = |A|+ |B| − |A∩B|, using the sizes f(C, p)
for a cuboidC that has been extended to include the point p. Figure 3.2a

shows two cuboids C1 and C2 and also two candidate points pA and pB .

As one can easily see, the resulting volume of using pA is larger than

the resulting volume of using pB , i.e., f(pA) < f(pB). This is a property

that holds true in general: For any point outside of the bounding cuboid

around all given cuboids (i.e., the cuboid with p−d = minmi=1 p
−
id and

p+d = maxmi=1 p
+
id), we can find a point on the surface of this bounding

cuboid that results in a smaller size of the resulting core. So if there is

a point p∗ that minimizes the size of the resulting star-shaped set, it

cannot lie outside of the bounding cuboid.

Moreover, f(p) is a continuous function, because all operations used Applying the extreme

value theorem
for computing f(p) (i.e., maximum, minimum, subtraction, multipli-

cation, and addition) are continuous. Therefore, the extreme value

theorem (see e.g., [153]) tells us that there is at least one point p∗ in the

bounding cuboid (which is a compact set) for which f(p) is minimized.

In general, we do, however, not know whether p∗ is unique. Figure Uniqueness of the

optimal solution
3.2b shows two points pC ̸= pD with f(pC) = f(pD) = 36. Both points

are optimal solutions as there is no other point p′ with f(p′) < 36. Since

we would like to return a single core as intersection result, we are

now forced to arbitrarily pick one of the two minima for defining the

intersection result. This arbitrary choice heavily influences the shape of

the resulting core, which is somewhat unsatisfactory.
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Figure 3.3: (a) Two cores S1 and S2. (b) Their standard set intersection S =
S1 ∩ S2 and the midpoint p of this intersection’s cuboids. (c)

Extended cuboids C ′
1 and C ′

2, resulting in S′
.

An alternative to this optimization-based approach uses a heuristicPicking the central

point heuristically
for identifying a central point p. This heuristic will most likely not give

an optimal result, but it returns a unique and well-defined solution

that is easy to compute. We propose to use the weighted average of the

cuboid’s centers as such a heuristic:

p =

∑︁m
i=1 ωi ·

(p−i +p+i )
2∑︁m

i=1 ωi

If the weights ωi are all set to 1, this results in an unweighted average.Weights of the

heuristic
This case is illustrated in Figure 3.2c, where the heuristically chosen

point pE causes the resulting core to have a size of f(pE) = 48. On

the other hand, the weights ωi can be defined based on the size of the

respective cuboid Ci. If the weights are inversely proportional to the

size of the cuboid, the central point is closer to smaller cuboids than to

larger ones, causing larger cuboids to grow more than smaller cuboids.

Conversely, if larger cuboids receive larger weights, the central point

lies closer to the larger cuboids, causing smaller cuboids to grow more

than larger cuboids.

In our formalization, we use the following definition of the modifiedModified intersection

of cores intersection of cores based on the proposed heuristic with identical

weights for all cuboids:

Definition 3.1 (Modified Intersection of Cores)

Let S1 = ⟨∆S1 , {C
(1)
1 , . . . , C

(1)
m1}⟩ and S2 = ⟨∆S2 , {C

(2)
1 , . . . , C

(2)
m2}⟩ be two

cores. Let furthermore be S1 ∩ S2 =
⋃︁
i∈I Ci a cuboid-based representation

of their set intersection. Their modified intersection I(S1, S2) = ⟨∆S1 ∪
∆S2 , {C ′

1, . . . C
′
m′}⟩ is based on the cuboidsC ′

i, which have been obtained from

the corresponding cuboids Ci using the heuristic to obtain a central point p:

p =
1

m′ ·
m∑︂
i=1

(p−i + p+i )

2

∀d ∈ D : p−
′

id = min
(︁
p−id, pd

)︁
, p+

′

id = max
(︁
p+id, pd

)︁
It is trivial to see that I(S1, S2) is a valid core. Figure 3.3 visualizes

the modified intersection.
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Please note that the modified intersection operation is no longer Loss of associativity

associative, so in general I(I(S1, S2), S3) ̸= I(S1, I(S2, S3)). This loss of

associativity is caused by our proposed repair mechanism. If we want

to intersect more than two cores, we should therefore first intersect all

cuboids from all cores, and apply the repair mechanism only once in

the end in order to arrive at a well-defined result.

We would also like to point out that the repair mechanism of ex- Final notes

tending cuboids is only applied if the standard set intersection does

not result in a valid core. Moreover, both the standard set intersec-

tion and the repair mechanism are always computed on the domains

∆S′ = ∆S1 ∪∆S2 , i.e., with respect to the dimensions DS′ = DS1 ∪DS2 .

3.1.2 Intersection of Concepts

Now let us look at the intersection of fuzzy concepts. Every concept
˜︁S Intersection of

concepts
is defined based on a core S and additional parameters that control

its fuzziness, namely, the sensitivity parameter c, the domain and

dimension weights W , and the highest possible membership value µ0.

If we want to express the result of intersecting two concepts
˜︁S1, ˜︁S2 as

another concept
˜︁S′

, we thus need to both construct a new core S′
and

to infer new parameter settings µ′0, c
′,W ′

. We propose the following

definition for the intersection of concepts:

Definition 3.2 (Modified Intersection of Concepts)

Let
˜︁S1 = ⟨S1, µ(1)0 , c(1),W (1)⟩ and

˜︁S2 = ⟨S2, µ(2)0 , c(2),W (2)⟩ be two con-

cepts. We define their modified intersection as
˜︁S′ = I(˜︁S1, ˜︁S2) = ⟨S′, α′, c′,W ′⟩

with the following components:

• α′ = max
{︂
α ∈ [0, 1] : ˜︁Sα1 ∩ ˜︁Sα2 ̸= ∅

}︂
• S′ = I

(︂˜︁Sα′
1 ,
˜︁Sα′
2

)︂
• c′ = min

(︁
c(1), c(2)

)︁
• W ′

with weights w′
δ, w

′
d defined as follows (using interpolation factors

s, t ∈ [0, 1]):

∀δ ∈ ∆S1 ∩∆S2 :
(︂(︂
w′
δ = s · w(1)

δ + (1− s) · w(2)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = t · w(1)

d + (1− t) · w(2)
d

)︂)︂
∀δ ∈ ∆S1 \∆S2 :

(︂(︂
w′
δ = w

(1)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = w

(1)
d

)︂)︂
∀δ ∈ ∆S2 \∆S1 :

(︂(︂
w′
δ = w

(2)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = w

(2)
d

)︂)︂
Let us take a look at the individual components of Definition 3.2. We Interpretation of the

definition
first identify the largest value of α for which the α-cuts of

˜︁S1 and
˜︁S2

have a nonempty intersection. Since the membership values are always

positive, we know that such an α′
must exist. Moreover, both α-cuts
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Figure 3.4: (a) The intersection µ˜︁S1∩˜︁S2
(x) = min(µ˜︁S1

(x), µ˜︁S2
(x)) of two con-

cepts
˜︁S1 and

˜︁S2. (b) Our modified intersection I(˜︁S1, ˜︁S2).

˜︁Sα′
1 and

˜︁Sα′
2 are guaranteed to be star-shaped sets (cf. Lemma 2.4 and

Proposition 2.1 from Section 2.3.3).

We then use the modified intersection from Definition 3.1 in orderObtaining a new core

to obtain a new core S′
for the result of our fuzzy intersection. Both

the repair mechanism and the final representation of this modified

intersection of cores require cuboids as building blocks, but neither
˜︁Sα′
1

nor
˜︁Sα′
1 nor their intersection can necessarily be represented as a union

of cuboids. Therefore, the result of their standard set intersection needs

to be approximated with bounding boxes. We will introduce the details

of obtaining both α′
and S′

in Section 3.1.3.

When combining two somewhat imprecise concepts, the resultThe sensitivity

parameter
should not be more precise than any of the original concepts. As

the sensitivity parameter c is inversely related to fuzziness, we define

c′ = min
(︁
c(1), c(2)

)︁
.

Finally, we combine the domain and dimensions weights of the twoMerging the weights

original concepts. If a weight is defined for both sets, we take a convex

combination, and if it is only defined for one set, we simply copy it. The

importance of each domain and dimension to the new concept thus

lies somewhere between its importance with respect to the two original

concepts. In some cases, the normalization constraint of the resulting

domain weights (i.e.,

∑︁
δ∈∆S′ wδ = |∆S′ | and ∀δ ∈ ∆S′ :

∑︁
d∈δ wd = 1,

cf. Definition 2.7) might be violated after computing the convex combi-

nation. We therfore manually normalize the weights in order to enforce

these constraints.

Please note that in the standard fuzzy set theory, the intersection ofOur modified

intersection and the

standard intersection

of fuzzy sets

two fuzzy sets
˜︁A and

˜︁B is defined by using the minimum over their

membership functions:

Definition 3.3 (Fuzzy Intersection)

Let
˜︁A, ˜︁B be two fuzzy sets on CS. Then, the membership function of their

fuzzy intersection is defined as follows:

∀x ∈ CS : µ ˜︁A∩ ˜︁B(x) = min
(︁
µ ˜︁A(x), µ ˜︁B(x))︁

Figure 3.4 illustrates with two one-dimensional concepts that
˜︁S1 ∩ ˜︁S2

yields slightly different results than our modified intersection I(˜︁S1, ˜︁S2).
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Figure 3.5: Possible results of intersecting two fuzzy cuboids.

This difference is caused by the repair mechanism as well as the aggre-

gation of the sensitivity parameter c and the weights W .

The maximally attainable membership to the resulting concept is set Fuzzy overextension

to the highest value of α for which the α-cuts of both sets intersect. This

is the maximal degree of membership that any point in the conceptual

space can have to both original concepts. Of course, one can manually

resetµ′0 to 1 after the intersection. This way, one can model overextension

effects also for fuzzy conceptual region (e.g., a guppy is neither a typical

pet nor a typical fish, but a typical pet fish – cf. [187, 309, 310, 450] and

Sections 1.1.2, 1.2.2, and 3.1.1).

3.1.3 Implementation and Example

The key challenge with respect to the intersection of two concepts
˜︁S1 Fuzzified cuboids

and
˜︁S2 as presented in Definition 3.2 is to find the highest value α′

for

which the α-cuts of
˜︁S1 and

˜︁S2 intersect. In an actual implementation, we

therefore need a concrete way of obtaining α′
. We simplify this problem

by iterating over all combinations of cuboids C1 ∈ S1, C2 ∈ S2 and by

looking at each pair of cuboids individually. This requires the notion of

a fuzzified cuboid which can be defined based on Definition 2.14:

Definition 3.4 (Fuzzified Cuboid)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept and C ∈ S be a cuboid from its core. Then,

the membership to the fuzzified cuboid
˜︁C is defined as follows:

µ ˜︁C(x) = µ0 ·max
y∈C

(︂
e−c·d

∆C
C (x,y,W )

)︂
It is obvious that µ˜︁S(x) = maxC∈S µ ˜︁C(x)

(cf. Definition 2.14). Algo- Computing the

intersection

rithm 3.1 shows how the intersection of two fuzzified cuboids
˜︁C1 and˜︁C2 can be computed based on a distinction into the following cases,

which are illustrated in Figure 3.5:

In the most straightforward case, the underlying crisp cuboids C1 First case: crisp

intersection
and C2 have a nonempty intersection and both concepts have the same

maximal membership µ
(1)
0 = µ

(2)
0 (lines 1 and 2, Figure 3.5a). In this

case, we simply compute their intersection as defined in Section 3.1.1.

The α-value of this intersection is equal to µ
(1)
0 and µ

(2)
0 .
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Algorithm 3.1: Finding the highest non-empty α-cut of two

fuzzified cuboids.

Input: Fuzzified cuboid
˜︁C1, fuzzified cuboid

˜︁C2

Output: Highest value of α for which
˜︁C1 and

˜︁C2 intersect, crisp

cuboid approximation C of
˜︁Cα1 ∩ ˜︁Cα2

1 if µ
(1)
0 = µ

(2)
0 ∧ C1 ∩ C2 ̸= ∅ then

2 α = min(µ
(1)
0 , µ

(2)
0 ), C = C1 ∩ C2

3 else

4 Find closest points a ∈ C1, b ∈ C2

5 if µ ˜︁C1
(b) ≥ µ

(2)
0 then

6 α = µ
(2)
0 , C = cuboid approximation of

˜︁Cµ(2)0
1 ∩ C2

7 else if µ ˜︁C2
(a) ≥ µ

(1)
0 then

8 α = µ
(1)
0 , C = cuboid approximation of

˜︁Cµ(1)0
2 ∩ C1

9 else

10 Find x∗ = argmaxx∈CS(µ ˜︁C1
(x)) with µ ˜︁C1

(x) = µ ˜︁C2
(x)

11 α = µ ˜︁C1
(x∗)

12 if

∃t ∈ R : ∀d with ad ̸= bd : w
(1)
δ(d) ·

√︂
w

(1)
d = t ·w(2)

δ(d) ·
√︂
w

(2)
d

then

13 for i = 1 to |{d : ad ̸= bd}| − 1 do

14 Find all x on the i-faces of the bounding box

spanned by a and b with µ ˜︁C1
(x) = µ ˜︁C2

(x) = α

15 if found at least one x then

16 C = cuboid-approximation of the set of all x
17 break

18 end

19 end

20 else

21 C = trivial cuboid consisting of x∗

22 end

23 end

24 Extrude C in all dimensions d where ad and bd can vary

25 end

26 return α,C
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If this is not the case, we compute the pair a ∈ C1, b ∈ C2 of closest Obtaining closest

points
points from the two cuboids (line 4), i.e., ∀x ∈ C1, y ∈ C2 : d(a, b) ≤
d(x, y). If there are multiple possible choices for a and b (like in Figure

3.5e), we pick a single pair of closest points and store the dimensions in

which a and b may vary.

If the µ0 parameters of the two concepts are different and the µ
(i)
0 -cut Second case: α-cut

intersects with crisp

cuboid

of
˜︁Cj intersects with Ci (lines 5 to 8, Figure 3.5b), we need to intersect˜︁Cµ(i)0

j with Ci and approximate the result with a cuboid. The α-value of

this intersection is equal to µ
(i)
0 .

In all other cases, the intersection does not involve any of the crisp Finding one point in

the α-cut

intersection

cuboids. We therefore use a numerical optimization algorithm
2

to find

a point x∗ between a and b with equal maximal membership to both
˜︁C1

and
˜︁C2 (line 10). The α-value of the resulting intersection is then just

the membership of x∗ to any of the fuzzified cuboids (line 11). We now

need to distinguish two remaining cases:

On the one hand, the intersection of the two fuzzified cuboids may Third case:

intersection yields a

set of points

consist of a set of points (Figure 3.5c). This can only happen if the

α-cut boundaries of both fuzzified cuboids are parallel to each other,

which requires multiple domains to be involved and the weights of

both concepts to be linearly dependent.
3

This condition is checked in

line 12. If this is the case, we look for additional points x on the surface

of the bounding box spanned by the points a and b, such that x ∈ ˜︁Cα1
and x ∈ ˜︁Cα2 . In Figure 3.5c, this would be the points xl and xr. In

Algorithm 3.1, we iteratively look at the edges (i = 1), faces (i = 2), etc.

of the bounding box until we find such points (lines 13-19)
4

and then

approximate the overall set of points with a cuboid.

In the final remaining case, the intersection of the two fuzzified Fourth case:

intersection yields a

single point

cuboids consists of a single point x∗ lying between a and b (line 21,

Figure 3.5d). Here, we define the intersection to be a trivial cuboid with

p− = p+ = x∗.
Finally, in line 24 we extrude the identified cuboid in all dimensions Final step: extrusion

d where both ad and bd can vary (cf. Figure 3.5e).

Algorithm 3.1 provides us with a way of computing the intersection The intersection of

two fuzzy concepts
of a pair of fuzzified cuboids. We can now apply this algorithm to all

pairs of cuboids C1 ∈ S1, C2 ∈ S2. Next, we remove all intersection

results with non-maximal α. If the remaining set of cuboids has an

empty intersection, we perform the repair mechanism as defined in

2 Our implementation uses the scipy.optimize package.

3 As we will discuss in Section 4.1.1, the shape of a fuzzified cuboid’s α-cut depends

on the metric for the underlying space: If the Euclidean metric is used, its borders

have the form of an ellipse, while the Manhattan metric causes diamond-shaped

corners. Parallel boundaries can thus only happen under the Manhattan metric, i.e.,

in the presence of multiple domains. Since the salience weights control how much

the α-cut grows in each direction (and thus also how stretched the diamonds are), we

furthermore need linearly dependent weights.

4 Again, we use numerical optimization algorithms from the scipy.optimize package.
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Number n of

Dimensions

Runtime in

Milliseconds

1 1.1169

2 3.7356

4 11.4794

8 47.9072

16 263.3106

32 1737.8090

Table 3.1: Average runtime of the intersection operation (averaged across 1,000

pairs of randomly created single-cuboid concepts).

Section 3.1.1 in order to obtain a valid core S′
. Based on Definition 3.2,

we can then compute the remaining parameters c′ and W ′
in order to

arrive at the overall intersection result
˜︁S′

. In our implementation, we

use s = t = 0.5 when computing the convex combination of the original

weights from W1 and W2.

In order to evaluate the runtime of the fuzzy intersection as definedRuntine experiments

in Definition 3.2 (which involves Algorithm 3.1 for finding both α′
and

S′
), we have tested it with 1,000 pairs of randomly created concepts. We

have ensured that the set of weights is always identical for both concepts

as this is likely to trigger the case of Figure 3.5c, which involves the

largest amount of computations. This way, the numbers obtained in our

runtime experiments are skewed more towards the worst case. Runtime

was analyzed for different numbers of dimensions n in the conceptual

space and for different numbers of cuboidsm per concept. For each pair

of concepts, a new conceptual space with a random grouping of the

dimensions into domains was created (using maximally 5 dimensions

per domain). Runtime was measured on a laptop with an Intel Core

i5-6440HQ CPU (2.60GHz quad-core) processor and 8 GB main memory.

Let us first look at runtime as a function of the numbernof dimensions.Runtime and the

number of

dimensions

We can see in Table 3.1 and Figure 3.6 that runtime seems to grow

in a superlinear way: Doubling the number of dimensions leads to

a runtime which is more than twice as long. Moreover, this growth

seems to accelerate: For example, doubling the number of dimensions

from two to four leads to a runtime increase by a factor of three,

while an increase from four to eight dimensions increases runtime

by a factor of four. This hints at an exponential trend, which can be

explained by the numerical optimization algorithms used at various

points in our implementation. Increasing the number of dimensions

leads to an increase in the number of free variables to optimize when

attempting to find a point x∗ with identical maximal membership to

both concepts. This in turn can be expected to lead to an increase

in the runtime of the optimization algorithm and hence our overall

intersection operation. Already for a 32-dimensional space, the average

runtime of an intersection is approximately 1.7 seconds. This highlights
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Figure 3.6: Average runtime of the intersection operation for single-cuboid

concepts as a function of the number of dimensions in the concep-

tual space.

Number m of

Cuboids

Runtime in

Milliseconds

1 11.4794

2 45.5935

4 179.6660

8 708.3379

Table 3.2: Average runtime of the intersection operation (averaged across

1,000 pairs of randomly created concepts in a four-dimensional

conceptual space).

that more efficient implementations or approximations are needed in

order to make our formalization usable for practical applications.

Let us now investigate how the number m of cuboids per concept Runtime and the

number of cuboids
influences the runtime of the intersection operation. In Table 3.2 and

Figure 3.7, we observe that also increasing the number of cuboids

per concept considerably increases the runtime of the algorithm: Dou-

bling the number of cuboids per concept while keeping the number of

dimensions constant increases the runtime of the intersection opera-

tion by a factor of four. Interestingly, this factor seems to be relatively

constant, while we observed an accelerating growth when increasing

the number of dimensions. From an intuitive point of view, one may

have expected an exponential trend, since we need to consider all

possible pairs of cuboids when computing the intersection. Increasing

the number of cuboids thus should lead to a combinatorial explosion.

Such an accelerating growth of runtime may be observed in practice for

even larger number of cuboids and/or higher-dimensional conceptual

spaces. Since a larger number of cuboids allows for a more fine-granular

representation of conceptual regions, one may need to find a reasonable

trade-off between representational power and runtime considerations
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Figure 3.7: Average runtime of the intersection operation as a function of the

number of cuboids per concept in a four-dimensional conceptual

space.

Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

pear ∆ (0.50, 0.40, 0.35) (0.70, 0.60, 0.45) 1.0 24.0 0.50 1.25 1.25

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

apple ∆ (0.65, 0.65, 0.40) (0.85, 0.80, 0.55) 1.0 20.0 0.50 1.50 1.00

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

Table 3.3: Definition of the concepts apple and pear for the intersection exam-

ple.

in practical applications (cf. also Sections 2.3.2, 4.1.3, and 4.5.3). Again,

these observations urge for a more efficient implementation or approxi-

mation of the intersection operation in future versions of our code.

In order to illustrate the intersection of concepts, let us intersect theFruit space example

concepts of apple and pear from the fruit space defined in Section 2.3.4.

Their definition is re-printed in Table 3.3. The intersection result can be

interpreted as the set of objects that fit both concepts to some degree

and might be called apple-pear.

Because Sapple ∩ Spear = ∅ and µ
(apple)
0 = µ

(pear)
0 = 1, we look forObtaining the new

core
an x∗ ∈ CS with maximal equal membership in both concepts (line

10 in Algorithm 3.1). Using numerical optimization, we find x∗ =
(0.500, 0.625, 0.350) with α = µ˜︁Sapple

(x∗) = µ˜︁Spear

(x∗) ≈ 0.4724. As the

weights of the two concepts are not linearly dependent, we are not in

the case depicted in Figure 3.5c. However, we deal with a case like

in Figure 3.5e: Because the two concepts overlap with respect to the

hue and sweetness dimensions, we need to extrude our point x∗ in

these dimensions (line 24 of Algorithm 3.1). One can easily see that this

results in S′ = ⟨∆, {C ′}⟩ with C ′
being defined as follows:

C ′ = ⟨∆, p− = (0.500, 0.625, 0.350), p+ = (0.700, 0.625, 0.450)⟩
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Figure 3.8: Screenshot of the ConceptInspector tool, illustrating the intersec-

tion of apple (1) and pear (2) in the three-dimensional fruit space,

resulting in the apple-pear (3) concept.

Finally, we need to compute c′ as well as the new weightsW ′
. Because Sensitivity parameter

and salience weights
both concepts are defined on ∆ (i.e., the whole conceptual space),

we need to interpolate between the weights. In this case, we choose

s = t = 0.5 and obtain the following results:

c′ = min(c(apple), c(pear)) = min(20.00, 24.00) = 20.00

W ′ = ⟨{wδcolor
= 0.50, wδshape

= 1.375, wδtaste
= 1.125},Wdim⟩

The overall result of this intersection is then
˜︁S′ = ⟨S′, 0.4724, 20.00,W ′⟩. The intersection

result
In our implementation, this whole computation happens behind the

scenes and one can obtain this result by a simple function call, whose

result is illustrated in Figure 3.8:

>>> print(apple.intersect_with(pear))
core: {[0.5, 0.625, 0.35]-[0.7, 0.625, 0.45]}
mu: 0.4723665527
c: 20.0
weights: <{’color’: 0.5, ’taste’: 1.125, ’shape’: 1.375},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>
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3.2 union

A union of two or more concepts is the geometric equivalent of the logicalUnion as logical

disjunction
disjunction and can be used to construct higher-level concepts. For

instance, the concept of citrus fruit can be obtained by computing the

union of lemon, orange, orange, and grapefruit. Generally speaking,

the union of any pair of conceptual regions is not necessarily connected.

If conceptual regions are convex, a valid output concept can be obtained

by using a convex hull of the standard set union. In our formalization,

we use the repair mechanism from Section 3.1.1 in order to obtain

a star-shaped hull of the given cores. We first give a mathematical

definition of the union of two concepts in Section 3.2.1, before using

two examples from our fruit space to illustrate the union operator in

Section 3.2.2.

3.2.1 Definition

Let S1 = ⟨∆S1 , {C
(1)
1 , . . . , C

(1)
m1}⟩ and S2 = ⟨∆S2 , {C

(2)
1 , . . . , C

(2)
m2}⟩ beUnion of cores

two cores. We can write the union of S1 and S2 as follows (where S is

defined on ∆S = ∆S1 ∪∆S2):

S = S1 ∪ S2 =

(︄
m1⋃︂
i1=1

C
(1)
i1

)︄
∪

(︄
m2⋃︂
i2=1

C
(2)
i2

)︄
Obviously, we can represent S as a union of cuboids. This new setThe need for a repair

mechanism S is star-shaped if and only if the regions P1 and P2 have a nonempty

intersection (i.e., there are some points that are contained in all C
(1)
i1

and all C
(2)
i2

). In general, this is, however, not necessarily the case.

Therefore, we again need to apply a repair mechanism in order to

restore star-shapedness. In order to maintain consistency, we propose

to use the same repair mechanism that has also been introduced for

the intersection in Section 3.1.1. We denote the modified union of two

cores as S′ = U(S1, S2).

Definition 3.5 (Modified Union of Cores)

Let S1 = ⟨∆S1 , {C
(1)
1 , . . . , C

(1)
m1}⟩ and S2 = ⟨∆S2 , {C

(2)
1 , . . . , C

(2)
m2}⟩ be two

cores. Their modified unionU(S1, S2) = ⟨∆S1 ∪∆S2 , {C ′
1, . . . C

′
m′}⟩ is based

on the cuboids C ′
i, which have been obtained from the corresponding cuboids

Ci from S1 and S2, using the heuristic from Section 3.1.1 to obtain a central

point p:

p =
1

m′ ·
m∑︂
i=1

(p−i + p+i )

2

∀d ∈ D : p−
′

id = min
(︁
p−id, pd

)︁
, p+

′

id = max
(︁
p+id, pd

)︁
Just as the modified intersection, the modified union is not expectedLoss of associativity

to be associative. If we would like to combine three or more cores

with the union operator, we should therefore first collect all cuboids

from all cores and then apply the repair mechanism only once in the end.
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Figure 3.9: (a) The union µ˜︁S1∪˜︁S2
(x) = max(µ˜︁S1

(x), µ˜︁S2
(x)) of two concepts˜︁S1 and

˜︁S2. (b) Our modified union U(˜︁S1, ˜︁S2).

Now let us look at the union of concepts. The most straightforward Union of concepts

approach to define the union
˜︁S′ = U(˜︁S1, ˜︁S2) of two concepts

˜︁S1 and
˜︁S2

uses the maximum over µ
(1)
0 and µ

(2)
0 , the modified union of the cores

S1 and S2, and the same computations for c′ and W ′
as the intersection

operation (cf. Definition 3.2):

Definition 3.6 (Modified Union of Concepts)

Let
˜︁S1 = ⟨S1, µ(1)0 , c(1),W (1)⟩ and

˜︁S2 = ⟨S2, µ(2)0 , c(2),W (2)⟩ be two con-

cepts. We define their modified union as
˜︁S′ = U(˜︁S1, ˜︁S2) = ⟨S′, µ′0, c

′,W ′⟩
with the following components:

• µ′0 = max
(︂
µ
(1)
0 , µ

(2)
0

)︂
• S′ = U (S1, S2)

• c′ = min
(︁
c(1), c(2)

)︁
• W ′

with weights w′
δ, w

′
d defined as follows (using interpolation factors

s, t ∈ [0, 1]):

∀δ ∈ ∆S1 ∩∆S2 :
(︂(︂
w′
δ = s · w(1)

δ + (1− s) · w(2)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = t · w(1)

d + (1− t) · w(2)
d

)︂)︂
∀δ ∈ ∆S1 \∆S2 :

(︂(︂
w′
δ = w

(1)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = w

(1)
d

)︂)︂
∀δ ∈ ∆S2 \∆S1 :

(︂(︂
w′
δ = w

(2)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = w

(2)
d

)︂)︂
Figure 3.9 shows a visualization of this modified union for two Our modified union

and the standard

union of fuzzy sets

one-dimensional concepts, comparing it to the standard union from

fuzzy set theory, whis is based on the maximum across the two original

membership functions:

Definition 3.7 (Fuzzy Union)

Let
˜︁A, ˜︁B be two fuzzy sets on CS. Then, the membership function of their

fuzzy union is defined as follows:

∀x ∈ CS : µ ˜︁A∪ ˜︁B(x) = max
(︁
µ ˜︁A(x), µ ˜︁B(x))︁
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

pear ∆ (0.50, 0.40, 0.35) (0.70, 0.60, 0.45) 1.0 24.0 0.50 1.25 1.25

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

apple ∆ (0.65, 0.65, 0.40) (0.85, 0.80, 0.55) 1.0 20.0 0.50 1.50 1.00

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

Table 3.4: Definition of the concepts apple and pear for the union example.

One can see in Figure 3.9a that the standard union does in generalModified union as

superset of standard

fuzzy union

not result in a valid concept. However, under certain circumstances, it

is a fuzzy subset of U(˜︁S1, ˜︁S2), i.e., ∀x ∈ CS : µ˜︁S1∪˜︁S2
(x) ≤ µ

U(˜︁S1,˜︁S2)
(x):

Proposition 3.1 (Modified Union as Superset of Standard Union)

Let
˜︁S1 = ⟨S1, µ(1)0 , c(1),W (1)⟩ and

˜︁S2 = ⟨S2, µ(2)0 , c(2),W (2)⟩ be two con-

cepts. If we assume that ∆S1 = ∆S2 and W (1) = W (2)
, then

˜︁S1 ∪ ˜︁S2 ⊆
U(˜︁S1, ˜︁S2) = ˜︁S′

, i.e., ∀x ∈ CS : µ˜︁S1∪˜︁S2
(x) ≤ µ

U(˜︁S1,˜︁S2)
(x).

Proof. See Appendix B.2.

3.2.2 Implementation and Example

The union operation is quite straightforward to implement: One simplyImplementation

needs to collect all cuboids from S1 and S2, apply the repair mechanism

to this overall set of cuboids to obtain S′
, and compute all remaining

parameters as defined in Definition 3.6. We again use s = t = 0.5 for

computing the new weights. Since this does not involve any complex

computations (such as for example numerical optimization), the run-

time of the union operation has not been analyzed.

In order to illustrate the union operation, let us again make use ofFruit space example:

union of apple and

pear

the concepts of apple and pear (re-printed in Table 3.4 and illustrated

in Figure 3.10). In order to find the new core S′
, we first take the

union of all cuboids from the original cores and then apply the repair

mechanism from Section 3.1.1 to ensure star-shapedness. We define

p∗ to be the arithmetic mean of the midpoints of all cuboids, yielding

p∗ = (0.7125, 0.66875, 0.45625). Extending each cuboid such that it

includes at least p∗ results in the following extended cuboids:

C ′
1 = ⟨∆, p′−1 = (0.50, 0.40, 0.35),

p′+1 = (0.71250, 0.66875, 0.45625)⟩
C ′
2 = ⟨∆, p′−2 = (0.50, 0.65, 0.35), p′+2 = (0.80, 0.80, 0.50)⟩

C ′
3 = ⟨∆, p′−3 = (0.65, 0.65, 0.40), p′+3 = (0.85, 0.80, 0.55)⟩

C ′
4 = ⟨∆, p′−4 = (0.70, 0.65, 0.45), p′+4 = (1.00, 0.80, 0.60)⟩
S′ = ⟨∆, {C ′

1, C
′
2, C

′
3, C

′
4}⟩

As one can see, the three cuboids that originally belonged to the appleConsidering the new

core
concept are not modified at all because p∗ ∈ Papple. Only the cuboid
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Figure 3.10: Screenshot of the ConceptInspector tool, illustrating the con-

cepts of apple (1) and pear (2) in the three-dimensional fruit

space.

Figure 3.11: Screenshot of the ConceptInspector tool, illustrating the union

of apple and pear in the three-dimensional fruit space.
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from the pear concept has been extended in order to include p∗. The

central region of the new core S′
can be described as P ′ = ⟨∆, p′− =

(0.70, 0.65, 0.45), p′+ = (0.7125, 0.66875, 0.45625)⟩.
Both c′ and W ′

are computed in exactly the same way as for theSensitivity parameter

and salience weights
intersection. Therefore, we get the same values as in Section 3.1.3:

c′ = min
(︂
c(apple), c(pear)

)︂
= min (20.00, 24.00) = 20.00

W ′ =
⟨︁{︁
wδcolor = 0.50, wδshape = 1.375, wδtaste = 1.125

}︁
,Wdim

⟩︁
Finally, the highest possible membership is computed as follows:Highest possible

membership

µ′0 = max
(︂
µ
(apple)
0 , µ

(pear)
0

)︂
= max (1.00, 1.00) = 1.00

The modified union
˜︁S′ = ⟨S′, µ′0, c

′,W ′⟩ of apple and pear is illus-Visualization

trated in Figure 3.11. In our implementation, the union operation can

be executed as follows:

>>> print(apple.union_with(pear))
core: {[0.5, 0.65, 0.35]-[0.8, 0.8, 0.5],

[0.65, 0.65, 0.4]-[0.85, 0.8, 0.55],
[0.7, 0.65, 0.45]-[1.0, 0.8, 0.6],
[0.5, 0.4, 0.35]-[0.7125, 0.6687500000000001,

0.45625000000000004]}
mu: 1.0
c: 20.0
weights: <{’color’: 0.5, ’taste’: 1.125, ’shape’: 1.375},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

For an additional demonstration, let us consider the union of orangeFruit space example:

union of orange and

lemon

and lemon (corresponding to the more abstract concept of citrus fruit).

In this case, the result looks as follows:

>>> print(lemon.union_with(orange))
core: {[0.7, 0.45, 0.0]-[0.8, 0.725, 0.35],

[0.8, 0.725, 0.35]-[0.9, 1.0, 0.7]}
mu: 1.0
c: 30.0
weights: <{’color’: 0.75, ’taste’: 1.5, ’shape’: 0.75},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

In this example, the two extended cuboids C ′
1 and C ′

2 meet exactlyInterpretation

in one point, namely p∗ = (0.80, 0.725, 0.35)). Therefore, P ′ = {p∗}.

Figures 3.12 and 3.13 illustrate this procedure. Because the concepts

of orange and lemon are quite far apart in the given fruit space, their

union is considerably larger than the original concepts. Moreover, one

can see that their union intersects other concepts such as apple. Note

that this is, however, not a weakness of our union operation – the

observed effect is merely a limitation of the given fruit space. If the fruit

space contained additional dimensions (e.g., indicating the latitude of

the region where a particular fruit was grown), the concepts of lemon

and orange would presumably much closer to each other and their

union would not intersect any of the other concepts. This highlights

that in practical applications an accurate definition of the similarity

space with its domains and dimensions is of critical importance.
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Figure 3.12: Screenshot of the ConceptInspector tool, illustrating the con-

cepts of orange (1), lemon (2), and apple (3) in the three-

dimensional fruit space.

Figure 3.13: Screenshot of the ConceptInspector tool, illustrating the citrus

fruit concept (1) (defined as the union of orange and lemon) and

the apple concept (2).
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Figure 3.14: (a) Set complement of a crisp conceptual region S in a two-

dimensional space. (b) Set complement of a fuzzy conceptual

region
˜︁S in a one-dimensional space.

3.3 negation

The intersection and union operations defined in the previous sectionsNegation as set

complement
can be interpreted as logical conjunction and disjunction. What is

still missing for a complete set of logical operators is the operation of

negating a concept. Since we define concepts as (fuzzy) regions in the

conceptual space, the negation of a concept can be intuitively mapped

to the set complement. In the crisp case, the complement SC of a set S
is defined as SC = {x ∈ CS | x /∈ S} (see Figure 3.14a). For fuzzy sets˜︁S, the set complement

˜︁SC is typically defined as follows (illustrated in

Figure 3.14b):

∀x ∈ CS : µ˜︁SC (x) = 1− µ˜︁S(x)
As we can see in Figure 3.14, the set complement does not resultThe set complement

does not produce

valid conceptual

regions

in a valid concept, since the resulting region is neither convex nor

star-shaped – we are not able to identify a clear prototypical region P .

In both cases, the set complement contains a "hole", namely the original

conceptual region. As we have already argued in Section 2.2.2 in the

context of connectedness
5
, such holes in the geometric representation

are, however, quite problematic. The set complement yields a valid

conceptual region only if the original concept is empty, contains the

whole conceptual space, or is a half-space (see Figure 3.15). The latter

case might hold for a property like cold which can be defined as the

lower end of the temperature dimension (i.e., a half-open interval) –

here, not cold is also a valid concept. However, already a color property

like yellow cannot be simply negated by taking the set complement:

As yellow is represented as a region in the three-dimensional color

space, we face a situation similar to Figure 3.14a. The same problem

also arises for concepts like apple which involve multiple domains.

One could try to work around this problem by proposing a repairRepair mechanisms

are not helpful
mechanism as in Sections 3.1.1 and 3.2.1. However, extending the re-

sulting set in order to make it star-shaped (as for intersection and

5 While SC
in Figure 3.14a is still connected, none of the α-cuts of

˜︁SC
in Figure 3.14b is

connected.
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Figure 3.15: The set complement yields valid conceptual regions for half-

spaces. (a) Convex half-space defined by a hyperplane. (b) Star-

shaped half-space defined by half-open cuboids.

union) would force us to include the original conceptual region in the

negation: The only star-shaped completion of the set complements SC

and
˜︁SC from Figure 3.14 is equal to the overall conceptual space CS.

On the other hand, shrinking the resulting region in order to ensure

star-shapedness requires us to decide which subregion of SC and
˜︁SC

to exclude, respectively. Any choice seems quite arbitrary, especially

in symmetric scenarios. Therefore, in the case of negation, neither an

overextension nor an underextension seems to be helpful.

Please note that these problems with respect to conceptual negation Negation in other

spatial

representations

are inherent in the conceptual spaces framework in general and not

just our formalization. Other forms of spatial representation such as

word embeddings (to be introduced in Chapter 6) define the similarity

of words based on the angle between the vectors representing them.

This corresponds to using polar rather than Cartesian coordinates.

These approaches are less limited with respect to negation: Negation of

individual vectors can be implemented by considering the subspace

orthogonal to this vector [252] in order to model expressions like "rock

NOT band" (which indicates that the geological concept rock and not

the music genre is being referred to) [434]. Conceptual regions can in

this context be modeled as convex cones, and their negation can be

implemented by using the polar cone (i.e., all points with an angle

of at least 90 degrees to any vector in the concept) [312]. It therefore

seems that the negation problem for conceptual spaces is rooted in one

of its fundamental assumptions, namely, the usage of Euclidean and

Manhattan distances as a measure of semantic dissimilarity.

We would furthermore like to point out that especially for full-fleshed Semantics of negated

concepts
concepts like apple, the semantics of a negation is somewhat unclear.

For instance, the set of things that we would classify as not apple (such

as banana, chair, friendship, Mickey Mouse, blasphemy, and pi) do not

necessarily have a shared set of attributes, let alone a prototype. One

needs either to restrict this set of alternatives (e.g., by only including
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fruits or tangible objects) or to acknowledge that negation does not lead

to valid concepts.

Shaikh et al. [362] distinguish two interpretations of negation inMatching bias:

negation only denies

a statement

natural language: The matching bias account states that negation in

natural language conveys denial rather than assertion of a proposition.

If we adopt this view, we may assume that negation is a quite abstract

operation and that it is thus only defined in the symbolic layer, but

has no strict equivalent in the conceptual and the subsymbolic layer.
6

Under this view, the phrase "not an apple" does not describe a concept,

but rather a condition that can or cannot be met.

The contrast classes account on the other hand assumes that negationContrast classes:

negation targets

plausible alternatives

in natural language targets plausible alternatives. In order to reflect

this set of plausible alternatives, one can augment the literal logical

negation with a so-called "worldly context", for instance by taking into

account the conceptual hierarchy of the negated word [335]. In our

example from above, not apple would thus refer to other sub-concepts

of fruit such as pear or banana.

Since the negation operation does not seem to be very useful forSummary

the direct creation of novel concepts, it is not implemented in our

formalization. We thus implicitly adopt the matching bias account

of negation. If we need to negate a concept as an intermediate step

for concept combination (e.g., for phrases such as "a bird that is not

yellow"), we can use the set complement as a temporary construct.

3.4 subspace projection

Projecting a concept onto a subspace corresponds to focusing on certainProjection for

ignoring domains
domains while completely ignoring others. For instance, projecting the

concept apple onto the color domain results in a property which may

include different shades of red, green, and yellow. Also the dimensional

filters proposed by Fiorini [158] (cf. Section 2.4.3), which remove all

irrelevant domains from a part in the context of a composite concept,

can be implemented through such a projection.

Please note that we always assume that the projection takes placeProjection works on

the level of domains
on the level of domains and not on the level of individual dimensions.

This assumption is based on the fact that domains are defined as sets

of integral dimensions that are separable from all other dimensions

(cf. Section 2.1.1). This means that the dimensions within a domain are

either perceived jointly or not at all, but not individually.

In the following, we give a formal definition of the projection opera-

tion for cuboids, cores, and concepts (Section 3.4.1), before illustrating

with an example from our fruit space (Section 3.4.2).

6 Thanks to Achim Stephan for pointing this out to me.
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3.4.1 Definition

Let us begin by considering how to project a cuboid C onto a subspace Projecting a single

cuboid
given by the domains ∆C′ ⊆ ∆C . This can be achieved by simply

removing any constraints with respect to the dimensions d ∈ ∆C \∆C′

from its support points p+ and p−.

Definition 3.8 (Projection of a Cuboid)

Let C = ⟨∆C , p
−, p+⟩ be a cuboid defined on ∆C . The projection P (C,∆C′

of this cuboid onto a subspace ∆C′ ⊆ ∆C is defined as the cuboid C ′ =
⟨∆C′ , p−

′
, p+

′⟩, whose support points are defined as follows (using DC =⋃︁
δ∈∆C

δ and DC′ =
⋃︁
δ∈∆C′ δ):

∀d ∈ DC′ : p−
′

d = p−d ∧ p+′

d = p+d

∀d ∈ D \DC′ : p−
′

d = −∞∧ p+′

d = +∞

We can now define the projection P (S,∆S′) of a core S onto domains Projecting a core

∆S′ ⊆ ∆S by simply projecting all of its cuboids individually.

Definition 3.9 (Projection of a Core)

Let S = ⟨∆S , {C1, . . . , Cm}⟩ be a core. Let C ′
i = P (Ci,∆S′) be the pro-

jection of Ci onto the domains ∆S′ ⊆ ∆S . Then, S′ = P (S,∆S′) =
⟨∆S′ , {C ′

1, . . . , C
′
m}⟩ is the projected version of S.

One can easily show that P ′ =
⋂︁m
i=1C

′
i ̸= ∅ is the projected version of Intersecting

complementary

projections of cores

P =
⋂︁m
i=1Ci ̸= ∅. Moreover, projecting any geometric region onto two

complementary subspaces and then intersecting these projections again

in the original space yields in general a superset of the original region.

We can show that the projection of cores together with our intersection

operation from Section 3.1.1 also respects this general observation:

Proposition 3.2 (Intersection of Projections of Cores)

Let S = ⟨∆S , {C1, . . . , Cm}⟩ be a core, and let S1 = P (S,∆1) and S2 =
P (S,∆2) be its projections, where ∆1 ∪∆2 = ∆S and ∆1 ∩∆2 = ∅. Then,

S ⊆ S′ = I(S1, S2).

Proof. See Appendix B.3.

In order to project a concept
˜︁S, we also need to decide how to Projecting a concept

update the weights W , the sensitivity parameter c, and the maximal

membership µ0. We propose to apply only minimal changes:

Definition 3.10 (Projection of a Concept)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept and ∆S′ ⊆ ∆S a subset of its domains.

The projection of
˜︁S on ∆S′ is defined as P (˜︁S,∆S′) = ⟨S′, µ0, c,W

′⟩ with

S′ = P (S,∆S′) and W ′ =

⟨︄{︃
|∆S′ | · wδ∑︁

δ′∈∆S′ wδ′

}︃
δ∈∆S′

, {Wδ}δ∈∆S′

⟩︄
.

In Definition 3.10, we obtain the new core by a projection of the Interpretation

original core, and we leave the maximal membership µ0, the sensitiv-

ity parameter c, and the dimension weights Wδ unchanged. Only the

domain weights are updated in such a way that their normalization

constraint is fulfilled.



126 operations for combining concepts

Our definition of the projection operation differs from the usualOur projection and

the standard

projection of fuzzy

sets

approach to projecting a fuzzy set
˜︁A from a space d1 × · · · × dn to a

subspace d1 × · · · × dl (with l < n). In the standard notion of projection,

one takes the minimum over all possible coordinates on the dimensions

to be removed:

Definition 3.11 (Fuzzy Projection)

Let
˜︁A be a concept defined on a space d1 × · · · × dn. Its projection

˜︁A ↓
(d1 × · · · × dl) to a subspace d1 × · · · × dl (with l < n) is defined as follows:

µ ˜︁A↓(d1×···×dl)(x1, . . . , xl) = max
(xl+1,...,xn)
∈dl+1×···×dn

µ ˜︁A(x1, . . . , xl, xl+1, . . . , xn)

Despite this difference, we can show that our definition of projectionA subsethood relation

always results in a subset of the standard fuzzy set projection.

Proposition 3.3 (Modified Projection as a Subset of Standard Projection)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept. Let ∆S′ ⊆ ∆S and let P (˜︁S,∆S′) =

⟨S′, µ0, c,W
′⟩ be the projection of

˜︁S onto ∆S′ . Let furthermore
˜︁S↓∆S′ be the

standard fuzzy set projection of
˜︁S onto the domains ∆S′ as defined above.

Then, P (˜︁S,∆S′) ⊆ ˜︁S↓∆S′ , i.e., ∀x ∈ CS : µ
P (˜︁S,∆S′ )

(x) ≤ µ˜︁S↓∆S′
(x).

Proof. See Appendix B.3.

Proposition 3.2 states that projecting a core onto two complementaryIntersecting

complementary

projections of

concepts

subspaces and then intersecting these projections in the original space

results in a superset of the original core. We can generalize Proposition

3.2 to concepts under one additional constraint:

Proposition 3.4 (Intersection of Projections of Concepts)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept, and let

˜︁S1 = P (˜︁S,∆1) and
˜︁S2 =

P (˜︁S,∆2) be its projections with ∆1 ∪ ∆2 = ∆S and ∆1 ∩ ∆2 = ∅. Let

furthermore
˜︁S′ = I(˜︁S1, ˜︁S2) as defined in Definition 3.2. If

∑︁
δ∈∆1

wδ = |∆1|
and

∑︁
δ∈∆2

wδ = |∆2|, then
˜︁S ⊆ ˜︁S′ = I(˜︁S1, ˜︁S2), i.e., ∀x ∈ CS : µ˜︁S(x) ≤

µ
I(˜︁S1,˜︁S2)

(x).

Proof. See Appendix B.3.

3.4.2 Implementation and Example

The subspace projection can be easily implemented by projecting theImplementation

concept’s cuboids onto the given subspace (see Definition 3.8) and

updating the domain weights according to Definition 3.10. We do not

provide a runtime analysis, since the implementation is computation-

ally straightforward.

Let us use the banana concept from Section 2.3.4 in order to il-Fruit space example

lustrate the projection operation. The banana concept is defined on

∆ = {δcolor, δshape, δtaste}. We will consider projections onto ∆1 =
{δcolor, δtaste} and ∆2 = {δshape}.
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

(0.50, 0.10, 0.35) (0.75, 0.30, 0.55)

banana ∆ (0.70, 0.10, 0.50) (0.80, 0.30, 0.70) 1.0 20.0 0.75 1.50 0.75

(0.75, 0.10, 0.50) (0.85, 0.30, 1.00)

(0.50,−∞, 0.35) (0.75,+∞, 0.55)

P (banana,∆1) ∆1 (0.70,−∞, 0.50) (0.80,+∞, 0.70) 1.0 20.0 1.00 – 1.00

(0.75,−∞, 0.50) (0.85,+∞, 1.00)

P (banana,∆2) ∆2 (−∞, 0.10,−∞) (+∞, 0.30,+∞) 1.0 20.0 – 1.00 –

(0.50, 0.10, 0.35) (0.75, 0.30, 0.55)

Intersection ∆ (0.70, 0.10, 0.50) (0.80, 0.30, 0.70) 1.0 20.0 1.00 1.00 1.00

(0.75, 0.10, 0.50) (0.85, 0.30, 1.00)

Table 3.5: Definition of the banana concept, its projections onto ∆1 =
{δcolor, δtaste} and ∆2 = {δshape} as well as the intersection of these

projections.

Table 3.5 shows the definition of the banana concept, its projections, Projecting the

banana concept
and their intersection. Figures 3.16, 3.17 and 3.18 illustrate these concepts

with screenshots of the ConceptInspector tool. As one can see by

looking at the salience weights, the intersection of the projections is not

identical to the original concept, even though their cores are identical.

Moreover, Proposition 3.4 is not applicable because its precondition with

respect to the domain weights is violated. In the code, the projections

and the subsequent intersection can be executed as follows:

>>> projection_1 = banana.project_onto({’color’:[0], ’taste’
:[2]})

>>> projection_2 = banana.project_onto({’shape’:[1]})
>>> intersection = projection_1.intersect_with(projection_2)
>>> print(intersection)
core: {[0.5, 0.1, 0.35]-[0.75, 0.3, 0.55],

[0.7, 0.1, 0.5]-[0.8, 0.3, 0.7],
[0.75, 0.1, 0.5]-[0.85, 0.3, 1.0]}

mu: 1.0
c: 20.0
weights: <{’color’: 1.0, ’taste’: 1.0, ’shape’: 1.0},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

3.5 axis-parallel cut

In a concept formation process, it might happen that over-generalized Axis-parallel cut for

creating sub-concepts
concepts are learned (e.g., a single concept that represents both dogs

and cats). If it becomes apparent that a finer-granular conceptualization

is needed, the system needs to be able to split its current concepts into

multiple parts. This could be achieved by partitioning the cuboids from

the concept’s core into multiple subsets, because these cuboids can be

thought of as building blocks of the conceptual region (cf. Section 2.3.2).

However, since these cuboids have a non-empty intersection (namely,

the central region P ), this approach always results in overlapping
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Figure 3.16: Screenshot of the ConceptInspector tool, illustrating the banana

concept in the example fruit space.
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Figure 3.17: Screenshot of the ConceptInspector tool, illustrating the pro-

jections of the banana concept onto the sets of domains ∆1 =
{δcolor, δtaste} (1) and ∆2 = δshape (2).
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Figure 3.18: Screenshot of the ConceptInspector tool, illustrating the inter-

section of the two projections of the banana concept.
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sub-concepts. In some cases, it may, however, be desirable to obtain

sub-concepts with non-overlapping cores. In order to accommodate this

need, we consider another relatively straightforward way of splitting a

concept, namely, by using a threshold on a single dimension. In Section

3.5.1, we show that this results in two valid concepts and in Section

3.5.2 we provide an illustrative example.

3.5.1 Definition

Let us first assume that we would like to split a given core into two Axis-parallel cut of a

core
parts based on a threshold value v on a given dimension d∗.

Definition 3.12 (Axis-Parallel Cut of a Core)

Let S = ⟨∆S , {C1, . . . , Cm}⟩ be a core, d∗ ∈ DS be any dimension and v be

any value on this dimension. The axis-parallel cut of S based on a threshold

value v for a dimension d∗ is given by S− = {x ∈ S | xd∗ ≤ v} and

S+ = {x ∈ S | xd∗ ≥ v}.

We denote this cut operation as S−, S+ = C(S, d∗, v). One can show Results are valid

cores
that both S−

and S+
are valid cores:

Proposition 3.5 (Cut of a Core Results in Cores)

Let S be a core and S−, S+ = C(S, d∗, v) its cut at a threshold value v on a

dimension d∗ ∈ DS . Then, both S−
and S+

are valid cores.

Proof. See Appendix B.4.

Please note that the cores S−
and S+

have a slight overlap: We had The resulting cores

overlap
to include x ∈ S with xd∗ = v into both S−

and S+
in order to obtain

valid cuboids, since cuboids are defined based on closed intervals. If

necessary, our definition could also be augmented by a separation

distance ϵ > 0, leading to a re-definition of S− = {x ∈ S | xd∗ ≤ v − ϵ
2}

and S+ = {x ∈ S | xd∗ ≤ v + ϵ
2}. For a small enough ϵ, this does not

influence the validity of our proof. Since we simply cut the core S
into two parts without applying any repair mechanism afterwards, the

union of the two parts is equal to the original set, i.e., S− ∪ S+ = S for

S−, S+ = C(S, d∗, v).

We can now define the axis-parallel cut
˜︁S+, ˜︁S− = C(˜︁S, d∗, v) of a Axis-parallel cut of a

concept
concept

˜︁S with respect to a dimension d∗ and a threshold v as follows:

Definition 3.13 (Axis-Parallel Cut of a Concept)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept. The axis-parallel cut

˜︁S+, ˜︁S− = C(˜︁S, d∗, v)
based on a threshold value v for a dimensiond∗ is given by

˜︁S− = ⟨S−, µ0, c,W ⟩
and

˜︁S+ = ⟨S+, µ0, c,W ⟩, where S−, S+ = C(S, d∗, v).

Please note that most parameters of
˜︁S remain unchanged, only the

cores are updated. One can therefore easily see that U(˜︁S−, ˜︁S+) = ˜︁S.
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

apple ∆ (0.65, 0.65, 0.40) (0.85, 0.80, 0.55) 1.0 20.0 0.50 1.50 1.00

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)˜︁S− ∆ (0.65, 0.65, 0.40) (0.80, 0.80, 0.55) 1.0 20.0 0.50 1.50 1.00

(0.70, 0.65, 0.45) (0.80, 0.80, 0.60)

(0.80, 0.65, 0.40) (0.85, 0.80, 0.55)˜︁S+ ∆
(0.80, 0.65, 0.45) (1.00, 0.80, 0.60)

1.0 20.0 0.50 1.50 1.00

Table 3.6: Definition of the apple concept as well as its two sub-concepts
˜︁S−

and
˜︁S+

obtained by applying an axis-parallel cut on dhue.

3.5.2 Implementation and Example

Again, the implementation is quite straightforward and basically fol-Implementation

lows Definition 3.13 and the proof of Proposition 3.5: If applicable,

the cuboids of the concept’s core are split, while all other parameters

remain unchanged. A runtime analysis is therefore again not expected

to result in any interesting insights and was therefore omitted.

In order to illustrate the cut operation, let us assume that the conceptFruit space example

of apple should be split up because separate concepts greenApple and

redApple are more useful in the given application context. Using the

axis-parallel cut, we can split the concept
˜︁Sapple at a hue value of 0.8,

resulting in the two child-concepts
˜︁S−

and
˜︁S+

, which are defined in

Table 3.6 and illustrated in Figures 3.19 and 3.20.

As one can see, two cuboids of the original concept are split, whileInterpretation

the third one remains intact. The cores of the two concepts
˜︁S−

and˜︁S+
touch at dhue = 0.8. If the concepts are updated in the future (e.g.,

by a clustering algorithm), their cores might, however, start to move

away from each other. In our implementation, the cut operation can be

invoked as follows:

>>> s1, s2 = apple.cut_at(0, 0.8)
>>> print(s1)
core: {[0.5, 0.65, 0.35]-[0.8, 0.8, 0.5],

[0.65, 0.65, 0.4]-[0.8, 0.8, 0.55],
[0.7, 0.65, 0.45]-[0.8, 0.8, 0.6]}

mu: 1.0
c: 20.0
weights: <{’color’: 0.5, ’taste’: 1.0, ’shape’: 1.5},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

>>> print(s2)
core: {[0.8, 0.65, 0.4]-[0.85, 0.8, 0.55],

[0.8, 0.65, 0.45]-[1.0, 0.8, 0.6]}
mu: 1.0
c: 20.0
weights: <{’color’: 0.5, ’taste’: 1.0, ’shape’: 1.5},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>
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Figure 3.19: Screenshot of the ConceptInspector tool, illustrating the apple

concept in the example fruit space.
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Figure 3.20: Screenshot of the ConceptInspector tool, illustrating the two

resulting sub-concepts
˜︁S−

(1) and
˜︁S+

(2) after applying the cut

operation on the hue dimension.
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3.6 supported applications

We now sketch how the operations defined in this chapter can be applied Overview

in cognitive tasks. In Section 3.6.1, we consider concept formation (to

be introduced more thoroughly in Chapter 7) as an important learning

process. In Section 3.6.2, we then elaborate on concept combination,

which can be interpreted as a reasoning process.

3.6.1 Concept Formation

Concept formation is an incremental clustering process, which extracts Concept formation as

incremental

clustering

a conceptual hierarchy from individual observations [164]: The system

is faced with a stream of unlabeled observations and tries to find mean-

ingful concepts by grouping these observations into clusters. These

clusters are usually based on the similarity of the observations they

contain. In our case, each cluster can be represented as a fuzzy concept

according to Definition 2.14. After each observation, the set of clusters

is updated. In the following, we consider different types of incremental

modifications and argue that they are supported by our formalization.

In the initial state of the concept formation algorithm, there are not Creating a new

cluster
yet any clusters. As soon as some observations have been made that are

reasonably similar to each other, they can be replaced by a summary

description, i.e., a cluster. In our case, one would need to create a new

concept
˜︁S = ⟨S, µ0, c,W ⟩ based on this set of observations. The core

S of this new concept can be initialized with a single cuboid which is

the bounding box of the observations. The maximal membership µ0
can be set to 1 and both the sensitivity parameter c and the weights W
can be estimated based on the distribution of the observations in the

conceptual space (cf. Section 2.3.3).

Moreover, the clustering algorithm might erroneously create a cluster Deleting an old

cluster
for a group of observations which are only outliers. At some point, it

might become clear that this cluster is irrelevant and should be deleted,

for instance, because it has not played any role for classifying novel

observations for a long period of time. The deletion can be trivially

achieved by removing an existing concept from the list of concepts

under consideration.

Whenever a new observation is made, one or more clusters may be Adjusting the

location, form, or size

of a cluster

updated by moving them, resizing them, or by changing their form.

These modifications of existing clusters are performed to ensure that the

clusters reflect the distribution of observations well. In our formalization,

this can be done by moving and resizing a concept’s cuboids Ci (more

specifically their support points p−i and p+i ), and by adding or removing

cuboids. During these modifications, one needs of course to ensure that

the intersection of the cuboids stays non-empty. One can also change a

concept’s sensitivity parameter c in order to control the overall degree of

fuzziness. In addition, a concept’s weights W for the different domains

and dimensions can be modified to control its narrowness with respect
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to different domains and dimensions. While all of these modifications

are easily possible, there is no dedicated operation that specifies which

exact modifications should be applied under which circumstances.

If a cluster grows too large, it might become too general to beSplitting a cluster

into sub-clusters
useful. For instance, a single cluster may be used to represent both

lemon and orange. If it becomes apparent that a more fine-granular

distinction is needed (e.g., because predictions made based on the

cluster membership are not accurate or fine-grained enough), the given

cluster may be split into two sub-clusters. One can identify a suitable

dimension and a suitable threshold on that dimension and apply the

axis-parallel cut introduced in Section 3.5.

Also the opposite case might occur in practice: The current clusteringMerging neighboring

clusters
might be too fine-grained, e.g., by distinguishing different subtypes

of apple even though it suffices for the current application context to

make distinctions on a higher level, e.g., between apple and pear. In this

case, the clustering can be improved by merging neighboring clusters

and obtaining a single, more coarse-grained cluster. Merging neighbor-

ing clusters is supported by the union operation as defined in Section 3.2.

As we can see from this brief discussion, many important updateOutlook

steps are in principle supported by our formalization. In addition to

direct modifications of a concept’s parameters, especially the cut and

union operations can be useful for controlling the concept inventory’s

overall level of granularity. What is still missing, however, are guidelines

on when to apply which type of modification. We will comment on this

issue in Chapter 4 in the context of formal ways for measuring relations

between concepts. We will furthermore introduce three example con-

cept formation algorithms from the literature in Chapter 7 with their

respective control strategies.

3.6.2 Concept Combination

As already argued in Section 1.1.2, the process of combining differentConcept combination

à la Gärdenfors
concepts into novel ones is an important aspect of concept usage [189].

In Sections 2.4.2 and 2.5.3, we have encountered the formalization of

the conceptual spaces framework by Lewis and Lawry [253], which

explicitly targets conjunctive concept combinations. In the following,

we will, however, focus on the original proposals by Gärdenfors [179,

Section 4.4] for modeling adjective-noun combinations like green apple

or blue banana within the conceptual spaces framework. He argues

that they can be expressed by combining properties with concepts. In

the following, we argue that his approach can be easily implemented

with our formalization.

In examples like green banana, brown apple, and yellow book,Adjective and noun

are compatible
adjective and noun are compatible, since they do not contain contradictory

information: The cores of green and brown have a nonempty intersection

with the projections of the cores of banana and apple onto the color
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domain, respectively, and book is not defined on the color domain

at all. In these cases, green, brown, and yellow narrow down the

color information associated with the concepts banana, apple, and

book, respectively. Based on the correlations encoded in the concepts

representing the noun, this may result in further updates to other

domains (e.g., a green banana is not expected to have a sweet taste).

In our formalization, this "narrowing down" can be implemented by

simply intersecting the property with the concept, using the modified

intersection from Section 3.1.2.

If adjective and noun are incompatible, they contain conflicting in- Adjective and noun

are incompatible
formation on at least one domain. This includes examples like blue

banana: The projection of the core of the banana concept onto the

color domain does not intersect with the core of the property blue.

Moreover, their fuzzy intersection is expected to have a rather low value

for µ0. In this case, we should replace the color region of the banana

concept with the blue region. In our formalization, we can achieve this

by first removing the color domain from the banana concept (through a

subspace projection onto all domains but the color domain, cf. Section

3.4.1) and by then intersecting this intermediate result with blue, using

our modified intersection from Section 3.1.2.

In examples like tall jockey, the interpretation of the adjective The adjective is

inherently relative
depends on the context in which it is used: A tall jockey is in general

still shorter than a short basketball player. The properties tall and

short refer to the upper and the lower parts of the height dimension,

but they need to be adapted to their so-called contrast class. In order to

apply tall to jockey, we thus first need to resize the height scale (and

thus also the region of tall) to the area on which jockey is defined.

Only after this adaption, we can compute the intersection of these two

regions. Please note that this explicit resizing of the height dimension

differs from the approach of Dessalles [124], who proposes to compute

the contrast vector between a given observation and the prototype of

the respective concept (cf. Section 2.4.1). If this contrast vector has a

large positive entry for the height dimension, then the property tall

is applicable. Since Dessalles’ approach considers points rather than

regions, we follow Gärdenfors’ original proposal which is more directly

applicable to our region-based formalization.

In examples such as red wine or red hair, the adjective red is not The adjective should

be interpreted as

relative in the

current context

used in an absolute sense: red wine is actually purple and red hair is

actually copper. Gärdenfors argues that in these cases, red should be

interpreted as a relative adjective. This implies that the same resizing

as for tall would need to happen – now, however, for the whole color

domain. Once it is resized to fit the region occupied by wine or hair,

we can again compute the intersection of these two regions. One may

criticize that it remains somewhat unclear in which cases an adjective

should be interpreted as being relative (e.g., red hair) and in which

cases a literal interpretation is more appropriate (e.g., red apple). The

approach by Dessalles [124] does not face this criticism, since it always

makes use of contrast vectors and thus treats all adjectives as relative.
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

(0.50, 0.10, 0.35) (0.75, 0.30, 0.55)

banana ∆ (0.70, 0.10, 0.50) (0.80, 0.30, 0.70) 1.0 20.0 0.75 1.50 0.75

(0.75, 0.10, 0.50) (0.85, 0.30, 1.00)

green {δcolor} (0.45,−∞,−∞) (0.55,+∞,+∞) 1.0 40.0 1.00 – –

blue {δcolor} (0.20,−∞,−∞) (0.30,+∞,+∞) 1.0 40.0 1.00 – –

Table 3.7: Definitions of the banana concept and the properties green and

blue for the concept combination example.

At this point, we would also like to refer to Murphy [298, ChapterMore complex cases

12] who points out that there are many more cases of modifier-head

constructions such as atomic engineer, corporate lawyer or movie

psychiatrist, which cannot be easily modeled in an intersection-based

way as discussed above (cf. Section 1.1.2). For the sake of simplicity, we

do not consider these more complex cases for our current discussion

and refer the interested reader to Gärdenfors’ comments on such types

of concept combinations in [181, Chapter 13] and [179, Chapter 4].

Instead, we illustrate the first two cases (compatible and incompatibleFruit space example:

green banana...
adjective-noun pairs for non-relative adjectives) by considering the

examples green banana and blue banana in our example fruit space

from Section 2.3.4. Table 3.7 shows the definitions of the banana concept

and the properties green and blue. As one can easily see, the intersection

of the cores of
˜︁Sgreen and

˜︁Sbanana is not empty, i.e., the property and the

concept are compatible. We can thus derive
˜︁Sgreen banana as follows:

>>> green_banana = banana.intersect_with(green)
>>> print(green_banana)
core: {[0.5, 0.1, 0.35]-[0.55, 0.3, 0.55]}
mu: 1.0
c: 20.0
weights: <{’color’: 0.84, ’taste’: 0.72, ’shape’: 1.44},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

On the other hand, the intersection of the cores of
˜︁Sblue and

˜︁Sbanana... and blue banana

is empty, i.e., the property and the concept are incompatible. We thus

need to first project the banana concept onto ∆′ = {δshape, δtaste} before

intersecting it with the property blue:

>>> tmp = banana.project_onto({’shape’:[1], ’taste’:[2]}
>>> blue_banana = tmp.intersect_with(blue)
>>> print(blue_banana)
core: {[0.2, 0.1, 0.35]-[0.3, 0.3, 0.55],

[0.2, 0.1, 0.5]-[0.3, 0.3, 1.0]}
mu: 1.0
c: 20.0
weights: <{’taste’: 0.6666666666666666, ’color’: 1.0,

’shape’: 1.3333333333333333},
{’taste’: {2: 1.0}, ’color’: {0: 1.0}, ’shape’: {1: 1.0}}>
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Figure 3.21: Screenshot of the ConceptInspector tool, illustrating the original

concepts banana (1), green (2), and blue (3) used for the concept

combination example.
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Figure 3.22: Screenshot of the ConceptInspector tool, illustrating the original

banana cocnept (1) and the combined concepts green banana (2)

and blue banana (3).
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Figures 3.21 and 3.22 illustrate the original and the resulting concepts, Visualization and

interpretation
respectively. As one can see, in the case of green banana, we get a much

narrower area with respect to the sweetness dimension than in the case

of blue banana. This illustrates that the correlations between different

domains can play an important role (cf. Sections 1.1.2 and 2.2.1: A green

banana comes with a clear expectation about its taste, while we cannot

make such predictions for a blue banana.

Banaee et al. [26, 27] consider the somewhat inverse problem of Generating a verbal

description as inverse

concept combination

generating descriptions for unknown observations (cf. Section 1.2.5):

Instead of using a verbal description to narrow down the conceptual

region according to the concept combination procedure from above,

they start with a point in the conceptual space and try to find a verbal

description using a combination of existing concepts.

Banaee et al. propose to check for each domain individually whether The approach

the new observation is contained in any conceptual region. If this

is not the case, they compute the distance to the closest conceptual

regions. The membership and distance information is then used to

generate phrases like "The observation is similar to X, but very Y and

a bit Z." where X is a concept (i.e., a region in the conceptual space),

and Y and Z are properties (which in their approach are defined as

intervals on individual dimensions of the conceptual space) in which

the given observation differs from the given concept X.
7

Banaee et al.

were able to show that the descriptions generated by their system are

sufficient for humans to select the correct stimulus among a given set

of candidates. Moreover, the descriptions of their system involve both

concepts and properties, which was rated as more helpful by users

than the descriptions of two other competitor systems which used only

concepts and only properties, respectively.

In principle, this procedure is also supported by our formalization: Description

generation with our

formalization

By computing the membership of a given new observation to all the

concepts, one can select the best matching concept (or none, if all

membership values are small). If the match was not perfect (indicated

by a membership value below a certain threshold), one can look at the

domains that contribute most to the mismatch. This can for instance

be done by projecting the concept onto each individual domain and

computing the membership of the given observation to the projected

concepts. Also a contrast vector approach (using the closest point in the

concept’s core) could be implemented to this end. In these domains, the

properties to which the observation has the highest membership can be

used for enriching the description. While we have not conducted any

experiments in this direction, we think that in principle it is possible to

devise a procedure similar to the one proposed by Banaee et al. using

our formalization of conceptual spaces.

7 This difference-based description is somewhat reminiscent of the contrast vector

approach by Dessalles [124] (see Section 2.4.1).
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Formali-

zation

Inter-

section

Union Negation

Subspace

Projection

Axis-

Parallel

Cut

Aisbett

and

Gibbon

[11]

(–) (–) – (–) (–)

Raubal

[327]

– – – – –

Ahlqvist

[10]

(–) (–) – (–) (–)

Rickard

[329]

– – – (–) –

Rickard et

al. [330]

– – – (–) –

Adams

and

Raubal [3]

✓ (–) – (–) (–)

Lewis and

Lawry

[253]

✓ – – (–) (–)

Our For-

malization

✓ ✓ – ✓ ✓

Table 3.8: Overview of different formalizations of the conceptual spaces frame-

work based on their supported operations on concepts ("✓" means

"available", "–" means "not available", and "(–)" means "could be

easily added").

Just as for the concept formation scenario, also our discussion of con-Outlook

cept combination is necessarily brief and of limited depth. Nevertheless,

we were able to sketch how some of the important mechanisms can

be in principle mapped onto our formalization, using the intersection

and projection operations from Sections 3.1.2 and 3.4.1, respectively.

Needless to say, these sketched proposals need to be implemented and

tested in the future to obtain empirical support.

3.7 comparison to other formalizations

Table 3.8 summarizes the availability of different concept creation andOverview

concept combination operations in different formalizations of the con-

ceptual spaces framework that we introduced in Section 2.4.2. From all

operations we consider, only the intersection is explicitly implemented

in some of the formalizations from the literature. Union, subspace

projection, and axis-parallel cut are never considered explicitly, but can

be quite easily added to many of the formalizations. The negation oper-

ation is inherently difficult for the general conceptual spaces approach

and can thus not successfully be addressed in any of the formalizations.

Let us now look at the individual formalizations in more detail.
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The formalization by Aisbett and Gibbon [11] describes concepts as Aisbett and Gibbon:

operations could be

easily added

convex regions in pointed metric spaces. It is mostly concerned with

the interplay of symbols and geometrically represented concepts in

a dynamic system and does not explicitly provide any constructive

operations for combining concepts. However, both the intersection

of conceptual regions and the projection of conceptual regions onto

individual domains are used at various points of their work and could

therefore easily be formalized as explicit operations. As properties

in their formalization can consist of either a single region ("natural

property") or a set of regions ("complex property"), a union of multiple

properties or concepts also does not seem to be problematic. Finally,

also an axis-parallel cut which divides a given concept into two parts

based on a threshold on a single dimension can in principle be applied

to their representation, as the resulting regions are still guaranteed to

remain convex. While no explicit operations are provided, they could

thus be easily added.

Since Raubal’s formalization [327] does not give a mathematical Raubal: no

operations at all
definition for properties and concepts, it also does not contain any

combination operations on concepts. Also adding such operations is

not possible unless concepts and properties are properly formalized.

Ahlqvist’s formalization [10] (which is based on rough fuzzy sets) Ahlqvist: adding

standard fuzzy set

operations

does not define any combination operations on concepts. One can,

however, imagine relatively straightforward definitions for intersection

and subspace projection based on the standard definitions for fuzzy

sets (cf. Sections 3.1.2 and 3.4.1) The intersection of two concepts can

be defined as the intersection of the respective rough fuzzy sets, and a

subspace projection can be implemented by removing the respective

domains from the given concept. Since Ahlqvist’s formalization does

not explicitly require concepts to be convex or even connected, the

result of the union operation does not need to fulfill any particular

constraints. Thus, also a union of concepts can be easily added based on

the respective definition for fuzzy sets (cf. Section 3.2.1. Finally, also an

axis-parallel cut could be incorporated by modifying the membership

functions of the rough fuzzy set in an appropriate way. While the

formalization itself does not come with any operations, it can thus be

easily extended based on fuzzy set theory.

The formalization by Rickard [329] represents concepts as co-occurrence Rickard:

co-occurrence

matrices are too

inflexible

matrices of properties. It does not explicitly define any generative op-

erations on concepts. One could, however, imagine that a subspace

projection can be achieved by simply removing the rows and columns of

the co-occurrence matrix which represent properties from the domain

one wishes to remove. Intersection and union of concepts would need to

operate on the respective co-occurrence matrices. If the original observa-

tions used to estimate the co-occurrence statistics are still available, one

could compute the co-occurrence values for the intersection and union

of the observations, respectively. If, however, only the co-occurrence
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matrices are given, a proper transformation reflecting the intersection

or union of the concepts may be more difficult to obtain. Finally, an

axis-parallel cut would correspond to splitting one property into two

parts which in turn would modify the number of properties used in

all co-occurrence matrices. Thus, an axis-parallel cut applied to one

concept
˜︁S would potentially also influence other concepts

˜︁S′ ̸= ˜︁S. It

therefore seems that an axis-parallel cut cannot be easily added to

Rickard’s formalization.

As the formalization by Rickard et al. [330] is quite similar to Rickard’sRickard et al.: same

criticism as for

Rickard

proposal [329], the comments made above directly apply to this formal-

ization as well. Although Rickard et al. define an intersection operation

for properties, this operation cannot be easily generalized to concepts,

because concepts and properties are represented in different ways. Both

the formalizations by Rickard [329] and by Rickard et al. [330] are thus

not capable of providing many of the operations under consideration

due to the representation of concepts as co-occurrence matrices.

Adams and Raubal [3] define concepts by using one convex polytopeAdams and Raubal:

intersection available,

others can be easily

added

per domain. Their formalization also provides some constructive opera-

tions on concepts, namely the intersection of convex polytopes and the

conjunctive combination of concepts discussed in Section 3.6.2. While

not being formalized, one can easily imagine definitions for union,

subspace projection, and axis-parallel cut: The union operation can

for instance be implemented by computing the convex hull of the two

original polytopes for each domain. The subspace projection can be

formalized by removing the convex polytopes of the domains to be

eliminated from the given concept. Finally, the axis-parallel cut can be

realized by adding another hyperplane to two copies of the original

polytope. The resulting regions are still guaranteed to be convex poly-

topes. Overall, this formalization provides an explicit definition of the

intersection operation, and could be easily extended to include most of

the other operations as well.

Lewis and Lawry [253] use random sets for representing both proper-Lewis and Lawry:

only union and

negation difficult to

add

ties and concepts. They focus their formalization on conjunctive concept

combination. An intersection of concepts is just a special case of this

conjunctive concept combination (namely, when both concepts are

defined on the same set of underlying domains) and is thus available

in their formalization. A union of concepts, however, cannot be easily

added to their formalization as it might lead to non-convex results.

Again, a subspace projection is not explicitly formalized, but could

potentially be implemented by removing the respective domains from

a concept’s definition. An axis-parallel cut would mainly change one

of the properties based on which a concept is defined. One would

then need to replace this property in the respective combination space,

which seems to be a feasible extension of their formalization.

Finally, our own formalization includes almost all operations listed inOur own

formalization
Table 3.8. Like all other formalizations, we are, however, unable to give a
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meaningful definition for conceptual negation. As argued in Section 3.3

this problem is caused by adopting a geometric approach of knowledge

representation based on Minkowski metrics and by requiring concepts

to be star-shaped. It is thus an inherent shortcoming of the overall

conceptual spaces approach. Nevertheless, Table 3.8 illustrates that our

proposed formalization covers a wider variety of generative conceptual

operations than any of the previous formalizations.

3.8 summary

In this chapter, we have extended our formalization of the conceptual Lessons learned

spaces framework with a comprehensive set of operations for creating

new concepts based on existing ones. Each of these operations has

been included in our implementation, and example usages have been

illustrated. Moreover, we have argued that this set of operations is useful

for carrying out learning tasks like concept formation and reasoning

tasks like concept combination.

The work presented in this chapter leaves open various strands of Open ends

future research: With respect to the intersection and union operations,

we have argued to use a simple midpoint heuristic for restoring star-

shapedness. The exact implications of using this heuristic versus a

numerical optimization for finding the optimal solution are unclear

and should be investigated. From an implementational point of view,

also the runtime of the intersection operation urges for further improve-

ments. Furthermore, we observed that the union of lemon and orange

yields unintuitive results and explained this by the very simplified

structure of the conceptual fruit space. This of course calls for more

complex conceptual spaces to be used as further test cases for all the

operations defined in this chapter. Moreover, our formalization is so far

lacking a meaningful negation operation. Given that this is an inherent

weakness of the conceptual spaces framework itself, it might also be a

worthwhile avenue of future research that would not only benefit our

formalization, but the conceptual spaces community as a whole. Finally,

although we have argued in Section 3.6 that the operations presented in

this chapter are useful for both learning and reasoning processes, this

has to be supported with empirical evidence from actual applications.

Although the operations defined in this chapter can be applied to any Outlook

concepts (e.g., by taking the union of the concepts chair and jockey),

there need to be some constraints that indicate whether applying

this operator is actually cognitively plausible and meaningful. These

constraints could for instance be based on the number of shared domains

and on the similarity of the original concepts. In Chapter 4, we will

define several ways of measuring relations between concepts, which

can potentially be used for making such decisions.
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So far, we have developed mathematical definitions for conceptual Motivation

spaces and concepts (Chapter 2) as well as operations for creating new

concepts based on existing ones (Chapter 3). In this chapter, we provide

formal ways of measuring the relations between different concepts.

These relations can be used for various types of commonsense reason-

ing, and for deciding whether or not one of the operations from Chapter

3 should be applied to a given concept.

The size of a conceptual region gives an intuition about its position Size

in the conceptual hierarchy: If the conceptual region is quite small,

then only few observations belong to this concept, hence it is quite

specific (such as Granny Smith). On the other hand, if the conceptual

region is very large, then it includes many possible observations (such

as fruit). While the absolute size of a conceptual region may not be

very informative, comparing the size of different conceptual regions to

each other gives an impression of their relative level of generality. In

Section 4.1, we therefore develop an analytical solution for computing

the size of a fuzzy conceptual regions as defined in Chapter 2.

147
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Also the geometric notion of subsethood can be related to conceptualSubsethood

hierarchies: Since the region representing Granny Smith is a subset of

the region representing apple, we know that all observations that belong

to the Granny Smith concept also belong to the apple concept. This

means that Granny Smith is a subordinate concept (i.e., a specialization)

of apple. In Section 4.2, we therefore propose a way for measuring the

degree of subsethood between two concepts.

In many symbolic AI systems, rules in the form apple ∧ red ⇒ sweetImplication

play an important role. We have already discussed in Chapter 3 how

the logical conjunction and disjunction operators can be mapped onto

intersection and union, respectively. In Section 4.3, we argue that in the

context of conceptual spaces, the degree of implication between two

concepts can be equated with their degree of subsethood.

As we have stated earlier, conceptual spaces are based on the notion ofSimilarity

semantic similarity: Distance in the conceptual space is inversely related

to similarity. So far, we have only considered the similarity between

points in the conceptual space, i.e., between individual observations.

However, we may not only be interested in the particular similarity

between a specific apple and a specific pear, but in the general similarity

of the underlying concepts apple and pear. In Section 4.4, we propose

two different definitions for conceptual similarity which both fulfill a

set of desirable properties.

In Chapter 2, we have used the ternary relation of geometric be-Betweenness

tweenness to define both convex and star-shaped sets. In the conceptual

spaces framework, geometric betweenness can be equated with concep-

tual betweenness which can help us to identify "intermediate" cases

between two observations. In Section 4.5, we generalize the notion of

betweenness from points in the conceptual space to concepts in order

to quantify to which degree master student is conceptually between

bachelor student and PhD student. This can be used for commonsense

reasoning, e.g., by concluding that all rules applying to both master

and PhD students should also apply to master students.

For each of these relations, we provide a mathematical definitionExamples,

application scenarios,

and related work

along with an illustrative example based on our fruit space from Section

2.3.4. We then illustrate their usefulness for practical applications in

Section 4.6. In Section 4.7, we compare our work to other existing

formalizations of the conceptual spaces framework before concluding

this chapter in Section 4.8.

The research contributions presented in this chapter have previously

been published in [41, 43, 46, 45].

4.1 concept size

The size of a conceptual region gives an intuition about the specificity ofSize as specificity of a

concept
this concept: Concepts represented by a large region are more general

than concepts represented by a small region. This is one obvious aspect

in which one can compare two concepts to each other. Moreover, the size
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of a concept indicates the average (or maximal) dissimilarity of any two

observations that belong to this region.
1

It therefore gives an indication

about the "coherence" of the region and hence about the concept’s

overall position in the concept hierarchy: Superordinate concepts tend

to be more heterogeneous than base level and subordinate concepts

[298, Chapter 7] (cf. also Section 1.1.2).

We follow a bottom-up approach for defining the size of a conceptual Overview

region by first considering the size of an individual α-cut of a fuzzified

cuboid in Section 4.1.1. In Section 4.1.2 we then integrate over all α-cuts

to compute the size of a fuzzified cuboid and use this to obtain a

closed formula for computing the size of a conceptual region. Finally,

we present both a runtime analysis of our implementation and an

illustrative example in Section 4.1.3.

4.1.1 The Size of a Fuzzified Cuboid’s α-Cut

In this section, we consider the fuzzified version
˜︁C of a cuboid C ∈ S, Fuzzified cuboids

which can be interpreted as a single-cuboid concept
˜︁C = ⟨C, µ0, c,W ⟩

and which has already been defined in Section 3.1.3:

Definition 3.4 (Fuzzified Cuboid)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept and C ∈ S be a cuboid from its core. Then,

the membership to the fuzzified cuboid
˜︁C is defined as follows:

µ ˜︁C(x) = µ0 ·max
y∈C

(︂
e−c·d

∆C
C (x,y,W )

)︂
Figure 4.1 illustrates the α-cut of a two-dimensional fuzzified cuboid Visualization˜︁C both under the Euclidean metric (a) and under the Manhattan metric

(b). As one can see, the area of these α-cuts can be divided into three

different components (I–III). Let us first consider only the Euclidean

case, i.e., Figure 4.1a, which is relevant if both dimensions belong to

the same domain δ.
The first component (I) corresponds to the crisp cuboid, which is Component I: crisp

cuboid
defined based on its support points p+ and p− (cf. Definition 2.8). Its

size can be computed as (p+1 − p−1 ) · (p
+
2 − p−2 ). If we introduce the

shorthand notation bd = p+d − p−d , the size VI of the first component can

be written as follows:

VI = b1 · b2 (4.1)

The second component (II) corresponds to points that violate the Component II:

differences on a

single dimension

cuboid inequalities with respect to a single dimension. For instance, the

right part of component II (i.e., the region labeled as IIa) corresponds

to points that are in the interval [p+1 , p
+
1 + ϕ] × [p−2 , p

+
2 ], i.e. all points

that are at most ϕ to the right of the cuboid. Remember from Lemma

2.4 that each α-cut can be interpreted as an ϵ-neighborhood of the

original cuboid C with ϵ = −1
c · ln

(︂
α
µ0

)︂
. We thus know that the distance

1 Thanks to Nina Poth for pointing this out to me.
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Figure 4.1: α-cut of a fuzzified cuboid under the Euclidean distance (a) and

the Manhattan distance (b), respectively.

between any point x in the region IIa and its closest point y ∈ C is

bounded by ϵ:

∀x ∈ [p+1 , p
+
1 + ϕ]× [p−2 , p

+
2 ] : ∃y ∈ C : d∆C

C (x, y) ≤ −1

c
· ln
(︃
α

µ0

)︃
Since we can always find a y ∈ C such that y2 = x2, we only needConsidering only d1

to look at differences with respect to the dimension d1. Therefore, the

distance can be written as follows:

dC(x, y) = wδ ·
√︁
w1 · (x1 − y1)2

Our ϕ corresponds to the largest distance with respect to the dimen-Constraints for ϕ

sion d1 that is allowed for an α-cut. That is, we look for ϕ = |x1 − y1|
such that the following equation holds:

wδ ·
√︁
w1 · ϕ2 = −1

c
· ln
(︃
α

µ0

)︃
Solving for ϕ yields the following result:Solving for ϕ

ϕ = − 1

c · wδ ·
√
w1

· ln
(︃
α

µ0

)︃
The size of component IIa can now be computed by multiplying itsThe size of

component IIa width and its height:

VIIa = (p+1 + ϕ− p+1 ) · (p
+
2 − p−2 )

= − 1

c · wδ ·
√
w1

· ln
(︃
α

µ0

)︃
· (p+2 − p−2 )

= − 1

c · wδ ·
√
w1

· ln
(︃
α

µ0

)︃
· b2

The size of component IIb is identical to VIIa , and analogously wePutting together the

pieces for component

II
find that VIIc = VIId = − 1

c·wδ·
√
w2

· ln
(︂
α
µ0

)︂
· b1. So the overall area that

is covered by all parts of component II can be written as follows:

VII = 2 ·VIIa+2 ·VIIc = −1

c
· ln
(︃
α

µ0

)︃
·
(︃

2 · b1
wδ ·

√
w2

+
2 · b2

wδ ·
√
w1

)︃
(4.2)
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The third component (III) consists of four parts that taken together Component III:

differences on both

dimensions

form an ellipse. The major axis of the ellipse has a radius equal to the

width of component IIa, and the minor axis of the ellipse has a radius

equal to the height of component IIc:

r1 = −1

c
· ln
(︃
α

µ0

)︃
· 1

wδ ·
√
w1
, r2 = −1

c
· ln
(︃
α

µ0

)︃
· 1

wδ ·
√
w2

The overall size of this ellipse can be expressed as follows: The size of the ellipse

VIII = π · r1 · r2 = π · ln
(︃
α

µ0

)︃2

· 1

c2 · w2
δ ·

√
w1 ·

√
w2

(4.3)

Having computed the size of the individual components in Equations Overall size of the

α-cut
4.1, 4.2, and 4.3, we can now describe the size of the overall α-cut:

V ( ˜︁Cα) = VI + VII + VIII

= b1 · b2 − 2 · 1
c
· ln
(︃
α

µ0

)︃
·
(︃

b1
wδ ·

√
w2

+
b2

wδ ·
√
w1

)︃
+ π · ln

(︃
α

µ0

)︃2

· 1

c2 · w2
δ ·

√
w1 ·

√
w2

(4.4)

If we now look at the Manhattan example (Figure 4.1b), where the Manhattan example

two dimensions belong to different domains δ1 ̸= δ2, we see that the

components I and II can be computed analogously to the Euclidean case.

However, under the Manhattan metric, the four parts of component III

do not form an ellipse. Instead, we have four triangles. The width of

each of these triangles corresponds to the radius of the major axis in

the Euclidean case. Correspondingly, their height is analogous to the

radius of the ellipse’s minor axis. We thus get the following formula for

the area enclosed by component III:

VIII = 4 · 1
2
· r1 · r2 = 2 · ln

(︃
α

µ0

)︃2

· 1

c2 · wδ1 ·
√
w1 · wδ2

√
w2

In the Manhattan case, we thus get the overall formula: Overall size

V ( ˜︁Cα) = VI + VII + VIII

= b1 · b2 − 2 · 1
c
· ln
(︃
α

µ0

)︃
·
(︃

b1
wδ2 ·

√
w2

+
b2

wδ1 ·
√
w1

)︃
+ 2 · ln

(︃
α

µ0

)︃2

· 1

c2 · wδ1 ·
√
w1 · wδ2

√
w2

(4.5)

When comparing Equations 4.4 and 4.5, we see that the most promi- Main difference:

component III
nent difference between the Manhattan and the Euclidean case concerns

component III. This difference is caused by the different forms of hy-

perballs under both metrics (illustrated in Figure 4.2a). In general, a

hyperball of radius r around a point p can be defined as the set of all

points with a distance of at most r to p:

H = {x ∈ CS | d(x, p) ≤ r}
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Figure 4.2: (a) A two-dimensional hyperball (i.e., a disk) under the Euclidean

metric (green, solid) and under the Manhattan metric (blue, dotted).

(b) Stretching the disks along a single dimension results in ellipses.

For different distance metrics the hyperballs resulting from thisHyperballs and

hyperellipses
definition have a different shape: They are round for the Euclidean

metric and diamond-shaped for the Manhattan metric. By stretching

these hyperballs, one can obtain hyperellipses (see Figure 4.2b). It is

easy to see that component III corresponds to such an ellipse in both

the Euclidean and the Manhattan case. This stretching is based on

the salience weights W . For instance, in Figure 4.1a, we assume that

wd1 < wd2 which means that we allow larger differences with respect

to d1 than with respect to d2. This causes the hyperball representing

component III to be stretched along d1, thus obtaining the shape of a

horizontal ellipse.

Looking closer at Figure 4.1, we can observe that the other twoComponents as

extruded ellipses
components can also be described by ellipses: Component I is a zero-

dimensional ellipse (i.e., a point) that was extruded in two dimensions

with extrusion lengths of b1 and b2, respectively. Component II consists

of two one-dimensional ellipses (i.e., line segments) that were extruded

in one dimension. Finally, component III consists of a single two-

dimensional ellipse that was not extruded at all.

Let us denote by∆{d1,...,di} the domain structure obtained by eliminat-Notation for

domains...
ing from ∆ all dimensions d ∈ D \ {d1, . . . , di}. The following example

illustrates this notation:

∆ = {{d1, d2, d3}, {d4}, {d5, d6}}
∆{d1,d2,d3} = {{d1, d2, d3}}
∆{d1,d2,d5} = {{d1, d2}, {d5}}
∆{d2,d4,d6} = {{d2}, {d4}, {d6}}

Moreover, let V (r,∆,W ) be the size of a hyperball with radius r in a... and hyperballs

space specified by the domain structure ∆, that was stretched according

to the weights in W (thus potentially taking the form of an ellipse).
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Based on our observations about the three components of
˜︁Cα in the α-cut as union of

extruded ellipses
two-dimensional case, we can now write V ( ˜︁Cα) as follows:

V ( ˜︁Cα) = V

(︃
−1

c
· ln
(︃
α

µ0

)︃
,W,∆∅

)︃
· b1 · b2

+ V

(︃
−1

c
· ln
(︃
α

µ0

)︃
,W,∆{d1}

)︃
· b2

+ V

(︃
−1

c
· ln
(︃
α

µ0

)︃
,W,∆{d2}

)︃
· b1

+ V

(︃
−1

c
· ln
(︃
α

µ0

)︃
,W,∆

)︃
(4.6)

One can generalize this formula to higher dimensions: Arbitrary number of

dimensions

V ( ˜︁Cα) = n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

bd

⎞⎟⎟⎠
·V
(︃
−1

c
· ln
(︃
α

µ0

)︃
,∆{d1,...,di},W

)︃)︃
(4.7)

The outer sum of Equation 4.7 runs over the number n of dimensions Interpretation

with respect to which a given point x ∈ ˜︁Cα lies outside of C. We then

sum over all combinations {d1, . . . , di} of dimensions for which this

could be the case, compute the volume V (·, ·, ·) of the i-dimensional

hyperball under these dimensions, and extrude this intermediate result

in all remaining dimensions by multiplying with

∏︁
d∈D\{d1,...,di} bd.

Let us illustrate Equation 4.7 for the α-cuts from Figure 4.1: For i = 0, Two-dimensional

example
we can only select the empty set for the inner sum, so we end up with

b1 · b2, which is the size of the original cuboid (i.e., component I). For

i = 1, we can either pick {d1} or {d2} in the inner sum. For {d1}, we

compute the size of the left and right part of component II by multi-

plying V
(︂
−1
c · ln

(︂
α
µ0

)︂
,∆{d1},W

)︂
(i.e., their combined width) with b2

(i.e., their height). For {d2}, we analogously compute the size of the

upper and the lower part of component II. Finally, for i = 2, we can only

pick {d1, d2} in the inner sum, leaving us with V
(︂
−1
c · ln

(︂
α
µ0

)︂
,∆,W

)︂
,

which is the size of component III. As one can thus see, Equation 4.7

results in Equation 4.6 in the two-dimensional case, which covers both

Equations 4.4 and 4.5 as manually derived earlier.

If all dimensions belong to the same domain (i.e., ∆ = {{d1, . . . , dn}} Hyperballs under the

combined metric
or if all dimensions belong to different domains (which corresponds to

∆ = {{d1}, . . . , {dn}}), it is quite straightforward to computeV (r,∆,W ):
One can simply use the size of a stretched Euclidean or Manhattan

hyperball (see, e.g., [426]). However, when we consider cuboids with a

dimensionality of n ≥ 3, we in general need to deal with the combined

metric dC from Definition 2.7.
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Figure 4.3: (a) Illustration of a three-dimensional fuzzified cuboid’s α-cut

in a space consisting of two domains. (b) A hyperball in a three-

dimensional space with two domains has the shape of a double

cone.

Figure 4.3a illustrates parts of a three-dimensional fuzzified cuboid’sA three-dimensional

example α-cut in a space with a domain structure ∆ = {{d1, d2}, {d3}}. As

one can see, this α-cut can be again described as a set of extruded

ellipses: The blue cuboid (labeled as I) is the original cuboid itself

(i.e., a zero-dimensional ellipse extruded in three dimensions) and the

green cuboids (II) are parts of one-dimensional ellipses extruded in

two additional dimensions. The yellow shapes (III) are parts of two-

dimensional ellipses extruded in one additional dimension
2
, and the

red shape (IV) is a part of a three-dimensional ellipse. It is interesting to

observe that the three-dimensional ellipse under the combined metric

in this case has the shape of a double cone (illustrated in Figure 4.3b).

The following proposition gives us a general way of computing theHyperball volume

under d∆C without

salience weights

size of a hyperball under the combined metric d∆C , independent of the

underlying domain structure. It makes use of Euler’s gamma function

Γ(z) =
∫︁∞
0 xz−1e−xdx, which can be interpreted as a generalization of

the factorial to real values, since ∀n ∈ N : Γ(n) = (n− 1)!.

Proposition 4.1 (Volume of a Hyperball without Salience Weights)

The size of a hyperball with radius r in a space with the combined metric d∆C ,

the domain structure ∆, and without domain and dimension weights can be

computed in the following way, where n is the overall number of dimensions, nδ
is the number of dimensions in domain δ, and Γ(·) is Euler’s gamma function:

V (r,∆) =
rn

n!

∏︂
δ∈∆

(︄
nδ!

π
nδ
2

Γ
(︁
nδ
2 + 1

)︁)︄

Proof. See Appendix C.1.

2 Please note that there are two different types of these extruded 2D ellipses, two based

on Manhattan ellipses and one based on a Euclidean ellipse.
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Proposition 4.1 only considers an unweighted variant of d∆C , where all Adding salience

weights
domain and dimension weights are set to one. If we introduce salience

weights as used in our formalization, we obtain the following result:

Proposition 4.2 (Volume of a Hyperball with Salience Weights)

The size of a hyperball with radius r in a space with the weighted combined

metric dC , the domain structure ∆, and the set of weights W can be computed

in the following way, where n is the overall number of dimensions, nδ is the

number of dimensions in domain δ, Γ(·) is Euler’s gamma function, and δ(d)
is the unique δ ∈ ∆ with d ∈ δ:

V (r,∆,W ) =
1∏︁

d∈D wδ(d)
√
wd

· r
n

n!
·
∏︂
δ∈∆

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄
Proof. See Appendix C.1.

We can now derive an equation for V ( ˜︁Cα), i.e., the size of a fuzzy The size of an α-cut

cuboid’s α-cut by combining Equation 4.7 and Proposition 4.2:

Proposition 4.3 (Size of an α-Cut)

For a given fuzzified cuboid
˜︁C = ⟨C, µ0, c,W ⟩ and α ∈ [0, µ0], we can

describe the size of its α-cut as follows, using ad = wδ(d) ·
√
wd · (p+d − p−d ) · c:

V ( ˜︁Cα) = 1

cn
∏︁
d∈D wδ(d)

√
wd

n∑︂
i=0

⎛⎜⎜⎝(−1)i · ln
(︂
α
µ0

)︂i
i!

·
∑︂

{d1,...,di}
⊆D

⎛⎝ ∏︂
d∈D\{d1,...,di}

ad

⎞⎠ ·

∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
Proof. See Appendix C.1.

Proposition 4.3 gives us a closed (albeit quite complex) formula for Outlook

computing the size of a fuzzified cuboid’s α-cut. This will serve as our

starting point for computing the size of a fuzzy conceptual region.

4.1.2 The Size of a Concept

So far, we have only considered the size of a single α-cut of a single Overview

fuzzified cuboid. In the following, we will first derive the size of an

overall fuzzified cuboid based on Proposition 4.3, before showing how

to compute the size of an overall concept
˜︁S.

When working with crisp sets, one can use the set cardinality to Measure of a fuzzy

set
specify the size of a set. In the discrete case, set cardinality corresponds

to the number of elements in the set. For a fuzzy set, one can use a

so-called measureM to describe its size. This measure can in our context

be defined as follows (cf. [74]):
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Definition 4.1 (Measure)

A measure M on a conceptual space CS is a function M : F(CS) → R+
0

with M(∅) = 0 and ( ˜︁A ⊆ ˜︁B) ⇒ (M( ˜︁A) ≤ M( ˜︁B)), where F(CS) is the

fuzzy power set of CS.

One common measure for fuzzy sets is the integral over the set’sIntegral over the

membership function
membership function, which simply computes the volume below the

membership curve:

M( ˜︁A) = ∫︂
CS

µ ˜︁A(x) dx
This is equivalent to the Lebesgue integral over the size of the fuzzyUsing the Lebesgue

integral
set’s α-cuts, which we denote by V ( ˜︁Aα):

M( ˜︁A) = ∫︂ 1

0
V ( ˜︁Aα) dα (4.8)

In order to derive the size of an overall fuzzified cuboid, we canThe size of a fuzzified

cuboid
therefore integrate over its α-cuts:

Proposition 4.4 (Size of a Fuzzified Cuboid)

The size of a fuzzified cuboid
˜︁C can be computed as follows:

M( ˜︁C) = µ0
cn
∏︁
d∈D wδ(d)

√
wd

n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

ad

⎞⎟⎟⎠

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
Proof. See Appendix C.1.

It is trivial to see that any concept
˜︁S can be viewed as a union ofThe size of a concept

fuzzified cuboids
˜︁Ci. Moreover, the cuboids Ci of S intersect in P and

use the same parameters µ0, c, andW . This means that any intersection

of
˜︁Ci and

˜︁Cj can be computed by intersecting the respective crisp

cuboids and keeping all other parameters fixed – the result of this

intersection is then again a fuzzified cuboid. In order to compute the

overall measure for
˜︁S, one can therefore combine the measure of its

fuzzified cuboids by using the inclusion-exclusion formula (cf. [68]),

which generalizes the observation that |A ∪ B| = |A|+ |B| − |A ∩ B|
from two to m sets:

Definition 4.2 (Size of a Concept)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept. Its size M(˜︁S) can be computed as follows:

M(˜︁S) = m∑︂
l=1

⎛⎜⎜⎝(−1)l+1 ·
∑︂

{i1,...,il}
⊆{1,...,m}

M

⎛⎝ ⋂︂
i∈{i1,...,il}

˜︁Ci
⎞⎠
⎞⎟⎟⎠
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The outer sum in Definition 4.2 iterates over the number of cuboids Interpretation

under consideration (withm being the total number of cuboids in S) and

the inner sum iterates over all sets of exactly l cuboids. When computing

M(˜︁S) according to Definition 4.2, we thus rely on the formula from

Proposition 4.4 for computing the size of various fuzzified cuboids.

Please note that M(˜︁S) is always computed only on ∆S , i.e., the set of Avoiding infinitely

large results
domains on which

˜︁S is defined. This constraint is introduced in order

to ensure that M(˜︁S) is always finite: Let us assume that we included an

additional domain δ′ ∈ ∆ \∆S . Since all cuboids of S are not defined

on the dimensions d′ ∈ δ′, the coordinates of their support points p−

and p+ will be −∞ and +∞, respectively, on all of these dimensions d′.

One can easily see that this causes M(˜︁S) to become infinitely large. In

order to avoid this, we restrict the computation of M(˜︁S) to ∆S .

4.1.3 Implementation and Example

Although the formula for M( ˜︁C) derived in Proposition 4.4 is quite Implementation

complex, it can be implemented via a set of nested loops. Instead of

numerically approximating the integral over the membership function

we can therefore compute it analytically, which is considerably faster.

Also the inclusion-exclusion formula from Definition 4.2 can be easily

implemented via a set of nested loops.

The overall runtime of the size computation grows unfortunately Runtime experiments

exponentially with respect to both the number of cuboids and the

number of dimensions in the conceptual space due to the respective

inner sums from Proposition 4.4 and Definition 4.2. In order to obtain

some concrete runtime estimates, we have measured the runtime of the

size operation for 1,000 randomly created concepts. We have investigated

the influence of both the number n of dimensions in the conceptual

space and the number m of cuboids per concept separately. Moreover,

we have also computed a numerical approximation of the integral

over a given concept’s membership function, this time using, however,

only 100 examples in order to limit the overall computation time. All

computations were run on a laptop with an Intel Core i5-6440HQ CPU

(2.60 GHz quad core) processor and 8 GB main memory.

Let us first discuss how the number n of dimensions influences Runtime and the

number of

dimensions

the runtime of the size operation. As we can see in Table 4.1 and

Figure 4.4, there is a clear exponential trend: Already for a space

with 16 dimensions, computing the size of a concept with a single

cuboid takes on average around 1.6 seconds. This is clearly too slow

for any large-scale computations. Future work should therefore focus

on finding either more efficient exact algorithms or approximations

for computing the size of a concept. Nevertheless, the numbers from

Table 4.1 and Figure 4.4 clearly show that our closed formula for a

concept’s size is a significant improvement over a more naive approach

of approximating the integral over the given concept’s membership

function numerically. We did not report runtime measurements of the
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Figure 4.4: Average runtime of the size operation for single-cuboid concepts

as a function of the number of dimensions in the conceptual space.

Figure 4.5: Average runtime of the size operation as a function of the number

of cuboids per concept in a four-dimensional conceptual space.
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Number n of Runtime Runtime of numerical

Dimensions in ms approximation in ms

1 0.0343 7.2350

2 0.0525 6755.0964

4 0.1660 –

8 3.4105 –

16 1663.3628 –

Table 4.1: Average runtime of the size operation (averaged across 1,000 ex-

amples) in comparison to runtime of a numerical approximation

(averaged across 100 examples) for randomly generated single-

cuboid concepts.

Number m of Cuboids Runtime in ms

1 0.1660

2 0.4920

4 2.5864

8 48.2449

Table 4.2: Average runtime of the size operation averaged across 1,000 ran-

domly created concepts in a four-dimensional space.

numerical approximation for more than two dimensions in Table 4.1 as

these computations quickly became computationally infeasible.

Let us now consider the influence of the number m of cuboids per Runtime and the

number of cuboids
concept in Table 4.2 (illustrated in Figure 4.5). Again, we can observe

a clearly superlinear trend which seems, however, to be weaker than

the one observed for the number of dimensions. If we compute the size

of a concept consisting of eight cuboids in a four-dimensional space,

we need on average 48 milliseconds, which is still reasonably fast. It

thus seems to be more important to use a low-dimensional conceptual

space than to approximate conceptual regions with a small number of

cuboids. This is in line with the effects observed for the intersection

operation in Section 3.1.3, where the number of cuboids also had a

weaker impact on runtime than the number of dimensions.

In order to illustrate the size computation, we will now compute the Fruit space example

sizes of all fruit concepts from Chapter 2 (see Table 4.3). We illustrate

the underlying computations for the examples of lemon and apple.

We first compute M(˜︁Slemon), because the core of this concept only The size of the lemon

concept
involves a single cuboid. This allows us to directly use the formula from

Proposition 4.4:

M(˜︁Slemon) =M( ˜︁Clemon)
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

pear ∆ (0.50, 0.40, 0.35) (0.70, 0.60, 0.45) 1.0 24.0 0.50 1.25 1.25

orange ∆ (0.80, 0.90, 0.60) (0.90, 1.00, 0.70) 1.0 30.0 1.00 1.00 1.00

lemon ∆ (0.70, 0.45, 0.00) (0.80, 0.55, 0.10) 1.0 40.0 0.50 0.50 2.00

Granny

Smith

∆ (0.55, 0.70, 0.35) (0.60, 0.80, 0.45) 1.0 50.0 1.00 1.00 1.00

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

(0.65, 0.65, 0.40) (0.85, 0.80, 0.55)apple ∆

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

1.0 20.0 0.50 1.50 1.00

(0.50, 0.10, 0.35) (0.75, 0.30, 0.55)

(0.70, 0.10, 0.50) (0.80, 0.30, 0.70)banana ∆

(0.75, 0.10, 0.50) (0.85, 0.30, 1.00)

1.0 20.0 0.75 1.50 0.75

Table 4.3: Definition of several fruit concepts for the size example.

=
µ
(lemon)
0

(c(lemon))3
∏︁
d∈D wδ(d)

√
wd

3∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

ad

⎞⎟⎟⎠

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
=

1.00

40.003 · 0.50 · 0.50 · 2.00
· (ahuearoundasweet

+ 2 · (ahuearound + ahueasweet + aroundasweet)

+4 · (ahue + around + asweet) + 8)

=
1

32, 000
· (2 · 2 · 8 + 2 · (2 · 2 + 2 · 8 + 2 · 8)

+4 · (2 + 2 + 8) + 8)

=
1

32, 000
· (32 + 72 + 48 + 8) =

160

32, 000
=

1

200
= 0.0050

Without comparing this result to another number, we cannot sayThe size of the apple

concept
whether this means that lemon is a rather small or a rather large concept.

Doing analogous computations for each of the apple concept’s cuboids

(following Proposition 4.4) and combining them with the inclusion-

exclusion formula (according to Definition 4.2), we get the following

results:

M( ˜︁Capple,1) ≈ 0.0271

M( ˜︁Capple,2) ≈ 0.0217

M( ˜︁Capple,3) ≈ 0.0271

M( ˜︁Capple,1 ∩ ˜︁Capple,2) ≈ 0.0152

M( ˜︁Capple,1 ∩ ˜︁Capple,3) ≈ 0.0098

M( ˜︁Capple,2 ∩ ˜︁Capple,3) ≈ 0.0152
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Concept Size

pear 0.0163

orange 0.0046

lemon 0.0050

Granny Smith 0.0018

apple 0.0455

banana 0.0690

Table 4.4: Sizes of all fruit concepts.

M( ˜︁Capple,1 ∩ ˜︁Capple,2 ∩ ˜︁Capple,3) ≈ 0.0098

M(˜︁Sapple) =M( ˜︁Capple,1) +M( ˜︁Capple,2) +M( ˜︁Capple,3)

−M( ˜︁Capple,1 ∩ ˜︁Capple,2)

−M( ˜︁Capple,1 ∩ ˜︁Capple,3)

−M( ˜︁Capple,2 ∩ ˜︁Capple,3)

+M( ˜︁Capple,1 ∩ ˜︁Capple,2 ∩ ˜︁Capple,3)

≈ 0.0455

As one would have expected, the apple concept is much larger than Interpretation

the lemon concept. This is caused by both the larger size of the crisp

core and by the smaller value of c. We can interpret this as lemon

being more narrow (and therefore more specific) than the wider and

more general apple concept. In our implementation, these sizes can be

computed as follows:

>>> lemon.size()
0.005000000000000002
>>> apple.size()
0.0455

Table 4.4 shows all fruit concepts from Section 2.3.4 and their corre- Sizes of other fruit

concepts
sponding sizes. One can also see that the size of lemon and orange

differs although their cores have an identical size. This is caused by the

different weights and the different values of c, which causes the α-cuts

of lemon to be tendentially larger than the α-cuts of orange.

4.2 subsethood

In order to represent knowledge about a hierarchy of concepts, one Subsethood for

conceptual

hierarchies

needs to be able to determine whether one concept is a subset of another

concept. For instance, the fact that
˜︁S

Granny Smith
⊆ ˜︁Sapple indicates that

Granny Smith is a subordinate concept (i.e., a specialization) of apple.
3

3 One could also say that the fuzzified cuboids
˜︁Ci are sub-concepts of

˜︁S, because
˜︁Ci ⊆ ˜︁S,

cf. similar remarks in Section 2.3.2 for cuboids and cores.
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In Section 4.2.1, we provide both a binary and a soft definition of

subsethood for concepts. Afterwards, we illustrate these definitions

with our fruit space example in Section 4.2.2.

4.2.1 Definition

Let us first consider the definition of subsethood for crisp sets:Subsethood for crisp

sets
Definition 4.3 (Subsethood for Crisp Sets)

Let S1 and S2 be two crisp sets in a conceptual space CS. We say that S1 is a

subset of S2 (S1 ⊆ S2) if and only if ∀x ∈ CS : (x ∈ S1 ⇒ x ∈ S2).

As one can see, subsethood is a binary property: Either a set S1 is

a subset of another set S2 or it is not. We can relatively easily check

whether a given core S1 is a subset of another core S2 by comparing

their underlying cuboids: Every cuboid C
(1)
i of S1 must be contained in

S2, which implies that also its support points p(i)+ and p(i)− lie insideS2.

Since we represent concepts as fuzzy sets, we now consider theSubsethood for fuzzy

sets
classical definition of subsethood for fuzzy sets:

4

Definition 4.4 (Subsethood for Fuzzy Sets)

Let
˜︁S1 and

˜︁S2 be two fuzzy sets in a conceptual space CS. We say that
˜︁S1 is

a subset of
˜︁S2 (

˜︁S1 ⊆ ˜︁S2) if and only if ∀x ∈ CS : µ˜︁S1
(x) ≤ µ˜︁S2

(x). This is

equivalent to requiring subsethood according to Definition 4.3 for all α-cuts˜︁Sα1 and
˜︁Sα2 .

Explicitly evaluating the right hand side of this expression is, however,Conditions for

subsethood
infeasible in practice, if the conceptual space uses real-valued dimen-

sions, since then there are infinitely many x ∈ CS. We will now present

a set of necessary and jointly sufficient conditions for subsethood:

Proposition 4.5 (Conditions for Crisp Subsethood)

Let
˜︁S1 = ⟨S1, µ(1)0 , c(1),W (1)⟩ and

˜︁S2 = ⟨S2, µ(2)0 , c(2),W (2)⟩ be two con-

cepts. Then,
˜︁S1 ⊆ ˜︁S2 if and only if all of the following conditions are fulfilled:

1. µ
(1)
0 ≤ µ

(2)
0

2. S1 ⊆ ˜︁Sµ(1)0
2

3. ∆S2 ⊆ ∆S1

4. ∀d ∈ DS2 : c(1) · w(1)
δ(d) ·

√︂
w

(1)
d ≥ c(2) · w(2)

δ(d) ·
√︂
w

(2)
d

Proof. See Appendix C.2.

The conditions of Proposition 4.5 can be easily checked, allowing us toAdvantages and

limitations
derive conclusions about conceptual hierarchies. However, this notion

of subsethood is still binary: Either
˜︁S1 ⊆ ˜︁S2 or

˜︁S1 ̸⊆ ˜︁S2. For making

more fine-granular distinctions, we need a soft notion of subsethood.

4 Please note that this definition has already been used for some of the previous lemmata

and propositions.
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Figure 4.6: Illustrating the degree of subsethood with crisp sets in a two-

dimensional space (a) and fuzzy concepts in a one-dimensional

space (b).

There has already been some considerable amount of work on defin- Degree of subsethood

ing degrees of subsethood for fuzzy sets (see e.g., [74, 105, 150, 444]).

However, many of the definitions made in the literature require that the

underlying space is discrete. They are not applicable in our case, because

we assume a continuous space. The following definition [226] works

also in a continuous space and is conceptually quite straightforward:

Definition 4.5 (Degree of Subsethood for Fuzzy Sets)

Let
˜︁S1 and

˜︁S2 be two fuzzy sets in a conceptual space CS. Their degree of

subsethood Sub(˜︁S1, ˜︁S2) can be computed as follows, using a measure M (cf.

Definition 4.1) and the standard fuzzy intersection (cf. Definition 3.3):

Sub
(︂˜︁S1, ˜︁S2)︂ =

M
(︂˜︁S1 ∩ ˜︁S2)︂
M
(︂˜︂S1)︂

One can interpret Definition 4.5 intuitively as the percentage of
˜︁S1 Properties of the

degree of subsethood
that is also in

˜︁S2. This notion of subsethood is illustrated in Figure 4.6

for both crisp sets and concepts. It has the following properties:

1. Sub(˜︁S1, ˜︁S2) ∈ [0, 1]

2. Sub(˜︁S1, ˜︁S2) = 0 ⇔ ˜︁S1 ∩ ˜︁S2 = ∅

3. Sub(˜︁S1, ˜︁S2) = 1 ⇔ ˜︁S1 ∩ ˜︁S2 = ˜︁S1 ⇔ ˜︁S1 ⊆ ˜︁S2
In Section 3.1.2, we have already defined an intersection operation Degree of subsethood

for concepts
(Definition 3.2), and in Section 4.1.2, we have defined a measure for

concepts (Definition 4.2). We can use them to adapt Definition 4.5:

Definition 4.6 (Modified Degree of Subsethood for Concepts)

Let
˜︁S1 and

˜︁S2 be two concepts. Their degree of subsethood Sub(˜︁S1, ˜︁S2) is

defined as follows:

Sub(˜︁S1, ˜︁S2) = M(I(˜︁S1, ˜︁S2))
M(˜︁S1)



164 measuring relations between concepts

Figure 4.7: Two problematic cases for Definition 4.6. (a) Perfect sub-

sethood with different sensitivity parameters c results in

Sub(˜︁S1, ˜︁S2) > 1. (b) Overextension in the modified intersection

causes Sub(˜︁S1, ˜︁S2) > 1.

Definition 4.6 gives us a more fine-grained way to talk about subset-Considering only

common domains
hood than Proposition 4.5. If

˜︁S1 and
˜︁S2 are not defined on the same

domains, then we first project them onto their shared subset of domains

before computing their degree of subsethood. This is done to ensure

that the size of their intersection can be meaningfully compared to the

size of the first concept.

When computing the intersection of two concepts with differentProblem based on the

modified intersection
sensitivity parameters c(1), c(2) and different weights W (1),W (2)

, one

needs to define new parameters c′ and W ′
for the resulting concept.

Please recall from Definition 3.2 that the new sensitivity parameter c′

is set to the minimum of c(1) and c(2) and that the new set of weights

W ′
are obtained through a linear interpolation between W (1)

and W (2)
.

Now if c(1) > c(2), then c′ = min(c(1), c(2)) = c(2) < c(1). If furthermore

W (1) = W (2)
, µ

(1)
0 = µ

(2)
0 , and S1 ⊆ S2, then it is easy to see that˜︁S′ = I(˜︁S1, ˜︁S2) = ⟨S1, µ(1)0 , c(2),W (1)⟩. Since c′ = c(2) < c(1) and all

other parameters are identical, M(˜︁S′) > M(˜︁S1). In this case, we get

Sub(˜︁S1, ˜︁S2) > 1. This is illustrated for two one-dimensional concepts

in Figure 4.7a. However, Sub(˜︁S1, ˜︁S2) > 1 violates the first property of

a fuzzy degree of subsethood, namely, Sub(˜︁S1, ˜︁S2) ∈ [0, 1]. However,

this property is necessary, if we would like to interpret Sub(˜︁S1, ˜︁S2) as a

fuzzy degree of truth.

We propose to prevent this undesired behavior by using the sameOur proposed

solution
values of c and W for computing both M(I(˜︁S1, ˜︁S2)) and M(˜︁S1). More

specifically, we propose to use c(2) and W (2)
. One can interpret this

approach as follows: The salience weights W influence the distance

metric by setting a certain context, indicating the relevance of the

different domains and dimensions. Using the weights fromW (2)
means

that when checking whether
˜︁S1 is a subset of

˜︁S2, the context is set by
˜︁S2.

For instance, when judging whether
˜︁Stomato is a subset of

˜︁Svegetable, we

focus our attention on the features that are crucial to the definition of the

vegetable concept. Using c(2) can be interpreted as another effect of this
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context setting: The sensitivity parameter c determines the fuzziness

of the concept and using c(2) translates to assuming that we treat all

concepts in the current context to be as imprecise as
˜︁S2.

A drawback of using the same c and W for the computation of Disadvantage of our

proposed solutionM(I(˜︁S1, ˜︁S2)) and M(˜︁S1), is that now the third property of the fuzzy

degree of subsethood, namely that Sub(˜︁S1, ˜︁S2) = 1 is equivalent to˜︁S1 ⊆ ˜︁S2, does no longer hold. While
˜︁S1 ⊆ ˜︁S2 still implies Sub(˜︁S1, ˜︁S2) =

1, we can easily find counterexamples for the other direction: Let˜︁S = ⟨S, µ0, c,W ⟩ be a concept and define
˜︁S′ = ⟨S, µ0, c′,W ⟩ with c′ < c.

One can easily see that with our proposed solution Sub(˜︁S′, ˜︁S) = 1, but

that
˜︁S′ ̸⊆ ˜︁S. In practical applications, however, this is not necessarily a

problem: Once we have established that Sub(˜︁S1, ˜︁S2) = 1, we can simply

check the conditions from Proposition 4.5 to decide whether
˜︁S1 ⊆ ˜︁S2.

Unfortunately, the fact that our intersection operation uses overexten- Another problem

based on

overextensions

sion as a repair mechanism prevents us from ensuring thatSub(˜︁S1, ˜︁S2) ∈
[0, 1] in all cases, even when using identical values for c andW . A patho-

logical example for this can be seen in Figure 4.7b.There seems to be no

general way of resolving this issue which does not come with serious

drawbacks: One could ensure that I(˜︁S1, ˜︁S2) ⊆ ˜︁S1 by using underex-

tension instead of overextension in defining the intersection. However,

as already mentioned in Section 3.1.1, this may force us to make an

arbitrary choice about which cuboids to remove. Moreover, if the raw

intersection result needs to be approximated by a cuboid (see Sections

3.1.2 and 3.1.3), this typically also results in an overextension. If the

intersection operation is expected to return a cuboid-based result, this

approximation step cannot be easily removed. Relaxing the requirement

that the intersection operation must return a single valid concept would

be another way of avoiding overextensions and problematic cases like

in Figure 4.7b. However, this would be a strong modification of our

work so far.

The only way of completely ensuring that the degree of subsethood is Using the standard

intersection is not an

option

always confined to the interval [0, 1] is to use the standard definition for

the intersection of fuzzy sets from Definition 3.3, namely µ˜︁S1∩˜︁S2
(x) =

min(µ˜︁S1
(x), µ˜︁S2

(x)), instead of our modified intersection operator. One

can argue that for computing the degree of subsethood, the intersection

is only an intermediate result and does not need to be a valid concept.

However, if the intersection result is not a valid concept, then our closed

formula for computing M is not applicable. Therefore, one would need

to compute the size of the intersection by using numerical optimization

techniques. As we have seen in Section 4.1.3, the runtime of such a

numerical optimization is, however, prohibitively large even for simple

examples. For now, we assume that the example from Figure 4.7b is

pathological and does not occur too often in practice. Nevertheless,

more research is needed in order to find a way for overcoming such

problematic cases.



166 measuring relations between concepts

2 Dimensions 4 Dimensions 8 Dimensions

2 Cuboids 13 0 0

4 Cuboids 28 0. –
5

Table 4.5: Absolute number of cases with Sub(˜︁S1, ˜︁S2) > 1 for 10,000 randomly

generated pairs of concepts for different numbers of cuboids per

concept and different dimensionalities of the conceptual space.

4.2.2 Implementation and Example

Both the crisp and the fuzzy definition of subsethood can be imple-Implementation

mented easily: In order to decide whether
˜︁S1 ⊆ ˜︁S2, one simply needs

to check the conditions from Proposition 4.5. In order to compute

Sub(˜︁S1, ˜︁S2) according to Definition 4.6, one can make use of the imple-

mentations of I(˜︁S1, ˜︁S2) and M(˜︁S), which were described in Sections

3.1.3 4.1.3, respectively. It is obvious that the runtime for computing

subsethood directly depends on the runtime of these two operations.

We therefore did not conduct dedicated runtime experiments for the

degree of subsethood.

In the Section 4.2.1, we have seen that in some cases, we may getInvestigating the

overextension-based

problem

the unintuitive result of Sub(˜︁S1, ˜︁S2) > 1 (cf. Figure 4.7b). In order to

confirm our suspicion that this happens only in pathological cases, we

have computed the degree of subsethood for 10,000 randomly generated

pairs of concepts, varying both the number of cuboids per concept

and the number of dimensions in the conceptual space. The absolute

number of cases with Sub(˜︁S1, ˜︁S2) > 1 among these 10,000 examples is

reported in Table 4.5.

As we can see, these cases are indeed quite rare in practice withInterpreting the

results
relative frequencies of less than 0.3%. Since the concepts we expect to

use in practical applications are not randomly generated but based on

actual observations, one may speculate that they are even unlikelier to

have a structure as depicted in Figure 4.7b. Thus, while Sub(˜︁S1, ˜︁S2) > 1
is not satisfactory from a theoretical point of view, it does not seem to

be a serious limitation in practice.

Let us now again look at our fruit space from Section 2.3.4 in orderFruit space example

to illustrate our definition of subsethood. Table 4.6 lists selected fruit

concepts (namely, apple, Granny Smith, and apple-pear, which was

defined as the intersection of apple and pear in Section 3.1.3).

One can easily see that
˜︁S

Granny Smith
⊆ ˜︁Sapple, because all conditionsCrisp subsethood of

Granny Smith and

apple

from Proposition 4.5 are fulfilled. Note that
˜︁Sapple-pear ̸⊆ ˜︁Sapple, because

for dround we find that:

c(apple-pear)·w(apple-pear)
δshape

·
√︂
w

(apple-pear)
dround

= 5 · 1.375 · 1.0 < 5 · 1.5 · 1.0

5 Please note that this combination was not included in our experiments due to the

prohibitively large runtime of the subsethood operation in this scenario.
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

Granny

Smith

∆ (0.550, 0.700, 0.350) (0.600, 0.800, 0.450) 1.0 50.0 1.00 1.00 1.00

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

(0.65, 0.65, 0.40) (0.85, 0.80, 0.55)apple ∆

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

1.0 20.0 0.50 1.50 1.00

apple-pear ∆ (0.500, 0.625, 0.350) (0.700, 0.625, 0.450) 0.4724 20.0 0.500 1.375 1.125

Table 4.6: Three concepts used to illustrate our subsethood computations.

= c(apple) · w(apple)
δshape

·
√︂
w

(apple)
dround

It is also obvious that there is no crisp subsethood relation between Crisp subsethood of

Granny Smith and

apple-pear

Granny Smith and apple-pear. Our implementation confirms this:

apple.crisp_subset_of(granny_smith)
False

apple.crisp_subset_of(apple-pear)
False

granny_smith.crisp_subset_of(apple)
True

granny_smith.crisp_subset_of(apple-pear)
False

apple-pear.crisp_subset_of(apple)
False

apple-pear.crisp_subset_of(granny_smith)
False

Now let us look at the values returned when computing the fuzzy Considering soft

subsethood
degree of subsethood:

apple.subset_of(granny_smith)
0.07635041551246535

apple.subset_of(apple-pear)
0.05762893130047096

granny_smith.subset_of(apple)
1.0

granny_smith.subset_of(apple-pear)
0.06859652328421048

apple-pear.subset_of(apple)
1.0

apple-pear.subset_of(granny_smith)
0.12933550211333572

As one can see, Sub(˜︁S
Granny Smith

, ˜︁Sapple) = 1, as we would expect. Interpretation

Moreover, Sub(˜︁Sapple-pear, ˜︁Sapple) = 1 because differences in c and W
are ignored when computing the fuzzy degree of subsethood. All other

degrees of subsethood are rather small, but still positive, since the

intersection between any two concepts is never completely empty.
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4.3 implication

Implications play a fundamental role in rule-based systems and allImplication for

grounding rule-based

systems

approaches that use formal logics (i.e., the symbolic layer, cf. Section

1.2.3) for knowledge representation. It is therefore desirable to define

an implication operation on concepts, such that one is able to express

facts like apple ⇒ red within our formalization.

Such an implication operation can also be used to obtain the co-Relation to Rickard’s

co-occurrence

statistics

occurrence statistics used in Rickard’s formalization of conceptual

spaces [329]: Recall from Section 2.5.2 that Rickard represents a concept

like apple as a matrix containing the co-occurrence statistics of its

properties (e.g., red and sweet). These co-occurrence statistics can be

interpreted as conditional probabilitiesP(Sred|Ssweet) andP(Ssweet|Sred)
and are in Rickard’s account estimated based on frequencies in a given

set of examples. If we assume that apple, red, and sweet are represented

as fuzzy conceptual regions, then these conditional probabilities can

be grounded in a fuzzy degree of implication: P(Sred|Ssweet) can be

computed by measuring to which degree the implication apple∧red ⇒
sweet is considered to be true. Thus, the co-occurrence statistics used by

Rickard can be extracted from our representation, making our approach

at least as expressive as his.

In Section 4.3.1, we argue that a soft degree of implication can be

obtained by reusing the degree of subsethood. In Section 4.3.2, we then

illustrate this intuition using our fruit space example.

4.3.1 Definition

In the fuzzy set literature [280], implications are defined by general-Classical definitions

of implication for

fuzzy sets

izing the truth table of the crisp implication to fuzzy truth values: A

fuzzy implication is a function Impl : [0, 1] × [0, 1] → [0, 1] such that

Impl(0, x) = 1 (a false antecedent implies anything), Impl(1, y) = y (a

true antecedent can be ignored), and Impl(x, 1) = 1 (a true consequent

is implied by anything). Depending on the additional requirements

for this function (e.g., monotonicity or continuity), one can find dif-

ferent fuzzy implications, for instance the Gödel implication with

Impl(x, y) = 1 for x ≤ y and Impl(x, y) = y otherwise.

This notion of implication is, however, defined on pairs of truth valuesShortcomings in our

context
and not on pairs of fuzzy sets. It is thus similar to fuzzy conjunction

and disjunction operators. When applying a fuzzy implication to a pair

of fuzzy sets, the result is therefore again a fuzzy set, which describes

the local validity of the implication for each point in the underlying

space. However, if we want to check whether being an apple implies

being red, and if both apple and red are represented as fuzzy sets, we

intuitively expect a single number that indicates the degree to which

the implication between the two sets can be considered to hold. This is

a more coarse-grained view than the one provided by standard fuzzy

logic, but in our opinion better suited for supporting abstract reasoning.
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

lemon ∆ (0.70, 0.45, 0.00) (0.80, 0.55, 0.10) 1.0 40.0 0.50 0.50 2.00

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

(0.65, 0.65, 0.40) (0.85, 0.80, 0.55)apple ∆

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

1.0 20.0 0.50 1.50 1.00

red {δcolor} (0.90,−∞,−∞) (1.00,+∞,+∞) 1.0 40.0 1.00 – –

green {δcolor} (0.45,−∞,−∞) (0.55,+∞,+∞) 1.0 40.0 1.00 – –

nonSweet {δtaste} (−∞,−∞, 0.00) (+∞,+∞, 0.20) 1.0 14.0 – – 1.00

Table 4.7: Definitions of several fruit concepts and properties used to illustrate

the implication operation.

In our context, the degree of implication between two geometrically Re-using the degree

of subsethood
represented concepts corresponds to their degree of subsethood: If

˜︁S1
is a subset of

˜︁S2, then for any point x ∈ CS, being contained in
˜︁S1

implies also being contained in
˜︁S2. Whether belonging to the apple

concept also implies belonging to the red concept can be quantified

by checking whether the apple region is a subset of the red region

within the color domain. We therefore propose to simply re-use our

soft notion of subsethood from Definition 4.6 in order to quantify the

degree of implication between two concepts:

Definition 4.7 (Degree of Implications for Concepts)

Let
˜︁S1 and

˜︁S2 be two concepts. Their degree of implication Impl(˜︁S1, ˜︁S2) is

defined as their degree of subsethood Sub(˜︁S1, ˜︁S2):
Impl(˜︁S1, ˜︁S2) = Sub(˜︁S1, ˜︁S2) = M(I(˜︁S1, ˜︁S2))

M(˜︁S1)
4.3.2 Implementation and Example

Implementing the implication operation is trivial as we simply need to Implementation

call the method for computing the degree of subsethood. The runtime

of the implication thus equals the runtime of the degree of subsethood,

which is directly based on the runtimes of size and implication (cf.

Section 4.2.2). Please note that of course also the problematic cases of

Sub(˜︁S1, ˜︁S2) > 1 observed in Section 4.2.1 carry over to our implementa-

tion of the implication operation. However, as we have seen in Section

4.2.2, such pathological cases appear quite infrequently in practice.

Let us now look at the implication relations between several concepts Fruit space example:

lemon and

nonSweet

and properties from our fruit space (see Table 4.7 and Figure 4.8). Let

us first consider the relation between lemon and nonSweet, which can

be evaluated in our code as follows:

lemon.implies(non_sweet)
1.0

non_sweet.implies(lemon)
0.6000000000000001
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Figure 4.8: Screenshot of the ConceptInspector tool, illustrating of the con-

cepts and properties for the implication example: lemon (1), apple

(2), red (3), green (4), nonSweet (5).

As one can see, Impl(˜︁Slemon, ˜︁SnonSweet
) = 1 which means that allInterpretation

lemons are not sweet. However, Impl(˜︁S
nonSweet

, ˜︁Slemon) ≈ 0.60 which

indicates that not all non-sweet things are lemons.

If the two concepts under consideration do not share any commonOrthogonal domains:

red and nonSweet
domains, they also do not have any implication relation:

red.implies(non_sweet)
0.0

non_sweet.implies(red)
0.0

Let us now highlight some general properties of our implicationImplication works in

a domain-wise way:

apple and red

operation by considering apple and red:

apple.implies(red)
0.2727272727272726

red.implies(apple)
1.0

The fact that Impl(˜︁Sapple, ˜︁Sred) ≈ 0.2727 indicates that there is onlyInterpretation

a partial overlap between the regions describing apple and red, re-

spectively – in other words, there are some apples which are not red.

Although Impl(˜︁Sred, ˜︁Sapple) = 1, this does not mean that all red things

are apples. For example, also for a tomato concept, we might get

Impl(˜︁Sred, ˜︁Stomato) = 1. If apple and tomato are two different concepts

(occupying for example different regions in the taste domain), then it

clearly does not make any sense to say that all red things are both apples
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and tomatoes. It is important to keep in mind that the implication is

computed as the degree of subsethood only on the color domain. As

stated in Section 4.2.1, we do not look at the full apple concept when

computing the degree of implication/subsethood, but only at its pro-

jection onto the color domain. This projection can be interpreted as a

property describing the typical color of apples. Therefore, the correct

interpretation of the implication is that all colors that are classified as

red are also classified as apple colors (and similarly, as tomato colors).

An artificial agent could conclude that all red things are apples only if

apple is the only concept
˜︁S for which Impl(˜︁Sred, ˜︁S) reaches a high value.

Then, apples would be the only red things known to the agent. However,

if we also have another concept like tomato, then this conclusion cannot

be drawn. Overall, a high value of Impl(˜︁S1, ˜︁S2) where ∆S1 ⊆ ∆S2 does

not necessarily tell us that the implication x ∈ ˜︁S1 ⇒ x ∈ ˜︁S2 must be

true for all x ∈ CS, but only that it can be true for some x ∈ CS.

Overall, we can thus say that high values of Impl(˜︁S1, ˜︁S2) are by General

interpretation of

implications

themselves not very diagnostic if ∆S1 ⫋ ∆S2 (e.g., Impl(˜︁Sred, ˜︁Sapple)),
because the implication is evaluated on ∆S1 only, not taking account

variations in other domains in ∆S2 \∆S1 . High values of Impl(˜︁S1, ˜︁S2)
are, however, quite informative if ∆S2 ⊆ ∆S1 (e.g., Impl(˜︁Sapple, ˜︁Sred)),
because the implication is evaluated on all domains of ∆S2 .

On a related note, we would like to mention that while the fact that Orthogonal

information from

multiple domains

Impl(˜︁Sred, ˜︁Sapple) = 1 is by itself not very informative, a combination

of multiple such implications on different domains can be interesting:

If also Impl(˜︁Sround, ˜︁Sapple) = 1 and Impl(˜︁Ssweet, ˜︁Sapple) = 1, then we

have information from different domains that are orthogonal to each

other. If there is no other concept
˜︁S other than apple which has also

high values for all three implications, then we can be quite confident in

saying that "a thing that is red, round, and sweet at the same time is

usually an apple".

Similarly, also Impl(I(˜︁Sred, ˜︁Sround, ˜︁Ssweet), ˜︁Sapple) = 1 is quite infor- Implications of

intersections
mative, because the intersection of the three properties is defined on the

full fruit space. Also the value of Impl(I(˜︁Sapple, ˜︁SnonSweet
), ˜︁Sgreen) can

give valuable information when being compared to Impl(apple, ˜︁Sgreen):

(apple.intersect_with(non_sweet)).implies(green)
0.2857142857142858

apple.implies(green)
0.18181818181818182

While an apple is in general not necessarily green, an apple which is Relation to

correlations
nonSweet has a much higher expectation of being green. Essentially, this

captures the correlation between the taste and the color domain in the

apple concept and can be linked to our argument about co-occurrence

statistics from above.

4.4 concept similarity

The similarity of concepts can be used as a basis for commonsense Similarity for

commonsense

reasoning
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reasoning in various contexts. Firstly, similarity plays an important role

in recommendation systems: If we know that Alice enjoyed the "Lord

of the Rings" trilogy, then we can expect that she will also like the "The

Hobbit" movies due to the similarity of the respective movie trilogies

[123]. Moreover, the similarity of concepts can give information about

their potential usage: From a perceptual point of view, pencils and

crayons are quite similar to each other. If an autonomous agent now

observes that pencils are used for writing or drawing, it can generalize

this usage to crayons. Finally, conceptual similarity can also be used for

finding appropriate substitutes. Let us assume that a household robot

tries to make an apple pie. However, there are currently no apples in

the kitchen, only pears and oranges. If the robot is able to extract from

its conceptual space that apple is more similar to pear than to orange,

it can infer that it should use the pears as a substitute, not the oranges.

In Section 2.1.1, we have introduced Gärdenfors’ definition of simi-Similarity of points

larity between points in a conceptual space:

Sim(x, y) = e−c·d(x,y)

This definition can, however, not easily be generalized from points toTowards similarity of

fuzzy concepts
fuzzy conceptual regions and has been criticized in the literature. In

Section 4.4.1, we discuss Tversky’s criticism of distance-based accounts

of similarity [412] and how this criticism can be addressed in the

conceptual spaces framework. Afterwards, we propose two definitions

of conceptual similarity in Section 4.4.2, which are then illustrated in

Section 4.4.3 by using our fruit space example.

4.4.1 Similarity as Inverse Distance

Before we formalize the similarity of conceptual regions, we would likeCriticism of

similarity spaces
to discuss to what extent psychological similarity between individual

observations can be represented in a spatial way. In his very influential

article [412], Tversky has argued that despite being widely used, simi-

larity spaces are not always adequate for representing psychological

similarity. He especially criticizes that dissimilarity is identified with a

distance metric in the similarity space. A distance metric needs to fulfill

three properties (minimality, symmetry, and the triangle inequality, cf.

the proof of Lemma 2.1) and Tversky argues that all three of them are

not necessarily fulfilled for dissimilarities:

The minimality criterion asserts that∀x, y ∈ CS : d(x, y) ≥ d(x, x) = 0.Violations of

minimality in

recognition

experiments

Tversky considers recognition experiments as a counter-example for

this assertion: In recognition experiments, participants are shown

pairs of stimuli for a very short amount of time and are then asked

to report as fast as possible whether the two stimuli are identical

or different. One can represent dissimilarity by the probability of a

stimulus pair to be judged as different. Tversky argues, that in this

setting, we can find two different stimuli x ̸= y for which empirical data

suggests that d(x, x) ̸= d(y, y). However, minimality would require that
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d(x, x) = d(y, y) = 0. Moreover, one can sometimes observe cases with

d(x, y) < d(x, x), which also violates minimality.

Symmetry requires that ∀x, y ∈ CS : d(x, y) = d(y, x). Here, Tversky Violations of

symmetry due to

directionality of

similarity

points out that a stimulus x being similar to a stimulus y essentially

means that "x is like y". This is a directional statement, which might

not be reversible. He argues that in natural language, usually the more

salient stimulus is chosen as y (such as in "an ellipse is like a circle"

rather than "a circle is like an ellipse"). Moreover, statements of the

type "x is like y" often involve metaphorical mappings. Tversky uses

the following example to support this point of view: If we say "a man is

like a tree", we imply that a man has roots (e.g., in his home region).

However, if we say "a tree is like a man", we imply that a tree has a life

history. Tversky concludes that symmetry is therefore often violated

for dissimilarity judgments.

The triangle inequality is fulfilled if ∀x, y, z ∈ CS : d(x, y) + d(y, z) ≥ Violations of the

triangle inequality

based on shared

features

d(x, z). Again, Tversky is able to give a counter-example: Cuba and

Soviet Russia are judged to be similar because of their political system.

Moreover, Cuba and Jamaica are considered to be similar because

of their geographical location. The triangle inequality would imply

that Soviet Russia and Cuba are also relatively similar to each other.

However, they are typically considered to be quite dissimilar, because

they share no common features. Therefore, also the triangle inequality

is easily violated.

In addition to the three properties mentioned above, Tversky intro- The diagnosticity

effect: similarity is

context-dependent

duces the diagnosticity effect as another empirical observation which

cannot be easily explained if dissimilarity is interpreted as spatial

distance. This effect takes place if the similarity judgment between

two stimuli is influenced by other stimuli in the current context. For

instance, Tversky describes the results of a study where participants

were asked to select which country is most similar to Austria. When

presented with the options Sweden, Poland, and Hungary, partici-

pants mostly selected Sweden. However, when presented with Sweden,

Norway, and Hungary, participants picked Hungary. At the time of

the experiment, Poland and Hungary were both communist coun-

tries, while Sweden and Austria were capitalist democracies. In the

first case, it thus seems that the political and economic system was

the most crucial aspect for the similarity judgment. In the second

case, however, geographical information became more pertinent with

Sweden and Norway being Scandinavian countries, and Austria and

Hungary being located in central Europe. If dissimilarity is represented

by distance in a similarity space, the distances between Austria and

Sweden and between Austria and Hungary should, however, not be

affected by the context given through Poland and Norway, respectively.

Overall, Tversky [412] concludes that spatial representations of sim- Tverksy’s feature

matching technique
ilarity are often not adequate. In order to solve the problems out-

lined above, he proposes a feature matching technique as an alternative

to spatial representations of similarity. In his proposal, each stim-

ulus x is represented as a set of binary features X (which can be
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present or absent). The similarity between two stimuli x and y is de-

fined as a function of their common and different features, namely

Sim(x, y) = f(X ∩ Y,X \ Y, Y \X). Tversky showed that this account

of similarity is capable of solving the aforementioned issues.

This proposed representation of a stimulus by a set of features isFeature matching

and conceptual

spaces

easily applicable to concepts. For instance, an apple can be described by

being red, round, and sweet. In our opinion, Tversky’s feature matching

approach can, however, not be used for properties such as red, round,

and sweet, since they cannot be easily expressed in lower-level terms.

Moreover, the feature matching approach requires the identification

of all relevant features for all stimuli which in itself is not a trivial

process.
6

One can thus argue that Tversky’s approach suffers from the

symbol grounding problem [190] (cf. Section 1.2.3). In contrast to this,

the conceptual spaces framework explicitly focuses on the grounding of

properties in perception by using a spatial representation of similarities.

Nevertheless, Tversky’s general criticism of similarity spaces needs to

be addressed.

Recently, Sileno et al. [369] have provided an account for Tversky’sAccounting for

Tversky’s criticism

with contrast vectors

criticism within the theory of conceptual spaces. They do so by using

the contrast vectors introduced by Dessalles [124] (cf. Sections 2.4.1

and 3.6.2). In this approach, metaphors such as "Peter is like a lion"

are interpreted as double contrast: Sileno et al. compute the contrast

vector between Peter and the person prototype as well as the contrast

vector between lion and the animal prototype. The metaphor is valid if

both contrast vectors are similar to each other, i.e., point into similar

directions. In the given example, one would assume that both contrast

vectors have large entries with respect to the strength dimension, i.e.,

both individuals are identified as stronger than the average individual.

Sileno et al. follow Tversky’s argumentation by furthermore requiring

that the difference to the prototype should be more distinctive for the

second stimulus (i.e., lion). Please note that this alternative definition

of conceptual similarity is no longer based on distances in the similarity

space, but on the similarity of directions inside this space. Sileno et al.

show how contrast vectors can solve the problems posed by Tversky

for symmetry, the triangle inequality, and the diagnosticity effect:

The similarity judgments based on contrast vectors do not necessarilyViolations of

symmetry based on

distinctive

characteristics

fulfill symmetry. For instance, "Tel Aviv is like New York" activates the

distinctive characteristics of New York (i.e., the ways in which it differs

from the average city), while "New York is like Tel Aviv" activates

the distinctive characteristics of Tel Aviv, thus leading potentially

to different results. This effect is based on the assumption that the

difference of the second item to its prototype is always more pronounced

that the respective difference of the first item to its prototype.

The violation of the triangle inequality can be explained by the type ofViolations of the

triangle inequality

based on distinctive

characteristics

6 This can be related to the frame problem [284] in AI, which describes the difficulty of

limiting the set of beliefs about the environment that need to be changed after executing

an action – in short, how to know which things can be expected to stay the same unless

explicitly defined otherwise.
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contrast vector being used in the similarity judgments. When comparing

the contrast vectors between Cuba and the prototypical country on the

one hand, and between Soviet Russia and the prototypical country on

the other hand, we expect both of these vectors to have large entries

with respect to the dimension representing the political affiliation.

Moreover, the respective contrast vectors for Cuba and Jamaica have

large commonalities with respect to the geographical location. How-

ever, the contrast vectors for Soviet Russia and Jamaica do not have

considerable commonalities with respect to any of the dimensions.

The diagnosticity effect can be explained by constructing a prototype Explaining the

diagnosticity effect

based on contrast to

the group average

of the set of countries under consideration. In the first case (where

Austria is deemed to be more similar to Sweden than to Hungary in the

context of Poland), Austria differs from this prototype mostly in the

direction of political affiliation (as does Sweden). In the second case

(where Poland is replaced by Norway), the prototype changes, and the

difference with respect to the geographical location becomes more

prominent. Thus, by manipulating the set of alternatives, one implicitly

also manipulates the prototype and thus the contrast vectors, leading

potentially to different similarity judgments.

Finally, Sileno et al. argue that violations of minimality can be ex- Violations of

minimality due to

small contrast

vectors

plained as follows: If a given stimulus x is close to the prototype p of

the overall group, then also any other stimulus y which is also close

to the group prototype p might be a satisfactory choice in recognition

experiments – in both cases, the contrast vector between x and p, and

between y and p, respectively, is very small and not very expressive. If

stimulus identity is computed by comparing contrast vectors, then very

small contrast vectors may simply lie below the detection threshold for

differences, and may thus be regarded as identical.

Sileno et al. conclude that the criticism by Tversky can be circum- Contrast vectors as a

solution to Tversky’s

criticism

vented if contrast is used as basis of similarity rather than geometrical

distance. They furthermore point out that Tversky’s feature matching

approach requires to estimate additional model parameters which

determine how the common features and the distinctive features are

weighted against each other. Their contrast-based approach on the other

hand is free of such parameter fitting issues.

Our formalization of conceptual spaces does not use contrast vectors Accounting for

Tversky’s criticism

without contrast

vectors

to define the similarity of points. Since we define the similarity of points

as an exponentially decaying function of their distance (in agreement

with Gärdenfors’ original proposal [179] and based on findings by

Shepard [368]), we shall thus also comment on the issues pointed out by

Tversky [412]. In our opinion, three of the four effects can be explained

through the the salience weights which express the relative importance

and prominence of the respective domain or dimension in a given

context (cf. [179, Section 4.3.3]). Please recall that in our formalization

we compute the distance within a conceptual space as follows:

Definition 2.7 (Combined Metric)

LetCS be a conceptual space based on dimensions d ∈ D, which are partitioned
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into domainsD ⊇ δ ∈ ∆. LetW∆ be the set of positive domain weights wδ for

all δ ∈ ∆ with

∑︁
δ∈∆wδ = |∆|. Let moreoverWδ be the set of positive domain

weights wd for all d ∈ δ with

∑︁
d∈δ wd = 1. Let furthermore x, y ∈ CS.

Their distance according to the combined metric is defined as follows, where

W = ⟨W∆, {Wδ}δ∈∆⟩:

d∆C (x, y,W ) =
∑︂
δ∈∆

wδ · dδE (x, y,Wδ) =
∑︂
δ∈∆

⎛⎝wδ ·√︄∑︂
d∈δ

wd · |xd − yd|2

⎞⎠
By manipulating the salience weights wδ and wd, we can controlSalience weights for

representing context
the influence of the dimension-wise distances |xd − yd| on the overall

distance between x and y. These salience weights thus represent the

current context in which the similarity judgment is made. Manipulating

these salience weights can reproduce the effects observed by Tversky:

When discussing the violation of symmetry, both Tversky [412] andViolations of

symmetry by using

different salience

weights

Sileno et al. [369] assume that the second stimulus in a comparison

(such as "Tel Aviv is like New York") sets the context of the comparison.

We can therefore use the salience weights associated with the second

stimulus when computing the similarity of two stimuli. One can easily

see that different salience weights lead to different semantic distances,

and thus to a violation of symmetry. This can also be related to our

arguments from Section 4.2.1 in the context of the subsethood operation,

where we also advocated to use the salience weights and sensitivity

parameter of the second concept.

Also the example with respect to the triangle inequality can be solvedViolations of the

triangle inequality

based on domain

weights

through salience weights. Let us for now assume that our conceptual

space consists only of two domains reflecting the political system and

the geographical location, respectively. Cuba and Soviet Russia have a

small distance within the political domain, but a large distance with

respect to geography. Their similarity becomes large if we put a large

domain weight on the political domain and a relatively small weight

on the geographic domain. Cuba and Jamaica on the other hand have

a large distance in the political domain, but a small distance in the

geographic domain. By shifting the salience weights towards the latter,

we can again achieve a high similarity value. Finally, Soviet Russia and

Jamaica have relatively large distances with respect to both domains.

No matter how we choose the domain weights (assuming that they

have to be normalized), we cannot achieve a small distance and thus

high similarity. Therefore, Soviet Russia and Jamaica are judged to be

not very similar to each other.

Finally, the account of the diagnosticity effect given by Sileno et al.Explaining also the

diagnosticity effect

with domain weights

[369] can be adapted to our proposal: If the context is set by Austria,

Sweden, Hungary, and Poland, then the political domain receives a

large salience weight as it is very discriminative in this context. This

results in Sweden being the most similar country to Austria based

on their shared political system. On the other hand, if the context

includes Austria, Sweden, Hungary, and Norway, the geographic

domain becomes more prominent and receives a higher salience weight
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than the political domain. In this case, Hungary will be considered

most similar to Austria based on their geographic proximity.

While we can therefore model the three effects discussed above by How to obtain

salience weights
using salience weights, it is still unclear how to exactly determine the

salience weights of the current context and we do not offer any general

way of doing so in our formalization. Here, the approach taken by

Sileno et al. [369, 370] (cf. Section 2.3.3) seems to be a promising avenue

of research: In principle, one could determine the salience weights by

computing the entries of the contrast vector and normalizing them

appropriately.

The violation of the minimality criterion cannot be addressed with Violations of

minimality due to

noisy observations

salience weights. In addition to the argumentation by Sileno et al. [369]

we can give another possible explanation: Perception corresponds in the

case of the conceptual spaces framework to mapping objects from the

real world onto points in the similarity space. In general, we can assume

that perception is a noisy process, which means that the coordinates

in the conceptual space are subject to small random translations. If

an object is observed for a longer period of time, the multiple noisy

observations can be aggregated into a stable estimate (e.g., by taking

a moving average of the coordinates). However, in the speeded clas-

sification tasks discussed by Tversky, objects are only presented for a

very brief amount of time. One could thus argue that the noise cannot

be filtered out successfully and that the distances are now computed

between noisy estimates rather than true coordinates, leading some-

times to erroneous results, such as a violation of the minimality property.

We think that the arguments made above show that Tversky’s criticism Summary

can be addressed withing the original conceptual spaces framework

by manipulating the salience weights (see also [179, Section 4.3.3] for a

similar argumentation). Albeit raising important issues, Tversky’s criti-

cism [412] does therefore not prevent our formalization from providing

a meaningful way of measuring similarity. So far, we have confined our

discussion to dissimilarity as a distance between points in the conceptual

space. In the following, we attempt to generalize the notion of similarity

from points to fuzzy conceptual regions.

4.4.2 Definition

In this section, we propose two different definitions for the similarity of Similarity only

considers common

domains

fuzzy concepts. Whenever the two concepts are defined on two different

sets of domains∆1 ̸= ∆2, we first project them onto their set of common

domains ∆′ = ∆1 ∩ ∆2 before computing their similarity value. For

example, the conceptual similarity of baseball and apple should not be

zero, because both have a similar shape and size. However, apple is also

defined on the taste domain, but baseball presumably not. Thus, when

judging the similarity of the concepts baseball and apple, we consider

only their set of common domains. Since properties from different

domains such as sweet and round do not share any commonalities (i.e.,
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Figure 4.9: Two fuzzy sets
˜︁S and

˜︁S′
with identical cores, weights, and sensitiv-

ity parameter, for which similarity functions based on the distance

of cores violate the first criterion.

∆′ = ∅), their similarity is defined to be zero.

We expect that any similarity function Sim(˜︁S1, ˜︁S2) ∈ [0, 1] fulfills aCriteria for

similarity functions
number of mathematically formulated semantic constraints:

Definition 4.8 (Similarity Function)

A function Sim(˜︁S1, ˜︁S2) ∈ [0, 1] is called a similarity function, if it fulfills the

following criteria for all concepts
˜︁S1, ˜︁S2:

1.

(︂
Sim(˜︁S1, ˜︁S2) = 1

)︂
⇒
(︂
Sub(˜︁S1, ˜︁S2) = 1

)︂
2.

(︂˜︁S1 = ˜︁S2)︂⇒
(︂
Sim(˜︁S1, ˜︁S2) = 1

)︂
3.

(︂˜︁S1 ⊆ ˜︁S2)︂⇒
(︂
Sim(˜︁S1, ˜︁S2) ≥ Sim(˜︁S2, ˜︁S1))︂

The first criterion states that if
˜︁S1 is perfectly similar to

˜︁S2, then thosePerfect similarity

implies subsethood
two concepts should also stand in a subsethood relation. This requires

a strong semantic relationship to hold between the two concepts. One

could also require that
˜︁S1 = ˜︁S2, but this seems to be too strong as it

would prevent a perfect similarity of subordinate concepts (e.g., Granny

Smith) to their superordinate concept (e.g., apple).

The second criterion requires that the similarity of a given concept toSelf-similarity is

maximal
itself is always maximal and can be related to the minimality criterion

discussed in Section 4.4.1.

The third criterion finally prevents supersets from having a higherDirectionality of

similarity for subsets
similarity to their subsets than the other way around. It ensures, for

instance, that Sim(˜︁S
Granny Smith

, ˜︁Sapple) ≥ Sim(˜︁Sapple, ˜︁SGranny Smith
).

If we base the similarity of two concepts
˜︁S1 and

˜︁S2 on the distanceSimilarity based on

distances of cores

violates the first

criterion

between their cores S1 and S2 (e.g., by computing their minimal dis-

tance dmin(S1, S2) = minx∈S1 miny∈S2 d(x, y), their Hausdorff distance

dH(S1, S2) = max(supx∈S1
infy∈S2 d(x, y), supy∈S2

infx∈S1 d(x, y)), or the

distance of their prototypical points), we always violate the first property

from Definition 4.8: Consider
˜︁S = ⟨S, µ0, c,W ⟩ and

˜︁S′ = ⟨S, µ′0, c,W ⟩
with µ′0 < µ0 as illustrated in Figure 4.9. Clearly,

˜︁S′ ⊆ ˜︁S and therefore

Sub(˜︁S′, ˜︁S) = 1. On the other hand, Sub(˜︁S, ˜︁S′) < 1. As the cores are



4.4 concept similarity 179

identical, their distance is zero. If we use Sim(˜︁S1, ˜︁S2) = e−c·d(S1,S2)
,

then Sim(˜︁S, ˜︁S′) = 1, but Sub(˜︁S, ˜︁S′) < 1. We therefore exclude these

possible definitions from our consideration.

If we define Sim(˜︁S1, ˜︁S2) = maxx∈S1 µ˜︁S2
(x), we always violate the Similarity as highest

membership violates

the second criterion
second property from Definition 4.8 for

˜︁S1 = ˜︁S2 with µ0 < 1. We

therefore do not consider this possible definition any further.

We now propose two definitions that fulfill all of the requirements Similarity as

subsethood
stated above. Firstly, we can again reuse our definition of subsethood

from Section 4.2.1:

Proposition 4.6 (SimS is a Similarity Function)

SimS(˜︁S1, ˜︁S2) = Sub(˜︁S1, ˜︁S2) is a similarity function according to Definition

4.8.

Proof. See Appendix C.3.

Secondly, we can use the Jaccard index
|A∩B|
|A∪B| , which is a common Similarity based on

the Jaccard index
similarity measure between sets:

Proposition 4.7 (SimJ is a Similarity Function)

SimJ(˜︁S1, ˜︁S2) = M(I(˜︁S1,˜︁S2))

M(U(˜︁S1,˜︁S2))
is a similarity function according to Definition

4.8.

Proof. See Appendix C.3.

Both proposed definitions are similar to each other in the sense Commonalities and

differences between

the two approaches

that they look at the overall fuzzy sets and not just at their cores.

Moreover, they build upon our definitions of intersection, union, and

size. The Jaccard index is symmetric, whereas the degree of subsethood

is asymmetric. Depending on the application scenario, either one of

them can be used. The symmetric nature of the Jaccard index SimJ

might be more convincing from a mathematical perspective. On the

other hand, the asymmetric nature of SimS matches psychological

evidence suggesting that similarity judgments by humans tend to be

asymmetric [412] as discussed in Section 4.4.1. In principle, also the

Jaccard index could be made asymmetric by always using the salience

weights of the second concept instead of the interpolated weights

returned by the intersection and union operators (cf. our definition

of subsethood in Section 4.2.1). We do, however, not consider such

a variant, since it seems somewhat counterintuitive to modify the

symmetric Jaccard index in such a way.

4.4.3 Implementation and Example

Both definitions of similarity can be easily implemented based on Implementation

existing functionality (namely, concept size, intersection, union, and

subsethood). It is clear that the runtime for computing similarity de-

pends directly on the runtime of these operations. We therefore did not

conduct separate runtime experiments but refer back to the respective
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

pear ∆ (0.50, 0.40, 0.35) (0.70, 0.60, 0.45) 1.0 24.0 0.50 1.25 1.25

orange ∆ (0.80, 0.90, 0.60) (0.90, 1.00, 0.70) 1.0 30.0 1.00 1.00 1.00

lemon ∆ (0.70, 0.45, 0.00) (0.80, 0.55, 0.10) 1.0 40.0 0.50 0.50 2.00

Granny

Smith

∆ (0.55, 0.70, 0.35) (0.60, 0.80, 0.45) 1.0 50.0 1.00 1.00 1.00

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

(0.65, 0.65, 0.40) (0.85, 0.80, 0.55)apple ∆

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

1.0 20.0 0.50 1.50 1.00

(0.50, 0.10, 0.35) (0.75, 0.30, 0.55)

(0.70, 0.10, 0.50) (0.80, 0.30, 0.70)banana ∆

(0.75, 0.10, 0.50) (0.85, 0.30, 1.00)

1.0 20.0 0.75 1.50 0.75

Table 4.8: Definitions of several fruit concepts for our exemplary similarity

computations.

Granny

pear orange lemon

Smith

apple banana

pear 1.0000 0.0000 0.0002 0.0096 0.1181 0.0558

orange 0.0001 1.0000 0.0000 0.0004 0.0446 0.0000

lemon 0.0011 0.0000 1.0000 0.0000 0.0025 0.0048

Granny

Smith

0.0613 0.0000 0.0000 1.0000 1.0000 0.0002

apple 0.0504 0.0053 0.0002 0.0764 1.0000 0.0012

banana 0.0136 0.0000 0.0002 0.0000 0.0007 1.0000

Table 4.9: Similarity values based on the degree of subsethood SimS for all

fruit concepts, rounded to four decimal places.

results from Sections 3.1.3, 4.1.3, and 4.2.2.

Let us again use some examples from our fruit space to illustrateFruit space example

the results of applying the two proposed definitions. Table 4.8 and

Figure 4.10 show the fruit concepts, and Tables 4.9 and 4.10 contain the

respective similarity values for all pairs of concepts, using SimS and

SimJ , respectively. In the code, the similarity values can be computed

like this:

apple.similarity_to(pear, method="subset")
0.05043467196991022

apple.similarity_to(pear, method="Jaccard")
0.0398322124027715

Table 4.9 shows the asymmetric nature the subsethood-based sim-Symmetry and

self-similarity
ilarity SimS , while Table 4.10 illustrates that the Jaccard index SimJ

is a symmetric similarity function: For instance, consider the pair of

concepts apple and Granny Smith:

SimS(˜︁Sapple, ˜︁SGranny Smith
) ≈ 0.0764

SimS(˜︁SGranny Smith
, ˜︁Sapple) = 1.0000
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Figure 4.10: Screenshot of the ConceptInspector tool, showing all concepts

used in our similarity computations. Concepts are labeled as

follows: pear (1), orange (2), lemon (3), Granny Smith (4), apple

(5), and banana (6).

Granny

pear orange lemon

Smith

apple banana

pear 1.0000 0.0000 0.0002 0.0151 0.0398 0.0107

orange 0.0000 1.0000 0.0000 0.0001 0.0069 0.0000

lemon 0.0002 0.0000 1.0000 0.0000 0.0003 0.0003

Granny

Smith

0.0151 0.0001 0.0000 1.0000 0.1537 0.0000

apple 0.0398 0.0069 0.0003 0.1537 1.0000 0.0003

banana 0.0107 0.0000 0.0003 0.0000 0.0003 1.0000

Table 4.10: Similarity values based on the Jaccard index SimJ for all fruit

concepts, rounded to four decimal places.
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SimJ(˜︁Sapple, ˜︁SGranny Smith
) ≈ 0.1537

SimJ(˜︁SGranny Smith
, ˜︁Sapple) ≈ 0.1537

Under SimS , Granny Smith is perfectly similar to apple, but ap-Interpretation

ple is not very similar to Granny Smith. This can be explained by

the simple fact that in our representation
˜︁S

Granny Smith
⊆ ˜︁Sapple, but˜︁Sapple ̸⊆ ˜︁S

Granny Smith
, which of course strongly affects SimS . For both

variants of the similarity function, we observe perfect self-similarity,

but rather low values for all other similarities. Many similarity val-

ues are below 0.00005 and are thus shown as zeros in Tables 4.10 and 4.9.

Let us take a look at a few selected similarity values returned bypear is more similar

to apple than to

Granny Smith

SimS and SimJ : For both functions, we observe that pear is more

similar to apple than to Granny Smith. This makes intuitive sense when

looking at the locations of the respective cores in Figure 4.10 and at their

definitions in Table 4.8 – the cores of pear and apple are simply closer

to each other than the cores of pear and Granny Smith. Moreover, the

Granny Smith concept is quite narrow due to its higher value for the

sensitivity parameter c, which also contributes to the lower similarity

value.

We can also observe that pear is more similar to apple than to bananapear is more similar

to apple than to

banana

for both SimS and SimJ . Again, by looking at the visualization in

Figure 4.10 one can confirm that this seems plausible, because the pear

core is closer to the core of apple than to the core of banana, while both

apple and banana have a similar degree of fuzziness.

The two simmilarity functions differ, however, with respect to the or-Is pear more similar

to Granny Smith or

to banana?

dering of the values forSim(˜︁Spear, ˜︁SGranny Smith
) andSim(˜︁Spear, ˜︁Sbanana):

The subsethood-based similarity functionSimS claims that pear is more

similar to banana than to Granny Smith, while the Jaccard index SimJ

results in the reverse ordering. one can verify with Table 4.8 that the dis-

tance between the cores of pear and Granny Smith equals the distance

between the cores of pear and banana. In both cases, only differences

with respect to the shape domain are relevant. The banana concept has

a lower value of c than the Granny Smith concept, making it more fuzzy

overall. However, it puts a higher emphasis on the shape domain than

the Granny Smith concept, making its membership function steeper

with respect to δshape. Based on the given conceptual space, there is no

strong reason to prefer any of the ordering over the other, therefore

both of them seem to be somewhat plausible.

Furthermore, we can observe a difference with respect to symme-Asymmetry of SimS

for pear and apple
try, namely, that SimJ(˜︁Spear, ˜︁Sapple) = SimJ(˜︁Sapple, ˜︁Spear), but that

SimS(˜︁Spear, ˜︁Sapple) > SimS(˜︁Sapple, ˜︁Spear). This observation can be ex-

plained by the fact that pear is a subset of apple in both the color and

the taste domain (but not on the shape domain), whereas apple is not

a subset of pear on any of the domains. This naturally influences the

subsethood based similarity function SimS .

We can furthermore note that for both similarity functions the simi-Low similarities for

lemon and orange
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Figure 4.11: Scatter plot of similarity values obtained with SimS and SimJ for

1,000 randomly generated pairs of concepts in a four-dimensional

conceptual space.

larity between lemon and orange (and vice versa) is quite low, which is

cognitively not very plausible. However, we would like to refer back to

Section 3.2.2 where also the union of lemon and orange was deemed

to be cognitively implausible. There, we argued that this problem is not

caused by the union operation, but rather by the way our fruit space is

constructed. The same line of argument applies here: By the simplistic

construction of our fruit space, lemon and orange are quite far apart

from each other which of course leads to low similarity values. If the

fruit space was augmented with additional domains and dimensions

that include, for instance, also the region where the given fruit is

typically grown, its texture and consistency, then lemon and orange

would be closer to each other, leading to higher similarity values.

All other table entries can be interpreted in a similar way. We conclude Choice of similarity

function depends on

the application

our discussion here with the remark that we cannot make a general

recommendation for any of the two similarity functions based on the

results from this toy example, but that a decision for one of the two

similarity functions needs to be made based on the concrete application

and a more thorough evaluation based on real data.

In order to compare the two definitions of conceptual betweenness Additional

simulations for

comparing SimS

and SimJ

more thoroughly, we have generated 1,000 pairs of random concepts

and have computed their similarity values with respect to both SimS
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and SimJ . We employed a four-dimensional conceptual space and two

cuboids per concept. Figure 4.11 shows a scatter plot of our results.

As we can see, there tends to be only limited agreement among theOnly limited

agreement overall
two definitions. We can observe a tendency of SimS producing larger

similarity values than SimJ . This can be explained by the fact that the

formulas for SimS and SimJ share the same numerator (namely, the

size of the intersection), while their denominator differs: SimJ uses

the size of the union, which can be expected to be larger than the size

of the second concept, which is used by SimS . However, there are

also exceptions to this overall tendency, which are likely to be based

on the different types of salience weights used in the computations

of the respective sizes (weights of the second concept for SimS and

interpolated weights for SimJ ).

We can furthermore observe a relatively large number of cases withDistribution of

perfect similarity

scores

SimS(˜︁S1, ˜︁S2) = 1, while SimJ(˜︁S1, ˜︁S2) never occurs in our simulations.

One can easily see that SimJ(˜︁S1, ˜︁S2) = 1 can only happen if S1 = S2

(i.e., the cores are identical) and µ
(1)
0 = µ

(2)
0 (cf. the proof of Proposition

4.7), which is quite unlikely. SimS(˜︁S1, ˜︁S2) = 1 on the other hand

happens whenever
˜︁S1 ⊆ ˜︁S2, which occurs more frequently. Moreover,

as already discussed in Section 4.2.1, our choice of always using the

salience weights of the second concept when computing the degree of

subsethood causes even more cases with SimS(˜︁S1, ˜︁S2) = 1.

When looking at the correlation between SimS and SimJ , we observeCorrelation analysis

values of Pearson’s r ≈ 0.3220 (which measures linear correlation) and

Spearman’s ρ ≈ 0.2932 (which measures monotone correlation). So

while the similarities produced by the two definitions seems to be

correlated to some degree, they are definitely not interchangeable.

Again, a more thorough analysis might reveal which definition is

preferable for which practical use cases.

4.5 betweenness

Conceptual betweenness can be a valuable source for commonsenseBetweenness for

commonsense

reasoning

reasoning [123]: If one concept (e.g., master student) is conceptually

between two other concepts (e.g., bachelor student and PhD student),

then it is expected to share all properties and behaviors that the two

other concepts have in common (e.g., typically being found on campus,

or having to pay an enrollment fee).

As Derrac and Schockaert [123] have argued, betweenness is a quali-Betweenness is

context-independent
tative rather than a quantitative notion and is invariant under linear

transformations – the actual scaling of the individual dimensions of

the conceptual space has therefore no influence on betweenness-based

reasoning. As we have seen in Section 4.4.1, the salience weights used

for such a rescaling may, however, heavily affect similarity-based ap-

proaches. Thus, betweenness is robust to changes in context.

In Section 2.1.2, we have already introduced a definition of between-Betweenness for

points
ness based on a given distance metric d:
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Definition 2.2 (Betweenness)

Let x, y, z ∈ CS and d be a metric on CS. The point y is said to lie between x
and z (denoted as Bd(x, y, z)) if and only if d(x, y) + d(y, z) = d(x, z).

Note that Definition 2.2 is only applicable to points in a conceptual Generalizing

betweenness
space. Moreover, it is defined in a crisp way: A point y either is com-

pletely between two other points x and z or it is not. In general, we

would, however, also like to talk about a fuzzy degree of betweenness

for triples of concepts.

In Section 4.5.1, we first review definitions for conceptual betweenness

from the literature. Afterwards, we derive two definitions for the

betweenness of fuzzy concepts in Section 4.5.2, which are then illustrated

in Section 4.5.3 using again our example fruit space from Section 2.3.4.

4.5.1 Betweenness in the Literature

Schockaert and Prade [352, 353] and Derrac and Schockaert [122, 123] Crisp betweenness of

crisp regions
have thoroughly studied conceptual betweenness in conceptual spaces

as a basis for commonsense reasoning, and have provided various

generalizations of Definition 2.2. In [353], Schockaert and Prade propose

to to generalize the betweenness relation from points to regions in the

following way:

bet(X,Y, Z) ⇔ (∃y ∈ Y : ∃x ∈ X : ∃z ∈ Z : B(x, y, z))

bet(X,Y, Z) ⇔ (∀y ∈ Y : ∃x ∈ X : ∃z ∈ Z : B(x, y, z))

Here, bet(X,Y, Z) requires only a single point of Y to lie between X Interpretation

and Z, whereas bet(X,Y, Z) requires this for all points in Y . Please note

that these definitions of betweenness are still crisp.

In [122], Derrac and Schockaert propose different soft notions of Soft betweenness of

points
betweenness for points:

Btw1(x, y, z) = ||−→yp||

Btw2(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Btw1(x, y, z) if cos(−→xz,−→xy) ≥ 0

∧ cos(−→zx,−→zy) ≥ 0

+∞ otherwise

Btw3(x, y, z) =
d(x, z)

d(x, y) + d(y, z)

Here, Btw1(x, y, z) measures the distance of point y to its projection Btw1 and Btw2 are

based on a projectionp onto the line through x and z (see Figure 4.12a). Perfect betweenness

corresponds to a value of 0 and greater numbers signify a weaker

betweenness relation. This is somewhat unintuitive from the perspective

of fuzzy logic as adopted in our work, where perfect betweenness can

be mapped to a value of 1 and weaker betweenness relations should be

represented by values from the interval [0, 1). Moreover, Btw1(x, y, z)
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Figure 4.12: (a) Illustration of Btw1 as proposed by Derrac and Schockaert

[122]. (b) Problematic case for Btw1 as motivation for Btw2.

has the disadvantage that a point y can obtain perfect betweenness

without actually lying between x and z. This case is illustrated in Figure

4.12b. Here,Btw1(x, y, z) = 0 (indicating perfect betweenness), because

y already lies on the line through x and z which means that y = p and

||yp⃗|| = 0. However, y is clearly not between x and z. The definition of

Btw2(x, y, z) fixes this problem by restricting the betweenness to the

line segment between x and z through checking the cosines between the

respective vectors.

Please note that both Btw1 and Btw2 assume a Euclidean space andBtw1 and Btw2

assume the Euclidean

distance

are thus only applicable within a single domain, but not across domains:

The implicit assumption of a Euclidean space can be understood from

the fact that only points y on the straight line segment between x and

z are considered to be perfectly between x and z. In Section 2.1.2, we

showed that this is the definition of betweenness under the Euclidean

metric, whereas all points in the bounding box between x and z would

be considered to be between x and z under the Manhattan metric.

The third variant Btw3(x, y, z) turns the crisp notion of betweennessBtw3 as soft

generalization of

Definition 2.2

from Definition 2.2, which requires that d(x, z) = d(x, y) + d(y, z) into

a soft measure of betweenness by comparing the relative size of the two

terms. Due to the triangle inequality, the denominator cannot be smaller

than the numerator andBtw3(x, y, z) is thus limited to the interval (0, 1]
with a value of 1 indicating perfect betweenness. This definition thus

corresponds to our expectations from fuzzy logic and fits in nicely with

our prior definitions of subsethood, implication, and similarity. More-

over, Btw3(x, y, z) can be used with any distance metric (including dM
and d∆C ) and can thus be easily applied to the complete conceptual space.

All three of these definitions are again based on points. Derrac andGeneralizing soft

betweenness to crisp

regions

Schockaert [122] propose to generalize them from points to crisp regions

in the following way:

BtwR1 (X,Y, Z) =
1

|Y |
∑︂
y∈Y

min
x∈X

min
z∈Z

Btw1(x, y, z)

BtwR2 (X,Y, Z) =
1

|Y |
∑︂
y∈Y

min
x∈X

min
z∈Z

Btw2(x, y, z)

BtwR3 (X,Y, Z) =
1

|Y |
∑︂
y∈Y

max
x∈X

max
z∈Z

Btw3(x, y, z)
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In all three cases, we compute for each point y ∈ Y its optimal Interpretation as

average of optimal

values

betweenness value across all possible choices over points x ∈ X and

z ∈ Z. We then aggregate this intermediate result across all y ∈ Y
by using an unweighted average. Please note that all three definitions

assume that the conceptual region Y consists only of a finite set of

points. If this is not the case, the summation would have to be replaced

by an integral.

In their experiments, Derrac and Schockaert [122] represent each Experimental results

concept as a set of exemplar points, which they obtained with a k-means

clustering procedure (to be introduced in Chapter 7). They argue that

one can easily construct a region out of these points by computing

their convex hull. For efficiency reasons, they, however, only use these

exemplars to compute the betweenness relations BtwR1 , BtwR2 , and

BtwR3 . Their experimental results indicate that Btw1 and Btw2 tend to

perform slightly better than Btw3 in commonsense reasoning tasks.

4.5.2 Definition

Because the concepts in our formalization cannot be described by We need soft

betweenness for

fuzzy sets

a finite set of points, the definitions of Derrac and Schockaert [122]

from Section 4.5.1 are not directly applicable. We will therefore derive

our own definition of betweenness for fuzzy sets. Please not that a

concept
˜︁S2 can only be located between two other concepts

˜︁S1 and˜︁S3 if all of these concepts are defined on the same domains. One

can, for instance, not say that baseball is conceptually between apple

and orange, because it does not have a taste. We will start with the

binary notion of betweenness for points, which will be subsequently

generalized in order to derive a soft betweenness measure for fuzzy sets.

As already stated above, we define in our formalization that a point y Crisp betweenness

for points
is between two other points x and z based on the combined metric d∆C :

Definition 2.2 (Betweenness)

Let x, y, z ∈ CS and d be a metric on CS. The point y is said to lie between x
and z (denoted as Bd(x, y, z)) if and only if d(x, y) + d(y, z) = d(x, z).

We generalizeBd(x, y, z) (henceforth referred to asB(x, y, z) for better Crisp betweenness

for crisp regions
readability) from points to crisp regions by using bet from Schockaert

and Prade [353] (cf. Section 4.5.1):

B(S1, S2, S3) ⇔ (∀y ∈ S2 : ∃x ∈ S1 : ∃z ∈ S3 : B(x, y, z))

In order to generalize from crisp to fuzzy sets, we can simply require Crisp betweenness

for fuzzy regions
that B(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) is true for all α-cuts (cf. Definitions 2.12 and 2.13 for

convexity and star-shapedness):

B(˜︁S1, ˜︁S2, ˜︁S3) ⇔ ∀α ∈ [0, 1] : B(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 )
⇔ ∀α ∈ [0, 1] : ∀y ∈ ˜︁Sα2 : ∃x ∈ ˜︁Sα1 : ∃z ∈ ˜︁Sα3 : B(x, y, z)
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If
˜︁Sα2 = ∅, then B(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) is true independent of

˜︁Sα1 and
˜︁Sα3 . IfConsidering empty

α-cuts ˜︁Sα2 ̸= ∅, but
˜︁Sα1 = ∅ or

˜︁Sα3 = ∅, then B(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) is false. Since we use

a universal quantification over α, this means that also B(˜︁S1, ˜︁S2, ˜︁S3) is

false in this case.

This definition is binary and thus allows only for relatively coarse-Soft betweenness for

points
grained distinctions. In order to derive a degree of betweenness for fuzzy

sets, we adapt the soft notion Btw3 for points as provided by Derrac

and Schockaert [122] (cf. Section 4.5.1 to our formalization:

Bsoft(x, y, z) =
d∆C (x, z,W )

d∆C (x, y,W ) + d∆C (y, z,W )

Please note that we need to use the same set of salience weightsW forUsing the same

salience weights
all the three distance computations in order to ensure that Bsoft(x, y, z)
gives meaningful results with Bsoft(x, y, z) ∈ [0, 1]. One can easily see

that B(x, y, z) is true if and only if Bsoft(x, y, z) = 1.

We can use Bsoft(x, y, z) together with the extension principle [449]Soft betweenness for

fuzzy regions
to generalize B(˜︁S1, ˜︁S2, ˜︁S3) to a soft notion Binf

soft(
˜︁S1, ˜︁S2, ˜︁S3):

Definition 4.9 (Infimum-Based Betweenness)

Let
˜︁S1, ˜︁S2, and

˜︁S3 be three concepts defined on the same set of domains ∆S .

The soft degree to which
˜︁S2 lies between

˜︁S1 and
˜︁S3 can be computed as follows:

Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) = inf
α∈[0,1]

inf
y∈˜︁Sα

2

sup
x∈˜︁Sα

1

sup
z∈˜︁Sα

3

d∆S

C (x, z,W (2))

d∆S

C (x, y,W (2)) + d∆S

C (y, z,W (2))

We simply replaced B(x, y, z) with Bsoft(x, y, z), each existentialFormal properties of

Binf
soft quantification with the supremum (i.e., the largest lower bound), and

each universal quantification with the infimum (i.e., the smallest upper

bound).
7

Moreover, we decided to use the salience weights W (2)
of the

second concept for the distance computations. Potential alternatives

include the usage of an unweighted distance or the creation of inter-

polated weights based on W (1)
, W (2)

, and W (3)
. For now, using W (2)

seems, however, to be the most straightforward choice. One can easily

see that B(˜︁S1, ˜︁S2, ˜︁S3) if and only if Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) = 1. Moreover, if˜︁S2 ⊆ ˜︁S1 (or
˜︁S2 ⊆ ˜︁S3), then Binf

soft(
˜︁S1, ˜︁S2, ˜︁S3) = 1, because we can pick

for each y ∈ ˜︁Sα2 always x = y ∈ ˜︁Sα1 , resulting in Bsoft(x, y, z) = 1 for

all possible α-cuts.

Since Binf
soft considers all different α-cuts of the fuzzy concepts, andContext-dependence

of Binf
soft since the shapes of theseα-cuts also depend on the salience weights, our

definition of conceptual betweenness is no longer context-independent

(in contrast to the arguments by Derrac and Schockaert [123]). The

calculation of
˜︁Sα1 ,

˜︁Sα2 , and
˜︁Sα3 involves the parameters µ0, c, and W

of the respective concepts – only the final distance computation of

Bsoft(x, y, z) uses identical weights and is independent of µ0 and c. Pre-

serving the context-independence of the betweenness relation would

7 Since the α-cuts
˜︁Sα
i always include their border, inf and sup over the points x, y, z

are equivalent to min and max, respectively. However, as we will see in the proof of

Proposition 4.8, Bsoft(x, y, z) is minimized for α → 0, but not for α = 0.
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Figure 4.13: Two problematic cases for Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) based on µ0 (a), and

c and W (b), respectively.

require us to use the same values of µ0, c, and W for all three concepts,

which would then essentially reduce them to their crisp cores. Since this

is not adequate in the context of our formalization, which emphasizes

the fuzziness of conceptual regions, we have decided to accept the

context-dependence of our betweenness relation.

Under certain circumstances, however, Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) yields some Problem based on

maximal membership

µ0

rather unintuitive results: If we consider the three concepts in Figure

4.13a, where µ
(1)
0 = µ

(3)
0 = 0.80 and µ

(2)
0 = 0.81, then

˜︁S0.81
1 = ˜︁S0.81

3 = ∅
and

˜︁S0.81
2 ̸= ∅, and thus Binf

soft(
˜︁S1, ˜︁S2, ˜︁S3) = 0. This seems to indicate

that
˜︁S2 is not at all between

˜︁S1 and
˜︁S3 even though from inspecting

Figure 4.13a, one would expect Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) to be rather large. One

can easily see that this pathological case always occurs when µ
(2)
0 is

larger than both µ
(1)
0 and µ

(3)
0 .

Moreover, in Figure 4.13b we see a simple example where µ
(2)
0 < Problem based on

weights W and

sensitivity parameter

c

min(µ
(1)
0 , µ

(3)
0 ), and where also B(S1, S2, S3), but where will still get

Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) = 0. The reason for this is that µ˜︁S2
(x) decays slower

than both µ˜︁S1
(x) and µ˜︁S3

(x). We can therefore pick a very small α

for which we can find a point in
˜︁Sα2 that is very far away from both˜︁Sα1 and

˜︁Sα3 and thus has a low value for Bsoft(x, y, z). The following

proposition specifies the exact condition under which this happens:

Proposition 4.8 (Problematic Case for Binf
soft)

Let
˜︁S1, ˜︁S2, and

˜︁S3 be three concepts. Assume we find a dimensiond∗ ∈ δ∗ ∈ ∆S

for which the following is true:

c(2)w
(2)
δ∗

√︂
w

(2)
d∗ < min

(︃
c(1)w

(1)
δ∗

√︂
w

(1)
d∗ , c

(3)w
(3)
δ∗

√︂
w

(3)
d∗

)︃
Then, Binf

soft(
˜︁S1, ˜︁S2, ˜︁S3) = 0.

Proof. See Appendix C.4.

The pathological cases from Figure 4.13 arise, because we compute Aggregating over

α-cuts with the

integral

the infimum over all α-cuts. In order to achieve a more generous

degradation, one may thus want to aggregate over the α-cuts in a

different way. One possible approach is to compute the integral over all
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α-cuts, which is similar in spirit to the summation proposed by Derrac

and Schockaert [122] (cf. Section 4.5.1). Since we integrate over α in the

interval [0, 1] and since the degree of betweenness computed for each

α-cut also lies in the interval [0, 1], the result of this integration will also

be a number between zero and one.

Definition 4.10 (Integral-Based Betweenness)

Let
˜︁S1, ˜︁S2, and

˜︁S3 be three concepts defined on the same set of domains ∆S .

The integral-based soft degree to which
˜︁S2 lies between

˜︁S1 and
˜︁S3 can be

computed as follows:

Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3) = ∫︂ 1

0
min
y∈˜︁Sα

2

max
x∈˜︁Sα

1

max
z∈˜︁Sα

3

Btw3(x, y, z)dα

When comparing Definition 4.10 to Definition 4.9, one can easily seeProperties of Bint
soft

that Binf
soft is a lower bound of Bint

soft:

Lemma 4.1 (Bint
soft is Bounded by Binf

soft)

Let
˜︁S1, ˜︁S2, and

˜︁S3 be three concepts. Then, the following inequation holds:

Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) ≤ Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3)
Proof. See Appendix C.4.

Moreover, the following desirable properties of a betweenness func-Further desirable

properties
tion are also fulfilled by Bint

soft (based on Lemma 4.1), while avoiding

the pathological cases from Figure 4.13:

Corollary 4.1 (Properties of Bint
soft)

Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3) preserves the following desirable properties for any three

concepts
˜︁S1, ˜︁S2, and

˜︁S3:
1. B(˜︁S1, ˜︁S2, ˜︁S3) ⇔ (︂

Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3) = 1
)︂

2.

(︂˜︁S2 ⊆ ˜︁S1)︂⇒
(︂
Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3) = 1
)︂

3.

(︂
Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3) = 1
)︂
⇒
(︂
µ
(2)
0 ≤ min(µ

(1)
0 , µ

(2)
0 )
)︂

4.5.3 Implementation and Example

Both proposed variants of betweenness need to minimize and max-Implementation

imize Bsoft(x, y, z) over a given α-cut of
˜︁S1, ˜︁S2, and

˜︁S3. This has

been implemented using numerical optimization algorithms from the

scipy.optimize package. As stated in Section 4.5.2, Binf
soft and Bint

soft

differ only with respect to the aggregation over α: Binf
soft computes the

infimum over all α-cuts, while Bint
soft computes the integral. Both types

of aggregation can again be implemented by using numerical optimiza-

tion. For Bint
soft, the integral can, however, also be approximated by a

Riemann sum (i.e., sampling a relatively small number of equidistant

values for α, and then computing the average across all these α-cuts).
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Number n of Runtime of Runtime of

Dimensions Binf
soft in ms Bint

soft in ms

1 129.6244 35.3474

2 1454.2154 230.6475

4 10681.6994 638.9526

8 – 2021.6039

16 – 4373.0850

Table 4.11: Average runtime ofBinf
soft andBint

soft, averaged across 100 randomly

created triples of single-cuboid concepts, using an average over 20

α-cuts to approximate the integral.

Figure 4.14: Average runtime of the betweenness operation for single-cuboid

concepts as a function of the number of dimensions in the con-

ceptual space.

We can assume that this approximation is considerably faster than

using an additional layer of numerical optimization. Therefore, Bint
soft

has been implemented as a Riemann sum, treating the number of α-cuts

to use as a parameter that can be specified by the user.

Since neither Binf
soft nor Bint

soft are based on any previously introduced Runtime experiments

operations, we have again conducted a small set of runtime experiments.

We have measured the runtime of Binf
soft and Bint

soft for 100 randomly

generated triples of concepts, investigating the number n of dimensions

in the conceptual space, the number m of cuboids per concept, and the

number nα of α-cuts used for approximating Bint
soft. All experiments

were executed on a laptop with an Intel Core i5-6440HQ CPU (2.60

GHz quad-core) processor and 8 GB main memory.

Let us first analyze how the number n of dimensions influences the Runtime and the

number of

dimensions

runtime of Binf
soft and Bint

soft, using a single cuboid per concept and 20

α-cuts for approximating Bint
soft. As we can see from Table 4.11 and
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Number m of Runtime of Runtime of

Cuboids Binf
soft in ms Bint

soft in ms

1 1454.2154 230.6475

2 7595.1761 574.5356

4 14055.2697 1363.6137

8 27242.9803 2870.4694

Table 4.12: Average runtime ofBinf
soft andBint

soft, averaged across 100 randomly

created triples of concepts in a two-dimensional conceptual space,

using an average over 20 α-cuts to approximate the intergal.

Figure 4.15: Average runtime of the betweenness operation as a function of

the number of cuboids used to represend a concept in a two-

dimensional space.

Figure 4.14, the runtime of both Binf
soft and Bint

soft shows a superlinear

growth with respect to the number of dimensions: In general, doubling

the number of dimensions in the conceptual space leads to a runtime

more than twice as large. We can also observe thatBint
soft is considerably

faster than Binf
soft and it seems to scale much better with an increasing

number of dimensions. This illustrates that using an approximation

instead of an additional numerical optimization over α comes with

considerable performance improvements. Please note that we have not

evaluated the runtime of Binf
soft for more than four dimensions due to

the prohibitively large computational effort.

Let us now take a look at the effect of the number m of cuboids perRuntime and the

number of cuboids
concept, which is shown in Table 4.12 and Figure 4.15. Again, we can

observe thatBint
soft is computed considerably faster thanBinf

soft. ForBint
soft,

we again observe a superlinear growth of runtime with an increasing

number of cuboids. ForBinf
soft, on the other hand, the growth in runtime

seems to be slightly sublinear (with a factor of about 1.9 when going

from two to four, and from four to eight cuboids, respectively). With a

larger number of cuboids, also the standard deviation of the runtime
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Number nα of Runtime of Runtime of

α-cuts Binf
soft in ms Bint

soft in ms

20 1454.2154 230.6475

50 1461.7224 602.4602

100 1461.1522 1238.6765

Table 4.13: Average runtime ofBinf
soft andBint

soft, averaged across 100 randomly

created triples of single-cuboid concepts in a two-dimensional

conceptual space.

Figure 4.16: Average runtime of the betweenness operation as a function of

the number of α-cuts used in approximating the integral, using

single-cuboid concepts in a two-dimensional space.

tends to increase, especially for Binf
soft, indicating that extreme cases

with very large runtime have a larger impact on the average.

Finally, let us consider the effects varying the number nα of α-cuts Runtime and the

number of α-cuts
used to approximate Bint

soft. The corresponding results are shown in

Table 4.13 and Figure 4.16. Using more α-cuts leads to an increased

runtime with a slightly superlinear tendency. When using 100 α-cuts,

the average runtime of Binf
soft and Bint

soft becomes approximately identi-

cal. However, the runtime measurements for Bint
soft have a considerably

smaller standard deviation than the ones for Binf
soft (namely, 1194 mil-

liseconds versus 6680 milliseconds), indicating a larger proportion of

computationally costly cases for Binf
soft than for Bint

soft. Moreover, we

would like to point out that Table 4.13 contains three different estimates

for the runtime of Binf
soft, although Binf

soft is not affected by the number

of α-cuts varied across the three conditions. The fact that these three

reported values only vary slightly highlights that our runtime estimates

for the betweenness operation are reasonably stable for our analyses.

Overall, the runtime performance of both betweens variants is quite Summary of the

runtime experiments
high for any nontrivial conceptual space. This is based on the fact that

we need to employ multiple nested numerical optimizations in order
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to calculate the respective minima and maxima. The runtime of Binf
soft

is higher than the one of Bint
soft, because our implementation of Binf

soft

involves another optimization by finding the infimum over all α-cuts,

whereas Bint
soft simply computes the average across a fixed number of

α-cuts. Similar to our observations for the intersection and size opera-

tions (Sections 3.1.3 and 4.1.3, respectively), the number of dimensions

in the similarity spaces tends to have a stronger impact on runtime

than the number of cuboids per concept. Based on the overall quite

high runtime for both Binf
soft and Bint

soft, one might be tempted to use a

simpler definition of betweenness. For instance, one could compute

the degree of betweenness of the concepts’ midpoints which would be

computationally much more efficient. This would, however, ignore both

the size of the concepts’ cores and their respective degree of fuzziness,

which is not satisfying from a theoretical perspective. Finding a good

trade-off between theoretical soundness and a fast implementation

should be a goal of future research, based on concrete applications of

the proposed formalization and their respective requirements.

After having compared the runtime of Binf
soft and Bint

soft, let us nowAdditional

simulations for

comparing

betweenness values

compare the resulting degrees of betweenness. We have created 1,000

random triples of two-cuboid concepts in a four-dimensional space and

have computed for each of them Binf
soft as well as Bint

soft (using 20 and

100 α-cuts, respectively). By comparing the numerical results for these

exemplary betweenness relations, we hope to get a better understanding

of our proposed definitions.

Figure 4.17 contains a scatter plot with the betweenness values ofComparing Binf
soft

and Bint
soft Binf

soft and Bint
soft, using 100 α-cuts for the latter. The correlation between

the two betweenness measures reaches only intermediate values with

Pearson’s r ≈ 0.5284 (which measures linear correlation) and Spear-

man’s ρ ≈ 0.6304 (which measures monotone correlation), indicating

thatBinf
soft andBint

soft are not equivalent. We can clearly see in Figure 4.17

that Binf
soft = 0 in most of the cases. It thus seems that the two failure

cases illustrated in Figure 4.13 occur very frequently in our experiment.

Please note that our code only executes the numerical optimization if

neither of these cases applies (which can be detected based on the values

of mu0, and the conditions from Proposition 4.8, respectively). Please

recall from Tables 4.11 and 4.12 that Binf
soft was on average quite slow in

our runtime analysis. As the cases with Binf
soft = 0 can be expected to

have a very small runtime, this means that for all cases whereBinf
soft > 0,

the actual runtime is much larger than the overall average. This also

explains the large standard deviations observed for the runtime of

Binf
soft: It is either very fast (if one of the pathological cases applies)

or very slow (if the numerical optimization is needed). It thus seems

that Binf
soft might not be very useful in practice: In addition to its large

runtime, it equals zero for most triples of concepts, and this does not

convey a very fine-grained sense of conceptual betweenness.
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Figure 4.17: Scatter plot comparing the betweenness values obtained viaBinf
soft

and Bint
soft (using 100 α-cuts) for 1,000 randomly generated triples

of two-cuboid concepts in a four-dimensional conceptual space.

Let us now take a look at the influence of the number of α-cuts Betweenness values

and the number of

α-cuts

on the numerical values obtained by Bint
soft. Figure 4.18 compares the

results for 20 and 100 α-cuts. We can immediately see that the numbers

obtained through these two variants are strongly correlated (Pearson’s

r ≈ 0.9984, Spearman’s ρ ≈ 0.9976). Although the exact numerical

values differ slightly (which is to be expected), it seems like the number

of α-cuts used for approximating Bint
soft is not very crucial in practice.

Since more α-cuts considerably increase the runtime but do not seem

to impact the resulting betweenness numbers that much, one might be

able to find a good trade-off between runtime efficiency and quality of

the results.

Let us now finally return to our fruit space example. Table 4.19 shows Fruit space example

the definition of our fruit concepts and Figure 4.19 illustrates them. In

Table 4.15, we show betweenness values for selected triples of concepts.

In our implementation, one can compute these betweenness values as

follows:

apple.between(pear, orange, method="infimum")
0.0

apple.between(pear, orange, method="integral")
0.8994529846730694

apple.between(pear, orange, method="integral", num_alpha_cuts
= 100)

0.9002036026183976
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Figure 4.18: Scatter plot comparing the betweenness values obtained viaBint
soft

for 1,000 randomly generated triples of two-cuboid concepts in

a four-dimensional conceptual space, using 20 and 100 α-cuts,

respectively.
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Figure 4.19: Screenshot of the ConceptInspector tool illustrating all fruit

concepts used in our betweenness example. Concepts are labeled

as follows: pear (1), orange (2), lemon (3), Granny Smith (4),

apple (5), and banana (6).
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Concept ∆S p− p+ µ0 c W

wδcolor
wδshape

wδtaste

pear ∆ (0.50, 0.40, 0.35) (0.70, 0.60, 0.45) 1.0 24.0 0.50 1.25 1.25

orange ∆ (0.80, 0.90, 0.60) (0.90, 1.00, 0.70) 1.0 30.0 1.00 1.00 1.00

lemon ∆ (0.70, 0.45, 0.00) (0.80, 0.55, 0.10) 1.0 40.0 0.50 0.50 2.00

Granny

Smith

∆ (0.55, 0.70, 0.35) (0.60, 0.80, 0.45) 1.0 50.0 1.00 1.00 1.00

(0.50, 0.65, 0.35) (0.80, 0.80, 0.50)

(0.65, 0.65, 0.40) (0.85, 0.80, 0.55)apple ∆

(0.70, 0.65, 0.45) (1.00, 0.80, 0.60)

1.0 20.0 0.50 1.50 1.00

(0.50, 0.10, 0.35) (0.75, 0.30, 0.55)

(0.70, 0.10, 0.50) (0.80, 0.30, 0.70)banana ∆

(0.75, 0.10, 0.50) (0.85, 0.30, 1.00)

1.0 20.0 0.75 1.50 0.75

Table 4.14: Definitions of several fruit concepts for our exemplary betweenness

computations.

˜︁S1
˜︁S2

˜︁S3 Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) Bint
soft( ˜︁S1, ˜︁S2, ˜︁S3)

Granny

apple

Smith

lemon 1.0000 1.0000

apple pear banana 1.0000 1.0000

Granny

Smith

pear banana 0.0000 0.9201

pear apple orange 0.0000 0.8995

Granny

pear

Smith

orange 1.0000 1.0000

Granny

apple pear

Smith

0.4676 0.5275

Granny

orange banana

Smith

0.0000 0.3557

Table 4.15: Betweenness values for selected triples of fruit concepts, rounded

to four decimal places. For Bint
soft, 20 α-cuts were used.

Both Binf
soft and Bint

soft agree on the fact that Granny Smith is com-Examples with

obvious betweenness

relations
pletely between apple and lemon, because

˜︁S
Granny Smith

⊆ ˜︁Sapple. We

furthermore observe that pear is considered to lie perfectly between ap-

ple and banana by both definitions of conceptual betweenness. As one

can see in Figure 4.19, this is intuitively plausible based on the locations

of the respective cores. A first difference between Binf
soft and Bint

soft can

be observed for the triple (Granny Smith, pear, banana): Here, Binf
soft

returns a value of zero, whileBint
soft shows a more generous degradation

with a value of approximately 0.92. Based on Figure 4.19, the latter value

seems to be more meaningful, since a betweenness degree of zero does

not reflect the geometric arrangment of the concepts’ cores. Still, the fact

that Bint
soft(

˜︁Sapple, ˜︁Spear, ˜︁Sbanana) > Bint
soft(

˜︁S
Granny Smith

, ˜︁Spear, ˜︁Sbanana) re-

flects that the betweenness relation is not perfect in this example. The

triple (Granny Smith, pear, banana) fulfills the condition of Proposi-
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tion 4.8 (since c(Granny Smith) ≫ c(pear)
) and thus corresponds to the

pathological failure case of Binf
soft from Figure 4.13b.

Based on Figure 4.19, one could also argue that both apple and Examples with

debatable

betweenness

relations

Granny Smith lie to some degree between pear and orange. Here,

Bint
soft assigns relatively high betweenness values in both cases, whereas

Binf
soft assigns a value of zero to the triple (pear,apple,orange). This is

again the failure case from Proposition 4.8 and Figure 4.13b. It seems

plausible to assign a lower degree of betweenness to apple than to

Granny Smith, because the core of the apple concepts is larger and

parts of it are further away from the straight line connecting the cores

of pear and orange than the core of Granny Smith.

The final two lines of Table 4.15 illustrate cases where we would Examples without

betweenness

relations

not expect a high degree of betweenness. Both betweenness functions

assign lower, but sill mostly non-zero degrees of betweenness to these

combinations. One may argue that these betweenness values are too

high, given the respective arrangement of cores. However, one needs to

keep in mind that both Binf
soft and Bint

soft take into account all α-cuts of

the respective concepts, including for example also the 0.05-cuts, which

may considerably overlap.

4.6 supported applications

After having defined various operations for measuring relations be- Overview

tween concepts, we would now like to sketch how these operations can

be used in both learning and reasoning tasks. In Section 4.6.1, we again

consider concept formation as an important type of learning process,

before looking at commonsense reasoning strategies in Section 4.6.2.

4.6.1 Concept Formation

Please recall from Section 3.6.1 that concept formation is an incremental Concept formation as

incremental

clustering

clustering process [164]. In our case, each cluster can be represented

by a concept. A concept formation algorithm makes one unlabeled

observation at a time, assigns this observation to the best-matching

cluster (or creates a new cluster), and then makes small adjustments

to its inventory of clusters, if necessary. We have already argued in

Section 3.6.1 that our formalization provides all operations necessary

for implementing these updates, such as merging and splitting clusters

with the union and cut operations, respectively. What was still missing

from our discussion in Section 3.6.1 were, however, ways of deciding

when to apply which kind of modification. In the following, we argue

that the additional operations defined in this chapter can be used as

parts of such an overall control strategy.

Both the splitting and the merging of existing clusters needs to be Controlling for the

size of different

clusters

initiated based on some predefined condition. For instance, we might

want to specify that the clusters created by the concept formation
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algorithm should have a roughly equal size. Then, a cluster that grows

too big would need to be split into two parts, and a cluster that becomes

too small would need to be merged with one of its neighbors. The size

operation defined in Section 4.1.2 quantifies the size of a concept and

can thus be used together with some lower and upper thresholds to

initiate the merge and split operations.

Once we have decided that a given cluster needs to be mergedIdentifying candidate

clusters for merging
with one of its neighbors, we still need to find the most appropriate

merging partner. In a first step, we can use concept similarity as defined

in Section 4.4.2 in order to identify the closest neighbors of a given

concept. One may then use the respective similarity values, potentially

in combination with the sizes of the respective concepts, to decide

which clusters to merge.

Many concept formation algorithms maintain an explicit hierarchyCreating a hierarchy

of clusters
of clusters [164] in order to provide a description of the observation

at multiple levels of abstraction: We might thus also be interested in

extracting the emergent conceptual hierarchy(e.g., sky blue being a

special shade of blue) from our current set of clusters. This can be easily

done using both the crisp and the soft subsethood relations between

concepts as defined in Section 4.2.1.

In Section 1.3.4, we have already argued that the incorporation ofIncorporating

top-down knowledge
top-down constraints in the concept learning process is desirable from a

cognitive point of view. Given an initial set of concepts (either manually

created or obtained via concept formation), one may thus specify logical

rules such as ∀x : apple(x)∧ red(x) ⇒ sweet(x), whose validity should

be preserved in future modifications of the concept inventory. Using the

implication operation from Section 4.3.1 together with the intersection

and union operators from Sections 3.1.2 and 3.2.1, respectively, we can

evaluate the degree of truth for such logical rules. This can then be used

as an additional constraint in the control strategy of the envisioned con-

cept formation algorithm. Also zero shot learning based on definitions

like Granny Smith ⇔ green ∧ sour ∧ round can be implemented in a

similar way.

Our discussion has been necessarily brief, but has hopefully stillOutlook

illustrated that the operations defined in this chapter can play an

important role in the control strategy of a concept formation algorithm.

We will return to the topic of concept formation in Chapter 7, where we

will introduce three concrete concept formation algorithms from the

literature and relate them to conceptual spaces. In Chapter 7, we will

also the aspect of learning under top-down constraints in more detail.

4.6.2 Commonsense Reasoning

In classical symbolic AI, reasoning is mostly based on logical rulesSymbolic reasoning

such as ∀x : apple(x) ∧ red(x) ⇒ sweet(x). However, such symbolic

reasoning systems are inherently limited to the rules and symbols they

are provided with. Since it is generally infeasible to express all necessary
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pieces of everyday knowledge in a symbolic knowledge base, these

systems often fail to make deductions based on insufficient knowledge.

Humans on the other hand are still able to draw plausible (yet not

deductively provable) conclusions in such situations.

As already briefly introduced in Section 1.2.5, the area of common- Commonsense

reasoning
sense reasoning therefore aims to provide appropriate techniques for

drawing plausible conclusions from incomplete knowledge. In contrast

to black box machine learning models, these commonsense reasoning

techniques are usually also able to give a justification for their con-

clusions [123]. As already mentioned in Section 1.2.5, Schockaert and

Prade [352, 353] as well as Derrac and Schockaert [122, 123] have shown

how to implement such commonsense reasoning strategies with the

conceptual spaces framework. In the following, we argue that also our

formalization is capable of supporting these strategies.

Similarity-based reasoning assumes that similar concepts have similar Similarity-based

reasoning
properties, usages, and behaviors, and that they can be therefore treated

alike. For instance, if we know that Alice liked the "Lord of the Rings"

movies and if the concept Lord of the Rings is relatively similar to the

concept The Hobbit, then we can make the educated guess that Alice

might also like the "The Hobbit" movies [123].

As already described in Section 2.1.1, cognitive similarity of observa- Similarity-based

reasoning and our

formalization

tions is defined as an exponentially decaying function of their distance

in the similarity space. In Section 4.4.2, we have generalized this to a

notion of similarity for fuzzy conceptual regions. Our formalization

thus provides ways of quantifying the similarity of two observations

(based on their weighted combined distance, see Sections 2.1.1 and

2.3.1), the similarity of an observation to a concept (based on its degree

of membership, see Section 2.3.3), and the similarity of two concepts

(based on subsethood or the Jaccard index, see Section 4.4.2). It is there-

fore quite straightforward to implement similarity-based reasoning on

top of our formalization.

Interpolative Reasoning assumes that any property, usage, or behavior Interpolative

reasoning
that is shared by two known examples also applies to any intermediate

case. It can thus be interpreted as implicitly using Gärdenfors’ convexity

constraint for conceptual regions (cf. Sections 1.2.1 and 2.1.2). If wine

shop is conceptually between gourmet shop and liquor store and if we

know that both gourmet shops and liquor stores are subject to some

sort of regulation, then we can assume that also wine shops are affected

by this regulation [123].

In their work on interpolative reasoning in conceptual spaces, Schock- Interpolative

reasoning and our

formalization

aert and Prade [352, 353] as well as Derrac and Schockaert [122, 123]

base interpolative reasoning on a geometric notion of betweenness for

points and crisp regions (cf. Section 4.5.1). In Section 4.5.2, we have

generalized their definitions of geometric betweenness to a soft notion

of betweenness for fuzzy conceptual regions. Our formalization can

thus also be used in the context of interpolative reasoning.
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Please note that there are also other types of commonsense reasoningOther commonsense

reasoning strategies
strategies [123], which are currently not supported by our formalization.

A fortiori reasoning is based on a meaningful ordering of observations

and concepts along a single direction. For example, if one is not allowed

to drink beer at a certain age, one is probably also not allowed to drink

whiskey at that age, because whiskey has a higher concentration of alco-

hol. Analogy-based reasoning on the other hand uses analogical relations

between two pairs of observations or concept: If puppy relates to dog like

kitten relates to cat, then knowledge about the difference or relation

between kitten and cat can be used to plausibly derive additional

knowledge about the difference or relation between puppy and dog.

Derrac and Schockaert [123] have modeled these two strategies based

on interpretable directions and based on the parallelism of difference

vectors, respectively. These notions have not been explicitly included

in our formalization, but would be natural future extensions of our work.

All of the above mentioned commonsense reasoning strategies areExtracting symbolic

knowledge from

conceptual spaces

implemented as part of the conceptual layer. At this point, we would

also like to highlight how our formalization supports the extraction of

commonsense knowledge into the symbolic layer. For instance, intra-

domain correlations within a given concept are encoded in a geometric

way in our formalization (cf. Section 2.2) and can be viewed as one

specific type of commonsense knowledge. We have already sketched in

Section 4.3 in the context of Rickard’s co-occurrence values [329] how the

implication operation can be used to provide a symbolic description of

the correlation. For instance, the observation that red apples tend to be

sweet can be formally expressed as ∀x : apple(x) ∧ red(x) ⇒ sweet(x).
The degree of truth of this expression can be obtained by considering

the intersection of the conceptual regions apple and red and checking

the subsethood relation between the resulting region and the property

sweet. By systematically testing all relevant properties, one can thus

identify rules with a high degree of truth, i.e., commonsense reasoning

patterns that are expected to hold in most (but not necessarily all) cases.

These rules can then be used in a symbolic system to draw appropriate

conclusions based on cross-domain correlations. In Chapter 7, we will

revisit this knowledge extraction aspect in the context of logic tensor

networks [21, 358].

As argued above, our formalization supports both similarity-basedOutlook

and interpolative reasoning with the definitions for concept similarity

and conceptual betweenness from Sections 4.4.2 and 4.5.2, respectively.

Other strategies such as a fortiori reasoning or analogy-based reasoning

are currently not supported, but would be interesting future exten-

sions. The exact reasoning strategy (i.e., a specific algorithm that uses

similarity and betweenness values to arrive at a conclusion) has been

left unspecified and would of course be needed for any practical ap-

plications. Nevertheless, our brief discussion has hopefully illustrated

that the definitions from this chapter can be useful in the context of

reasoning processes.
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Formalization Size Subsethood Implication Similarity Betweenness

Aisbett and

Gibbon [11]

(–) (–) (–) ✓ (–)

Raubal [327] – – – – –

Ahlqvist [10] (–) ✓ (–) ✓ (–)

Rickard [329] (–) (–) (–) ✓ –

Rickard

et al. [330]

(–) (–) (–) ✓ –

Adams

Raubal [3]

(–) (–) (–) ✓ (–)

Lewis

Lawry [253]

(–) (–) (–) (–) (–)

Our

Formalization

✓ ✓ ✓ ✓ ✓

Table 4.16: Overview of different formalizations of the conceptual spaces

framework based on the relations between concepts they define

("✓" means "available", "–" means "not available", and "(–)" means

"could be easily added").

4.7 comparison to other formalizations

Table 4.16 summarizes the availability of different relations between con- Overview

cepts in the different formalizations of the conceptual spaces framework

that we introduced in Section 2.4.2. Conceptual similarity is covered by

almost all formalizations, since it is a key operation of the conceptual

spaces framework. Moreover, size, subsethood, and implication can

often be easily added by computing the volume of a conceptual region

and by checking for set inclusion, respectively. Also conceptual be-

tweenness can be added to most formalizations based on the definitions

by Derrac and Schockaert [122] for crisp sets and our generalization to

fuzzy sets. Let us now take a closer look at the individual formalizations.

The formalization by Aisbett and Gibbon [11] describes concepts Aisbett and Gibbon:

similarity based on

Hausdorff distance

as crisp convex sets in pointed metric spaces. The only measure on

concepts provided by this formalization is conceptual similarity, which

is based on the Hausdorff distance of their respective regions A and B:

dH(A,B) = max(supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)). One can,

however, argue that size and subsethood can be easily added to their

formalization by resorting to set theory. Also an implication operation

could be added by equating it with subsethood as in our proposal.

Since their formalization starts from a generalized betweenness relation

for points, it would also be conceivable to extend this notion to concepts.

Since Raubal [327] does not mathematically formalize properties Raubal: no relations

at all
and concepts, he is unable to give definitions for measuring relations

between them. Without such a mathematical definition of conceptual

regions, it is impossible to add any of the operations to his approach.
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Ahlqvist’s formalization [10] uses rough fuzzy sets (a generalizationAhlqvist: similarity

and subsethood based

on fuzzy set theory

of "regular" fuzzy sets, which uses an upper and a lower membership

function) to represent concepts. It provides an explicit definition for

concept similarity based on the so-called fuzzy dissemblance index

δ( ˜︁A, ˜︁B) = 1
2M( ˜︁A0 ∪ ˜︁B0)

∫︁ 1
α=0(M( ˜︁Aα ∪ ˜︁Bα) −M( ˜︁Aα ∩ ˜︁Bα))dα, which

aims to quantify the distance between two fuzzy sets. Conceptual over-

lap is defined in a similar way to our definition of subsethood, namely

as Sub( ˜︁A, ˜︁B) = M( ˜︁A∩ ˜︁B)

M( ˜︁B)
. Please note that in this case, M( ˜︁B) is used as

denominator while we use M( ˜︁A). Ahlqvist’s definition of conceptual

overlap should therefore be interpreted as measuring whether
˜︁B is a

subset of
˜︁A. Ahlqvist computes both similarity and concept overlap

on individual properties and aggregates them through a weighted

sum to obtain results for overall concepts. Our formalization on the

other hand does not make such a distinction between properties and

concepts. If one equates implication with subsethood, an implication

measure can easily be added to his formalization based on his defi-

nition of conceptual overlap. Moreover, computing the integral over

the membership functions of a given rough fuzzy set should give a

reasonable measure of concept size. Finally, also our proposed ways of

measuring betweenness can potentially be generalized from fuzzy sets

to rough fuzzy sets and thus added to Ahlqvists’s formalization.

In the formalization by Rickard [329], concepts are representedRickard: similarity as

fuzzy mutual

subsethood

as matrices containing co-occurrence statistics of properties. These

matrices are then interpreted as fuzzy sets on the universe of ordered

property pairs. This means that each matrix entry Aij is interpreted as

the membership µ ˜︁A(i, j) of the property pair (i, j) in the fuzzy set
˜︁A.

Concept similarity is then explicitly formalized by using fuzzy mutual

subsethood which is defined as follows:

E( ˜︁A, ˜︁B) =

∑︁
(i,j)min(Aij , Bij)∑︁
(i,j)max(Aij , Bij)

Since the number of property pairs (i, j) is finite, one can interpretRelation to the

Jaccard index
∑︁

(i,j)Aij as the size of the fuzzy set
˜︁A. Moreover, using µ ˜︁A∩ ˜︁B(x) =

min(µ ˜︁A(x), µ ˜︁B(x)) and µ ˜︁A∪ ˜︁B(x) = max(µ ˜︁A(x), µ ˜︁B(x)), one can inter-

pret the formula for E( ˜︁A, ˜︁B) as
M( ˜︁A∩ ˜︁B)

M( ˜︁A∪ ˜︁B)
, which is the definition of the

Jaccard index. Rickard’s definition of similarity for concepts can thus

be related to our own definition of SimJ from Section 4.4.2.

When judging the similarity of an observation to a concept, RickardSubsethood

makes use of fuzzy subsethood (i.e., Sub( ˜︁A, ˜︁B) = M( ˜︁A∩ ˜︁B)

M( ˜︁A) ). Although

not explicitly formalized by Rickard, one could imagine to extend

this usage also to measure subsethood between concepts. Again, if we

equate implication with subsethood, also an implication measure can

be easily added. Both fuzzy mutual subsethood and fuzzy subsethood

as employed in Rickard’s formalization implicitly compute the size of

a concept by summing the co-occurrence values of all property pairs.
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One could easily use this procedure to also explicitly provide a way

to measure the size of a concept. However, it is debatable whether

conceptual betweenness could be formalized in the context of Rickard’s

work by simply applying our definitions to his fuzzy sets. One would

need to investigate whether the resulting definition results in intuitively

understandable results.

Rickard et al. [330] build upon the formalization by Rickard [329], Rickard et al.: adding

size and overlap for

properties, as well as

subtype relationship

for concepts

hence essentially the same remarks apply. Rickard et al. define size

and overlap (which is a similar notion as subsethood) for properties.

However, as concepts are not defined as regions in a similarity space,

but based on co-occurrence statistics, these definitions do not directly

carry over to concepts. Rickard et al. furthermore define a subtype

relationship between concepts, which corresponds to specialization,

generalization, or a combination of both, depending on the concepts

being compared: For instance, if a concept A contains the (mutually

exclusive) properties red and blue on the color domain, then a subtype

B that is only associated to red on the color domain is a specializa-

tion of A. On the other hand, if a concept C is associated with the

properties red and Arial on the color and font domains, then a sub-

type D that only involves red (but not Arial) is a generalization of C.

This subtype relationship is thus not equivalent to a subsethood relation.

Adams and Raubal [3] represent concepts by one convex polytope Adams and Raubal:

similarity based on

prototypes or convex

hulls

per domain. Their formalization contains two proposals for comput-

ing concept similarity, either based on the distance of the concepts’

prototypes, or based on the distance of the convex hulls. Based on set

theory, we can again imagine that size, subsethood, implication, and

betweenness could be added to their formalization, being, however,

somewhat limited by the inherent crispness of their approach.

The formalization by Lewis and Lawry [253] uses random sets to Lewis and Lawry: no

relations specified,

but many could be

added

represent properties and formalizes concepts as random sets in binary

combination spaces, where each dimension codes for the presence

or absence of one property. Their formalization does not include any

explicit measures for conceptual relations, as its focus lies entirely on

conjunctive conceptual combination. One can, however, imagine to

measure the size of a concept by integrating over the membership

functions of its associated properties as well as its membership function

in the combination space. Also a notion of conceptual similarity can be

added by measuring the number of shared properties and the overlap

of the membership functions. Subsethood and implication can again be

based on fuzzy subsethood (cf. the formalizations by Ahlqvist [10] and

Rickard [329]). Finally, Lewis and Lawry define a betweenness relation

for the prototypes of composite concepts that use the same combination

space. This can potentially be generalized to concepts in a similar way

as in our own formalization.



206 measuring relations between concepts

In this chapter, we have extended our formalization by explicitlyOur own

formalization
adding five measures for conceptual relations. As one can see, our

formalization is thus more comprehensive than all other competitors in

this regard. We think that especially our fuzzy definitions of subsethood

and betweenness are an important contribution that can potentially be

transferred to other formalizations.

4.8 summary

In this chapter, we have further extended our formalization of theLessons learned

conceptual spaces framework by providing mathematical ways of mea-

suring relations between concepts. We have also argued how these

extensions of our framework can be used in both learning and reasoning

tasks. The now overall quite large set of operations, both for creating

new concepts and for measuring relations between concepts, makes our

formalization (to the best of our knowledge) the most thorough and

comprehensive formalization of conceptual spaces developed so far.

Moreover, in contrast to all other formalizations we are aware of, our

work comes with a concrete implementation for all of these operations.

There are still some open issues that warrant further research: TheOpen ends: size

computation of a concept’s size is quite complex. Even though comput-

ing the closed formula is significantly faster than numerically approxi-

mating the integral over the concept’s membership function, it might

be desirable for high-dimensional spaces to use a faster approximation

of the concept size. This is an especially crucial problem, since we use

the concept size also as a building block for subsethood, implication,

and similarity. Runtime improvements of the concept size will therefore

improve also the runtime of various other operators.

As we have discussed in Section 4.2.1, our proposed degree of subset-Subsethood and

implication
hood is not always confined to the interval [0,1]. Future research should

investigate whether there is a straightforward and computationally

feasible way of overcoming this limitation. Moreover, we have argued

in Section 4.3.1 that the implication relation between two concepts can

be equated with their subsethood relation. This argument could use

some further empirical support by using the subsethood relation as

implication in a reasoning application.

In Section 4.4.2, we have provided two different definitions forSimilarity

conceptual similarity – it remains an open question which one of them

is preferable in which concrete application contexts. Again, an empirical

study in an application scenario can help to clarify this issue. Moreover,

additional candidate definitions for conceptual similarity (e.g., based

on the maximal Hausdorff distance over all α-cuts, inspired by [11])

could be investigated in future work.

Finally, Derrac and Schockaert [123] have argued that the degree ofAnalogy-based

reasoning
parallelism for pairs of difference vectors can be a useful measure for

supporting analogy-based reasoning: If dog relates to puppy like cat

relates to kitten, then the geometrical direction from the dog concept
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to the puppy concept should be parallel to the corresponding direction

from cat to kitten. Obviously, a formalization of this intuition in our

framework would be an interesting additional measure that could

support yet another commonsense reasoning strategy.

The formalization provided in this and the previous chapters is the Outlook

first significant contribution of this dissertation. Although we were able

to identify several open ends, the current state of both the formalization

and its open source implementation proves a solid foundation for both

theoretical and practical research in the context of conceptual spaces.

In Chapter 7, we will also consider the question to which extent the

machine learning approaches discussed there can be used to learn

conceptual regions as defined in our formalization.





Part II

M AC H I N E L E A R N I N G A N D O P T I M I Z AT I O N
BAC KG R O U N D

In the second part of this dissertation, we introduce the

mathematical background for our subsequent practical

studies in Part III. This mathematical background includes

on the one hand various machine learning algorithms, and

on the other hand an optimization technique for obtaining

similarity spaces from psychological data.

In Chapter 5, we introduce general notions in machine

learning along with various algorithms and dimensionality

reduction techniques. We then consider artificial neural

networks (ANNs) for representation learning in more detail

in Chapter 6. In Chapter 7, we then discuss various machine

learning approaches for learning conceptual regions in a

cognitively plausible way.

Finally, in Chapter 8, we introduce the technique of multi-

dimensional scaling (MDS), which allows us to transform

dissimilarity ratings from psychological experiments into

a spatial representation. We supplement the discussion of

several MDS algorithms with a hybrid proposal for ground-

ing the dimensions of a conceptual space, which combines

MDS with ANNs.
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Machine learning in general aims to approximate the function map- Machine learning in

a nutshell
ping inputs to outputs based on a given a collection of examples. In other

words, given a set of example input-output pairs (x, y), we try to find

the function f that relates inputs to outputs, i.e., f(x) = y. Although

this description is still relatively abstract, one can already see that this

is a very restricted form of learning. It can be linked to behaviorism

[377] in psychology, which follows a similar simplifying assumption

of input-output mappings, and which has been largely superseded by

more cognitive approaches. Nevertheless, machine learning is widely

applicable in artificial systems, whenever the designers of the system

are not able to hard-code a solution to a given problem and cannot

anticipate all possible situations or changes over time [341, Chapter

18]. This is also the case when applying conceptual spaces in artificial

agents: We may not be able to manually define all the dimensions of the

similarity space, and we may want our agent to autonomously acquire

and update conceptual regions over time.

In Section 5.1, we define machine learning problems more formally

and introduce some general notions relevant to most machine learning

contexts. In Section 5.2, we then give a brief introduction into several

selected machine learning algorithms that will play a role in the re-

mainder of this dissertation. In Section 5.3, we summarize different

dimensionality reduction algorithms, which can be used to find a low-

dimensional, but faithful representation of the input data. This typical

211
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preprocessing step in a machine learning pipeline can be linked to the

task of defining the domains and dimensions of a conceptual space.

Finally, we conclude this chapter in Section 5.4 with a brief summary.

5.1 general notions in machine learning

According to Mitchell [295, Chapter 1], machine learning can be inFormal definition of

machine learning
broad terms defined as follows:

Definition 5.1 (Machine Learning)

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in

T , as measured by P , improves with experience E. [295, Chapter 1]

Mitchell illustrates this definition by using the example of a program

learning to play checkers. Here, the task T corresponds to playing

checkers, the number of games that have been won by the program can

be used as a performance measure P , and the experience E can consist

of games played by the program against itself.

Russell and Norvig [341, Chapter 18], on the other hand, use fourImportant factors:

component to be

improved

factors to define a machine learning setup. Firstly, they consider the

component of the artificial agent which shall be improved through

machine learning, distinguishing for example perception from action

selection. This can be related to the task T in Definition 5.1.

Their second factor consists of the prior knowledge of the agent, whichPrior knowledge and

two types of learning
allows for a distinction between inductive learning (where a general

rule is learned from specific examples) and deductive learning (where a

specialized rule is logically deduced from a more general one in order to

speed up processing). This distinction is note made in Definition 5.1, but

can be incorporated by assuming that the experience E contains both a

set of input-output examples (for inductive learning) and background

knowledge (for deductive learning) [295, Chapter 12]. We will ignore the

role of background knowledge for now and put our focus exclusively

on inductive learning. We will reconsider background knowledge

and deductive learning in Chapter 7 in the context of learning under

knowledge-based constraints.

Thirdly, Russell and Norvig consider the type of representation beingRepresentation of the

problem and its

solution

used for solving the problem (e.g., first order logic) as an important

factor. Also Mitchell does consider the task representation, however,

not as part of the machine learning problem itself, but rather as a part

of the strategy for solving such a problem. We will consider the task

representation in more detail in Section 5.1.1.

Finally, the type of feedback available to the agent is the fourth factorType of feedback

proposed by Russell and Norvig, and corresponds roughly to Mitchell’s

experience E, which will be covered in more detail in Section 5.1.2.

In the following, we will take a closer look at the individual compo-

nents of a machine learning problem, referring to the definitions by
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Mitchell [295, Chapter 1] and by Russell and Norvig [341, Chapter 18] as

introduced above. In Section 5.1.1, we take a closer look at the task itself

and at the representation being used in modeling this task. In Section

5.1.2, we then consider the different types of experiences and ways

to evaluate the performance of a given model. After having covered

the main framework conditions, we then take a general look at how to

estimate a model’s free parameters in Section 5.1.3, before commenting

on practical issues (such as the so-called curse of dimensionality) in

Section 5.1.4.

5.1.1 Task and Model

In its most general form, the task T is usually formulated in a relatively Operationalizing the

task with a target

function

abstract way, e.g., "playing checkers" or "classifying objects in images".

In order to operationalize such a formulation, one usually defines a

particular target function f which needs to be learned by the system [295,

Chapter 1]. In general, this target function specifies how the system

should map inputs to outputs.

The input to the system is usually assumed to be represented by a Feature vectors and

feature values
so-called feature vector x⃗ ∈ Rn, where each entry xi represents the value

on one feature describing the example [172, Chapter 5]. A feature is in

this context any measurable property of the object to be processed. For

example, in the context of playing checkers, one feature may measure

the number of black pieces on the board, while for classifying objects

in images, features may relate to the width or color of a detected object.

Feature values can be binary, categorical, natural numbers, or real

numbers. In the following, we assume that all features can be repre-

sented as real values, unless explicitly stated otherwise. If we equate

the individual features with individual dimensions of a conceptual

space, one can see that each feature vector x⃗ ∈ Rn corresponds to a

point x ∈ CS in an n-dimensional conceptual space (cf. Section 1.2.5).
1

Different types of target functions f give rise to different types of Different types of

machine learning

tasks

machine learning tasks, including the following [172, Chapter 5]:

• Classification: The input x⃗ needs to be assigned to one of c classes,

i.e., f : Rn → {1, . . . , c}. In an alternative formulation, f can

be also defined as outputting a probability distribution over

the different classes. If only two classes are considered, this is

called binary classification. In the context of conceptual spaces,

classification corresponds to a partitioning of the space into

conceptual regions.

1 In Part I of this dissertation, we considered an observation as a point x, while in the

machine learning literature, an observation is considered to be a vector x⃗ pointing

from the origin to the point x. We will adopt the latter notation in the machine learning

context. Moreover, we will try to ensure that other notational conventions from Part I

(such as n denoting the number of dimensions) are preserved in order to remain as

consistent as possible.
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• Regression: A numerical value needs to be predicted for the input x⃗,

i.e., f : Rn → R. If multiple numerical values need to be predicted,

this can be broken down into multiple simple regression problems.

• Density Estimation: The probability of observing a given input

x⃗ must be predicted, i.e., f : Rn → R is a probability density

function over the feature space.

In order to learn a good approximation of the target function f , theModel, parameters,

and hypothesis space
system needs some way of representing it, i.e., a model. For instance,

in a regression task, one can decide to model f as a polynomial func-

tion of x⃗ with degree q, i.e., f̂(x) = b +
∑︁q

p=1 w⃗
(p) · x⃗p, where w⃗(p) =

(w
(p)
1 , . . . , w

(p)
n ) is a vector of weights, x⃗p = (xp1, . . . , x

p
n) is the element-

wise application of the pth power to x⃗, and w⃗(p) · x⃗p =
∑︁n

i=1 w⃗
(p)
i x⃗pi

is the inner product of the vectors w⃗(p)
and x⃗p. Learning the task T

then reduces to estimating the free parameters θ = {b, w(1)
1 , . . . , w

(q)
n }

of this polynomial function (i.e., the intercept b and all entries of the

different weight vectors w⃗(1), . . . , w⃗(q)
. One fixed set of parameters is

also called a hypothesis h. If a model contains |θ| parameters, this can be

visualized as a |θ|-dimensional parameter space (or hypothesis space H).

Each hypothesis then corresponds to a single point in this hypothesis

space. Optimizing the free parameters θ can then be interpreted as a

search in this hypothesis space for the optimal hypothesis (as measured

by the performance measure P , see Section 5.1.2).

Choosing an appropriate model f̂ for representing f involves opti-Choosing an

appropriate model:

expressiveness vs.

simplicity

mizing a trade-off between expressiveness (which is needed in order

to find a good approximation) and simplicity (which usually makes

the learning process easier, since it corresponds to a smaller amount of

parameters) [295, Chapter 1]. Moreover, simpler representations tend

to make the evaluation of the model on novel data faster [341, Chapter

18]. Finally, if the representation is computationally too expressive (e.g.,

using all possible Turing machines), then finding a good solution within

this hypothesis space can be prohibitively complex [341, Chapter 18].

A more formal way of capturing expressiveness vs. simplicity is givenModel capacity and

hyperparameters
by the capacity of a model, which can be defined as its ability to fit a wide

variety of functions [172, Chapter 5]. Essentially, a model’s capacity

corresponds to the size of its hypothesis space, i.e., the number of free

parameters. The capacity of a model is on the one hand influenced by

the size of the feature spaceRn, i.e., by the number n of features used to

describe an example x⃗. For instance, when considering our polynomial

model from above, each weight vector w⃗(p)
needs to have exactly as

many entries as the feature vector x⃗. Adding one additional feature

to the representation of x⃗ thus adds another entry to each w⃗(p)
, thus

increasing the number of free parameters and hence the capacity of

the model. On the other hand, the capacity of a model can be partially

controlled through its so-called hyperparameters. In our example from

above, the degree q of the polynomial is the main hyperparameter of

our model. It is not being optimized by the system itself, but needs
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to be specified by the experimenter. This hyperparameter has a direct

influence on the number of weight vectors w⃗(p)
. Hence, increasing

q results in a larger number of free parameters and therefore in an

increased capacity of the model.

Every model comes with an inductive bias, which is the set of (poten- Inductive bias:

restriction bias and

preference bias

tially tacit) assumptions that together with the training data deductively

justifies the classifications of novel instances [295, Chapter 3]. One can

distinguish a restriction bias (which puts a hard limit on the hypothesis

space of the model) from a preference bias (which induces a preference

relation over different hypotheses in a given hypothesis space). In the

example of the polynomial function, a restriction bias would put a hard

limit on the degree of the polynomial, e.g., by setting q = 1 and thus

only allowing for linear models. A preference bias on the other hand

would in principle allow arbitrary values for q in the model, while

ensuring during learning that low values of q are preferred. In general,

a preference bias is often the better choice since using a restriction

bias comes with the risk of excluding the correct hypothesis from the

hypothesis space [295, Chapter 3]. We will return to this topic in Section

5.1.3 in the context of regularization.

5.1.2 Experience and Evaluation

Let us now consider the second component of Definition 5.1, namely, Experience and

different degrees of

control

the experienceE. Mitchell [295, Chapter 1] distinguishes among different

degrees of control which the learning system has about this experience:

There can be no control (if a fixed set of examples is used), full control

(e.g., when the system plays games against itself), or an intermediate

form (where the system can ask for feedback on self-selected examples).

In the following, we will only consider the first case, namely a fixed

dataset of examples. We will consider a case of intermediate control in

Chapter 7 in the context of language games. A dataset can in general be

either unlabeled or labeled.

Unlabeled datasets consist of a set of examplesN x⃗(j) (each represented Unlabeled datasets

for unsupervised

learning

as ann-dimensional feature vector). The overall dataset can be described

by a so-called design matrix X ∈ RN×n
, i.e., a table where each of

the N rows represents one example x⃗(j) and where each of the n
columns represents one feature. Unlabeled datasets are usually used

for unsupervised learning tasks such as density estimation (where a

probability distribution over the feature space needs to be learned,

cf. Section 5.1.1) or clustering (where the overall dataset needs to be

divided into groups of similar examples). A common characteristic of

such unsupervised machine learning task is that they do not require

any explicit output examples for the target function f .

In a labeled dataset, each example x⃗(j) is also annotated with a label y(j), Labeled datasets for

supervised learning
i.e., the expected value of the target function f . The design matrix X is

thus accompanied by a vector of labels y⃗. Labeled datasets are typically

used for supervised learning tasks, where complete input-output pairs



216 general machine learning background

Actual Class

true false

Predicted true True Positive (TP) False Positive (FP)

Class false False Negative (FN) True Negative (TN)

Table 5.1: Confusion matrix for a binary classification task

(x⃗(j), y(j)) for the target function f are expected. Supervised learning

includes classification and regression tasks, where feature vectors need

to be mapped onto pre-defined classes or pre-defined numerical values,

respectively (cf. Section 5.1.1). In the intermediate case where only

some, but not all data points are labeled, one talks about semi-supervised

learning [341, Chapter 18]. In the following, we will put our focus on

supervised learning with labeled datasets in the form of regression

and binary classification. We will resconsider machine learning with

unlabeled datasets again in Chapters 6 (in the form of autoencoders)

and 7 (in the form of clustering algorithms).

For any type of dataset, it is important to ensure that the examplesRepresentativeness

contained in the design matrix accurately reflect the underlying data

distribution of the domain of interest [295, Chapter 1]. This means that

the selected examples should be representative of the actual examples

one can expect to encounter in practice. This may for instance concern

the frequency of different classes in a classification setting or more

broadly the distribution of individual feature values and their combi-

nations. If a given dataset is not representative of the actual task or

domain, then the function f̂ learned by the model (through optimizing

its parameters θ) may end up being a relatively poor approximation of

the true target function f .

Let us now turn to the performance measure P , which can also be calledPerformance

measure: comparing

f̂ to f
an evaluation metric. It measures how well a given model performs a

given task T . Since the task T is usually formulated mathematically as a

target function f , the performance measure typically (i.e., in supervised

setting with labeled datasets) compares the output of the function f̂
learned by the model to the output of the actual target function f .

This is usually done based on examples (x⃗(j), y(j)) from the dataset,

comparing f̂(x⃗(j)) to the ground truth label y(j) = f(x⃗(j)). One should

note that perfect performance is often not feasible in practice, and that

one should therefore determine the desired performance level based

on the underlying application scenario [172, Chapter 11].

Let us first consider binary classification tasks. Overall, there are fourBinary classification:

confusion matrix and

accuracy

different cases that one needs to distinguish (visualized in Table 5.1 as

a so-called confusion matrix): If the prediction and the actual class are

identical, we speak of a "true positive" (TP ; both the prediction and

the the ground truth label are true) or a "true negative" (TN ; both the

prediction and the ground truth label are false). In case of a mismatch,

one can distinguish a "false positive" (FP ; prediction is true, but label is

false) from a "false negative" (FN ; prediction is false, but label is true).
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In order to derive a single performance metric, one can then compute

the accuracy Acc of the model as the proportion of examples for which

f̂ produces the same output as f :

Acc =
TP + TN

TP + FP + FN + TN

Equivalently, one can measure the error rate Err, which measures the Error rate as

counterpart of

accuracy

proportion of examples on which f̂ and f disagree:

Err =
FP + FN

TP + FP + FN + TN

Based on their definitions, one can easily see that Acc,Err ∈ [0, 1]
and that Acc+ Err = 1. While accuracy can give a first intuition about

the model’s usefulness ("how often is the prediction correct?"), the error

rate is mainly used to analyze improvements over previous models

("how many remaining misclassifications were we able to remove?").

Unfortunately, both accuracy and error rate can be misleading on Cohen’s κ for

imbalanced data
imbalanced datasets, where one of the classes occurs much more

frequently than the other: If we assume that 90% of the examples

are labeled as true, then also a model that completely disregards its

input and always predicts true obtains an accuracy of 90%. Despite

this relatively high value, the model is likely to be useless in practice.

Therefore, several other evaluation metrics have been defined (again

based on the confusion matrix), which aim to be informative also on

imbalanced datasets. Here, we will consider Cohen’s κ [108], which

can be interpreted as a normalized version of accuracy that takes into

account the probability pe of random agreement between the prediction

and the ground truth:

pe = P(predicted = true) · P(actual = true)

+ P(predicted = false) · P(actual = false)

Here, the probabilities P(actual = true) and P(actual = false) can Computing the

probability of random

agreement

be derived by simply counting the distribution of the labels in the

dataset. Analogously, P(predicted = true) and P(predicted = false)
can be calculated for the outputs of the model on the given dataset. In

the computation of pe, we thus pretend that both the model f̂ and the

target function f completely ignore their inputs and that they make

their predictions solely based on class probabilities. Thus, pe measures

the level of agreement one would expect even in this hypothetical case.

Cohen’s κ now adjusts the accuracy Acc based on pe:

κ =
Acc− pe
1− pe

One can thus think of Cohen’s κ as measuring to what extend the Interpretation of

Cohen’s κ
accuracy of the model is higher than what we would expect by chance.

Cohen’s κ is confined to the interval [−1, 1], with 1 representing perfect

agreement between model and ground truth, 0 only random agreement,
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and -1 perfect disagreement. In the example with an imbalanced dataset

containing 90% examples from the positive class, the probability pe of

random agreement of an "always true" classifier equals its accuracy

(since it is indeed based only on class probabilities). Hence, Cohen’s κ
is zero in this case. We will return to Cohen’s κ in Chapters 8 and 10,

where we use it to evaluate the quality of interpretable directions in a

conceptual space.

As we have seen in the example with the imbalanced dataset, theBaseline classifiers

choice of the evaluation metric can be quite important. In our discus-

sion from above, we have considered a model that always returns true.

This is an example of a so-called baseline classifier – a very simplistic

model, that may even disregard its input altogether. The point of using

such baselines is to establish a lower performance bound, to which

the model under consideration can be compared. Simple classification

baselines include models with a fixed output (such as "always true" and

"always false"), models with a probabilistic output (such as predicting

both classes with equal probability, or based on their frequency in

the dataset), and simplified versions of the actual model (i.e., with a

very small capacity, either due to limited access to features, or due to

respective hyperparameter settings).

In a regression setting, the desired output is usually a real number.Regression task:

mean squared error
It is thus quite unlikely that f̂ and f perfectly agree on the output for

any example x⃗. Therefore, classification-based evaluation metrics are

not directly applicable. In order to quantify the error of a prediction,

one usually measures the numeric difference between f̂(x⃗) and f(x⃗).
This can be done by using the mean squared error (MSE), i.e., the average

value of the squared differences between prediction and ground truth

for all examples from the dataset:

MSE =
1

N

N∑︂
j=1

(︂
y(j) − f̂(x⃗(j))

)︂2
Optimal regression performance corresponds to a minimal value of

the MSE, which is zero for a perfect prediction. Since the prediction can

be arbitrarily far away from the ground truth, the MSE is not bounded

from above, hence, MSE ∈ [0,∞). We will use the MSE in Chapters 9

and 12 to measure the quality of a regression from images to points in

a psychological similarity space.

Another popular performance measure in regression tasks is theCoefficient of

determination coefficient of determination R2
[439]. It can be defined as follows [155,

Section 7.2.3], where ȳ denotes the average across all y(j):

R2 = 1− Sresidual
Stotal

=
Stotal − Sresidual

Stotal

with Sresidual =
N∑︂
j=1

(y(j) − f̂(x⃗(j)))2
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and Stotal =

N∑︂
j=1

(y(j) − ȳ)2

Here,Stotal is the total sum of squares and measures the overall variance How R2
is computed

in the ground truth data by quantifying how much the target varies

around its mean. Sresidual is called the residual sum of squares and

measures how far the model’s predictions depart from the ground

truth, essentially using the MSE. The coefficient of determination can

be interpreted as the amount of variance explained by the model

(Stotal − Sresidual, i.e., the overall variance minus the remaining errors

of the model) by the overall amount of variance found in the data

(Stotal). Similarly to Cohen’s κ (which can be viewed as a normalized

version of classification accuracy), we can interpret the coefficient of

determination R2
as a normalized version of the MSE.

The highest possible value of R2
is one and can only be achieved if Values of R2

Sresidual (i.e., the MSE) becomes zero. For a regression error larger than

the variance of the ground truth (i.e., Sresidual > Stotal), R
2

becomes

negative. Since the regression error can become arbitrarily large, the

possible values of R2
are not bounded from below, hence R2 ∈ (−∞, 1].

Please note that R2 = 0 only happens if Sresidual = Stotal, i.e., if the

model’s prediction error is identical to the overall variance in the targets.

We will use the coefficient of determination in Chapter 9 for evaluating

the correlation between psychological dissimilarities and distances in a

similarity space, and in Chapters 9 and 12 for quantifying the quality

of a regression from images to points in this similarity space.

Also for regression tasks, it makes sense to compare the model’s Baseline regressors

performance to some simple baselines. These may again follow a fixed

strategy (e.g., always predicting the mean of the targets, or another

fixed value such as zero), a probabilistic strategy (for instance based on

a normal distribution), or may use a simplified model with low capacity.

In machine learning, one is mainly interested in a model which per- Generalization error

vs. training error
forms well on previously unseen inputs, i.e., which is able to generalize

well. The generalization error (or test error) of a model can be defined as

the expected error on novel, previously unseen inputs. It needs to be

distinguished from the training error, which is measured on the training

set, i.e., the dataset which was used to estimate its free parameters [172,

Chapter 5].
2

In practice, the generalization error can not be measured,

but only be approximated by evaluating the model’s performance on

a test set, i.e., a separate set of examples which were not used during

training. In order for this approximation to be meaningful, one has to

assume that the examples in the two datasets are independent from each

other, and that both datasets follow an identical probability distribution.

These assumptions are often summarized as i.i.d. assumptions, which

is an abbreviation for "independent and identically distributed" [172,

Chapter 5]. Moreover, most machine learning problems tacitly include

2 Alternatively, one can also use the terms generalization performance and training perfor-

mance.
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the stationarity assumption, which states that the probability distribution

of the data does not change over time [341, Chapter 18].

Goodfellow et al. [172, Chapter 8] note that this distinction into gen-Generalization as

difference to

optimization

eralization error and training error is what separates machine learning

from pure optimization: In an optimization task, minimizing a given

cost function on a given dataset is the main task, and generalization

to novel inputs is not considered at all. In machine learning, on the

other hand, good generalization capabilities are the main goal, while

optimizing performance on the training set is rather a means to an end.

We will touch upon this distinction again in Chapter 8 in the context of

the optimization technique of multidimensional scaling.

Two factors are very important for performing well on previouslyUnderfitting and

overfitting
unseen examples [172, Chapter 5]: On the one hand, the model needs to

achieve good performance on the training set. If this is not the case (e.g.,

because the model’s capacity is too low for the given task), one speaks

of underfitting. On the other hand, the difference between training

performance and generalization performance should be small. If this is

not the case, one speaks of overfitting, which corresponds to the model

memorizing the examples from the training set, but being unable to

generalize successfully. One can interpret this as the model picking

up random patterns from the training set, which are not predictive on

new examples from the test set. In general, the training error decreases

with an increase in model capacity, until it asymptotes to the minimal

possible error. The generalization error on the other hand tends to be

a U-shaped function of model capacity [172, Chapter 5], based on un-

derfitting issues for low model capacity and overfitting issues for high

model capacity. As a rule of thumb, overfitting becomes more likely

as the hypothesis space grows, and becomes less likely as the number

of training examples grows [341, Chapter 18]. We will return to this

trade-off in Section 5.1.4 when discussing the curse of dimensionality.

The hyperparameters of a model (as in our example from SectionModel selection for

optimizing

hyperparameter

settings

5.1.1 the degree q of the polynomial function) have a direct influence

on its capacity and hence on its generalization error. One therefore

often follows a so-called wrapper method for model selection [341, Chapter

18] by training the model with various hyperparameter settings and

choosing the variant with the best performance. It is important to note

that the performance of different hyperparameter settings should be

evaluated neither on the training set nor on the test set [172, Chapter

5]: Optimizing hyperparameters on the training set (i.e., by measuring

training performance) usually leads to settings with maximal capacity,

since a model with a higher capacity can fit the training examples better.

Hence, optimizing hyperparameters on the training set increases the

risk of overfitting. On the other hand, if hyperparameters are optimized

on the test set (i.e., by measuring test performance), then the model

can "peek" at the test set [341, Chapter 18]: Examples from the test set

are used to set the model’s hyperparameters, which in turn indirectly

influence the parameters of the model. Performance on the test set is

then no longer be an accurate estimate of the model’s generalization
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performance, since the examples from the test set have influenced the

estimation of the model’s parameters and can thus not be considered

to be novel to the overall system.

Therefore, a third dataset called the validation set is used to compare Validation set for

model selection
different hyperparameter settings. It should again be disjoint from

both the training set and the test set and follow the same underlying

distribution. The typical machine learning workflow is then to train

multiple variants of the same model (by using different hyperparameter

settings) on the training set, and to estimate their generalization error

on the validation set. This validation set performance is then used

to select the optimal hyperparameter configuration. Only when the

overall training process is done, the test set is used to estimate the

generalization error of the resulting model. In the example of the

polynomial model from Section 5.1.1, we would use the training set

to find optimal parameters b and w⃗(p)
. This can be done for different

values of q, i.e., different variants of the polynomial model. We can

then compare their performance on the validation set in order to

decide which value of q we should use. The expected performance on

previously unseen examples can then be computed on the test set. One

should note that the validation set error is typically lower than the test

set error since it is explicitly being minimized during hyperparameter

optimization [172, Chapter 5].

The search for optimal hyperparameters should be conducted in a Model selection

approaches: grid

search and random

search

structured way in order to make the results reproducible. There are

several approaches that can be taken [57, 154]: When conducting a grid

search, one defines several possible values for each hyperparameter and

evaluates the system for each possible combination of these values.

This can be used to create an equally spaced grid of hyperparame-

ter configurations which is easy to evaluate and to interpret. When

choosing candidate values for real-valued hyperparameters, it is a

common practice to pick them on an approximately logarithmic scale

with the scale ends being chosen conservatively [172, Chapter 11]. A

random search on the other hand randomly samples hyperparameter

configurations based on predefined marginal distributions for the in-

dividual hyperparameters. A random search can give better results if

some hyperparameters are much more important than others, but since

the hyperparameter configurations are sampled in a less systematic

way, it can be harder to interpret. Both grid search and random search

can be used in an iterative way in order to focus on regions of the

hyperparameter space, which have yielded promising results in prior

iterations [172, Chapter 11]. Finally, there are more advanced methods

such as genetic algorithms or Bayesian optimization, which are more

powerful optimizers, but come at increased computational cost.

As argued above, in a typical machine learning setting, we need to How to split the

dataset
split the overall dataset into two or three parts in order to estimate the

generalization error and (if necessary) to optimize hyperparameters.

There exist different evaluation schemata for making such a split:
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The most straightforward procedure is called holdout cross-validationHoldout

cross-validation: a

single fixed split

[341, Chapter 18], where the overall dataset is randomly split into two

or three disjoint parts, before any model is trained. This partitioning

is then kept fixed for the whole machine learning process. A so-called

stratified split ensures that the distribution of class labels or regression

targets is approximately the same in all parts. Typical splits are 80-20 or

70-30 (if only considering training and test set) and 60-20-20, 70-15-15, or

80-10-10 (if considering training, validation, and test set). As one can see,

there is no ideal split that has been agreed upon in the literature. This

is based on the trade off between a good estimation of validation and

test error (requiring relatively large validation and test sets, but leading

to a relatively small training set), and reducing the risk of overfitting

(requiring a large training set for models with higher capacity, and

leading thus to smaller validation and test sets) [341, Chapter 18].

Using a holdout cross-validation to split the overall dataset into threek-fold

cross-validation:

rotating through the

data

parts may, however, not be feasible if the overall number of training

examples is very small. In such cases, one can use a technique called

k-fold cross-validation [172, Chapter 5]. In this scheme, the overall dataset

is partitioned into k non-overlapping subsets. In practice, often five or

ten of these so-called folds are used [341, Chapter 18]. In the ith trial,

the ith subset is used for testing while all other subsets are used for

training the model. The overall generalization error is then estimated

by averaging over the test set error of all trials. While allowing to make

a reasonably confident estimate of the generalization error on small

datasets, this cross-validation scheme comes at increased computational

cost, since the model parameters need to be estimated k times instead

of only once.

In the extreme case, if the number of folds equals the number of dataLeave-one-out: only a

single data point for

testing

points, this is called a leave-one-out evaluation, which is applicable even to

very small datasets, but computationally very costly. The leave-one-out

error is furthermore known to be a high variance estimator of the

true generalization error, which also tends to give overly optimistic

results [178]. The results of a leave-one-out evaluation should thus be

interpreted with caution.

5.1.3 Fitting the Model’s Parameters

So far, we have only described how the different ingredients for describ-Finding optimal

parameters θ∗
ing a machine learning problem can be defined, and how one can model

the target function. Let us now discuss how the optimal parameters

θ∗ of the model can be found based on the training examples and the

performance measure.

In general, the best fit of the model to the data is found by minimizingLoss: performance

measure and

regularizers

an appropriate error function (also called cost function or loss) [295,

Chapter 1]. This loss J is closely related to the performance measure

P , but often not identical to it. Typically, the loss consists of different

additive terms where at least one term refers to the performance

measure P (e.g., the MSE in a regression task), while other terms
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introduce additional constraints. These constraints often aim to improve

generalization and are called regularizers, since they incite the selection

of a "more regular" or less complex model [341, Chapter 18]. Using

regularization can thus be seen as a preference bias (cf. Section 5.1.1),

which tries to choose the simplest hypothesis consistent with the data

[341, Chapter 18]. This can be linked to the philosophical principle of

Occam’s razor, which postulates that the solution or explanation with the

fewest underlying assumptions is preferable [295, Chapter 3]. In general,

regularization can be defined as constraining the learning algorithm in

such a way that the difference between training and test error is reduced,

while the training error is basically left unchanged [172, Chapter 5].

Regularization thus tries to constrain the model’s capacity in a soft

way in order to avoid overfitting problems (cf. Section 5.1.2). Since one

needs to find an appropriate trade-off between the different terms in

the loss function, they are typically weighted against each other. These

weights can be interpreted as additional hyperparameters of the model.

When considering our polynomial regression model from Section Example: polynomial

regression
5.1.1, we can for example add a so-called weight decay regularizer, which

puts a penalty on large weights. When optimizing the weights of the

model, we thus do not only maximize the performance measure P (i.e.,

the mean squared error), but we also try to minimize the magnitude

of the model’s weights. In other words, the regularizer we introduced

gives a preference to some solutions from the hypothesis space (namely,

the ones with small weights) over others (namely, the ones with large

weights). The strength of this preference can be controlled with the

aforementioned weights of the two terms in the loss function.

Instead of using a regularizer, one can also limit the model’s capacity Reducing model

capacity through

dimensionality

reduction and

hyperparameters

by performing dimensionality reduction, i.e., compressing the original

feature vectors into a more compact format [341, Chapter 18]. We will

introduce different dimensionality reduction techniques in Section 5.3.

If the model’s capacity can be directly controlled through a hyper-

parameter (as in the example of the polynomial regression with the

degree q of the polynomial), constraining the possible values of this

hyperparameter can offer another way of preferring simpler hypotheses.

Capacity restrictions enforced through dimensionality reduction or by

constraining hyperparameter values are often restriction biases, while

regularization is a preference bias (cf. Section 5.1.1).

In general, the optimal parameters θ∗ of a model can be found by Minimizing the loss

function
minimizing the loss function J . For some models (such as a linear

regression), this minimization can be solved analytically. For more com-

plex models (such as artificial neural networks), finding an analytical

solution is, however, not easily possible. In many cases, one thus resorts

to iterative optimization methods, which improve their solution step by

step. For neural networks, typically a variant of gradient descent is used

(which will be introduced in Section 5.2.2). Other machine learning

algorithms (such as for example decision trees), however, come with

special-case optimizers, since general optimization strategies are not

easily applicable [172, Chapter 5]. Please recall that the model param-
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eters are always optimized on the training set, i.e., they are chosen

in such a way that they minimize the loss function on the examples

from the training set. The validation and the test set are then used to

estimate the generalization performance of the model according to the

performance measure P (cf. Section 5.1.2).

When using a probabilistic approach for modeling the machine learn-Maximum likelihood

for selecting model

parameters

ing problem, one is typically interested in estimating the underlying

probability distribution P(x⃗) (or P(y|x⃗) in the supervised case). The

maximum likelihood estimator for the model parameters θ can then be

defined as follows, based on the design matrix X [172, Chapter 5]:

θML = argmax
θ

Pmodel(X|θ) = argmax
θ

N∏︂
j=1

Pmodel(x⃗
(j)|θ) (5.1)

As one can see in Equation 5.1, we try to find the set of modelExpected value of

empirical

distribution

parameters θ∗, which maximize the likelihood of the observed data

from the training set, given the model – hence the term "maximum

likelihood"). If we consider the empirical distribution Pdata of the

training set instead of explicitly iterating through the examples from

the design matrix, we can replace the product over the individual

examples by the expected value under the empirical distribution. We

then arrive at the following notation, where we also take the logarithm
3

for mathematical convenience:

θML = argmax
θ

Ex⃗∼Pdata
logPmodel(x⃗|θ)

= argmin
θ

−Ex⃗∼Pdata
logPmodel(x⃗|θ) (5.2)

One can think of Equation 5.1 as an approximation of Equation 5.2 –Cross-entropy and

KL divergence
optimizing Equation 5.1 thus is a practical proxy for optimizing 5.2. The

term being minimized in Equation 5.2 is often referred to as the cross-

entropyH(Pdata,Pmodel) [172, Section 3.13]. One can easily see that mini-

mizing the cross-entropy is equivalent to minimizing the so-called KL di-

vergence DKL(Pdata||Pmodel) = Ex⃗∼Pdata
[logPdata(x⃗)− logPmodel(x⃗|θ)],

which measures the difference between the two probability distributions

[172, Chapter 5]. This means that by optimizing the model parameters

based on Equation 5.1, we try to minimize the difference betweenPmodel
and Pdata, i.e., adapt the model’s predictions as closely as possible to

the actual data distribution.

Instead of choosing θ by maximizing the likelihoodP(x⃗|θ) of the dataMaximizing the

posterior probability
given the parameters, one can maximize the posterior probabilityP(θ|x⃗)
of the parameters given the data, using Bayes rule P(θ|x⃗) = P(x⃗|θ)·P(θ)

P(x⃗)

[172, Chapter 5]:

θMAP = argmax
θ

P(θ|X) = argmax
θ

(P(X|θ) · P(θ))

The resulting maximum a posteriori estimator can be seen as the hypoth-

esis which is most probable given the data, while also incorporating

3 Please note that we use log to refer to the binary logarithm unless stated otherwise.
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prior knowledge about the parameters θ in the form of a prior distri-

bution P(θ). This prior distribution is usually quite broad, but may

incorporate a preference for "simpler" solutions [172, Chapter 5]. This

can be seen as a form of regularization similar to the weight decay

introduced above.

One can use the maximum a posteriori estimator to derive the Minimum

description lengthminimum description length principle, which can be interpreted as a

Bayesian version of Occam’s razor [295, Chapter 6]. In the following

we use h ∈ H to denote the hypothesis corresponding to the parameter

values θ (cf. Section 5.1.1):

hMAP = argmax
h

(P(X|h) · P(h))

= argmax
h

(log (P(X|h)) + log (P(h)))

= argmin
h

(− log (P(X|h))− log (P(h)))

Here, − log (P(h)) can be interpreted as the description length of the

hypothesis h if an optimal encoding for the hypothesis space H is used.

Similarly, − log (P(X|h)) can be viewed as the description length of the

data X under an optimal encoding, assuming that the hypothesis h is

known. Given an optimal encoding, we can thus find the maximum

a posteriori hypothesis by minimizing both the description length of

the hypothesis (preferring short hypotheses over longer ones) and the

description length of the data given the hypotheses (preferring hy-

potheses with few misclassifications over inaccurate ones). This can be

seen as a Bayesian version of Occam’s razor as discussed above, which

aims to select the shortest hypothesis that is able to explain the data.

However, since the optimal encodings for both hypotheses and data

are often not known in practice, following the minimum description

length principle for an arbitrary encoding does not necessarily lead to

a maximum a posteriori hypothesis [295, Chapter 6].

This section has introduced some general notions and concepts for

optimizing model parameters. They will partially resurface in Section

5.2 in the context of various machine learning models. Especially

the probabilistic view will play a role again in Chapter 6 for the

mathematical background of artificial neural networks.

5.1.4 Practical Considerations

After having covered the main ingredients to specifying a machine Relation between

capacity, training

data, and

generalization

learning problem (namely, task T , experience E, and performance

measure P ) as well as a combination of model and parameter fitting

for solving this problem, we would now like t o discuss the relation

between model capacity, the number of training examples, and the

generalization error.
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Most machine learning algorithms generalize to unseen examplesSmoothness prior

and curse of

dimensionality

by making use of the so-called smoothness prior, which assumes that

f(x⃗ + ϵ⃗) ≈ f(x⃗), i.e., that the target function does not change much

within a small region [172, Chapter 5]. Generalizing to unseen examples

then essentially corresponds to interpolation and extrapolation based

on the examples from the training set. However, this requires that for

each newly observed instance x⃗ in the feature space, we have observed

a sufficient amount of training examples that are located in the same

region. If the feature space has n dimensions and we need to distinguish

v different values along each of these dimensions, one can easily see

that overall vn regions need to be distinguished from each other (cf.

Figure 5.1). If we would like to cover each of these regions with at least

one data point, we need a training set with O(vn) examples.
4

If the

dataset contains many features (i.e., if n is very large), then the amount

of training examples needed to adequately cover this feature space

grows unfeasibly large very quickly. This effect is the so-called curse of

dimensionality [172, Chapter 5].

Another way of viewing the curse of dimensionality is provided byDistance of closest

neighbors
Russell and Norvig [341, Section 18.8]. They assume that a set of N
points is uniformly distributed in an n-dimensional unit hypercube.

They furthermore define l to be the average side length of the smallest

hypercube containing the k nearest neighbors for a given query point.

The size of a neighborhood (containing k points) is ln, while the size of

the unit hypercube (containing all N points) is 1. On average, one can

thus expect that ln = k
N . Solving for l yields l =

(︁
k
N

)︁ 1
n

. Considering

N = 1, 000, 000 data points and k = 10 neighbors, Russell and Norvig

point out that for n = 3 the average side length equals l ≈ 0.02, but

for n = 200, it already reaches a value of l ≈ 0.94. This means that in

high-dimensional spaces, the nearest neighbors of a given query point

tend to be quite far away, making a successful generalization based on

interpolation or extrapolation incredibly difficult.

The most straightforward ways of fighting the curse of dimensionalityFighting the curse of

dimensionality with

more data and fewer

features

consist in increasing the size of the dataset and reducing the number of

features. Since collecting more data is not always feasible in practice

(especially in an exponential way), one typically focuses on the latter

approach. We will discuss the two main variants of dimensionality

reduction in Section 5.3, namely feature selection (which selects a

subset of the given features) and feature extraction (which combines

the existing features to obtain a smaller number of novel features).

In our experimental studies in Part III of this dissertation, we willThe curse of

dimensionality and

artificial neural

networks

mainly make use of artificial neural networks, which will be introduced

in Chapter 6. We would nevertheless already now like to comment

on the ways in which deep learning approaches aim to overcome the

curse of dimensionality. Essentially, deep learning assumes that the

4 We use the so-called "big O" notation from computer science here to indicate that the

numberN of training examples needs to grow exponentially with vn, i.e.,N ≈ c1·vn+c2
with constant values c1 and c2.
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Figure 5.1: Illustration of the curse of dimensionality for three values per

feature and one (a), two (b), and three (c) dimensions in the feature

space, respectively.

data was generated by a composition of multiple factors, potentially

at multiple levels in the hierarchy [172, Chapter 5]. For example, con-

volutional neural networks (which are commonly used in computer

vision) are based on the assumption that many important features are

invariant with respect to their exact location in the image: A face can

be located in the center of the image or in one of the corners, but the

underlying features discriminating it from non-face objects remain

unchanged. Moreover, deep learning approaches typically assume that

even in very large feature spaces, relevant inputs are found only in a

hand full of small connected regions which are called manifolds. For

example, if images are represented by individual pixel values, most

randomly generated points in this feature space appear to humans as

meaningless noise when visualized as image. Well-structured images

such as photographs of faces seem to occupy only a small part of the

overall feature space. By correctly identifying these manifolds, the

model can focus on the relevant regions in the feature space while dis-

carding irrelevant inputs. By harnessing underlying regularities such as

location invariance and manifolds, deep learning approaches augment

the smoothness prior with further priors in order to improve general-

ization [172, Chapter 5]. We will discuss this in more depth in Chapter 6.

Finally, we would like to focus on additional practical considerations Practical importance

of data and features
when training machine learning systems. We start with two recommen-

dations by Russell and Norvig [341, Chapter 18], who note that both the

size of the dataset and the features being used to describe instances are

of utmost importance for successful applications of machine learning:

All machine learning algorithms tend to improve their performance

with an increased amount of training data, so collecting more data may

be more efficient than extensive hyperparameter tuning. Goodfellow et

al. [172, Chapter 11] propose to collect more data if the performance on

the training set is acceptable, but the generalization to the validation set

is poor, since this is a sign of overfitting. Moreover, Russell and Norvig

[341, Chapter 18] point out that the hypothesis space of any machine

learning model is inherently limited by the feature space it uses – if

the given set of features is not capable of making certain distinctions,

then no model can be expected to successfully learn these distinctions.

The process of feature engineering is concerned with obtaining a good
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set of expressive and discriminatory features and is often informed by

domain knowledge about the specific task at hand.

Goodfellow et al. [172, Chapter 11] recommend to start the overallPerformance measure

as starting point and

incremental changes

machine learning process by defining a suitable performance measure

P and the desired performance level of the system with respect to

this performance measure. They furthermore suggest to establish a

working end-to-end pipeline as soon as possible and to repeatedly

make incremental changes to this pipeline, while observing their effects

on the evaluation results. Based on whether one observes overfitting

or underfitting, the next adjustments to the system can be planned

and implemented. This can be linked to agile approaches to software

engineering such as scrum [405], which also focus on short iterations

with regular feedback.

Goodfellow et al. [172, Chapter 11] furthermore discuss differentHow to debug

machine learning

systems

debugging strategies in the context of machine learning. They note

that machine learning systems are inherently difficult to debug, since

their intended behavior can hardly be specified a priori – otherwise

one would not need to apply machine learning and could simply

hard-code the respective functionality instead. In order to nevertheless

get a sense of the model’s behavior, they propose different indirect

debugging strategies: Firstly, one can visualize the model in action, i.e.,

look at some example inputs and the corresponding model outputs.

This can serve as a first sanity check and also provide some intuition

about the overall degree of performance. Moreover, they recommend

to visualize the worst mistakes and most difficult cases, i.e., to explicitly

consider confident misclassifications and examples, for which the

model’s confidence (as for instance expressed by the class probability)

is very low. Goodfellow et al. argue that analyzing these failure cases

can give important insights about necessary changes in preprocessing

steps such as feature extraction. A third debugging strategy focuses

on fitting a tiny dataset which consists of only one or a hand full of

examples. Since memorizing a simple example should be trivial for

any machine learning algorithm, a failure can in this case indicate

bugs in the implementation. If only a single training example is used,

these bugs are moreover more likely to be found, since it is feasible to

manually double-check the intermediate results of the algorithm.

5.2 machine learning algorithms

After having considered some general notions in the field of machine

learning, we are now ready to introduce several popular machine

learning algorithms, which will play a role in later chapters of this

dissertation. Unless stated otherwise, these algorithms consider the

task of binary classification. This section is not intended as a compre-

hensive overview machine learning algorithms and does for instance

not explicitly cover naive Bayes classifiers [295, Chapter 6], because they

will not be used in our practical work in Part III of this dissertation.
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We start our overview of different machine learning algorithms by Overview

considering a linear least-squares regression in Section 5.2.1, one of the

most straightforward regression models. We also consider two forms of

regularization for this simple model, yielding so-called ridge regression

and lasso regression models, respectively. In Section 5.2.2, we show a

relatively straightforward way of using a linear model for classifica-

tion tasks by introducing logistic regression. This also involves a first

discussion of gradient descent, which will play again a role for training

artificial neural networks in Chapter 6. Afterwards, we present support

vector machines in Section 5.2.3, which also use a linear model, but aim

to find a decision boundary that maximizes the distance to the data

points from the training set in order to allow for good generalization.

We leave the realm of linear models in Section 5.2.4, where we introduce

decision tree learning, which results in relatively interpretable, rule-like

models. In this context, we also briefly introduce random forests as

an ensemble of decision trees, which are generally considered to be

a powerful machine learning algorithm. Our overview of standard

machine learning algorithms is concluded in Section 5.2.5 with the k
nearest neighbor algorithm, which classifies a novel data point based on

its closest neighbors in the feature space, and which can therefore be

linked to exemplar models from psychology (cf. Section 1.1.1).

When considering the choice for a specific machine learning algo- How to choose a

classifier
rithm, Russell and Norvig [341, Chapter 18] propose to use decision

trees for discrete features, especially if one suspects that many of them

may be irrelevant. They argue that a k nearest neighbor approach may

be superior if large amounts of data but little to no prior knowledge is

available and if the number of features is relatively low. In general, they

consider support vector machines to be one of the best methods to try

first if the dataset is not too large. We would like to add, that in practice,

it is often helpful to initially test various algorithms and then to focus

on one or two approaches with promising initial results. Thanks to

modern machine learning libraries like scikit-learn5
or Weka6

, this is

easily possible without too much implementational overhead.

5.2.1 Linear Regression

Linear regression is one of the most straightforward and most widely The linear model

applied regression algorithms. It assumes that the real-valued target y
can be described as a linear function of the real-valued feature values

xi [341, Section 18.6]. The resulting linear model looks as follows:

f̂(x⃗) = w0 +
n∑︂
i=1

wixi = w0 + w⃗ · x⃗

If we define x0 = 1, we can obtain a more compact representation,

which is sometimes used for notational convenience:

5 See https://scikit-learn.org.
6 See https://www.cs.waikato.ac.nz/ml/weka/.

https://scikit-learn.org
https://www.cs.waikato.ac.nz/ml/weka/
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f̂(x⃗) =
n∑︂
i=0

wixi = w⃗ · x⃗

One can show that if the scalar targets y(j) are indeed based on

a linear combination of the features in x⃗(j), but subject to normally

distributed noise, then the most likely values for the weights in w⃗ can

be obtained by minimizing the mean squared error [341, Section 18.6],

which can in this case be written as follows:

MSE =
1

N

N∑︂
j=1

(︂
y(j) − f̂(x⃗(j))

)︂2
=

1

N

N∑︂
j=1

(︂
y(j) − w⃗ · x⃗(j)

)︂2
Due to the minimization of the mean squared error, this approach is

often also referred to as least squares regression. The minimum of theMinimizing the MSE

MSE can be obtained by setting its partial derivatives with respect to

the individual weights wi to zero. Since the mean squared error is a

convex loss function, it has only a single minimum, which can be found

analytically with the following formula [341, Section 18.6]:

w⃗∗ = (XTX)−1XT y⃗

Here, XT
denotes the matrix transpose of the design matrix X and

y⃗ contains all target values for the individual examples (cf. Section 5.1.2).

If the number n of features is very large, or if the feature spaceL1 and L2

regularization
includes irrelevant features, a linear regression might overfit to the

training data. In order to counteract such overfitting tendencies, one

can add a regularization term to the loss function being optimized (cf.

Section 5.1.3). Typical types of regularization for a linear regression are

L1 regularization

∑︁n
i=0 |wi| and L2 regularization

∑︁n
i=1 |wi|2, resulting in

so-called lasso and ridge regressors, respectively. Since these regularizers

penalize large weights, they are also referred to as weight decay regular-

izers (cf. Section 5.1.3). While one can still obtain an analytical solution

for ridge regression, this is in general not possible for lasso regression,

where numerical optimization methods are needed. Gradient descent

as one example of such a technique will be introduced in Section 5.2.2.

Lasso regression tends to result in sparse models, where manyLasso regression

leads to sparse

models

weights equal zero, while no such effect can be observed for ridge

regression [341, Section 18.6]. A visual explanation for this observation

is given in Figure 5.2: Optimizing the overall loss, which is a linear

combination of the mean squared error and the regularization term,

involves a trade-off between these two terms. Figure 5.2a illustrates

the hypothesis space for a linear regression with only a single feature,

which consists of the intercept w0 and the weight w1 associated with

this single feature. Regions of identical MSE values are illustrated as

red solid "contour lines", and regions of identical values for the L1

regularization term as blue dashed contour lines. The regularization

term is obviously minimal for w1 = w2 = 0. Since L1 regularization
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Figure 5.2: Comparison of lasso regression (a) and ridge regression (b) with

MSE loss illustrated by solid red lines and regularization term

illustrated by dashed blue lines.

is just a sum over the individual weights, the contour lines have the

shapes of diamonds.
7

An optimum of the overall lasso loss function (i.e.,

the linear combination of MSE and L1 regularization) is obtained at the

point where the contour lines of the MSE term and theL1 regularization

term first intersect. As one can see in Figure 5.2a, this is most likely

to happen at the corners of the diamond. In Figure 5.2a, this happens

on the w1 axis, where w0 = 0. A lasso regression is thus likely to find

solutions where some weights are set to zero. This essentially means

that the corresponding features are discarded. A lasso regression can

thus be used as an embedded method for feature selection (which will

be introduced more thoroughly in Section 5.3.1).

For the ridge regression, on the other hand, the contour lines have Ridge regression does

not prefer sparse

models

the form of circles (cf. Figure 5.2b). This is based on the fact that the L2

regularization considers the sum over the squared weights.
8

As one can

see in Figure 5.2b, the meeting point of MSE term and regularization

term has no particular preference, which generally leads to solutions

not lying on any of the axes.

The core difference between L1 and L2 regularization is thus that Rotational invariance

as key difference
the contour lines of the L2 regularization are rotationally invariant,

while the ones of the L1 regularization heavily depend on the axes. One

can thus say that using L1 regularization assumes that the individual

features themselves are (semantically) important, while the usage of

L2 regularization interprets them as a relatively arbitrary basis for the

overall feature space [341, Section 18.6].

7 One could say that L1 regularization computes the Manhattan distance between

the weight vector and the origin, and that the contour lines in Figure 5.2a are thus

hyperballs under the Manhattan metric. This has already played a role in Section 4.1.1

in the context of computing the size of a fuzzy conceptual region.

8 Again, this can be related our considerations from Section 4.1.1 with respect to

hyperballs under the Euclidean distance.
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Figure 5.3: Interpreting the weight vector of a linear model as direction in a

one-dimensional feature space.

We would like to point out that we can interpret the weights w⃗ ofInterpreting the

weight vector as a

direction

a linear model as a direction in the feature space: If we ignore the

intercept w0, there is exactly one weight wi for each of the features.

The direction given by the weight vector w⃗ can then be interpreted as

showing the direction from data points with small target values y(j) to

data points with large target values y(j).
Let us provide a visualization of this interpretation. Consider theVisualization for

one-dimensional

feature space

two linear functions fA(x1) = w
(A)
1 ·x1 and fB(x1) = w

(B)
1 ·x1 in Figure

5.3a and d. For the sake of simplicity, we assume that in both cases

w0 = 0, i.e., there is no intercept. As w
(A)
1 > 0 and w

(B)
1 < 0, fA(x1) is

monotonically increasing while fB(x1) is monotonically decreasing. As

we can see in Figure 5.3a and d, the magnitude of w1 determines the

steepness of the function: Since |w(B)
1 | > |w(A)

1 |, fB(x1) is steeper than

fA(x1). Figure 5.3b and e illustrate this by intersecting several constant

functions with fA(x1) and fB(x1), respectively. Figure 5.3c and f show

compressed one-dimensional visualizations where the weight vectors

w
(A)
1 and w

(B)
1 are shown on the x1-axis along with the points where

fA(x1) and fB(x1) reach different given values. As we can see in this

illustration, w1 points into the direction of increasing function values.

Moreover, for larger absolute values of w1, the "contour lines" move

closer together, indicating a steeper function.

The latter visualization can also be generalized to two-dimensionalVisualization for

two-dimensional

feature space

spaces as illustrated in Figure 5.4. In both examples, the weight vectors
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Figure 5.4: Interpreting the weight vector of a linear model as direction in a

two-dimensional feature space.

point into the direction of increasing function values. A smaller weight

vector (Figure 5.4a) again corresponds to a slower growth of the function

value than a larger weight vector (Figure 5.4b) as illustrated by the

contour lines.

We will use both a linear regression and a lasso regression in Chapters Outlook

9 and 12 as two simple off-the-shelf regressors for learning the mapping

from images to points in a given similarity space. In Chapter 8, we

will furthermore argue that one can use a linear regression for finding

interpretable directions in a psychological similarity space. This is based

on the interpretation of the weight vector as pointing from regions with

small function values to regions with large function values. We will

then apply this approach in practice in Chapter 11 on a psychological

similarity space for the shape domain.

5.2.2 Logistic Regression

The linear regression presented in the previous section is an example Linear models for

classification:

perceptron model

for the class of linear models, i.e., machine learning methods which

represent their hypothesis by using a linear function of the input.

Linear models can not only be used for regression tasks, but also for

classification. In the simplest case (which is called the perceptron model),

this can be done by computing w⃗ · x⃗ and assigning class membership

based on the sign of the result: A given data point x⃗ is classified as

belonging to the positive class if w⃗ · x⃗ ≥ 0 and as belonging to the

negative class if w⃗ · x⃗ < 0 [341, Section 18.6]. If we look again at Figure

5.4, we can see that this corresponds to using the contour line with

y = 0 (which is defined by its normal vector w⃗) as a decision boundary:

All examples lying on the one side of this linear separator are classified

as positive and all all examples on the other side as negative.

A logistic regression can be thought of as a soft generalization of this Logistic regression as

soft generalization
perceptron model [341, Section 18.6]: Instead of using the sign function
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Figure 5.5: (a) The sigmoid function σ(z) = 1
1+e−z . (b) Illustration of gradient

descent for a function f̂ .

for converting the output of the linear model into a class assignment, a

logistic regression uses the so-called logistic function or sigmoid function

σ(z) = 1
1+e−z , which is illustrated in Figure 5.5a. This sigmoid function

provides a smooth transition between values of zero and one, indicating

membership to the negative and the positive class, respectively. The

overall model can then be written as follows:

f̂(x⃗) =
1

1 + e−w⃗·x⃗
= σ(w⃗ · x⃗)

Since f̂(x⃗) ∈ (0, 1), one can interpret the resulting number also as a

probability of data point x⃗ belonging to the positive class [172, Chapter

5]. As the component w⃗ · x⃗ remains unchanged in comparison to a linear

regression, we can still interpret w⃗ as the normal vector of a separating

hyperplane, which is now, however, located at f̂(x⃗) = 0.5.

Unfortunately, there is no closed-form solution for finding the optimalGradient descent as

optimization

technique

weight vector w⃗∗
of a logistic regression [341, Section 18.6]. One therefore

optimizes w⃗ with an iterative optimization method called gradient

descent, which can in general be applied if analytical solutions of an

optimization problem are either not possible or too costly to compute [71,

Chapter 8]. The general procedure of minimizing an arbitrary function

f(x⃗)with gradient descent is shown Algorithm 5.1 and illustrated with a

one-dimensional example in Figure 5.5b. Even though gradient descent

can only find a local optimum and cannot be guaranteed to succeed

in a reasonable amount of time, in practice it often finds near-optimal

solutions quite quickly [172, Chapter 5].

In the one-dimensional case (i.e., where the vector x⃗ reduces to a singleMinimization by

following the

gradient

scalar value x), the gradient of the function f(x⃗) = f(x) is equivalent

to its derivative f ′(x) = ∂f(x)
∂x , which gives the slope of f(x) at a given

point x. It is positive, if increasing x leads to an increase of f(x), and

it is negative, if increasing x causes a decrease of f(x). We can thus

iteratively minimize f by changing x in small steps with the opposite
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Algorithm 5.1: General gradient descent procedure.

Input: Function f : Rn → R, learning rate α, threshold ϵ
Output: Point x⃗ ∈ Rn which approximately minimizes f

1 Set x⃗ to an arbitrary starting value

2 repeat

3 Compute gradient ∇x⃗f(x⃗) =
(︂
∂f(x⃗)
∂x1

, . . . , ∂f(x⃗)∂xn

)︂
4 Update x⃗ = x⃗− α · ∇x⃗f(x⃗)

5 until |∇x⃗f(x⃗)| < ϵ
6 return x⃗

sign of the derivative until we find a point x̂ for which f ′(x̂) = 0 [172,

Section 4.3] (cf. line 5 in Algorithm 5.1). Such stationary points include

local minima (where f(x̂) is smaller than for all neighboring points),

local maxima (where f(x̂) is larger than for all neighboring points),

and saddle points (all other cases). When trying to minimize a given

function f(x), we are in general interested in finding a global minimum,

i.e., the point x∗ with the lowest value f̂(x∗) for all possible points x.

Please note that each global minimum is also a local minimum, but that

not all local minima are global minima. For instance, the function f(x)
in Figure 5.5b has two local minima (x1 and the global minimum x∗).
In both of these points, the derivative of f equals zero, as indicated by

the horizontal tangents.

Gradient descent aims at finding the global minimum by starting A simple update step

in the

one-dimensional

example

with a randomly chosen point (cf. line 1 in Algorithm 5.1) and iteratively

improving its current estimate. Let us consider the example from Figure

5.5b and assume that our current estimate of the global minimum is x0.
The derivative of f with respect to x in x0 corresponds to the slope of

the tangent at x0, and is negative in our case. This means that increasing

x results in a decrease of f(x). Gradient descent uses this information

to improve its estimate of the global minimum by taking a small step

"downhill", i.e., by moving to the right to a point x0 +∆x, because the

derivative is negative. In order to define the size of the update ∆x, one

typically multiplies the derivative f ′(x) with a constant α, which is

called the step size or learning rate [341, Section 18.6]. Thus, our update

rule is xt+1 = xt − α · f ′(xt).
Choosing a good value for the learning rate α is difficult. If α is set Choosing an

appropriate learning

rate

too small, then convergence is slow, because the individual updates

are very small. On the other hand, if α is set too large, then the steps

might be too large to allow for convergence. In the example from Figure

5.5b, we might never reach x∗ with a large α, because we may always

step over the "valley" and end up oscillating between x0 and x2. One

solution to overcome this problem is to start with a relatively large

learning rate and to decrease it over time [295, Chapter 4]. In Chapter

6, we will introduce more sophisticated variants of gradient descent

for artificial neural networks, which automatically adapt their learning

rate based on the recent update history.
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Figure 5.6: Illustration of the computation graph for a logistic regression and

the partial derivatives involved in computing the gradient of the

loss with respect to an individual weight.

Gradient descent can of course also be applied to functions withGeneralization to

higher-dimensional

input spaces

vectors as input, i.e., f : Rn → R. Here, we consider the partial deriva-

tives
∂f(x⃗)
∂xi

which measure how f(x⃗) changes at the point x⃗ if only

the coordinate xi is slightly increased. The gradient of f is then de-

fined as the vector of all partial derivatives of f and is denoted by

∇x⃗f(x⃗) =
(︂
∂f(x⃗)
∂x1

, . . . , ∂f(x⃗)∂xn

)︂
(cf. line 3 in Algorithm 5.1). Since this

gradient has the same dimensionality as x⃗, it can be interpreted as

a vector in the input space which specifies the direction of steepest

increase in f [295, Chapter 4]. We can thus minimize f(x⃗) by iteratively

moving x⃗ in the opposite direction of the gradient ∇x⃗f(x⃗) [172, Section

4.3]. Thus, our update rule for the general case is x⃗t+1 = x⃗t−α ·∇x⃗f(x⃗)
(cf. line 4 in Algorithm 5.1).

In the case of a logistic regression, we apply gradient descent toLogistic regression:

minimizing loss with

respect to weights

the weight vector w⃗ in order to minimize the loss function J(w⃗). This

requires, however, a way to compute the gradient ∇w⃗J(w⃗), i.e., the

partial derivatives
∂J(w⃗)
∂wi

for the individual weights wi. These partial

derivatives can be obtained by applying the chain rule [341, Section

18.6], i.e., the observation that for h(x) = g(f(x)), we get the derivative

h′(x) = g′(f(x)) · f ′(x). Figure 5.6 visualizes the computations taking

place in a logistic regression in the form of a computation graph,

assuming that the mean squared error is used to compute the loss.

Here, individual nodes correspond to variables (represented as circles)

or operations on variables (represented as rectangles). As one can see

from Figure 5.6, the overall partial derivative
∂J(w⃗)
∂wi

with respect to
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any weight wi can be factored into different components based on the

individual computation steps by repeatedly applying the chain rule:

∂J(w⃗)

∂wi
=

∂J

∂out

∂out

∂sum

∂sum

∂zi

∂zi
∂wi

(w⃗)

We can derive a closed form expression for
∂J(w⃗)
∂wi

by considering the Computing the

partial derivative

step by step

individual components one after another and replacing them with their

concrete form. For the sake of simplicity, we now consider only a single

training example (x⃗, y).
Since we assume the usage of the mean squared error, we know that

∂J
∂out

the loss for a single training example can be computed as J = (y−out)2.
Here, we can apply the chain rule again by defining g(a) = a2 and

f(out) = y − out, leading us to
∂g(f(out))

∂out = g′(f(out))f ′(out). Since

f ′(out) = −1 and g′(a) = 2a, we thus get that
∂J
∂out = −2(y − out).

The next term,
∂out
∂sum is simply based on the derivative of the sigmoid

∂out
∂sum

function, which can conveniently be written as σ′(a) = σ(a)(1− σ(a)).
Hence,

∂out
∂sum = out(1− out).

The derivative
∂sum
∂zi

is based on sum =
∑︁n

i=0 zi, which is a linear
∂sum
∂zi

function in zi. One can thus easily see that
∂sum
∂zi

= 1

Finally, we observe that
∂zi
∂wi

= xi, since zi = xiwi is linear in wi with
∂zi
∂wi

a factor of xi (which is treated as a constant in this context).

By combining all of these insights, we thus get the following closed Putting the pieces

together
form for the partial derivative

∂J(w⃗)
∂wj

:

∂J(w⃗)

∂wj
=

∂J

∂out

∂out

∂sum

∂sum

∂zj

∂zj
∂wj

(w⃗) = −2(y − out) · out(1− out) · 1 · xj

The overall update rule for wi can thus be written as follows (using

the fact that out = f̂(x⃗) and ignoring the constant value 2):

wi = wi + α · (y − f̂(x⃗)) · f̂(x⃗)(1− f̂(x⃗)) · xi

So far, we have only considered a single data point. However, the loss Generalizing to

multiple examples:

batch gradient

descent

function should be minimized over all data points in the training set. In

batch gradient descent, one computes the overall loss over all examples

and hence the gradient over the whole training set [172, Chapter 5].

This can, however, be computationally quite expensive and thus very

slow [341, Section 18.6].

Typical loss functions such as the MSE decompose into a sum over Frequent small

updates: stochastic

gradient descent

per-example losses for all examples from the training set.In stochastic

gradient descent, one thus computes the loss and hence the gradient

only for a single training example [341, Section 18.6] or for a small mini-

batch of examples [172, Chapter 5]. This is typically considerably faster

than batch gradient descent [341, Section 18.6]. The key insight behind

stochastic gradient descent is that the gradient itself is an expectation,

which can be approximated using only a small subset of examples [172,

Chapter 5]. Since only a subset of training examples is considered for

each update, stochastic gradient descent minimizes a different error

function in each step. This can help the algorithm to avoid getting stuck
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in local minima since the different error functions have different local

minima in different locations of the weight space [295, Chapter 4]. We

will consider different variants of gradient descent in more detail in

Chapter 6 in the context of artificial neural networks.

We will not directly use a logistic regression in any of our experimentsOutlook

in Part III of this dissertation. Nevertheless, it will re-appear in different

contexts throughout this dissertation: As we will see in Chapter 6, a

logistic regression can be seen as fundamental building block of artificial

neural networks, where individual neurons use a linear model followed

by a nonlinear activation function for determining their output. Also

the optimization of weights based on gradient descent will resurface in

this context, as already noted above. Moreover, a generalization of the

logistic regression to multiple classes (involving the so-called softmax

activation function as generalization of the sigmoid function) will be

used both for artificial neural networks in Chapter 6 and for a soft

partitioning of a given conceptual space into conceptual regions in

Chapter 7.

5.2.3 Support Vector Machines

Support vector machines (SVMs) make use of a constrained linear model

and go back to the work of Vapnik and colleagues (see for example

[73, 110]). We will base our overview mainly on the brilliant lecture by

Winston [436].

A support vector machine is a supervised machine learning modelSupport vector

machine as linear

model

for classification which tries to separate two classes using a hyperplane,

i.e., a generalization of lines and planes to higher dimensions. This

hyperplane can be expressed by the equation w⃗ · x⃗ + b = 0 where x⃗
corresponds to the feature vector, w⃗ is a weight vector, and b is an

intercept. This is the linear model already discussed in Sections 5.2.1

and 5.2.2 for the linear and logistic regression, respectively. Unseen

data points are classified by evaluating sign(w⃗ · x⃗ + b), i.e., by deter-

mining on which side of the hyperplane they lie. This is an important

difference to the logistic regression, where the sigmoid function is used

to obtain classification probabilities (cf. Section 5.2.2). As argued in

Section 5.2.1, the weight vector w⃗ can be interpreted as normal vector

of the decision hyperplane, pointing from negative to positive examples.

In Figure 5.7a, we can see a two-dimensional feature space withNot all separating

hyperplanes are

equally good

two hyperplanes separating positive and negative examples. One can

argue that while both hyperplanes perfectly separate the two classes,

they are probably not an optimal choice: Both lines lie very close to

some of the training examples, even though this is not necessary for

separating the classes. If we assume that unseen instances lie in general

close to the examples of their respective class, this can lead to errors in

generalization [341, Section 18.6]. For instance, consider the unclassified

data point illustrated as a gray diamond in Figure 5.7a: It lies closer
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Figure 5.7: (a) Non-optimal decision boundaries in a two-dimensional feature

space. (b) Maximum margin separating hyperplane.

to the negative examples than to the positive examples. Therefore, we

intuitively expect it to be classified as negative. However, it lies on

the positive side of both decision boundaries and is hence treated as

positive example by both of them.

In order to minimize the expected generalization loss, a support Maximum margin

hyperplanes
vector machine tries to find not any separating hyperplane (as for in-

stance a logistic regression would do), but a so-called maximum margin

hyperplane, i.e., a decision boundary which has the largest possible

distance to all example data points. This is illustrated in Figure 5.7b,

where the size of this margin is denoted by s. Maximizing s can be

seen as a safety measure against future misclassifications. The name

support vector machine stems from the observation that only certain

data points (the so-called support vectors) are crucial for defining the de-

cision boundary, namely the ones closest to the hyperplane (highlighted

by circles in Figure 5.7b). The crucial role of these support vectors is

reflected in the name "support vector machine". In the following, we will

derive a way of finding such a maximum margin separating hyperplane.

In order to constrain the linear model to find a hyperplane that Classification

constraint for the

hyperplane

separates the training examples, we enforce the following constraint

for all examples (x⃗(j), y(j)):

y(j) (w⃗ · x⃗(j) + b)− 1 ≥ 0 (5.3)

As one can easily see, this means that we require w⃗ · x⃗(j) + b ≥ 1 for Stronger constraint

for support vectors
positive examples (where y(j) = 1) and w⃗ · x⃗(j) + b ≤ −1 for negative

examples (where y(j) = −1).
9

Moreover, we require for data points,

which lie exactly on the margin (i.e., for the support vectors x⃗+ and

x⃗−), that they take the the exact values +1 and −1, respectively:

y(j) (w⃗ · x⃗(j) + b)− 1 = 0 (5.4)

9 Please note that while most other machine learning algorithms represent the two

classes with the labels 0 and 1, support vector machines use the values -1 and 1.

This is mainly for notational convenience, but does not entail any deeper conceptual

differences.
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Figure 5.8: Computing the margin size s based on two support vectors x⃗+

and x⃗− and the weight vector w⃗.

In order to find a maximum margin hyperplane, we need to quantifyComputing the size

of the margin
the size s of the margin. This width can be computed as follows (cf.

Figure 5.8): We first obtain the difference vector (x⃗+ − x⃗−) between two

support vectors x⃗+ and x⃗− belonging to the positive and the negative

class, respectively. Then, we project this difference vector onto the

weight vector w⃗, which is a normal vector of our hyperplane. The length

of the projected vector can be obtained based on their dot product

(x⃗+ − x⃗−) · w⃗: In general, the dot product of two vectors a⃗, b⃗ ∈ Rn

is defined as a⃗ · b⃗ =
∑︁n

i=1 aibi (cf. Section 5.2.1) and returns a scalar

value, which is equivalent to ||a⃗|| · ||b⃗|| · cosα, where α denotes the angle

between a⃗ and b⃗. The length of the vector a⃗ when projected onto the

direction b⃗ equals ||a⃗|| · cosα, i.e.,
a⃗·b⃗
||b⃗||

. We can thus obtain the size s of

the margin by dividing (x⃗+ − x⃗−) · w⃗ through the length ||w⃗|| of our

weight vector:

s =
(︁
x⃗+ − x⃗−

)︁
· w⃗

||w⃗||
=

1

||w⃗||
(︁
x⃗+ · w⃗ − x⃗− · · · w⃗

)︁
(5.5)

From the classification constraints for support vectors in Equation 5.4,Using the

classification

constraints for

support vectors

we know that 1 · (w⃗ · x⃗+ + b)− 1 = 0, and thus w⃗ · x⃗+ = x⃗+ · w⃗ = 1− b.
Analogously, we can derive that x⃗− · w⃗ = −1 − b. Inserting this into

Equation 5.5 gives us the following result:

s =
1

||w⃗||
(1− b+ 1 + b) =

2

||w⃗||
(5.6)

Essentially, Equation 5.6 tells us that we can maximize the size of theMaximizing the

margin means

minimizing ||w⃗||
margin by minimizing the norm of w⃗. In order to find a maximum mar-

gin hyperplane, we thus need to minimize ||w⃗|| under the classification

constraints from Equation 5.3. One now could apply gradient descent to

solve this problem [341, Section 18.9]. However, the approach described

in the following has shown to be much more elegant and efficient.
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Our optimization problem for finding the maximum margin hyper- A constrained

optimization problem
plane concerns minimizing ||w⃗|| (cf. Equation 5.6) under the constraints

of correct classification from Equation 5.3. This can be described as

follows, where w⃗ and b are the free parameters to be optimized:

minimize

1

2
||w⃗||2 (5.7)

under the constraints y(j) (w⃗ · x⃗(j) + b)− 1 ≥ 0 ∀j ∈ {1, . . . , N}

Please note that minimizing ||w⃗|| is equivalent to minimizing
1
2 ||w⃗||

2
. The dual form of the

problem
We use the latter formulation, since it will turn out to be mathematically

more convenient. Continuous optimization problems under a given

set of constraints can be transformed into their so-called dual form by

using Lagrange multipliers αj [60]. The equivalent Lagrangian of this

optimization problem can be written as follows, with α⃗ ∈ RN being a

vector of Lagrange multipliers with one entry per constraint:

L(w⃗, b, α⃗) =
1

2
||w⃗||2 −

n∑︂
j=N

αj [y
(j) (w⃗ · x⃗(j) + b)− 1] (5.8)

under the constraints αj ≥ 0 ∀j ∈ {1, . . . , N}

Solving the optimization problem from Equation 5.7 in the origi- Conditions for a

solution in the dual

form

nal space is equivalent to finding a saddle point of L(w⃗, b, α⃗), where

L(w⃗, b, α⃗) reaches a minimum with respect to both w⃗ and b and a

maximum with respect to α⃗ [73]. The Kuhn-Tucker theorem states that

the following condition must be fulfilled by a solution (w⃗∗, b∗, α⃗∗) of

Equation 5.8 [110]:

α∗
j [y

(j)(x⃗(j) · w⃗∗ + b∗)− 1] = 0 ∀j ∈ {1, . . . , N} (5.9)

This means that α∗
j can be non-zero only for the cases where y(j)(x⃗(j) · Constraints for α⃗∗

w⃗∗ + b∗) = 1, i.e., for the support vectors. For all other vectors from the

training set, y(j)(x⃗(j) · w⃗∗ + b∗) > 1, hence α∗
j = 0.

For every minimum of L(w⃗, b, α⃗) with respect to w⃗, all derivatives Constraints for w⃗∗

∂L(w⃗∗,b∗,α⃗∗)
∂wi

must be zero. Based on Equation 5.8, we can thus derive the

following constraints:

∂L(w⃗∗, b∗, α⃗∗)

∂wi
= w∗

i −
N∑︂
j=1

α∗
jy

(j)x
(j)
i

!
= 0

As one can easily see, the optimal weightw∗
i can be written as a linear

sum over the examples x
(j)
i , weighted by their class label y(j) and the

Lagrange multipliers α∗
j . Since this holds for every individual weight

w∗
i , we can write the overall optimal weight vector w⃗∗

as follows:

w⃗∗ =
N∑︂
j=1

α∗
i y

(j)x⃗(j) (5.10)

We know based on Equation 5.9 that the αj are non-zero only for the

relatively small number of support vectors. This means that the normal
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vector w⃗∗
of the resulting maximum margin hyperplane can be written

as a linear combination of a small number of support vectors.

Also for finding b∗, we can require the partial derivative ofL(w⃗∗, b∗, α⃗∗)Constraints for b∗

with respect to b to be zero, which yields based on Equation 5.8 the

following result:

∂L(w⃗∗, b∗, α⃗∗)

∂b
= −

N∑︂
j=1

αjy
(j) = 0 (5.11)

Let us now use the optimal weight vector w⃗∗
from Equation 5.10 asPutting everything

together
well as the constraint on b∗ from Equation 5.11 to rewrite the Lagrangian

from Equation 5.8. We start by rewriting the squared norm of w⃗∗
as its

dot product with itself. Moreover, we split up the sum over j into its

individual components and use the variable name j1 instead:

L(w⃗∗, b, α⃗) =
1

2
||w⃗∗||2 −

N∑︂
j1=1

αj1 [y
(j1) (w⃗∗ · x⃗(j1) + b)− 1]

=
1

2
w⃗∗ · w⃗∗ −

N∑︂
j1=1

αjy
(j1)x⃗(j1)w⃗∗ −

n∑︂
j1=1

αj1y
(j1)b

+
N∑︂
j1=1

αj1

Let us now insert the definition of w⃗∗
from Equation 5.10. We canApplying the

definition of w⃗∗
furthermore pull b in front of the sum, since it is independent of j1.
This gives us the following intermediate result:

L(w⃗∗, b, α⃗) =
1

2
w⃗∗ · w⃗∗ −

N∑︂
j1=1

αj1y
(j1)x⃗(j1)w⃗∗ −

n∑︂
j1=1

αj1y
(j1)b

+
N∑︂
j1=1

αj1

=
1

2

⎛⎝ N∑︂
j1=1

αj1y
(j1)x⃗(j1)

⎞⎠⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
−

N∑︂
j1=1

αj1y
(j1)x⃗(j1) ·

⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
− b

N∑︂
j1=1

αj1y
(j1) +

N∑︂
j1=1

αj1

We can now use Equation 5.11 to eliminate the term involving b, andApplying Equation

5.11
we put additional parentheses around

∑︁N
j1=1 αj1y

(j1)x⃗(j1):
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L(w⃗∗, b, α⃗) =
1

2

⎛⎝ N∑︂
j1=1

αj1y
(j1)x⃗(j1)

⎞⎠⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
−

N∑︂
j1=1

αj1y
(j1)x⃗(j1) ·

⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
− b

N∑︂
j1=1

αj1y
(j1) +

N∑︂
j1=1

αj1

=
1

2

⎛⎝ N∑︂
j1=1

αj1y
(j1)x⃗(j1)

⎞⎠⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
−

⎛⎝ N∑︂
j1=1

αj1y
(j1)x⃗(j1)

⎞⎠⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
+

N∑︂
j1=1

αj1

As one can easily see, we can now merge the first and the third term: Merging terms

L(w⃗∗, b, α⃗) =
1

2

⎛⎝ N∑︂
j1=1

αj1y
(j1)x⃗(j1)

⎞⎠⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
−

⎛⎝ N∑︂
j1=1

αj1y
(j1)x⃗(j1)

⎞⎠⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
+

N∑︂
j1=1

αj1

= −1

2

⎛⎝ N∑︂
j1=1

αj1y
(j1)x⃗(j1)

⎞⎠⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
+

N∑︂
j1=1

αj1

Finally, we convert the two sums into a double sum: Merging sums

L(w⃗∗, b, α⃗) = −1

2

⎛⎝ N∑︂
j1=1

αj1y
(j1)x⃗(j1)

⎞⎠⎛⎝ N∑︂
j2=1

αj2y
(j2)x⃗(j2)

⎞⎠
+

N∑︂
j1=1

αj1

=

N∑︂
j1=1

αj1 −
1

2

N∑︂
j1=1

N∑︂
j2=1

αj1αj2y
(j1)y(j2) x⃗(j1) · x⃗(j2)

(5.12)
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Figure 5.9: The XOR problem is not linearly separable.

As we can see in Equation 5.12, the optimization problem in itsFinding the

maximum margin

hyperplane

dual form depends now only on α – all terms involving w⃗∗
or b have

disappeared. Finding the optimal hyperplane thus corresponds to

maximizing Equation 5.12 over α⃗. Since Equation 5.12 describes a

convex optimization problem [436], it be efficiently solved by using for

instance quadratic programming techniques [341, Section 18.9]. Based

on the resulting optimal Lagrange multipliers α⃗∗
, we can then obtain the

optimal weight vector w⃗∗
through Equation 5.10. The optimal value b∗

for the intercept can then be obtained based on w⃗∗
and the classification

constraint for support vectors from Equation 5.4. Finally, we can note

that in Equation 5.12, the training data only appears in the form of dot

products x⃗(j1) · x⃗(j2) of pairs of examples, which will become important

for generalizations of the SVM model discussed so far.

We can now insert the optimal w⃗∗
from Equation 5.10 and the optimalClassification rule

with w⃗∗
and b∗

value of b∗ into the decision rule used for classifying new examples,

leading to the following result:

sign (w⃗∗ · x⃗+ b∗) = sign

⎛⎝ N∑︂
j=1

αjy
(j) x⃗(j) · x⃗+ b∗

⎞⎠ (5.13)

As we can see from Equation 5.13, also the classification rule can

be expressed based on dot products of the novel example x⃗ with the

training examples x⃗(j). It is important to keep in mind that all αj but the

ones corresponding to the support vectors are zero. This means that we

only need to compute the dot product of the novel example x⃗ with the

relatively small number of support vectors, not with the whole dataset.

Again, this will become relevant for the upcoming generalization of the

SVM model.

So far, we have only considered linear support vector machines, i.e.,Linear SVMs are

limited to linearly

separable classes

SVMs with a completely linear model. Moreover, we assumed that

the training data is linearly separable in the given feature space, i.e., it

is possible to separate the two classes with a hyperplane. However,

this assumption is often violated in practice. A simple toy example of

linear non-separability is the XOR problem illustrated in Figure 5.9. In

such cases, a linear support vector machine as discussed so far is not
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capable of finding a maximum margin hyperplane that separates the

two classes – the optimization may thus not converge.

Instead of modifying SVMs to allow for nonlinear decision bound- Projecting the data

into a

higher-dimensional

feature space

aries, we can use a nonlinear mapping function ϕ(x⃗) to project our data

points from the original feature spaceX into a higher-dimensional space

Z,where the two classes are linearly separable. We can then use a linear

SVM to find a maximum margin hyperplane in this higher-dimensional

space Z . This hyperplane in Z then corresponds to a nonlinear decision

boundary in the original feature space X .

As we have seen in Equations 5.12 and 5.13 for learning and clas- The kernel trick

sification, respectively, we only need the training data in form of dot

products x⃗(j1) · x⃗(j2). This means, that the projection function ϕ(x⃗) is

only used in terms of the form ϕ(x⃗(j1)) ·ϕ(x⃗(j2)). That is, we assume that

the co-domain Z of the mapping function ϕ is a space equipped with an

inner product. Instead of explicitly computing ϕ(x⃗(j1)) · ϕ(x⃗(j2)) by first

applying ϕ and then computing the dot product, we can often directly

compute the inner product of the projected data points by using a so-

called kernel function κ(x⃗(j1), x⃗(j2)) = ϕ(x⃗(j1)) · ϕ(x⃗(j2)). Typical kernel

functions can be formulated based on the original vectors x⃗(j1) and

x⃗(j2) without needing explicit access to the mapping function ϕ. This

allows for more efficient computations [341, Section 18.9]. Using the

more efficient kernel κ(x⃗(j1), x⃗(j2)) instead of the often more complex

mapping function ϕ(x⃗) by replacing all dot products x⃗(j1) · x⃗(j2) with

κ(x⃗(j1), x⃗(j2)) is often referred to as the kernel trick. It allows us to find a

nonlinear decision boundary with a support vector machine without

needing to explicitly define the projection space Z . Popular kernel

functions include the following [73]:

• The linear kernel κ(x⃗(j1), x⃗(j2)) = x⃗(j1) · x⃗(j2) does not transform

the feature space at all and is equivalent to the linear SVM as

described above.

• The polynomial kernel κ(x⃗(j1), x⃗(j2)) = (x⃗(j1) ·x⃗(j2)+1)q corresponds

to the inner product in a 2q-dimensional space [341, Section 18.9].

One can easily see, that computing κ(x⃗(j1), x⃗(j2)) is in this case

considerably more efficient than first applying the mapping func-

tion ϕ(x⃗) and then computing the inner product in the resulting

2q-dimensional space. The polynomial kernel comes with an addi-

tional hyperparameter q and has been used in the first successful

applications of SVMs on handwritten digit recognition [73, 110].

• The radial basis kernel κ(x⃗(j1), x⃗(j2)) = e−
||x⃗(j1)−x⃗(j2)||

σ2
results in de-

cision boundaries resembling Gaussians, and can be interpreted

as a form of template matching [172, Chapter 5]. Again, σ is an

additional hyperparameter, which needs to be specified by the ex-

perimenter. If σ is chosen too small, this leads to an increased risk

of overfitting, since the decision boundary will then correspond

to small circles around the individual data points [436].
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The selection of an appropriate kernel function depends on theType of kernel as

important

hyperparameter

concrete application scenario and can be seen as a high-level form of

hyperparameter optimization.

In some cases, linear separation may, however, also not be obtainableSoft margin SVMs

when using standard kernels. Cortes and Vapnik [110] have therefore

proposed a generalization of regular SVMs by using soft margin hyper-

planes. They introduce slack variables ξj ≥ 0 for each of the training

examples (x⃗(j), y(j)) in order to represent misclassifications. They start

their considerations with the following optimization problem for some

small ϵ > 0:

minimize Φ(ξ⃗) =
N∑︂
j=0

ξϵj (5.14)

under the constraints y(j) (w⃗ · x⃗(j) + b) ≥ 1− ξj ∀j ∈ {1, . . . , N}
and ξj ≥ 0 ∀j ∈ {1, . . . , N}

This corresponds to minimizing the number of misclassifications,Minimize

misclassifications

while maximizing

the margin

because minimizing Φ(ξ⃗) means minimizing all ξj , which obtain their

minimal value of zero for a correct classification. Solving the optimiza-

tion problem from Equation 5.14 thus leads to a minimal subset of

remaining errors on the training set (x⃗(j1), y(j1)), . . . , (x⃗(jk), y(jk)). One

could then remove these data points from the training set, and find a

maximum margin hyperplane separating the remaining examples. This

can be mathematically formalized in a single optimization problem,

where λ is a constant and F (u) is a monotonic convex function:

minimize

1

2
||w⃗||2 + λ · F

⎛⎝ N∑︂
j=1

ξϵj

⎞⎠ (5.15)

under the constraints y(j) (w⃗ · x⃗(j) + b) ≥ 1− ξj ∀j ∈ {1, . . . , N}
and ξj ≥ 0 ∀j ∈ {1, . . . , N}

The constantλ is a hyperparameter that controls the trade-off betweenProperties of the soft

margin approach
maximizing the margin (first term) and minimizing the number of

misclassifications (second term). Cortes and Vapnik [110] showed, that

for sufficiently large λ and sufficiently small ϵ, the optimal values for

w⃗∗
and b∗ describe the hyperplane with the smallest number of errors

on the training set and the largest possible margin on the remaining

examples. Moreover, for linearly separable problems, the solution of

the soft margin formulation is identical to the solution obtained by

ordinary SVMs. Cortes and Vapnik develop a soft variant of Equation

5.12 and show, that the properties observed above (i.e., the weight vector

being a linear combination of support vectors, and all computations

being based on dot products) also hold for this soft margin formulation.

Hence, the kernel trick is also applicable to soft margin SVMs.
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Let us now discuss some general properties of support vector ma- General properties of

SVMs: unique

solution that can be

easily found

chines. Both the classification function and the construction of the

hyperplane only depend on a relatively small number of support vec-

tors. In contrast to that, most other machine learning algorithms use all

data points from the training set for estimating the decision boundary

[73, 110]. For instance, in a logistic regression, all data points are consid-

ered in gradient descent when minimizing the loss function (cf. Section

5.2.2). While a logistic regression may thus be sensitive to the addition

or deletion of training examples, which lie far away from the class

boundaries, support vector machines are quite robust to such changes

in the data. Moreover, as already stated in the discussion of Equation

5.12, the optimization problem being solved by SVMs can be formulated

as maximizing a quadratic form (since the Lagrangian multipliers to

be optimized only appear as αj1 and αj1 · αj2) in the positive quadrant

(because all αj are non-negative). This optimization problem has no

local optima and a unique solution under some mild constraints [73]. In

contrast to that, the decision boundary learned by a logistic regression is

not uniquely determined, since the loss function optimized by gradient

descent may have multiple local minima. Finding the solution to the

SVM optimization problem (and hence obtaining the maximum margin

hyperplane) is thus insensitive to the initialization of the optimization

method. Moreover, since a maximum margin approach is used, the

performance of the solution is relatively insensitive to small changes

with respect to the parameters w⃗ or α⃗ [73].

Support vector machines are also a very flexible method due to the Flexibility due to the

kernel trick
usage of the kernel trick – if the data is not linearly separable, we can use

a wide variety of kernel functions to project it into higher-dimensional

spaces, where a linear separation can be achieved more easily [341,

Section 18.9]. By using kernel functions instead of actual projections,

this can often be done in a computationally very efficient way.

Outliers in the dataset can also be identified relatively easily by Identification of

outliers
using an SVM: In the soft margin approach, they tend to have large

values for the slack variables ξj [110] (since they are more likely to be

misclassified), and in general, they also tend to have large values for

the Lagrange multipliers αj [73].

Furthermore, support vector machines tend to generalize well due to Good generalization

through automatic

capacity tuning

their use of a maximum margin separator, which leads to an automatic

tuning of the model’s capacity [73]. An illustrative justification for

this claim is given by Cortes and Vapnik [110]: For any machine

learning algorithm, the probability of making an error on the test

set depends both on the frequency of errors on the training set and on

a confidence interval. This confidence interval is influenced, among

others, by the capacity of the classifier and the size of the training set. A

smaller capacity typically leads to a smaller confidence interval (since

overfitting becomes less likely), but also to a larger training error (since

fitting the data becomes harder). Occam’s razor states that one should

choose the most simple solution for the given problem (cf. Section 5.1.3).

This corresponds to keeping the frequency of training errors at zero

while minimizing the confidence interval. Support vector machines
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follow exactly this principle by aiming for perfect classification while

minimizing ||w⃗||2, i.e., the model’s capacity. This minimization of ||w⃗||2
can thus also be seen as a built-in variant of weight decay regularization

(cf. Sections 5.1.3 and 5.2.1).

A related argument has been made by Boser et al. [73] who estimateUpper bound of the

generalization error
an upper bound of the generalization error through a leave-one-out

procedure (cf. Section 5.1.2) on the training examples, assuming perfect

classification on the training set. If the data point x⃗ being left out is

not a support vector, then removing x⃗ will not change the resulting

hyperplane, and x⃗will still be classified correctly. If, however, a support

vector is removed from the training set, then the decision boundary will

change. This former support vector then may or may not be classified

correctly, depending on how much the hyperplane has changed. Overall,

the expected number of errors in this leave-one-out procedure is thus

limited by the number of support vectors. Since the number of support

vectors is in general relatively low and does not depend on the number

|θ| of free parameters of the model, the generalization error can be

expected to be low even in very high-dimensional feature spaces.

Since training a support vector machine corresponds to findingTraining an SVM is

costly
optimal values for the Lagrange multipliers αj , the number of free

parameters in the model is not fixed – it grows linearly with the

number N of training examples, because each data point adds another

classification constraint and thus another entry to α⃗. Moreover, the

optimization product involves all pairwise dot products x⃗(j1) · x⃗(j2) of

all training examples, which grows quadratically with the number N
of training examples. Therefore, support vector machines often come

with a very high computational cost for large datasets [172, Chapter 5].

Once the parameters have, however, been estimated, an evaluation of

the model on new data points is quite efficient due to the dependence

on only a relatively small number of support vectors.

In order to mitigate the scaling problem for learning, Cortes andTraining SVMs on

large datasets
Vapnik [110] have proposed to partition the training data into small

subsets. For each of these subsets, an individual SVM can be trained,

resulting in an individual hyperplane and an individual set of support

vectors for each subset. Then, in order to find the optimal solution for

the overall dataset, only the support vectors from the individual subsets

need to be considered. While this two-stage process can certainly speed

up computations, it still does not scale well to very large datasets.

Let us now discuss the relation between support vector machines andLinear SVMs and

conceptual spaces
conceptual spaces. In general, we assume that conceptual regions are

convex or star-shaped. Linear support vector machines use a hyperplane

to divide the overall feature space into two convex half-spaces, and

are thus in line with the convexity requirement. However, half-spaces

may be too coarse-grained for describing many concepts, such as the

ones used in our fruit space example in Part I of this dissertation. When

generalizing SVMs to multiple classes, one usually follows a one-vs-all

scheme [332], where for each class, an individual SVM is trained in

order to separate this class from all other classes. Unfortunately, this
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Figure 5.10: (a) Example conceptual space, where pear is not linearly sepa-

rable from the union of all other concepts. (b) Convex polytope

of the pear concept based on all-vs-all SVMs. (c) Voronoi-like

partitioning of the space is prohibited by unassigned regions.

does not work very well for classes that are "surrounded" by other

classes in the given feature space, since this is not a linearly separable

problem (see Figure 5.10a for an example). If one instead followed an

all-vs-all scheme [332] by training an individual SVM to discriminate

between each pair of classes, one could combine the hyperplanes of all

SVMs involving a given class into a convex polytope (see Figure 5.10b).

This idea is reminiscent of the formalization of the conceptual spaces

framework by Adams and Raubal [3] (see Sections 2.4.2 and 2.5.1).

One could also attempt to construct a partitioning of the overall space,

similar to the Voronoi tessellations considered by Gärdenfors [179] (cf.

Section 1.2.2), by aggregating all hyperplanes from all pairs of classes.

However, we can see in Figure 5.10c, that this is not easily possible – the

highlighted regions do not belong to any convex polytope and are thus

not assigned to any conceptual region. This effect is caused by the fact

that each individual SVM uses its own set of support vectors – unlike

the Voronoi tessellation, where the same set of prototypical points is

used to generate all conceptual boundaries (cf. Section 1.2.2). This causes

the observed inconsistencies when aggregating all hyperplanes. One

could potentially relate these unassigned region to the borderline cases

considered by Douven et al. [136] in their collated Voronoi diagrams (cf.

Section 2.4.1). In general, all-vs-all schemes are computationally quite

costly, since one needs to train
c·(c−1)

2 classifiers for c different classes.

In combination with the generally costly training of SVMs, learning

conceptual boundaries can thus quickly become infeasible in practice.

As mentioned above, using an SVM with a radial basis kernel gives The kernel trick and

conceptual spaces
rise to convex Gaussian-like regions, which may be a better reflection of

conceptual regions. Using such RBF-SVMs also allows us to use the one-

vs-all scheme, i.e., to train one SVM per class. By using an appropriate

kernel function, support vector machines can thus be restricted to

learning conceptual regions of a desired form. However, the usage of a

kernel function comes with an implicit transformation of the underlying

feature space – conceptual boundaries would then strictly speaking

not be determined in the original conceptual space: We would train

the classifier in a nonlinear transformation of the original conceptual
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Figure 5.11: Illustration of an example decision tree for deciding whether to

take a walk.

space. While the kernel trick is quite powerful from a machine learning

perspective, it is unfortunately not quite in line with the assumptions of

the original framework, where locations and distances in the conceptual

space play a fundamental role. This criticism can also be related to our

discussion of Gaussian membership functions in Section 2.2.2.

Although we are skeptical about using SVMs for learning conceptualOutlook

regions, we will see in Chapter 8 that linear support vector machines

can be used for identifying meaningful directions in a psychological

similarity space [123]. We will apply this approach in Chapter 11 to

identify directions for psychologically motivated candidate features in

a similarity space for the shape domain.

5.2.4 Decision Trees

All machine learning algorithms considered so far are based on anDecision trees in a

nutshell
underlying linear model, where the feature vector x⃗(j) is multiplied

with a weight vector w⃗, and where the resulting scalar value is then

used to make a prediction. Decision trees follow a completely different

approach: They classify new data points by conducting a sequence of

tests on their features, which can be visualized as a tree [341, Section

18.3]. Take for instance the example from Figure 5.11, which considers

a decision for or against taking a walk in the afternoon. Each internal

node of this tree (illustrated as rectangles, e.g. weather) selects a single

feature, and the branches to its children represent the different possible

values of this feature (e.g., cloudy, sunny, and rainy). Each leaf node

(illustrated as ellipses) corresponds to the classification decision (in

the given example True or False). Please note that in principle, both

the features and the target function can be discrete or continuous. For

continuous features (such as temperature in Figure 5.11), a simple

threshold (such as 10°C in our example) is typically used to branch into

the respective sub-trees.

One can interpret a decision tree also as a disjunction over a set ofInterpretation as set

of rules conjunctive rules on the feature values – each path to one of the leaf

nodes can be represented as one rule [295, Chapter 3]. This means that

for discrete features and targets, any function from propositional logic

can be expressed as a decision tree [341, Section 18.3]. The decision tree
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from Figure 5.11 also contains a continuous feature temperature, which

can, however, be discretized by using a threshold (in our example 10°C).

The overall decision tree can then be expressed by a disjunction over

the following set of rules:

(weather = cloudy) ∧ (temperature > 10°C) ⇒ (decision = true)

(weather = cloudy) ∧ (temperature ≤ 10°C) ⇒ (decision = false)

(weather = sunny) ⇒ (decision = true)

(weather = rainy) ∧ (umbrella = true) ⇒ (decision = true)

(weather = rainy) ∧ (umbrella = false) ⇒ (decision = false)

Decision trees are easy to interpret by humans, if they do not contain Interpretation of

decision trees
too many nodes [341, Section 18.3]. If we consider only continuous

attributes, then each internal node can be interpreted as splitting the

given region of the feature space into two subregions according to one

of the dimensions. This means that each internal node corresponds to

an axis-parallel hyperplane in the feature space [172, Chapter 5]. Since

each leaf node can only be reached through a sequence of internal

nodes, the region in the feature space that it represents is confined by

the conjunction of the corresponding hyperplanes. Since each of these

hyperplanes is parallel to one of the dimensions, the leaf nodes can be

described as axis-parallel cuboids (cf. Definition 2.8 from Section 2.3.2).

Goodfellow et al. [172, Chapter 5] pointed out that this can become

problematic, if the optimal decision boundary is diagonal – in this case,

the decision tree has to approximate it with a large number of small

regions mimicking a step function, which can result in very large trees.

How can such a decision tree be extracted from a given dataset? We Learning a decision

tree
will for now only consider discrete features and a classification task.

Essentially, the learning algorithm can be characterized as a simple-to-

complex, greedy, hill-climbing approach [295, Chapter 3]. Starting with

the overall dataset, the algorithm looks for the feature which provides

the best classification when considered on its own. Intuitively, this

means that the distribution of class labels becomes more imbalanced

(i.e., favoring one of the classes) in the different subsets of the data,

which are based on the possible values of the selected feature. The

selected feature becomes the root node of the tree, each possible feature

value creates a branch, and in a recursive manner, each of the subsets is

again split up based on the most useful feature. The algorithm creates

a leaf node whenever all examples in the respective subset of data have

the same class label or when no further features are left to explore. In

the latter case, the value of the leaf node is determined by taking the

most frequent label [341, Section 18.3].

The inductive bias (cf. Section 5.1.1) of this learning algorithm is Inductive bias of

decision tree learning
a preference bias, which favors shorter trees over larger trees, and

which prefers trees that place informative features closer to the root

[295, Chapter 3]. As Russell and Norvig [341, Section 18.3] note, one

should not over-interpret the resulting tree: If two features are of similar

importance, choosing among them is somewhat arbitrary. Different
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choices may then result in differently looking trees, which, however,

yield a very similar performance.

The canonical approach to decision tree learning quantifies featureFeature importance

based on entropy
usefulness based on the information-theoretic notion of entropy, which

quantifies the degree of uncertainty associated with a random variable

[341, Section 18.3]. The entropyH(A) of a random variable A is defined

based on its probability distribution P(A):

H(A) = EA∼P(A) [− log(P(A))] (5.16)

For a binary variable, Equation 5.16 is equivalent to the following

formula for the entropy:

H(A) = P(A = true) · [− log(P(A = true))]

+ P(A = false) · [− log(P(A = false))]

= P(A = true) · [− log(P(A = true))]

+ (1− P(A = true)) · [− log(1− P(A = true))]

In the extreme cases of P(A = true) = 1 and P(A = true) = 0,

the entropy H(A) becomes zero, indicating minimal uncertainty. The

entropy of a binary variable A becomes maximal with H(A) = 1 for

P(A = true) = 0.5, indicating maximal uncertainty. In the case of

decision trees, we use entropy as a measure for the impurity of a

collection of training examples [295, Chapter 3].

In the following, we consider the random variable Y , representingInformation gain as

expected reduction in

entropy

the labels y(j) from the dataset. We denote by Xi the ith feature of the

dataset and by Y (Xi = v) the random variable describing the labels

in the data subset, where feature Xi takes the value v. In a set-based

notation, this corresponds to Y (Xi = v) = {y(j) ∈ y⃗ | x⃗(j)i = v}. The

information gain of the ith feature with respect to a given set of examples

(X, y⃗) can now be defined as the expected reduction in entropy of Y by

splitting X according to the possible values of Xi:

Gain(X,Y, i) = H(Y )−
∑︂
v

|Y (Xi = v)|
|Y |

H(Y (Xi = v)) (5.17)

This is achieved by computing the entropy of every data subset

(H(Y (Xi = v)), weighted by the respective relative sie of this subset

(dividing |Y (Xi = v)| by |Y |). The sum over these weighted entropies

is then subtracted from the entropy H(Y ) of the overall dataset.

In order to illustrate the inner workings of Equation 5.17 for theExample for

information gain
information gain, let us consider a dataset, which contains an equal

amount of positive and negative examples, i.e., P(Y = true) = 0.5. As

stated above, this means that we get an entropy of H(Y ) = 1. Let us

now consider two features, X1 and X2. We assume that both features

are binary and that they split the dataset into two parts of identical size.

Let us furthermore assume that X1 is sufficient for perfect classifi-Information gain of a

perfect feature
cation, i.e., all data points with X1 = true belong to the positive class,

while all data points with X1 = false belong to the negative class. This

means that H(Y (X1 = true)) = 0 and H(Y (X1 = false)) = 0. We
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thus get an information gain for the first feature of Gain(X,Y, 1) =
1− (12 · 0 + 1

2 · 0) = 1.

On the other hand, assume thatX2 is an entirely useless feature: Both Information gain of a

useless feature
for X2 = true and X2 = false, the class labels are still equally frequent.

This means that H(Y (X2 = true)) = H(Y (X2 = false)) = H(Y ) = 1,

and hence that Gain(X,Y, 2) = 1 − (12 · 1 + 1
2 · 1) = 0. Thus, X2 does

not lead to any reduction in entropy.

In decision tree learning, we always select the feature with the largest Selecting the feature

with largest

information gain

information gain, i.e., which leads to a partition of the given set of

example into more imbalanced (i.e., more homogeneous) subsets. In our

example, we would thus select X1 rather than X2. Please note that we

have only considered simplified extreme cases – in reality,Gain(X,Y, i)
will be a real-valued number. Also Gain(X,Y, i) < 0 is possible, but

only if the feature is counter-productive, i.e., if it increases the entropy

rather than decreasing it.

Decision tree learning is in general prone to overfitting since the Decision trees may

overfit
tree grows until all examples are perfectly classified. If the dataset is

very small or if it contains noise, this can cause the paths in the tree to

become overly specialized and thus unable to generalize well to unseen

examples [295, Chapter 3]. In principle, there are two ways for avoiding

such overfitting issues in decision trees:

When using early stopping, the tree is not grown until perfect clas- Early stopping: limit

the depth of the tree
sification is achieved, but the growth is stopped at an earlier point.

In a simple approach, the tree can only grow until a maximal depth

is reached [172, Chapter 5] (enforcing an restriction bias, cf. Section

5.1.1), but defining this maximal depth can be difficult in practice [295,

Chapter 3]. Moreover, early stopping may prevent the algorithm from

discovering subsets of features which are uninformative on their own,

but which may become highly informative when being combined with

each other [341, Section 18.3].

When applying pruning techniques, one first grows a decision tree Pruning: grow a deep

tree, then shorten it
without any restrictions, and afterwards iteratively removes internal

nodes and replaces them by leaf nodes. In order to decide whether

removing an internal node is helpful or harmful, one typically considers

performance on the validation set [295, Chapter 3], although other

approaches (such as a threshold on the information gain or statistical

tests [341, Section 18.3]) are also possible. The order of removal can

be either based on the performance improvement (conducting the

most effective pruning steps first) [295, Chapter 3], or based on the

position in the tree (starting to prune at the leaves and working upwards

towards the root). Pruned trees often work better than their unpruned

predecessors, and tend to be easier to interpret, because they contain

fewer nodes [341, Section 18.3].

Another variant of pruning converts the tree into a set of rules by Rule-based pruning

representing the path to each leaf node as a conjunction of feature values

[295, Chapter 3] as already mentioned above. Then, each rule is general-

ized by deleting preconditions whose removal improves classification

performance on the validation set. One then sorts the pruned rules
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by their estimated accuracy on the overall dataset, and uses them for

classification in this order. This approach allows for more fine-grained

modifications than removing complete sub-trees and may thus lead

to better results. However, the resulting set of rules can in general no

longer be represented as a decision tree.

There are several extensions of the vanilla decision tree learning asExtensions to

decision trees
sketched above. For instance, continuous-valued features can be incor-

porated into the learning algorithm by dynamically selecting one or

multiple thresholds on this feature, which maximize information gain

for the given set of examples [295, Chapter 3]. Another extension consid-

ers regression instead of classification tasks – in this case, each leaf node

can either represent the average target value of all its examples or it can

perform a linear regression on a subset of features for these examples

[341, Section 18.3]. Finally, there exist other variants of determining the

best feature, e.g., by using a variant of information gain called gain ratio,

which also takes into account the number of different feature values v
and reduces the preference for many-valued features [295, Chapter 3].

Multiple decision trees can also be grouped together into an ensembleRandom forests as

ensembles of decision

trees

of predictors in order to improve prediction performance and reduce

overfitting. One of the most popular ensemble-based approaches is

called random forest [78]: It grows an ensemble of unpruned decision

trees, using a different subset of training examples and/or a different

subset of features for each tree. During training, each tree is allowed

to overfit its subset of data. Since the different trees have access to

different features and different training examples, they extract different

classification rules. By aggregating the predictions of the individual

trees (for example by taking a majority vote), one can derive an overall

prediction for the random forest. As Breiman [78] showed, overfitting

is typically not an issue for random forests, since the individual trees

overfit on different aspects of the data, largely canceling out each other’s

mispredictions. In general, a random forest is successful if it contains

individual trees that make accurate classifications, but that are largely

uncorrelated to each other in their behavior. Random forests can be

used not only for classification tasks, but have also successfully been

applied to regression, e.g., in predicting numeric relevance scores for

documents in an information retrieval setting [296].

As already stated above, the internal nodes of a decision tree use aDecision trees and

conceptual spaces
threshold for continuous-valued features and thus represent an axis-

parallel hyperplane. If we consider a continuous conceptual space like

in Part I of this dissertation, this means that every leaf node with its

classification decision corresponds to a cuboid-based region in the

conceptual space (cf. Definition 2.8). This means that every single leaf

node corresponds to a convex region. However, since the individual

sub-trees in decision tree learning are optimized independently from

each other, the resulting decision tree may have multiple leave nodes

for a given class. The regions represented by these leaf nodes are not

necessarily connected – we can thus in general not enforce convexity or
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star-shapedness for conceptual regions learned by a decision tree. This

is quite a serious drawback from the conceptual spaces perspective.

Enforcing such a constraint would require a strong modification of

the learning algorithm, which could then no longer follow a greedy

divide-and-conquer approach. Despite their interpretability and their

relation to our cuboid-based formalization of conceptual spaces, de-

cision trees are thus not directly applicable to conceptual spaces. The

same arguments also apply to random forests, whose ensemble-based

approach makes a straightforward definition and interpretation of

conceptual regions even more difficult.

We will thus not consider any of these two techniques in Chapter 7, Outlook

when we discuss learning conceptual regions in cognitively plausible

ways. However, we will use random forest regressors as an easy-to-use,

off-the-shelf baseline for our ANN-based approach to mapping images

to points in psychological similarity spaces in Chapter 9.

5.2.5 k Nearest Neighbors

The k nearest neighbor (kNN) algorithm is an example for an instance- Instance-based

learningbased learning algorithm. These types of algorithms are sometimes also

called lazy learning methods, because they do not extract an explicit

model from the training data, but postpone the generalization step

to the time of classification [295, Chapter 8]. This classification step

in instance-based approaches typically involves comparing the novel

input to all examples from the training set based on some form of

similarity measure. In contrast to parametric models (which use a fixed

number of parameters to represent the target function), instance-based

learning approaches assume that the dataset cannot be summarized

in such a compact form [341, Section 18.8]. Instance-based learning

algorithms have the advantage that they do not have to form a fixed

global model, but that they can form individual local models on the

fly during classification [295, Chapter 8]. However, since the whole

training set needs to be consulted during classification, this may come

with an increased computational cost [295, Chapter 8].

Classification in the k nearest neighbor algorithm works as fol- k nearest neighbors

in a nutshell
lows [341, Section 18.8]: Given a new example x⃗, find the k examples

{x⃗j1 , . . . , x⃗jk} from the training set that are nearest to x⃗. Usually, the

Euclidean distance is used for finding these k nearest neighbors [295,

Chapter 8]. In a classification problem, the most common value among

these neighbors is chosen as output, while in a regression setting, the

mean value of these neighbors can be used. Alternatively, one can run

a linear regression based only on the k nearest neighbors in order to

interpolate a suitable output value for x⃗ in a regression setting [341,

Section 18.8]. The single hyperparameter of this algorithm in its basic

form is the number k of neighbors to consider. In general, small values

of k tend to lead to overfitting, while very large values of k lead to

underfitting [341, Section 18.8].
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Although the Euclidean distance is usually employed for finding thePossible distance

functions
the k nearest neighbors, it is also possible to use other distance metrics.

Russell and Norvig [341, Section 18.8] list the following distance metrics

and their corresponding use cases:

• The Euclidean distance dE(x⃗, x⃗
′) =

√︁∑︁n
i=1(xi − x′i)

2
should be

used if the features measure similar properties such as the width,

height, and length of physical objects. This relates to the usage

of the Euclidean distance within the domains of the conceptual

spaces frameworks (cf. Section 2.1.1).

• The Manhattan distance dM (x⃗, x⃗′) =
∑︁n

i=1 |xi − x′i| should be

preferred if the features correspond to separate aspects (e.g., age,

weight, and gender of a person). This can be related to the usage

of the Manhattan distance for combining different domains of the

conceptual spaces framework (cf. Section 2.1.1).

• The Hamming distance dH(x⃗, x⃗
′) = | {1 ≤ i ≤ n | xi ̸= x′i}| can be

used if features are binary or nominal (i.e., if feature values

can only be compared based on their identity, but no ordering,

differences, or ratios can be meaningfully defined).

• The Mahalanobis distance dS(x⃗, x⃗
′) =

√︁
(x⃗− x⃗′)TΣ−1(x⃗− x⃗′) takes

into account also the covariance between the features in the form

of the covariance matrix Σ, and can be used if such a covariance is

expected to play a role in the given dataset. As already discussed

in Section 2.2.2 in the context of multivariate Gaussians, the

Mahalanobis distance corresponds to the Euclidean distance in a

space that has been transformed based on the covariance matrix.

Russell and Norvig [341, Section 18.8] furthermore point out that theFeature

normalization
individual features should be normalized before applying the k nearest

neighbor algorithm, in order to ensure that all features contribute

equally to the overall distance.

In addition to varying the distance metric, one can furthermoreDistance-weighted

kNN
introduce a distinction between the different neighbors based on their

distance to the novel example. In the resulting distance-weighted k near-

est neighbor algorithm, closer neighbors receive a larger weight than

neighbors that are further away, for instance by weighting them with

the inverse square of their distance to the query point [295, Chapter 8].

Closer neighbors then receive a larger weight in the majority vote (for

classification) or in the weighted average (for regression).

Especially the distance-weighted version of the k nearest neighborsProperties of the k
nearest neighbor

algorithm

algorithm is relatively robust to noise if k is chosen large enough [295,

Chapter 8]. It has a relatively high capacity, but comes with a high

computational cost and the requirement for a large training set [172,

Chapter 5]. This high computational cost during classification is based

on the requirement for finding the k nearest neighbors among all

training examples, which makes it necessary to use efficient indexing

structures such as trees or hashing [341, Section 18.8]. The k nearest



5.2 machine learning algorithms 257

neighbors algorithm suffers heavily from the curse of dimensionality

since proximity information becomes less reliable in high-dimensional

spaces [7], and the nearest neighbors in such high-dimensional spaces

are not very near [341, Section 18.8] (cf. Section 5.1.4).

Moreover, the k nearest neighbor algorithm is not capable of detecting Feature importance

the importance of the individual features, since all features are treated

equally when computing the distance in the overall feature space [172,

Chapter 5]. This becomes especially problematic, if many features are

irrelevant to the task at hand. One can potentially solve this problem

by introducing weights for the individual features, which need to be

estimated by minimizing the classification error in a cross-validation

setting [295, Chapter 8]. These feature weights would then resemble the

salience weights used in the conceptual spaces framework (cf. Sections

2.1.2 and 2.3.1). Alternatively, one can try to remove irrelevant features

by using feature selection techniques [295, Chapter 8], which will be

introduced in Section 5.3.1.

The k nearest neighbor algorithm can be linked to the exemplar Relation to the

exemplar theory of

concepts

theory of concepts from cognitive psychology (cf. Section 1.1.1): The

exemplar theory of concepts assumes that humans represent each

concept by a set of representative examples [298, Chapter 4]. For

instance, the dog concept is represented by a certain number of specific

dogs one recalls from one’s personal experiences. The exemplar theory

of concepts furthermore suggests that new observations are classified

by computing their semantic similarity to all stored exemplars from all

known concepts. The new observation is then classified based on the

concept to which the most similar exemplar(s) belong.

One can easily see how the kNN algorithm implements such an kNN and conceptual

spaces
exemplar-like classification model: In both cases, we simply store previ-

ous examples without abstracting from them. When classifying a new

observation, we look at previously seen examples that are similar to

this new observation. In the kNN algorithm, this is done by using the

examples with smallest distance, making an interpretation of exemplar

theory in the context of conceptual spaces quite straightforward: Ob-

servations are stored as points in the conceptual space, the combined

metric (cf. Section 2.3.1) is used to find the k nearest neighbors of a query

point (potentially influenced by salience weights), and classifications

are made based on the labels of these k nearest neighbors. One should,

however, note, that the decision boundaries of such an exemplar-based

approach are not necessarily convex or star-shaped – which is, however,

assumed by the conceptual spaces framework. Nevertheless, if we

assume that conceptual regions are convex or star-shaped, then also

the distribution of observed instances should be roughly convex or

star-shaped, leading to approximately convex or star-shaped decision

boundaries by the kNN classifier, respectively.

Furthermore, one can identify the prototype theory of concepts (cf. Relation to the

prototype theory of

concepts

Section 1.1.1) with the special case of k = 1: One interpretation of the

prototype theory states that each concept is represented by a "best

example" [298, Chapter 3] which may be abstracted from multiple
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exemplars. If we assume that each concept is represented by such a

prototypical instance and if the training set consists exactly of these

prototypes, then a k nearest neighbor classification with k = 1 gives

rise to a Voronoi tessellation of the space [341, Section 18.8] – which is

the exact mechanism used by Gärdenfors to illustrate classification in

conceptual spaces [179, Section 3.9] (cf. Section 1.2.2).

As one can see, a k nearest neighbor approach can be interpretedOutlook

as one particular way of implementing the link between conceptual

spaces and both the prototype and the exemplar theory of concepts.

We will reconsider this link in Chapter 7, when discussing concept

learning in conceptual spaces. Moreover, due to its simplicity, the k
nearest neighbors algorithm is often considered as a target classifier in

the area of metric learning (to be introduced in Section 5.3.3), where

the main goal is to learn a useful distance metric on a given dataset,

such that the accuracy of a simple downstream classifier is maximized.

It may thus serve as a useful proxy when trying to optimize or analyze

the structure of a similarity space. This aspect will resurface in Chapter

8, when discussing similarity spaces extracted from psychological data.

5.3 dimensionality reduction

In practical machine learning applications, it is often not possible toFeature engineering

and dimensionality

reduction

know a priori which features are necessary for good performance. In

the process of feature engineering, one therefore tries to create many

different features, which based on domain knowledge may be useful

for the problem at hand. This can result in a relatively large number of

candidate features, some of which may be different variants of the same

underlying idea. As argued in Section 5.1.4, the curse of dimensionality

states that successful generalization becomes increasingly more difficult

in high-dimensional feature spaces. Therefore, one needs a general

way of reducing the size of the feature vector – this procedure is called

dimensionality reduction.

It is in general unclear a priori, how many dimensions are necessaryThe optimal number

of features
for an adequate representation of the data. One can treat the desired

number of features as another hyperparameter of the overall system,

and optimize it on the validation set. Another possibility is to use

measures related to the specific dimensionality reduction technique in

order to find a suitable cutoff value. Such a measure can, for instance,

score the faithfulness of the compressed representation with respect to

the original feature space.

One can relate the overall task of dimensionality reduction to theDimensionality

reduction and

conceptual spaces

interplay of the subsymbolic layer and the conceptual layer (cf. Sec-

tion 1.2.3). In his book [179], Gärdenfors describes the computational

problem of constructing a conceptual space as follows:

The prime problem is that the information received by the

receptors is too rich and too unstructured. What is needed
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is some way of transforming and organizing the input into

a mode that can be handled on the conceptual or symbolic

level. This basically involves finding a more economic form

of representation: going from the subconceptual to the

conceptual level usually involves a reduction of the number

of dimensions that are represented [...]. [179, Chapter 6.5]

(emphasis in original)

If we assume that the initial features represent the raw perceptual Nonlinear methods

for perceptual input
input, then deriving a conceptual space can be framed as a dimensional-

ity reduction process. One may, however, speculate that, for instance, in

the case of visual input (represented as RGB values of individual pixels),

a highly nonlinear and relatively complex transformation is needed

in order to obtain a conceptual space. We will revisit such nonlinear

approaches also in Chapter 6 in the context of artificial neural networks.

In general, one can distinguish two approaches for dimensionality Feature selection

finds the optimal

feature subset

reduction: In feature selection (Section 5.3.1), one aims to identify an

optimal subset of the given candidate features. This selected feature

subset should be predictive for the target task while minimizing re-

dundancy among the features [213]. Since the resulting description of

the instances is directly based on the original candidate features, their

interpretation is usually quite straightforward.

The second approach to dimensionality reduction is called feature Feature extraction

projects the data into

a lower-dimensional

space

extraction (Section 5.3.2) and is based on a projection of the original

feature space X into a lower-dimensional space Z .
10

. Here, one is inter-

ested in defining novel features based on the existing set of candidate

features. A popular example, which will be discussed in Section 5.3.2,

is the principal component analysis (PCA), which obtains novel features as

linear combinations of the original candidate features. It creates those

novel features in such a way, that they capture the directions of largest

variance in the data. Since the features obtained by feature extraction

techniques are based on a more or less complex transformation of the

original features, their interpretation may be difficult.

In this section, we will furthermore consider the area of metric Metric learning finds

a distance function

with desirable

properties

learning (Section 5.3.3), which can be considered a special case of feature

extraction: One aims to learn the parameters of a distance function, such

that the resulting pair-wise distances between examples have desirable

properties (e.g., being highly predictive of class membership).

5.3.1 Feature Selection

Feature selection is the process of selecting a small subset of features Goals of feature

selection
without transforming them, thus preserving their interpretation [213].

The objectives of feature selection include improved prediction perfor-

mance by defying the curse of dimensionality, reduced storage need

10 Please note that this is a somewhat inverse approach to the kernel trick discussed

in the context of support vector machines (Section 5.2.3), where we looked for a

higher-dimensional space in order to obtain linear separability
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and training times, as well as a better understanding of the data [178].

Typically, one aims to keep the most relevant features while eliminating

redundant ones [213]. As we will see below, most feature selection

techniques judge feature relevance by accessing the classification or

regression targets y(j), which means that they operate in a supervised

manner. Guyon and Elisseeff [178] therefore emphasize, that just like

hyperparameter optimization, also feature selection should take place

on the validation set.

Feature ranking can be considered as the most basic variant of featureFeature ranking:

score the features

individually

selection. Here, a ranking criterion is chosen, which estimates the

usefulness of an individual feature for the given task. In a regression

task, for example, the linear correlation between the feature and the

target can be used as a ranking criterion. This ranking criterion is then

applied to each of the features independently to obtain a relevance score.

The list of features is then sorted according to their respective scores

and only the highest scoring features are kept [178]. Instead of defining

an arbitrary threshold on the ranking criterion or a fixed number of

features to keep, one can also introduce an artificial feature to the dataset,

whose values are generated randomly based on a specified probability

distribution. All features with a score lower than this artificial feature

can then be safely discarded [178].

Guyon and Elisseeff [178] distinguish three broad types of rankingCorrelation criteria

criteria: Correlation criteria such as Pearson’s correlation coefficient r
and the coefficient of determination R2

(introduced in Section 5.1.2)

measure the linear correlation between a given feature and the desired

output. They can be naturally applied to regression tasks, but can also

be employed for binary classification tasks, if the classes are encoded

as y(j) = ±1.

Information-theoretic criteria, on the other hand, treat both the featureMutual information

as information-

theoretic criterion

and the target as random variables, and evaluate the dependence of their

respective probability distributions. For example, the mutual information

MI(A,B) between two random variables A and B can be defined as

follows based on the entropy H(A):

MI(A,B) = H(A)−H(A|B) = H(B)−H(B|A) (5.18)

Please recall from Section 5.2.4, that the entropy H(A) measures the

amount of uncertainty associated with a random variable A and is

defined as H(A) = EA∼P(A)[− log(P(A))] (cf. Equation 5.16). Mutual

information therefore quantifies how much of this uncertainty about A
is removed if we are allowed to observe B (or conversely, how much

uncertainty about B is removed when observing A). While providing a

more fine-grained way of analysis than correlation criteria, information

theoretic criteria typically need to be approximated based on the ex-

amples from the given dataset, since the underlying true probability

distributions are unknown in practice.

Finally, the performance of a single feature classifier can be used as aSingle feature

classifiers
ranking criterion for classification tasks: This classifier has only access
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to a single given feature and uses a simple threshold on that feature for

classification. The accuracy of such a simple classifier can be used to

rank the features according to their predictive power.

Feature ranking is very straightforward and can be easily scaled to Properties of feature

ranking
very large feature sets. However, a combination of two or more features,

which are useless by themselves, may still be highly predictive for

the given task. Such highly predictive subsets of features may not be

selected through feature ranking, which focuses exclusively on each fea-

ture’s individual relevance [178]. Moreover, feature ranking approaches

may select subsets of features, which are highly redundant.

These shortcomings of feature ranking approaches motivate the Feature subset

selection: score

subsets of features

need for a more complex approach called feature subset selection, where

the predictive power of complete feature subsets is considered. An

exhaustive search through all possible feature subsets is, however,

often computationally infeasible due to a combinatorial explosion [213].

Therefore, heuristic search strategies are often applied in practice,

including greedy search, beam search, or more complex approaches

such as simulated annealing and genetic algorithms [178].

One can furthermore distinguish two search directions: In forward Search direction and

bootstrappingselection, one starts with an empty set of features and iteratively adds

features, while backward elimination starts from the full feature set and

iteratively eliminates irrelevant features [178, 213]. Guyon and Elisseeff

[178] note that small perturbations of the experimental conditions can

lead to different results for feature subset selection approaches. They

therefore propose to use a bootstrapping approach, which applies the

same feature selection methodology on multiple subsets of the training

examples and uses the union of the selected feature subsets as a final

feature set for training the classifier. Moreover, depending on the way in

which the feature subsets under consideration are being scored, one can

distinguish three types of feature subset selection approaches, namely,

filter methods, wrapper methods, and embedded methods.

Filter methods use a performance measure, which is independent from Filter methods use

heuristics for scoring
the machine learning algorithm, that will be applied later on. They are

thus related to the feature ranking approach, and in principle, similar

performance measures (such as correlation or mutual information) can

be used [213]. However, unlike feature ranking, filter methods always

consider the whole subset of features in their evaluation. Since filter

methods are based on heuristic scoring functions, they are generally

quite fast and provide a selection of features, that is independent of the

machine learning algorithm to be used later on [178]. This reduces the

risk of overfitting and allows one to easily replace the model.

Wrapper methods on the other hand use the performance of a trained Wrapper methods are

based on model

predictions

model on the validation set for assessing the usefulness of a feature

subset [178, 213]. Since they need to train the actual model for each

feature subset under consideration, they are often considerably slower

than filter methods and tend to be biased towards the machine learning

algorithm being used [213]. Both of these effects can, however, be

counteracted to some degree by using efficient search strategies such as
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greedy search, and by employing fast machine learning algorithms (e.g.,

using decision trees rather than SVMs) [178, 213]. In practice, wrapper

methods often tend to yield a better performance of the final model

than filter methods [213].

Finally, embedded methods perform feature selection as part of the train-Embedded methods

look inside the model
ing process, and are typically specific to the given machine learning

algorithm, such as decision trees, random forests, and logistic regres-

sion [178, 213]. Generally, embedded methods tend to be more efficient

than wrapper methods, because the model only needs to be trained

once [178]. Since the implicit objective function of feature selection is to

maximize the prediction performance while minimizing the number of

features [178], embedded methods can also be related to regularization

schemes such as the L1 penalty of a lasso regressor which incites many

weights to become zero [213] (cf. Section 5.2.1).

Of course, multiple approaches to feature selection can be combinedHypbrid methods

combine multiple

approaches

with each other, leading to so-called hybrid methods. Jović et al. [213]

for example propose to first apply feature ranking or a filter method to

reduce the number of candidate features, and then to use a wrapper

method to select the optimal feature subset. They argue that this ap-

proach is both efficient and effective since it combines the advantages

of filter methods and wrapper methods. Also Guyon and Elisseeff [178]

propose a similar approach, namely to use a simple linear predictor as a

filter method, followed by a non-linear predictor as a wrapper method

on the remaining features.

Feature selection methods can in principle be used to construct a con-Creating a

conceptual space

with feature selection

ceptual space from a given machine learning dataset as demonstrated

by Banaee et al. [26, 27] (cf. Section 1.2.5). They assume, that the given

dataset M (e.g., about leaves of different plant species) consists of the

following three components:

• The set of possible class labels Y = {Y1, . . . , Yc} (e.g., Nerium

Oleander, Tilia Tomentosa, etc.).

• The set of features X = {X1, . . . , Xn}, where each feature comes

with a linguistic name and a range of possible values (which

can be a list of categories or an interval of real numbers). For

example, features could include the aspect ratio of the leaf and

the eccentricity of its bounding ellipse.

• The set of observationsD = {o(j) : (x⃗(j), y(j)) | 1 ≤ j ≤ N}, where

x⃗(j) is a feature vector (with one entry for each of the features

from X) and y(j) is the class label assigned to this observation.

Banaee et al. assume that the concepts in the resulting conceptual

space correspond to the different classes from Y . Moreover, the di-

mensions spanning the conceptual space are a subset of X . In order

to identify this subset of X , they use a filter method which considers

the usefulness of the features X for classifying the observations D
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Figure 5.12: Identifying domains as bicliques in the feature selection approach

by Banaee et al. [26, 27].

with respect to the class labels Y . When picking the optimal subset of

features based on the results of this filter method, they also group them

into domains in order to derive a valid structure for a conceptual space.

In order to measure the usefulness of a feature Xi (e.g., eccentricity) Mutual information

as scoring criterion
to a class label Yk (e.g., Nerium Oleander), they use mutual information

(MI) as defined in Equation 5.18: MI(Xi, Yk) should be high, while

the mutual information MI(Xi, Xi′) between the feature Xi and any

previously selected feature Xi′ (e.g., aspect ratio) should be low. For

each of the classes in Y , Banaee et al. thus derive a ranking of all features

from X based on their MI score. They only consider the top t features

as being relevant for the respective class. Banaee et al. also note that

if properly normalized, the MI scores can be used as salience weights

representing the importance of the respective dimension Xi for the

respective concept Yk.
After having selected a set of candidate features for each class, Banaee Creating a bipartite

feature-class graph
et al. group them into domains by using the following procedure,

illustrated in Figure 5.12: They create a graph, where each candidate

featureXi (e.g., eccentricity) and each class Yk (e.g., Nerium Oleander)

is represented as a node. An edge is introduced betweenXi and Yk ifXi

is among the t highest-ranking candidate features for Yk as determined

in the previous step. This edge is then weighted with the respective MI

score MI(Xi, Yk). Please note that this graph is bipartite, i.e., there are

two groups of nodes (features and classes), and all edges involve two

nodes from different groups.

Banaee et al. now identify domains by looking for bicliques in this Domains as maximal

bicliques
graph. A biclique in a bipartite graph is a subset of nodes where each node

from one group is connected to all nodes from the other group. In the ex-

ample from Figure 5.12, a trivial biclique is for instance given by {X1, Y1},

and a maximal biclique consists of {X2, X3, Y2, Y3}. For each biclique, Ba-

naee et al. define a score based on the biclique’s size and the weights on

its edges. They then iteratively select the biclique with the largest score,

define a domain based on its features, and remove the corresponding

feature nodes and edges from their overall graph. For instance, if the bi-

clique {aspect ratio, eccentricity,Nerium Oleander,Tilia Tomentosa}
is the maximum biclique with the highest score, a new domain will

be defined based on the dimensions aspect ratio and eccentricity and

these dimensions will not be considered for any other domains. Please

note that the class nodes (in this example Nerium Oleander and Tilia
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Tomentosa) are not removed, and are thus allowed to be part of multiple

bicliques, i.e., to be defined on multiple domains. The algorithm by

Banaee et al. selects bicliques until each class has been part of at least

one biclique.

Banaee et al. motivate their biclique approach as follows: A domainIntuition behind the

biclique approach
in the conceptual spaces framework is defined as a set of dimensions,

which inherently belong together from a semantic point of view (cf.

Sections 1.2.1 and 2.1.1). Banaee et al. assume that a pair of dimensions

is semantically related if they are relevant for the same concepts. By

selecting a biclique, one therefore selects a set of features which are

highly relevant for the same set of concepts, and can hence be expected

to contain related pieces of information.

A concept for a given class Yk (e.g., Nerium Oleander) can now beConstructing

conceptual regions
constructed by using all observations from D, which are labeled with

Yk, projecting them into the conceptual space (i.e., taking their feature

values with respect to the selected dimensions), and constructing their

convex hull. Please note that Banaee et al. project each observation

o(j) = (x⃗(j), y(j)) only onto the domains relevant for the concept y(j).
This means, that some concepts may be defined only on a single domain,

while others may be defined on multiple domains. The salience weights

associated with the concept are based on the association strengths

obtained in the filtering step.

Banaee et al. provide two case studies illustrating the applicationCase studies

of their proposed procedure. Both for a dataset of leaves and for a

dataset of time series, they found that the domains constructed by

their approach grouped together similar features and could thus be

given a meaningful overall interpretation. For instance, on the leaves

dataset, one domain contained the features aspect ratio, elongation,

and eccentricity, all of which can be used to describe whether a given

leaf has an elongated or blob-like shape. On the time series data, the

two domains which emerged could be described as capturing the trend

direction of the pattern (rising or falling) and the overall shape of the

pattern (smooth vs. fluctuating), respectively.

Overall, the approach by Banaee et al. mainly differs from standardLimitations

feature selection approaches by introducing a domain structure on

the selected features. Although their results indicate that the resulting

domains seem to be interpretable, it is unclear whether this can be

generally expected. Moreover, this approach assumes that all features

needed to construct a conceptual space are already given a priori and

that one simply needs to select the right subset of features. For many

perceptual domains like shape, this might not be true. Banaee et al.

furthermore acknowledge that based on the dataset being used, the

quality dimensions of the resulting conceptual space do not necessarily

reflect human perception. One can furthermore criticize that concepts

are only defined on the domains, in whose construction they were

involved. While this may be an efficient way of storing relevant informa-

tion, it blurs the distinction between properties and concepts from the

conceptual spaces framework (cf. Sections 1.2.1 and 2.1.2). Finally, when

defining concepts, cross-domain correlations are not taken into account.
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Nevertheless, the work by Banaee et al. establishes an important link

between dimensionality reduction and conceptual spaces.

5.3.2 Feature Extraction

In contrast to feature selection, feature extraction attempts to reduce the Goals of feature

extraction
dimensionality of the feature space by constructing a small set of novel

features, which are typically a combination of the original ones [178, 213].

In general, feature extraction can be interpreted as an unsupervised

learning task, where one tries to find a better representation of the

given data, which preserves the main information while being less

complex [172, Chapter 5]. The more specific goal of feature extraction

depends on the application scenario, which might for example put

more emphasis on a faithful reconstruction of the original features,

or on the usefulness of the novel representation for making accurate

predictions in a downstream task [178].

Goodfellow et al. [172, Chapter 5] distinguish three generally desirable Desirable properties

for learned

representations

properties of a learned representation: In general, a lower-dimensional

representation of the data is desired in order to fight the curse of dimen-

sionality (cf. Section 5.1.4). Moreover, one may also be interested in a

sparse representation, where most entries of the feature vector are zero

for most inputs. This can, for example, be achieved by clustering the

data points in the original feature space and replacing them with their

respective cluster ID [178]. We will introduce such clustering techniques

in Chapter 7. Also an independent representation may be of interest, where

the sources of variation in the data distribution are disentangled in

such a way that the constructed features are statistically independent.

The topic of disentangled representations will be discussed in more

depth in Chapter 6. As Goodfellow et al. [172, Chapter 5] note, these

different desiderata may be partially conflicting, such as a sparse rep-

resentation being often quite high-dimensional in order to prevent

dramatic information loss. In some contexts, they can, however, also be

addressed simultaneously – for example, removing redundancy yields

both a lower-dimensional and a more independent representation.

While there exists a wide variety of feature extraction methods, we

will limit our discussion in this section to one of the most well-known al-

gorithms, namely principal components analysis (PCA). Other variants

of feature extraction will be discussed later, including metric learning

(Section 5.3.3), autoencoders and other neural networks (Chapter 6),

and multidimensional scaling (Chapter 8).

Principal components analysis (PCA) provides a lower-dimensional Goals of principal

components analysis
representation of a given dataset by constructing novel features as a

linear combination of the original features [71, Chapter 24]. These novel

features are chosen in such a way, that they have no correlation with

each other [172, Chapter 5], and that they capture most of the variance

in the data [438], assuming that the directions of largest variance in the

data correspond to the directions of largest information [438]. The goals
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of PCA include simplifying the description of the dataset, compressing

the size of the original design matrix, and analyzing the underlying

structure of the data [2, 438].

Mathematically speaking, PCA provides an orthogonal, linear trans-Mathematical

properties
formation of the data which minimizes the reconstruction error as

measured by the mean squared error [172, Chapter 5]. This transforma-

tion can be expressed by a simple matrix multiplication [172, Chapter

2], which corresponds to a projection from the original n-dimensional

feature spaceX onto a t-dimensional hyperplane (i.e., subspace)Z [438].

Before applying PCA to a design matrix X ∈ RN×n
, this matrix isStandardizing as

preprocessing step
usually standardized by subtracting the column averages and dividing

the columns by their standard deviation [2, 79, 438]. While the centering

step is mainly for mathematical convenience, the normalization of the

columns to standard variance ensures that all features have the same

influence in the subsequent processing, even if they are measured with

different units [2, 438].

In our derivation of PCA, we follow Bro and Smilde [79] by firstSearching for the

direction of largest

variance

considering the special case of t = 1. This means that we try to find

a single latent variable Z which expresses most of the variance in the

design matrixX . Let us denote byXi the random variable corresponding

to the ith feature (cf. Section 5.2.4) and by x⃗i the values of this feature

in the design matrix, i.e., the ith column of the design matrix X . In a

similar way, the latent variable Z can be expressed as anN -dimensional

vector z⃗ containing one feature value for each example. As stated above,

in the context of PCA, we are interested in expressing z⃗ as a linear

combination of the different x⃗i, i.e., z⃗ = w1x⃗1 + · · ·+ wnx⃗n = Xw⃗ for a

given weight vector w⃗ ∈ Rn. Since the length of the vector w⃗ does not

play a role for the transformation, we simply constrain it to be ||w⃗|| = 1.

Moreover, we would like to choose z⃗ in such a way that it captures as

much of the variance in X as possible. Hence, we need to solve the

following optimization problem:

w⃗∗ = argmax
w⃗∈Rn,||w⃗||=1

Var[z⃗] = argmax
w⃗∈Rn,||w⃗||=1

Var[Xw⃗]

The varianceV ar[Z]of a random variableZ is defined asEZ∼P(Z)[(Z−Variance and

centering EZ∼P(Z)[Z])
2], i.e., the expected squared difference from its expected

value. Since we centered our design matrix X in the preprocess-

ing step, the mean value of each original feature Xi is zero, i.e.,

EXi∼P(Xi)[Xi] = 0. One can easily see, that therefore EZ∼P(Z)[Z] =
EXi∼P(Xi)[

∑︁n
i=1wiXi] =

∑︁n
i=1wi·EXi∼P(Xi)[Xi] = 0. Therefore,Var[Z] =

EZ∼P(Z)[Z
2]. Since EZ∼P(Z)[Z

2] can be approximated by taking the

average of all squared values of Z over the dataset, we can maximize

EZ∼P(Z)[Z
2] by maximizing

∑︁N
j=1 zj · zj = z⃗T z⃗. We can thus rewrite

our optimization problem as follows:

w⃗∗ = argmax
w⃗∈Rn,||w⃗||=1

Var[Z] = argmax
w⃗∈Rn,||w⃗||=1

z⃗T z⃗ = argmax
w⃗∈Rn,||w⃗||=1

w⃗TXTXw⃗
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Figure 5.13: Illustration for finding the vector w⃗∗
by maximizing the variance

of Xw⃗ for a two-dimensional feature space.

In order to see how w⃗∗
can be found, we need to introduce the concepts Eigenvectors and

eigenvalues
of eigenvalue and eigenvector. An eigenvector q⃗ of a given matrix A is

a vector that gets stretched by a factor of λ (its so-called eigenvalue) if

multiplied with A, i.e., Aq⃗ = λq⃗. In our case, we consider A = XTX ,

and note that w⃗TXTXw⃗ can be maximized by choosing the eigenvector

w⃗∗ = q⃗ of XTX with the largest associated eigenvalue λ: Since our

solution is constrained to having unit length, we know that (w⃗∗)T w⃗∗ = 1.

Overall, we thus get that (w⃗∗)TXTXw⃗∗ = (w⃗∗)Tλw⃗∗ = λ(w⃗∗)T w⃗∗ = λ.

Luckily, finding the largest eigenvalue of a given matrix along with

its associated eigenvector is a standard problem in linear algebra, for

which already various efficient algorithms have been developed.

Hence, in order to find a new feature Z which is a linear combination Transformations

between old and new

features

of the existing featuresXi, we simply need to identify the eigenvector w⃗∗

associated with the largest eigenvalue of XTX . We can then translate

X into z⃗ by right-multiplying it with w⃗∗
, i.e., z⃗ = Xw⃗∗

. One can

furthermore show, that the optimal reconstruction of X based on z⃗
can be computed as X ≈ z⃗(w⃗∗)T [79]. It is also possible to derive the

optimal weight vector w⃗∗
by minimizing the squared Euclidean distance

between X and z⃗(w⃗∗)T (i.e., the reconstruction error) [172, Chapter 2].

Figure 5.13 illustrates the geometric interpretation of our discussion Geometric

interpretation
so far using a two-dimensional feature space. As one can see, the given

data points are clearly correlated. Through the procedure described
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above, we can discover the weight vector w⃗∗
, which points in the di-

rection of greatest variance. For a given data point x⃗, the value of the

new feature z can be computed as z = x⃗ · w⃗∗ = x1w
∗
1 + x2w

∗
2. This

corresponds to the distance of its projection p⃗ onto the weight vector

w⃗∗
from the origin. The best reconstruction of the original data point

x⃗ based only on the value z is given by zw⃗∗ = p⃗. It has an absolute

reconstruction error of e, which denotes the distance between x⃗ and p⃗.

In most practical cases, we are, however, not interested in onlySearching for

multiple novel

features

finding a single feature Z corresponding to the direction of largest

variance in the data. Rather, we aim to find multiple features Z1, . . . , Zt
(represented as a matrix Z of transformed coordinates), which can all

be expressed as linear combinations of the original features X1, . . . , Xn

(represented by the original design matrix X). When applying a PCA,

we furthermore require that the directions w⃗(k)
corresponding to the

individual features Zk shall be orthogonal to each other. This means,

that we require ∀k ̸= l : (w⃗(k))T · w⃗(l) = 0.

When determining the optimal weight vector w⃗∗
for the directionEigenvalue

decomposition
with the most variance in the data, we used the largest eigenvalue of

XTX . One can generalize this approach to multiple target features by

using the t largest eigenvalues of XTX . They (and their corresponding

eigenvectors) can be found by computing the eigenvalue decomposition

of XTX . In general, the eigenvalue decomposition of any symmetric

matrix A ∈ Rn×n is defined as follows [71, Chapter 7]:

A = Q Λ QT (5.19)

Here, Λ is a diagonal matrix of eigenvalues, and Q is a matrix ofProperties of the

matrices
eigenvectors, both being of size n× n. Each column of Q corresponds

to one eigenvector q⃗(k), and the corresponding diagonal entry λk of Λ
to its associated eigenvalue. Moreover, Q is orthonormal, which means

that QQT = QTQ = I . This especially implies that ∀k ∈ {1, . . . , n} :

||q⃗(k)|| = (q⃗(k))T · q⃗(k) = 1. If A is symmetric, then its eigenvalues and

eigenvectors are guaranteed to be real-valued, and the eigenvectors are

orthogonal to each other (i.e., ∀k ̸= l : (q⃗(k))T · q⃗(l) = 0).

By rewriting Equation 5.19, we can show that the matrix A can beApproximation of the

original matrix
written as a sum of individual matrices, which are based on the different

eigenvectors and eigenvalues:

A = Q Λ QT =
(︂
λ1q⃗

(1) λ2q⃗
(2) . . . λnq⃗

(n)
)︂
⎛⎜⎜⎜⎜⎝

(q⃗(1))T

(q⃗(2))T

.

.

.

(q⃗(n))T

⎞⎟⎟⎟⎟⎠
= λ1q⃗

(1)(q⃗(1))T + λ2q⃗
(2)(q⃗(2))T + · · ·+ λnq⃗

(n)(q⃗(n))T (5.20)

Typically, one sorts the eigenvalues in descending order, such that

λ1 > λ2 > .... The individual λkq⃗
(k)(q⃗(k))T in Equation 5.20 are then

ordered in such a way, that the first matrices have a larger impact on the



5.3 dimensionality reduction 269

overall result. We can thus use Equation 5.20 to approximate A based

on the first t eigenvalues and their associated eigenvectors.

Thus, in order to compute a PCA of a given design matrix X , we can PCA based on

eigenvalue

decomposition

simply compute the eigenvalue decomposition of XTX and use the

eigenvectors associated with the t largest eigenvalues as weight vectors

w⃗(k)
[71, Chapter 24]. As noted above, using the t largest eigenvalues of

XTX and their associated eigenvalues gives rise to an approximation

of XTX , whose approximation error E (in analogy to the discussion

of Figure 5.13) is based on the terms λkq⃗
(k)(q⃗(k))T for k > t, i.e., the

eigenvectors not considered by the PCA.

Instead of using an eigenvalue decomposition of XTX , one can Singular value

decomposition
also compute a PCA by using a singular value decomposition (SVD) of

the design matrix X ∈ RN×n
. A singular value decomposition is a

generalization of the eigenvalue decomposition to non-square matrices.

The SVD of X can be written as follows (cf. [71, Chapter 7] and [2]):

X = U Φ V T
(5.21)

Here, U ∈ RN×t
is the matrix of left singular values, V ∈ Rn×t is Properties of the

matrices
the matrix of right singular values, and Φ ∈ Rt×t is a diagonal matrix

of singular values ϕk. Moreover, both U and V are orthonormal. By

inserting the singular value decomposition of X (Equation 5.21) into

the eigenvalue decomposition ofXTX (Equation 5.19), one can see how

the two are related (using that UTU = I):

Q Λ QT = XTX = (U Φ V T )T (U Φ V T )

= (V Φ UT )(U Φ V T ) = V Φ2 V T
(5.22)

Thus, V contains the eigenvectors of XTX and the squared singular Relation between

SVD and eigenvalue

decomposition

values ϕk correspond to the eigenvalues λk of XTX . Understanding

the PCA as a singular value decomposition of X can help to see how

the transformed coordinates can be computed in an alternative way. In

order to do so, let us multiply both sides of Equation 5.21 with V :

Z = X V = U Φ V TV = U Φ (5.23)

Since Φ is a diagonal matrix and U is orthonormal, U contains a Interpreting the

singular values
normalized version of the column vectors of the matrix of transformed

coordinates Z = X V , while Φ represents the respective lengths of

the column vectors of Z [438]. Thus, the individual singular values ϕk
quantify to which extent the data points vary along the direction v⃗(k).
More specifically, λk = ϕ2k describes how much of the overall variance

is captured by the principal component v⃗(k) [71, Chapter 24].

One can furthermore show that the individual principal compo- Principal

components are

uncorrelated

nents are uncorrelated [172, Chapter 5]: The unbiased sample co-

variance matrix associated with the design matrix X is defined as

Var[X] = 1
N−1X

TX . Using Equations 5.22 and 5.23, we can thus derive
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the following formula for Var[Z], i.e., the covariance matrix of the

transformed feature space:

Var[Z] =
1

N − 1
ZT Z =

1

N − 1
(X V )T (X V )

=
1

N − 1
V T XT X V =

1

N − 1
V T (V Φ2 V ) V T

=
1

N − 1
Φ2

Since Φ is a diagonal matrix, also Var[Z] must be a diagonal ma-

trix. This means that all off-diagonal entries and hence all correlations

between principal components must be zero. While the PCA is able

to eliminate correlations between features, it fails to address more

complex, nonlinear dependencies [172, Chapter 5].

For t = n (meaning that no dimensionality reduction takes place),PCA as rotation of

the feature space
applying the transformation matrixV toX can be interpreted as rotating

the basis of the feature space [172, Chapter 5]. To see why this is true,

remember that V is orthonormal, i.e., V V T = V TV = I . If we apply this

transformation matrix V to two points x⃗(j1), x⃗(j2), the scalar product of

their transformations V x⃗(j1), V x⃗(j2) is identical to the scalar product of

the original points:

⟨V x⃗(j1), V x⃗(j2)⟩ = (V x⃗(j1))T (V x⃗(j2)) = (x⃗(j1))TV TV x⃗(j2)

= (x⃗(j1))T x⃗(j2) = ⟨x⃗(j1), x⃗(j2)⟩

This means that angles between points are preserved by the trans-

formation V . In general, matrix multiplication acts as an affine trans-

formation, which can include translation, scaling, reflection, rotation

and shear mappings. However, only rotations and reflections preserve

angles between vectors. Since we can always invert the direction of the

individual principal components, we can thus represent the transfor-

mation always as a rotation of the original coordinate system.

The most important hyperparameter of the PCA is the number tHeuristics for

choosing the number

of dimensions

of dimensions in the resulting feature space Z . Clearly, one faces a

trade-off between compactness and expressiveness. There are, however,

some general heuristics for choosing t: If the error of measurement

of the data in X is known, one can choose t in such a way that the

variance of the residual E = X − ZV T
is of the same size as this

error of measurement [438]. Another heuristic proposes to keep only

components, whose eigenvalue is larger than the average eigenvalue

[2]. Moreover, one can sort the eigenvalues from Λ in descending order

and look for a large "gap" between neighboring values in this sequence

– if the first t eigenvalues are relatively large, but all eigenvalues from

t+ 1 to n are quite small, then the first t components should explain

most of the meaningful variance, while the remaining components can

be attributed to noise [2]. Finally, if the output of the PCA is used as a

feature space for a classifier, the number t of principal components can
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be treated as a hyperparameter of the overall system and be optimized

based on classification performance on the validation set [438].

Overall, a PCA does not only allow to find a more compact repre- Additional usages of

PCA
sentation of a given dataset, but it can be used for additional tasks as

well. Most importantly, also novel data points can be projected into

the transformed space by applying the transformation matrix V [2].

Furthermore, the reconstruction error for such novel data points can

be compared to the average reconstruction error with respect to the

design matrix X to determine, whether the new data point belongs

to the same distribution as the training set [438]. A similar approach

can also be used to detect outliers, which are expected to have a large

reconstruction error [438].

PCA has two crucial drawbacks, that limit its usefulness in the context PCA and conceptual

spaces
of conceptual spaces: Firstly, the extracted dimensions correspond

to the directions of greatest variance in the original feature space,

but are not necessarily interpretable [179, Section 7.1.4]. Interpretable

dimensions, however, are a corner stone of the conceptual spaces

framework. Secondly, the transformation of the original feature space

into the compressed space is only a linear one. PCA thus implicitly

assumes that the original feature space is almost perfect and that we

only need to combine features and remove some of them in order to find

an optimal representation. If the given input space requires a nonlinear

transformation, a PCA is not expected to provide useful results. When

dealing with raw pixel information from images, which we would like

to transform into a compact representation for the domain of shapes,

such a linear transformation is probably not sufficient.

While a PCA is thus not directly applicable to obtaining the dimen- Outlook

sions of a conceptual space, the fact, that it extracts the directions

of largest variance, can be useful for estimating correlations between

domains and dimensions. This aspect will be discussed in more detail in

Chapter 7 in the context of learning conceptual regions. Moreover, the

eigenvalue decomposition used by the PCA will also play an important

role for multidimensional scaling in Chapter 8.

5.3.3 Metric Learning

Metric learning is the task of learning a useful distance function, which Goals of metric

learning
represents the dissimilarity of two complex inputs [236]. This learned

distance function is often used for nearest neighbor classifiers (like the

kNN algorithm introduced in Section 5.2.5), which explicitly measure

the distance between a new observation and examples from the training

set in order to make a classification. Especially in the context of few

shot learning, where one assumes that only a very limited number

of training examples is available, having a good distance metric can

considerably improve classification performance [427]. In many cases,

the distance function is derived by transforming the feature space X
and using the unweighted Euclidean metric in the transformed space
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Z .
11

If this transformation results in a lower-dimensional space, then

dimensionality reduction takes place. The resulting low-dimensional

embedding space Z can then not only be useful for nearest-neighbor

classifiers, but can also be used by other machine learning models

in order to counteract the curse of dimensionality (cf. Section 5.1.4).

Moreover, this low-dimensional space can also give some insights about

the organization of the originally high-dimensional data [345].

In general, metric learning can be viewed as a special case of featureSemi-formal

definition
extraction. The metric learning problem can be formalized as follows

[236]: Given an input distance function d(x⃗(j1), x⃗(j2)) and supervision

information regarding the ideal distance between data points, construct

a new distance function d̂(x⃗(j1), x⃗(j2)), which reflects the supervision

information better than the original distance function d(x⃗(j1), x⃗(j2)).

The supervision information typically gives constraints on the dis-Types of constraints

tances between pairs of data points based on their class labels. Kulis

[236] distinguishes two main types of supervision constraints:

When using absolute constraints, we define a set S consisting of pairs ofAbsolute similarity

and dissimilarity

constraints

data points, which should be similar, and a setD of pairs of data points,

which should be dissimilar. For instance, we can require that all data

points with the same class label should be similar, while data points

with different class labels should be dissimilar. This can be expressed as

follows, using two threshold constants u < l for the respective distances:

∀(x⃗(j1), x⃗(j2)) ∈ S : d̂(x⃗(j1), x⃗(j2)) ≤ u (5.24)

∀(x⃗(j1), x⃗(j2)) ∈ D : d̂(x⃗(j1), x⃗(j2)) ≥ l (5.25)

For relative constraints, we define a setR consisting of triples (x⃗(j1), x⃗(j2),Relative distance

constraints x⃗(j3)) of data points, such that the data point x⃗(j1) is more similar to

x⃗(j2) than to x⃗(j3). This can again be based on class labels by requiring

that x⃗(j1) and x⃗(j2) belong to the same class, while x⃗(j3) belongs to a dif-

ferent class. It is, however, also possible to collect such relative distance

constraints from humans. Elicitation methods for such ratings will

be discussed in Chapter 8 in the context of multidimensional scaling.

The relative distance constraints can be expressed as follows, using a

nonnegative margin s (which is often set to one):

∀(x⃗(j1), x⃗(j2), x⃗(j3)) ∈ R : d̂(x⃗(j1), x⃗(j2)) < d̂(x⃗(j1), x⃗(j3)) + s (5.26)

One can furthermore distinguish different variants of metric learningClassification of

approaches
based on the type of transformation being used. Kulis [236] distinguishes

different approaches based on two dimensions: Global versus local

methods, and linear versus nonlinear methods. Wang et al. [427]

consider an additional dimension, which distinguishes task-specific

from task-general models.

11 This is a somewhat inverse approach to the kernel functions used for support vector

machines (cf. Section 5.2.3): When applying the kernel trick, we use a kernel function

as a shortcut to computing the inner product in a high-dimensional transformed space,

while in metric learning, we use a standard distance metric in a low-dimensional

transformed space in order to define a new metric in the original feature space.
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Global methods transform the overall feature space by using a sin- Global vs. local

methods
gle transformation function ϕ [236]. The learned distance is then

defined as the input distance on the transformed data points, i.e.,

d̂(x⃗(j1), x⃗(j2)) = d(ϕ(x⃗(j1)), ϕ(x⃗(j2))). Local methods on the other hand

learn several distance functions (or several transformation functions ϕ),

e.g., one per class or cluster in the dataset.

Linear methods apply a linear transformation to the feature space, Linear vs. nonlinear

methods
which can be represented by a simple matrix transformation ϕ(x⃗) = Gx⃗
with some matrix G, whose parameters need to be optimized. This

corresponds to learning weights for scaling and rotating the data (cf. the

geometric interpretation of a PCA in Section 5.3.2). Nonlinear methods

on the other hand make use of nonlinear transformations, which are in

general more powerful, but may also be more prone to overfitting.

Wang et al. [427] consider the application of metric learning in few Task-specific vs.

task-invariant models
show classification, i.e., where only very small datasets are available.

They propose a distinction of the resulting transformation models into

task-specific and task-invariant models. Task-specific models are trained

exclusively on the specific few shot classification task at hand. On

the other hand, task-invariant models are trained on related classifica-

tion tasks with large-scale datasets and are applied to the few shot

learning task without further modifications. Wang et al. also mention

hybrid models, which combine task-invariant with task-specific informa-

tion by first being optimized on large-scale datasets of related tasks,

and then being fine-tuned on the specific few shot learning task at hand.

Let us first consider linear methods. Here, the transformation func- Linear methods learn

a Mahalanobis-like

distance

tion is based on a simple matrix multiplication ϕ(x⃗) = Gx⃗ with

a matrix G and the Euclidean metric is typically used to measure

distances in the transformed space. One can show that the result-

ing metric d̂(x⃗(j1), x⃗(j2)) = dE(Gx⃗
(j1), Gx⃗(j2)) is equivalent to a gen-

eralized form of the Mahalanobis distance, where d̂(x⃗(j1), x⃗(j2)) =√︂
(x⃗(j1) − x⃗(j2))TA(x⃗(j1) − x⃗(j2)) with a positive semi-definite matrix

A = GTG [236]. This is why linear metric learning is sometimes also

referred to as Mahalanobis metric learning. Please note that d̂(x⃗(j1), x⃗(j2))

is equivalent to the Mahalanobis distance dM (x⃗(j1), x⃗(j2)) if and only if

A = Σ−1
, where Σ is the covariance matrix of the data in the original

feature space X (cf. Section 2.2.2).

Kulis [236] provides a unified framework called regularized transfor- General model for

linear methodsmation learning, which covers most existing linear methods. He assumes

that the overall loss being minimized is based on a regularizer r(A),
which only depends on the matrix A, and a set of individual loss

functions Jq, which operate on the so-called mapped inner product matrix

XTAX (where X is the design matrix):

J(A) = r(A) + λ ·
Q∑︂
q=1

Jq(X
TAX)

Here, λ is a hyperparameter controlling the trade-off between the Loss functions can

encode distance

constraints
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regularizer and the supervision information. With respect to the

mapped inner product matrix, one can easily see that d̂(x⃗(j1), x⃗(j2)) =

(x⃗(j1)− x⃗(j2))TA(x⃗(j1)− x⃗(j1)) = (e⃗(j1)− e⃗(j2))TXTAX(e⃗(j1)− e⃗(j2)) with

x⃗(j) being the jth standard basis vector, i.e., an N -dimensional vector

with e⃗
(j)
j = 1 and ∀j′ ̸= j : e⃗

(j)
j′ = 0. This demonstrates that constraints

placed on XTAX are equivalent to constraints placed on d̂(x⃗(j1), x⃗(j2)).
Kulis argues, that both types of supervision constraints introducedEncoding distance

constraints as loss

functions

earlier can be transformed into a loss function by using the hinge loss

[z]+ = max(0, z). For absolute similarity and dissimilarity constraints,

we can define the following loss functions based on Equations 5.24 and

5.25, respectively:

JS
(x⃗(j1),x⃗(j2))

(XTAX) = [d̂(x⃗(j1), x⃗(j2))− u]+ (5.27)

JD
(x⃗(j1),x⃗(j2))

(XTAX) = [l − d̂(x⃗(j1), x⃗(j2))]+ (5.28)

For relative distance constraints, on the other hand, we can transform

Equation 5.26 as follows:

JR
(x⃗(j1),x⃗(j2),x⃗(j3))

(XTAX) = [d̂(x⃗(j1), x⃗(j2))− d̂(x⃗(j1), x⃗(j3))+s]+ (5.29)

As typical regularizers, Kulis identifies the squared Frobenius normRegularizers for

linear models ||A||2F =
∑︁n

i1=1

∑︁n
i2=1 |a2i1i2 | of A, the matrix trace tr(A) =

∑︁n
i=1 aii,

and tr(A)− log det(A), where det(A) is the determinant ofA, which cor-

responds to the product

∏︁n
i=1 λi of its eigenvalues λi. These regularizers

can be interpreted as special variants of weight decay (cf. Section 5.1.3).

In the following, we consider some concrete examples of linear methods.

Fink [156] proposed a linear metric learning approach targeted atγ-separation for one

shot learning
a one shot learning scenario: He considered the problem of discrimi-

nating between two classes c and c′, for which only a single training

example is available, respectively, while using information from other

classes ck with many training examples. His approach uses a variant of

relative distance constraints by defining a set of classes to be γ-separated,

if the distance for any pair of points belonging to the same class is at

least γ smaller than the distance for any pair of points belonging to

different classes. Thus, γ corresponds to the margin size s, and the

triples (x⃗(j1), x⃗(j2), x⃗(j3)) are chosen based on class membership for the

high resource classes ck. Fink then optimized the transformation matrix

G in such a way, that all classes ck are γ-separated, and that the value

of γ is maximized. This maximization of γ is not directly considered by

the regularized transformation learning framework. In Fink’s approach,

the transformation matrix G is thus optimized in such a way, that the

classes ck form well-separated clusters in the transformed feature space.

In the context of one shot learning, the hope is that also the classes c
and c′ are then well-separated from all other classes, making a nearest

neighbor classification feasible even in this one shot scenario.
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Weinberger et al. [429] aimed to find a linear transformation of Large margin nearest

neighbor classifier
the feature space in order to improve the performance of a k nearest

neighbors classifier. The goal of their large margin nearest neighbor

classification (LMNN) approach is to ensure that the k nearest neighbors

of any data point from the training set always belong to the same class,

while examples from different classes are separated by a large margin.

In order to ensure this, they define for each data point x⃗(j) its k target

neighbors as the k data points from the training set with the same class

label as x⃗(j), which have the smallest distance to x⃗(j) in the original

feature space. Using the binary variables ηj1j2 to denote whether x⃗(j2)

is a target neighbor of x⃗(j1), and yj1j2 to denote whether x⃗(j1) and x⃗(j2)

have the same class label (i.e., whether y(j1) = y(j2)), their loss function

(also called triplet loss in the literature) is defined as follows:

J(A) =

N∑︂
j1=1

N∑︂
j2=1

ηj1j2 d̂(x⃗
(j1), x⃗(j2))

+ λ ·
N∑︂
j1=1

N∑︂
j2=1

N∑︂
j3=1

ηj1j2 · (1− yj1j3)

· [d̂(x⃗(j1), x⃗(j2))− d̂(x⃗(j1), x⃗(j3)) + 1]+

Here, the first term minimizes the distance between a given data Interpretation of the

triplet loss
point x⃗(j1) and its target neighbors, while the second term maximizes

the distance between the given data point x⃗(j1) and all data points from

other classes. The hyperparameter λ is used to specify the trade-off be-

tween these two competing terms. One can thus say that the triplet loss

combines the two types of supervision constraints mentioned earlier:

The first term corresponds to an absolute similarity constraint with

u = 0 (cf. Equation 5.27) while the second term is a relative distance

constraint with a margin size of s = 1 (cf. Equation 5.29). Please note

that Weinberger et al. do not consider all data points from the same

class, but only the k closest ones. This means that their LMNN approach

does not assume that each class consists only of a single compact cluster,

but allows classes to be represented by multiple individual regions,

which may not be connected to each other.

Goldberger et al. [167] proposed neighborhood component analysis Neighborhood

component analysis(NCA) as another way of optimizing a linear transformation of the

feature space for a nearest neighbor classification. However, instead of

treating transformation and classification as two different processing

steps, they propose a single holistic system. Goldberger et al. use a

soft neighbor assignment by defining the probability P(Nj1j2) of x⃗(j1)

selecting x⃗(j2) as a neighbor (denoted as binary random variable Nj1j2)

based on a softmax function (a generalization of the sigmoid function

from Section 5.2.2, to be discussed in more detail in Chapter 6) on the

Euclidean distances in the transformed space:

P(Nj1j2) =
e−d̂(x⃗

(j1),x⃗(j2))∑︁
j3 ̸=j1 e

−d̂(x⃗(j1),x⃗(j3))
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Using an exponentially decaying function of distances relates toInterpretation of the

neighborhood

probabilities

Gärdenfors’ notion of semantic similarity [179] (cf. Sections 1.2.1 and

2.1.1). The probability of point x⃗(j1) being correctly classified is then

just the sum over all P (Nj1j2) where x⃗(j2) has the same class label as

x⃗(j1). Using an approach based on gradient descent (cf. Section 5.2.2),

Goldberger et al. optimize the transformation matrix G such that the

expected number of correctly classified points is being maximized. The

supervision information used by Goldberger et al. does not directly

fit into the two classes described above, because they do not explicitly

define constraints on the distances. However, by maximizing the clas-

sifier’s accuracy, they implicitly target a mapping, which moves data

points from the same class closer together, while moving data points

from different classes further apart.

While linear models are conceptually straightforward and usuallyNonlinear methods

easy to train, a linear transformation of the feature space may some-

times not be sufficient in order to obtain a useful distance function

d̂(x⃗(j1), x⃗(j2)). This is the motivation for nonlinear metric learning methods,

which do not require the mapping function ϕ to be linear. However,

in practice ϕ still belongs to a parametric class of function, whose

parameters can be estimated in a reasonably straightforward way.

According to Kulis [236], the easiest way to obtain a nonlinear methodUsing the kernel trick

is by kernelizing a linear model, ie.e., applying the kernel trick: One can

usually reformulate the overall loss function of the linear model in such a

way, that it only makes use of inner products (x⃗(j1))T x⃗(j2). One can then,

analogously to support vector machines (Section 5.2.3, replace these

inner products with a kernel functionκ(x⃗(j1), x⃗(j2)) = ϕ(x⃗(j1))T ·ϕ(x⃗(j2)),
which computes the inner product in a feature space induced by the

(nonlinear) mapping function ϕ. If the kernel function κ as well as the

regularizer R(A) used in the model fulfill some mild constraints, the

algorithms for estimating such a nonlinear model for metric learning

can be generalized from the linear to the kernelized case.

However, as Kulis [236] notes, at least for the metric learning problem,Limitations of

kernelization
using the kernel trick increases the number of parameters to be learned

by the model from O(n2) to O(N2). Learning a kernelized linear model

can thus become challenging for large datasets where N ≫ n, an effect

similar to the one already discussed for support vector machines in

Section 5.2.3. We would furthermore like to add, that by using the

kernel function κ instead of the underlying mapping function ϕ, we do

no longer have an explicit access to the transformed space, which can

therefore not be directly analyzed.

Please note that kernelization is only one possible way to construct aNonlinear methods

based on neural

networks

nonlinear model. In the following, we will focus on another approach,

which makes use of artificial neural networks to learn a nonlinear

mapping function ϕ. In all of the examples made below, these artificial

neural networks receive images (i.e., raw pixel information) as input

and map them into a considerably lower-dimensional embedding space.
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Salakhutdinov and Hinton [345] were among the first to use artificial Nonlinear

neighborhood

component analysis

neural networks for nonlinear metric learning. They argue that linear

transformations only have a small number of free parameters and that

they are therefore not able to capture higher-order correlations in the

data. Thus, Salakhutdinov and Hinton propose to use a multilayer

network to learn a nonlinear mapping function ϕ, which comes with

more free parameters and may therefore be able to discover a better

low-dimensional representation of the data. Salakhutdinov and Hinton

extend the neighborhood component analysis (NCA) model by Gold-

berger et al. [167] by replacing the linear transformation with a neural

network and by using gradient descent on the NCA loss function in

order to tune the network’s weights. More specifically, they use the

structure of an autoencoder (briefly introduced in Section 1.3.3 and to

be discussed in more detail in Chapter 6), which is trained both to accu-

rately reconstruct the data points and to fulfill the NCA objective with

respect to its bottleneck layer. Salakhutdinov and Hinton furthermore

show that one can split the bottleneck layer (i.e., the lower-dimensional

representation) into two parts and only apply the NCA objective to

one of these parts. After training, this part of the bottleneck layer then

captures mainly classification information, while the remaining part of

the bottleneck layer mostly represents information relevant for a correct

reconstruction of the data points.

Snell et al. [381] proposed ProtoNet, which combines a neural network ProtoNet: metric

learning and

prototypes

as nonlinear mapping function ϕ with a protoype-based classification

mechanism: In the transformed space Z , they construct a category

prototype p⃗c for each of the classes by simply taking the average over all

data points. The probability of a data point x⃗ being labeled with class c
is based on a (properly normalized) exponential decay of the distance

between the projected data point ϕ(x⃗) and the respective class prototype

p⃗c, formally p(c|x⃗) ∝ e−d(ϕ(x⃗),p⃗c). This usage of exponentially decayed

distances corresponds to the softmax function used by Goldberger et

al. [167] for their NCA model. We can thus establish a strong link to

the conceptual spaces framework, because also Gärdenfors [179] has

proposed to represent each concept with a single prototype, to measure

similarity between points by an exponentially decaying function of

distance, and to classify data points based on their distance to the given

prototypes (cf. Sections 1.2.1, 1.2.2, and 2.1.1).

Like many of the contributions mentioned above, also Triantafillou Neural approach

with ranking-based

constraints

et al. [410] apply metric learning in order to facilitate few shot learning.

Like both Salakhutdinov and Hinton [345] and Snell et al. [381], they

make use of an artificial neural network for learning a nonlinear map-

ping function ϕ. In the resulting embedding space, they measure the

similarity of two data points x⃗(j1) and x⃗(j2) with the Cosine similarity

Sim(x⃗(j1), x⃗(j2)) = cosα = x⃗(j1)·x⃗(j2)
||x⃗(j1)||·||x⃗(j2)||

, which is based on the angle

α between the two vectors. Their approach to enforcing constraints

is inspired by information retrieval: For a given data point x⃗, they

compute a ranking of all other points x⃗(j) from the dataset based on the

Cosine similarity in the embedding space Z . They define that a point
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x⃗(j) is relevant to x⃗, if both points have the same class label. Precision

at k for x⃗ is then defined as the proportion of points x⃗(j1) relevant

to x⃗ within the k highest-ranked points. The mean average precision is

then computed by averaging over all positions k and all data points

x⃗. By trying to maximize the mean average precision, Triantafillou

et al. implicitly constrain the mapping function in such a way, that

the points with the highest ranking for a given query point x⃗ (i.e., the

ones judged most similar to x⃗) are the ones with the same class label as x⃗.

The overall motivation of metric learning is indeed quite in lineSimilarities between

metric learning and

conceptual spaces

with the general idea of conceptual spaces: We are interested in a

relatively low-dimensional space, where distances measured by the

Euclidean metric are meaningful in the sense, that they can be used for

classification. Also the formulation of similarity as an exponentially

decaying function of distance used by Goldberger et al. [167] and Snell

et al. [381] is in line with conceptual spaces. In general, the assumption

of a nearest neighbor classifier can be related to an exemplar theory of

concepts (cf. Sections 1.1.1 and 5.2.5), while the class prototypes used by

ProtoNet [381] clearly relate to prototype theory (cf. Sections 1.1.1 and

1.2.2). While the conceptual spaces framework itself is in principle open

to both variants, Gärdenfors [179] leans towards a prototype-based

representation, since it is computationally more efficient. In theory,

through additional constraints used in learning the transformation

function ϕ, one could also incite convexity of conceptual regions, which

is a key assumption of the original conceptual spaces framework.

While we can therefore see certain parallels between metric learningDifferences between

metric learning and

conceptual spaces

and conceptual spaces, there are, however, also some considerable

differences. In metric learning, both the application scenario and the

constraints employed are mostly limited to classification scenarios.

While a correct class assignment of data points to concepts is of course

also important to the conceptual spaces framework, it also incorporates

many other aspects such as conceptual betweenness (cf. Section 4.5,

subsethood of regions as an indication of a conceptual hierarchy (cf.

Section 4.2), and concept combination (cf. Section 3.6.2), which are

irrelevant to the metric learning problem. Also the domain structure

enforced by conceptual spaces is not considered in metric learning.

Furthermore, conceptual spaces aim to give a psychological grounding

to the similarity spaces by relating them to human behavior in psy-

chological studies. We are not aware of metric learning approaches

explicitly incorporating psychological similarity ratings in their models.

Finally, the conceptual spaces framework assumes that the dimensions

spanning the similarity space are cognitively meaningful and thus

easy to interpret. Again, metric learning is usually not focused on the

interpretability of the resulting embedding space, but mostly interested

in the final classification performance.

Despite these obvious and (at least partially) important differences,Outlook

metric learning is clearly related to conceptual spaces and will play a

role in Chapter 7 in the context of incorporating background knowledge

when learning conceptual regions. Moreover, our hybrid approach for
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grounding conceptual similarity spaces in both psychological data and

artificial neural networks, which will be presented in Chapter 8, has a

strong relation to metric learning. Finally, we can envision a research

program dedicated to bridging the aforementioned differences between

metric learning and psychological theories such as conceptual spaces,

which can potentially benefit both research areas.

5.4 summary

In this chapter, we have provided a general overview of machine learn- Lessons learned

ing. In the beginning, we laid out important general considerations

about machine learning tasks. Moreover, we have presented several

standard machine learning algorithms which can be used in an "off-

the-shelf" manner, and which will be used in our experimental studies.

Some of these approaches are directly applicable to learning concep-

tual regions, while others can be used for identifying interpretable

directions. We considered linear models (namely, linear regression,

logistic regression, and support vector machines), decision trees and

random forest as rule-based approaches, and k nearest neighbors as

an instantiation of the exemplar theory of concepts. We also discussed

different approaches for dimensionality reduction, including feature

selection, feature extraction through a principal component analysis,

and metric learning. All of these approaches can be related to the

translation of subsymbolic information to the conceptual layer.

The content of this chapter serves as a basis for our experiments in Outlook

Chapters 9, 10, and 12. Before we describe these experimental studies,

we, however, first need to introduce artificial neural networks as a

powerful machine learning method in Chapter 6, and multidimensional

scaling as another variant of feature extraction in Chapter 8. Moreover,

the background provided in this chapter provides the basis for learn-

ing conceptual regions in a cognitively plausible way, which will be

discussed in Chapter 7.
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The first crucial step towards applying the conceptual spaces frame- Grounding

conceptual spaces

with representation

learning

work in artificial intelligence consists in specifying its underlying

dimensions. While this can be manually done for a small amount of

well-understood domains (e.g., color), this step is much more problem-

atic for more complex domains, which are less well understood (e.g.,

shape). In this chapter, we introduce representation learning, which is

a research area that focuses on learning useful representations from

raw perceptual data (e.g., the pixel values of images) using artificial

neural networks. Recent developments in this area focus on learning

disentangled representations, where the individual dimensions of the ex-

tracted representation have a meaningful interpretation. We argue that

especially these approaches are suitable for extracting the dimensions

of a conceptual space from perceptual input.

In Section 6.1, we introduce the task of representation learning in

more detail, focusing on general desiderata for good representations

and how to quantitatively evaluate learned representations. We then

introduce artificial neural networks (ANNs) as a powerful machine

learning method in Section 6.2, covering both architectural consider-

ations and training algorithms. In Section 6.3, we then put our focus

281
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on various ANN-based approaches to representation learning, includ-

ing autoencoders, word embeddings, and recent approaches such as

InfoGAN [101] and β-VAE [196], which aim to extract disentangled

representations. In Section 6.4, we then relate this to conceptual spaces,

before concluding this chapter in Section 6.5.

Our discussion of representation learning for conceptual spaces in

Section 6.4 is partially based on ideas presented in [44].

6.1 representation learning

The process of feature engineering is of crucial importance in any machineFeature engineering

and representations
learning pipeline (cf. Sections 5.1.4 and 5.3). Having the "right" set of

features (i.e., a good representation of the data) greatly benefits the

performance of all machine learning algorithms. This also holds for

many other information processing tasks, as illustrated by Goodfellow

et al. [172, Chapter 15]: Dividing two integers is considerably easier in

the Arabic numeral system than in the Roman numeral system, since

the former makes use of a place value system. Although the task may

be identical, choosing the right representation can greatly influence its

difficulty and hence also the chances of success.

The features of a good representation are often based on domainRepresentation

learning
knowledge. However, if such domain knowledge is scarce, finding a

good representation of a given dataset can be quite tedious. The research

area of representation learning thus focuses on automated techniques for

discovering a suitable representation. More specifically, one can define

representation learning as "learning representations of the data that

make it easier to extract useful information when building classifiers

or other predictors" [56]. A good representation thus should make a

subsequent learning task easier [172, Chapter 15].

Representation learning is closely related to the topic of dimensional-Difference to

dimensionality

reduction

ity reduction discussed in Section 5.3, since we are interested in finding

an alternative feature space Z (sometimes called latent space in the

representation learning context), which corresponds to a more compact

representation than the original input space X . However, the two topics

have a different focus: Dimensionality reduction techniques typically

assume the existence of a set of handcrafted candidate features. The

main task of dimensionality reduction can then be framed as finding a

more compact way of representing the information from this feature

set, either by identifying an optimal subset (feature selection, cf. Section

5.3.1), or by finding a projection into a lower-dimensional space (feature

extraction, cf. Sections 5.3.2 and 5.3.3). Representation learning, on the

other hand, takes the raw perceptual input, which has not yet been

preprocessed, and aims to learn useful features based on this low-level

information. In a computer vision task, for example, dimensionality

reduction starts with a large set of handcrafted features (e.g., edge

detectors), while representation learning starts from raw pixel values.
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In the following, we first discuss some general desiderata for good

representations in Section 6.1.1, before introducing different ways of

evaluating the quality of learned representations in Section 6.1.2.

6.1.1 Desiderata for Good Representations

Given an input x⃗, representation learning tries to discover a map- Representation

learning as function

learning

ping function ϕ, such that the representation z⃗ = ϕ(x⃗) is useful for

downstream tasks. This learned representation z⃗ (with the respective

underlying feature space Z) is also referred to as latent code or hidden

representation, and its features are also called latent variables. The map-

ping function ϕ is typically expected to have some desirable properties.

In the following, we will summarize a few of these desiderata.

The first property, which is often required from the mapping function Smoothness: similar

inputs lead to similar

representations

ϕ, is that it is smooth: If we have two similar inputs x⃗ ≈ x⃗′, then also

their representation should be similar, i.e., ϕ(x⃗) ≈ ϕ(x⃗′) [56]. Minor

changes in the observable properties of the data (e.g., small changes of

pixel intensities in an image) should thus only lead to small changes in

the extracted representation. This smoothness prior is implicitly used

by most machine learning algorithms in order to interpolate between

training examples (cf. Section 5.1.4).

Moreover, a good representation should be expressive in the sense that Expressiveness and

distributed

representations

a relatively small number of variables in the extracted representation

can capture a relatively large number of possible input configurations

[56]. This motivates the use of distributed representations instead of one-hot

representations: In one-hot representations, the different variables of

the representation are mutually exclusive which typically means that

only one of them can be nonzero. A representation with n features

can thus only represent n different configurations. In a distributed

representation, the different variables are assumed to refer to different

properties of the data. Using a representation with n features that can

take v different values each, one can thus distinguish vn different input

configurations [172, Chapter 15]. One may assume, that generalization

is made possible through shared properties, which provides another

motivation for distributed representations, namely, to capture these

properties[172, Chapter 15]. Using a distributed representation thus

gives rise to a similarity space [172, Chapter 15].

One can also argue that a good representation requires a certain depth Depth: multiple

hierarchy levels
or hierarchical structure: Since the input (e.g., pixel values of images) is

often related to the abstract explanatory factors (such as categories of

the objects in the image) in quite complex ways, one may need multiple

steps to extract these factors from the raw input [172, Chapter 15]. Sim-

pler representations of the input are then used to define more abstract

representations, which tend to be more invariant to local changes [56].
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Another typical assumption made in representation learning is thatManifolds: only

small parts of the

input space are

populated

the observations occupy only small subregions of the overall input

space. For instance, photographs of human faces occupy only a very

small region in the overall space of possible combinations of pixel

values. These small subregions are called manifolds (cf. Section 5.1.4). In

representation learning, one thus assumes that the learned representa-

tions correspond to local coordinate systems on these manifolds [172,

Chapter 15]: They describe for instance all changes to a photograph

of a face which ensure that it still "counts" as a picture of a face. All

other possible variations (which would destroy the semantic content

of the image) do not need to be considered in the learned representation.

A special focus in this chapter will be on disentangled representationsDisentanglement:

individual features

correspond to

individual semantic

properties

(cf. Section 5.3.2): Individual variables of the extracted representation

should correspond to individual underlying factors of variation in

the data, which can vary independently from each other [56]. These

underlying factors of variation can be thought of as high-level semantic

properties of the respective input. One can argue that such a repre-

sentation is desirable for downstream tasks: If this downstream task

targets one underlying factor (e.g., class membership) which is among

the factors contained in the representation (or closely related to one or

some of these), then it should be very straightforward to learn the task

based on the given representation [172, Chapter 15]. Moreover, one can

argue that information about individual factors can be readily accessed

in disentangled representations and is relatively robust to irrelevant

changes in the input [416]. Furthermore, disentangled representations

can be expected to be easily interpretable, which relates strongly to the

goal of explainable AI [113, 133, 274] and the interpretable dimensions

of conceptual spaces (cf. Sections 1.2.1 and 2.1.1).

When it comes to defining disentanglement in more detail, threeThree criteria for

disentanglement:

modularity,

compactness, and

explicitness

criteria are commonly used [416]: Modularity requires that each variable

in the representation captures only a single factor of variation, while

compactness requires that all information about a single factor of varia-

tion is only represented in a very small number of variables, preferably

one. Taken together, these two criteria aim at a one-to-one mapping

between variables in the representation and factors of variation. The

third criterion requires that the representation should be explicit in the

sense that a mapping between variables and true underlying factors

corresponds to a simple linear model.

Based on the assumption of disentangled representations, one canSparsity: most

features are

irrelevant for most

inputs

furthermore argue that a good representation should be sparse [172,

Chapter 15]: If the different variables of the learned representation

correspond to independent features, then one may expect that most

features are irrelevant for most inputs. Hence, only a small subset

of features should be "active" (i.e., have nonzero values). Please note

that extreme sparsity leads to a one-hot representation, which (as we

discussed above) is, however, not desirable, since it prevents an expres-

sive representation. Sparsity and expressiveness can thus be to some
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extent conflicting desiderata for a good representation – in practice, one

therefore needs to aim for a good trade-off between these two goals.

As we have seen in this brief overview, there are different desiderata

a good representation should fulfill. Unfortunately, it is quite difficult

in practice to establish a clear training objective targeting all of the

desiderata mentioned above [56]. In the next section, we will give an

overview of different evaluation metrics to judge the quality of an

extracted representation.

6.1.2 Evaluating Representations

Evaluating the quality of a learned representation can be done in Extrinsic vs.

intrinsic evaluation
different ways. For the purpose of our discussion, we would like to

distinguish extrinsic from intrinsic evaluation approaches.

In an extrinsic evaluation, the representations are not evaluated Extrinsic evaluation:

performance in a

downstream task

directly, but based on their performance in a downstream task. For

instance, one can train a simple linear classifier on top of the extracted

representation and measure its classification accuracy [56]. Presumably,

representations that enable a higher classification accuracy contain more

useful pieces of information than representations with a lower accuracy.

This may, however, not reflect the quality of the representation accurately,

if only a single narrow task is used for evaluation. It would therefore

be desirable to evaluate a given representation with respect to multiple

different tasks. This can, however, become computationally demanding.

In addition to supervised downstream task, one can also evaluate

unsupervised objectives. For instance, one can measure how well the

original input can be reconstructed from the extracted representation.

In an intrinsic evaluation, the performance in downstream tasks is Intrinsic evaluation:

statistical properties

of the representation

itself

not considered. Instead, statistical properties of the learned represen-

tation itself are used to quantify its quality. For instance, in order to

quantify the sparsity of a given representation, one can compute the

average fraction of non-zero variables over a set of test examples. In the

following, we will focus on different intrinsic evaluation metrics for

measuring disentanglement.

Higgins et al. [196] proposed theβ-VAE score, which can be considered β-VAE score:

quantifying

explicitness based on

difference vectors

one of the first measures for disentanglement. They assume the existence

of a dataset, where each data point is labeled with the values of its

true generating factors. They propose to use pairs (x⃗, x⃗′) of data points,

which agree on exactly one of the generative factors, but whole values

differ with respect to all other generative factors. Higgins et al. then

extract the hidden representations z⃗ = ϕ(x⃗) and z⃗′ = ϕ(x⃗′) for these two

data points and compute their difference vector z⃗diff = |z⃗− z⃗′|. A linear

classifier is then trained to classify based on z⃗diff which generative

factor was held constant. Theβ-VAE score corresponds to the accuracy of

this classifier. On an intuitive level, the β-VAE score quantifies whether

we are able to identify the generative factors as interpretable directions
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in the latent space Z induced by the learned representation. It can thus

be interpreted as a way to measure explicitness (cf. Section 6.1.1).

While being a crucial first step in the right direction, the β-VAE scoreCriticism of the

β-VAE score
is clearly not optimal. Kim and Mnih [221] for instance have criticized,

that it might be too sensitive to the hyperparameters of the linear classi-

fier (e.g., its learning rate). Moreover, they highlight, that the β-VAE

score does not enforce that the dimensions of the latent code are aligned

with the true generative factors: Even if the latent code consists of linear

combinations of the true generative factors, the disentanglement metric

will return a high score. Thus, modularity and compactness (cf. Section

6.1.1), which together ensure a one-to-one mapping between learned

features and factors of variation, are not covered by the β-VAE score.

Finally, Kim and Mnih identify a failure mode of this disentanglement

metric: Even if only K − 1 of K factors have been disentangled, the

linear classifier can reach 100% accuracy by learning that theKth factor

corresponds to the absence of all other factors.

Based on their criticism, Kim and Mnih [221] propose the FactorVAEFactorVAE score:

quantifying

modularity based on

feature variance

score. Here, multiple examples x⃗j1 , . . . , x⃗(jk) are sampled, where one of

the generating factors is kept fixed, while all others are varied. Now,

instead of computing difference vectors for pairs of induced latent codes

z⃗(j), Kim and Mnih compute the normalized variance of each latent

dimension over all representations z⃗j1 , . . . z⃗(jk). They then determine

the index of the latent dimension with the least variance and train a

simple majority vote classifier which needs to predict the generating

factor that has been kept fixed solely from this index. The FactorVAE

score is then defined as the error rate of this simple classifier. The

classifier in this setup can only be successful, if the latent dimension

with the least variance corresponds to the given ground truth factor.

The FactorVAE score thus quantifies modularity.

Again, one can criticize that the FactorVAE score only covers one ofCriticism of the

FactorVAE score
the three criteria for disentangled representations (cf. Section 6.1.1) and

ignores both compactness and explicitness. For instance, also redundant

representations, where each generative factor is represented by multiple

features, can obtain a very good FactorVAE score, despite being not

very desirable in practice. Moreover, as Kim and Mnih, however, ac-

knowledge, their improved disentanglement metric is still not suitable

for data with non-independent factors of variation.

Kumar et al. [237] propose to use separated attribute predictability (SAP)SAP score:

quantifying

compactness based

on prediction

performance

for quantifying disentanglement. In order to compute the SAP score,

one needs to construct an n×K matrix S showing the connection from

each of the n latent variables to the K generative factors. Kumar et al.

propose to compute Sik as the accuracy of predicting the kth generative

factor based on the ith latent variable only. For continuous generative

factors, they propose to use the R2
score of a linear regression (cf.

Sections 5.1.2 and 5.2.1), whereas for categorical generative factors,

they propose to use the balanced classification accuracy obtained by
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a simple thresholding on i. Now for each generative factor k (i.e., for

each column of S), Kumar et al. compute the difference dk of the two

largest entries, i.e. dk = Si1k − Si2k where i1 and i2 index the two rows

with the largest values in column k. The final SAP score corresponds to

the arithmetic mean over all these values. Thus, a large SAP score can

only be obtained if each column of S has exactly one large value. This

means, that each generative factor is captured only by a single latent

variable, making the SAP score a metric that measures compactness.

Just as for the β-VAE score and the FactorVAE score, we can again Criticism of the SAP

score
criticize that only a single criterion for disentanglement is being oper-

ationalized – both modularity and explicitness are not directly taken

into account. The SAP score therefore does not allow us to discriminate

between a generative factor k, that is represented by multiple features

(leading to multiple large entries in the kth column, i.e., a small differ-

ence dk), and a generative factor k′, that is not covered by the learned

representation at all (thus haveing only small entries in the k′th column,

leading also to a small difference dk′).

Eastwood and Williams [142] propose a systematic framework with Eastwood and

Williams: systematic

framework based on

regression

three metrics, which aim to cover all three criteria of disentanglement,

namely, modularity, compactness, and explicitness, respectively.
1

These

disentanglement metrics are all based on training a regressor to map

from the given latent representation to the values of the true generative

factors. Eastwood and Williams assume that we can derive a matrix R
of relative importance values from our trained regressor. Each entry

Rik of this matrix represents the relative importance of the ith latent

variable for predicting the kth generative factor. Eastwood and Williams

propose two types of regressors, namely, a lasso regressor (cf. Section

5.2.1) and a random forest regressor (cf. Section 5.2.4). In the case of a

lasso regressor, the matrix of learned weights is used for defining R. In

the case of a random forest regressor, the entries of R are based on the

frequency of a given latent dimension being used as a decision node in

one of the trees. While a lasso regressor results in a sparse linear model,

a random forest regressor is able to discover also nonlinear mappings

between latent dimensions and generative factors.

The first evaluation metric proposed by Eastwood and Williams is Informativeness:

prediction error of

the regressor

called informativeness I and corresponds to the overall prediction error

(measured for example with the mean squared error, cf. Section 5.1.2).

This metric measures how much information about the K generative

factors is contained in the overall latent code z⃗. Informativeness based

on a lasso regressor quantifies explicitness, since a lasso regressor uses

a linear model (cf. Section 5.2.1). It can thus be linked to the β-VAE

score [196] discussed above. Since a random forest regressor is not

based on a linear model (cf. Section 5.2.4), informativeness cannot give

any insights about a linear relationship between learned features and

1 An implementation of their evaluation framework is publicly available at https:
//github.com/cianeastwood/qedr.

https://github.com/cianeastwood/qedr
https://github.com/cianeastwood/qedr
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generative factors, if a random forest is used as a regressor.

A second metric called disentanglement D measures, whether eachDisentanglement:

quantifying

modularity based on

feature importance

latent variable captures at most one generative factor. It thus refers to the

modularity criterion and is therefore related to the FactorVAE score [221]

introduced above. In order to compute the overall disentanglement score

D, a local disentanglement scoreDi is computed for each latent variable.

It is based on the entropy of the probability distribution induced by

the ith row of R. Recall from Section 5.2.4, that the entropy H(A) of a

random variable A measures the degree of uncertainty associated with

A. In our context, we thus measure, whether the entries in the ith row

of R are uniformly distributed (resulting in a high entropy), or whether

they are very unevenly distributed (resulting in a low entropy). The

highest value of Di = 1 is obtained, if the entropy becomes zero, i.e., if

the ith latent variable is only useful for predicting a single generative

factor. The overall disentanglement score D is then computed as a

weighted sum over the individual Di, where the weights are based on

the overall predictive power of the respective latent variable.

The third proposed evaluation metric is called completeness C andCompleteness:

quantifying

compactness based

on feature

importance

measures whether each generative factor is only captured by a single

latent dimension. It thus refers to the compactness criterion and is

hence related to the SAP score [237]. Completeness is defined in a

way analogous to the disentanglement D, but focusing on the columns

of R instead of its rows. A high local completeness value Ck is thus

only obtainable for a very uneven distribution of entries in the kth

column, corresponding to a scenario, where information about a given

generative factor is only represented by a single feature.

The evaluation framework proposed by Eastwood and WilliamsCriticism of the

framework: mutually

exclusive and

uncorrelated

generative factors

seems to be the most comprehensive one developed so far since it

explicitly considers all three aspects of disentanglement. However, it

does not come without weaknesses: The generative factors are assumed

to be mutually exclusive and uncorrelated. For correlated or overlap-

ping generative factors, the disentanglement metric D automatically

becomes smaller, because a single latent dimension then naturally is

useful for predicting multiple generative factors. This might impair

the comparability of the disentanglement metric D across different

datasets. The usage of a lasso regressor rather than an unregularized

linear regression might reduce this problem, because the L1 penalty

encourages the usage of only a single source of information (cf. Section

5.2.1). It might, however, be difficult in practice to determine the amount

of regularization needed to counteract correlated generative factors.

Moreover, one typically would like to find a monotone mappingCriticism of the

framework: monotone

correlations

from latent dimensions to generative factors, i.e., an increase in the

generative factor should be matched by an increase in the respective

feature. This is fulfilled when using a lasso regression, because a linear

mapping is always monotone. However, linear models require also,

that this relationship needs to be linear – an assumption, which may be

too restrictive in some cases. For instance, when considering disks, one

generative factor may correspond to the overall area, while the learned
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representation may contain a feature corresponding to the radius of

the dist. These two are clearly related, but their relation is quadratic,

i.e., nonlinear. Using a random forest regressor also allows for such

nonlinear mappings, but does not require monotonicity any more – a

random forest can also learn a U-shaped function mapping features to

generative factors. Thus, when using a random forest regressor, both

the regression performance (i.e., the informativeness score I) and the

entries of the matrix R (and hence also the disentanglement D and the

completeness C) do not necessarily reflect a monotone, but rather an

arbitrary nonlinear decoding of the latent code.

Chen et al. [100] have criticized classifier-based disentanglement General criticism of

classifier-based

metrics

metrics in general due to their dependence on specific hyperparameter

settings: Since the choice of a classifier’s hyperparameters (such as the

regularization strength in the case of a lasso regression) might strongly

influence its performance, it might thus also have a heavy impact on

the disentanglement metric. Moreover, the optimal hyperparameters

for a classifier-based disentanglement metric might depend also on the

dataset and on the model being evaluated, making it more difficult to

compare disentanglement scores to each other.

Chen et al. [100] therefore propose the MIG score as a classifier- MIG score:

quantifying

compactness based

on mutual

information

free disentanglement metric based on mutual information.
2

They first

compute the mutual information between all pairs of latent variables

and generative factors, i.e., the amount of uncertainty about one of the

two random variables, which is removed when observing the other

(cf. Section 5.3.2). The mutual information gap (MIG) is then defined for

each generative factor by computing the difference between the two

latent dimensions with the highest mutual information. The arithmetic

mean over all generative factors then results in the final MIG score.

Through the focus on finding a single latent variable for each generative

factor, the MIG score is another metric referring to compactness. The

procedure of comparing the two largest values for each generative

factor relates it closely to the SAP score [237] as discussed above.

Again, one may criticize, that the MIG score only considers compact- Criticism of the MIG

score
ness, but ignores modularity and explicitness. Just as for the SAP score

[237], the mutual information gap thus cannot discriminate, whether a

given generative factor is captured by multiple features or by no feature

at all. As we have seen in the discussion of the disentanglement D
and the completeness C as proposed by Eastwood and Williams [142],

one could, however, also derive a MIG score focused on latent features

rather than generative factors, which would then quantify modularity.

Van Steenkiste et al. [416] have evaluated the representations ex- Empirical

comparison of

disentanglement

scores

tracted by different representation learning algorithms on an abstract

visual reasoning task, which consisted of identifying the right continua-

tion for an incomplete sequence of images. When associating the values

of the different evaluation metrics discussed above with performance

2 See https://github.com/rtqichen/beta-tcvae for their implementation.

https://github.com/rtqichen/beta-tcvae
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in their downstream task, van Steenkiste et al. found that the FactorVAE

score showed the highest correlation among all proposed evaluation

metrics. This may indicate that for downstream tasks, modularity is

more important than compactness or explicitness. However, they may

still play an important role for human interpretability and storage

efficiency and are thus in our opinion still worthwhile to consider. Van

Steenkiste et al. found, that in general, representations with high disen-

tanglement scores enabled quicker learning from a smaller number of

examples. Their results thus provide empirical evidence both for the

usefulness of disentangled representations in downstream tasks and

for the soundness of the proposed evaluation metrics.

All of the metrics discussed so far assume, that the true generativeThe need for

unsupervised

disentanglement

metrics

factors and their respective values are already known. However, when

applying representation learning to a novel problem, these factors

may not be known in practice, motivating the usage of representation

learning in the first place (cf. Section 6.1). Instead of using the disen-

tanglement scores from an annotated dataset to estimate the expected

quality of a learned representation on a novel problem, it would thus

be highly desirable to quantify disentanglement directly on the novel

problem. We therefore now briefly introduce a recent proposal for an

unsupervised disentanglement metric by Li et al. [257].
3

They assume

that the overall latent code is structured into meaningful subspaces of

variation, where all semantic variations of the same type (e.g., manipu-

lating the rotation of an object) take place in the same subspace. Li et al.

further assume that real examples and artificial examples generated

from the latent representation are nearly indistinguishable from each

other and that therefore the real examples are close to the space spanned

by the generated examples.

In order to measure the performance of a given representation learn-The approach by Li et

al.: quantifying

disentanglement

based on subspace

clustering

ing system, Li et al. [257] start with a given latent code and generate a

sequence of sample data points by manipulating only a single latent

variable. All sequences which are based on the manipulation of the

same latent variable (but on different original latent codes) are assigned

to one cluster. This dataset of sequences is then fed to a so-called sub-

space clustering algorithm, which defines a cluster as a set of sequences

lying in the same subspace of data. Li et al. use a normalized version

of mutual information to compare the resulting clustering found by

the subspace clustering algorithm to the original clustering induced by

the creation of their dataset. They argue, that if the subspace clustering

algorithm is able to recover the clusters (i.e., the latent variable that has

been changed), then varying this latent variable must have a systematic

and meaningful effect on the generated data points. As a second part

of their evaluation metric, Li et al. use the mean distance of the original

data points to the overall subspace spanned by the artificially generated

data points. This is intended to measure how realistic the generated

samples look. Their overall metric is then a convex combination of the

3 See https://github.com/ZejianLi/analogical-training for their implementation.

https://github.com/ZejianLi/analogical-training
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two aforementioned quantities.

While their evaluation approach is indeed unsupervised in nature, it Criticism of this

approach
can be criticized for different reasons. Firstly, the overall score combines

a measure of disentanglement with a measure of output quality. These

are, however, two conceptually separate ways of evaluating a represen-

tation learning system. In order to better distinguish these aspects, it is

hence preferable to use separate metrics. Moreover, the performance

of the subspace clustering algorithm might depend heavily on its hy-

perparameters (including also the sizes of the sequences and clusters).

It is also not obvious that a good performance of this subspace clus-

tering algorithm indicates that no latent dimension involves multiple

generative factors and that all generative factors are represented in the

latent code. This means, that their approach does not directly target

modularity, compactness, or explicitness. So while the work by Li et al.

is an important first step into the direction of unsupervised evaluation

methods for disentanglement, it also highlights that much work still

remains to be done and that we especially need a clear conceptual and

mathematical foundation for unsupervised disentanglement metrics.

6.2 artificial neural networks

Artificial neural networks (ANNs) are a powerful, but complex ma-

chine learning technique, which can be used to approximate arbitrary

functions with arbitrarily small error. Since we will apply artificial

neural networks in our machine learning experiments in Part III of this

dissertation, and since these models can become quite complex, we

now introduce them in more detail than the other machine learning

algorithms from Chapter 5. Our introduction is mainly based on the

textbook "Deep Learning" by Goodfellow, Bengio, and Courville [172].

Artificial neural networks are often motivated as being (loosely) Biological inspiration

for artificial neural

networks

inspired by neurobiology, since the brain can be thought of as a complex

network of interconnected neurons. In a quite simplified model, each

of these individual units represents a single vector-to-scalar function,

which takes a number of real-valued inputs (raw perceptual data or

activations of other units) and outputs its own activation based on

these inputs [172, Chapter 6]. In the ANN model, these activation

values are computed based on a weighted sum of the inputs and a

subsequent nonlinear transformation. An artificial neural network can

then be defined as a collection of such individual artificial neurons

[341, Section 18.7]. One should, however, note that the actual goal of

ANNs is not to provide an accurate model of brain function, but to

solve machine learning tasks [172, Chapter 6]. For instance, the output

of the individual units is a single real number instead of the chain of

spikes typically observed in biological neurons [295, Chapter 4].

In addition to this biological inspiration, one can also motivate Transforming the

feature space
artificial neural networks from an engineering perspective [172, Chapter
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6]: Linear models such as logistic regression (cf. Section 5.2.2) are easy

to fit, but limited to simple linear hypotheses – they can only solve tasks,

for which the examples are linearly separable. In order to allow for

nonlinear hypotheses, one can transform the input x⃗ with a mapping

function ϕ(x⃗) into a different feature space, where the examples can be

linearly separated, and then train a linear model in this derived feature

space. This procedure is used by support vector machines, where a

generic kernel function κ(x⃗(j1), x⃗(j2)) is used to compute the inner

product of two vectors in the transformed feature space (cf. Section

5.2.3). Another option consists in manually engineering the mapping

function ϕ(x⃗) by defining useful features based on domain knowledge –

this is called feature engineering (cf. Sections 5.3 and 6.1) and has been

the predominant approach in computer vision for many decades.

Artificial neural networks, on the other hand, follow a third ap-Learning the

mapping function
proach by learning ϕ(x⃗) – the classification function thus becomes

f̂(x⃗; θ, w⃗) = g(w⃗ · z⃗) = g(w⃗ · ϕ(x⃗; θ)), where the model parameters w⃗
and the activation function g are used for making a linear classification,

and where the mapping function ϕ comes with its own set of free

parameters θ. Both w⃗ and θ need to be learned in order to solve the

overall problem. Artificial neural networks therefore implicitly solve a

representation learning problem by estimating the parameters θ of ϕ. If

the individual entries of ϕ(x⃗) are defined as a logistic regression (i.e.,

σ(w⃗ · x⃗), cf. Section 5.2.2), one naturally arrives at a layered network of

interconnected units. One can thus think of ANNs as stacked logistic

regressions, which give rise to a nonlinear model with an intermediate

hidden feature space Z .

Mitchell [295, Chapter 4] lists some important general properties ofGeneral properties of

ANNs
artificial neural networks: They are useful on noisy, complex sensor data

as provided by cameras or microphones, where the training examples

may contain errors. Moreover, ANNs can be used with arbitrary target

functions and are thus applicable to binary classification, multi-class

classification, and regression. They usually require long training times,

but are fast to evaluate. A major disadvantage is that the hypothesis

learned by a neural network is often very difficult to interpret, since

it is represented by a large number of numeric weights. Deep ANNs

using a large number of hidden layers have in recent years excelled

at many different tasks, ranging from image classification [193] over

language modeling [83] to reinforcement learning [371]. They have

therefore proven to be quite powerful tools for solving different types

of machine learning tasks.

Goodfellow et al. [172, Chapter 11] give some general recommen-Important design

choices
dations for applying artificial neural networks in practice. They first

emphasize the importance of using an appropriate network architecture.

We will consider two basic variants in our introduction, namely, fully

connected feedforward networks (Section 6.2.1) and convolutional neu-

ral networks (Section 6.2.2). Furthermore, Goodfellow et al. recommend

to introduce some mild regularization techniques (cf. Section 5.1.3),

such as weight decay, dropout, or transfer learning. We will give an
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Figure 6.1: Illustration of a multilayer feedforward network. (a) Individual

hidden unit. (b) Network of units arranged in layers. (c) Layer-

based visualization.

overview of regularization in ANNs in Section 6.2.3. Moreover, Good-

fellow et al. suggest to use stochastic gradient descent with momentum

and a decaying learning rate, or Adam [223] as optimization algorithms

for estimating the network’s weights, and in Section 6.2.4, we give a

brief introduction to the backpropagation algorithm which is used

to compute the gradient for the overall network. In Section 6.2.5, we

then discuss different variants of gradient descent for training neural

networks as well as different termination criteria like early stopping.

Goodfellow et al. further recommend using advanced techniques like

batch normalization (especially for convolutional neural networks),

which will be described in further detail in Section 6.2.6.

6.2.1 Fully Connected Feedforward Networks

In this section, we introduce the most traditional architecture used for

artificial neural networks, namely, layered feedforward networks. Figure

6.1 illustrates such a network on three different scales of granularity:

The structure of an individual unit, the composition of units, and the

abstraction to layers.

As we can see in Figure 6.1a, the output of each individual unit is Individual units

based on a weighted sum of its inputs, i.e., g(
∑︁n

i=0wixi), where g is a

nonlinear activation function [341, Section 18.7]. If the sigmoid function

σ is chosen as activation function, then an individual unit corresponds

to a logistic regression (cf. Section 5.2.2. Please note, that the input x0 is

fixed to a constant value of 1, such that the weight w0 represents the

bias of the linear function (cf. Section 5.2.1).

Figure 6.1b illustrates how these individual units are connected to A layer-wise network

of units
each other: In the exemplary three-layered architecture, the inputs xi
are used to determine the activation of a set of hidden units hj whose

activation in turn is used as input to the output units ok. As we can see,
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the network architecture forms a directed acyclic graph [295, Chapter

4], which means that information can only flow in one direction [172,

Chapter 6] – hence the term feedforward. Moreover, we can observe that

connections are only inserted between subsequent layers. Furthermore,

two neighboring layers are always fully connected, which means that the

activation of all units in a given layer l are used as an input for every

unit in the subsequent layer l + 1.

The overall activation of a complete layer can be represented as aThinking in layers

vector, whose entries correspond to the activations of its individual

units. It is therefore also common to conceptualize artificial neural

networks in terms of complete layers as visualized in Figure 6.1c. The

individual weights of the individual units (which were expressed as

individual weight vectors w⃗) can then be represented by a matrix W of

weights. If we apply the activation function g element-wise, we can thus

for example specify the activation of the hidden layer by h⃗ = g(W (1)x⃗).
This is not only a convenient notation, but also important for practical

implementations, since the underlying matrix multiplications can be

implemented quite efficiently.

We can use this insight furthermore to understand the behavior of aANNs as function

composition
neural network as function composition [172, Chapter 6]: In our example,

the function f(x⃗) computed by the overall network can be specified

as f(x⃗) = f2(f1(x⃗)), where f1 corresponds to the hidden layer and f2
corresponds to the output layer. It is important to note at this point that

this function composition is only useful from a representational point of

view, if the functions computed by the individual layers are nonlinear,

since the composition of multiple linear functions again results in a

linear function [295, Chapter 4].

At this point, we would like to highlight that for a long time, artifi-Deep learning uses

multiple hidden

layers

cial neural networks have been limited to the three-layered structure

illustrated in Figure 6.1. In recent years, however, progress in hardware,

software, and neural networks theory has made it possible to train

much deeper networks containing many more hidden layers. This is

the reason, why neural networks are mostly labeled as deep learning in

current publications. Deeper architectures with more layers correspond

to a deeper hierarchy of increasingly abstract representations, i.e., a

longer chain of nested function compositions.

The universal approximation theorem states, that a fully connectedUniversal

approximation

theorem: ANNs can

approximate any

function

feedforward network with a single hidden layer can approximate any

continuous function of the given inputs with arbitrary accuracy [341,

Section 18.7]. However, the number of hidden units may need to grow

exponentially with the number of inputs in order to reach this goal.

For instance, consider an arbitrary boolean function of n inputs. For

each of the 2n possible input combinations, we can create one hidden

unit that is only active for this specific input. The output unit can then

be defined as a logical disjunction over all hidden units for which the

output should be True [295, Chapter 4]. Since this exponential size of the

hidden layer may quickly become infeasible for practical applications,

one often decides to use deeper models (i.e., more hidden layers) with
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a smaller number of neurons per layer [172, Chapter 6].

Moreover, the universal approximation theorem only guarantees that Estimating the

weights
a given function can be represented by a neural network, but it does

not state, whether or how the parameters of the network can be learned

from examples in order to approximate this function [172, Chapter

6]. In practice, the network’s parameters (i.e., the weights connecting

the different units to each other) are estimated by minimizing a loss

function (cf. Section 5.1.3) using gradient descent (cf. Section 5.2.2). Due

to the composition of multiple nonlinear functions, the loss function

is, however, in general not convex, therefore a convergence of the

optimization cannot be guaranteed [172, Chapter 6]. We will consider

neural network training in more detail in Sections 6.2.4 and 6.2.5.

Overall, the hypothesis space that can be explored by artificial neural Hypothesis space and

inductive bias
networks is continuous and very high-dimensional, because a large

number of real-valued connection weights need to be estimated [295,

Chapter 4]. Since only the output layer is directly constrained by the

training examples, the behavior of the hidden layer(s) can be chosen

rather freely in order to optimize task performance – i.e., the hidden

representation emerges based on what is useful for the given task [172,

Chapter 6]. The basic inductive bias of artificial neural networks can be

described as a smooth interpolation between data points [295, Chapter

4]. As already stated in Sections 5.1.4 and 6.1.1, different ANN archi-

tectures, however, also include additional biases based on manifolds,

distributed representations, depth, and location invariance.

So far, we have left the type of activation function g and the loss function Activation function

and loss functionJ to be minimized by the network relatively unspecified. As Goodfellow

et al. [172, Chapter 6] have argued, these two design decisions are tightly

connected to each other and should therefore be considered jointly.

Traditionally, the sigmoid function has been used in combination with

the mean squared error [295, Chapter 4], but this combination has been

discouraged more recently due to saturation effects.

As part of a more general approach for defining the activation Deriving the loss

function from

maximum likelihood

function for output units and their respective appropriate loss functions,

Goodfellow et al. [172, Chapter 6] interpret the overall network as

providing a conditional probability distribution P(y|x⃗; θ) over the

possible output values y, given the input vector x⃗ and the network’s

parameters θ. They propose to then use the principle of maximum

likelihood (cf. Section 5.1.3) to derive a loss function based on the

type of activation function used for the network’s output units. More

specifically, maximizing the likelihood of Pmodel(y|x⃗; θ) corresponds to

minimizing the negative log-likelihood, i.e., the cross-entropy between

the training data (represented as probability distribution Pdata) and the

model’s distribution Pmodel. Thus, the loss function should in general

have the following form (cf. Equation 5.2 from Section 5.1.3):

J(θ) = −Ex⃗,y∼Pdata
logPmodel(y|x⃗; θ) (6.1)

Depending on the form of Pmodel(y|x⃗; θ) (which is based on the Loss function

depends on

activation function
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Figure 6.2: Different activation functions commonly used in artificial neural

networks: linear (a), sigmoid (b), hyperbolic tangent (c), ReLU (d),

and leaky ReLU (e).

type of activation function in the output units), Equation 6.1 can be

transformed into a more specific cost function. Let us now consider the

application of this approach to different types of output units, based

on the derivations by Goodfellow et al. [172, Chapter 6].

In the most straightforward case, we can use a linear unit withLinear output units

for regression f̂(h⃗) = w⃗ · h⃗, i.e., the identity function as activation function g(z) = z
(Figure 6.2a). This is especially applicable to regression tasks, where

the output of the network needs to be real-valued. From a probabilistic

point of view, the output of a linear unit can be interpreted as the mean

of a conditional Gaussian distribution P(y|h⃗) = N(y; f̂(h⃗), I). In this

case, maximizing the log-likelihood corresponds to minimizing the

mean squared error (cf. Sections 5.1.2 and 5.2.1).

Sigmoid units with f̂(h⃗) = σ(w⃗ · h⃗) and thus g(z) = σ(z) = 1
1+e−zSigmoid output

units for binary

classification

(Figure 6.2b) are mostly used for predicting the probability of a binary

variable y being true, e.g., in a binary classification problem. As already

stated above, a sigmoid unit is thus equivalent to a logistic regression (cf.

Section 5.2.2). The usage of the sigmoid function for binary classification

can be motivated by assuming that the probability of different values for

y depends both on the respective values of y (either 0 or 1) and z = w⃗ · h⃗
(which is a real number). Let us for now consider an unnormalized

probability distribution P̂(y|z), whose individual values P̂(y = 0|z)
and P̂(y = 1|z) do not sum to one. If we assume that logarithm of P̂(y|z)
is linear in both y and z, this can be written as log P̂(y|z) = y · z. By

exponentiating and normalizing, we can then obtain a valid probability

distribution P(y|z):(︂
log P̂(y|z) = yz

)︂
⇔
(︂
P̂(y|z) = eyz

)︂
⇔

(︄
P(y|z) = eyz∑︁1

y′=0 e
y′z

=
eyz

e0·z + e1·z
=

eyz

1 + ez

)︄

As one can easily see, we thus get P(y = 1|z) = ez

1+ez . By multiplying

both the numerator and the denominator with e−z , we can see, that

this is equivalent to P(y = 1|z) = 1
1+e−z = σ(z). Analogously, we find

that P (y = 0|z) = 1
1+ez = σ(−z). We can summarize both cases as

P(y|z) = σ((2y − 1)z).
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We can now apply the maximum likelihood principle in order to Applying maximum

likelihood to sigmoid

units

derive an appropriate loss function based on Equation 6.1, where we

use that log σ(z) = log 1
1+e−z = log 1− log(1 + e−z) = − log(1 + e−z):

J(θ) = −Ex⃗,y∼Pdata
logPmodel(y|z) = −Ex⃗,y∼Pdata

log σ((2y − 1)z)

= Ex⃗,y∼Pdata
log(1 + e−(2y−1)z) = Ex⃗,y∼Pdata

log(1 + e(1−2y)z)

This loss function only saturates (i.e., provides a very small gradi- Saturation behavior

of the loss function
ent), if (1 − 2y)z becomes very negative. This can only happen for

y = 1, z ≫ 0 and y = 0, z ≪ 0, i.e., if the model output is correct. Other

loss functions such as the mean squared error may saturate whenever

σ(z) saturates (i.e., when z becomes very small or very large).

In the case of a multi-class classification problem, softmax units can be Softmax units for

multi-class

classification

used to estimate a probability distribution over a discrete variable with k
possible values. They use the activation function softmax(z)i =

ezi∑︁
j e

zj .

Please note that the activation of output unit i now depends also on

all other output units j – the softmax activation function ensures that

the activations of all output units sum to one. This can be viewed as

a way to introduce "competition" between output units, providing a

"softened" version of the argmax function. Based on a similar analysis

as for the sigmoid units, one can gain the insight that maximizing log-

likelihood for softmax units corresponds to maximizing zi − log
∑︁

j e
zj

.

This expression cannot saturate due to the linear dependence in zi.
Optimizing this expression corresponds to increasing the correct zi
while decreasing all incorrect zj . Again, other loss functions such as

the mean squared error may saturate since they are (unlike maximum

likelihood) not able to "undo" the exponentiation.

After having considered the three most important types of output Activation functions

for hidden units
units and their corresponding maximum likelihood losses, let us now

consider different types of hidden units in more detail. They are called

hidden units since their output is only available within the network, but

not visible from the outside [295, Chapter 4].

Traditionally, default choices for the activation function of hidden Sigmoid and

hyperbolic tangent
units were the sigmoid g(z) = σ(z) (with g(z) ∈ (0, 1)) and the hyperbolic

tangent g(z) = tanh(z) = e2x+1
e2x−1

(with g(z) ∈ (−1, 1)) [172, Chapter 6],

illustrated in Figure 6.2b and c, respectively. One can show that these

two activation functions are related by the simple equation tanh(z) =
2σ(2z)− 1. Both types of activation functions saturate across most of

their domain and may therefore provide only very small gradients,

making gradient-based learning difficult. In general, their usage as

hidden units is therefore discouraged. The hyperbolic tangent is slightly

preferable to the logistic sigmoid, since its behavior is more similar to

the identity function for small z (e.g., σ(0) = 0.5, but tanh(0) = 0).

In recent years, the rectified linear unit (ReLU) g(z) = max(0, z) (Fig- Rectified linear units

ure 6.2d) along with its numerous variants has become the dominant

choice for hidden units [172, Chapter 6]. It is easy to optimize, since

it behaves like a linear unit for z > 0 and thus does not saturate.
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However, its derivative becomes zero for z < 0, which makes learning

impossible for examples on which the unit is not active. In order to

alleviate this shortcoming, several variants such as the leaky ReLU with

g(z) = max(0, z)+α ·min(0, z) (Figure 6.2e) have been proposed, which

have a nonzero derivative for z < 0. ReLUs and their variants are not

differentiable at all points (e.g., the derivative of max(0, z) is undefined

for z = 0), but this is usually not a problem in practice, since z = 0
occurs only rarely, and in this case either the left or the right derivative

can be used.

Unfortunately, there is not good theory about how to design a good, letDesign decisions for

feedforward networks
alone optimal neural network architecture [341, Section 18.7]. Therefore,

many design decision need to be informed by prior experience, other

models, or structured experiments. Important design decisions include

the number of layers, their respective size, and the way these layers are

connected with each other. In addition to a chain of layers, one can for

instance also consider so-called skip connections, which go from layer

l to layer l + 2 or higher, making it easier for the gradient to flow to

lower layers of deep networks [172, Chapter 6]. A related idea is to

attach extra copies of the output units to earlier layers in the network to

ensure that the gradient for making updates is sufficiently large [172,

Chapter 8]. Moreover, considering only sparse connections between

layers (such as in convolutional neural networks, see Section 6.2.2) can

be an alternative to using fully connected designs [172, Chapter 6].

Some approaches propose to change the network structure during orAdapting the

network structure
after learning, by either starting with few hidden units and growing the

network or by starting with a large network and removing unnecessary

connections (see [295, Chapter 4] and [341, Section 18.7]). However,

in modern deep learning systems, it is more common to use large

networks and to restrict their effective capacity by applying appropriate

regularization methods (see Section 6.2.3).

6.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) date back to LeCun et al. [246]Convolutional

neurall networks for

image data

and Waibel et al. [423]. In recent years, they have been quite successfully

applied to computer vision tasks such as image classification [193], since

they are able to learn location-independent features. CNNs can thus be

regarded as the state of the art approach for processing image data and

as one of the most successful variants of artificial neural networks. Our

following introduction into CNNs is mainly based on the respective

book chapter by Goodfellow et al. [172, Chapter 9].

Convolutional neural networks are based on a mathematical oper-Convolutions in

general
ation called convolution. Goodfellow et al. [172, Chapter 9] introduce

convolution by using the example of a tracking task, where a noisy

sensor gives the position x(t) of a given object at time t. In order to

get a more stable estimate, one can smooth the sensor readings with a
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Figure 6.3: Illustration of a one-dimensional discrete convolution for smooth-

ing a noisy sensor at two different time indices t.

weight function w(a) which depends on the age a of the measurement.

The overall smoothed estimate s(t) can be written as follows, where the

symbol ∗ is used to denote the convolution operation:

s(t) = (x ∗ w)(t) =
∫︂ ∞

−∞
x(a) · w(t− a) da

In practice, the time index t often needs to be treated as a discrete Discrete convolution

quantity, leading to the following notion of a discrete convolution (where

also the age a is assumed to be discrete):

s(t) = (x ∗ w)(t) =
∞∑︂

a=−∞
x(a) · w(t− a)

Since the convolution operation is commutative, we can rewrite this A simple

reformulation
as follows, which corresponds more to our intuitive formulation of a
being the age that specifies the weight w:

s(t) = (x ∗ w)(t) = (w ∗ x)(t) =
∞∑︂

a=−∞
x(t− a) · w(a)

In machine learning applications, we furthermore assume that the Convolutions in

machine learning
functions x and w are zero unless specified otherwise, which makes it

possible to compute a discrete convolution through a finite sum over

the given values. In the context of convolutional neural networks, the

first argument of the convolution (in our case x) is called the input,

while the second argument (in our case w) is called a kernel. The output

of the convolution operation is often referred to as feature map.

Figure 6.3 illustrates such a discrete convolution for the example of a Example for a

one-dimensional

convolution

noisy sensor. Both the function values for the sensor output x and the

weight function w are shown in the form of arrays which are zero for

most of their entries. Please note that for illustrative purposes, we have

shownw in such a way that its entries align correctly with the respective

entries of x for the multiplication operation. This means thatw has been
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Figure 6.4: Illustration of a two-dimensional convolution with a 3× 3 kernel

detecting horizontally oriented edges.

horizontally flipped in our visualization, since we assume that w takes

the age a as an input and that therefore w(0) = 0.8 and w(1) = 0.2. As

you can see in Figure 6.3, the convolution (x∗w)(t) results in a smoothed

version s(t) of the original sensor readings x(t). More importantly, it

illustrates that we can visualize the convolution operation as sliding w
over x, computing an element-wise multiplication, and summing the

results for every point t.
Convolutions can of course also be applied to more than one axis.Two-dimensional

convolution
For instance, if we consider a two-dimensional image I and a two-

dimensional kernel K, we can compute the resulting feature map base

don a two-dimensional discrete convolution:

F (i, j) = (I ∗K)(i, j) =

∞∑︂
m=−∞

∞∑︂
n=−∞

I(m,n) ·K(i−m, j − n)

As mentioned above, convolutional neural networks have been es-Example for a

two-dimensional

convolution

pecially successful on image data, therefore this extension to two-

dimensional inputs and kernels is of crucial importance. Figure 6.4

illustrates the convolution of a small two-dimensional image I (showing

the letter T) and a 3× 3 kernel K, which extracts a feature map F , that

highlights horizontally oriented edges from the original image I . Again,

applying the convolution can be interpreted by sliding the kernel over

the image, applying an element-wise multiplication with the respective

image patch, and computing the sum over the individual multiplication

results in order to get the value of the feature map at the current location.

The convolution operation can be integrated into artificial neuralConvolutional layers

constrain the links

and weights

networks by introducing a so-called convolutional layer [172, Chapter 9].

Figure 6.5a illustrates a fully connected layer, where each input unit xi
is connected to each hidden unit hj with an individual weightwij . Here,

we have a total number of 5 · 5 = 25 connections between the two layers
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Figure 6.5: Illustrating the difference between a fully connected layer (a) and

a convolutional layer (b).

with 25 individual weights. In Figure 6.5b, we see a convolutional layer.

Here, the input layer x⃗ corresponds to the input of the convolution, the

weights w⃗ represent the kernel of the convolution, and the hidden layer

h⃗ corresponds to the feature map resulting from the convolution of x⃗
and w⃗. The convolutional layer depicted in Figure 6.5b has a kernel

width of three, which means that each hidden unit hj only receives

three inputs, namely from the input units xj−1, xj , and xj+1. In other

words, we assume that our kernel w has only nonzero values for w(−1),
w(0), and w(1). The small kernel size drastically reduces the number of

connections from 25 to 13 in our example. Moreover, the fact that the

same kernel function w is applied at all positions is reflected through

weight sharing: The weights of all hidden units are shared, which is

indicated by the three different line styles. This means for example

that w12 = w23 = w34 = w45 = w(−1). Overall, we thus only have

three different weights in the convolutional layer, much less than the 25

individual weights used in the fully connected layer.

Instead of storing a 5× 5 matrix of weights, we can thus simply store Storing the weights

a vector of three weights, which represents our convolutional kernel.

As Figure 6.5b suggests, this can, however, still be re-expressed as a

sparse 5×5 weight matrix, which has entries of zero for all non-existing

connections, and where the same three weights appear multiple times.

While this matrix-based representation is thus not very efficient from

an implementational point of view, it can nevertheless be necessary

for computing the gradient. Moreover, if one wants to reconstruct the

input from the convolution’s output and its kernel, a matrix-based

representation is very helpful.

In general, convolutional neural networks use three stages in each of Three stages of a

convolutional layer
their layers [172, Chapter 9]: They first perform a convolution to produce

a set of linear activations. They then apply a nonlinear activation function

g(z) on the results of the convolution in order to ensure that the overall

network is able to learn nonlinear functions. Usually, rectified linear

units (ReLUs) and their variants (e.g., leaky ReLU) are used in CNNs.

The combination of convolution and nonlinearity is often referred to as

detector stage. In a third step, neighboring outputs are aggregated with

each other by using a so-called pooling function.



302 representation learning with artificial neural networks

With this pooling function, the output at a certain location is replacedPooling functions

by a summary statistic of its local neighborhood (usually a rectangle

around the given unit). The most popular choice is max pooling, where

the maximum across the neighborhood is returned, but other pooling

operations such as computing a (possibly weighted) average are also

possible in principle. The goal of using a pooling function is to make

the representation approximately invariant to minor translations. By

using fewer pooling units than detector units (so-called pooling with

downsampling), one can additionally reduce the size of the output. In

this case, one has to specify both the pool width (i.e., the size of the area

to aggregate over) and the so-called stride (i.e., the step size between

two neighboring centers of pooling). Finally, pooling can also be used

to deal with inputs of arbitrary size by specifying the desired output

dimensionality, and computing adequate values for pool size and stride

dynamically based on the size of the input.

In many practical applications, the first few layers of a convolutionalGeneral CNN

architectures
neural network consist of such convolutional layers (including both the

feature detector and the pooling stage). The size of the representation

typically decreases with an increasing depth of the network (using

the downsampling technique mentioned above), and the final layers

used for making a classification are fully connected. One can view the

convolutional layers as feature detectors, that report, whether a given

feature is present in the image for each individual location of the image.

While the first convolutional layers often learn kernels that correspond

to simple edge detectors, higher-level features such as eyes or faces

emerge at later convolutional layers. The final fully-connected layers

of the overall network then take both the detected features and their

locations and aggregate them into a final classification decision.

Individual convolutional layers usually do not consider only a singleUsing multiple

kernels in parallel
kernel (which corresponds to a single feature that can be extracted

from the input), but multiple such kernels in parallel, yielding multiple

feature maps as output. Also the input to a convolutional layer often

consists of multiple channels (e.g., the three color channels for an input

image, or the different feature maps from a prior convolutional layer).

Overall, a typical convolutional layer should thus be considered as

having three-dimensional tensors (with two spatial coordinates for

the location within the image and a third coordinate for the different

channels) both as input and as output.

The existence of multiple feature maps per convolutional layer alsoPooling across

feature maps
offers the possibility to apply pooling not only across spatial coordinates

within one feature map, but across different feature maps for a single

spatial location. This can then be seen as an aggregation over different

variants of the same feature. In some sense, the features can then learn

to which transformations they should become invariant. For example,

if each feature map focuses on detecting slightly differently rotated

digits, a max pooling across these feature maps can correspond to a

rotation-invariant feature, which detects digits in general.
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Figure 6.6: Original inception module as described in [399].

When introducing the pooling operation, we also mentioned the Strided convolutions

possibility of downsampling by specifying a stride between centers

of the pooling regions. This downsampling can also be applied to the

convolutional stage by specifying a stride s which specifies in which

step size the convolution should be evaluated.

The definition of both the weight function w and the input function x Zero padding

being zero for all unspecified locations can be reflected in convolutional

neural networks by introducing zero padding: The input is enlarged by

appending zeros in all directions. This way, the convolution can also

be applied to the edges of the input, ensuring that the output of the

convolutional layer can have in principle the same size as its input.

This is implicitly done in our illustration from Figure 6.5b – otherwise

the hidden units h1 and h5 would have to be removed, since they only

receive two inputs.

In our experiments reported in Chapters 9 and 12, we will make The inception

architecture and

GoogLeNet

use of a specific CNN, called the inception architecture [399, 400]. This

architecture is based on stacking so-called inception modules, which

compute multiple convolutions with different kernel sizes in parallel.

The original structure of such an inception module is illustrated in

Figure 6.6 [399]. As one can see, it consists of four parallel channels

whose output is then concatenated: Convolutional layers with kernel

sizes 5× 5, 3× 3, and 1× 1, as well as a max pooling layer. The intuition

behind using different kernel sizes in parallel is to allow for receptive

fields of different sizes in order to allow the network to learn both

local an non-local features. The additional convolutions of size 1 × 1
shown in Figure 6.6 are used to reduce the dimensionality of the

representation. Their receptive field is limited to a single pixel, but they

are able to aggregate across multiple channels. By reducing the number

of channels before applying the 5 × 5 and the 3 × 3 convolution, the

number of model parameters is drastically reduced. This also applies

to the dimensionality reduction after the max pooling, which ensures

that the concatenated output of the inception module (which is used as

input to the next module) does not surpass a desired maximal size. The
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Figure 6.7: (a) Convolution followed by max pooling. (b) Unpooling followed

by convolution.

CNN based on these original inception modules is called GoogLeNet

and contains 27 layers in total [399].

The inception-v3 network [400] is a further refinement of the incep-The inception-v3

network
tion architecture, using two main insights: Firstly, Szegedy et al. [400]

note that 5× 5 convolutions are computationally relatively expensive,

but that they are approximately equivalent to two 3× 3 convolutions,

which are applied in sequence: The overall receptive field still has the

same size (namely, 5 · 5 = 25 pixels), but only 2 · 3 · 3 = 18 instead of

5 · 5 = 25 parameters are needed. Secondly, Szegedy et al. also note that

an arbitrary k × k convolution can be replaced by a 1× k convolution

and a subsequent k × 1 convolution. Again, the receptive field has the

same size, but the number of parameters drops from k2 to 2k. In the

inception-v3 network, both of these insights are applied to some of the

inception modules, allowing for a considerably deeper network of 42

layers without a considerable increase in the number of parameters

or higher computational cost. We will use a pretrained inception-v3

network in Chapters 9 and 12 for our machine learning experiments.

Typical convolutional networks start from a very high-dimensionalIncreasing the

representation size
input (namely, images) and reduce the representation size in multiple

steps through max pooling or strided convolutions, until a fairly small

representation is reached, which can then be used for classification

through a softmax layer. However, in some settings one is also interested

in the opposite direction: Creating a high-dimensional image from a

low-dimensional hidden representation. This corresponds to adding

information in contrast to discarding it [172, Section 20.10.6].

While convolutions can still be applied for transforming images basedUnpooling as

approximate inverse

to max pooling

on local kernels, the pooling step can in general not be easily inverted,

since it typically comes with a loss of information [172, Section 20.10.6]:

When using max pooling with both a width and a stride of 2, we only

keep the maximum value for each 2× 2 patch of the feature map (cf.

Figure 6.7a). Since three out of the four values are discarded completely,

it is impossible to reconstruct them. In practice, one therefore needs

to approximate the inverted pooling function with so-called unpooling

steps. In the most straightforward (and perhaps therefore also most

popular) variant, one simply replaces each entry of the feature map by a

block of size s×s, where the original value is copied to the top left corner

and all other entries of the block are set to zero [135] (cf. Figure 6.7b).

Using such an unpooling step followed by a convolution can be seen as
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an approximate inverse of computing a convolution and a subsequent

pooling [135]. While the unpooling increases the dimensionality of the

output, the convolution kernels applied afterwards learn to replace the

zero entries with more meaningful values [172, Section 20.10.6].

Different terms are used in the research community for the combina- Combination of

unpooling and

convolution

tion of unpooling and convolutions: While many researchers speak of

deconvolutions, this is strictly speaking not correct (since they are not

the actual inverse of a convolution operation). Therefore, others prefer

the terms upconvolutions, transposed convolutions, or fractionally-strided

convolutions. We will use the term upconvolutions from now on.

Upconvolutional layers have been applied in various contexts, e.g., Usage of

upconvolutional

layers

for image generation [135], autoencoding images [452], semantic image

segmentation [302], and for visualizing and studying the representa-

tions extracted by convolutional neural networks [134, 451].

Finally, one can loosely link CNNs to neuroscientific results. For CNNs and

neuroscience
example, Hubel and Wiesel [203] found, that individual neurons in

the early visual system of a cat’s brain respond most strongly to very

specific patterns of light such as precisely oriented bars. This can be

mathematically modeled as kernels of a convolution. Also in the human

brain, the primary visual cortex is assumed to be arranged in the form

of a spatial map containing simple cells with a small receptive field

and more complex cells which are invariant to small shifts. This can be

linked to the detector stage and the pooling stage of CNNs, respectively

[172, Chapter 9]. Moreover, the feature maps learned by deep CNNs

have been recently linked to the activation patterns at different stages

of the human visual stream [106, 443]. We will reconsider these results

in Chapter 10 in the context of the shape domain.

However, one should caution against interpreting CNNs as a faithful CNNs do not model

human vision
model of the human visual system, since they typically do not include

important biological aspects such as saccades, feedback from higher

layers, and a tight integration with other senses [172, Chapter 9].

We will consider convolutional neural networks in our studies in Outlook

Chapters 9, 11, and 12 both as a baseline for predicting human dissimi-

larity ratings and as pretrained feature extractors for a regression from

images to points in a similarity space.

6.2.3 Regularization

It its general form, regularization has already been introduced in Section Regularization in

general
5.1.3. Please recall that the general idea of regularization is to constrain

a given machine learning system in order to reduce the generalization

error, possibly at the cost of an increased training error. Regularization

can come in different forms [172, Chapter 7]: It can be formulated

as hard constraints (which explicitly remove a part of the hypothesis

space) or as soft constraints (which introduce a preference over different

parts of the hypothesis space). This corresponds to the distinction of
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inductive biases into restriction biases and preference biases (cf. Section

5.1.1). Regularization can encode a generic preference for simpler models

based on Occam’s razor and considerations about model capacity (cf.

Section 5.1.3), or it can leverage specific prior knowledge about the given

problem domain. Since proper regularization plays an important role

in artificial neural networks, we will now give an overview of different

regularization strategies. This section is mainly based on the respective

book chapter by Goodfellow et al. [172, Chapter 7].

Let us first consider some general regularization techniques, whichDataset

augmentation:

creating additional

training data

are applicable to most machine learning models, and which typically

modify the content of the training set. A first general strategy for

decreasing the generalization error simply consists in using more data

for training. If the available data for the given task is, however, limited,

one can use dataset augmentation to create additional fake data points

based on the original ones [172, Chapter 7]. These additional data points

can, for instance, be created by simply copying existing data points

(which is called oversampling), by linear interpolations between existing

data points, or by adding random noise [192]. They can then be added

to the training set in order to provide more data for the estimation of

the model’s parameters.

Dataset augmentation has been particularly useful for computerAugmentation for

computer vision
vision tasks such as object recognition, since images have many factors

of variation (small translations and rotations, different zoom levels,

variations with respect to brightness and focus, etc.) which can often

be easily simulated [172, Chapter 7]. Additional images can thus be

created by applying such small variations to existing images. An ad-

ditional advantage of images in the context of dataset augmentation

is that the created variations can be easily visualized. We will apply

dataset augmentation techniques in our machine learning experiments

in Chapters 9 and 12.

Another general regularization strategy is called semi-supervised learn-Semi-supervised

learning: including

unlabeled data points

ing, where also unlabeled examples are used in a supervised learning

setting [172, Chapter 7] (cf. Section 5.1.2). Essentially, these unlabeled

examples (which are usually more abundant, since they are easier to

collect) are used to learn a transformation into a hidden representation,

before the labeled examples (which are often less numerous) are then

used to learn the target function based on this hidden representation.

For instance, a principal component analysis (see Section 5.3.2) can used

as an unsupervised preprocessing step, before applying a classifier on

the projected data points.

In the context of (deep) neural networks, semi-supervised learningMultitask learning:

learning multiple

tasks at once

can be modeled by having a generative modelP(x⃗) and a discriminative

model P(y|x⃗), which share part of the network structure (e.g., the first

few layers). By optimizing both models at the same time, the gradient

from estimating P(x⃗) constrains the shared parts of the network and

thus helps the network to learn a useful hidden representation. This can

be seen as a special case of multitask learning, where the same network
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is trained on multiple tasks at once, and where the different tasks share

the lower layers of the network [172, Chapter 7]. This multitask learning

approach is, however, only helpful, if the different tasks are semantically

related. We will use such a hybrid network architecture in Chapter 12.

Another approach, which also considers multiple related tasks, is Transfer learning:

meaningful

initialization of

model parameters

called transfer learning [172, Chapter 15]. In transfer learning, these tasks

are, however, not being optimized simultaneously, but in a sequential

way: The system is first trained on a task T1 (using a large dataset),

before being fine-tuned on a different task T2, for which only relatively

little data is available. Here, the underlying motivation is, that training

the system on T1 results in a set of parameter values θ1, which are a

good starting point for good performance with respect to T2. Especially

in gradient-based learning, starting the optimization in a promising

region of the hypothesis space can lead to better results in a shorter

amount of time. We will consider such a transfer learning approach in

our machine learning experiments in Chapter 12.

The idea of creating ensembles of predictors has already been discussed Ensembles:

combining the

predictions of

different models

in Section 5.2.4, when we introduced random forests: Different models

may tend to make different errors on the test set, and can thus to some

extent cancel out each others’ weaknesses. This technique can be applied

to any kind of machine learning algorithm: For instance, one can train

different versions of the same classifier on different datasets, which

are created by sampling with replacement from the original dataset.

This approach is called bagging. In the context of ANNs, one can also

create different versions of the same network based on different random

initializations or different hyperparameter settings, while using the

same underlying training set.

A final general technique is called adversarial training [172, Chapter Adversarial training:

cherry-picking bad

inputs to increase

robustness

7]. In this approach, an optimization procedure is used to find an input

x⃗′, which is very similar to a given example x⃗, such that the output

of the model changes, but that a human observer would still expect

the same behavior. The generation of such adversarial examples has

been highly successful for deep neural networks on image classification

tasks [401]. The idea of adversarial training is now to include these

adversarial examples into the training set and to retrain the system in

order to make it more robust. While being in principle applicable to

any kind of machine learning algorithm, adversarial examples have

mostly focused on (deep) neural networks, since the derivation of the

adversarial examples can be performed with gradient descent.

Let us now consider several regularization techniques, which are Parameter norm

penalties: weight

decay

more specialized towards artificial neural networks. A first group

of regularization approaches can be summarized as parameter norm

penalties. Here, we simply add a penalty based on the norm of the

parameters to the optimization objective. Parameter norm penalties

have already appeared in Section 5.1.3 under the name weight decay.

We have already seen the two most popular variants in Section 5.2.1,

when discussing linear regression, namely L1 regularization (using
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∑︁
i |wi| as regularization term) and L2 regularization (corresponding

to

∑︁
i |wi|2). At this point, we should note that in deep learning, such

parameter norm penalties are often only applied to the weights, but

not to the bias terms (i.e., the intercepts). The reasoning behind this is

that weights control how two units interact, while biases only influence

a single variable [172, Chapter 7]. The bias terms can thus usually be

estimated using less data points and are therefore less likely to overfit.

Parameter norm penalties work on the overall size of all parametersConstraints on

individual weights:

parameter tying,

parameter sharing,

and removing

connections

and encode a preference for models, whose weights are on average

small. We can also encode more specific constraints with respect to

individual parameters, if such constraints are provided by domain

knowledge [172, Chapter 7]: For instance, one can use parameter tying as

a soft constraint to ensure that two or more parameters take on similar

values by including a parameter norm penalty on their (pairwise)

difference. This encodes a preference bias on the hypothesis space of

possible weight combinations and thus can help to reduce overfitting.

If we prefer a hard constraint instead, we can enforce parameter sharing,

which forces a set of parameters to be equal. This parameter hence only

needs to be stored once in memory and thus can drastically reduce the

number of unique model parameters. Shared weights can be updated

by using the average gradient across all of their respective locations in

the network. A third variant of constraints with respect to individual

parameters is to completely remove connections from the overall network’s

architecture. This corresponds to forcing the corresponding weights

to a value of zero. Convolutional neural networks as introduced in

Section 6.2.2 use a combination of parameter sharing and removing

connections to drastically reduce the size of their hypothesis space,

based on the assumption of location invariance.

When discussing data augmentation, we already touched upon theNoise injection and

label smoothing
idea of adding noise to the training examples in order to improve

generalization. In artificial neural networks, injecting noise is, however,

also possible at the level of hidden activations or weights, and may

increase the robustness of the overall system [172, Chapter 7]. It is also

possible to add noise to the output targets, since most datasets contain

a small amount of incorrect labels anyways. One variant of this is called

label smoothing and can for instance be conducted by using 1− ϵ and ϵ
as target values in a binary classification task instead of 1 and 0 [172,

Chapter 7]. Since sigmoid units are limited to the interval (0, 1), using

the smoothed variants can prevent ever-increasing weights, which try

to drive the output of the sigmoid further and further into saturation.

In addition to adding noise to hidden activations, one can alsoSparsity constraints:

aiming for sparse

representation

put other soft constraints on the hidden representation learned by a

neural network. One example for this are sparsity constraints, where a

penalty on the activations of the units is introduced (e.g., using an L1

regularization). The network is thus incited to use only a small number

of hidden units for any given input, which reduces its hypothesis space

and leads to sparse representations (cf. Section 6.1.1). This puts also

indirect constraints onto its weights, since the activation of each unit is

determined by those weights. It is important to note that encouraging
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a sparsity of weights (e.g., with L1 weight decay) is different from

encouraging a sparsity of activations, since sparse weights can lead to

non-sparse activation patterns, while sparse activation patterns may

require non-sparse weights.

A more radical regularization approach related to both noise injection Dropout: turning off

randomly selected

units

and sparse representation is called dropout [388]: For each training

example, a random binary mask is sampled and applied to all input

and hidden units of the network. This means that a certain, randomly

selected portion of the network is disabled (forced to an activation of

zero) for each training example. Importantly, since the binary mask

changes for every training example, different subsets of units are

deactivated at each time step. Usually, input units are discarded with a

probability of 0.2, while hidden units are disabled with a probability

of 0.5. By following this dropout procedure, one implicitly trains

an ensemble consisting of all subnetworks, that can be formed by

removing individual units from an underlying base network. Once the

model has been trained, predictions can either be made by averaging

across a number of binary masks or by evaluating the overall network,

where the weights leaving unit i are multiplied by the probability

of unit i being included in the mask. Usually, the latter approach is

chosen, since it is more straightforward to implement. Using dropout

is computationally not expensive and works well with any sufficiently

large model. Implicitly, it encourages hidden units to perform well

regardless of which other hidden units are included in the subnetwork

– dropout therefore ensures a certain redundancy in the hidden code.

6.2.4 Backpropagation

Artificial neural networks are usually trained by using gradient descent. Backpropagation for

computing gradients
In order to compute the gradient with respect to all weights in the

network, a technique called backpropagation is used: After propagating

information forward through the network (from inputs to outputs)

and computing a scalar loss, the information about the loss is back-

propagated from the outputs to all weights in the network in order to

compute their respective derivatives [172, Chapter 6]. It is important

to emphasize that backpropagation is an algorithm for computing the

gradient, but that it does not make any parameter updates. Backprop-

agation can thus be thought of as an internal helper algorithm for

gradient descent on neural networks.

In Section 5.2.2, we have already seen, how the chain rule can be Backpropagation as

smart application of

the chain rule

applied to a computation graph of a logistic regression in order to

compute an overall derivative based on the derivatives of individual

steps. Backpropagation essentially consists of a recursive application

of the chain rule, while storing intermediate results for increased

efficiency. It can thus be linked to dynamic programming techniques

used in optimization problems [172, Chapter 6]. The key insight of

backpropagation is that many subexpressions may be repeated several
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Figure 6.8: Illustration of backpropagation for a small example network.

times within the overall expression of the gradient and that temporarily

storing the values of these subexpressions can save a considerable

amount of computation time compared to a naive approach, which

computes every entry of the gradient individually.

We will illustrate the idea of backpropagation with the simple neuralAn illustrative

example
network illustrated in Figure 6.8, consisting of two input nodes, two

hidden units, and two output units. Figure 6.8 also illustrates the

different steps needed to compute the respective partial derivatives

for three selected weights w11, w21, and v11. For the sake of simplicity,

we ignore all other weights as well as the bias terms. When applying

the chain rule to
∂J
∂w11

,
∂J
∂w21

, and
∂J
∂v11

, one can easily see that some

subexpressions appear in the partial derivatives for multiple weights:

∂J
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=
∂J
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∂h1
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+
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+
∂J

∂o2

∂o2
∂h1

)︃
⏞ ⏟⏟ ⏞

∂J
∂h1

∂h1
∂w21

∂J

∂v11
=
∂J

∂o1

∂o1
∂v11

As we can see, the subexpression
∂J
∂o1

appears in all three individ-Reoccurring

subexpressions
ual equations, and the expressions

∂J
∂o1

∂o1
∂h1

and
∂J
∂o2

∂o2
∂h1

(which can be

summarized to
∂J
∂h1

) are relevant for both w11 and w21. If we were to

naively compute all entries of the gradient independently of each other,

we would thus have to re-compute the values of these subexpressions

multiple times. While this is not much of an issue in our small example,
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the computational overhead can become quite considerable once the

network consists of thousands or millions of parameters.

Backpropagation thus starts at the value J of the loss function Backpropagation in a

nutshell
and computes the partial derivatives for the parameters by iteratively

moving one step back in the network. This means that we first compute

∂J
∂o1

and
∂J
∂o2

and temporarily store these values. They can be used to

compute the partial derivatives for the weights connecting the hidden

layer to the output layer, e.g.,
∂J
∂v11

= ∂J
∂o1

∂o1
∂v11

. Moreover, we can compute

the partial derivatives
∂J
∂h1

and
∂J
∂h2

based on the previously stored

values for
∂J
∂o1

and
∂J
∂o2

and the respective missing parts
∂ok
∂hj

. Finally,

the computation for the input weights of the hidden layer can then be

computed based on these locally cached values, e.g.,
∂J
∂w11

= ∂J
∂h1

∂h1
∂w11

. By

doing a single backward pass through the network, we can ensure that

each subexpression is evaluated only once, since we visit every node

in the computation graph exactly once. At this point, we should point

out that computing partial derivatives such as
∂o2
∂h1

actually involves

again multiple steps, since the unit o2 internally uses a weighted sum

and a nonlinear activation function to convert its inputs to an output.

The partial derivative
∂o2
∂h1

thus crucially involves the derivative of the

activation function g and the weight v12 connecting the units h1 and

o2. This is analogous to the derivation of the gradient for the logistic

regression (cf. Section 5.2.2).

We leave our discussion of backpropagation at this relatively high- Further references

level stage and refer the interested reader to [295, Chapter 4] and [341,

Section 18.7] for a mathematical derivation of the partial derivatives in

three-layer networks using sigmoid activations, and to [172, Chapter 6]

for a generalized version of backpropagation, which is applicable to

arbitrary tensors and operations.

6.2.5 Training Algorithms

After having sketched a way of deriving the gradient in a computa- Gradient descent and

learning rate
tionally efficient way, let us now put our focus on different learning

algorithms. As mentioned already in Section 6.2.1 and 6.2.4, the learn-

ing algorithms for ANNs use different variants of gradient descent as

introduced in Section 5.2.2 for the logistic regression. In that context, we

have already discussed some differences between batch gradient descent

(where the loss is computed over all examples from the training set)

and stochastic gradient descent (where only a relatively small minibatch

of examples is used to estimate the gradient for the next update). Both

variants are not guaranteed to converge to a global minimum, and

stochastic gradient descent may even fail to terminate in a local mini-

mum unless the learning rate α is decreased over time. A simple way of

reducing the learning rate is to use a linear decay until a fixed number τ
of iterations is reached [172, Chapter 8]. In general, picking good values

for the initial and the final learning rate can be quite difficult, but has

an important influence on the overall performance of the network: If

the learning rate is set too large, the individual updates are too large to
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converge, while a very small learning rate may cause the network to

make too little progress (cf. also Section 5.2.2).

When considering stochastic gradient descent, one furthermore needsMinibatch size

to select an appropriate size for the minibatches based on the following

considerations [172, Chapter 8]: A large minibatch size allows for a

more accurate estimation of the gradient, but comes at increased com-

putational cost. Smaller batch sizes can offer a stronger regularization

effect, since they introduce additional noise into the estimation of the

gradient. However, if batch sizes become too small, then multicore

hardware architectures may not be fully utilized. It is furthermore

common practice to choose batch sizes as a power of two, since this is

more convenient when training the network on modern graphics cards.

Finally, one should note, that the minibatches need to be drawn from

the training set in a random way to ensure both that the individual

gradient estimates are unbiased, and that two subsequent gradient

estimates are independent from each other. This can be achieved by

shuffling the dataset, before iterating over it.

A crucial decision when using gradient descent-based methods is theDifferent termination

criteria
choice of the termination criterion [295, Chapter 4]: By default, gradient

descent terminates, once the gradient becomes sufficiently close to

zero, indicating that a local minimum has been reached (cf. Section

5.2.2). Especially for stochastic gradient descent, this may, however,

be suboptimal, since the algorithm may be in a local minimum for

the loss with respect to the current minibatch, but not with respect to

the overall loss function when computed across all training examples.

Another possible termination criterion is a threshold on the training error:

As soon as the error on the training set becomes sufficiently small,

training is halted. However, since gradient descent on a deep neural

network is usually prone to overfitting, this should be accompanied

with suitable regularization methods. Also a fixed number of iterations

or a limit on the elapsed time can be used in order to decide, when to

terminate the training procedure. In all of these cases, it is, however,

hard to know a priori which level of training error, which number of

iterations, or which time limit to impose. Since the main optimization

goal is usually the generalization error, one can thus simply monitor

the network’s performance on a separate validation set and terminate

training, once the validation set error starts to increase again, indicating

that the network has started to overfit the data. This is called early

stopping and can be implemented by always keeping a copy of the

network’s parameters that have yielded the best performance on the

validation set so far, and by terminating, if no improvement on the vali-

dation set has been observed for a reasonably large number of iterations.

We have already highlighted two general challenges for gradient-Challenges for

gradient-based

learning

based learning in neural networks, namely the choice of the learning

rate and the termination criterion. There are, however, also additional

difficulties that arise from the repeated application of nonlinearities

and the resulting highly non-convex loss function [172, Chapter 8]:
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For a convex function, there is only a single local minimum, which is Local minima

also a global minimum. However, for non-convex functions as used in

neural networks, multiple local minima may arise, for example, due to

weight space symmetry: If we switch both the ingoing and the outgoing

weights of two units i and j (which belong to the same layer), then

the output of the network and thus also the loss value do not change,

even though we jumped to a different point in the hypothesis space.

More problematic are, however, local minima, whose loss value is

considerably higher than the loss value for the global minimum. If

gradient descent gets stuck in such a "bad" local minimum, then the

overall performance of the network may be sub-optimal.

Also plateaus, saddle points, and other flat regions may become problem- Flat regions

atic for gradient descent, since the gradient approaches zero in these

regions, even though no local minimum is present. This may cause gra-

dient descent to get trapped. It seems that while local minima are more

problematic in low-dimensional parameter spaces (i.e., relatively small

networks), saddle points are much more common in high-dimensional

parameter spaces and thus more of an issue in deep networks.

A third type of "formation" often observed for non-convex loss func- Cliffs and gradient

clipping
tions are cliffs in the parameter space, which typically result from the

multiplication of several large weights. Since the loss function has a

relatively sharp drop, the gradient becomes very large, and a single

update based on the gradient can move the parameters extremely far

away from their current location. A simple heuristic for dealing with

such cliffs is called gradient clipping and limits the maximal size of the

gradient to a predetermined threshold. The underlying assumption of

this heuristic is that the main information coming from the gradient

should be the direction of the update, but not so much its size (which

is rather controlled by the learning rate).

In order to overcome problems with respect to very small gradients Gradient descent

with momentum
(local minima, plateaus, saddle points, and flat regions), a so-called

momentum term can be introduced into the update step of gradient

descent [295, Chapter 4]. The update rule for a given weight wi is then

computed in two steps:

vi = βvi − α
∂J

∂wi
wi = wi + vi

Here, the variable vi contains an exponentially decaying moving Velocity as moving

average
average over the past gradients (based on an additional hyperparameter

β) and can be interpreted as the velocity of the update [172, Chapter

8]. The introduction of the momentum term thus causes the gradient

descent algorithm to "remember" previous updates. Momentum there-

fore incites gradient descent to keep moving into the same direction as

before – if it has been "going downhill" for some time, it keeps speeding

up, which may cause it to step through local minima or to pass faster

through flat regions [295, Chapter 4].
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As noted above, the learning rate is a hyperparameter, which is diffi-Automatically

adapting the learning

rate

cult to tune manually, but which has a large impact on the optimization

procedure. In order to solve this dilemma, different variants of gradient

descent have been proposed, which try to automatically adapt the

learning rate during training.

A first example for such adaptive learning rate algorithms is AdaGradAdaGrad: keeping

track of all past

gradients

("Adaptive gradient algorithm") [140]. Its underlying idea is to accumu-

late squared values of the gradient over time via simple summation

and to use this vector r⃗ of accumulated squared gradients for adapting

the learning rate:

ri = ri +
∂J

∂wi
· ∂J
∂wi

wi = wi −
α

δ +
√
ri

· ∂J
∂wi

Here, α is the initial learning rate and δ is a small positive constantIndividual learning

rate for each weight
ensuring that a division by zero does not happen for r ≈ 0 (i.e., in the

first iteration). One can easily see, that the step size is decreased more

heavily for parameters with large partial derivatives, which causes more

progress in more gently sloped dimensions of the parameter space. In

AdaGrad, each weight wi thus has an individual learning rate, which

is based on the past "steepness" of the loss function with respect to

this weight. However, Goodfellow et al. [172, Chapter 8] note, that the

decrease in the learning rate can be too high in practical applications:

Since each ri can only grow over time, AdaGrad always reduces the

learning rate, but is never able to increase it again. If the drop in the learn-

ing rate is too sudden, then training may be unnecessarily slowed down.

Another popular training algorithm is RMSProp ("Root Mean SquareRMSProp: moving

average over past

gradients

Propagation") [198], which is very similar to AdaGrad, but uses an

exponentially weighted moving average instead of a simple summation:

ri = ρri + (1− ρ)
∂J

∂wi
· ∂J
∂wi

wi = wi −
α

δ +
√
ri

· ∂J
∂wi

By introducing a new hyperparameter ρ for specifying the exponen-Moving average

allows learning rates

to increase

tial decay, RMSProp is able to discard the distant past, causing the

decrease of the learning rate to focus on the more recent history. This

means, that the step size can also grow again for a specific parameter, if

there have been large updates initially, but only small updates recently.

RMSProp is an effective and practical optimization algorithm and con-

sidered to be one of the standard procedures these days [172, Chapter 8].

Let us conclude our discussion of adaptive learning rate algorithmsAdam: considering

first and second

moments

with Adam ("Adaptive Moments") [223]. It estimates both the first
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moment s⃗ (i.e., the average) and the second moment r⃗ (i.e., the variance)

of the gradient with an exponentially weighted moving average:

si = ρ1si + (1− ρ1)
∂J

∂wi

ri = ρ2ri + (1− ρ2)
∂J

∂wi
· ∂J
∂wi

ŝi =
si

1− ρt1

r̂i =
ri

1− ρt2

wi = wi − α
ŝi

δ +
√
r̂i

Adam can thus be interpreted as combining RMSProp (which uses Combining

RMSProp with

Momentum

the second moment rj) with momentum (which uses the first moment

sj). Adam is in general a very robust learning algorithm, which is not

sensitive to the choices of the hyperparameters ρ1, ρ2, α, δ, and which is

widely applied in practice [172, Chapter 8]. We will make use of Adam

in our machine learning experiments in Chapter 12.

There are of course also other optimization techniques than gradient Other approaches

descent that can be used for training neural networks. For instance,

approaches based on line search use the gradient to determine the

direction of the update, and then find the minimum of the loss function

on the straight line implied by this direction [295, Chapter 4]. Other

approaches use information about second derivatives in order to under-

stand, how fast the gradient is changing locally, and to make better

updates based on this knowledge [172, Chapter 8]. It seems, however,

that at least currently, the additional computational cost implied by

these more complex approaches outweighs their performance advan-

tages. Optimization approaches based on gradient descent are therefore

still the default choice for training neural networks.

6.2.6 Other Considerations

The initialization of the model’s parameters can heavily influence, Importance of weight

initialization
whether the model converges at all, how fast it converges, which final

loss value it is able to obtain, and how large the generalization error

will be [172, Chapter 8]. If all parameters were initialized to the same

fixed value, then all units in the same layer would compute the same

function and hence all parameters would be updated in the same way.

In order to break this symmetry between different units, one often uses

a random initialization [172, Chapter 8].

While larger initial weights break this weight symmetry in a clearer Motivation for small

initial weights
way, they may cause the activation functions to saturate already at

the beginning of the training procedure (causing very small updates)

or gradients to explode (causing unreasonably large updates) [172,

Chapter 8]. One therefore prefers small random weights, such that
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the activation functions are approximately linear and provide a good

gradient. Since we expect local minima especially in regions of the

parameter space, where the network’s function is highly nonlinear, this

can also prevent gradient descent from getting trapped in such a local

minimum at the beginning of the training procedure [295, Chapter 4].

Goodfellow et al. [172, Chapter 8] provide an overview of differentStrategies and

considerations
weight initialization strategies such as normalized initialization (which

tries to ensure, that all layers have a comparable variance with respect

to their activations and gradients) and sparse initialization (where each

unit is restricted to k nonzero weights). They also note that biases

should be initialized separately using a constant predetermined value:

In most cases, setting the bias to 0 is a good choice, but for ReLUs, a

small positive value such as 0.1 is usually preferred, since it ensures

that the unit does not saturate at the beginning of training. For output

units, the bias terms mainly drive the respective unit’s activation in the

beginning of training. They thus should be chosen in such a way, that

the output of the respective unit corresponds to the average desired

output over the training set, giving the network a reasonable starting

point with its predictions.

At this point, we would like to introduce an important techniqueBatch normalization

due to parallel

updates

called batch normalization [205], which is often used as part of the

overall training procedure. Goodfellow et al. [172, Chapter 8] point out,

that the gradient tells us, how to update each individual parameter

under the assumption that all other parameters remain unchanged. In

practice, however, we update all parameters at once, which can lead

to unexpected results especially in complex deep models. Also simple

statistics such as the mean and standard deviation of a given unit’s

output may change drastically under such complex updates, since they

are determined by a complex interaction of lower layers.

In order to normalize the output of a given layer l, one can collect itsNormalizing the

output of a layer
activations for the current minibatch in a design matrix H , and replace

it with a normalized version H ′ = H−µ⃗
σ⃗ , where µ⃗ and σ⃗ contain the

mean and the standard deviation of the given layer’s units with respect

to the current minibatch, respectively. These vectors µ⃗ and σ⃗ can be

easily extracted from the design matrix H . The next layer l + 1 of the

network is then presented with the normalized activations H ′
. Since

we can simply add the normalization procedure as additional nodes to

the computation graph of the network, backpropagation will take these

additional steps into account – the gradient will thus never propose an

operation that acts simply to increase or decrease the standard deviation

or the mean of a hidden unit hi [172, Chapter 8]. When applying the

trained network on an individual example, one typically estimates µ⃗
and σ⃗ based on running averages collected during training.

Normalizing both the mean and the standard deviation of a hiddenMean and variance

as additional

parameters

unit can considerably reduce its expressive power and thus also the

expressive power of the overall network. A more complex variant of

batch normalization therefore uses γ⃗H ′ + β⃗ as an input to the next
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layer instead of H ′
. The two additional parameters γ⃗ (i.e., the desired

variance) and β⃗ (i.e., the desired mean) can then also be learned with

gradient descent. This ensures that the expressive power of the network

remains unchanged. However, the mean and standard deviation of

each unit are now controlled by an explicit parameter instead of being

determined by complex interactions of other units, causing improved

learning dynamics [172, Chapter 8].

We should also note, that the usage of batch normalization can act as Batch normalization

as regularization
a form of regularization, since the estimate of both the mean µ⃗ and the

standard deviation σ⃗ is subject to noise from sampling the underlying

minibatch. This can make it unnecessary to use additional noise-based

regularization methods such as dropout [172, Chapter 11].

The learning rate and the number of training iterations are two Optimization of

hyperparameters
important hyperparameters of a deep learning model. In Section 6.2.5,

we have already introduced adaptive learning rate algorithms and early

stopping for tuning these two hyperparameters as part of the training

procedure. Other hyperparameters, however, need to be optimized in

an offline fashion – either by using the experimenter’s intuitions and

experience, or by resorting to techniques such as grid search or random

search (cf. Section 5.1.2). As Goodfellow et al. [172, Chapter 11] point

out, many of these hyperparameters influence the effective capacity of

the model. Hyperparameter tuning thus corresponds to changing the

effective capacity in such a way, that it matches the complexity of the

task as closely as possible.

Using a larger number of units in the network (both influenced by Increasing model

capacity
the number of layers and the number of units per layer) leads to an

increase of the model’s representational capacity. This comes, however,

at increased computational cost and increased memory demands.

Related to this is the kernel width in convolutional neural networks (cf.

Section 6.2.2), which can also be increased for a larger representational

capacity, at the additional cost of a smaller output dimension (unless

zero padding is used).

Regularization schemes such as weight decay or dropout (cf. Section Decreasing model

capacity
6.2.3 lower the effective representational capacity of the model and

can thus prevent overfitting. While weight decay limits the size of the

weights (and thus the degree of nonlinearity of the overall model),

dropout reduces the degree of interaction between individual units.

In order to gain additional insights into the training process, Good-

fellow et al. [172, Chapter 11] also suggest to monitor histograms of

activations and gradients. This can for instance be used to visualize

how often hidden units saturate. As a rule of thumb, they state that the

magnitude of a parameter update across a minibatch should be around

one percent of the magnitude of the parameters.
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6.3 network architectures for represen-
tation learning

Artificial neural networks are an obvious candidate for representa-ANNs for

representation

learning

tion learning: Even standard feedforward networks can be thought

to implicitly learn an internal representation of their inputs, which is

more convenient for a given classification task. While the raw input

may not be linearly separable, each layer in the network learns another

transformation step (i.e., a higher-level representation), which culmi-

nates in an abstract representation in the second-to-last layer, where

the different classes are then separated with a simple linear classifier

[172, Chapter 15]. Moreover, the class labels assigned to the individual

examples already give a strong clue about one of the generating factors

(namely, class membership). It is furthermore easily possible in a neural

network setting to also include additional constraints such as sparsity

by introducing different types of regularization, for instance by using

convolutional layers instead of fully connected ones [56] (cf. Section

6.2.2), or by adding a sparsity penalty to the loss function (cf. Section

6.2.3). Also the usage of dataset augmentation (cf. Section 6.2.3) can be

seen as a way of improving the robustness of the internal representa-

tions, since small random deformations are not expected to change the

overall classification result [56].

Artificial neural networks also allow for semi-supervised learning. InGreedy layer-wise

pretraining
the context of representation learning, this can correspond to learning

a representation from unlabeled data and then learning a given super-

vised task on top of this [172, Chapter 15] (cf. Section 6.2.3). An example

for this is greedy layer-wise unsupervised pretraining: Instead of training

the whole network at once, one first trains a small network with only a

single hidden layer on an unsupervised task (such as reconstructing

the original input). The weights of this hidden layer are then used to

initialize the lower layer of new network with two hidden layers. This

network is then again trained on the same task. This procedure of using

the weights of a network with l layers to initialize the bottom part of a

network with l + 1 layers is repeated, until the full network depth is

reached. The final network is then trained on the supervised task, using

the pretrained weights as initialization. This layer-wise pretraining

scheme thus aims to find a good initialization of a deep network’s

weights for a supervised task.

In current research, the semi-supervised nature of representationMultitask learning

learning tasks is mostly implemented by training on both the supervised

and the unsupervised objective at once instead of using pretraining

[172, Chapter 15]. This multitask learning approach (cf. Section 6.2.3)

has the advantage, that the relative influence of the unsupervised

and the supervised objective can be explicitly controlled through their

respective weight in the overall loss function.

Also transfer learning tasks (where the network is first trained onTransfer learning

task T1 and afterwards on task T2, cf. Section 6.2.3) relate strongly

to representation learning: Transfer learning can only succeed if the
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representation learned in order to solve T1 extracts factors of variation

which are also relevant for T2 [56]. In the context of neural networks,

transfer learning can be simply implemented by training the network

on T1, and then fine-tuning the pretrained weights in order to achieve

good performance on T2.
Finally, one should mention that many representation learning algo- Generative

components
rithms also contain a generative component, which maps from the given

representation to the input space [56]. This generative component can

be used during training to constrain the learned representation (e.g.,

by enforcing an accurate reconstruction of the input) and later during

evaluation to visualize the effect of manipulating individual entries

in the learned representation. While a visual inspection of such gen-

erated examples may be insightful for designing further experiments,

standardized evaluation metrics for comparing different generative

models pose a difficult research problem in themselves [172, Chapter 20].

In the following, we will introduce four selected types of neural rep-

resentation learning approaches. We start by presenting autoencoders in

Section 6.3.1, whose main training objective is to reconstruct their input,

while using only a limited representational capacity. In Section 6.3.2,

we will then discuss word embeddings, i.e., a distributed representation

of natural language semantics learned from large text corpora. We

then introduce generative adversarial networks (GANs) in Section 6.3.3,

which use a game-theoretic setting involving two competing networks

in order to learn a good generative model. In this context, we put a

special emphasis on InfoGAN [101], which explicitly aims to obtain

disentangled representations. Finally, we focus on the class of variational

autoencoders (VAEs) in Section 6.3.4, which have also been shown to

successfully learn disentangled representations from unlabeled data.

6.3.1 Autoencoders

Autoencoders are an important unsupervised neural network archi- The reconstruction

objective
tecture, which is commonly used for dimensionality reduction and

feature extraction (cf. Section 5.3.2). Autoencoders are typically trained

on the task of reconstructing their input at the output layer, while using

only a constrained internal representation. Figure 6.9 illustrates the

general structure of an autoencoder, which can be split into an encoder

network that translates the original input x⃗ into a hidden representation

h⃗ = f(x⃗), and a decoder, which reconstructs the original input from

this hidden representation, i.e., r⃗ = g(h⃗). Autoencoders are trained to

minimize the difference between the reconstruction r⃗ = g(f(x⃗)) and the

original input x⃗. Since copying the input to the output is a trivial task

by itself, autoencoders need to have additional constraints in order to

enforce a useful transformation of the input in a more desirable format.

These constraints can come in the form of hard or soft regularization

and will be considered in more detail below.
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Figure 6.9: Visualization of the general autoencoder architecture.

While being commonly used with a single-layer fully connectedDepth of

autoencoders
encoder and a single-layer fully connected decoder [56], deeper au-

toencoders are often capable of achieving a greater compression of

their input than their shallow counterparts [172, Chapter 14]. Such

deep autoencoders can be trained in a greedy way by stacking shallow

autoencoders on top of each other, following the pretraining scheme

described in Section 6.3.

If we assume that data points tend to concentrate around a smallAutoencoders and

manifolds
number of low-dimensional manifolds in the overall input space, then

autoencoders can be interpreted as learning local coordinate systems

for these manifolds [172, Chapter 14]: They typically need to make a

compromise between good reconstruction (which encourages sensitivity

to changes on the surface of the manifold) and the fulfillment of their

regularization constraints (which encourage insensitivity to changes in

all other input directions) [56]. Therefore, only variations of x⃗, that stay

on the same manifold, need to be represented as changes in h⃗.

In order to obtain a suitable training objective for an autoencoder,Loss function

Goodfellow et al. [172, Chapter 14] propose to consider decoders as

providing a conditional probability distribution Pdecoder(x⃗|h⃗). One can

then apply the principle of maximum likelihood (cf. Sections 5.1.3 and

6.2.1) by minimizing E
x⃗∼Pdata(x⃗)h⃗∼Pencoder(h⃗|x⃗)

− logPdecoder(x⃗|h⃗). If the

input x⃗ is real-valued, this means that linear output units should be

used, which motivates the usage of the mean squared error as training

objective (cf. Section 6.2.1). If the input x⃗ is on the other hand binary or

limited to the interval [0, 1], then sigmoid output units seem to be more

adequate [56], which implies the loss function log(1 + e(1−2x⃗)h⃗) based

on maximum likelihood considerations (cf. Section 6.2.1).

In principle, autoencoders allow for different weight matrices in theWeight sharing

encoder and in the decoder. However, in practice, one often introduces

weight sharing (cf. Section 6.2.3) as a type of hard regularization by

ensuring that the decoder’s weight matrix equals the transpose of the

encoder’s weight matrix [56].

A straightforward way of constraining an autoencoder’s capabil-Undercomplete

autoencoder
ity to reconstruct its input lies in constraining the size of the hidden
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representation: By ensuring that h⃗ has considerably less entries than

x⃗, we impose a hard constraint on the network, essentially limiting

its representational capacity. Such undercomplete autoencoders, which

make use of a so-called bottleneck layer, are probably the most common

autoencoder variant. One can show that if such an autoencoder is

trained with the mean squared error as training objective, and if the

decoder is a linear function of the hidden representation, then the

overall autoencoder learns the same subspace as a principal component

analysis [172, Chapter 14]. If both encoder and decoder are allowed to

be nonlinear, an undercomplete autoencoder can thus be interpreted as

a more powerful, nonlinear generalization of PCA.

Another autoencoder variant may use a larger hidden representa- Sparse autoencoder

tion h⃗, but introduce a sparsity penalty as soft regularization. Such

a sparse autoencoder effectively encourages the hidden representation

to be sparse, i.e., to have only very few units active for any input (cf.

Sections 6.1.1 and 6.2.3). This can be achieved by adding for example a

regularization term in form of theL1 loss on the activation of the hidden

layer [172, Chapter 14]. It is important to note that in this case, the L1

loss is computed based on the outputs of the hidden units, not based on

their weights as in the weight decay scheme (cf. Section 6.2.3). As Bengio

et al. [56] note, this option is, however, rarely chosen in practice. More

popular variants include the so-called Student-t penalty (log(1 + h2j ))
and a constraint tying the average activation of each hidden neuron

over a complete minibatch to a desired fixed value. The latter variant

can either be realized using the MSE with respect to a target value

ρ, or the KL-divergence (cf. Section 5.1.3) with respect to a binomial

distribution with a small probability ρ for the outcome 1. In this way,

for instance by setting ρ = 0.05, one can explicitly encode, that about

5% of the hidden units should be active on average.

Denoising autoencoders follow a slightly different paradigm, where Denoising

autoencoder
the network is regularized by adding noise to the inputs, which needs

to be removed by the autoencoder [172, Chapter 14]. More formally,

instead of being presented with the original input x⃗, the autoencoder

receives a corrupted version x⃗′, but still has to reconstruct the original

input x⃗. Typical types of noise used for the corruption step include

additive Gaussian noise and (in the case of gray-scale images) salt

and pepper noise (i.e., setting random pixels to minimal or maximal

intensity) [56]. Adding noise to the input creates a larger variability in the

examples, and having to reconstruct the non-corrupted version makes

the reconstruction task more difficult, acting therefore as an indirect

form of regularization [172, Chapter 14]. In the manifold learning

interpretation, the denoising objective corresponds to moving the

corrupted input x⃗′ back to the closest point that lies on the data manifold

[56]. One can observe empirically, that denoising leads to qualitatively

better features as reflected in better classification performance [56].

If we interpret the decoder of a denoising autoencoder as a gener- Sampling the decoder

ative network, we may also be interested in drawing samples from
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the distribution, which this autoencoder has learned. Goodfellow et al.

[172, Chapter 20] describe the following iterative sampling technique:

Starting with a given input x⃗, one computes the hidden representation

h⃗ = f(x⃗) and the output of the decoder as r⃗ = g(h⃗). If the autoencoder

is trained with the MSE objective, this reconstruction r⃗ can be inter-

preted as the mean of a normal distribution (cf. Section 6.2.1). In order

to sample a new example x⃗′ from this distribution, one can therefore

simply apply Gaussian noise with a variance based on the MSE of the

reconstruction objective. This whole process can be iteratively repeated

in order to sample a set of data points from the distribution implicitly

learned by the autoencoder.

As a final variant, we want to introduce contractive autoencoders,Contractive

autoencoders
which try to learn a continuous encoding function [172, Chapter 14]: If x⃗

changes slightly, also h⃗ should not change much. This desirable behavior

is incited by using a regularization term of the form

∑︁
j ||∇x⃗hj ||2 in the

training objective. This means, that large derivatives of the learned code

are discouraged, which often causes the hidden units of a contractive

autoencoder to saturate, i.e., to be close to the extremes of their range

[56]. Contractive autoencoders seem to be empirically superior to

denoising autoencoders and Bengio et al. [56] explain this empirical

observation by three important differences: Firstly, the contractive

penalty is applied directly to the learned representation and not to

the reconstructions. Secondly, the contractive penalty is analytic unlike

the stochastic regularization introduced by denoising autoencoders.

Thirdly, the relative influence of the regularization can be explicitly

controlled for contractive autoencoders, while it can be only indirectly

modified through the type and level of noise in denoising autoencoders.

Since contractive autoencoders are explicitly designed to recover anSampling the decoder

estimate of the data manifold’s tangent plane, repeated encoding and

decoding with injected noise corresponds to a random walk along the

surface of the manifold [172, Chapter 20]. Thus, the same sampling

procedure as described above for denoising autoencoders can again be

applied to contractive autoencoders.

Of course, it is in principle possible to combine these differentOther variants

approaches with each other, e.g., by training denoising autoencoders,

which make use of a bottleneck architecture. When using autoencoders

as part of a multitask learning approach, one can furthermore use

different parts of the bottleneck layer for different sets of tasks as

illustrated by the work of Salakhutdinov and Hinton [345] in the

context of metric learning, which has been introduced in Section 5.3.3.

When evaluating the representation learned by an autoencoder,Evaluating

autoencoders
one can make use of an extrinsic evaluation based on the test set

reconstruction error. However, since a larger capacity of the autoencoder

(e.g., through a larger bottleneck layer) typically also leads to a lower

reconstruction error even on the test set, the usability of this type of

evaluation is clearly limited [56].
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As Goodfellow et al. [172, Chapter 15] point out, autoencoders Limitations of

autoencoders
optimizing the MSE on images may not represent small objects in their

learned hidden representation, since the absence of such small objects

has only a minor influence on the reconstruction error. Goodfellow et

al. note that other architectures such as generative adversarial networks

(which will be introduced in Section 6.3.3) do not suffer from this

problem, since they try to capture any kind of structured pattern in the

data. We would also like to add, that the representations learned by

regular autoencoders are usually not disentangled and thus hard to

interpret by humans.

We will make use of a denoising autoencoder with a bottleneck layer Outlook

in Chapter 12 as part of both a transfer learning and a multitask learning

approach, when trying to map images onto points in psychological

similarity spaces.

6.3.2 Word Embeddings

The field of distributional semantics tries to capture the meaning of The distributional

hypothesis
words based on their usage, building on the distributional hypothesis,

which states, that words with similar linguistic contexts have similar

meanings [251]. The context under consideration for each word can be

based on a window of a fixed size (i.e., k words to the left and to the

right), on syntactic information (e.g., grammatical dependencies from

a parse tree), or on larger units of texts (e.g., paragraphs or documents).

Word-based contexts tend to result in representations, that focus on

attributional similarity (e.g., car being similar to van), while document-

based contexts tend to emphasize topical similarity (e.g., car being

similar to driving) [251].

The meaning of a given word wi is represented by a so-called word Word embeddings

vector or word embedding v⃗i. In contrast to classical, symbolic definitions

of word similarity, this approach is graded and distributed, since it uses

continuous values on multiple dimensions to represent each word [251].

Word embeddings thus provide an automated way of quantifying the

semantic similarity of words, which can be highly useful in natural

language processing (NLP) applications. The similarity of two words

wi and wj is typically quantified by measuring the cosine of the angle

α between their respective vectors v⃗i and v⃗j :

Sim(wi, wj) = cosα =
v⃗i · v⃗j

||v⃗i|| · ||v⃗j ||

Broadly speaking, one can distinguish two types of model families for Approaches for

obtaining word

embeddings

extracting word embeddings from text corpora [251, 317]: Matrix-based

models count the overall co-occurrences of words and contexts, and

apply dimensionality reduction techniques on the resulting global

co-occurrence matrix. Prediction-based models, on the other hand, make

use of a local context window and try to predict a word given its context.

Approaches based on (usually quite shallow) neural networks mostly

fall into the second category.
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The global co-occurrence matrix X used in matrix-based models containsMatrix-based models

the raw co-occurrence counts Xik between a given word wi and a given

context ck. Since both the size V of the overall vocabulary (i.e., the

number of different words wi) and the number K of different contexts

ck is usually quite large, and since individual words tend to occur

only in a relatively small number of contexts, this global co-occurrence

matrix is usually quite sparse [251]. In order to counteract undesired

effects based on word frequency, the values of this co-occurrence matrix

are usually normalized before computing similarities. In recent years,

the positive pointwise mutual information (PPMI) has become a commonly

used weighting function [251]:

PPMI(wi, ck) = max

(︃
0, log

P(wi, ck)

P(wi) · P(ck)

)︃
PPMI measures how much the probability of a word-context pairPositive pointwise

mutual information (wi, ck) is greater than one would expect, if they occurred independently

of each other. It can thus be related to mutual information as introduced

in Section 5.3.1. One can in theory use the rows of the normalized

co-occurrence matrix as word vectors, and compare them using the

cosine similarity. However, due to the large size of this matrix and its

sparsity, this is quite inefficient both from computational and memory

usage perspectives.

Instead, one often applies dimensionality reduction techniques inLatent semantic

analysis
order to compress the information from the co-occurrence matrix X
and to identify the underlying latent variables determining semantic

similarity. For instance, a popular procedure called Latent Semantic

Analysis (LSA) [243] uses a singular value decomposition (cf. Section

5.3.2) X = UΦV T
on a V × K word-document matrix X , where V

specifies the size of the vocabulary and K the number of documents.

LSA then uses M = UΦ as lower-dimensional representation of size

V × n (with n ≪ K), where each word is now represented by an

n-dimensional embedding. While such a compressed representation

is advantageous from a computational and storage point of view, the

individual dimensions of the resulting word vectors are often no longer

interpretable [251]. Nevertheless, this dimensionality reduction step is

often associated with large gains in performance and hence considered

a core feature of distributional semantics [185].

Two popular examples of the prediction-based models have beenWord2vec

proposed by Mikolov et al. [290, 291]. Their word2vec approach uses

shallow neural networks with a single hidden layer to learn word

embeddings based on a prediction task.

Figure 6.10a illustrates the network structure used in the contin-Continuous bag of

words uous bag-of-words (CBOW) model: The network has to predict the

current word wi based on its context, i.e., its surrounding words

wi−k, . . . , wi−1, wi+1, . . . , wi+k for a given window size k. The input

words are represented by so-called one-hot vectors (cf. Section 6.1.1).

This means, that the input for each context position is represented by

V binary inputs (one for each word from the vocabulary). Out of these
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Figure 6.10: Illustration of the shallow network structures used by the CBOW

model (a) and the Skip-gram model (b).

V binary inputs, only the one corresponding to the word found at this

position in the current context is active, while all others are inactive.

This representation is very sparse and high-dimensional, but necessary

in order to ensure that the network perceives the individual words as

unrelated. If we used only a single input unit and V different input val-

ues to encode the V different words, the ordering chosen for mapping

words onto values would already imply a similarity relation. Just as

the input layer, also the output layer makes use of V different outputs

for predicting the target word, implemented as softmax units. The

CBOW model uses weight sharing (cf. Section 6.2.3) between the input

layer and the hidden layer across all word positions. These weights

can then interpreted as word embeddings, once the network has been

successfully trained.

Figure 6.10b shows the structure of the Skip-gram model, which Skip-gram

uses the inverse prediction task: Given a target word wi, predict the

words wi−k, . . . , wi−1, wi+1, . . . , wi+k from its context. Again, one-hot

encodings, softmax outputs, and shared weights are used. Since the

number of output units is very large for the Skip-gram model, com-

puting gradients can become computationally challenging. Therefore,

different extensions have been proposed to reduce the computational

burden. For instance, in a hierarchical softmax output layer, a binary

tree with V leaf nodes is used, where each internal node stores the

relative probability distribution over its children. This results in log V
instead of V computation steps for obtaining the gradient.

Mikolov et al. [290, 291] were able to show, that the word vectors ob- Semantic properties

of word2vec
tained with CBOW and Skip-gram are not only able to reflect semantic

similarity of word pairs through the cosine similarity, but they are also
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able to produce meaningful results for vector additions: For example,

v⃗
Queen

is the closest vector to the result of v⃗king − v⃗man + v⃗woman. More-

over, v⃗
Germany

+ v⃗capital ≈ v⃗Berlin. This (perhaps surprising) behavior

can be used in analogy tasks, such as completing the sentences "Man is

to woman as king is to ..." (targeting semantic structures) or "Big is to

bigger as small is to ..." (targeting syntactic structures).

The ability of word vectors to capture such syntactic and semanticGlobal vectors

regularities has been used as a motivation for the GloVe (Global Vec-

tors) model [317], which attempts to unify aspects from matrix-based

methods (namely, their focus on global co-occurrence statistics) and

prediction-based methods (namely, their ability to perform good in

analogy tasks).

Given two focus words wi and wj , Pennington et al. [317] argue, thatRatios of

co-occurence

probabilities

the ratio of their co-occurrence probabilities with other context words wk
should be used as a starting point for defining semantic similarity. For

instance, if wi = ice and wj = steam, then the fraction
P(wk|wi)
P(wk|wj)

(where

P(wk|wi) and P(wk|wj) are estimated from the co-occurrence matrix

X) should roughly equal one for context words wk, which are related to

both words (e.g., wk = water) or to neither of them (e.g., wk = fashion).

However, for context words such as wk = solid or wk = gas, which are

related to only one of the target words, the fraction
P(wk|wi)
P(wk|wj)

is expected

to be relatively large or small, respectively.

Pennington et al. propose to model the conditional probabilitiesModeling

co-occurrence

probabilities with

vectors

P(wk|wi) based on the inner product of the embedding v⃗i of the focus

wordwi and the embedding v⃗′k of the context wordwk, using a nonlinear

transformation function F :

P(wk|wi) = F (v⃗Ti · v⃗′k)

This means that the same word wj has two different embeddings v⃗jA more specific model

and v⃗′j , depending on whether it is being used as a focus word or as

a context word. By using F (x) = ex and by approximating P(wk|wi)
based on the entries Xik of the co-occurrence matrix X , Pennington et

al. obtain the following model:(︄
ev⃗

T
i ·v⃗′k =

Xik∑︁K
k′=1Xik′

)︄
⇔

(︄
v⃗Ti · v⃗′k = ln(Xik)− ln

(︄
K∑︂
k′=1

Xik′

)︄)︄

Since

∑︁K
k′=1Xik′ is independent of wk, Pennington et al. replace theMain constraint for

the embeddings

term ln
(︂∑︁K

k′=1Xik′

)︂
with a constant bias term bi, and also introduce

another bias term b′k for the context word wk, leading to their final

constraint for the embeddings v⃗i and v⃗′k:

v⃗i · v⃗′k + bi + b′k = ln(Xik) (6.2)
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In order to ensure, that rare co-occurrences are not underweighted Weighting function

and large co-occurrences are not overweighted, Pennington et al. in-

troduce a weighting function f for the individual matrix entries Xik,

using a threshold xmax and a scaling strength α:

f(Xik) =

⎧⎨⎩( Xik
xmax

)α if Xik < xmax

1 if Xik ≥ xmax

The overall optimization objective for their GloVe model can then Overall loss function

be formulated as a least squares problem by using Equation 6.2 and a

weighted sum over all pairs of words in the vocabulary:

J =

V∑︂
i=1

V∑︂
k=1

f(Xik)(v⃗
T
i v⃗

′
k + bi + b′k − ln(Xik))

2

The optimal embeddings v⃗i and v⃗′k as well as the optimal bias terms Results

bi and b′k can then be found using gradient descent. Pennington et al.

were able to show, that their GloVe model is indeed able to outperform

both CBOW and Skip-gram with respect to analogy and word similarity

tasks, as well as in named entity recognition as an exemplary NLP task.

While the similarity judgments provided by word embeddings have Limitations of word

embeddings
been identified as useful features in various areas of natural language

processing, Lenci [251] has noted that from the view of computational

linguistics, there are still open problems associated with distributional

semantics. For instance, he notes that word embeddings often seem to

confound semantic similarity, syntactic information, and general topic-

based relatedness. Stripping apart these different notions of similarity

in a systematic way is still an ongoing area of research. Moreover, Lenci

discusses the problem of compositionality: Embeddings are usually

created for individual words or short phrases (such as white house). It is,

however, unclear how to combine the embeddings of these atomic terms

in order to model the meaning of complete sentences or paragraphs. In

practice, taking the average across all individual words is a common

approach, which is, however, not able to distinguish the semantically

quite different events described by the phrases "dog bites man" and

"man bites dog".

Günther et al. [185] on the other hand argue, that word embeddings Merit of word

embeddings
have been successfully applied in various areas of cognitive science,

including artificial intelligence, psycholinguistics, and cognitive neu-

roscience. According to Günther et al., the portrayal of these models

is often based on common misconceptions. For example, they refer

to several studies demonstrating that word embeddings can also be

learned in an online fashion (rather than the psychologically implausi-

ble batch processing), that different word meanings can be extracted

based on clustering techniques, and that word embeddings can be

extended to a multimodal setting, where for instance also word-image

co-occurrences are considered in addition to the classical word-word

or word-document statistics. Moreover, Günther et al. argue, that also
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humans presumably leverage statistical regularities in language learn-

ing. Finally, since language is often used to communicate about the real

world, Günther et al. not that word embeddings are indirectly embodied

and can thus in principle also capture non-linguistic aspects of meaning.

Sommerauer and Fokkens [382] have investigated to which extentWord embeddings

and semantic

properties

semantic properties are reflected by word embeddings. They collected

human ratings with respect to both interaction-based properties (such as

object functions or activities, in which they often partake) and perceptual

properties (such as color or shape) for a set of selected words. They

assumed that interaction-based properties are well reflected by word

embeddings, but that perceptual properties are not. Sommerauer and

Fokkens used a leave-one-out evaluation on both a logistic regression

and a feedforward neural network trained on top of pretrained Skip-

gram embeddings to classify whether a property applies to a word or

not. They compared the performance of these classifiers to a simple

centroid-based approach, where the centroid of the positive examples

was computed, its k nearest neighbors were classified as positive, and

all other vectors as negative.

Sommerauer and Fokkens observed that perceptual properties suchWord embeddings

capture interactions

better than

perception

as black, or wooden were not recoverable from the embeddings, which

indicates, that the textual evidence for perceptual properties is too

sparse. Their classifier-based approach was in general more successful

than the centroid-based approach. For instance, the classifiers were able

to identify a sub-group of vehicles to which has wheels applies, as well

as words outside the categories of weapons and carnivorous animals,

which had been labeled as dangerous. Also a distinction into separate

word senses (such as chicken, which can both refer to an animal or to

food) was possible for the classifiers, while the centroid-based approach

was mostly bound by the majority class. Overall, although Sommerauer

and Fokkens state, that their results were not yet conclusive, their study

illustrates that word embeddings lack perceptual information, and that

other semantic properties can be extracted in principle, but require

additional classifiers instead of being directly accessible through the

cosine similarity between a query vector and a prototype.

In a related strand of research, Gupta et al. [176] have investigated,Word embeddings

and numerical

attribtues

whether specific attributes (such as the number of inhabitants of a

country) can be extracted from pretrained word embeddings. They

used a pretrained Skip-gram model and trained a logistic regression for

predicting both categorical and numeric attributes of countries and cities

(the latter were rescaled to the interval [0, 1] to allow for the application

of a logistic regression). According to their results, the logistic regression

performed considerably better than simple baselines (predicting the

majority class and the average numeric value, respectively), indicating

that word embeddings are indeed able to capture also more structured

information to at least some degree.

Kim and de Marneffe [222] have shown, that it is also possible to re-Word embeddings

and adjectival scales
cover several adjectival scales such as terrible < bad < okay < good <
excellent from pretrained word embeddings: They started by identify-



6.3 network architectures for representation learning 329

ing two endpoints of such a scale (e.g., terrible and excellent) and by

retrieving their respective word vectors v⃗a and v⃗b. They then defined a

midpoint v⃗2 = v⃗b + (v⃗a − v⃗b)/2 as well as two quarter points v⃗1 and v⃗3
and identified the words, whose embeddings were most similar to these

three intermediate points. Their analysis shows, that in most cases, these

intermediate points described a meaningful scale. Kim and de Marneffe

furthermore used this approach to classify indirect responses to yes/no

questions such as "Is Obama qualified? - I think he is young" by checking

whether young lies on the positive or on the negative side of the scale

induced by the endpoints qualified and unqualified. Their work thus

suggests, that while the individual coordinates of a word embedding

are not necessarily interpretable, it is possible to identify directions in

the embedding space, which correspond to meaningful adjectival scales.

Rothe and Schütze [338] propose to decompose a given embedding Decomposing the

embedding space into

orthogonal subspaces

space into interpretable orthogonal subspaces. These subspaces can

then be used to make targeted modifications to a given word embed-

ding. More specifically, they consider subspaces for polarity (which

allows one to find antonyms, e.g., friend–foe), concreteness (allowing

for abstraction, e.g., friend–friendship), frequency (used to find less

frequent synonyms, e.g., friend–comrade), and part of speech (reflect-

ing grammatical changes, e.g., friend–befriend). By using orthogonal

subspaces of the overall space, they leave the structure of the global em-

bedding space intact and tacitly assume that the different subspaces are

independent of each other. Their work indicates, that such interpretable

subspaces can be extracted for at least some domains of interest from

pretrained embedding spaces as provided by the word2vec model.

Instead of analyzing a pretrained space, Jameel et al. [207, 208] have Learning orthogonal

subspaces based on

GloVe

proposed an approach, which constrains the training of word embed-

dings explicitly in such a way, that each semantic type is represented

by a particular subspace. They used the GloVe model as a starting

point and introduced additional constraints based on knowledge graph

embeddings. Overall, their loss function consists of three parts:

• Jtext is equivalent to the loss function used by GloVe, but models

the co-occurrence of entities and words instead of the word-word

co-occurrence used by the original GloVe model.

• Jtype ensures, that all entities of a given semantic type (e.g.,

human or animal) can be written as a convex combination of

n + 1 support points in the overall n-dimensional embedding

space. This constraint by itself has a trivial solution, but it is

complemented by a regularization term Jregtype, which requires

the space spanned by these n + 1 support points to be as low-

dimensional as possible. Taken together, Jtype and Jregtype thus

ensure, that each semantic type is represented by a relatively

low-dimensional subspace.

• Jrel incorporates relations from a knowledge graph into the model.

It considers tuples of the form (e, r, f), which represent that the
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relation r holds between the entities e and f , and ensures that f
lies in the same subspace as the result obtained by e+ r. Again,

a regularization term Jregrel ensures, that this relation-induced

subspace is as low-dimensional as possible.

Jameel et al. were able to show that their model performs better withExperimental results

respect to ranking, induction, analogy making, and knowledge graph

embedding than both pure word embedding models (namely, CBOW

and Skip-gram) and pure knowledge graph embedding models. Their

approach thus exemplifies that a domain-like structure can in principle

be learned from textual data.

McGregor et al. [286] have also attempted to construct interpretableLearning domain

structures based on

global co-occurrences

subspaces of a distributional model. Unlike the other approaches dis-

cussed so far, they, however, start with a global co-occurrence matrix

of word-word combinations, weighted with PPMI. In order to define

a new domain (such as carnivores), they use a small set of relevant

words (such as lion, bear, and tiger), and identify the columns of this

global co-occurrence matrix, which have non-zero entries for all of

these seed words. These columns correspond to context words (such as

kill, hunt, and prey), which co-occur with all of the seed words. After

normalizing the respective columns (in order to counteract frequency

effects), McGregor et al. select a small subset of these columns based

on their average value for the given seed words. This means, that they

select the context words, which are strong indicators for the seed words.

The underlying intuition of this step is that features with a high mean

value are very salient for the given conceptual domain. In order to

identify other members of the given conceptual domain (e.g., wolf),

McGregor et al. first project the overall co-occurrence matrix onto the

subspace spanned by the selected feature subset. Afterwards, they

propose to either use the Euclidean distance to the prototype (i.e., the

average among the seed words) or to use the distance from the origin

(compared to the respective distance of the seed words) to determine

concept membership. Their experimental evaluation shows that their

approach achieves similar performance levels as Skip-gram and GloVe

on a concept membership list completion task, and that the behavior

of their model aligns also relatively well with human conceptualizations.

Let us now consider word embeddings from the perspective ofWord embeddings

and conceptual

spaces

conceptual spaces. Remember that conceptual spaces are spanned

by a small number of interpretable dimensions, which are based on

sensory input such as vision. Moreover, the overall conceptual space is

structured into different semantic domains based on different perceptual

modalities (e.g., color vs. shape). Semantic similarity is inversely related

to the Euclidean or Manhattan distance, depending on whether the

dimensions involved belong to the same or to different domains.

Word embeddings, on the other hand, are purely based on textualDifferences

data and thus not directly related to sensory information. The em-

bedding spaces themselves are usually very high-dimensional and

their dimensions are not interpretable. Finally, the cosine of the angle
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between two vectors is used in order to measure their similarity, not

the Euclidean or Manhattan distance of the points they represent.

Despite these obvious differences, one can, however, also see certain Similarities and links

parallels between word embeddings and conceptual spaces: Both ap-

proaches use a geometric approach for defining semantic similarity,

and in both cases, these spaces support classification and commonsense

reasoning strategies such as analogical reasoning. Moreover, as illus-

trated with the various approaches discussed above, it also seems to be

possible to extract or enforce domain-like structures in word embedding

spaces. One may thus view word embeddings as a more language-

centric and engineering-oriented variant of the more cognitively and

psychologically motivated conceptual spaces framework.

This relation between the two approaches has been illustrated by the Obtaining

conceptual spaces

from word

embeddings

work of Derrac and Schockaert [123] (cf. Section 1.2.5), who have created

conceptual spaces based on the cosine similarities extracted from co-

occurrence matrices. Essentially, they collected a co-occurrence matrix

for entities (corresponding to target words) and tags (corresponding to

contexts) and normalized this matrix using PPMI. Instead of applying

singular value decomposition for reducing the dimensionality of the

representation, they used the cosine similarity of the PPMI vectors

for all pairs of entities to define a global similarity matrix. Derrac and

Schockaert then used multidimensional scaling (to be introduced in

Chapter 8) to find a lower-dimensional representation of the entities

in a Euclidean space, enforcing that the Euclidean distance between

two entities was inversely related to the cosine similarity of their PPMI

vectors. Their work can thus be interpreted as a way of translating word

embeddings to conceptual spaces. We will discuss their approach in

greater detail in Chapter 8 in the context of multidimensional scaling.

6.3.3 Generative Adversarial Networks

Similar to autoencoders, generative adversarial networks (GANs) [173] Generative

adversarial networks:

generator and

discriminator

consist of two models, which are implemented by neural networks (cf.

Figure 6.11): The generative model G(z⃗, θG) (implemented as generator

network) maps its noise input z⃗ (which follows some probability dis-

tribution P(z⃗)) onto the feature space, which is used to represent the

data points x⃗. The family of possible mapping functions is given by the

network architecture, and its parameters θG are optimized in order to

create realistic samples. The discriminative modelD(x⃗, θD) (implemented

as discriminator network) tries to discriminate between samples, that

were drawn from the real data distribution Pdata, and samples G(z⃗)
created by the generative model. D(x⃗, θD) outputs a single scalar repre-

senting the probability that x⃗ came from the real data distributionPdata.

The parameters θD are optimized in order to maximize classification

accuracy. In most cases, GANs are applied to image data.

The overall GAN setup can be interpreted in game-theoretic terms GANs and game

theory
as a minimax game: There is a single value function, which is being
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Figure 6.11: Structure of generative adversarial networks [173] with generator

and discriminator.

maximized by one player (in our case the discriminator), while being

minimized by another player (in our case the generator). While the

discriminator tries to distinguish real inputs from generated ones, the

generator tries to fool the discriminator into accepting its generated

data points as "real". The overall value function of the GAN framework

is defined as follows, where Pdata is the probability distribution of the

real data points x⃗ from an unlabeled dataset:

V (D,G) = Ex⃗∼Pdata(x⃗)[logD(x⃗)] + Ez⃗∼P(z)[log(1−D(G(z⃗)))]

The first term of this equation is based on the output of the discrimi-Interpreting the

value function
nator for data points from the real dataset (e.g., for real images) and

grows monotonically with D(x⃗). The second term of this equation is

based on the output of the discriminator for data points, which were

created by the generator based on the noise variables. This term grows

as the value of D(G(z⃗)) becomes smaller.

The generator G tries to minimize the overall value of V (D,G).Objectives of

generator and

discriminator

This can only be done through the second term, i.e., by maximizing

D(G(z⃗)). Hence, the generator updates its weights in such a way,

that the discriminator misclassifies its generated images as real. The

discriminator D, on the other hand, tries to maximize the overall value

of V (D,G). This corresponds to maximizing D(x⃗) and minimizing

D(G(z⃗)), i.e., distinguishing real data points from generated ones.

Goodfellow et al. showed that this overall minimax game has a globalOptimal solution to

the minimax game
optimum for PG = Pdata, i.e., when the generator’s output distribution

equals the distribution of the real data points. One can guarantee that

this optimum is reached, if both the generative and the discriminative

model have unlimited capacity. There is, however, no guarantee that

a practical implementation of the GAN framework with networks of

finite capacity will reach convergence.



6.3 network architectures for representation learning 333

The parameters of the two neural networks are estimated by using Training procedure

gradient descent. The overall training procedure consists of two nested

loops: In each iteration of the outer loop, the weights of the generator

are updated. This is done, after the weights of the discriminator have

been updated k times in the inner loop. Goodfellow et al. note that

k = 1 is sufficient in most cases. Please note, that although the discrim-

inator is trained on a classification task, the overall system works in

an unsupervised way: The dataset containing the real examples x⃗(j)

does not need any class labels y(j), since the classification task of the

discriminator involves distinguishing real from generated inputs. The

labels needed for this classification task can be generated on the fly, by

labeling all real examples x⃗ with the positive class and all generated

examples G(z⃗) with the negative class

In general, the generator might learn very slowly in the beginning Speeding up initial

generator training
of the training procedure, when its outputs are of low quality. In such

a scenario, the discriminator can easily distinguish real outputs from

generated ones, leading to a low value ofD(G(z⃗)). This in turn makes 1−
D(G(z⃗)) relatively large. Since the derivative of the logarithmic function

decreases with increasing input, the gradient of log(1−D(G(z⃗)))used to

update the generator’s weights might be relatively small, thus leading

to only small improvements. In order to speed up initial training,

Goodfellow et al. suggest to maximize logD(G(z⃗)) for the generator

instead of minimizing log(1 −D(G(z⃗))). In both cases, the generator

tries to increase D(G(z⃗)), but for small values of D(G(z⃗)), logD(G(z⃗))
provides a much steeper gradient than log(1−D(G(z⃗))).

Training GANs is generally considered to be a difficult task [14]. It GAN variants with

improved training

stability

seems, that convergence to an equilibrium state is not always possible

and depends on many factors [172, Chapter 20]. Among others, using

dropout (cf. Section 6.2.3) in the discriminator seems to be an important

ingredient for successful training [172, Chapter 20]. These training

difficulties have sparked a variety of modifications to the original GAN

framework. For instance, Durugkar et al. [141] showed, that by using

multiple discriminator networks at the same time, one can obtain a

faster convergence than with standard GANs. Moreover, modifying

the minimax objective for accelerating early training was no longer

necessary in this setting. Zhao et al. [458] interpret the discriminator as

providing an energy function, which assigns low energies to regions

near the data manifold. They propose to model this energy function as

the reconstruction error of an autoencoder which replaces the standard

discriminator network in their proposal . Also they observed more

stability in training compared to the original GAN setup. Moreover,

they argue, that their modified setup can be interpreted as a denoising

autoencoder (cf. Section 6.3.1), where the corrupted examples are not

obtained through the application of random noise, but sampled from

the generator network.

Despite its difficulties in training, the GAN framework has been Applications of

GANs
highly successful in various application domains. Radford et al. [326]

have used convolutional layers (cf. Section 6.2.2) in order to apply
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GANs to image data. Their results showed that the latent code (i.e.,

the noise vector z⃗) covers the space of possible images in a meaningful

way. They demonstrate this by using simple vector arithmetics similar

to what has been discussed for word embeddings in Section 6.3.2. Wu

et al. [440] have applied GANs to the generation of three-dimensional

objects, using volumetric convolutional layers. They have furthermore

trained a variational autoencoder (to be introduced in Section 6.3.4) on

two-dimensional images and have used its latent code as an input to

the generator network, allowing them to generate a three-dimensional

representation based on a two-dimensional input. Recently, Brock et al.

[80] have scaled up the GAN framework to higher-resolution images of

size 128× 128 by noting, that the trade-off between sample quality and

sample variety can be controlled through truncating the distribution

of the latent variables z⃗ after training. Zhu et al. [459] have introduced

CycleGAN, which aims to learn a mapping between two domains (e.g.,

images of horses and images of zebras) by employing a GAN-like

setting: For each translation direction, they train a generator (mapping

from source to target domain) and a discriminator (trying to distin-

guish real images from translated ones). By furthermore introducing

a reconstruction loss (enforcing that translating from source to target

and back should result again in the original image), they were able to

successfully learn such mappings without needing paired data.

One important disadvantage of GANs is that the individual di-GAN representations

are not interpretable
mensions of the noise vector z⃗ are not meaningful. Although we can

manipulate them in order to generate new images (e.g., by interpolating

between two noise vectors), it is difficult to generate an image with

certain desired semantic properties, because these properties cannot be

readily accessed or directly specified.

Chen et al. [101] have proposed an information-theoretic extension toInfoGAN: learning

disentangled

representations

GANs, which is called InfoGAN. Its explicit goal is to learn disentangled

representations (cf. Section 6.1.1) in a completely unsupervised manner.

Their proposed network architecture follows the overall GAN princi-

ple, and adds an incentive for the generator to maximize the mutual

information between a subset of the noise variables and its output.

Chen et al. modify the GAN framework by splitting the generatorSplitting the

generator input
input into two parts: On the one hand, there is a vector z⃗, which is

treated as the source of incompressible noise. The noise coming from

z⃗ allows the generator to create example data points, which share the

same underlying semantic features, but may differ in their surface level

features. On the other hand, a second vector c⃗ (called the latent code) is

used to target salient structured semantic features of the dataset. Chen

et al. assume that c⃗ is a concatenation of individual latent variables,

whose probability distributions are independent of each other.

If we only use c⃗ as an additional input to the generator withoutMutual information

modifying the training objective, the generator might simply discard it.

Chen et al. propose to solve this problem by introducing an information-

theoretic regularization term into the overall GAN loss function. This

additional regularization term tries to ensure, that the mutual infor-
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mation between the latent code c⃗ and the distribution of the generator

output G(z⃗, c⃗) is high. Please recall from Section 5.3.1, that the mutual

information MI between two random variables A and B is defined as

follows, based on the entropy H :

MI(A,B) = H(A)−H(A|B) = H(B)−H(B|A)

Please recall from Section 5.2.4, that the entropy H(A) measures the Adding a

regularization term
amount of uncertainty associated with a random variable A and is

defined as H(A) = EA∼P (A)[− log(P (A))]. Mutual information there-

fore quantifies how much of this uncertainty about A is removed if we

are allowed to observe B. In the case of InfoGAN, we are interested

in measuring how much uncertainty about the latent code c⃗ can be

removed by observing the generator output G(z⃗, c⃗). We can include

this new regularization term into the GAN loss function as follows:

VMI(D,G) = V (D,G)− λ ·MI(c⃗, G(z⃗, c⃗))

= Ex⃗∼Pdata(x⃗)[logD(x⃗)] + Ez⃗∼P(z⃗)[log(1−D(G(z⃗)))]

− λ ·MI(c⃗, G(z⃗, c⃗))

Chen et al. argue, that we need access to the posterior distribution Computing the

mutual information

term

P(c⃗|x⃗) in order to compute MI(c⃗, G(z⃗, c⃗)). This can be seen by first ap-

plying the definitions of mutual information and entropy, respectively:

MI(c⃗, G(z⃗, c⃗)) = H(c⃗)−H(c⃗ | G(z⃗, c⃗))
= H(c⃗)− Ex⃗∼PG(z⃗,c⃗)[Ec⃗′∼P(c⃗|x⃗)[− logP(c⃗′|x⃗)]]
= H(c⃗) + Ex⃗∼PG(z⃗,c⃗)[Ec⃗′∼P(c⃗|x⃗)[logP(c⃗

′|x⃗)]]

The posterior distributionP(c⃗|x⃗) is, however, not available in practice. Introducing an

approximation
Chen et al. solve this problem by defining an auxiliary distribution

Q(c⃗|x⃗), which approximatesP(c⃗|x⃗). SinceQ is only an approximation of

P, we introduce an approximation error, which can be captured with the

Kullback-Leibler (KL) divergence DKL. Please recall from Section 5.1.3,

thatDKL measures the difference between two probability distributions

and is defined as follows:

DKL(P(X)||Q(X)) = EX∼P(X)[logP(X)− logQ(X)]

We can thus rewrite our formula for the mutual information as follows:

MI(c⃗, G(z⃗, c⃗)) = H(c⃗) + Ex⃗∼PG(z⃗,c⃗)[Ec⃗′∼P(c⃗|x⃗)[logP(c⃗
′|x⃗)]]

= H(c⃗) + Ec⃗′∼P(c⃗|x⃗)[logQ(c⃗
′|x⃗)]]

+ Ex⃗∼PG(z⃗,c⃗)[DKL(P(c⃗|x⃗)||Q(c|x⃗))

Since the KL divergence is always non-negative, we can derive a Obtaining a lower

bound
lower bound for MI(c⃗, G(z⃗, c⃗)) by removing DKL from our formula:

MI(c⃗, G(z⃗, c⃗)) = H(c⃗) + Ex⃗∼PG(z⃗,c⃗)[Ec⃗′∼P(c⃗|x⃗)[logQ(c⃗
′|x⃗)]]

+DKL(P(c⃗|x⃗)||Q(c|x⃗))
≥ H(c⃗) + Ex⃗∼PG(z⃗,c⃗)[Ec⃗′∼P(c⃗|x⃗)[logQ(c⃗

′|x⃗)]]
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Figure 6.12: Structure of InfoGAN [101], which adds a reconstruction objective

for part of the noise vector to the general GAN framework.

Finally, Chen et al. [101] were able to prove that we can collapse theRewriting the lower

bound
two nested expected values into a single term:

MI(c⃗, G(z⃗, c⃗)) ≥ H(c⃗) + Ex⃗∼PG(z⃗,c⃗)[Ec⃗′∼P(c⃗|x⃗)[logQ(c⃗
′|x⃗)]]

(v)
= H(c⃗) + Ec⃗∼P(c⃗),x⃗∼PG(z⃗,c⃗)[logQ(c⃗|x⃗)]
= LMI(G,Q)

Instead of maximizing MI(c⃗, G(z⃗, c⃗)) as part of the InfoGAN lossMaximizing the

lower bound
function, we can now use the lower bound LMI(G,Q):

VMI(D,G) = V (D,G)− λ · LMI(G,Q)

= Ex⃗∼Pdata(x⃗)[logD(x⃗)] + Ez⃗∼P(z⃗)[log(1−D(G(z⃗)))]

− λ ·
(︁
Ec⃗∼P(c⃗),x⃗∼PG(z⃗,c⃗)[logQ(c⃗|x⃗)] +H(c⃗)

)︁
In practice, the auxiliary distribution Q is implemented though aImplementation with

neural networks
neural network. Chen et al. propose that this networkQ should share all

but the last layer with the discriminator D, which adds only negligible

overhead to the regular GAN framework. This network Q then predicts

Q(c⃗|x⃗), i.e., the conditional probability of a latent code c⃗ for a given data

point x⃗. For categorical variables in c⃗, a softmax activation is used for the

output of Q, while for continuous variables Chen et al. propose to use

a Gaussian distribution which is determined by its mean and variance.

The output of the network Q is then trained on the data points created

by the generator, and by trying to minimize the difference between its

prediction for c⃗ and the actual c⃗ used to generate the data point. The

overall resulting network structure is illustrated in Figure 6.12. As one

can see, this reconstruction of c⃗ introduces a structure similar to an

autoencoder. Chen et al. recommend to fix the hyperparameter λ to

one, if c⃗ contains categorical variables, and to lower it (up to a factor

of 10), if c⃗ contains only continuous variables in order to ensure that

LMI(G,Q) and V (D,G) are on the same scale.

In their paper, Chen et al. report results on five different datasets,Experimental results

including MNIST (a dataset of hand-written digits) and CelebA (a
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dataset of celebrity faces). On the MNIST dataset, the latent code c⃗
consisted of one categorical variable c1 with ten possible values and

two continuous variables c2 and c3 with a uniform distribution on the

interval [−1, 1]. The InfoGAN architecture was able to discover that

there are ten different classes in the dataset (namely, the digits from

zero to nine). Moreover, it extracted the interpretable dimensions of

digit rotation (c2) and digit width (c3). On the one hand, these are quite

impressive results, because they were obtained in an unsupervised

way. On the other hand, Chen et al. use quite a large amount of prior

knowledge in setting up the experiment, e.g., by defining that c1 should

consist of exactly ten categories. While for their MNIST example, all

latent variables proved to be semantically meaningful at the end of

the training procedure, only a subset of c⃗ became meaningful in their

remaining experiments.

InfoGAN was among the first neural architectures claiming to learn Outlook

disentangled representations. As such, it is clearly of interest when

aiming to learn a mapping from the subsymbolic to the conceptual

layer, i.e., when trying to ground conceptual spaces in sensory data.

However, due to the instabilities in training inherited from the general

GAN framework, its applicability in practice remains unclear. Moreover,

the disentanglement claims by Chen et al. are solely based on visual

inspection without using any formal evaluation criteria like the ones

introduced in Section 6.1.2. Finally, at least the MNIST results presented

by Chen et al. seem to be to some extent cherry-picked, since we were

unable to reproduce them, even when using their original source code.

In the context of learning disentangled representations, most researchers

have focused on architectures based on variational autoencoders, which

will be introduced in the upcoming section.

6.3.4 Variational Autoencoders

Variational autoencoders (VAE) can be interpreted as a recent prob- The graphical model

of variational

autoencoders

abilistic variant of regular autoencoders. Kingma and Welling [224]

base their derivation of variational autoencoders on a simple graphical

model shown in Figure 6.13. They treat the observable data points as a

random variable X , and assume, that this observable random variable

is generated based on the value of an unobservable latent variable Z.

The values of this random variable Z are drawn from a prior distribu-

tion Pθ(z⃗) with parameters θ. The conditional probability distribution

Pθ(x⃗|z⃗) describes the process of generating a data point x⃗ based on

concrete values z⃗ of the underlying latent variables. The solid lines in

Figure 6.13 illustrate this generation process. In our case, x⃗ represents

an image and z⃗ represents the latent code describing semantic features

of this image.

Given this graphical model, we would like to estimate the parameters The learning and

inference problemθ, as well as the probability distributionPθ(x⃗) (corresponding to the true

distribution over data points) and the conditional probability Pθ(z⃗|x⃗),
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Figure 6.13: Graphical model underlying variational autoencoders.

i.e., a way of extracting semantic features from perceptual inputs. Since

this problem is intractable in practice, Kingma and Welling propose to

use a recognition model Qϕ(z⃗|x⃗) (illustrated by dotted lines in Figure

6.13), which approximates the intractable true posterior probability

Pθ(z⃗|x⃗). It makes use of the parameters ϕ, which are in general different

from the parameters θ of the true probability distribution Pθ(z⃗|x⃗).
When framing this in the terms of an autoencoder, the unobservedThe autoencoder

view
variable Z can be interpreted as a hidden representation. The recogni-

tion model Qϕ(z⃗|x⃗) can then be thought of as an encoder, because it

produces for a given data point x⃗ a distribution over all possible values

of z⃗, that could have generated this observation x⃗. Conversely, the

conditional probability distributionPθ(x⃗|z⃗) corresponds to the decoder

of an autoencoder, since it produces a distribution over possible values

of x⃗ for a given latent code z⃗.

The following derivation of the objective function used in VAEs isDeriving the loss

function
based on the detailed tutorial by Doersch [130]. Overall, we try to

maximize the probability of the observed data points x⃗ under the whole

generative process, i.e., we want to maximize the following expression:

Pθ(x⃗) =

∫︂
Pθ(x⃗|z⃗)Pθ(z⃗)dz⃗

Unfortunately, this formula is intractable, and can therefore not beConsidering the KL

divergence
directly optimized in practice. Doersch starts the derivation of the

objective function by computing the Kullback-Leibler divergence DKL

(cf. Section 5.1.3) of the recognition modelQϕ(z⃗|x⃗) and the true posterior

distribution Pθ(z⃗|x⃗):

DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗|x⃗)) = Ez⃗∼Qϕ(z⃗|x⃗) [logQϕ(z⃗|x⃗)− logPθ(z⃗|x⃗)]

If one applies Bayes’ theorem P(A|B) = P(B|A)·P(A)
P(B) to Pθ(z⃗|x⃗), oneApplying Bayes’

theorem
can rewrite this as follows:

DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗|x⃗))

= Ez⃗∼Qϕ(z⃗|x⃗)

[︃
logQϕ(z⃗|x⃗)− log

(︃
Pθ(x⃗|z⃗) · logPθ(z⃗)

logPθ(x⃗)

)︃]︃
= Ez⃗∼Qϕ(z⃗|x⃗) [logQϕ(z⃗|x⃗)

−(logPθ(x⃗|z⃗) + logPθ(z⃗)− logPθ(x⃗))]
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We can now use the fact, that a sum of expected values corresponds Restructuring the

expected values
to the expected value of this sum to restructure our current expression:

DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗|x⃗))
= Ez⃗∼Qϕ(z⃗|x⃗) [logQϕ(z⃗|x⃗)

−(logPθ(x⃗|z⃗) + logPθ(z⃗)− logPθ(x⃗))]

= Ez⃗∼Qϕ(z⃗|x⃗) [logQϕ(z⃗|x⃗)− logPθ(z⃗)]

− Ez⃗∼Qϕ(z⃗|x⃗) [logPθ(x⃗|z⃗)] + logPθ(x⃗)

As you may notice, the first expected value corresponds to the KL Using the KL

divergence
divergence of Qϕ(z⃗|x⃗) and Pθ(z⃗). We can use this insight to rewrite our

expression as follows:

DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗|x⃗))
= Ez⃗∼Qϕ(z⃗|x⃗) [logQϕ(z⃗|x⃗)− logPθ(z⃗)]

− Ez⃗∼Qϕ(z⃗|x⃗) [logPθ(x⃗|z⃗)] + logPθ(x⃗)

= DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗))
− Ez⃗∼Qϕ(z⃗|x⃗) [logPθ(x⃗|z⃗)] + logPθ(x⃗)

Finally, by rearranging the terms of the resulting overall equation, Rearranging terms

we get the following result:

logPθ(x⃗)−DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗|x⃗))
= Ez⃗∼Qϕ(z⃗|x⃗) [logPθ(x⃗|z⃗)]−DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗)) (6.3)

The left part of Equation 6.3 gives us our maximization target: We The optimization

target
want the log likelihood of the observed data to be high, while the

KL divergence between the recognition model Qϕ(z⃗|x⃗) and the true

posterior distribution Pθ(z⃗|x⃗) should be low. This means, that the

parameters of the model should be trained in such a way, that the

data we actually observe in our dataset is very likely under this model.

Moreover, the recognition model should be a good approximation of

the true posterior distribution.

The left part of Equation 6.3 cannot be directly optimized as noted The loss function

before, because Pθ(z⃗|x⃗) is not available. However, it is equivalent to the

right part of Equation 6.3, which is easier to optimize and consists of two

parts: The first term computes the log likelihood of the data given the

latent code created by the recognition model Qϕ(z⃗|x⃗). By maximizing

this term, we force our model to make accurate reconstructions of the

original data. This again relates VAE to regular autoencoders, which

try to minimize the reconstruction error (cf. Section 6.3.1). The second

term on the right part of Equation 6.3 is the Kullback-Leibler divergence

between the recognition model and the prior probability distribution

over the latent code. In order to maximize the overall equation, we need

to minimize this KL-divergence, which in turn means, that the recogni-

tion model should be as similar as possible to the prior distribution. In

terms of neural networks, one can think of this as a regularization term.
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Figure 6.14: Implementation of variational autoencoders with neural networks

for x⃗ ∈ Rn
.

In order to train the VAE model, Kingma and Welling make use of theTraining procedure

so-called reparametrization trick: Instead of computing the probability

distribution over z⃗ directly, they draw an auxiliary noise variable ϵ⃗ and

compute z⃗ ∼ Qϕ(z⃗|x⃗) as z⃗ = gϕ(ϵ⃗, x⃗). In their experiments, they assume,

that z⃗ follows a centered isotropic multivariate normal distribution, i.e.,

Pθ(z⃗) = N(z⃗; 0, I). They then express z⃗ as zj = µj + σj · ϵj with ϵj ∼
N(0, 1). The expected value for any function f(z⃗) can be approximated

by drawing k samples of ϵ⃗ and computing the average across f(gϕ(ϵ⃗, x⃗))
for these k samples. Kingma and Welling note that in practice k = 1 is

sufficient, if the batch size is chosen large enough (e.g., 100 examples

per minibatch). For training, any optimization algorithm (like gradient

descent or AdaGrad) can be used to optimize the parameters ϕ and θ
based on the gradient of the loss function from Equation 6.3.

For practical experiments, Kingma and Welling use fully connectedImplementation with

neural networks
feedforward networks with a single hidden layer for both Pθ(x⃗|z⃗) and

Qϕ(z⃗|x⃗). They assume that Pθ(z⃗) = N(z⃗; 0, I) and that logQϕ(z⃗|x⃗) =
logN(z⃗; µ⃗z⃗, σ⃗

2
z⃗I). Since both the prior distribution and the approximate

posterior distribution over z⃗ are Gaussians, their KL-divergence can

computed in closed form. Also Pθ(x⃗|z⃗) is assumed to be a multivariate

normal distribution (for continuous values in x⃗) or a Bernoulli dis-

tribution (for binary values in x⃗). If we focus on the continuous case

only, the resulting network structure can be seen in Figure 6.14. The

encoder network (representing Qϕ(z⃗|x⃗)) takes as input a data point x⃗
and produces as output the mean µ⃗z⃗ and the standard deviation σ⃗z⃗ of

its distribution. Instead of obtaining a fixed value for the latent code, we

therefore obtain a probability distribution over different latent codes.

One can then take k samples of this multivariate normal distribution

based on the reparametrization trick, and use them as input to the

decoder, which represents Pθ(x⃗|z⃗). Again, the output of the network

consists of the mean µ⃗x⃗′ and the standard deviation σ⃗x⃗′ of the output

distribution, which can be used to draw different samples x⃗′.
Kingma and Welling report experiments on both the MNIST datasetExperimental results

and a dataset of faces. For both experiments, the encoder and decoder

had the same number of hidden neurons. For the MNIST dataset, they

used 500 hidden units, and for the dataset of faces they reduced the

number of hidden neurons to 200 in order to prevent overfitting. Ex-

perimental results showed, that the VAE networks tended to converge
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quite fast. Moreover, they were able to generate images of relatively

high quality despite using only a single hidden layer. Furthermore, the

individual entries of the latent code z⃗ tended to correspond to inter-

pretable semantic properties as judged by manual visual inspection.

Variational autoencoders are generally considered as a simple and General properties of

VAEs
elegant approach, that is quite successful in learning manifolds [172,

Chapter 20]. Also using their decoder as a generative model of the

underlying domain is quite straightforward, since its output already

consists of a probability distribution over possible data points, from

which one can easily draw samples. However, sample images generated

by variational autoencoders tend to be somewhat blurry in practice,

which is considered a main drawback in comparison to GANs [172,

Chapter 20]. Recently, however, Vahdat and Kautz [414] have proposed

a deep convolutional variant of VAE, which is able to produce high-

quality images with a size of 256× 256 pixels. Their work demonstrates,

that given the right architectural choices, also variational autoencoders

are in principle capable of producing high-quality samples.

In Section 6.3.3, we mentioned the work by Wu et al. [440], who used Combining VAEs

with GANs
the latent code obtained from a variational autoencoder as input to

the generator of a GAN. This setup was inspired by the prior work of

Larsen et al. [244], who proposed to collapse the decoder of a VAE and

the generator of a GAN into a single network. They noted, that VAEs

are usually trained using an element-wise reconstruction objective,

which is, however, not very useful when applied to images, since for

example small translations can cause large element-wise errors, while

only causing negligible visual differences. The discriminator in a GAN,

on the other hand, learns high-level features for distinguishing real

inputs from generated ones. Larsen et al. therefore used the output

of the discriminator as a feature-wise reconstruction objective for the

variational autoencoder. Their experiments showed an improved visual

fidelity over standard VAEs, while still extracting an embedding with

interpretable directions.

Higgins et al. [196] have further modified the VAE framework by β-VAE: emphasizing

disentangled

representations

giving a larger weight β to the regularization term than to the re-

construction error. According to their observations, VAEs are able to

extract a disentangled representation from simple datasets, but fail to

do so on more complex datasets. Higgins et al. make a slight change

to the graphical model on which the VAE framework is based (cf. Fig-

ure 6.13): They split up the latent random variable Z into two parts,

namely, a set of conditionally independent generative factors V , and

a set of conditionally dependent generative factors W . The observed

data X is then generated based on both of these factors according to

the probability distribution P(X|V,W ). Higgins et al. aim to build a

generative model, that learns a hidden representation z⃗ (which is at

least as large as the number of independent generative factors in V ),

such that Pθ(x⃗|z⃗) ≈ P(X|V,W ). Just as in the original VAE framework,

a model Qϕ(z⃗|x⃗) is used for inferring the posterior probability of the
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latent factors z⃗ given an observation x⃗. Again, this can be thought of as

an encoder mapping a data point onto a hidden representation.

Ideally, we want Qϕ(z⃗|x⃗) to result in a disentangled representationConditional

independence for the

latent code

that recovers the original generative factors. This means, that the condi-

tionally independent factors V should be represented in a disentangled

manner within a subset of z⃗, while the conditionally dependent factors

W can be represented in an entangled way within the remaining entries

of z⃗. Higgins et al. argue, that we can encourage disentanglement

by aligning Qϕ(z⃗|x⃗) with a prior distribution Pθ(z⃗) over the latent

code, which incorporates the assumption of conditional independence.

Concretely, they propose to use an isotropic unit normal distribution.

In addition to extracting a disentangled representation, we wouldA constrained

optimization problem
also like to optimize the model in such a way, that the likelihood of

the observed data points is maximized. If we use disentanglement as a

constraint for optimizing the likelihood of the data given the model,

we arrive at the following constrained optimization problem:

maximize Ex⃗∼Pdata(x)[Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗|z⃗)]]
under the constraint DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗)) < ϵ

The quantity to be maximized corresponds to the reconstructionInterpreting the

constrained

optimization problem

fidelity already seen for the standard VAE: We try to maximize the

probability of the data points x⃗ when first extracting the underlying

latent code z⃗ from x⃗ and then reconstructing x⃗ from z⃗. The optimization

constraint measures the Kullback-Leibler divergence between Qϕ(z⃗|x⃗)
(i.e., the inferred values of z⃗ for a given x⃗) and the assumed prior

distribution Pθ(z⃗) (i.e., the isotropic unit Gaussian). By choosing a

value for ϵ, we can decide how closelyQϕ(z⃗|x⃗) must approximatePθ(z⃗).
The problem from above can be transformed into a single optimization

function in the form of a Lagrangian (cf. Section 5.2.3, where a similar

approach was used for support vector machines):

F (θ, ϕ, β; x⃗, z⃗) = Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗|z⃗)]
− β · (DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗))− ϵ)

= Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗|z⃗)]
− β ·DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗)) + β · ϵ

≥ Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗|z⃗)]− β ·DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗))
= L(θ, ϕ, β; x⃗, z⃗) (6.4)

We would like to maximize the overall term F (θ, ϕ, β; x⃗, z⃗), whichThe β-VAE loss

function
can be done by maximizing its lower bound L(θ, ϕ, β; x⃗, z⃗), because

β · ϵ is a positive constant. Please note, that for β = 1, L(θ, ϕ, β; x⃗, z⃗) is

equivalent to Equation 6.3, i.e., the loss function of a regular VAE. One

can interpret the Lagrangian multiplier β here as regulating the trade-

off between reconstruction accuracy (first term) and the independence

of the latent factors (second term). For β > 1, we put a stronger

emphasis on the independence of the latent factors, hence making a

stronger constraint on the bottleneck layer of the overall autoencoder.
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However, this also reduces the focus on the reconstruction term, leading

often to less accurate reconstructions. In the limit (i.e., β → ∞), the

reconstruction term does not play any role, and the autoencoder does

no longer auto encode the data. Given the value of ϵ (i.e., the degree

to which the distribution over the latent codes is allowed to differ

from the assumed prior distribution), one can compute the optimal

value for β. Unfortunately, ϵ is typically unknown and depends on

both the network architecture and the underlying dataset. Therefore,

β needs to be manually optimized. The value for β is thus the major

hyperparameter of the β-VAE architecture.

Higgins et al. showed through some qualitative experiments on three Experimental results

datasets (CelebA, chairs, and faces), that β-VAE with a suitably tuned

value for β (250, 5, and 20, for the three datasets, respectively) leads to

better results than both standard VAE and InfoGAN. They note that

β-VAE and InfoGAN tend to discover overlapping, but not identical sets

of underlying generative factors. They also observed, that increasing

β sometimes causes the latent code to lose the representation of some

generative factors, especially factors, which lead to only minor changes

in pixel space. Higgins et al. also noted, that for a larger hidden code z⃗, a

larger value ofβ is usually needed. Moreover, good reconstructions often

led to entangled representations, whereas disentangled representations

were often accompanied by blurry reconstructions, highlighting again

the inherent trade-off in the β-VAE loss function from Equation 6.4.

Overall, Higgins et al. claim that their approach is robust with re- General properties of

β-VAE
spect to different architectures, optimization parameters, and datasets.

Unlike InfoGAN, it is stable to train, makes few assumptions about the

underlying dataset, and relies mainly on tuning the hyperparameter β.

Burgess et al. [84] have analyzed β-VAE from an information-theoretic β-VAE and the

information

bottleneck principle

perspective. They note the similarity of the β-VAE loss function from

Equation 6.4 and the information bottleneck principle max[MI(Z, Y ) −
βMI(X,Z)], which targets the maximization of the mutual information

between the latent bottleneck Z and the task Y , while discarding all

the irrelevant information in X , that is uninformative about Y . When

interpreting theβ-VAE loss function in this context,Qϕ(z⃗|x⃗) corresponds

to the information bottleneck Z, and the task Y is to reconstruct the

original input. Burgess et al. argue, that a highly weighted KL term in

the β-VAE loss function encourages high mutual information between

the data X and the latent code Z.

From an information-theoretic perspective, the individual entries zi of Latent variables as

noisy channels
the latent code can be interpreted as channels with additive white noise.

If the KL divergence becomes zero, then for all of these channels µ = 0
and σ = 1, i.e., all channels have zero capacity to transmit information

about x⃗. Burgess et al. note, that the KL divergence can be minimized

by reducing the spread of the means or by broadening the variances of

Qϕ(z⃗|x⃗). This in turn causes the posterior distributions to overlap. They

further argue, that this encourages the network to learn a mapping,

where the similarity of data points is preserved in the latent space,

because this is the only way of reaching a small reconstruction error.
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Based on the idea of the zi being information channels, Burgess et al.

make the observation, that the capacity C of these channels determines

how much information is kept. They propose to gradually increase this

capacity over the course of training in order to encourage the network

to first learn the most important factors and then later to "flesh them

out" with more details. Their proposed updated optimization function

looks as follows:

Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗|z⃗)]− γ · |DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗))− C|

As one can see, instead of using the KL divergence directly, BurgessExperimental results

et al. use the absolute difference between the KL divergence and the

current capacity C of the latent channel. Their experiments showed,

that this loss function leads to disentangled representations with a

good reconstruction capability.

Both Kim and Mnih [221] and Chen et al. [100] have independentlyβ-VAE variants

based on total

correlation

from each other developed a variant of β-VAE, which puts its emphasis

on the information-theoretic quantity of total correlation. Total correlation

measures the dependency between multiple random variables and is

used in this context to quantify to what extent the individual entries of

z⃗ are independent from each other. Chen et al. [100] note, that the KL

divergence term in Equation 6.4 can be broken down as follows:

DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗)) = DKL (Qϕ(z⃗, x⃗)||Qϕ(z⃗) · Pθ(x⃗))
+DKL(Qϕ(z⃗)||

∏︁
j Qϕ(zj))

+
∑︂
j

DKL (Qϕ(zj)||Pθ(zj)) (6.5)

The first term describes the mutual information between the data x⃗Splitting up the KL

divergence
and the latent variables z⃗ based on their empirical joint data distribution

Qϕ(z⃗, x⃗). The second term describes the total correlation of the latent

variables. This term becomes zero, if Qϕ(z⃗) =
∏︁
j Qϕ(zj), i.e., if the

entries of z⃗ are statistically independent of each other. The third term

measures for each of the latent variables in z⃗ how far it departs from its

prior distribution.

The β-VAE optimization function puts a large penalty on the overallPenalizing only total

correlation
term DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗)), i.e. on all three terms equally. As Kim and

Mnih [221] note, β-VAE therefore implicitly also punishes the mutual

information between x⃗ and z⃗. The network is thus discouraged from

encoding information about x⃗ in z⃗, which leads to poor reconstructions

for large values of β. Instead of penalizing all three of these terms

equally, both Kim and Mnih [221] and Chen et al. [100] propose to put

a larger penalty on the second term (i.e., the total correlation), since it

directly measures, whether the different entries zi of z⃗ are statistically

independent from each other.
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Kim and Mnih [221] propose the following objective function for The FactorVAE loss

function
their FactorVAE network:

Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗|z⃗)]−DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗))

− γDKL(Qϕ(z⃗)||
∏︂
j

Qϕ(zj))

The first two terms correspond to the loss function of the original VAE

framework from Equation 6.3, which is supplemented by an additional

penalty on the total correlation. The hyperparameter γ controls the

importance of the independence assumption.

Chen et al. [100] propose the following objective function for their The β-TCVAE loss

functionβ-TCVAE network:

Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗|z⃗)]− α ·DKL(Qϕ(z⃗, x⃗)||Qϕ(z⃗) · Pθ(x⃗))

− β ·DKL(Qϕ(z⃗)||
∏︂
j

Qϕ(zj))

− γ ·
∑︂
j

DKL(Qϕ(zj)||Pϕ(zj))

Based on Equation 6.5, one can easily see that forα = γ = 1 (which are

the settings used by Chen et al. in their experiments), this is equivalent

to the FactorVAE loss function.

In practice, the computation of the term DKL(Qϕ(z⃗)||
∏︁
j Qϕ(zj)) is Approximation of

total correlation in

FactorVAE

computationally not tractable, hence it must be approximated. This

is where FactorVAE differs from β-TCVAE: In FactorVAE [221], an

additional discriminator network D is trained to distinguish inputs

from Qϕ(z⃗) and

∏︁
j Qϕ(zj), leading to the following approximation:

DKL(Qϕ(z⃗)||
∏︁
jQϕ(zj)) ≈ Ez⃗∼Qϕ(z⃗)

[︃
D(z⃗)

1−D(z⃗)

]︃
In β-TCVAE [100], however, DKL

(︂
Qϕ(z⃗)||

∏︁
j Qϕ(zj)

)︂
is estimated Approximation of

total correlation in

β-TCVAE

by sampling a minibatch of data points x⃗, and by approximating Qϕ(z⃗)
with the weighted average of Qϕ(z⃗|x⃗) for this minibatch.

Experiments showed, that both FactorVAE and β-TCVAE yield better Experimental results

performance and especially a better trade-off between disentangled

representations and faithful reconstructions than standard VAE, β-VAE,

and InfoGAN. In the experiments conducted by Chen et al. [100], β-

TCVAE also yielded better performance than FactorVAE.

Kumar et al. [237] propose yet another variant of variational au- DIP-VAE:

considering the

inferred prior

toencoders called the disentangled inferred prior VAE (DIP-VAE). They

considerQϕ(z⃗) =
∫︁
Qϕ(z⃗|x⃗)Pθ(x⃗)dx⃗, i.e., the inferred prior distribution

over z⃗ based on the recognition model. Ideally, Qϕ(z⃗) should be factor-

izable, which can be achieved by minimizing its KL divergence to the

prior distribution Qθ(z⃗). This KL divergence can be written as follows:

DKL(Qϕ(z⃗)||Pθ(z⃗)) = DKL(Ex⃗∼Pdata(x⃗)Qϕ(z⃗|x⃗)||Ex⃗∼Pdata(x⃗)Pθ(z⃗|x⃗))
≤ Ex⃗∼Pdata(x⃗)DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗|x⃗))
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In general, the prior Pθ(z⃗) and the posterior Qϕ(z⃗) are different, butWhy true prior and

inferred prior may

differ

Kumar et al. argue, that standard VAE encourages inferring factors,

which are close to being disentangled. It has been empirically observed,

that standard VAEs are able to discover disentangled factors on simple

datasets, but fail to do so on more complex ones (cf. our discussion

of β-VAE [196]). Kumar et al. hypothesize, that there might be two

reasons for that: On the one hand, the real data distribution Pdata(x⃗)
and the distribution Pθ(x⃗) learned by the model might differ to a

large degree. This would then also cause differences betweenPθ(z⃗) and

Qϕ(z⃗), becausePθ(x⃗) =
∫︁
Pθ(x⃗|z⃗)Pθ(z⃗)dz⃗. This problem can potentially

be solved by making the VAE network more powerful (e.g., by adding

more layers). On the other hand, the optimum for the VAE objective

might not necessarily be an optimum for minimizing the difference

between Pθ(z⃗) and Qϕ(z⃗). In order to address this second issue, Kumar

et al. therefore propose the following loss function:

Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗|z⃗)]−DKL(Qϕ(z⃗|x⃗)||Pθ(z⃗))− λ ·D(Qϕ(z⃗)||Pθ(z⃗))

As one can see, the first two terms correspond to the standard VAEThe DIP-VAE loss

function
objective from Equation 6.3, while the third term quantifies the dif-

ference between Qϕ(z⃗) and Pθ(z⃗). Kumar et al. note, that using the

KL divergence for the third term makes it computationally intractable,

because there exists no closed form solution. Instead, they propose to

match the covariance of the two distributions by computing D as the

L2 difference of their covariance matrices. In their evaluation, Kumar et

al. showed improved performance, when comparing their DIP-VAE to

standard VAE and to β-VAE.

As our discussion has highlighted, there exists a plethora of VAE vari-Outlook

ants for learning disentangled representations. Most of these proposals

have been accompanied by a novel evaluation metric for disentan-

glement (cf. Section 6.1.2). This tight connection between variational

autoencoders and disentanglement as well as the simplicity of the

underlying graphical model and the absense of training instabilities (es-

pecially when compared to GANs) makes them an interesting candidate

for learning conceptual domains from perceptual data.

6.4 representation learning for concep-
tual spaces

After having covered the representation learning in sufficient detail,

we will now relate it to the process of grounding the dimensions of

a conceptual space. We first establish a general connection between

representation learning and conceptual spaces in Section 6.4.1, before

considering rectangles as a simple example domain in Section 6.4.2.
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6.4.1 General Considerations

The cognitive framework of conceptual spaces [179] makes several Properties of

conceptual similarity

spaces

claims about the properties of the geometric representation at the

conceptual level. We will now briefly summarize some of its core as-

sumptions (which have been treated more extensively in Sections 1.2 and

2.1) and show to which extent they are reflected by the representation

learning approaches discussed so far.

First of all, Gärdenfors assumes, that the conceptual space is spanned Interpretable

dimensions
by interpretable dimensions, which can be linked to cognitively meaningful

aspects. As discussed in Sections 6.3.3 and 6.3.4, the representation

learning community has recently made various proposals for network

architectures, which try to extract a disentangled representation of the

underlying generative factors. Based on experimental results from the

literature, the individual latent variables also tend to be interpretable.

Section 6.1.2 has provided an overview of different evaluation metrics

for quantifying the degree of disentanglement, which may thus be

interpreted as a proxy for measuring interpretability. Moreover, the

vector arithmetics discussed both for word embeddings (cf. Section

6.3.2) and the GAN framework (cf. Section 6.3.3) illustrate, that the

learned latent spaces contain a meaningful structure. Overall, it thus

seems, that representation learning is able to accommodate this crucial

requirement of the conceptual spaces framework.

In a conceptual space, we furthermore use a distance-based notion of Similarity based on

distancesimilarity: Two stimuli are considered to be similar, if their distance with

respect to all individual dimensions (and hence also in the overall simi-

larity space) is small. Gärdenfors proposes to use the Euclidean distance

within a given domain, and the Manhattan distance for combining dif-

ferent domains. The smoothness assumption in representation learning

(cf. Sections 5.1.4 and 6.1.1) states, that points with small distance in the

input space should also have a small distance in the latent space. This

means, that a distance-based notion of similarity in the latent space

is semantically meaningful, because it reflects perceptual similarity.

Word embeddings (cf. Section 6.3.2) are the only representation learning

approach discussed in this chapter, where the pairwise similarity of two

inputs is explicitly considered. However, as discussed in Section 6.3.2,

one typically uses the Cosine similarity (which is based on the angle

between two vectors) rather than an exponential decay of Euclidean or

Manhattan distances, as proposed by Gärdenfors. On the other hand,

the related area of metric learning (cf. Section 5.3.3) explicitly targets a

meaningful distance metric in the latent space learned by the system,

often taking into account explicit similarity constraints during the

training process. Overall, there seems to be a reasonably good match

between representation learning and conceptual spaces with respect to

a distance-based notion of similarity.

Moreover, conceptual spaces provide a geometric interpretation of Conceptual

betweennessconceptual betweenness – betweenness can be defined based on the

distance in the space (namely, by requiring d(x, y) + d(y, z) = d(x, z)),
and any point y lying between x and z in the conceptual space can be
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considered an intermediate case. As discussed in Section 6.3.2, Kim

and de Marneffe [222] found, that one can obtain meaningful adjectival

scales from word embeddings by searching for points between the

vectors representing the two extremes of such a scale. Also in the

context of the GAN framework (cf. Section 6.3.3), Radford et al. [326]

found, that linear interpolations in the latent space correspond to a

meaningful "morph" between generated images in the input space.

These meaningful interpolations show, that also latent spaces from

representation learning give rise to a meaningful betweenness relation.

The geometric notion of semantic betweenness also gives rise toConvex conceptual

regions
Gärdenfors’ description of concepts as convex regions – if both x and z
belong to a convex concept C, then also any y between x and z must

belong to C. Typical representation learning approaches do not make

any specific assumptions about the shape of conceptual regions in the

learned representation. However, similar to metric learning (cf. Section

5.3.3), they usually aim to extract a representation, on which a simple

classifier can obtain good levels of performance (cf. Section 6.1). A

prototype-based classification rule as proposed by Gärdenfors [179]

is an example for such a simple classifier, and has, for instance, been

used in ProtoNet [381] in the context of metric learning (cf. Section

5.3.3). Also the studies by Sommerauer and Fokkens [382] and Gupta

et al. [176] discussed in Section 6.3.2 used simple classifiers such as

a logistic regression on top of pretrained word embeddings in order

to make classification and regression predictions, respectively. It thus

seems, that the latent spaces from representation learning could be

easily adapted to give rise to well-formed conceptual regions.

Furthermore, the conceptual space is structured into semantic domainsDomain structure

such as color, shape, or size. While such an explicit structure is usually

not enforced in representation learning approaches, we have seen

various attempts to extract or enforce such structures in the context of

word embeddings in Section 6.3.2. In principle, one should be able to

generalize these approaches also to representation learning in the visual

domain. Enforcing such a domain structure may thus be a valuable

contribution from conceptual spaces to representation learning.

Finally, for the scope of this dissertation, we assume that the dimen-Perceptual

grounding
sions of a conceptual space are grounded in perception, since we restrict

our considerations to physical objects. Word embeddings are based on

textual data, and thus only indirectly related to perception [185, 382] (cf.

Section 6.3.2). However, most other representation learning approaches

such as GANs (cf. Section 6.3.3) and VAEs (cf. Section 6.3.4) have been

applied to image data, which corresponds to visual perception. The

general architectures can in principle also be applied to other types

of perceptual input (such as auditory perception), but may need to be

adapted in order to reflect the temporal nature of such domains. Overall,

representation learning thus provides a clear perceptual grounding of

the learned representations.

Now that we have established a suitable mapping between theHow to learn a

conceptual space
desiderata for a conceptual space and the properties of representation
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learning, let us discuss the overall setup for obtaining the dimensions

of a conceptual space with representation learning approaches.

We propose to start by picking the domain of interest (e.g., shape) and Data preprocessing

by obtaining a suitable dataset for this domain. In order to ensure, that

the neural network does not learn to represent information about other

domains (such as color), one should preprocess this dataset in such a

way, that most to all information about such other domains is removed.

For instance, when interested in learning a similarity space for the shape

domain, one should ensure, that the images are converted to greyscale,

that they contain only individual objects on a neutral background, and

that these objects are all of approximately the same size. Also variations

with respect to the texture should ideally be removed, e.g., by using

silhouettes. By preprocessing the dataset in such a way, the variance

of the inputs with respect to irrelevant domains is removed, hence

preventing the network to discover the associated factors of variation.

Moreover, one could potentially introduce an additional term into the

loss function, which measures the correlation between the learned

latent representation and dimensions from other (already manually

defined) domains. This would cause a stronger error signal, if the

network starts to re-discover already known dimensions from other

domains, and should therefore drive the network away from learning

redundant representations. This may be interpreted as a safety measure,

which can potentially handle factors of variation, that the experimenter

forgot to remove from the dataset or that could not be removed by

simple preprocessing steps.

After an appropriate dataset has been obtained, one can use any of the Training the network

representation learning algorithms discussed in this chapter to extract

a latent representation from the data. It may be more convenient to use

unsupervised approaches as the ones in Section 6.3, since unlabeled

data is more readily available. However, if also labeled data points are

available, one may use those labels to enforce additional constraints. For

instance, one could follow a prototype-based approach like ProtoNet

[381] (cf. Section 5.3.3) to ensure, that concepts in the learned space form

convex regions. Training such a neural network involves the fine-tuning

of many hyperparameters, including the size of the latent code. Just

as for dimensionality reduction (cf. Section 5.3), one should aim for

the smallest representation, which still accurately describes the data.

This can be quantified based on the final loss values, performance in

downstream tasks, and various disentanglement metrics (cf. Section

6.1.2). Additionally, visual inspection of the results should be used to

then validate their quality.

Finally, when the network has been successfully trained, one can Using the learned

representation
interpret each entry of the latent code as one dimension of the extracted

similarity space. The encoder network can then be used to translate from

raw perceptual inputs to points in this similarity space, providing there-

fore an automated way of bridging the subsymbolic and the conceptual

layer. If a model with a generative component was chosen (such as the

decoder of an autoencoder), this component can be used to translate

in the opposite direction, enabling an easy visualization of conceptual
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structures for debugging purposes. Moreover, the translation from the

conceptual to the subsymbolic layer can potentially be interpreted as

an act of imagination, which may be useful for an agent, which wants

to run simulations of potential future scenarios.

We will now briefly summarize two recent approaches, which haveInterpretable

directions for CelebA
used representation learning for obtaining similarity spaces, and which

then interpreted the learned representation as conceptual spaces for

downstream tasks. White and Loh [432] used the latent space of a VAE

for generating animations through sketching. They trained a VAE on the

CelebA dataset, which consists of portraits of celebrities. White and Loh

tried to find meaningful directions in this space by employing different

techniques. All of these directions were based on the labels contained

in the CelebA dataset (such as smiling). As a first technique, as detailed

in [431], they computed the difference vector between the average of

all positive examples and the average of all negative examples for a

given label. For instance, to find the smiling direction, the average of the

latent vectors representing non-smiling images was subtracted from

the average of the vectors representing smiling images. In order to deal

with correlated labels (for instance, in CelebA, women are more likely

to smile then men), White and Loh rebalanced the dataset in such a way,

that these correlations were eliminated. As a second approach, White

and Loh also trained a linear support vector machine to separate the two

classes. They then used the normal vector of its decision hyperplane as a

direction for the given label. This second approach had previously been

proposed by Derrac and Schockaert [123] in the context of conceptual

spaces, and will be discussed in more detail in Chapter 8.

Based on the extracted directions, White and Loh provide a two-Using the conceptual

space for creating

animations

dimensional representation of facial expressions using e.g., smiling as

one of the dimensions. By creating a path in this two-dimensional space,

one can generate an animation of a change in facial expression: For each

frame, a latent code on this path is used to generate an image. Since

interpolations in the latent space lead to meaningful interpolations in

the image space, putting the images created along the path right after

another yields a smooth animation.

The work by White and Loh is relevant in our context, becauseRelevance

they explicitly equate the latent space of a generative model with a

conceptual space as proposed by Gärdenfors. They therefore share our

intuitive understanding of using the hidden representation of a neural

network as a basis of a conceptual similarity space. However, White

and Loh do not explicitly consider semantic similarity or conceptual

regions, nor do they distinguish different conceptual domains. Their

work can thus be seen as an important first step, which needs to be

followed up by further studies.

Higgins et al. [197] used a two-stage approach to learn both a disen-Modified β-VAE for

an artificial domain
tangled representation of visual input and a description of concepts

based on this representation. In a first step, they applied β-VAE to a

dataset of artificial images, which were generated based on four visual
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Figure 6.15: Combination of two variational autoencoders and a denoising

autoencoder as proposed by Higgins et al. [197].

primitives, namely object identity, object color, floor color, and wall

color. Higgins et al. used a modified version of the β-VAE, where

they replaced the pixel-level reconstruction term with the L2 loss of

a denoising autoencoder when comparing the original input x⃗ to the

reconstruction x⃗′ sampled from the β-VAEs decoder.

In order to learn concepts, Higgins et al. labeled each example x⃗with Symbol-concept

association network
a vector y⃗ indicating the values for each of the four visual primitives.

Their proposed symbol-concept association network (SCAN) is another

modified variational autoencoder, which uses the same size of hidden

units as the β-VAE trained unsupervisedly on the input images. Again,

the hidden representation is constrained to a multivariate Gaussian

distribution with a diagonal covariance matrix. Through an additional

loss term, Higgins et al. ensure that the latent distribution learned by

SCAN matches the one of the pretrained β-VAE for all data points. The

overall setup is illustrated in Figure 6.15.

Their overall system can be used to translate from images to a symbolic Translation

directions and

compositionality

description by using first the encoder of the β-VAE and then the decoder

of SCAN. A translation from a symbolic description to a visualization

can be obtained by using the encoder of SCAN and then the decoder of

the β-VAE. Higgins et al. also note the important role of compositionality

for cognition and propose to incorporate three operations for concept

creation into their architecture, namely set union, set intersection, and

set difference. For instance, in order to obtain disjunctive concepts

such as apple ∨ pear, they first use SCAN’s encoder to obtain a latent

representation of both concepts based on their high-level description

vector y⃗. They then use a convolution operator to combine these two

latent representation into a single latent representation for the composite

concept, which can then be again decoded into a symbolic form (using

SCAN’s decoder) or into visualizations (using the decoder of the β-VAE).

The work by Higgins et al. is quite elegant since it uses the same Relevance

underlying architecture (namely, variational autoencoders) for most of

its components. While the unsupervised β-VAE learns to disentangle

different factors of variation from the data, the SCAN trained on top

of this learns an appropriate combination of these factors for reflect-
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ing concepts. Moreover, their system allows for a translation between

perceptual input, a latent similarity space, and high-level concept def-

initions, which can be related to the subsymbolic, conceptual, and

symbolic layer, respectively (cf. Sections 1.2.4 and 1.2.3). Unlike concep-

tual spaces, their system does, however, not explicitly take into account

different subspaces for individual cognitive domains. Also the mapping

between abstract concept definitions and the latent representation is

relatively opaque, which makes it difficult to interpret in contrast to the

simple prototype-based approach used in conceptual spaces. Finally, we

should remark, that the diagonal covariance matrix used for defining

concepts implicitly asserts that different properties of a concept are

not correlated to each other. This is only used as a soft constraint, but

discourages the system to discover systems of correlations, which we

deemed to be very important in Part I of this dissertation.

Let us now finally address some potential shortcomings of usingANN experiments

are complex and

time-consuming

ANNs for extracting the dimensions of a conceptual space. First of all,

ANNs in general require very large amounts of data and computing

time in order to achieve good performance. Since they typically contain

millions of tunable parameters, training can be quite complicated and

might include significant amounts of hyperparameter tuning. Obtaining

a similarity space with representation learning techniques can thus

become easily a quite time-consuming task.

Moreover, the existence of adversarial examples [401], i.e., pairs ofANNs can be

instable
inputs with a minimal difference, which lead to a large difference

in the output, casts some doubt on the stability of neural networks.

Even the same network trained on the same dataset might learn quite

different internal representations, based on the random initialization of

its weights. Also this lack of feature stability seems to be a disadvantage

of ANNs in the conceptual spaces setting.

While there have been promising first results with respect to theRepresentation

learning does not

guarantee

interpretability

interpretability of the extracted dimensions, one cannot simply assume

that this is always the case. For instance, we have tried to reproduce the

MNIST results reported in the InfoGAN paper [101], using the authors’

original source code, but were unable to obtain a disentanglement

anywhere as "clean" as presented in the paper. If the interpretability of

the resulting similarity space is crucial, one should therefore be aware

of the fact that ensuring disentanglement may involve considerable

amounts of additional work in practice.

Finally, when viewing conceptual spaces as a psychologically moti-Limited psychological

plausibility
vated and cognitively plausible framework of human cognition, ANNs

trained to optimize a carefully crafted mathematical loss function in a

batch-like setting on thousands or millions of inputs may not be very

satisfactory – the psychological plausibility of the extracted dimensions

is questionable at best. Therefore, additional measures need to be taken

in order to validate, whether the similarity spaces by neural networks

are a good reflection of human representations. We will return to this

issue in more detail in Chapters 8 and 10.
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6.4.2 The Rectangle Domain

In order to investigate the applicability of representation learning Simple shapes as

starting point
techniques for obtaining the dimensions of a conceptual space, we

propose to start with a relatively simplistic setup. In the domain under

consideration, one should be able to describe the class of shapes under

investigation by a well-defined, small set of parameters. Since we are

mainly interested in the domain of shapes, we therefore propose to

select a very simple type of shapes for initial studies.
4

Newson et al. [300] have investigated the behavior of convolutional An autoencoder for

disks
autoencoders, when being trained on a dataset of disks. They only

considered black and white images of centered disks, varying only

with respect to their radius. Their autoencoder used a single neuron in

the bottleneck layer and was trained to minimize the MSE between the

input and the reconstruction. Newson et al. found, that the bottleneck

neuron reflected the overall area of the disk and not its radius. Since

area, radius, and diameter of a disk are monotonically related, it is

irrelevant which of these encodings is used.

Based on this simple setup, Newson et al. introduced various changes Ablation and

generalization
and observed their effects. Removing the bias terms from the neurons

in the encoder did not have any major effects, but removing them

from the neurons in the decoder led to blurry reconstructions. When

presenting the autoencoder with disks, which were larger than the ones

seen during training, the autoencoder failed to extrapolate correctly:

Its output was limited to the largest disk that had been seen during

training. Also if the dataset contained a gap (i.e., if the training set

consisted only of very small and very large disks), the network failed to

interpolate correctly.

Newson et. al. investigated different regularization techniques in Effects of

regularization
order to allow the autoencoder to correctly interpolate even in the case

of gaps in the dataset. Forcing the autoencoder to maintain the L2

distance between two images also in the latent space did not improve

the autoencoder’s generalization capability. Newson et al. hypothesize,

that this is caused by the fact, that there are no close neighbors on

the edge of an unobserved region. Regularizing the weights of both

the encoder and the decoder improved the interpolation ability of the

network, but led to instabilities of the hidden code’s amplitude. In

their experiments, the most helpful option was to regularize only the

weights of the encoder, which led to improved interpolation capabilities

without any undesired side effects.

Since disks have already been investigated and since they can be Motivation for the

rectangle domain
specified by using a single generative factor, we propose to focus on

a slightly more complex domain, namely, the domain of rectangles,

as a test bed for representation learning. More specifically, if we only

consider centered, unrotated rectangles without texture or color, then

4 Thanks to Brendan Ritchie for making the suggestion of using a parametrically

describable class of shapes as a starting point.
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this dataset can be described with two variables. It still consists of

visual input (as expected by most representation learning approaches),

and since it contains two generative factors, it can also be used to test

disentanglement. The domain of disks can for instance not be used to

investigate the disentanglement capabilities of different architectures,

since only a single latent variable needs to be recovered. We therefore

think that the domain of rectangles is a suitable minimal problem

domain for continuing the investigations by Newson et al. with slightly

more complex stimuli.

Almost all of the disentanglement metrics presented in Section 6.1.2Combinations of

generative factors
assume, that the true generative factors are explicitly given. Since all of

these metrics explicitly measure to which extent these true generative

factors align with the variables from the extracted representation, they

tacitly assume, that these generating factors are uniquely determined.

However, already in the simple domain of rectangles, this tacit assump-

tion is not fulfilled: One can describe a rectangle either by specifying

its width and height, or by specifying its area and its shape (i.e., its

aspect ratio). In fact, any two of these four dimensions can be used to

fully and uniquely describe a given rectangle. Our proposed domain

can therefore also be used to investigate, whether any of those four

potential factors are more frequently recovered by the representation

learning algorithms than the others.

There have been various studies about the human perception ofHuman perception of

rectangles
rectangles. A concise summary is given by Borg and Groenen [71,

Section 17.4]. It seems that there is somewhat contradicting evidence

about whether humans tend to use a width×height space to represent

rectangles, or whether they use a area × shape space (where area =
width · height and shape = width/height). While it is mathematically

also possible to use, for instance, a space spanned by width and area,

such combinations seem not to be explored in psychological research.

As multiple authors point out, if a logarithmic scale is used, then area

and shape can be obtained through a rotation of the width × height

coordinate system by 45 degrees [72, 227]:

log(area) = log(width · height) = log(width) + log(height)

log(shape) = log
(︂

width

height

)︂
= log(width)− log(height)

Krantz and Tversky [227] collected pairwise dissimilarity ratingsEvidence for area

and shape
on a dataset of rectangles carefully designed to be equally spaced

both in the log(width)× log(height) and in the log(area)× log(shape)
space. On the one hand, Krantz and Tversky used the two different

coordinate systems to make predictions about the relations between

pairs of entries from the matrix of aggregated dissimilarity ratings.

On the other hand, they used multidimensional scaling (which will

be introduced in Chapter 8) to extract a two-dimensional similarity

space from this dissimilarity matrix. Their results indicate that neither

of the two coordinate systems seems to be satisfactory, but that the

area × shape approach is somewhat superior to width × height.
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Borg and Leutner [72] also collected pairwise dissimilarity ratings Evidence for width

and height
for a slightly different dataset of rectangles. They used multidimen-

sional scaling (MDS) for analyzing possible two-dimensional similarity

spaces, which could explain the dissimilarity ratings. Borg and Leutner

found, that the resulting configurations were better explained by a

logarithmically transformed width × height space.

Ashby and Gott [16] have not explicitly considered rectangles, but Study on

perpendicular lines
stimuli consisting of a horizontal and a vertical line that met at the

top left corner. They studied different categorization models using a

width × height space and compared them to human categorization

decisions. As Gärdenfors [179, Section 4.10] points out, their results

contain some observations, which cannot be readily explained based on

the chosen similarity space. According to Gärdenfors, these problems

can be largely mitigated if one assumes a similarity space spanned by

area and shape.

Finally, Borg and Groenen [71, Section 17.4] note in their general General

considerations
overview, that the analysis results can change, if the data of these

experiments is processed with different MDS algorithms and different

random initializations. Moreover, they emphasize, that different par-

ticipants may be using different strategies for making their similarity

judgments – some may use width and height, while others may focus

on area and shape. Despite being such a simple visual domain, the

perception of rectangles is thus still not fully understood.

The rectangle domain therefore seems to be a good candidate for Rectangle domain as

ideal testbed
further investigations: It is relatively simple, and the stimuli can be

explicitly generated. One needs two dimensions to describe the domain,

which is enough for testing disentanglement, but there are at least

four possible candidate dimensions, which makes evaluation more

complex. Also from a psychological point of view, it is still largely

unclear which combination of dimensions is used by humans, although

the debate seems to concentrate on the combinations width × height

and area × shape.

We propose to apply both InfoGAN [101] and β-VAE [196] to this Possible experiments

simple domain and to investigate different aspects: Which dimensions

do they tend to extract? Are they consistent in their behavior or does the

type of resulting space depend heavily on random initializations and

hyperparameter settings? How do the results change, if the probability

distribution generating the rectangles is changed?

Moreover, due to the unclear nature of the ground truth, we propose Evaluation metrics

to also compare the different disentanglement metrics from Section

6.1.2. One can use the collected data to investigate, how well these

metric are able to cope with a domain, which has multiple possible

underlying factors of variation, and whether any modifications need to

be made in such a scenario.
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6.5 summary

In this chapter, we have introduced artificial neural networks as aLessons learned

powerful machine learning algorithm that lends itself towards learning

abstract representations of its perceptual inputs. We have covered

different representation learning approaches as well as evaluation

metrics for quantifying the degree of disentanglement achieved in the

resulting representations. Finally, we have argued, that representation

learning may be a good fit for discovering the dimensions of a conceptual

space in a bottom-up fashion. We have proposed to use the domain of

rectangles as a first test bed for such an approach.

After having covered general topics in machine learning in ChapterOutlook

5 and neural approaches with a focus on representation learning in the

current chapter, we will now put our focus on cognitively plausible ways

of learning conceptual regions with machine learning. In this context,

we will consider knowledge-based constraints, concept formation, and

simulated linguistic interaction in more detail. Chapter 7 will thus

conclude our background on machine learning, will will then be

supplemented in Chapter 8 by a discussion of multidimensional scaling

as an optimization technique used for deriving similarity spaces based

on psychological data.
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In Chapters 5 and 6, we have introduced general machine learning Machine learning is

not cognitive
techniques and artificial neural networks, respectively. While standard

machine learning techniques have been applied quite successfully

in practice, they differ considerably from the way in which humans

learn: Machine learning algorithms typically require large amounts of

labeled examples, and consume them passively in a batch-like manner.

Humans, on the other hand, can successfully acquire new concepts

from a relatively small amount of examples, continue to refine what has

been learned, and are actively involved in the learning process, both

through explicit allocation of their attention, and through embodied

interactions with their environment [447].

For instance, Carey and Bartlett [87] observed, that already three- Aspects of learning

in humans
year-olds are in principle able to partially learn a new, previously

unknown color term based only on a single or very few encounters.

Zaadnoordĳk et al. [447] have recently compared insights from de-

velopmental psychology and neuroscience to current approaches in

machine learning. They note, that "[t]here is more structure to constrain

and guide infants’ learning processes", and that "[i]nfants’ learning

opportunities are more flexible [...] and richer" when compared to most

of the current approaches in machine learning. They furthermore argue,

that by increasing the human-likeness of machine learning algorithms

in these respects, one may be able to learn more robust representa-

tions from fewer examples and to obtain a better generalization across

357



358 learning concepts in a cognitive way

tasks. Since we attempt to use machine learning in the context of the

cognitive framework of conceptual spaces, this chapter will give an

overview of different approaches, which try to incorporate different cog-

nitive aspects into machine learning. For each of these approaches, we

will furthermore try to provide a link to the conceptual spaces approach.

We begin our discussions in Section 7.1 with an overview of conceptConcept learning in

the conceptual spaces

literature

learning mechanisms discussed in the context of conceptual spaces.

This includes Gärdenfors’ original Voronoi-based approach, various

considerations from a Bayesian perspective, and machine learning

experiments from the literature.

In Section 7.2, we then consider the usage of background knowledgeConstraints from

background

knowledge

as a way to reduce the dependency on large amounts of labeled examples.

This background knowledge may come in a explicit and structured

format or in the form of useful starting conditions and biases. It can

in general be linked to top-down information from the symbolic layer,

which influences the way, in which conceptual regions are learned.

Moreover, it can be viewed as an attempt to implement the knowledge

view on concepts [298, Chapter 3] (cf. Section 1.1.1) in machine learning

systems. We put our focus on the framework of logic tensor networks

[21, 358], which combines bottom-up example-driven learning with

top-down rule-based constraints. Moreover, we sketch, how logic tensor

networks can be combined with the conceptual spaces framework.

Section 7.3 then focuses on unsupervised learning approaches, whichUnsupervised and

incremental learning
do not require explicit labels for the observations. Concepts are in this

case discovered based on statistical regularities in the environment:

One tries to identify clusters of observations, which are very similar to

each other, while being dissimilar from other examples. An especially

interesting approach in this context are incremental algorithms, which

exhibit a continual learning behavior also observed in humans [447].

After introducing clustering algorithms in general, we will consider

COBWEB [159], ART [90], and SUSTAIN [270] as three exemplary

incremental approaches in more detail.

We then consider concept learning through communication in Sec-Language games

tion 7.4: It is well known that the application of a concept in cognitive

tasks has an important influence on its representation [298, Chapter 5].

Also from a developmental perspective, learning typically incorporates

multiple modalities and active involvement with other agents and the

environment [447]. We will focus our discussion on so-called language

games [389], where multiple agents try to align their vocabulary and

conceptualization of a given environment over a series of interactions.

Finally, in Section 7.5, we summarize the main insights from this

chapter and sketch, how the discussed aspects can be realized in the

context of the conceptual spaces framework.

Our discussion of logic tensor networks in Sections 7.2.2 and 7.2.3

has previously been published in [38].
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Figure 7.1: (a) Learning prototypes in a conceptual space based on few exam-

ples. (b) Incremental update of one prototype and the resulting

change in the Voronoi tessellation.

7.1 concept learning in conceptual spaces

In this section, we will consider the different existing approaches to

concept learning in conceptual spaces. These approaches typically

harness the structure of the conceptual space itself with its different

semantic domains, its interpretable dimensions, and its notion of

semantic similarity as distance in the space. We will start in Section

7.1.1 by considering some relatively straightforward mechanisms for

concept learning based on a small number of examples. Afterwards,

we will discuss Bayesian approaches to induction in the context of

conceptual spaces in Section 7.1.2. Finally, in Section 7.1.3 we introduce

the application of machine learning techniques in conceptual spaces.

7.1.1 Learning Concepts from Few Examples

As already discussed in Section 1.2.2, Gärdenfors [179, Chapter 3] Conceptual spaces

and prototypes
establishes a link between the theory of conceptual spaces and the

prototype theory of concepts [336]: If concepts are represented as

convex regions, the centroid of this region can be interpreted as a

prototype. Conversely, given a set of prototypes, one can create a

Voronoi tessellation of the conceptual space by assigning each point to

its closest prototype, which results in convex regions.

Since Gärdenfors thus essentially represents concepts by their proto- Learning prototypes

typical point, learning a concept corresponds to learning its prototype.

Gärdenfors [179, Section 4.5] also proposes a concrete procedure for

constructing such a prototype from a limited number of examples: Since

each example x(j) of the target conceptC is represented as a point in the
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conceptual space, the prototype p can be obtained by simply averaging

the coordinates of the example points on all dimensions:

pd =
1

N

N∑︂
j=1

x
(j)
d

The set of all prototypes gives then rise to a Voronoi tessellation ofVoronoi tessellation

the space (see Figure 7.1a). This approach is quite straightforward, and

Gärdenfors notes, that it is also able to generalize quite well:

The additional information required for the generalization

is extracted from the geometrical structure of the underlying

conceptual space required for the calculation of prototypes

and for the Voronoi tessellation. [179, Section 4.5] (emphasis

in original)

Since a prototype p is simply an average over the examples seen forUpdating prototypes

the given concept C, it can also be incrementally updated based on a

novel example x, essentially resorting to a moving average:

∆pd =
xd − pd
N + 1

Once one of the prototype changes, also the resulting Voronoi tes-Updating conceptual

prototypes
sellation of the space changes (see Figure 7.1b). As Gärdenfors notes,

this simple learning procedure can already explain over-generalization

effects in children: When an infant learns the word "dog", they typi-

cally also apply it to other animals such as horses or cows. This can

be explained by the child having only very few prototypes in their

conceptual space, thus resulting in very large regions in the Voronoi

tessellation. Over time, the child may learn additional words with their

associated prototypes, thus leading to finer-grained distinctions in the

Voronoi tessellation of the conceptual space and hence a reduction in

over-generalization.

One should note that Gärdenfors’ approach to concept learning isRelation to machine

learning
somewhat similar to the k nearest neighbor algorithm introduced in

Section 5.2.5, which also uses distances in the similarity space as main

source of information. However, while k nearest neighbor retains all

examples in memory and makes its classification based on the class

information of the k nearest neighbors, Gärdenfors first compresses the

information from all examples into a small set of prototypes, and then

uses a 1 nearest neighbor rule to obtain the Voronoi tessellation of the

space. Gärdenfors’ proposal is thus also similar to approaches such as

ProtoNet [381] (cf. Section 5.3.3).

Frommelt [161] considered learning concepts with geometricallyOne shot learning

with correlations
encoded correlations from a single example. This is an especially

challenging problem, since a single example is not able to convey

any information about correlations between domains and dimensions.

Moreover, it is impossible to make any deductions about the variance

of individual features, and hence about size of the concept.
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Frommelt used the formalization of conceptual spaces presented in Estimating

correlations with

PCA

Part I of this dissertation. In order to learn a new concept
˜︁S such as˜︁Smammal based on a single example x⃗, he leveraged prior knowledge

extracted from its sibling concepts, e.g.,
˜︁Sfish and

˜︁Sbird: For each sibling

concept
˜︁Sk, he identified the direction z⃗(k) of greatest variance (and

thus of greatest correlation) by taking the first component of a principal

component analysis (which has been introduced in Section 5.3.2), which

was applied to the midpoints of all cuboids of that concept. Moreover, he

also recorded the order of magnitude of this variance σ(k) as a measure

of the concept’s size. Frommelt then averaged these directions z⃗(k) of

greatest variance as well as the magnitudes σ(k) of the variances across

all sibling concepts
˜︁Sk to obtain a rough estimate of both the direction

of correlation (provided as average vector z⃗(avg)) and the variance of

examples for the novel concept (stored as average variance σ(k)). The

new concept
˜︁S was then initialized with two cuboids, which met at the

coordinates of the given example x⃗, and whose remaining corner points

were defined based on the expected direction z⃗(avg) of correlation and

the expected variance σ(avg) along that direction.

In his experiments, Frommelt used the dataset provided by Lieto et Experiments

al. [261], which was also used as a test bed for the Dual-PECCS system

[265] discussed in Section 1.2.2. Frommelt used animal concepts at the

family level (i.e., mammal, bird, fish, etc.) as a test case and created their

respective conceptual region by defining each example from the dataset

as a trivial cuboid and then applying the repair mechanism, which has

been proposed in Sections 3.1.1 and 3.2.1 for both the intersection and

the unification operators.

His evaluation results in a leave-one-out procedure on both a bi- Results

nary and a multi-class classification task showed, that his approach

performed better than initializing the concept as spanning the whole

conceptual space. However, his results were often worse than the ones

obtained by the trivial concept, which only includes the given example

and excludes all other points. This indicates, that the extension of the

conceptual region based on the expected correlations led to more false

positives than true positives. Frommelt also reported, that artificially

translating the learned concept to its optimal position considerably

improved results, highlighting that outlier data points led to a poor

estimate of the concept’s central region, and thus prevented general-

ization. While the proposal by Frommelt was thus not successful in

an empirical evaluation, he lists several possibilities for improving his

algorithm, which has so far only be implemented in a very naive form.

7.1.2 The Bayesian Perspective

Let us now turn to a view, which considers concept learning as induction Bayesian inference

and uses a form of Bayesian inference. Bayesian inference can be defined as

starting with a prior probability distributionP(h) over a set of statistical
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hypothesesh ∈ H , and then using Bayes’ theorem to estimate a posterior

distribution P(h|{e1, . . . , en}) in the light of pieces of evidence ei:

P(h|{e1, . . . , en}) =
P(h) · P({e1, . . . , en}|h)

P({e1, . . . , en})

Since the denominatorP({e1, . . . , en}) serves mainly a normalization

purpose, most analyses focus on the likelihood P({e1, . . . , en}|h).

The studies considered in this section are all based on Carnap’sCarnap’s work:

families, predicates,

and attribute spaces

"Basic System of Inductive Logic" [88, 89]. We will therefore begin

by introducing the relevant notions of Carnap’s system based on the

summary of Sznajder [403]: A language is a set of families, which consists

of unary predicates, that are defined on the same domain, and that are

mutually exclusive and jointly exhaustive. In other words, the predicates

of a family provide a partition of the underlying domain. For instance,

the family of color words contains the predicates red, green, and blue.

Such a family is by itself a purely syntactic construct. Carnap now

associates each family with a so-called attribute space, where distances

are inversely related to perceived similarities, and where each predicate

maps onto one region in this space. One can easily see, that this notion

of attribute spaces is tightly connected to conceptual spaces, which also

assume a distance-based notion of similarity. Moreover, the partitioning

of the domain by predicates proposed by Carnap can be linked to

Gärdenfors’ Voronoi tessellations. However, while Gärdenfors argues

that conceptual regions should be convex, Carnap does not consider

any constraints on conceptual regions.

In his framework, Carnap considers so-called confirmation functionsConfirmation

functions P(H|E) over pairs of propositions H and E. The value of such a

confirmation function represents the rational degree of belief in H in a

situation, where the agent’s only information is given byE. Alternatively,

one can characterize P(H|E) as the degree of inductive support for H
by E. Carnap now uses the aforementioned attribute spaces to derive

values of the confirmation functions for some simple propositions. The

mechanism relating attribute spaces to confirmation functions can be

broken down into two rules:

The γ rule considers the prior probability P(A) for observing anThe γ rule for prior

probabilities
object, which can be described with the predicate A. Instead of using a

uniform distribution over all predicates as a prior, Carnap postulates

that P (A) should equal the normalized size of the region representing

A in the attribute space. Predicates covering larger fractions of the

domain should thus have a larger prior probability than predicates,

which are defined in a more narrow way.

The η rule on the other hand concerns analogical reasoning within aThe η rule for

analogical learning
domain: Let us assume that predicate A is more similar to predicate B
than to predicate C (based on the distances of the respective regions

in the attribute space). If we now observe an object a of type A, the

expectation of the next observed object b belonging to predicate B is

higher than the expectation of said object b to belong to type C. This
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Figure 7.2: (a) Collated Voronoi diagram of a two-dimensional conceptual

space. (b) Membership function based on a collated Voronoi dia-

gram in a one-dimensional space.

can be formalized as follows, using the notation A(a) to denote, that

the observation a belongs to the predicate A:

ηAB =
P (A(a) ∩B(b))

P (A(a))P (B(b))
>

P (A(a) ∩ C(b))
P (A(a))P (C(b))

= ηAC (7.1)

Essentially, probabilistic dependence is thus grounded in the sim- Obtaining η values

from attribute spaces
ilarity of predicates in the attribute space. The so-called η curve is a

continuous positive function of the distance in the attribute space. By

integrating this η curve over the regions corresponding to the individual

predicates, one can obtain the probabilities for the next observations as

described in Equation 7.1.

Decock et al. [118] relate both Carnap’s work and the conceptual The principle of

indifference
spaces framework to the principle of indifference. The principle of indiffer-

ence states, that all propositions in a set of mutually exclusive and jointly

exhaustive propositions should have the same prior probability. Decock

et al. note, that while this may be intuitively appealing, it depends

on the number of alternatives under consideration: When drawing

a colored ball from an urn with unknown content, one can derive a

probability of 0.5 for drawing a red ball if considering the propositions

red and not red. However, when considering the alternatives red, blue,

and other, the principle of indifference would lead to a probability of

one third for drawing a red ball.

Decock et al. note that Carnap’s γ rule can be interpreted as a Relation to Carnap’s

γ rule
geometric variant of the principle of indifference, which uses the relative

size of a proposition in attribute space to determine its prior probability.

In the example from above, the prior probability of drawing a red ball

would be the size of the region denoting red divided by the overall size

of the color domain. Since the propositions in Carnap’s framework are

assumed to partition the attribute space, this prior probability does not

change when considering different sets of alternatives.

Decock et al. now point out that attribute spaces are relatively un- Conceptual spaces

and collated Voronoi

diagrams

determined and thus come with large degrees of freedom. They thus
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propose to use conceptual spaces instead, which come with a larger

amount of cognitive constraints, such as the alignment with results

from psychological experiments. They resort to collated Voronoi diagrams

as introduced by Douven et al. [136] (cf. Section 2.4.1), where con-

cepts are represented with prototypical regions instead of prototypical

points, and where the partitioning of the conceptual space is obtained

by overlaying all possible Voronoi tessellations based on individual

prototypes. Figure 7.2a shows such a collated Voronoi diagram in a

two-dimensional similarity space. Decock et al. [118], argue, that one

can obtain a soft degree of membership for a point x to a conceptC from

this collated Voronoi diagram by dividing the number of diagrams for

which x lies inside the region for C by the overall number of diagrams

This is illustrated in Figure 7.2b for a one-dimensional example. Decock

et al. now use the integral over these membership functions to compute

the size of a conceptual region. Dividing this size of C by the size of

the overall conceptual space can thus provide prior probabilities in a

way analogous to Carnap’s γ rule. Decock et al. furthermore note, that

it is easily possible to take into account multiple domains by simply

considering their product space.

Also Sznajder [402, 403] has noted the similarity of Carnap’s attributeObservations as

points in attribute

spaces

spaces to the conceptual spaces framework. At the same time, she

argues that Carnap does not make full use of the geometric structures,

since observations are only made on the level of predicates, but are

not specified as coordinates in the attribute space. By assuming that

individual observations are represented as points in the similarity

spaces, Sznajder generalizes Carnap’s original proposal. For instance,

instead of centering Carnap’s η curves on the middle of the conceptual

region, one can then center them on the current data point, resulting

in different predictions for the generalization behavior of prototypical

observations and borderline observations [402, Section 3.5].

In her later work [403], Sznajder further generalizes Carnap’s ap-From region-based to

point-based

predicates

proach by replacing region-based predicates with point-based pred-

icates, essentially treating hypotheses not on the predicate level, but

rather as distributions over points in the similarity space. Carnap’s

prediction methods for a finite number of region predicates correspond

to so-called Dirichlet priors, which are a multivariate generalization

of the beta distribution on sets of multinomial hypotheses (where

each hypothesis corresponds to a particular probability distribution

over the predicates). This can be generalized to an infinite number of

point-based predicates with so-called Dirichlet processes, where each

hypothesis represents a probability density function over the infinitely

many values in the continuous similarity space.

Sznajder [403] furthermore points out, that Carnap partitioned theUpdating conceptual

regions
attribute space into predicates, but did not consider revisions of this

partitioning. This can, however, easily be done with her extension, since

it does not rely on fixed predicates, but represents a general probability

density function over the similarity space. This probability density

function may implicitly show a cluster structure by distinguishing
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regions with higher density from regions with lower density. It can be

incrementally updated based on new observations, thus potentially

changing the different regions that are being distinguished. However,

Sznajder cautions against the complete removal of predicates from the

overall system: She argues that a core aspect of induction is to formulate

useful generalizations and that region-based predicates offer a way of

capturing such generalizations.

In order to illustrate the advantage of her proposal over Carnap’s A simple example

original work, she considers two predicates (black and white), which

are defined on the lightness dimension of the color space (represented

as unit interval, which is split into half by the two predicates). She

furthermore assumes that the following observations e are made:

e = {0.41, 0.42, 0.43, 0.44, 0.45, 0.55, 0.56, 0.57, 0.58, 0.59}

Carnap’s original rules provide us with P(white|e) = P(black|e) = A finer-grained view

0.5, indicating that the distribution of colors in the world is quite uni-

form with respect to the two predicates. Sznajder’s extended approach,

however, is able to capture the statistics of the given observations

much better, allowing us for instance to make the distinction into

P([0, 0.4]|e) = P([0.6, 1]|e) ≈ 0.036 and P([0.4, 0.6]|e) ≈ 0.927. This

finer-grained view shows, that the examples form a cluster in the center

of the similarity space, indicating that one may need to add more

categorical distinctions in this region.

Also Poth [323, 324, 325] approaches the concept learning problem by The size principle

combining Bayesian inference with the conceptual spaces framework.

She does so by extending the categorization model of Tenenbaum et al.

[406, 441]. In this model, learners use Bayes’ theorem to estimate P(h|e)
for each hypothesis h based on the given evidence e. In this context,

each hypothesis describes the overall region occupied by stimuli of a

common category. Moreover, the model by Tenenbaum et al. introduces

the so-called size principle, which states, that the likelihood term P(e|h)

is proportional to

(︂
1

|Rh|

)︂N
, where N denotes the number of examples

and Rh corresponds to the conceptual region expressed by hypothesis

h. This size principle results in two empirical predictions: On the one

hand, if the number of examples is held constant, the learner should

prefer smaller regions. On the other hand, if the perceived similarities

are held constant, a larger number of examples further emphasizes

this preference on smaller regions. For example, three example images

for the word "fep" are provided, and all three examples happen to

be Dalmatians, then the probability for "fep" referring to Dalmatian

should be higher than for mapping it to dog or object with black dots:

For the latter two categories, one would simply expect a larger variance

in the (presumably randomly sampled) examples.

Poth [324] notices three weaknesses of the proposal of Tenenbaum Adding similarities

to the size principle
et al. and proposes a solution for each of them: Firstly, similarities are

completely replaced by probabilities in this Bayesian setting, although

both exemplar variability and the description of geometric regions
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require such a notion of similarity. Poth proposes to remedy this

problem by grounding the Bayesian approach in conceptual spaces,

where a geometric representation of similarities is given. She proposes

the following reformulation of the size principle, which measures the

relative overlap of the evidence e with the candidate region Rh:

P(e|h) ∝
(︃
|e ∩Rh|
|Rh|

)︃
The likelihood term P(e|h) can thus be replaced with relative pro-

portions of regions in a conceptual space.

Secondly, Poth argues, that the proposal by Tenenbaum et al. isAdding prior

probabilities
incomplete, since it focuses only on the likelihood P(e|h), but ignores

the prior probabilities P(h). She proposes to use the prior probabilities

as defined by Decock et al. [118] based on the relative size of the

conceptual regions (cf. our discussion from above).

Thirdly, she notices, that the size principle by itself may lead toCounteracting

under-generalization

with well-formed

regions

under-generalizations, since it quite aggressively favors (very) small

conceptual regions, and since no constraint is put on the shapes of such

regions. According to Poth, this problem with under-generalizations

can be implicitly solved through the definition of conceptual regions as

being convex, or (as a special case) based on a Voronoi tessellation: Since

conceptual spaces thus do not allow for regions, which minimally fit

the given examples, but at least require a convex hull, a certain degree

of over-generalization is automatically incited, which may counteract

the under-generalization tendency of the size principle.

Poth and Brössel [325] use this modified version of the size principleThe complex first

paradox
as a way to explain the complex first paradox. The complex first paradox

states, that children tend to acquire complex concepts such as dog earlier

than simple concepts like brown, even though neuroscientific theories

indicate, that the representation of complex concepts is more widely

distributed in cortex [430]. Their explanation for this paradox is based

on the assumption, that complex concepts like dog are smaller than

simple concepts like brown: Firstly, one can assume that the extension

of dog (i.e., the set of possible examples falling under this category)

is much smaller than the extension of brown. Secondly, the objects

falling under brown are very similar with respect to their color, but

may differ considerably with respect to other aspects such as shape or

size. Members of the dog concept, however, are similar to each other

with respect to many aspects (such as color, shape, and size).

Poth and Brössel acknowledge, that this view is not able to accountLimitations of the

extended size

principle

for the basic level bias [298, Chapter 7] (i.e., that children tend to learn

basic level categories such as dog earlier than subordinate concepts

such as Dalmatian, cf. Section 1.1.2) and for the shape bias [212] (i.e., the

preference for shape-based concepts, to be discussed in more detail in

Chapter 10). They speculate, that both of these biases may not be innate,

but rather learned, since caregivers tend to teach basic-level concepts,

and since the shape domain is more useful than other domains (such as

color) in order to make classifications.
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Our summaries in this section have illustrated, that conceptual spaces Outlook

have been successfully linked to philosophical and probabilistic account

of concept learning and induction. The studies discussed above thus

provide further support to the general conceptual spaces framework

as an interdisciplinary and cognitive approach. From the viewpoint of

artificial intelligence, the considerations from this section are, however,

too abstract in the sense, that they do not provide explicit algorithms

and empirical evaluations, which are, however, necessary for an actual

application of conceptual spaces in a technical system.

7.1.3 The Machine Learning Perspective

Let us now consider conceptual spaces from the viewpoint of machine Conceptual spaces

and feature spaces
learning. As already discussed in Section 1.2.5 and at various points in

Chapter 5, conceptual spaces are closely related to the feature spaces

commonly used in machine learning. However, conceptual spaces are

typically spanned by a small set of interpretable and cognitively mean-

ingful dimensions, while no such constraint applies to feature spaces

in general: They can incorporate a large number of dimensions, whose

main aim is to provide a good distinction between different classes

without targeting psychological plausibility. Nevertheless, one can eas-

ily envision the application of standard machine learning techniques in

conceptual spaces, as already noted at various points in Chapter 5.

Lee and Portier [247] describe an experiment, in which they analyzed Domain structure

may aid learning
the effect of the conceptual space’s domain structure on learning. For

a small dataset of fruits, they compared the performance of different

nearest-neighbor approaches on two kinds of feature spaces: In the

first type of feature space, the Euclidean metric was used as an overall

distance measure for combining all dimensions. In the second type of

space, however, the dimensions were grouped into semantic domains,

and distance within a domain was measured by the Euclidean metric,

while the distances of different domains were combined by using the

Manhattan metric. The results obtained by Lee and Portier indicate,

that using a domain structure can aid the learning process for nearest

neighbor classifiers. However, their results should be interpreted with

caution, since their study was conducted on a single, very small dataset.

Derrac and Schockaert [123] have not only defined various notions Comparing classifiers

in conceptual spaces
of conceptual betweenness (cf. Section 4.5.1) and extracted conceptual

spaces from textual data (cf. Section 6.3.2, to be discussed in more

detail in Chapter 8), but they have also investigated the performance

of different types of classifiers in these similarity spaces. Derrac and

Schockaert argue, that similarity-based classification has important

limitations, which can be overcome, if information about conceptual

betweenness and about salient directions are taken into account. For

instance, similarity-based classification is only applicable, if sufficiently

similar instances are available. Since conceptual betweenness does not
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directly depend on closeness in the similarity space, it is also applicable

in the absence of very similar instances.

While a similarity-based classifier can be equated with a k nearestBetweenness-based

classifiers
neighbors classifier (cf. Section 5.2.5), a betweenness-based classifier works

as follows: When trying to classify a new observation x, one searches

for pairs of examples (a, c), which belong to the same concept, and for

which the degree of betweenness B(a, x, c) is high. The pair of points

(a, c), which maximizes this degree of betweenness then determines

the classification of the observation x. This implicitly uses the convexity

assumption of the conceptual spaces framework: If both a and c are

classified as red, then also all points between them must be labeled as

red. In analogy to a k nearest neighbor classifier, one can also take into

account the top k pairs of points a, c with highest betweenness values,

and determine the classification of x based on a (weighted) majority

vote among those k pairs.

Derrac and Schockaert compared the performance of such a between-Competitors

ness-based classifier to several baselines, including support vector

machines (cf. Section 5.2.3), decision trees (cf. Section 5.2.4), and k
nearest neighbors (cf. Section 5.2.5). Moreover, they analyzed the per-

formance of rule-based classifiers, which extract rules in the form of "if

x is more scary than the shining, then x is a horror movie" based on

interpretable directions such as scary in their conceptual spaces.

Derrac and Schockaert conducted experiments on three of datasets,Experimental results

which considered the domains of place type, movie, and wine, re-

spectively, and which had been extracted from word co-occurrence

statistics (cf. Section 6.3.2). Derrac and Schockaert made the follow-

ing observations: If there was only little data available (such as for

the smaller datasets of the place type and wine domains), traditional

classifiers did not perform very well and could be outperformed by

betweenness-based classifiers. However, for the larger dataset of the

movie domain, support vector machines achieved the best performance.

There, also rule-based classifiers, which used interpretable directions

in the conceptual space, showed a reasonably good level of perfor-

mance. One advantage of the rule-based classifiers is of course, that

they can automatically generate interpretable explanations for their

classification behavior, which is more difficult for classifiers like support

vector machines. Notably, betweenness-based classification is not easily

applicable to large datasets – if there are too many candidate pairs

(a, c) to consider, then evaluating all of them requires prohibitively

large amounts of computation time. Derrac and Schockaert noted that

in most cases, classification performance was relatively insensitive to

the number of dimensions of the underlying conceptual space. They

also emphasize, that the the k nearest neighbors classifier was quite

sensitive to the choice of k, while the betweenness-based classifier was

considerably more robust in this respect.

Finally, they used the dataset of the place type domain to compareComparison to

human data
the performance of different classifiers to that of human subjects. In

their study, human participants rated statements in the form of "X is a

kind of Y " as correct, partially correct, or incorrect. They did not have
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access to a conceptual spaces representation and made the decision

solely based on the statement and their world knowledge. Derrac and

Schockaert compared the results of this study with the predictions of

the different classifiers and found, that betweenness-based classifica-

tion achieved a similar precision and accuracy as humans (when using

a domain ontology as gold standard), but had a considerably lower

recall. This means, that a betweenness-based classifier tended to result

in more false negative classifications (cf. Section 5.1.2) than humans.

The similarity-based k nearest neighbors classifier, however, was not

able to achieve competitive results on any of these metrics. Derrac and

Schockaert interpret this as further support for betweenness-based

classification over similarity-based approaches.

Bouraoui and Schockaert [76] considered concept learning from Conceptual spaces

and background

knowledge

a small number of examples. They note, that especially in high-

dimensional spaces, the resulting concepts might be quite unreliable.

In order to solve this problem, they proposed to use background knowl-

edge in the form of a description logics knowledge base as additional

constraint. They modeled each concept C with a single Gaussian dis-

tribution GC , and assumed, that this distribution’s covariance matrix

is diagonal. This means, that they did not consider correlations be-

tween domains or dimensions. For each concept, they maintained a

probability distribution over the concept’s mean µC and covariance

matrix ΣC , which was iteratively updated. These distributions were

both constrained by the available training data and by prior knowledge

from the knowledge base. For instance, if C1 is a subconcept of C2

(based on the information from the knowledge base), Bouraoui and

Schockaert assume, that GC2(µC1) is high, i.e., that the prototype of

C1 is a typical member of C2. Moreover, they assume, that in this case

σ2C1
≤ σ2C2

for all entries in ΣC1 and ΣC2 , i.e., that the superordinate

concept has a larger variability. Their experimental results showed, that

this approach is able to outperform several baselines (including for

instance SVMs) on the task of knowledge base completion.

As you can see, there has so far only be limited work in applying ma- Outlook

chine learning for identifying conceptual regions in conceptual spaces.

Nevertheless, the existing studies highlight, that such a combination

may be quite fruitful: The (rather anecdotal) results by Lee and Portier

[247] indicate, that the domain structure of a conceptual space may

provide a useful constraint for nearest neighbor classifiers. The quite

extensive study by Derrac and Schockaert [123] highlights the merits

of rule-based and betweenness-based classifiers, which harness the

structure of the underlying conceptual space with its interpretable

dimensions and its meaningful betweenness relation. Finally, the work

by Bouraoui and Schockaert [76] exemplifies, that conceptual spaces

are also capable of incorporating knowledge-based constraints. This

important topic will be covered in more detail in the upcoming section.
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7.2 learning concepts under knowledge-
based constraints

Many purely inductive machine learning models, especially deep neuralInductive and

deductive approaches
networks, heavily depend on the availability of large-scale datasets.

However, collecting large amounts of labeled data is expensive and

not always possible, for instance, if some classes occur only very

infrequently in practice. On the other hand, deductive methods rely

completely on prior knowledge (usually expressed in a logical format),

and derive hypotheses in an entirely deductive fashion without taking

into account training examples. This distinction into inductive and

deductive learning has already been introduced in Section 5.1.

Mitchell [295, Chapter 12] notes, that most practical problems seem toHybrid approaches

lie between these two extremes, since they involve both a limited amount

of data and a limited amount of prior knowledge. This motivates the

need for combining inductive bottom-up approaches, which are based

on statistical regularities in the data, with deductive top-down methods,

which are based on formalized domain knowledge. The resulting hybrid

approaches can be expected to combine imperfect prior knowledge with

a limited set of examples to rapidly and robustly generalize to new

observations. Also humans are able to learn new concepts, even if

presented only with a very small amount of examples [87]. Moreover,

the knowledge view on concepts (cf. Section 1.1.1 emphasizes, that

humans make use of prior knowledge when acquiring new concepts

[298, Chapters 5, 6, 10] (cf. also Section 1.1.2).

The research area of few shot learning attempts to replicate this humanFew shot learning

ability in the context of machine learning [427]. Please recall from

Section 5.1, that machine learning can in general be defined as follows:

Definition 5.1 (Machine Learning)

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in

T , as measured by P , improves with experience E. [295, Chapter 1]

Wang et al. [427] now define few shot learning as a special case ofFormal definition

Definition 5.1, where E contains only a limited number of examples

with supervision information for the target task T . However, they

note that E may also contain prior knowledge, which can be used to

substitute the missing examples to some extent. Mitchell [295, Chapter

12] formalizes this assumption by considering E as consisting of a set

of training examples D and a domain theory B.

Two important special cases of few shot learning are one shot learningOne shot learning

and zero shot

learning

(where E contains only a single labeled example per concept) and zero

shot learning (where E does not contain a labeled examples at all). In

Section 7.1.1, we have reviewed Gärdenfors’ original concept learning

algorithm [179, Section 4.5], which is capable of few shot learning, and

Frommelt’s proposal for a one shot learning algorithm [161], which

tries to estimate correlations between domains based on background

knowledge about related concepts. Moreover, in Sections 3.6.2 and 4.6.1,
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we have sketched, how our formalization of the conceptual spaces

framework can be used for zero shot learning via concept combination.

Please recall from Section 5.1.1, that a given model can be said to Machine learning as

loss minimization
represent a hypothesis h = f̂(x⃗), which maps from observations to

desired outputs (e.g., class labels). The performance measure P for a

given task T can be formulated as a loss function J , which measures

the difference between the model’s prediction f̂(x⃗) and the ground

truth y = f(x⃗) for all labeled training examples x⃗ (cf. Sections 5.1.2 and

5.1.3). This loss function should be minimized in order to achieve good

performance on the task.

Wang et al. [427] define the expected risk of making incorrect pre- Expected risk

dictions as R(h) =
∫︁
J(f̂(x⃗), y) dP(x⃗, y), where P(x⃗, y) is the true

probability distribution over examples x⃗with their corresponding label

y. The expected risk therefore denotes the expected loss over all possible

examples, taking into account their respective probability. The optimal

hypothesis h∗ minimizes this expected risk R(h).
In general, no machine learning model can represent arbitrary hy- Hypothesis space and

approximation error
potheses – is is always constrained by its inductive bias to a so-called

hypothesis space H of possible hypotheses h = f̂(x⃗; θ), which can be

represented by this model, if its free parameters are set to θ (cf. Section

5.1.1). Thus, the optimal hypothesis h∗, which minimizes the expected

risk R(h), may not lie inside of H . The best hypothesis available to the

model is thus ĥ ∈ H , which minimizes the expected risk using the

given model and the parameters θ∗. If h∗ ̸= ĥ, then the model is bound

to make an approximation error Eapp = |R(h∗)−R(ĥ)| due to its limited

hypothesis space. This is illustrated in Figure 7.3a.

Moreover, since P(x⃗, y) is unknown in practice, one cannot directly Empirical risk and

estimation error
minimize R(h) in order to obtain ĥ. One therefore needs to use the

empirical risk RN (h) =
1
N

∑︁N
j=1 J(f̂(x⃗

(j), y(j)) instead, which is based

on the N training examples available for optimizing the algorithm. We

denote by hN ∈ H the hypothesis, which minimizes the empirical risk

using the given model and the parameters θN . Especially if N is small

(as in the few shot learning problem), we can expect that hN ̸= ĥ. This

introduces an estimation error Eest = |R(hN ) − R(ĥ)|, which is based

on the fact, that the machine learning model is not able to find the

optimal parameters θ∗, since it has only access to a limited amount of

N examples. Also this is illustrated in Figure 7.3a.

Wang et al. [427] argue, that the prediction errors made by any type Minimizing the

estimation error for

few shot learning

of machine learning model can be viewed as a combination of approxi-

mation error (due to the limited hypothesis space) and estimation error

(due to insufficient data). In the few shot learning context, one can

expect especially the estimation error to be quite high. In order to arrive

at better models, one therefore needs to devise methods for reducing

this estimation error. Wang et al. argue, that this can be most efficiently

done by incorporating prior knowledge.

In the following subsections, we will take a closer look at different

ways of incorporating prior knowledge into the learning process, help-
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Figure 7.3: Illustration of learning as a search through the hypothesis space.

(a) Approximation and estimation error. (b) Improvement through

data augmentation. (c) Improvement by reducing the hypothesis

space. (d) Improvement through initialization.

ing to solve the few shot learning problem. In Section 7.2.1, we review

some general approaches as discussed by Mitchell [295, Chapter 12]

and Wang et al. [427]. Afterwards, we present the framework of logic

tensor networks [21, 358] in Section 7.2.2, a neural network model,

which incorporates logical constraints in the form of fuzzy rules. In

Section 7.2.3, we then argue, that logic tensor networks are a useful tool

for modeling concept learning in conceptual spaces under constraints

from the symbolic layer.

7.2.1 General Approaches

In the following, we will give some more details on different waysModifying the search

through the

hypothesis space

for incorporating prior knowledge in order to alleviate the underlying

problem of few shot learning. These different ways are motivated by

viewing the learning problem as a search through a hypothesis space.

Wang et al. [427] distinguish three different types of approaches based

on the component of the learning problem, which is being changed:

Data augmentation techniques (Figure 7.3b) attempt to increase theData augmentation:

increasing the

number of examples

number of available training examples fromN to Ñ ≫ N . One can then

apply standard machine learning techniques on this enlarged dataset

without further modifications. Prior knowledge is used to decide how

the additional training examples are created.
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Constraining the hypothesis space (Figure 7.3c) reduces the (effective) Regularization:

constraining the

hypothesis space

capacity of the model by using soft or hard regularization (cf. Sections

5.1.3 and 6.2.3), and thus discourages the exploration of certain parts of

the hypothesis space, or removes them altogether. Prior knowledge is

used to determine which parts of the hypothesis space to exclude.

Modified learning algorithms (Figure 7.3d) search the hypothesis in a Modified algorithms:

different starting

point or additional

search operators

different way, either by starting from a different initial hypothesis h0, or

by using modified search operators. Prior knowledge is used to define

the initial hypothesis, or to specify additional search operators.

All of these approaches have the common goal to reduce the esti- Reducing the

estimation error
mation error Eest by inductively finding a hypothesis hN , which lies

closer to the optimal hypothesis ĥ representable by the model. In the

following, we will describe these three basic approaches in more detail

and provide some concrete examples.

The first way of incorporating background knowledge consists in Dataset

augmentationaugmenting the training set, i.e., creating additional artificial training

examples based on the existing training examples and prior knowledge

(cf. Section 6.2.3). This data augmentation step is also frequently used

for classification problems with imbalanced class frequencies [192].

Wang et al. [427] distinguish the following approaches:

First of all, one can use hand-crafted rules for dataset augmentation. Augmentation with

hand-crafted rules
For instance, when training a classifier on images, one can modify the

image’s pixels by applying small translations or rotations of the image.

Also additive noise can be used to change the images on the pixel-level

while leaving high-level categorical information intact.
1

Wang et al.

[427] argue, that such hand-crafted rules are highly dependent on

domain knowledge, and are therefore not always applicable. We would

like to add, that also an interpolation between neighboring examples in

the feature space is a possible way of creating additional data points

[192]. In this case, however, one tacitly assumes convexity of categories

in the given feature space, which may not always be fulfilled.

Another possibility for obtaining additional data points is to apply a Augmentation

through learned

transformations

learned transformation to examples from the given training set. Again, the

idea is to use a transformation function t(x⃗, z) with auxiliary input z for

transforming each training example (x⃗(j), y(j)) into multiple artificial

examples (t(x⃗(j), z), y(j)). However, the transformation function t is

now not handcrafted, but based on automatically identified variations

between samples from the given training set or from a larger dataset

with similar content. These learned variations are then applied to the

training examples in order to generate additional data points. In contrast

to handcrafted rules, no explicit prior knowledge is needed, which may,

however, also reduce the interpretability of the augmentation step.

Wang et al. also argue, that one can make use of other weakly labeled Augmentation

through self-training
or unlabeled datasets. For instance, one can train a classifier on the

given training set, and then apply its hypothesis hN onto data points

1 In fact, such pixel-wise changes have been used to construct attacks against deep neural

networks in order to make them misclassify a given image [401], cf. Section 6.2.3.
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(x⃗′,−) from an unlabeled dataset. The data points (x⃗′, hN (x⃗
′; θ)) with

the highest prediction confidence can then be added to the training set

as additional examples for training an updated version of the classifier.

This procedure is called self-training. However, one needs to be careful

with this approach, since confident misclassifications made by hN
decrease the quality of the training set.

Finally, it is also possible to take samples from similar datasets andAugmentation with

similar datasets
adapt them accordingly. However, it is in general not possible to directly

copy the examples, for example, because different class labels are used.

Also a different distribution of the examples (e.g., photographs versus

line drawings) may cause the need for adaption. Overall, the samples

from the supplementary dataset thus need to be suitably transformed,

often by aggregating across multiple samples. Wang et al. mention

for instance generative adversarial networks [173] as a possible way to

translate samples between datasets, e.g., by using CycleGAN [459] (cf.

Section 6.3.3), if a manual rule-based translation is not possible.

Wang et al. [427] note, that data augmentation is often a relativelyProperties of data

augmentation
straightforward process, which is easy to understand. Especially in the

case of images as input, one can easily visualize the artificially created

examples and verify their quality. However, for other types of data,

which are not that easy to visualize, it may be more complex to ensure,

that the additional training examples have a sufficiently high quality.

Moreover, Wang et al. argue, that the transformation function is often

tailor-made for a specific dataset and can thus hardly be reused.

A second way of constraining machine learning algorithms throughConstraining the

hypothesis space
background knowledge consists in reducing the hypothesis space H in

such a way, that the distance between ĥ and hN becomes smaller. This

reduction should, however, ensure, that the distance between h∗ and

ĥ remains small (see Figure 7.3c) [427]. In other words, one can try

to exclude hypotheses h ∈ H , for which prior knowledge predicts

poor performance. This can be done by either removing parts of the

hypothesis space completely, or by discouraging the exploration of

certain parts of the hypothesis space (cf. hard vs. soft regularization,

Sections 5.1.3 and 6.2.3).

One popular approach used in the deep learning literature is multitaskMultitask learning

learning [427] (cf. Sections 6.2.3 and 6.3). Here, a single model is trained to

solve multiple related tasks at the same time. Re-using model parameters

(e.g., by sharing the lower layers between tasks) serves as an additional

constraint on the hypothesis space H . In this case, prior knowledges

comes in the form of related tasks and their respective datasets.

If prior knowledge is available in a more direct format, one canExplicit

regularization term
directly incorporate this knowledge through an additional term in the loss

function. For instance, Mitchell [295, Chapter 12] describes the EBNN

(explanation-based neural network) framework, which uses derivatives as

additional constraints to the learning problem: One first constructs an

auxiliary neural network ANN1 based on a given domain theory: For

each term in the domain theory, an individual neuron is created and

edges between neurons are inserted based on the relations between
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terms in the domain theory. The weights of this neural network are

initialized in such a way that its output is identical to the predictions

by the domain theory. Now a new neural network ANN2 is trained

using the given dataset, while the auxiliary network ANN1 remains

unchanged. For each training example, the derivatives of the auxiliary

network’s output with respect to each of its nodes in the input layer

are computed. If the auxiliary network ANN1 (and thus the domain

theory) correctly predicts the label of the given example, an additional

term in the loss function of ANN2 is used to ensure, that also the input-

output derivatives of ANN2 match the ones by ANN1 (and hence the

predictions made by the domain theory). This soft constraint ensures,

that parts of the hypothesis space, which are in line with the background

knowledge, are more likely to be explored.

In Section 5.1.4, we have already discussed, that the dimensionality Dimensionality

reduction
of the feature space plays a crucial role in determining the number of

free parameters in the machine learning model and thus the size of

the hypothesis space. Another way of reducing the hypothesis space

therefore consists in reducing the number of features, for instance

through feature selection (cf. Section 5.3.1) and feature extraction (cf.

Section 5.3.2). If metric learning [236] (cf. Section 5.3.3) is used for

dimensionality reduction, one can often make use of simpler classifiers

(e.g., kNN or a simple prototype-based classifier [381]). Since simpler

classifiers have less free parameters, this further reduces the size of the

hypothesis space. Also the area of representation learning as discussed

in Sections 6.1 and 6.3 has similar aims.

Lampert et al. [241] have introduced a specific variant of restricting Attribute-based

classification
the hypothesis space, which they call attribute-based classification. They

explicitly target zero shot learning, where observations need to be

classified with respect to a new class, for which no training examples

are available. The only information available for this new class is

assumed to be a high-level description in terms of semantic attributes.

Lampert et al. propose to first learn a mapping from the original input

(e.g., images) to these semantic attributes by training one separate

classifier per attribute. Afterwards, one can define a zero shot classifier

by using the predictions of the attribute classifiers to infer the presence

or absence of the respective attributes, and comparing this to the high-

level description of the class. The work by Lampert et al. thus uses a

dimensionality reduction approach, because the number of semantic

attributes is considerably lower than the dimensionality of the original

input. Since zero shot classes are defined as a conjunction of attributes,

their approach results in a quite interpretable overall system. We will

revisit their work in Chapter 8 in the context of multidimensional

scaling and interpretable similarity spaces.

Recently, Clay et al. [107] have proposed a few shot learning approach Training neural

networks for few shot

learning

based on pretrained neural networks. They considered three setups for

training the same encoder network, and investigated, how well one can

then extract concepts on top of the learned representation. As input,

they used RBG images of a video game world, and the encoder network

was either trained in a fully supervised classification task, as part of
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an autoencoder in an unsupervised reconstruction task, or as part of

a larger deep reinforcement learning network. In the latter case, the

network was able to control the in-game avatar through its outputs and

optimized a curiosity objective, which rewarded the network for making

unexpected observations, and hence for exploring its environment.

Clay et al. then used a procedure they called fast concept mappingFast concept

mapping (FCM) in order to extract concepts from the learned embedding based

on a small number of examples: For each example, they created a graph

of all neurons in the embedding layer, where edges indicated pairs of

jointly active neurons. By summing the connection strengths over all

examples for a given concept, they obtained a weighted connection

graph, where the weight of each connection was based on the number

of times it was present in the individual graphs. Clay et al. then defined

a concept by taking the k strongest connections. Classification decisions

for novel inputs were reached by creating the connectivity graph of

the novel input, and by then computing the weighted overlap between

this connectivity graph and the concept definition in order to obtain a

confidence value. Clay et al. found, that their FCM approach reached a

good classification performance already for a small number of exam-

ples, and that the embodied reinforcement learning network clearly

outperformed the unsupervised autoencoder, being only marginally

worse than the fully supervised network. Like the attribute-based clas-

sification by Lampert et al. [241], the FCM approach by Clay et al. [107]

can be interpreted as using a dimensionality reduction approach.

A third way of adding background knowledge to machine learningModifications of the

learning algorithm
is concerned with modifications of the optimization algorithm. Wang et

al. [427] assume, that the hypothesis hN is found by an iterative opti-

mization of the model’s free parameters θ, i.e., θt = θt−1 +∆θt−1. This

mainly applies to artificial neural networks (cf. Section 6.2), but not

necessarily to other classifiers like support vector machines (cf. Section

5.2.3 or k nearest neighbors (cf. Section 5.2.5).

This iterative optimization can be modified by initializing the model’sInitialization

through transfer

learning

parameters θ0 (and hence the initial hypotheis h0) based on prior

knowledge (illustrated in Figure 7.3d). For instance, one can first train

the model on other tasks with large datasets to obtain θ0, which is then

subsequently fine-tuned based on the new task. This approach is called

transfer learning in the literature (cf. Section 6.2.3).

Also explicit prior knowledge can be used to obtain an initial hypoth-Initialization

through explicit prior

knowledge

esis. The KBANN (knowledge-based artificial neural networks) framework

discussed by Mitchell [295, Chapter 12] for instance uses rule-based

domain knowledge to initialize the structure and the weights of a neu-

ral network similar to the EBNN approach discussed above. However,

instead of training a second neural network from scratch, the weights of

the initialized network are updated with gradient descent based on the

examples from the training set, adapting the imperfect domain theory

to the empirical observations. As Mitchell points out, the individual

nodes of the network are initialized with a specific meaning, but their

interpretation may change as the weights are updated.
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Another possibility is to modify the update steps for the search Modified update

steps with

meta-learning

through the hypothesis space, i.e., to change ∆θt−1. In this respect,

Wang et al. [427] mention meta-learning as a possible, yet relatively

complex approach. Here, a meta-model is trained to output search

steps for the optimizer of the actual model to be trained. This means

that the meta-model takes the current parameters θt−1 as an input and

outputs proposed updates ∆θt−1. Changes in the direction or the size

of the update are simple examples for such an approach (cf. e.g., the

momentum rule from Section 6.2.5).

In case on non-neural learning algorithms, background knowledge Additional search

operators for

rule-based learning

can also be used to expand the set of possible search operators. Mitchell

[295, Chapter 12] for instance presents FOCL as a variant of FOIL,

which is an inductive rule learning algorithm. In both FOCL and FOIL,

hypotheses are represented through a set of classification rules, where

a given term is defined based on the presence or absence of other

(more elementary) terms. In both cases, the system starts with the most

general rule and then greedily specializes this rule by looking at all

possible candidate specializations, and by choosing the one with the

greatest information gain (cf. decision tree learning in Section 5.2.4).

FOIL creates candidate specializations by adding only a single literal

to the preconditions, whereas FOCL also uses its domain theory to

create more complex specializations, thus allowing for larger steps in

the hypothesis space and faster learning.

As one can see, there are many different variants of using prior Outlook

knowledge in machine learning tasks in order to reduce the number of

training examples necessary for obtaining good performance. In almost

all cases, prior knowledge is used to create some form of regularization.

Determining the most applicable approach for a given machine learning

problem depends heavily on the learning task, the training examples,

and the background knowledge available. Of course, one can in principle

also combine multiple of these approaches with each other, e.g., by

using both data augmentation and dimensionality reduction.

7.2.2 Logic Tensor Networks

In the context of neural-symbolic learning and reasoning [111], logic Logic tensor

networks in generaltensor networks (LTNs) [21, 358, 359, 360] have been recently proposed

as a principled way of using neural computations to connect feature

spaces with symbolic rules through fuzzy logic.
2

Logic tensor networks

integrate knowledge representation, learning, and reasoning using a

differentiable fuzzy first-order logic language called real logic. They are

especially useful for hybrid domains, where both numerical (subsym-

bolic) information and relational (symbolic) knowledge are available.

From the symbolic perspective, LTNs provide a spatial embedding

for fuzzy logics, while from the subsymbolic perspective, they are a

2 See https://github.com/logictensornetworks/logictensornetworks for the im-

plementation of this framework.

https://github.com/logictensornetworks/logictensornetworks
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machine-learning algorithm, which is based on neural networks and

guided by additional logical constraints.

Real logic is a first-order logical language, which contains constantReal logic in a

nutshell symbols (representing individuals such as Bob or Paris), function symbols

(representing mappings between observations, e.g., homeTownOf),

predicate symbols (representing concepts and relations such as lawyer

and livesIn), and variable symbols (representing lists of observations)

[21]. All of these language constituents are typed with respect to a set of

domainsD: We can require, that Bob belongs to the domain of people, and

Paris to the domain of cities. Moreover, we can require that the function

homeTownOf takes only people as input and returns cities, and that the

predicate lawyer is only applicable to the domain of people. The indi-

vidual parts of the language can now be combined into formulas such as

lawyer(Bob), or ∀x : (lawyer(x) → (homeTownOf(x) = Paris)). These

formulas are constructed using logical connectives (such as →) and

quantifiers (such as ∀) and have a fuzzy degree of truth in the interval

[0, 1].
In order to relate the semantics of the logical language to actualGrounding constants

and variables
data points, real logic makes use of a so-called grounding function Gθ,
which maps terms (i.e., constants, variables, and results of function

applications) onto tensors in the real field.
3

In the original formulation

of the framework [358, 359, 360], the grounding function Gθ mapped

any term onto a point in Rn, i.e., to a vector of feature values. In the

recent reformulation [21], also tensors of higher or lower order are

allowed. Constants from the same domain D ∈ D are always mapped

onto tensors of the same order and size. Variables (which express lists

of observations) are mapped to a finite sequence of tensors in the

respective domain.

Moreover, functions and predicates are mapped onto real functionsGrounding functions

and predicates
or tensor operations

4
, which are implemented with neural networks.

The networks implementing predicates are required to return a value

from the interval [0,1], and can thus be interpreted as defining a fuzzy

membership function of the respective concept or relation in the given

feature space. Relations such as livesIn are implemented as fuzzy

regions in a product space of domains (in this case people and cities).

Overall, the grounding Gθ associates any term in the language with a

tensor and any formula expressible in the language with a real number

in [0,1], representing its degree of truth.

In order to determine the truth value of a formula, one uses anGrounding formulas

element-wise application of the grounding (see Figure 7.4): First, all

terms (such as Bob) are grounded into tensors, and all function and

predicate symbols (such as homeTownOf an livesIn) are grounded into

their respective neural networks. The structure of the symbolic formula

3 Tensors are a generalization of vectors and matrices to an arbitrary number of dimen-

sions: A tensor of order 0 corresponds to a scalar, a tensor of order 1 is a vector, and a

tensor of order 2 is a matrix. Higher-order tensors then correspond to multidimensional

arrays with more than two dimensions.

4 Tensor operations are a generalization of vector and matrix operations.
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Figure 7.4: Grounding of a formula containing a function symbol

(homeTownOf), a predicate symbol (livesIn), and a constant sym-

bol (Bob).

then determines, which neural network is applied to which tensor in

order to compute the respective output tensor (in the case of a function

symbol like homeTownOf) or the degree of truth (in the case of a predi-

cate symbol like livesIn). If predicates such as married(x, y) are applied

to variables such as x = (Bob, John) and y = (Alice,Mary, Susan),
the resulting grounding is a matrix containing the degree of truth

for each possible combination of observations [21]. This also applies

to functions and more complex formulas, resulting in output tensors

whose dimensionality depends on the number of variables being used.

In order to ground logical connectives such as ∧, ∨, ¬, and →, Grounding logical

connectives
the corresponding operators from fuzzy logic are used. Examples of

such fuzzy operators have already been introduced in Part I of this

dissertation (cf. Definitions 3.3, 3.7, 3.11, 4.4, and 4.5) and includeN(x) =
1 − x for the negation and Tmin(x, y) = min(x, y) for the conjunction.

However, Badreddine et al. [21] note, that many standard operators from

fuzzy logic are not well-suited for the context of neural networks, since

they may cause vanishing or exploding gradients. A recent thorough

study by van Krieken et al. [415] reaches similar conclusions and notes

that non-standard combinations of fuzzy logical operators often lead to

improved learning performance, while no longer satisfying the usual

logical laws. Badreddine et al. [21] recommend using the product norm

Tprod(x, y) = x ·y for implementing the conjunction and its complement

Sprod(x, y) = x + y − x · y for the disjunction. Moreover, they note

that edge cases with x, y ∈ {0, 1} are still problematic, and propose to

solve these issues by using a projection function to slightly contract

the interval [0, 1] before applying logical connectives. For the negation,

N(x) = 1− x is used.

Since real logic is a first-order language, it also needs to provide a Grounding

quantifiers
grounding for the universal and the existential quantifier. Mapping∀x to

the minimum over all entries of the variable xmay be a straightforward

choice, but does not tolerate exceptions. It may thus not suitable for

real-life applications, if one assumes a certain amount of noise both in
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the background knowledge and in the empirical data (e.g., incorrect

labels) [131, 360]. Instead, the generalized mean meanp(x1, . . . , xk) =(︂
1
k

∑︁k
i=1 x

p
i

)︂ 1
p

is used, where the parameter p controls the "strictness"

of the aggregator.
5

The current version of the framework [21] proposes

to use different variants of the generalized mean for grounding both the

universal and the existential quantifier. This breaks the duality between

the existential and the universal quantifier, but seems to be necessary to

enable robust gradient-based learning. However, one could in principle

use both an exception-tolerant and a rigid classical version for both

quantifiers by employing two different values of p. One would then

need to specify which quantifier version to apply in which contexts.

Recently, Badreddine and Spranger [23] have proposed to extendAggregate functions

the LTN framework by introducing more general aggregate functions

such as computing the sum, average, maximum, minimum, or standard

deviation for a given list of values. Please note, that these values do not

need to represent degrees of truth (as for the quantifiers), but may, for

instance, also reflect individual feature values such as the height for

members of the people domain. Badreddine and Spranger note, that

most of the common aggregate functions are differentiable and can

thus be easily implemented in the context of LTNs. Enriching real logic

and LTNs with such aggregate functions increases their expressive

power, both with respect to the evaluation of queries (which can now

be formulated in a similar way as for relational databases), and with

respect to additional constraints during learning.

Satisfiability specifies the degree, to which a grounding Gθ satisfies aSatisfiability

given set K of formulas, by simply aggregating the truth values of all

formulas ϕ ∈ K [358, 359, 360]. Donadello et al. [131] propose to re-use

the generalized mean for this purpose, since defining satisfiability

based on a simple conjunction over the formulas can lead to undesired

behavior in gradient-based optimization.

The knowledge represented in logic tensor networks consists of bothKnowledge and

constraints in LTNs
the formulas ϕ in the logical language (corresponding to symbolic top-

down information) and the grounding Gθ obtained from observations

(corresponding to subsymbolic bottom-up information) [21]. These

two types of knowledge can be used to encode different types of

constraints into the system: For instance, one can explicitly define a

grounding for some of the symbols (e.g., mapping a given constant to a

concrete feature vector, or defining a binary predicate sim(x, y) as the

Cosine similarity of the feature vectors representing x and y). Also a

parametric definition of functions and predicates is possible. In this

case, one specifies the structure of the respective network, but leaves the

exact parameter settings undetermined. Moreover, different kinds of

logical formulas can be used to constrain the system: Factual propositions

such as lawyer(Bob) encode facts about individual constants (which

5 Note that mean1 corresponds to the standard arithmetic mean, and mean−1 to the

harmonic mean. If x⃗ = (x1, . . . , xd) is a difference vector, then meanp(x) is equivalent

to a Minkowski metric (cf. Definition 2.1).



7.2 learning concepts under knowledge-based constraints 381

corresponds to providing labels for training examples), while generalized

propositions such as ∀x : (lawyer(x) → homeTownOf(x) = Paris) use

quantified variables to represent general background knowledge.

Learning in logic tensor networks takes place through gradient Learning in LTNs

descent on the parameter values θ of the grounding Gθ in order to

maximize the satisfiability of the overall set of formulas K [21]. In

practice, maximizing satisfiability may need to be accompanied by a

regularization term on the parameters θ to prevent overfitting [21, 360].

Once a grounding has been established, it can be used for answering Querying and

reasoning in LTNs
concrete queries about about the truth value of a given formula or

about the embedding of a given term. Moreover, one can use reasoning

processes in order to determine, whether a new formula ϕ is a logical

consequence of the given theory T = ⟨K,Gθ⟩. Badreddine et al. [21]

formalize this by checking whether the confidence in ϕ is at least as high

at the overall satisfiability of T . They distinguish two types of reasoning

modes: In brave inference, this comparison is made only for groundings

Gθ, which maximally satisfy K. In refutation-based inference, the system

on the other hand tries to find a counter-example by minimizing the

satisfiability of ϕ, while ensuring that the satisfiability of K does not

fall below a given threshold. If no such counterexample can be found,

then ϕ is deemed to be a logical consequence of T .

When considering logic tensor networks in the context of few shot LTNs and few shot

learning
learning, they can be described according the taxonomy proposed

by Wang et al. [427] (cf. Section 7.2.1) as constraining the hypothe-

sis space: One can interpret LTNs as performing multitask learning,

where one task is the correct classification of a given set of data points

(i.e., satisfying factual propositions), while the other task is to enforce

the validity of the given logical rules (i.e., satisfying general proposi-

tions). Since both tasks share the same set of underlying parameters,

they constrain each other and thus reduce the set of possible hypotheses.

Badreddine et al. [21] have given a principled overview of different Applications of LTNs

tasks, which can be solved with LTNs. These include classification

(where predicates are used to model membership to different classes),

as well as regression (where the grounding of a function symbol needs

to be learned) and clustering (where logical constraints reflect, that

clusters should be disjoint, not empty, etc.). Badreddine et al. also

discuss semi-supervised pattern recognition, using the example of

single digit addition on handwritten digits, where two digit images

are used as input and the system needs to predict the sum of the two

digits as a scalar output. Also the task of embedding learning and

knowledge completion can be solved as illustrated with the well-known

smoker-friends example [358, 359]. LTNs have also been used to learn

transitive predicates (such as hyponymOf) for simple ontologies based

only on one-hop examples [62]. Moverover, Bianchi et al. [63] have

recently illustrated the capability of LTNs to connect pretrained entity

embeddings with a subset of the DBpedia ontology [20].
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The first larger-scale application of LTNs was implemented by Don-LTNs for semantic

image interpretation
adello et al. [132, 360] on the task of semantic image interpretation. They

focused on the classification of bounding boxes (representing individual

objects in an image) and the detection of partOf relations between pairs

of such bounding boxes. In this context, constants referred to individual

bounding boxes, and unary predicates were used for the different object

classes, while a binary predicate was used for the partOf relation.

Each bounding box was represented by a set of features containing

the coordinates of its top left and its bottom right corner, as well as

classification scores from an off-the-shelf object classifier.

In order to harness the possibility offered by logic tensor networksConstraints on the

partOf relation
to include prior knowledge, Donadello et al. introduce several mereo-

logical axioms, which constrain the partOf relation. These constraints

include for instance asymmetry (∀x, y : partOf(x, y) → ¬partOf(y, x))
and the observation, that in their application scenario, parts cannot have

further sub-parts (∀x : tail(x) ⇒ (∀y : ¬partOf(y, x))). As Donadello

et al. note, such constraints can be obtained from existing ontologies

like WordNet [292].

Donadello et al. found in their experiments that the LTN was able toFirst results

outperform two simple baselines for the bounding box classification

and the detection of the partOf relationship. Moreover, they observed

that the presence of mereological axioms made the LTN more robust to

artificially increased noise levels in the training data.

In a follow-up study, Donadello et al. [131] have generalized theirGeneralization to

arbitrary relations
approach to detecting arbitrary visual relationships, which can be

written as triples (subject, relationship, object), where both subject
and object are bounding boxes in the image. Due to the large number of

possible combinations, any dataset is necessarily incomplete, making

generalization difficult. Donadello et al. propose to use logic tensor

networks in order to leverage additional background knowledge in the

form of logical constraints. In their experiments, they limit themselves

to negative constraints in the form of "clothes cannot ride", while

leaving other rules such as mutual exclusivity, symmetry, reflexivity, or

isa-hierarchies for future work. They furthermore include additional

features for describing the relation between two bounding boxes, such

as the size of their intersection, or the angle between their centroids.

In several ablation studies, in which they disabled different compo-Experimental results

nents of their overall system, Donadello et al. were able to show, that

adding prior knowledge in the form of negative constraints and using

additional features improved the LTN’s performance. When comparing

to other state of the art systems, Donadello et al. found, that their LTN

model achieved competitive results even though other models used

more powerful object classifiers.

Recently, Wagner and Garcez [422] have proposed to use LTNs in or-Fairness and the

neural-symbolic cycle
der to incorporate fairness constraints into deep neural networks. Their

approach follows a general neural-symbolic cycle, where a neural network

is trained on a classification task and then queried in order to extract the

learned knowledge. This knowledge is then consolidated and fed back
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to the network in the form of additional constraints for further training.

This general approach increases the interpretability of the system and

can potentially help to prevent catastrophic interference [285], i.e., the

tendency of neural networks to un-learn previously learned knowledge

when being trained on additional tasks and data. The knowledge, which

Wagner and Garcez extracted from the LTN, focused on group fairness,

i.e., differences in treatment between groups, that differ with respect to

a protected attribute such as gender or race. Wagner and Garcez were

able to show, that by using the aforementioned fairness constraints, the

trained LTN exhibited less bias based on protected attributes without

having to sacrifice classification performance.

Badreddine and Spranger [22] have employed logic tensor networks LTNs for

reinforcement

learning

in the context of reinforcement learning (RL), where an artificial agent

repeatedly needs to choose between multiple possible actions, which

change the state of its environment, and where this agent receives a

(potentially delayed) reward based on its actions. They propose to speed

up the learning process by providing additional semantic information

(such as "object x is an enemy" or "object y is a target location") as input

to the system. In their experiment, they consider a simple 5 by 5 grid

populated with simple geometric shapes: The agent is represented by

a plus sign and other objects are circles, squares, and crosses. These

other objects can be assigned to the types target and avoid. The goal

of the agent is then to collect all target objects, while avoiding all

avoid objects. As an input to a deep reinforcement learning network,

Badreddine and Spranger use a concatenation of an image of the current

environment (50 by 50 pixels), as well as prior semantic knowledge.

This prior semantic knowledge contains the output of classifiers for the

different shapes for each cell of the grid. Moreover, for each cell of the

grid, it contains the values for the general predicates avoid and target

which are specified by logical rules (e.g., ∀x : circle(x) ↔ target(x)).
Badreddine and Spranger use LTNs to evaluate these general predicates

for each of the grid cells. The deep reinforcement learning network

then learns to map these input vectors to one of four possible actions,

namely moving up, down, left, or right.

In their experiments, Badreddine and Spranger changed the visual Experimental results

and semantic properties of the environment every 50 epochs by chang-

ing object and background colors, or the assignment of objects to the

target and avoid types. They noticed, that the RL network was able

to recover from performance drops at these context changes much

faster, if semantic predicates (which were updated according to the

changes in the environment) were provided by the LTN. Moreover,

in this case the performance drops became smaller after each context

change, indicating that the RL network learned to rely more on the

semantic information than on the raw perceptual input. Although the

study by Badreddine and Spranger uses LTNs only as a small ingredient

in their reinforcement learning system, it highlights, that LTNs can be

used in a variety of contexts.
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7.2.3 Towards Conceptual Logic Tensor Networks

The knowledge view on concepts from psychology [298, Chapter 6]Properties of LTNs

emphasizes the crucial role of world knowledge in the learning and

application of concepts (cf. Section 1.1.1), and can thus be linked to the

influence of logical rules on the learning process in LTNs. Moreover,

LTNs take into account information about points in a feature space,

and the grounding of predicates usually gives rise to a membership

function with one or more receptive fields. LTNs can therefore also be

related to the prototype [336] and exemplar theories [287] of concepts.

In addition to that, logic tensor networks offer the possibility to combine

bottom-up information in the form of training examples with top-down

information in the form of general rules.

These observations make LTNs quite interesting from the perspec-Bridging the

conceptual and the

symbolic layer

tive of conceptual spaces: They can implement a two-way interaction

between the conceptual and the symbolic layer. Just as with the concep-

tual spaces framework, observations can be represented by points and

concepts can be represented as regions in the feature space. Moreover,

LTNs are able to encode the domain structure of a conceptual space.

Finally, the usage of fuzzy sets and fuzzy logic allows us to represent

vague conceptual boundaries (cf. Section 2.3.3).

How exactly can we apply LTNs to conceptual spaces? Both prop-Applying LTNs to

conceptual spaces
erties and concepts can be represented by predicates with a convex

membership function. While properties refer only to a single domain,

concepts are defined on a concatenation of domains: We can require,

that the predicate red(x) is defined on the three-dimensional color do-

main, while the predicate apple(x = (xc, xt, xs)) involves the domains

of color, taste, and shape. Individual observations can then be repre-

sented by one point per domain. Function symbols could potentially be

used in the context of events, where they could relate to the force vector

and the result vector as proposed by Gärdenfors [181, Chapters 8, 9, and

10] (cf. Section 1.2.1). Applying a function symbol like lift could then for

instance translate into a simple vector addition in the location domain,

which increases the altitude of the given object. Finally, basic relations

like longerThan can defined by considering regions in product spaces

of multiple domains (e.g., R+ × R+
for representing the length of

the two objects under consideration) [179, Section 3.10.1]. In order to

represent more complex relational knowledge for concepts such as

robber or seat, one could try to use the event structure proposed by

Gärdenfors [181, Chapter 9] for the corresponding robbing and sitting

events.

An advantage of using logic tensor networks for grounding symbolicLTNs for

commonsense

reasoning

knowledge (such as for instance encoded in formal ontologies) in con-

ceptual spaces is their large variety of inference and learning methods.

In addition to learning conceptual regions from observations, they can

for instance also generate an embedding of an unobserved object based

on a symbolic description. For example, "object x is a red apple" can

be translated into a point in the conceptual space by maximizing the
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satisfiability of apple(x)∧ red(x). This spatial representation of object x
can then in turn be used to make further inferences, for instance about

the taste domain (e.g., by evaluating sweet(x)). Thus, the geometric

embedding can give rise to commonsense inferences not easily real-

izable within the symbolic layer. This approach may thus be a useful

data-driven complement to the rule extraction procedure and other

commonsense reasoning strategies proposed for our formalization of

the conceptual spaces framework (cf. Sections 4.3 and 4.6.2).

Moreover, LTNs do not only provide an embedding of entities and Incorporating

top-down

information from the

symbolic layer

classes, but they are also able to enforce the validity of general rules,

which may reduce the required number of training examples. This

makes them especially attractive for bridging the conceptual and the

symbolic layer, since they can harness the whole expressiveness of

formal ontologies and other symbolic languages in order to guide

the machine learning process. This is also related to embodied and

enactivist approaches to cognition [145], which assume that top-down

information strongly influences bottom-up perception and conceptual-

ization of the environment. One may furthermore speculate, that the

enforcement of general logical rules can help to prevent catastrophic

interference, where continued learning causes a neural network to

forget previously learned knowledge [285].

When viewed from the perspective of cognitive science, logic tensor Cognitive

plausibility
networks can of course not be labeled as a cognitively plausible learning

mechanism: They rely on batch-processing large amounts of (typically

labeled) data with gradient descent. One can of course argue, that LTNs

are not used to model the human concept acquisition process itself, but

rather to take a shortcut to the resulting concept inventory. However, it

would certainly also be interesting to extend LTNs in such a way that

they can work in an incremental way.

In the following, we will take a look at different membership functions Analyzing possible

membership

functions

from the conceptual spaces literature and discuss their applicability in

logic tensor networks. We will broadly distinguish partitional member-

ship functions (which create a partition of the conceptual space) from

non-partitional membership functions (which allow conceptual regions to

overlap and regions in the conceptual space to be "unpopulated"). Since

the parameters of the membership functions are optimized through

gradient descent, we will especially focus on their derivatives, an ap-

proach also followed by the aforementioned study by van Krieken et

al. [415], who analyzed fuzzy logical operators in the context of neural

networks. For illustration purposes, we will consider a one-dimensional

conceptual space with two concepts C1 and C2 as well as three data

points x1, x2, x3, which are supposed to belong to C1, but not to C2.

Let us first consider membership functions, which partition the Voronoi tessellations

underlying conceptual space, i.e., which aim to assign each point to

exactly one concept. We start with Gärdenfors’ approach of identifying

concepts with a prototypical point and creating a Voronoi tessellation
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of the space [179, Section 3.9] (cf. Sections 1.2.2 and 7.1.1): One starts

from a set of prototypical points p1, . . . , pK for the K concepts under

consideration. Each point x in the conceptual space is then assigned to

its closest prototype pk based on the distances d(x, pk). As Gärdenfors

[179, Section 3.9] argues, a Voronoi tessellation based on the Euclidean

metric partitions the overall space into convex regions.

Since the Voronoi tessellation gives us a partitioning of the overallCrisp Voronoi

tessellations provide

no gradient

space, the membership function of each conceptCi is constant almost ev-

erywhere and undefined on the border line to a neighboring conceptual

region (see Figure 7.5a). Therefore, the derivative of this membership

function with respect to any variable is either zero or undefined, which

is highly problematic for gradient descent. For example, consider the

point x3 in Figure 7.5, which is currently misclassified as belonging

to C2 instead of C1. In gradient-based optimization, the prototypes p1

and p2 are updated by computing the derivative
dµk(x3)
dpk

, and then by

slightly increasing or decreasing the value of pk, depending on the sign

of the derivative and whether we want to increase or decrease µk(x3)
(cf. Section 5.2.2). In the case of Figure 7.5a, both derivatives are zero –

small changes to p1 and p2 do not result in any changes to µk(x3). Thus,

gradient descent is incapable of making any update to the prototypes.

In order to make gradient-based learning possible, we need a softClassification rule of

Voronoi tessellations
version of the Voronoi approach. We can express the classification

decision of the Voronoi tessellation as follows (where c > 0 is a

sensitivity parameter):

k = argmin
k′

d(x, pk′) = argmax
k′

(−c · d(x, pk′))

Instead of the crisp argmax function (which results in flat member-Using the softmax

function
ship values), we can now apply the softmax function, which is commonly

used in neural networks to provide an output probability distribution

over a set of mutually exclusive classes (cf. Section 6.2.1):

softmax(z⃗)k =
ezk∑︁
k′ e

zk′

Here, softmax(z⃗)k gives the probability for class k, given a vectorSoft Voronoi

tessellation z⃗ of raw confidence values. If we combine this with the Voronoi

tessellation approach, we obtain a soft Voronoi tessellation with the

following membership function:

µk(x) = softmax(−c · d(x, p))k =
e−c·d(x,pk)∑︁
k′ e

−c·d(x,pk′ )

As we can see, the numerator reflects the semantic similarity ofMembership as

normalized

similarity

x and pk (cf. Section 2.1.1), while the denominator is the sum over

all similarities to all prototypes. The resulting membership function

can thus also be interpreted as a normalized version of semantic

similarity. Figure 7.5b illustrates this membership function: We now

have a continuous transition from high membership values to low
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Figure 7.5: Different partitional membership functions in a one-dimensional

conceptual space.

membership values. Moreover, the derivative of this membership

function is defined on the whole conceptual space and nonzero in all

cases - even points such as x1 have a very small, but nonzero derivative.

We should highlight at this point, that we assume, that the same Considering the

sensitivity parameter
sensitivity parameter c is used for all concepts. If we allow different

values c1 ̸= c2, we can control the size of the respective conceptual

regions with smaller values of c leading to larger regions. However,

these different values may cause some unintended effects. For instance,

Figure 7.6 illustrates a case, where c1 ≫ c2, which causes the member-

ship function µ2(x) to be no longer convex.

Generalized Voronoi tessellations [179, Section 4.9] allow to encode Generalized Voronoi

tessellations
differently sized conceptual regions by considering prototypical re-

gions Pk instead of prototypical points pk. These prototypical regions

are usually represented as disks with a central point pk and a ra-

dius rk. Based on these prototypical regions, one can now generate

a generalized Voronoi tessellation by assigning each point x in the

conceptual space to the concept, whose prototypical region is closest. In
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Figure 7.6: Unintended results for the soft Voronoi tessellation and different

sensitivity parameters c1 ≫ c2.

the case of disks, this corresponds to finding the concept Ck for which

d(x, Pk) = max(0, d(x, pk)− rk) is smallest. Concepts with larger proto-

typical regions (as reflected through a larger value of rk) thus result

in larger conceptual regions in the generalized Voronoi tessellation

(see Figure 7.5c). Again, by using the softmax instead of the argmax
function, this can be generalized to a soft notion of concept membership

(see Figure 7.5d).

Also Douven et al. [136] consider prototypical regions instead ofCollated Voronoi

diagrams
prototypical points. However, they create all possible Voronoi diagrams

by picking a single point pk ∈ Pk for all prototypical regions Pk. These

individual Voronoi tessellations are then aggregated into a so-called

collated Voronoi diagram (cf. Sections 2.4.1 and 7.1.2): A point x is assigned

to concept Ck if and only if it has been assigned to Ck in all individual

Voronoi diagrams. Douven et al. identify borderline cases as points

x that belong to different conceptual regions for different Voronoi

diagrams. These borderline points are not assigned to any concept

and represent vagueness in concept boundaries. In Figure 7.5e, we

again note that the derivative is zero within the conceptual regions and

undefined in the border area.

Decock and Douven [117] extended the work of Douven et al. [136]Soft collated Voronoi

tessellations
by providing a degree of membership for borderline cases. They define

the membership of a point x to a conceptCk as the fraction of individual

Voronoi diagrams for which x belongs to the conceptual region of Ck.
Decock and Douven note, that if the prototypical regions Pk have an

infinite number of points, then the membership function is s-shaped (cf.

Figure 7.5f). However, we can observe that the membership function is

flat for large parts of the conceptual space, namely, for all non-borderline

points. This is again highly problematic for gradient descent.

Overall, it thus seems that the best partitional approach for definingBest partitional

approach: soft

generalized Voronoi

tessellation

membership functions in the context of LTNs is given by the soft gener-

alized Voronoi tessellations: They provide a non-zero derivative for all

points in the similarity space and are able to represent differently sized

conceptual regions through the radius of their prototypical regions.

The usage of Voronoi tessellations for conceptual spaces has not beenShortcomings of

partitional

approaches

without challenge in the literature (cf. Sections 1.2.2 and 2.4.1). For
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instance, Lewis and Lawry [253] argue, that partitioning the conceptual

space may be adequate for individual domains such as color, but

that it is not suitable for a combination of multiple domains. It seems

implausible, that every single point in a high-dimensional space has to

be assigned to exactly one category: On the one hand, some regions in

the overall conceptual space may not be covered by any existing concept

(see also [395] and [453]). Points in such regions should be recognized

as outliers or members of a novel, previously unknown category. On

the other hand, conceptual regions may also overlap, for instance in

order to represent conceptual hierarchies such as
˜︁Ssky blue ⊆ ˜︁Sblue.

Lewis and Lawry [253] have also made a general proposal for non- A general framework

for non-partitional

membership

functions

partitional membership functions (cf. Sections 2.4.2 and 2.5.3): A point

x in the conceptual space is said to belong to concept Ck, if its distance

to the prototypical region Pk is not greater than a threshold distance ϵk.
Lewis and Lawry assume, that this threshold ϵk is not known, but that

a probability distribution δk over its possible values is available. The

fuzzy degree of membership of a point x to a concept Ck is then given

by the probability of d(x, Pk) being smaller than ϵk:

µk(x) = Pδk(d(x, Pk) ≤ ϵk) =

∫︂ ∞

d(x,Pi)
δk(ϵk)dϵk

Lewis and Lawry are open to different forms for the probability Similarity-based

membership
distribution δk. If we use δk(ϵk) = ck · e−ck·ϵ, then concept membership

reflects similarity to the prototypical region (cf. Section 2.5.3):

µk(x) =

∫︂ ∞

d(x,Pk)
ck · e−ck·ϵkdϵk =

[︁
−e−ck·ϵk

]︁ϵk→∞
ϵk=d(x,Pk)

= 0−
(︂
−e−ck·d(x,Pk)

)︂
= e−ck·d(x,Pk)

The shape of the resulting similarity function for Pk = {pk} (i.e., Non-partitional

membership with an

exponential decay

prototypical points) is illustrated in Figure 7.7a. As we can see, all

points in the similarity space receive a non-zero membership value.

Moreover, the derivative of the membership function is defined for all

points except for the prototypes p1 and p2. In practical applications, this

theoretical shortcoming can be overcome by defining the derivative in

these points to equal zero. Furthermore, we are able to control the size

of the conceptual regions by choosing different sensitivity parameters

c1 ̸= c2 for the two concepts without any undesired side effects.

However, we can also note that the derivative of the membership Shortcomings of an

exponential decay
function is proportional to the membership value itself: The largest

derivatives are observed for the points with the highest membership

in the concept. Since gradient descent algorithms typically take into

account not only the direction, but also the magnitude of the gradient (cf.

Section 5.2.2), this can lead to undesired effects. Consider for instance

the point x2 in Figure 7.7a, which has a fairly high membership to C1.

The derivative
dµ1(x2)
dp1

is quite large, and will thus cause the gradient

descent algorithm to increase p1 by a large amount. In the resulting

configuration, µ1(x2)may, however, be smaller than before, since p1 may
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Figure 7.7: Non-partitional membership functions in a one-dimensional con-

ceptual space.

have moved considerably past x2. This seems to be a major shortcoming

of this similarity-based approach to concept membership.

The examples by Lewis and Lawry [253] often make use of uniformConsidering a linear

decay
distributions δk(ϵk) = Uniform(0, rk). As we can see in Figure 7.7b, the

membership curve has in this case a triangular shape, and its derivative

is therefore constant for all points with a partial membership. However,

concept membership and thus also its derivative are zero for most parts

of the similarity space.

These considerations can of course also be generalized to prototypicalConsidering our own

formalization
regions Pk, which subsumes our own formalization of the conceptual

spaces framework from Part I of this dissertation: There exists a well-

defined region with full membership, which in our case is based on the

union of axis-aligned cuboids. Membership is then defined as similarity

to this prototypical region.

In Figure 7.7c, we can see two problems with this approach: OnShortcomings of our

membership function
the one hand, we again have the problem of large derivatives for

large membership values as already discussed for Figure 7.7a. On the

other hand, the membership function is constant for all points in the

prototypical region, hence, the derivative is zero. If an observation

such as x3 is confidently misclassified as belonging to C2, then gradient

descent is not able to move P2 away from x3.
The problem of a zero derivative could be circumvented as follows:Artificial derivatives

in prototypical

regions

We define a new membership function µ′k(x) = (1− ϵ) · µk(x) for some

small ϵ > 0. Furthermore, we identify the central point pk ∈ Pk. The

membership value for x ∈ Pk is then increased based on its distance to

pk, such that µ′k(pk) = 1 and that µ′k(x) = 1− ϵ for points on the border
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Figure 7.8: Workaround for zero gradient inside prototypical regions.

of Pk. This provides a small slope for the membership function inside

the prototypical region and thus a nonzero derivative (cf. Figure 7.8).

However, it is unclear, whether this workaround is useful in practice.

Despite these shortcomings, there are, however, reasonably strong Advantages of our

membership function
arguments for using a membership function like the one proposed in

our formalization: Firstly, by using a union of axis-aligned cuboids, our

formalization is able to represent correlations between domains. This

is an important aspect of human conceptualization [65, 288], which

is not captured by any of the aforementioned approaches. Secondly,

one can apply a variety of operations defined in Chapters 3 and 4

in order to reason on the learned concepts. For instance, relations

such as conceptual similarity and conceptual betweenness are not

defined in LTNs, but they become immediately available with the use

of our proposed formalization of concepts. Thirdly, logical formulas

in LTNs always have to be evaluated on a set of data points, which

requires, that one keeps all examples in memory, and which can be

quite time consuming. Our formalization on the other hand provides

closed formulas for computing the validity of such logical formulas –

the original data points are not needed any more and the computation

can potentially be faster.

However, one needs to keep in mind that e.g., the intersection of Caveats in the

context of LTNs
concepts defined in Section 3.1.2 makes use of a repair mechanism

in order to ensure star-shapedness of the result, whereas LTNs work

with "raw" fuzzy logic, which does not use such a repair mechanism.

Moreover, the operations defined in our formalization are based on

the minimum norm, while LTNs are commonly used with the product

norm. Therefore, the numeric results of the computations might differ.

Motivated by the problem of large gradients for large membership Gaussian

membership

functions

values, we also consider multivariate Gaussian functions, whose mem-

bership value can be defined as follows with a symmetric, positive

semi-definite matrix Σ (cf. Section 2.2.2):

µk(x) = e−
1
2
(x−pk)TΣ−1(x−pk)

Figure 7.7d illustrates the usage of such Gaussian functions in our one- Advantages of

Gaussians
dimensional similarity space.

6
As one can see, this type of membership

6 We can model this with δk(ϵk) =
ϵk
σ2
k
· e

−
ϵ2k
2σ2

k in the one-dimensional case using the

approach by Lewis and Lawry [253].
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function does not suffer from the gradient size problem as identified in

Figure 7.7a: The derivative is small both for points with a very low and

for points with a very high membership. It is largest for points with an

intermediate level of membership, i.e., points that are currently treated

as borderline members. Moreover, multivariate Gaussian functions are

able to encode correlations between dimensions as well as different

distribution widths through their covariance matrix Σ.

However, the usage of Gaussians in the context of conceptual spacesTheoretical argument

against Gaussians
is somewhat unsatisfactory from a theoretical standpoint (cf. Section

2.2.2): The notion of similarity is not based on the Euclidean distance

dE(x, pk) =
√︁∑︁

d(xd − pkd)2, but on the squared Mahalanobis dis-

tance dM (x, pk) =
√︁

(x− pk)TΣ−1(x− pk). Applying the Mahalanobis

distance corresponds to transforming the similarity space based on

the covariance matrix, and then computing the Euclidean metric in

the transformed space. This implicit transformation of the similarity

space would in our opinion, however, cause a major modification of the

original framework. Nevertheless, the simplicity and computational

attractiveness of multivariate Gaussians make them an interesting can-

didate for experimental investigations (cf. the work by Bouraoui and

Schockaert [76] discussed in Section 7.1.3), such that one should not

hastily dismiss them.

Our proposal has so far been only a theoretical one. In order toOutlook

evaluate its actual merit, practical experiments need to be conducted.

Ideally, these experiments should consider all membership functions

discussed in this section in order to confirm or refute our theoretical

analyses. There are several datasets, which can serve as test beds for a

first study, including the conceptual spaces extracted by Banaee et al.

[27] (cf. Sections 1.2.5 and 5.3.2) and Derrac and Schockaert [123] (cf.

Sections 1.2.5 and 6.3.2), as well as the robotics dataset by Spranger et

al. [386] (which will be briefly introduced in Section 7.4.3). Since the

strength of LTNs stems from their ability to incorporate top-down rules

to compensate for scarce training data, especially the movie spaces

from Derrac and Schockaert [123] are relevant: Each movie is annotated

with its genres, a set of plot keywords, at its age restriction. Using

techniques such as the apriori algorithm [8], one can extract rules from

the co-occurrence statistics of the labels and then simulate few shot

learning by showing only a small part of the available examples, but

providing the general rules as additional constraints to the system.

After such initial experiments, studies with more complex knowledge

bases (such as formal ontologies) are needed in order to ensure that all

relevant pieces of symbolic information (especially relations of varying

complexity) can be adequately encoded by the proposed approach.
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7.3 learning concepts from unlabeled data

Most classical machine learning algorithms as introduced in Chapter Motivation for

unsupervised

learning

5 require a large dataset of examples, which are annotated with their

respective class labels. This assumption can, however, be quite limiting in

practical applications, where labeled data is scarce and costly to acquire.

Unlabeled data, on the other hand, is often widely available and hence

easy to obtain. Also from a cognitive point of view, supervised learning is

limited to environments, where explicit feedback is abundant. However,

this is rarely the case in practice. Human children are nevertheless able

to form concepts based on only a small amount of labeled examples

[87], as already noted in the context of few shot learning (cf. Section

7.2). Thus, learning from unlabeled data is interesting from both an

engineering perspective and a cognitive point of view.

In this section, we put our focus on clustering algorithms, which group Clustering

algorithms
data points into different clusters based on their similarity [58, 206].

Essentially, clustering algorithms try to find regions of high density

in the overall feature space, which are separated from each other by

low-density regions. Clustering algorithms can be naturally applied

to the conceptual spaces framework, which is explicitly built upon a

spatial representation of similarities. Finding clusters in a conceptual

space then corresponds to identifying well-separated conceptual re-

gions. Once the conceptual regions have been identified, one can attach

labels to them in order to link them to the symbolic layer.

In Section 7.3.1, we provide an overview of classical clustering

techniques such as hierarchical clustering, expectation maximization,

or k-means. Most of these approaches process the whole dataset at once

and require, that the number of clusters is specified a priori. However,

an incremental approach, which processes instances one by one, is

much more plausible from a cognitive point of view. Also a method

for automatically adjusting the number of concepts to be generated

seems desirable. In the remainder of this section, we therefore present

three concrete algorithms for incremental concept formation and discuss,

to what extent they can be readily used in conceptual spaces. This

relates to our earlier discussions from Sections 3.6.1 and 4.6.1 in the

context of our formalization of the conceptual spaces framework. In

Section 7.3.2, we introduce COBWEB as a classical concept formation

algorithm, which uses some cognitive inspirations, but is mainly based

on an engineering perspective. We then discuss adaptive resonance

theory (ART) as a neural model of human information processing in

Section 7.3.3. Finally, in Section 7.3.4 we introduce SUSTAIN, which is a

psychological model of category learning.

7.3.1 Classical Clustering Techniques

Clustering can be described as the task of finding meaningful groups in Clustering and

conceptual spaces
a collection of objects based on their pairwise similarities, but without
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having access to any label information. It can thus be regarded as

an unsupervised machine learning technique. Intuitively, the objects

within one cluster should be more similar to one another than to

objects from other clusters [58, 206]. This notion of a cluster is closely

related to the well-formedness criterion proposed by Douven and

Gärdenfors [137] for natural concepts in conceptual spaces (cf. Section

1.2.1). In most clustering contexts, the objects under consideration are

represented as points in multidimensional feature spaces, which may

involve both continuous and categorical features. Clustering can thus

serve as an unsupervised way for discovering conceptual regions in a

conceptual space. Please recall from Section 5.3.2, that clustering can

also be interpreted as a form of dimensionality reduction, which leads

to a sparse representation of the original data by representing each data

point with its cluster ID. This dimensionality reduction aspect makes

clustering algorithms also a quite useful tool for data exploration.

Since objects shall be grouped based on their similarity, and sinceSimilarity and

distance
they are typically represented as points in a feature space, one usually

employs a distance metric for quantifying dissimilarity. The most pop-

ular choice for continuous features is the Euclidean distance, which

works well for compact and isolated clusters, but requires, that all fea-

tures have been normalized – this normalization requirement ensures,

that none of the features becomes dominant [206]. However, also other

distance metrics are possible, such as the squared Mahalanobis distance

for correlated features, the Hausdorff distance for sets of points, or the

Cosine distance for feature vectors with a unit norm [58, 206]. However,

difficulties may arise, if the overall feature space contains different

feature types (e.g., both continuous and categorical features) – in this

case, the overall distance function needs to be carefully engineered in

order to reflect the overall similarity of the objects well [206]. In the

context of conceptual spaces, a combination of the Euclidean and the

Manhattan metric as introduced in Sections 2.1.1 and 2.3.1 seems to

be a reasonable choice. Please recall from Section 5.2.5, that similar

considerations for appropriate distance functions also apply to the k
nearest neighbors classifier, which bases its classification decisions also

directly on the pairwise similarity of examples.

In general, one can distinguish two broad classes of clustering tech-Two main types of

clustering algorithms
niques [58, 206]: Hierarchical clustering algorithms create a hierarchy of

clusters, where larger clusters are split up into smaller sub-clusters.

Partitional clustering algorithms, on the other hand, focus on creating a

single partitioning of the dataset into mutually exclusive clusters. We

will now consider some examples for both types of approaches.

Let us first focus on hierarchical clustering approaches. The hierarchyHierarchical

clustering algorithms
obtained by these algorithms is usually represented as a tree (often

called dendrogram), whose leaf nodes correspond to the individual

data points, and whose internal nodes represent the clusters. This

dendrogram can be cut at any desired level of abstraction to obtain a

partitioning of the data points. Hierarchical clustering algorithms are

relatively flexible with respect to the desired level of granularity and
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Figure 7.9: Difference between agglomerative hierarchical clustering using

the single link method (a) and the complete link method (b).

the type of distance metric used [58]. However, they tend to be com-

putationally expensive [206] and typically do not revisit intermediate

clusters, once they have been created [58].

In general, the desired hierarchy of clusters can be obtained either Agglomerative and

divisive clustering
in an agglomerative or in a divisive way [58, 206]: In agglomerative

hierarchical clustering, one follows a bottom-up procedure by initially

placing each data point into its own cluster and then recursively merging

the two clusters, which are closest to each other. Thus, the dendrogram is

constructed from the leaf nodes upwards. Divisive hierarchical clustering

on the other hand is a top-down approach, where one starts with a single

cluster containing all data points and recursively splits the existing

clusters into smaller sub-clusters. In this approach, the dendrogram is

constructed from the root node downwards.

For both agglomerative and divisive clustering, it is necessary to Linkage metrics

measure the distance between pairs of clusters. This information is

used to decide which clusters to merge (agglomerative clustering) or

how to split a given cluster into sub-clusters (divisive clustering). This

distance measure for clusters is often called linkage metric [58]. The

most common linkage metrics are single link and complete link, whose

cluster-based distances dSL and dCL are defined as follows:

dSL(A,B) = min
a∈A,b∈B

d(a, b) dCL(A,B) = max
a∈A,b∈B

d(a, b)

The complete link method tends to produce compact clusters of a Properties of single

link and complete

link

convex shape. It is less flexible than single link, which can, however,

suffer from producing very elongated clusters [206]. Other potential

linkage metrics can be defined as the average over all point-based

distances, or as the distance between the cluster centroids [58].

Figure 7.9 illustrates the difference between single link and complete Linkage metrics and

resulting

dendrograms

link approaches in an agglomerative setting. We use the same set of

example inputs in a one-dimensional feature space in both cases. Figure

7.9 illustrates the resulting dendrograms, where the numbers of the

internal nodes denote the order in which they have been created. As

we can see, the single link (Figure 7.9a) method merges the data point

in the middle with the right cluster, since the distance to the closest

cluster member is slightly smaller than for the left cluster. The complete

link method (Figure 7.9b), however, selects the left cluster for merging,

since the distance to the furthest data point from this cluster is slightly
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smaller than for the right cluster. In addition to the dendrogram, Figure

7.9 also illustrates different levels in the hierarchy, for which the given

number k of clusters can be obtained. The results of the two different

linkage metrics are identical for k ∈ {1, 3, 4, 5}, but differ for k = 2.

Let us now turn to partitional clustering algorithms, which create a singlePartitional clustering

algorithms
partitioning of the data into mutually exclusive clusters. They are often

based on optimizing a given local or global criterion in a greedy fashion

[206]. Partitional clustering tends to work better for larger datasets,

where creating a dendrogram is computationally infeasible. However,

one often needs to specify the number of clusters in advance [206].

One can further divide partitional algorithms into partition relocation

methods and density-based partitioning methods [58]. The former group of

approaches iteratively relocates the data points between the clusters and

tends to create convexly-shaped clusters. The latter group of methods,

on the other hand, tries to discover dense connected components of

data and is able to form also clusters of irregular shape.

We will begin our discussions with the expectation maximization (EM)Expectation

maximization algorithm [119] as a probabilistic variant of a partition relocation method.

The underlying assumption of such probabilistic models is that each

data point is drawn from one of k underlying probability distributions

– for each data point, one first randomly selects one of the distributions

and then randomly samples a point from that distribution [341, Section

20.3]. In this context, a cluster corresponds to one of these probability

distributions, whose parameters need to be estimated [58]. In many

cases, multivariate Gaussian distributions (cf. Section 2.2.2) are used to

model the individual components [206]. Interpreting the data as being

generated from a mixture of distributions is somewhat problematic,

since we neither know which data point was sampled from which

distribution, nor how the different distributions look like (i.e., which

values their parameters have) [341, Section 20.3].

Expectation maximization iteratively estimates both the cluster as-Two steps of the

algorithm
signment and the parameters of the corresponding distributions. Here,

the cluster assignment is treated as a hidden indicator variable. Es-

sentially, the EM algorithm consists of two steps, which are repeated

until convergence [341, Section 20.3]: In the expectation step, one uses

the current hypothesis about the distribution’s parameters to infer the

expected value of the hidden indicator variables, which denote the

assignment of data points to clusters. In the maximization step, one then

uses the current expected values of the hidden indicator variables to

infer the parameters of the probability distributions by maximizing the

log likelihood of the data points (cf. Section 5.1.3). One can show, that

under some mild constraints the EM algorithm always converges to a

local optimum [295, Section 6.12].

The popular k-means algorithm can be interpreted as a constrainedk-means as simplified

expectation

maximization

variant of expectation maximization [295, Section 6.12]: If we assume

Gaussian distributions with the same prior probability and the same

variance, we only need to estimate their means. This can be implemented



7.3 learning concepts from unlabeled data 397

Figure 7.10: Illustration of the k-means algorithm: Random initialization of

cluster centroids (a), expectation step (b), and maximization step

(c).

by representing each cluster only by its centroid. The expectation step

then corresponds to assigning each data point to the cluster with the

closest centroid, while the maximization step is realized by recomputing

the cluster centroids based on the updated assignment.

From a different point of view, one can characterize the k-means Properties of

k-means
algorithm as minimizing the mean squared error between the data

points and the corresponding cluster centroids [206]. The k-means

algorithm tends to result in spherical clusters of identical size and

works thus only well, if the clusters in the data fulfill this assumption

[206]. Moreover, the resulting partitioning depends heavily on the

choice of the initial centroids and tends to be sensitive to outliers [58].

Nevertheless, k-means is one of the most popular clustering algorithms

due to its simplicity.

Figure 7.10 illustrates the first iteration of the k-means algorithm in Example

a two-dimensional feature space. As one can see, the expectation step

(where a reassignment of data points to clusters is made, Figure 7.10b)

can be interpreted as a Voronoi tessellation of the feature space based

on the cluster centroids. The resulting partitioning of the space is then

used to re-estimate the cluster centroids in the maximization step in

Figure 7.10c.

One can thus relate the k-means algorithm to the concept learning k-means and

conceptual spaces
procedure proposed by Gärdenfors (cf. Section 7.1.1): Instead of using

a small number of labeled observations for inferring prototypes and

the Voronoi tessellation based on them, we start with a first guess for

the prototypes (cf. Figure 7.10a), label them according to the resulting

Voronoi tessellation, and then iteratively improve the prototypes until

the resulting tessellation of the space becomes stable. The k-means

algorithm can thus be interpreted as an unsupervised extension of

the supervised learning procedure proposed by Gärdenfors. It has for

instance been used by Chella et al. [96] in their work on anchoring for

robotics in the context of conceptual spaces (cf. Section 1.2.4). Also the

experiments by Derrac and Schockaert [123] with respect to conceptual

betweenness (cf. Sections 4.5.1 and 7.1.3) used k-means to obtain repre-

sentative exemplar points for a given concept based on the complete

set of examples.
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Of course, there exist several variants and extensions of k-meansExtensions of

k-means
clustering. For instance, in k-medoid clustering, each cluster is not

represented by a centroid, but rather by the most representative of its

original data points [58]. Other extensions also allow the algorithm

to split clusters with large variance or to merge clusters, whose cen-

troids have a very small distance [206]. Finally, also fuzzified versions

of k-means exist (such as the fuzzy c-means algorithm), where the

assignment to clusters is represented as a continuous degree of mem-

bership rather than a binary variable. A critical issue for such fuzzy

extensions consists, however, in defining the membership function [206].

A second important class of partitioning methods are density-basedDensity-based

approaches and

DBSCAN

partitioning algorithms. Here, clusters are interpreted as connected re-

gions in the feature space [58]. In order to operationalize the notion

of density in the feature space, one often resorts to the neighbors of a

given data point, which are closer than a given threshold [206]. Clusters

can then be "grown" by starting at any given data point and transi-

tively including all its neighbors [58]. The most well-known example of

density-based algorithms is DBSCAN [148]. Its two main parameters

are ϵ, which is the distance threshold for determining neighborhood,

and minPts, which is the minimal number of neighbors a data point

needs to have in order to be counted as a core point. Clusters in DBSCAN

are then identified based on a given core point and the transitive hull of

its neighborhood relationship. DBSCAN and density-based algorithms

in general are not limited to any particular cluster shape, but require a

correct tuning of their thresholds and may produce results, which lack

interpretability [58].

There exists a large variety of additional clustering approaches, whichOther clustering

approaches
we are not able to introduce in more detail [58, 206]: Graph-based al-

gorithms construct a neighborhood graph with data points as nodes

and neighborhood relations as edges, and then identifiy clusters as

densely connected subgraphs. Grid-based methods, on the other hand,

partition the feature space based on the Cartesian product of feature

subranges and can thus be linked to decision tree learning (cf. Section

5.2.4). ANN-based methods such as Kohonen’s self-organizing maps

[225] try to represent the given data with a lower-dimensional grid,

that respects neighborhood relations, and are thus thightly related to

both metric learning (cf. Section 5.3.3) and representation learning (cf.

Section 6.1.1). Finally, evolutionary algorithms maintain a population of

solution candidates, which are iteratively changed and combined in

order to find more promising solutions.

While basic clustering algorithms have been in practical use forClustering and

background

knowledge

decades, there still remain many open challenges. As in any machine

learning task, finding a low-dimensional feature space of high quality

is of crucial importance to success in clustering (cf. Section 5.1.4).

This makes it often necessary to define features based on domain

knowledge and to apply dimensionality reduction techniques such as
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feature selection or feature extraction (cf. Sections 5.3.1 and 5.3.2) [206].

Moreover, the feature space needs to be equipped with a useful distance

metric, which may be informed by domain knowledge [58]. Another

way of incorporating domain knowledge into the clustering process

is given by constrained clustering, where additional constraints with

respect to pairs of data points (such as "must be in the same cluster" or

"must be in different clusters") are taken into account [33].

When being applied in practice on unlabeled data, one also needs Further

considerations
to find a good way of evaluating the quality of the resulting clusters

[206]. Depending on the clustering algorithm being used, it may also

be necessary to explicitly detect and remove outliers [58]. Especially

the application to large datasets is difficult and urges for "divide and

conquer" approaches (where subsets of data are processed individually

by the algorithm and the results are merged afterwards) or incremental

clustering algorithms (which process the data points one after another)

[206]. Finally, it may often be useful to represent the resulting clusters

not as sets of data points, but by using some summary information,

such as the cluster centroid or the typical ranges of feature values [206].

Concept formation (as already briefly introduced in Sections 3.6.1 and Concept formation

4.6.1) can be interpreted as a special type of clustering method [58]: It is

an unsupervised learning process, since it does not require class labels

to be given. Moreover, the number of classes is typically unknown a

priori and the number of clusters is therefore adapted over time [164].

These clusters come with an intensional definition for the underlying

concept – they are thus not represented as a collection of points, but

based on some underlying parametric formalization [58]. Finally, most

concept formation algorithms result in a hierarchical organization of

the learned concepts [164].

Fisher [159] argues, that the concept formation problem consists Two search processes

of two interrelated search problems: On the one hand, the algorithm

must solve the clustering problem by searching the hypothesis space of

possible subsets of data points. On the other hand, the algorithm must

at the same time search the hypothesis space of class descriptions for the

generated clusters. As with any kind of search algorithm, one can distin-

guish different approaches based on their search direction (top-down

versus bottom-up) and their overall search strategy (exhaustive versus

heuristic). As Gennari et al. [164] note, concept formation typically takes

place in a top-down manner, where one starts with the most general

possible concept and refines it as necessary into sub-concepts.

Fisher [159] furthermore emphasizes, that concept formation algo- Incremental

processing
rithms are typically incremental, since real world environments provide

observations in a sequential order. Processing this sequence of ob-

servations in an incremental way allows one to update the internal

representation rapidly with each new observation, making it possible to

react to changes in the environment. However, incremental processing

puts hard constraints on the processing time for each update, mak-

ing an exhaustive search strategy infeasible in practice. Gennari et al.

[164] observe, that most concept formation algorithms follow instead a
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heuristic hill-climbing strategy, where only a single hypothesis is kept in

memory. This hypothesis is incrementally modified in order to optimize

an explicit or implicit target function. This is usually done by adapting

the existing clusters or creating a new one [206]. Since the value of the

target function is highly dependent on the current observation, the

surface of this optimization function changes with every observation,

making concept formation algorithms order-sensitive [164]. A final

property related to this incremental processing is the integration of

learning and performance [164]: The new observation is compared

to the existing clusters, while modifying them at the same time. This

differs from the predominant division of training and test phases in

standard machine learning techniques (cf. Section 5.1.2).

Fisher [159] makes the following suggestions for evaluating con-Evaluating concept

formation
cept formation algorithms: Although unsupervised in nature, concept

formation algorithms can be in principle evaluated based on their

classification performance. One can simply add the target class as

an additional (nominal) feature and then classify novel instances by

finding the most appropriate cluster and using the cluster’s intensional

description to predict the missing class feature. This procedure can

also be applied to any other feature, making also missing attribute pre-

diction a possible way of evaluation. Finally, incremental algorithms in

general can be evaluated by considering the cost of processing a single

observation and by analyzing the number of observations necessary

for achieving a stable representation.

Concept formation is an important avenue of research when applyingConcept formation

and conceptual

spaces

the conceptual spaces framework to artificial intelligence. After all, the

goal is to find a cognitively plausible way of representing, learning,

and applying conceptual knowledge in artificial agents. One can easily

argue, that the key characteristics of concept formation approaches

(unsupervised and incremental processing, as well as hierarchical and

intensional representation) are cognitively more plausible than their

alternatives: Since supervision feedback in the form of labels is very

scarce in the real world, and since observations are made in a sequential

manner, standard machine learning techniques, that rely on batch

processing of large labeled datasets, are not very convincing from a

cognitive point of view. Also the existence of a conceptual hierarchy

with a reasonably well-defined basic level of concepts [298, Chapter 7]

(cf. Section 1.1.2) makes a flat partitioning of the (conceptual) feature

space less likely than a hierarchical structure. Finally, representing a

concept by its intension (such as a prototype) is much more economical

than storing all individual observations as exemplars. in the following,

we will thus introduce three selected concept formation algorithms.

7.3.2 Hierarchical Concept Formation with COBWEB

COBWEB [159] is a cognitively inspired clustering method, which usesGeneral properties of

COBWEB
a hill-climbing search through the space of hierarchical classification

schemes. It favors clusters, which maximize the information, that can be
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predicted about their members. COBWEB uses a set of operators, which

allow the algorithm to incrementally grow or shrink the conceptual

hierarchy, enabling a bidirectional search through the hypothesis space.

However, it only considers nominal features.

In COBWEB, the cluster hierarchy is stored as a tree, where each inner Representation of

clusters with

probability

distributions

node corresponds to a cluster, and where each leaf node represents one

instance. A cluster is described by three types of conditional probability

distributions [164]: The predictability P(xi = vij |Ck) represents the

distribution of possible values vij of the feature xi for members of

this cluster Ck, while the predictiveness P(Ck|xi = vij) denotes, how

indicative a given feature value is for the given category. Fisher [159]

notes, that a predictability of P(xi = vij |Ck) = 1 indicates necessary

feature values for category membership, while a predictiveness of

P(Ck|xi = vij) = 1 represents a feature value, which is sufficient for

determining category membership. Finally, the distribution P(Ck|Ck′)
denotes the relative frequency of observations falling under the category

Ck, given that they belong to the parent category Ck′ . As Berkhin

[58] notes, this usage of conditional probabilities makes COBWEB’s

cluster representation similar to a naive Bayes classifier. The three

aforementioned probability distributions are estimated by computing

relative frequencies among the observations [159]. These co-occurrence

counts can be updated in an incremental way, making it possible to

adjust the probabilities with each new observation.

Fisher [159] notes, that the classification tree used in COBWEB is Relation to decision

trees
somewhat similar to the structure used in supervised decision trees

(see Section 5.2.4). However, supervised decision trees check a single

feature in an internal node and make a deterministic branching decision.

The internal nodes of COBWEB, on the other hand, consider multiple

attributes at once, taking into account their conditional probabilities

based on the observed frequencies.

When incrementally constructing its tree of clusters, COBWEB tries Category utility

to optimize a heuristic evaluation measure called category utility, which

aims for a good trade-off between intra-class similarity and inter-

class dissimilarity [159]. This measure is inspired by the basic level

of categorization in human classification hierarchies (cf. Section 1.1.2).

In COBWEB, intra-class similarity is modeled by the predictabilities

P(xi = vij |Ck) of values vij for the feature xi within the category Ck,
which can be interpreted as the degree, to which members of the same

category share the same feature values. Inter-class dissimilarity, on

the other hand, is modeled through the predictiveness P(Ck|xi = vij),
which measures, how well different clusters can be distinguished based

on the given feature values. In a first step, Fisher [159] combines these

two components into an overall expression, weighting the individual
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feature values vij by their respective frequency P(xi = vij) based on

the overall number Vi of possible values for feature xi:

K∑︂
k=1

n∑︂
i=1

Vi∑︂
j=1

P(xi = vij) · P(Ck|xi = vij) · P(xi = vij |Ck)

Based on P(A) · P(B|A) = P(A,B) = P(B) · P(A|B), one can easilyA simple rewrite

see, that P(xi = vij) · P(Ck|xi = vij) = P(Ck)P(xi = vij |Ck). Hence,

the formula from above can be rewritten as follows:

K∑︂
k=1

P(Ck)
n∑︂
i=1

Vi∑︂
j=1

P(xi = vij |Ck)2

As Fisher [159] observes,

∑︁
i

∑︁
j P(xi = vij |Ck)2 can be interpretedInterpretation as

feature value

guessing

as the expected number of feature values, which can be guessed

correctly for an arbitrary member of the category Ck, given that both

the guessing strategy and the ground truth distribution are based on

the observed frequencies. Category utility can now be defined as the

increase in prediction performance, which arises from knowing the

cluster assignment of the data point in comparison to using the overall

frequencies of feature values across all clusters:

CU({C1, . . . , CK})

=
1

K

K∑︂
k=1

P(Ck)

⎡⎣ n∑︂
i=1

Vi∑︂
j=1

P(xi = vij |Ck)2 −
n∑︂
i=1

Vi∑︂
j=1

P(xi = vij)
2

⎤⎦
In other words, category utility quantifies, how much the inducedInterpretation of

category utility
category structure helps to predict feature values better than chance

[164]. Fisher [159] furthermore points out, that if there exist systems

of correlations for some feature values (as for instance indicated by

[65, 66, 220], cf. Section 1.1.2), then forming clusters around these corre-

lations is rewarded by category utility.

Algorithm 7.1 shows the overall control strategy of the COBWEBControl strategy of

COBWEB
algorithm and Figure 7.11 provides an illustration for its most important

operators. The function COBWEB is first called with the root node of

the classification tree, meaning that the tree is traversed in a top-

down manner. At each visited node, the internal counts are updated

based on the novel instance in order to adapt the resulting conditional

probabilities (line 1). If the current node is already a leaf node (lines 2–4),

we can terminate our tree traversal. Otherwise, the new observation is

tentatively put into each of the child nodes (lines 5–8), computing the

resulting category utility of the overall classification tree. Then, one of

four possibilities is chosen:

1. Inserting a new child node (lines 9–12): The algorithm tentativelyInsert: growing the

tree
creates a new singleton cluster based on the observation and puts

it into the classification tree as a child of the current node (line 9).

If the category utility of the resulting classification tree is higher
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Algorithm 7.1: Control strategy of the COBWEB algorithm [159].

Input: Observation O, classification tree T , concept C
Output: Updated classification tree T ′

1 Update counts of C in T
2 if C is leaf node in T then

3 return T
4 end

5 foreach Child node Ci of C do

6 Create classification tree Ti by putting O into Ci and

updating Ci’s counts

7 end

8 Select imax = argmaxiCU(Ti) and i′max = argmaxi ̸=imax
CU(Ti)

9 Create classification tree Tinsert by inserting a new node Cnew
based on O as child of C into T

10 if CU(Tinsert) > CU(Timax) then

11 return Tinsert
12 end

13 Create classification tree Tmerge by merging Cimax and Ci′max
into

Cnew, putting Cnew as child of C, Cimax and Ci′max
as children of

Cnew, and adding O to Cnew
14 if CU(Tmerge) > CU(Timax) then

15 return COBWEB(O, Tmerge, Cnew)

16 end

17 Create classification tree Tsplit by promoting all children Cj of

Cimax to be children of C and by removing Cimax

18 if CU(Tsplit) > CU(Timax) then

19 return COBWEB(O, Tsplit, C)

20 end

21 return COBWEB(O, T , Cimax)

Figure 7.11: Illustration of the COBWEB operators. Splitting and merging can

be used as approximately inverse operators (transition from (b)

to (c) and backwards), while insertion increases the breadth of

the tree.
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than what can be achieved by putting the observation into any

of the existing sub-clusters, this option is chosen (lines 10–12).

Since COBWEB initially starts with a tree, which only consists of

the root node, the insertion operator allows it to grow the tree

by creating additional nodes. The overall number of clusters can

thus emerge during training and does not need to be specified in

advance. Insertion can be used to modify the tree in Figure 7.11b

in order to obtain the tree in Figure 7.11a.

2. Merging two child nodes (lines 13–16): In order to reduce the breadthMerge: reducing

breadth, increasing

depth

of the tree while increasing its depth, COBWEB also considers

merging two of the child nodes. Only the two best-scoring child

nodes are considered in order to reduce computational complexity.

These two nodes are tentatively merged (reducing the number

of children by one) and used as sub-nodes of the newly created

merged node (line 13). If the category utility of the resulting tree

is higher than the one of the best-scoring child, this operation

is executed, and the observation is placed into the merged node

(lines 14–16). Merging transforms the tree in Figure 7.11c into the

tree in Figure 7.11b.

3. Splitting a child node (lines 17–20): As an approximate inverse toSplit: reducing depth,

increasing breadth
the merging operation, COBWEB also considers splitting a child

node and promoting its children to the next-higher level (line

17). This results in c1 + c2 − 1 child nodes, if the current node

has c1 children and the child node to be deleted has c2 children.

The observation is then tentatively put into the best among the

c2 promoted children. If the category utility of the resulting

classification tree is higher than the one of the best-scoring child,

the split operation is executed (lines 18–20). Splitting transforms

the tree in Figure 7.11b into the tree in Figure 7.11c and thus

reduces the tree’s depth, while increasing its breadth.

4. Putting the observation into the best-scoring child (line 21): As aNo modification to

the tree structure
default case, COBWEB simply puts the observation into the

best-scoring child, if none of the other operations seem to be

preferable. This corresponds to simply traversing the tree without

any modifications to its structure.

The backtracking enabled through the approximately merge andBidirectional

traversal of the search

space

split operators allows COBWEB to move bidirectionally through the

search space, which reduces its dependence on the order, in which

observations are presented [164].

As mentioned above, COBWEB considers only nominal features.CLASSIT:

considering

real-valued features

Gennari et al. [164] have proposed CLASSIT as an extension of COBWEB,

which focuses on concept formation for physical objects, and which

allows only real-valued features. Instead of storing counts for computing

the conditional probabilities for each cluster, CLASSIT represents

these probabilities as one normal distribution per feature. Since a
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normal distribution can be specified by its mean and its variance,

one thus only needs to incrementally keep track of the mean and

the standard deviation of the respective observations. However, this

change in representation, however, also requires a modification of

category utility, since the count-based terms

∑︁
j P(xi = vij |Ck) and∑︁

j P(xi = vij) need to be replaced with appropriate expressions

based on the aforementioned normal distributions. Gennari et al. note,

that the probability of a particular feature value corresponds to the

value of the probability density function at that value, and that a

summation of square probabilities thus corresponds to the integral

over the squared normal distribution. They furthermore observe that∫︁
1

σ22π
e−(

x−µ
σ )

2

dx = 1
2σ

√
π

. Since
1

2
√
π

is a constant factor, it can be

ignored for our purposes, where we only use category utility for

making comparisons. Gennari et al. thus arrive at the following formula

for generalized category utility, where Ck′ refers to the parent node and

σ2ik is the variance of the ith feature in category Ck:

GCU({C1, . . . , CK}) = 1

K
·
K∑︂
k=1

P(Ck)

[︄
n∑︂
i=1

1

σik
−

n∑︂
i=1

1

σik′

]︄
A problem arises for singleton classes, for which the variance becomes Additional

hyperparameters
zero. Gennari et al. solve this problem by introducing a hyperparameter

called acuity, which defines the minimal possible value for σ. In addition

to this modification of the representation scheme and the evaluation

measure, Gennari et al. also allow the algorithm to terminate at an

inner node of the tree, if the respective concept is similar enough to

the given instance. This is controlled by a cutoff hyperparameter. While

this cutoff parameter controls the depth of the tree, the aforementioned

acuity controls its branching factor and therefore its breadth. Most

importantly, CLASSIT uses the same operators and control logic as

COBWEB (cf. Algorithm 7.1).

CLASSIT is of course not the only extension of the COBWEB al- Other extensions of

COBWEB
gorithm. Other modifications include for instance FUZZ [99], which

represents concepts as fuzzy sets, where membership is determined

based on the distance to the cluster prototype.

How can we relate COBWEB and its variants to the conceptual spaces COBWEB and

conceptual spaces
framework? As noted above, COBWEB assumes, that all features are of

nominal nature. One possible way of grounding these nominal features

in conceptual spaces could lie in identifying features with domains

and values of these features with properties inside these domains. This

would correspond to crisping the domains of the conceptual space

and then learning a conceptual hierarchy on top, making it somewhat

related to the formalizations of Rickard [329] and Lewis and Lawry

[253] (cf. Sections 2.4.2, 2.5.2, and 2.5.3). However, while Rickard only

considers a single conceptual level and analyzes the co-occurrence

counts for pairs of properties, COBWEB builds a hierarchy of concepts

and considers the co-occurrence counts for properties and concepts.

And although Lewis and Lawry consider hierarchical conceptual spaces,
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their hierarchy does not represent conceptual generalization, but rather

conceptual combination.

If we consider CLASSIT instead, we do not need to use propertiesCLASSIT and

conceptual spaces
as features, but can instead directly use the dimensions of the concep-

tual space. The normal distributions used in CLASSIT have a convex

membership function and are thus in line with Gärdenfors’ convexity

requirement. However, since they are defined only for individual di-

mensions, they are not able to encode correlations. Such correlations

could only be encoded indirectly through the sub-clusters. For instance,

the correlation of color and taste in apples would need to be encoded

by the apple concept having two sub-concepts, namely red apple (which

is red and sweet) and green apple (which is green and sour). While

the individual concepts red apple and green apple would thus have

their means in the red/sweet and green/sour regions, respectively,

the overall apple concept would have a prototype lying somewhere

in-between. Although this may be a relatively indirect way of encoding

correlations, the intrinsic description of concepts through a probability

density function (CLASSIT) or a fuzzy membership function (FUZZ) as

well as the cognitively inspired category utility make COBWEB and its

descendants very interesting as starting points for concept formation in

conceptual spaces. One main additional contributions of the conceptual

spaces framework may come in the domain structure, which is not

considered explicitly by CLASSIT.

In theory, one could also adapt COBWEB to use our formalizationCOBWEB and our

formalization
as presented in Part I of this dissertation (cf. also Sections 3.6.1 and

4.6.1): The creation of a new concept is relatively straightforward (its

core can be defined as a single point, and default values for all other

parameters can be chosen), and the merge and split operations can

be implemented by using the union of concepts (cf. Section 3.2.1) and

the axis-parallel cut (cf. Section 3.5.1). The incremental adaption of the

conceptual description, however, would be more complex, since we

cannot simply increment some counts or update a mean and a standard

deviation: In our formalization, we rather need to modify the support

points of the cuboids, the weights, and the sensitivity parameter in

a meaningful way (cf. Section 3.6.1). Finally, also the (generalized)

category utility would need to be adapted to our representation of

concepts. Overall, using COBWEB with our proposed formalization of

conceptual spaces thus seems to be possible in principle, but would

require some considerable modifications.

7.3.3 Adaptive Resonance Theory

Adaptive resonance theory (ART) [90, 92, 175] is a neural theory of humanPreventing

catastrophic

interference with

attention

cognitive information processing. In its original version (often called

ART1), it is limited to binary input patterns, but various extensions

have been proposed, which relax this constraint. The motivation for

ART is based on the observation that in most neural network models,

learning can be unstable: Continued learning tends to erase previously
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Figure 7.12: Illustration of the overall ART system. Excitatory connections are

marked with "+", inhibitory connections with "–".

learned information. This effect is also called catastrophic interference or

catastrophic forgetting [285]. In ART, this problem is overcome through

an attentional mechanism, which matches top-down expectations with

bottom-up activations. Learning happens only in cases, where such a

match occurs, i.e., in a so-called resonance state.

The overall structure of ART is illustrated in Figure 7.12. As one can The structure of ART

see, ART is compromised of two subsystems: The attentional subsystem

processes bottom-up activations and top-down expectations, while the

orienting subsystem decides, whether a resonance state occurs. Within

the attentional subsystem, one can distinguish two representational

layers: The feature representation field F1 essentially represents the input

as a point in a feature space, while the category representation field F2

encodes the cluster or category associated with the input [91]. The cate-

gory representation field F2 is implemented as a competitive network,

where typically only one or a few nodes are active at the same time [92].

Familiar inputs are processed with the attentional subsystem, while

the orienting subsystem becomes active, if an unfamiliar input occurs,

which does not match well with the top-down expectations [175]. The

orienting subsystem then resets F2 in order to search for the next candi-

date category. The overall matching between top-down expectations

(represented as pattern V ) and bottom-up activations (represented as

input pattern I) occurs within the feature representation field F1.

Let us now take a closer look at the main processing steps occurring The bottom-up

mechanism
in ART (following the description in [175]). We start by considering the

bottom-up mechanism, which starts with the arrival of a new input pattern

I . This input pattern I is transformed into an activation pattern X in

F1, which corresponds to the representation of I in short term memory

(STM). At the same time, I activates the gain controls ofF1 andF2 (which

for the moment can be interpreted as on/off switches) as well as the

orienting subsystem. The activation pattern X , however, immediately
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inhibits the orienting subsystem, preventing it from creating any output.

The activation patternX inF1 is then transformed into an output pattern

S by thresholding the activation of the individual nodes in F1. This

sparsified output pattern S is then multiplied with weights from long

term memory (LTM) in order to create the input pattern T for the

category representation field F2. This transformation from S to T is

called an adaptive filter. The input pattern T now leads to an activation

pattern Y inF2, which is constrained by lateral inhibition of the nodes in

F2. This lateral inhibition acts as a contrast enhancement. The resulting

activation pattern Y can be interpreted as a hypothesis about the input

I or as a representation of the best matching category [93].

Once the activation patternY has stabilized, the top-down pass throughThe top-down

mechanism
the system begins: Again, an output patternU is created by thresholding

the units of F2. This pattern U is then transformed into the top-down

template V through another adaptive filter. Please note, that the weights

used for this transformation are in general different from the ones used

in the bottom-up transformation from S to T . Creating the top-down

template V can be interpreted as testing the hypothesis V against the

input I or as reading out the prototype of the category represented by

V [93]. The output pattern U of the category representation field F2

additionally inhibits the gain control of F1. The units inside the feature

representation field F1 now receive two inputs, namely I and V and

can only become active, if both inputs match. Thus, F1 now acts as a

matching mechanism for I and V . This behavior is made possible by

what Grossberg [175] calls the 2/3 rule: Each unit in F1 can only become

active if it receives input from at least two of its three inputs (I , V , and

gain control). In the first bottom-up pass, the gain control is active and

excites all units in F1, such that their activation depends only on the

input I . During template matching, however, gain control is deactivated

and does not provide any input into F1. The units of F1 can thus only

be activated, if they receive the same input from both V and I . Since V
and I are in general not identical, the new activation pattern X∗

, that

arises from their interaction, is in general different from the bottom-up

activation X .

This similarity between X and X∗
now determines, whether weFinding a resonance

state
enter a resonance state: If X and X∗

are sufficiently similar, then the

orienting subsystem is still inhibited by X∗
: The activation patterns in

the attentional subsystem stabilize and persist long enough for learning

(i.e., adaption of the LTM weights) to occur [93]. However, if X∗
differs

considerably from X , this means, that there are fewer active nodes in

F1, because the template V is necessarily sparser than the gain control

input. In this case, the reduced activation of F1 leads to a reduced

inhibition of the orienting subsystem, which is then able to send a

strong inhibitory signal to F2. This signal resets the activation of F2 and

continues to inhibit the activation pattern Y . Once F2 has been cleared,

the top-down expectation V vanishes and the content of F1 is again only

determined by the input I . This means, that the original representation

X is restored, which again is passed to F2 through adaptive filtering
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with the LTM weights. However, since the pattern Y is still inhibited in

F2, a different activation pattern Y ∗
will emerge, which then results in

a different top-down template V ∗
. This new template is again matched

against the input I in order to determine, whether a resonance occurs,

or whether another reset of F2 is necessary. This whole procedure is

repeated, until the system enters a resonance state, either because an

existing category matched the input, or because a previously unused

pattern Y ∗
is found, which will then be associated to I .

Learning in ART only occurs within a resonance state. Depending Learning in ART

on the result of the matching procedure, it corresponds to refining the

representation of a previously learned category, or to learning a new

category with a previously unused activation pattern in F2 [91]. The

important distinction between resonant and non-resonant states is con-

trolled by a parameter called vigilance, which determines the required

degree of similarity between V and I [93]. In general, a low vigilance

tends to lead to broad generalizations and abstract prototypes, while a

high vigilance results in narrow generalization and exemplar-like cate-

gories [93]. While most other neural networks learn through gradient

descent and backpropagation (where the contribution of each weight

to the overall error is iteratively minimized), ART uses an associative

learning mechanism, which requires neither a supervision signal nor a

differentiation operation [175].

Different variants of adaptive resonance theory have been used to Extensions of ART

analyze and predict data about a variety of cognitive tasks, including

perception, conditioning, and decision making [92, 175]. The basic

system outlined above has also been extended in various way: The

ART2 system [91] uses a more complex setup of F1 in order to deal

with analog input patterns, while Fuzzy ART [93] incorporates fuzzy

logic into the overall framework. Distributed ART [92] removes the

winner-takes-it-all approach from F2 and thus allows for a distributed

representation of high-level information. Coupling two ART networks

with each other results in ARTMAP [92], a system capable of solving

supervised classification tasks. Other variants include incremental

fuzzy clustering algorithms such as FOSART [30, 31], which uses a

simplified version of ART as a starting point. Here, the same matching

function is used in the bottom-up and in the top-down pass and the

neighborhood relation of the inputs is approximately preserved in the

generalizations. RBF activations are used in the category representation

field F2, which mimics a prototype matching procedure.

Like COBWEB, also ART is an incremental clustering approach, Comparsion to

COBWEB
which works entirely unsupervised, is capable of creating new clusters

as necessary, and can in principle be used for feature prediction tasks.

Moreover, it has successfully been extended to classification tasks and

continuous input patterns. While the intensional representation of

concepts is very explicit in COBWEB and its descendants, it is only

implicitly coded through the LTM weights in ART. Moreover, ART does

not result in an explicit conceptual hierarchy and has no operators,

which correspond to merging and splitting clusters. However, as a
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neural model of human cognitive information processing, it has a much

stronger cognitive grounding than COBWEB.

When considering ART from the perspective of conceptual spaces, weART and conceptual

spaces
can again associate the nominal or binary input values with the presence

or absence of properties. The concepts learned by ART would then again

be defined on top of the properties, as already discussed for COBWEB

in Section 7.3.2, and would thus again relate to the formalizations by

Rickard [329] and Lewis and Lawry [253]. The ART2 system is, however,

more applicable to the conceptual spaces framework, since it is capable

of processing continuous inputs. Its top-down LTM weights can be

interpreted as the representation of the respective category’s prototype,

which relates strongly to Gärdenfors’ prototype-based representation of

concepts. ART can thus add some neural plausibility to this approach. As

far as we can tell, combining our formalization of conceptual spaces as

introduced in Part I of this dissertation with adaptive resonance theory

is, however, not easily possible due to the very different representational

assumptions. Moreover, ART is not explicitly able to model correlations

between domains.

7.3.4 Incremental Category Learning with SUSTAIN

Let us conclude our discussion of concept formation algorithms withMotivation for

SUSTAIN SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental

Network) [270], a clustering model of human category learning. As a

motivation for proposing SUSTAIN, Love et al. [270] note, that category

learning in the form of prototype learning may be too simple and

inflexible for concepts such as spoon, which consist of multiple sub-

concepts, namely cooking spoon (which is large and wooden) and table

spoon (which is small and made of metal). In this case, learning the

prototype of spoon as an average instance is not capable of capturing the

internal category structure. Exemplar models, which simply store all

observations, are on the other hand incapable of extracting a compact

summary representation of a category. Love et al. furthermore consider

the problem of overfitting and underfitting in machine learning (cf.

Section 5.1.2), which indicates that a given model’s capacity needs to be

correctly adjusted to the learning problem. Finally, Love et al. note, that

categorization in humans is heavily influenced by the current task and

goals. All of their considerations culminate in the idea, that concepts

should be represented by multiple sub-clusters, which are dynamically

created, if the model’s capacity needs to be increased. These sub-clusters

are created as exemplars and may over time evolve into prototypes.

Figure 7.13 illustrates SUSTAIN’s overall structure as consisting ofThe structure of

SUSTAIN
three layers. The perceptual input to the system is transformed by the

input layer into a structured feature vector based on a set of domains,

such as shape, brightness, and category. In the cluster layer, each of these

domains comes with a so-called attentional tuning, which represents the

general importance of the respective domain according to the model’s

experience. Clusters in SUSTAIN are represented as points in the
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Figure 7.13: Illustration of the overall SUSTAIN model with its three layers.

feature space and are associated with nodes in the output layer, which

represent the respective cluster’s predictions about each dimension in

every domains.

The model tries to assign a new instance to one of the existing clusters Overall processing

scheme
and to use the category information of this cluster in the output layer

to make a classification prediction. If none of the clusters provides a

good match, or if the model’s prediction was incorrect, a new cluster

is created and its prototype is centered on the current observation.

SUSTAIN starts with a simple solution (namely, a single cluster) and

gradually increases the number of clusters as necessary. Cluster selec-

tion is competitive and clusters are formed based on similarity. Learning

in SUSTAIN involves both unsupervised and supervised processes. In

the following, we will take a closer look at the different processing steps.

Input stimuli are represented as vectors based on the different do- Obtaining feature

vectors
mains and an additional entry for the category label. Input domains

can be both nominal (such as shape in Figure 7.13) or continuous (such

as brightness). In order to represent nominal domains as vectors, Love

et al. use a one-hot encoding (cf. Sections 6.1.1 and 6.3.2). For instance,

if the possible shapes only include triangles, squares, and circles, then a

triangle can be represented as (1, 0, 0). The overall input vector is then

denoted by x⃗. Its individual entries can be indexed as xij , where i refers
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to the underlying domain (such as shape and brightness) and j indexes

the representational dimension within the selected domain.

Each cluster Ck has one separate receptive field for each domain ofRepresenting clusters

the input. This receptive field can be specified by its center p
(k)
ij with

respect to every dimension j of this domain i, and its tuning parameter

λi for the overall domain. Please note, that while the center of the

receptive field may differ between clusters, the tuning parameter is

shared across all clusters.

In order to match a new input to one of the clusters, one first needs toMatching inputs to

clusters
compute the distances di(x⃗, p⃗

(k)) between the feature vector x⃗ and the

cluster center p⃗(k) with respect to domain i. For continuous domains,

this can be easily done by taking the absolute value of their differences

on the respective continuous dimension. For nominal domains, Love

et al. propose to use the following formula, where Vi represents the

number of nominal values for domain i, i.e., the number of one-hot

dimensions used to represent it:

di(x⃗, p⃗
(k)) =

1

2

Vi∑︂
j=1

⃓⃓⃓
xij − p

(k)
ij

⃓⃓⃓
The activation µk(x⃗) of the kth cluster is then defined as follows:Cluster activation

µk(x⃗) =

∑︁n
i=1(λi)

re−λidi(x⃗,p⃗
(k))∑︁n

i=1(λi)
r

Here, n is the overall number of domains and r is an attentionalPicking a winning

cluster
parameter, which controls the relative influence of the attentional

tunings: For r = 0, all features have the same influence on the overall

results, while for larger values of r, more emphasis is put onto features

with tight tunings (i.e., large values of λi). The cluster with the largest

activation value is the winning cluster. The outputs of all other clusters

are set to zero, while the output ok(x⃗) of the winning cluster is based

on its own activation and the activation of its competitors:

ok(x⃗) =
(µk(x⃗))

β∑︁K
k′=1(µk′(x⃗))

β
· µk(x⃗)

If many clusters are activated, then the output of the winning clusterCluster output

is inhibited in order to represent the uncertainty in cluster assignment.

If the activations of all other clusters are, however, relatively low, then

the output of the winning cluster remains high. In the formula above,

K refers to the number of clusters and β is a parameter, which controls

the degree of cluster competition. For larger values of β, the winning

cluster is only weakly inhibited.

Now in order to predict values for an unknown dimension j inPredictions in the

output layer
domain i, the output ok(x⃗) of the winning cluster Ck is multiplied with

the weight w
(k)
ij connecting it to the output layer:

zij(x⃗) =
K∑︂
k=1

w
(k)
ij · ok(x⃗)
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In order to simulate the decision probabilities in a classification Output probabilities

for nominal domains
task, SUSTAIN defines the probability of choosing the response j of a

nominal domain i based on a softmax function over all other possible

values for this domain:

P(j|x⃗) = eϕ·zij(x⃗)∑︁Vi
j′=1 e

ϕ·zij′ (x⃗)

Here, the additional parameter ϕ controls the decision consistency – Decision consistency

larger values of d make the probabilities more binary and ensure that

the output with the largest activation is almost always chosen.

Once this forward pass through the model has been computed, Learning in

SUSTAIN
learning can take place. In a supervised setting, a new cluster is created,

if the model made an incorrect prediction. In an unsupervised setting,

a new cluster is created, if the activation of the winning cluster is below

a given threshold τ , which indicates, that the observation is not well

represented by any of the current clusters. A newly created cluster is

always initialized on the current stimulus, and its weights to the output

layer are initialized to zero. Afterwards, the following adjustments

are made to the position of the winning cluster, the tunings of the

dimensions, and the output weights of the winning cluster. For all three

updates, the same learning rate α is used. For updating the output

weights, tij denotes the desired target output for the jth dimension on

the ith domain.

∆p
(k)
ij = α · (xij − p

(k)
ij )

∆λi = α · e−λidi(x⃗,p⃗
(k)) · (1− λidi(x⃗, p⃗

(k)))

∆w
(k)
ij = α · (tij − zij(x⃗)) · ok(x⃗)

SUSTAIN can be applied to three types of learning tasks, namely Applications of

SUSTAIN
classification learning (i.e., predicting the category based on all other

features), inference learning (i.e., predicting a missing feature based

on all other features), and unsupervised learning (where no explicit

prediction needs to be made). Love at al. [270] showed in a variety of

experiments, that one can fit SUSTAIN’s parameters in such a way, that

human behavior in all three of these learning tasks can be accurately

predicted. Later, Love and Gureckis [269] were furthermore able to

provide a mapping between SUSTAIN and human brain activity.

Like COBWEB and ART, SUSTAIN is an incremental algorithm, which Comparison to

COBWEB and ART
dynamically creates new clusters if necessary, and which is capable

of feature prediction. Like ART and unlike COBWEB, SUSTAIN lacks

merging and splitting operators and does not create an explicit concep-

tual hierarchy. However, SUSTAIN comes with an explicit intensional

definition of the learned categories through the cluster centers. This

relates it to CLASSIT, where clusters are represented by the mean and

variance values for each feature. However, in SUSTAIN, only the cluster

center is stored with the cluster itself, while the attentional tunings are
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shared across all clusters. SUSTAIN and ART share the aim to model

human conceptualization and are thus cognitively grounded. SUSTAIN

differs from both COBWEB and ART by putting a stronger emphasis on

supervised learning, using the incremental clustering procedure only

as an intermediate processing step.

When looking at SUSTAIN from the conceptual spaces perspective,SUSTAIN and

conceptual spaces
we can again associate nominal domains with the set of properties

partitioning a given cognitive domain. On the other hand, if we consider

continuous domains, then the cluster mean can be interpreted as a

prototypical point. This prototype is initially constructed as an exemplar

(when a new cluster is created), but is then subsequently generalized

based on additional observations. In SUSTAIN, each category can be

associated with multiple clusters, which makes it possible to indirectly

encode correlations between domains. The distinction between domains

and dimensions in SUSTAIN can be roughly mapped into the domain

structure of a conceptual space. If we attempted to use SUSTAIN

with our formalization of conceptual spaces as proposed in Part I

of this dissertation, each cluster would need to be represented by a

fuzzy concept. This would make the incremental update in learning

more complex than simply moving a prototype. Moreover, SUSTAIN’s

attentional tunings assume that the same salience weights are used for

all clusters, while our formalization proposes to use a separate set of

salience weights for each cluster.

7.4 learning concepts through communi-
cation

As Murphy [298, Chapter 11] argues, words get their meanings byPerspectives on word

semantics
being associated to concepts. This stance is commonly referred to

as cognitive semantics, and needs to be distinguished from referential

semantics, where words are interpreted as referring to real objects and

events. One could say, that in referential semantics, the meaning of

a word corresponds to the extent of the concept (e.g., "dog" referring

to the set of all possible dogs), while in cognitive semantics, words

refer to the intent of the concept (e.g., "dog" referring to the dog

concept, which contains information about the typical shape, size,

color, behavior etc. of dogs). Murphy furthermore notes, that the

relation between concept learning and word learning can be viewed

in two principled ways: Either the concept is formed first and the

corresponding word is attached later, or a concept is formed based

on the usage of a previously unknown word. Especially in the latter

condition, the interaction with other individuals is of critical importance

for learning. As Gärdenfors [181, Chapter 5] points out, this leads to

another perspective on semantics, where meaning is interpreted as

something inter-subjective ("meanings are the product of negotiation").

This differs from both referential semantics ("meanings are in the

world") and standard cognitive semantics ("meanings are in the head").
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In this section, we will take a closer look at some approaches which Concept learning

through

communication

explicitly focus on the communicative aspects of concept learning. In

Section 7.4.1, we introduce some general considerations about the ways

in which communication shapes concepts. We introduce Gärdenfors’

language as pointing and meeting of minds approach [181], and present

Steels’ language game methodology [389]. We then structure our further

discussion based on the direction, in which information is transmit-

ted [215]: In Section 7.4.2, we focus on vertical transmission schemes,

where one can identify a clear teacher-student relationship, in which

the student adapts its conceptualization to the one of their teacher.

Afterwards, we consider horizontal transmission schemes in Section 7.4.3,

where language learning is viewed as a negotiation between peers in

a population, leading to the emergence of a consistent language from

local interactions.

7.4.1 General Considerations

We will start our discussion of concept learning in the context of lan- Pointing as basic

form of

communication

guage and communication with Gärdenfors’ interpretation of language

as pointing, which he proposed in [181, Chapter 4] and [184]: Gärdenfors

notes, that one of the first ways, in which children communicate with

their caregivers, is through pointing. One can distinguish different

types of pointing behavior: In imperative pointing, the goal of the child

is to make the caregiver do something (e.g., give them the toy they are

pointing at). The focus on imperative pointing is therefore mostly on

the result (e.g., receiving the toy). In declarative pointing, on the other

hand, the child aims to explicitly direct the attention of the caregiver

to the focal object. This also involves checking, whether the caregiver

attends to the intended object, thus resulting in joint attention.

Gärdenfors further distinguishes three subtypes of declarative point- Different types of

declarative pointing
ing: The goal of emotive declarative pointing is to get emotive feedback

from the caregiver about the focal object (e.g., smiling or frowning). In

this case, the interlocutors need to coordinate in the location domain

in order to identify the focal object based on the pointing gesture. How-

ever, also a coordination in the emotion domain takes place in order

to identify the emotion towards the object. In information-requesting

declarative pointing, the child attempts to receive non-emotive infor-

mation about the focal object, usually in the form of a category label

("That is a dog."). In the terms of conceptual spaces, this involves the

location domain (for finding the focal object) and the object category

space (i.e., the combination of all domains used to define the concept

of the given object, e.g., color, shape, size). From a machine learning

perspective, information-requesting declarative pointing can also be

viewed as a form of active learning, where the learner explicitly requests

a supervision signal for an object. In this case, the learner has a high

degree of control about its learning experience in contrast to classical

batch-processing of fixed datasets (cf. Section 5.1.2). Finally, goal-directed

declarative pointing is used to help the caregiver in fulfilling their goal
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(e.g., if they are looking for an object and the child already spotted

it). This involves a combination of the location domain and the goal

domain, in which the goal of the caregiver is represented.

As Gärdenfors points out, all three subtypes of declarative point-Language as

pointing in

conceptual domains

ing involve a combination of the location domain with some other

domains of the conceptual space. He furthermore notes, that in some

contexts, it may not be entirely clear to the caregiver which object the

child is pointing to. In these contexts, verbal language can be used

as a way of disambiguation, e.g., by using the category name or by

displaying an emotional state (e.g., through crying or laughing).
7

Thus,

language can be used to constrain the search for the focal object in the

location domain by putting constraints on other conceptual domains.

Gärdenfors thus views language as "a tool for reaching joint attention

by "pointing" to places in our inner worlds" [181, Chapter 4, p. 85].

Once the usage of verbal language has developed to a sufficient degree,

children can omit the pointing gesture and use only verbal language

to draw the caregiver’s attention to an object of interest. Additionally,

language can be used to refer to objects, which are not present in the

current scene. Gärdenfors concludes his argument by hypothesizing,

that the underlying processing steps for creating joint referents are

essentially the same in pointing and speaking.

If we assume, that the goal of (verbal) communication consist ofCommunication as

meeting of minds
coordinating the inner worlds of the interlocutors, the question arises,

how such a coordination can take place. Gärdenfors (see [181, Chapter

5] and [428]) has analyzed this question under the perspective of

fixpoints. He argues that the goal of communication is to obtain a

meeting of minds, where the interlocutors agree, that their inner worlds

are compatible with each other. Communication can then be viewed as

a semantic reaction function f , which is a concatenation of the speaker’s

expression function (translating the speaker’s conceptualization into

language) and the hearer’s interpretation function (translating the

verbal description into the hearer’s conceptualization). A meeting of

minds is then achieved, when this semantic reaction function finds a

fixpoint x, such that f(x) = x. If such a fixpoint is reached, then speaker

and hearer have successfully coordinated their inner worlds.

Gärdenfors uses the three-dimensional color space as an example forThe semantic

fixpoint theorem
illustrating his fixpoint analysis: If we assume, that color concepts such

as red and green are represented by their prototypical points in color

space, then the speaker’s expression function maps the regions of the

resulting Voronoi tessellation onto the different color words. Moreover,

the hearer’s interpretation function maps the different color words

onto their respective prototypes. In this scenario, the prototypes are the

fixpoints of color communication. Gärdenfors’ semantic fixpoint theorem

is a consequence of Brouwer’s fixpoint theorem [82] and guarantees,

7 For example, at the age of two, my son combined pointing to our kitchen’s exhaust

hood with the word "light" in order to tell me, that I should turn on the exhaust hood’s

light. This combination of imperative pointing and verbal language prevented me from

turning on the exhaust hood’s fan or from turning on the ceiling lamp in the kitchen.
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that every semantic reaction function, which is a continuous mapping

of a convex compact set onto itself, has at least one fixpoint. Since

concepts are assumed to be convex regions, and since conceptual spaces

are based on similarity, the requirements of a convex compact set and

of a continuous mapping function are fulfilled, hence guaranteeing the

existence of a fixpoint.

As Gärdenfors notes, the meeting of minds only describes that both The need for external

feedback
interlocutors think, that they have reached an agreement. In order

to test, whether such a meeting of minds has actually occurred, one

usually needs some feedback from the external world. If such a re-

ality check is not possible (for instance, because the conversation is

about imaginary events in a fairytale), then the fixpoints may prove

to be instable: If the conceptualization of the interlocutors differs, this

will result in (slightly) different predictions involving the object or

event under discussion. If it becomes apparent over time, that the

predictions of one interlocutor are in conflict with the predictions of

the other interlocutor, they may have to re-coordinate their inner worlds.

As Gärdenfors [181, Chapter 5] notes, the exact form of the seman- Environmental

pressures
tic reaction function is subject to environmental pressures: It will be

adopted by the interlocutors in such a way, that it maximizes the

expected communicative success. Moreover, feedback from the environ-

ment can act as a tiebreaker in case of multiple possible fixpoints. Jäger

and van Rooĳ [215] argue, that language universals can be explained

by the evolution of both brains and culture. More specifically, they

identify three important environmental pressures, namely learnability

(i.e., the ease of learning the language), parsability (referring to the ease

of cognitive processing), and usefulness (i.e., the practical relevance and

helpfulness in a given environment or communication setting). Both

learnability and parsability incite a simple language, while usefulness

prefers a fine-grained language – these pressures are therefore often

viewed as pulling in opposite directions [94]. The goal of any semantic

category system is then to find a good trade-off between these two

objectives, which allows to transmit maximum information for minimal

cognitive effort.

In their analysis, Jäger and van Rooĳ [215] furthermore distinguish Vertical transmission

vertical from horizontal transmission: Vertical transmission corresponds

to an iterated learning process, where the language is transmitted

between generations of agents. This means, that the first agent learns a

language, transmits it to the second agent, who after learning transmits

it to the third agent, and so on. In each individual communicative

setting, there is a clear teacher-student relationship. Jäger and van Rooĳ

argue, that in vertical transmission scenarios, language acquisition is

aided by a structured meaning space, which allows for compositionality.

On the other hand, horizontal transmission focuses on the interac- Horizontal

transmission
tions within a single generation of agents and emphasizes the practical

usefulness of a language system. From the perspective of the hearer, ut-

terances need to be parsed rapidly, which limits their possible structural

complexity. Moreover, the utterances need to be perceptually distinct
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Figure 7.14: Illustration of the semiotic cycle.

from each other in order to decode the audio signal is a robust way.

Finally, the semantics of the utterance need to be comprehended quickly

and correctly, which incites precise meanings. From the perspective

of the speaker, two other considerations come into play: Firstly, the

speaker is interested in making utterances containing relevant and

useful information, since this can be expected to increase their social

status. This consideration therefore encourages a language with a rich

semantic repertoire. Secondly, the speaker will choose the least amount

of effort to transmit their message, which introduces an economic

constraint on the shape of utterances.

Since the interactions between agents take place in the real world, theEmbodiment as

additional pressure
embodiment of the agents in their environment can be seen as another

type of evolutionary pressure on language systems. Bleys et al. [67]

have noted, that many computational models of language learning are

evaluated on artificially generated data. They furthermore argue, that

embodied data differs from such artificial setups in two important ways:

Firstly, the same scene is in general perceived slightly differently by two

different agents. This perceptual deviation is based on differences in

lightning, perspective, and sensor noise. Secondly, embodied data tends

to be more structured than artificial data – usually, one is constrained

to a relatively small number of objects, where some properties (e.g., the

color turquoise) are not observed at all, while others (e.g., the color

red) occur quite frequently. Artificial datasets, on the other hand, are

often constructed in such a way, that the different feature values follow

a given ideal distribution (e.g., uniform or normal), and that they cover

the underlying feature space in a regular way. Also Spranger et al. [387]

consider embodied scenarios as more realistic, but at the same time

more challenging due to the larger risk for errors. They note that errors

may occur both in natural language processing (e.g., missing words,

misunderstood words, or grammatical errors) and in computer vision

(e.g., occlusions or errors in visual tracking). Nevertheless, Spranger et

al. were able to show though their experiments with humanoid robots,

that successful communication about events is possible even under

such error-prone conditions.

As a practical way of evaluating different models of language evolu-Language games

tion, different forms of language games have been proposed [149, 215,

385, 387, 389, 390]. These language games are based on the so-called

semiotic cycle [389, 390] depicted in Figure 7.14: Both agents (the speaker
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and the hearer) are embodied in the same environment. Each agent

perceives this common environment based on their current perspective

and sensory channels, leading to a subjective world model. In most

applications, this world model corresponds to a feature space, which

captures several perceptual properties of the current scene. Based on

this world model in the perceptual layer, each agent constructs a set

of concepts in the conceptual layer. These concepts are then linked to

words in the lexical layer.

A language game can now be defined in the context of this semiotic Steps in the semiotic

cycle
cycle as a "routinized linguistic interaction in which agents try to achieve

communicative goals using their personal conceptual and linguistic

knowledge" [67]. It typically involves the following steps: The speaker

wants to draw the hearer’s attention to one of the stimuli in the jointly

observed environment. The speaker thus conceptualizes its perception

of the scene (and the focal object), verbalizes the selected concept by

selecting an appropriate word, and transmits it to the hearer. The hearer

in turn parses the utterance in order to find the appropriate concept,

and interprets this concept relative to its current perception by selecting

the stimulus, which fits best into this category. Through action in the

environment (e.g., by pointing), the hearer can convey their understand-

ing of the utterance, and the speaker can use this nonverbal feedback

to decide, whether the hearer has understood the utterance correctly. If

this is the case, the conceptualization and verbalization of both agents is

reinforced. In case of a miscommunication, the internal representations

of the concepts as well as their associations to words may need to

be modified. The feedback from these language games thus provides

information about the usefulness of the agents’ conceptualization in

the real world – concepts are grounded in communication. Similar to

declarative pointing, also language games can be considered to give a

considerably higher degree of control about the learning experience to

the individual agents than regular fixed datasets (cf. Section 5.1.2).

Due to the indirect nature of the feedback provided in these language Referential

uncertainty
games, the agents face referential uncertainty, which is an important

aspect of language learning [385]. This means, that the referent (i.e.,

concept) of a novel word is in general unknown to an agent. Since

each observation can be described in an infinite number of ways, it

is impossible to be absolutely certain about the meaning of a word,

that the agent has never heard before. As Spranger and Beuls [385]

note, one can broadly distinguish three models of word learning, which

come with their respective definition of referential uncertainty: In

word-object mapping models, one assumes that the different objects are

already known and that the learner only needs to establish a discrete

mapping between words and objects. In this case, referential uncertainty

can only arise, if multiple objects are present in the environment

at the same time: The agent may then be unsure which object is

focal. In combinations of feature models, word meanings correspond to a

combination of symbolic features. In this case, the features are assumed

to be already known, but they may need to be combined in novel ways.

Here, referential uncertainty can also arise, if multiple features are
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relevant for a given object: The agent may not know which feature is

being targeted. Finally, continuous meaning space models represent word

meanings with continuous vector spaces. In addition to multiple objects

and multiple relevant features, the continuous nature of the feature

values causes further referential uncertainty. As Eyre and Lawry [149]

point out, referential uncertainty can thus result in imprecise concept

definitions, where the boundaries between a concept (such as red) and

its negation (e.g., not red) are blurred. Despite the difficulties stemming

from referential uncertainty, successful communication is possible, as

various examples in Sections 7.4.2 and 7.4.3 will illustrate.

7.4.2 Vertical Transmission

In this section, we introduce two studies, which focus on a verticalVertical transmission

in psychology and

machine learning

transmission in language learning, i.e., where we can identify a clear

teacher-student relationship between the agents. This includes the

psychological investigations by Carr et al. [94] and the machine learning

experiments by Spranger and Beuls [385].

Carr et al. [94] investigated, whether the evolutionary pressureIterated learning

with a Bayesian

approach

coming from language learning favors simplicity or informativeness

in the resulting category system. They used an iterated learning model,

where the evolutionary pressure from learning is iteratively applied,

but where other pressures (such as the usefulness in shared tasks) are

not present. Carr et al. considered a universe of M discrete meanings,

which can be treated as a metric space. They furthermore assumed, that

this space can be partitioned into K categories (where partitions can

be defined in an arbitrary way), and that each category is associated

with one word. A language was then defined as a combination of a

partitioning and a lexicon. Carr et al. now modeled each agent as a

Bayesian learner, who considers the set of all possible languages as

hypothesis space, and who chooses the hypothesis, which matches both

the observations made about the teacher and the learner’s bias. This

bias was represented as a prior probability distribution.

In order to investigate the difference between the simplicity biasSimplicity prior and

informativeness prior
and the informativeness bias, Carr et al. used two variants of their

model, which make use of different prior distributions: The simplicity

prior is an exponentially decreasing function of the complexity of the

language, which is quantified as the minimum description length in bits

(cf. Section 5.1.3) of the underlying partitioning. It thus favors languages

with a small number of contiguous categories. The informativeness prior,

on the other hand, is an exponentially decreasing function of the cost

associated with a language, which can be quantified as the probability

of a mismatch between an intended meaning and its reconstruction.

The informativeness prior thus favors languages with a large number

of compact categories.

In their iterated learning scheme, Carr et al. created chains of agents,Simulation results

where the production output of one agent was used as the learning
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input to the following agent, starting from a randomly selected initial

language. Production was subject to noise (i.e., labels produced by

an agent were randomly changed with a small probability), and a

bottleneck was enforced on transmission (i.e., not all M examples were

transmitted, but only a representative subset). In their simulations

with 50 generations of agents, Carr et al. found that the simplicity

prior causes a considerable simplification of the category structure

and a gradual loss of categories over time. In the resulting languages,

categories were mostly defined using only one of the two underlying

features. In the simulations with the informativeness prior, however,

no reduction in the number of categories was observed. If a very strong

emphasis was put on the informativeness prior, then the similarity

space was partitioned into four quadrants.

Carr et al. then conducted a psychological study with human learners Psychological study

in the same setup, using Shepard circles as stimuli. These stimuli are

circles with a radial line and can vary with respect to both their diameter

and the orientation of the line. Carr et al. found that in eleven out of

their twelve chains, at least one category was lost over time. Moreover,

categories tended to be defined only based on a single dimension. These

qualitative effects were predicted by the simplicity prior, but not by

the informativeness prior. Carr et al. furthermore estimated optimal

parameter settings for their model in order to predict the quantitative

observations from the psychological experiment. The model with the

simplicity prior was able to achieve a considerably better fit to the

experimental data than the model with the informativeness prior. Carr

et al. thus conclude, that iterated learning of a language leads to a

pressure for simplicity, which eventually leads to a loss of categories

and a very simplified category structure, if it is not counterbalanced by

other pressures such as informativeness.

Spranger and Beuls [385] have also worked with a vertical trans- Description games

mission setting, however, not in an iterated way. They considered a

description game, which works as follows: The learner observes an object

and a description uttered by the tutor. This description consists of k
words, which describe this object.

8
The learner now has to identify the

meaning of the words by integrating information over various trials. In

order to evaluate the learning success, Spranger and Beuls prompt both

the learner and the tutor with a test object and measure the overlap

between the k words chosen by the tutor and the k words chosen by

the student for describing this object.

In their experiments, Spranger and Beuls used a fixed tutor strategy: The tutor strategy

Objects were represented as points in an n-dimensional feature space,

and the tutor represented each word with a prototype p⃗ ∈ [0, 1]n and

a binary weight vector w⃗ ∈ {0, 1}n. The prototypes were randomly

drawn from a uniform distribution over [0, 1]n, while the weights

were drawn from a binomial distribution, ensuring, however, that at

least one entry of the overall weight vectors was nonzero. Given an

8 In their experiments, Spranger and Beuls used k = 5.
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example x⃗ ∈ [0, 1]n, the tutor then computed the weighted distance

dw⃗(x⃗, p⃗) =
√︁∑︁n

i=1wi(xi − pi)2 to all prototypes, and chose the kwords,

whose prototypes had the smallest distance to the example. By using

binary weight vectors, Spranger and Beuls ensure that some words are

sensitive only to a subset of the features. Moreover, the combination of

randomly chosen prototypes and weight vectors makes it likely, that

words are used with a different frequency.

Based on this fixed tutor strategy, Spranger and Beuls now investi-Machine learning

setup
gated different learner strategies by applying different types of machine

learning algorithms. They note, that the description game can be framed

as a supervised, multi-label, online classification problem. They trained

different classifiers ranging from logistic regression (cf. Section 5.2.2),

over random forests (cf. Section 5.2.4), k nearest neighbors (cf. Section

5.2.5), and naive Bayes to feedforward neural networks with a single

hidden layer (cf. Section 6.2.1). Spranger and Beuls used three different

datasets, which contained 17 features, 4532 objects, and 100 words

known to the tutor: In addition to an artificially created dataset (where

feature values were drawn from uniform distributions), they also used

two datasets, which were collected based on the sensory input of hu-

manoid robots. In the first of these datasets, learner and tutor made use

of the exact same perceptual input, while in the second robot dataset,

learner and tutor had a slightly different perception of the same scene.

Spranger and Beuls observed in their experiments, that all machineExperimental results

learning methods performed better on the robot data than on the

artificial dataset, which indicates, that they were able to harness the

additional structure. In the case of perceptual deviation (i.e., where tutor

and learner perceived the same scene, but from different perspectives),

a considerable performance drop could be observed. This indicates,

that tutor instructions are most helpful, if formulated from the learner’s

perspective. When exponentially increasing the number of features on

their artificial dataset, Spranger and Beuls only noted a linear reduction

in performance for most classifiers. Moreover, many classifiers were able

to deal well with different degrees of feature sensitivity as controlled by

the probabilities used in the binomial distribution of the weight vectors.

Spranger and Beuls also found, that frequent words were learned much

easier than infrequent ones. Finally, although the different machine

learning algorithms used quite different internal representations, all of

them worked reasonably well in the description game scenario.

While the study by Carr et al. [94] has demonstrated, that iteratedOutlook

learning causes a pressure for simplicity in language, the experiments

by Spranger and Beuls [385] show, that many off-the-shelf machine

learning algorithms can also be used in the context of language games.

However, in both scenarios, the authors assumed a fixed 1:1 mapping

between concepts and words. Moreover, the flow of information was

unidirectional from teacher to student. In the next section, we will

consider studies, which focus on horizontal transmission, where the

mapping between words and concepts as well as the shape of the

concepts themselves are subject to a negotiation between peers.
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7.4.3 Horizontal Transmission

As a prime example of a language game with horizontal transmission of A signaling game in

the color domain
information, Gärdenfors [181, Chapter 5] introduces the signaling game

investigated by Jäger and van Rooĳ [215] for the color domain: Speaker

and hearer are assumed to have a fixed and finite set of K words as

well as a shared world model. This world model corresponds to the

color disk, which is spanned by the dimensions hue and saturation.

In the signaling game under consideration, nature selects some point in

the color space and reveals it to the speaker, but not to the hearer. The

speaker can now transmit one of the K words to the hearer, who then

has to select one point in the color space as its best guess. The goal of

this signaling game is to maximize the average similarity between the

original point and the hearer’s guess.

In game theory, a Nash equilibrium is defined as a pair of strategies, Voronoi tessellation

as Nash equilibrium
which are best responses to each other. This means, that no player can

benefit from changing their strategy. Jäger and van Rooĳ assume, that

the color space is convex and compact, and that both the probability

distribution used for drawing an example point and the similarity

function for pairs of points are continuous. They were able to show, that

under these conditions, there exists a Nash equilibrium, which corre-

sponds to a Voronoi tessellation based on K prototypical points: When

prompted with nature’s chosen stimulus, the speaker selects the word

associated to the closest prototype and transmits it to the hearer, who

then points to the prototype associated to this word. Unfortunately, if

the underlying similarity space is symmetric (e.g., invariant to rotation),

an infinite number of equally good Nash equilibria exists. The solution

selected by the two agents then heavily depends on the initial conditions.

What are the dynamics of the process leading to the selection of Finding the Nash

equilibrium
such a Nash equilibrium? In order to investigate this question, Steels

[389, 390, 391] has conducted various studies with large populations

of agents, using both computer simulations and robotic experiments.

Referring back to the semiotic cycle from Figure 7.14, he splits up the

overall guessing game into two components, called the discrimination

game and the naming game.

The discrimination game is played by a single agent and is concerned The discrimination

game
with the conceptualization of the world model. Based on a context of

several objects and one focal object (which has been selected by nature),

the agent tries to find a concept in its conceptual inventory, which

matches the focal object, but mismatches all other objects in the current

context. The exact procedure of making such a classification depends

on the type of concept representation being used, which can for instance

be based on prototypes or discrimination trees. If the discrimination

game was successful, then the current category system is reinforced

and the selected category is returned. If it was not successful, then the

category system needs to be adapted by changing existing categories

or creating a new category. The exact procedure again depends on the

representational format and can for example be based on moving and
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creating prototypes [391], or adding and removing nodes with respect

to an existing discrimination tree [389].

The naming game, on the other hand, is played between the speakerThe naming game

and the hearer and is concerned with the verbalization and parsing

of utterances. It assumes, that both players have the same inventory

of concepts. In the naming game, nature selects a concept and reveals

it to the speaker, but not to the hearer. The speaker verbalizes this

concept by looking up the corresponding word. The relation between

concepts and words is usually implemented as an associative memory,

which stores many-to-many associations between words and concepts,

where each association is annotated with a confidence weight (usually

in the interval [0, 1]). Verbalizing a concept then corresponds to picking

the word with the highest association to the given concept. The hearer

now parses this word by doing the inverse lookup, i.e., selecting the

concept with the highest association to the given word. If the hearer

selects the correct concept, both agents reinforce their associations by

increasing the weights of the selected associations and by decrementing

the weights of competing associations. On the other hand, if the hearer

selects the wrong concept, the naming game fails and both agents

decrement the weights of the associations they used. If the speaker

does not have any word associated with the given concept, a new word

is created and associated with the given concept. If the hearer receives

a novel word, this word is added to the lexicon and a connection to the

intended concept is created.

Both the discrimination game and the naming game are by them-The guessing game

selves not very interesting, since they are either played only by a single

player (discrimination game) or based on the strong assumption that

both players share the same conceptual repertoire (naming game). The

guessing game now integrates the discrimination game and the naming

game: Given a context of objects and one focal object, the speaker first

plays the discrimination game in order to obtain a concept, which

discriminates the focal object from all other context objects. The speaker

then initiates a naming game using the selected concept and transmits

the best-matching word to the hearer. The hearer now de-references

this word in order to obtain a concept, and then uses this concept’s

description to determine which object in the context was referenced

by the speaker. In the case of a success (i.e., the hearer identified the

correct object), both the categorization and the lexicon are reinforced.

In case of a failure, both the categorization and the lexicon are modified.

The guessing game thus combines elements of the discrimination game

and the naming game, establishing a connection between the world

models of the two agents. In experimental studies, one can either use

identical world models [391], or an additional perceptual layer to obtain

features from sensory input [67, 389]. The latter approach provides

a more realistic setting, but may also cause considerable amounts of

additional noise. In the following, we will briefly introduce several

studies based on the guessing game.
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The talking heads experiment by Steels [389] was one of the first Talking heads

empirical studies based on the guessing game. In this experiment, the

environment consisted of a whiteboard with several geometric figures

(triangles, rectangles, etc.) in various sizes, shapes, and colors. This

whiteboard was observed by two cameras, one for each agent playing the

game. In order to turn the raw camera image into a feature-based world

model, several computing steps were implemented in the perceptual

layer, starting with a segmentation of the input image based on colored

areas, followed by computing features such as width, height, position,

color, or number of edges for each of the detected objects, and then

re-scaling these feature values based on the current context.

The conceptual layer of the talking heads architecture was imple- Implementation of

the conceptual layer
mented with discrimination trees, i.e., binary trees, where each inner

node splits up one feature at a specified threshold. This is relatively sim-

ilar to decision trees as introduced in Section 5.2.4. As Steels notes, the

resulting categories based on such a discrimination tree are not based

on high within-category similarity, but on pairs of categories, which de-

scribe notable differences. The conceptual layer furthermore kept track

of the success rate for different categorizers as well as their frequency

of use. Whenever the discrimination game failed, the discrimination

tree was expanded, considering only nodes, which had been useful in

the past. Based on the collected statistics, old categorizers with a low

success rate or only infrequent use were pruned from the discrimination

tree. This combination of extension and pruning mechanisms can be

related to the insertion and merging operators used in COBWEB [159]

for growing and shrinking the conceptual hierarchy (cf. Section 7.3.2).

The lexical layer of the talking heads was implemented as an associative

network as described above. Overall, the talking heads experiment

thus used an embodied version of the guessing game, which involved

multiple domains (namely, color, shape, size, and location). As Steels

was able to show, a population of agents was able to converge onto a

shared vocabulary and a shared conceptualization, if they repeatedly

played the guessing game based on the visual input of the two cameras.

In a related study, Steels and Belpaeme [391] have focused on the Guessing game in the

color domain
color domain, using the psychologically motivated CIE L∗a∗b∗ color

space. It uses three dimensions, namely lightness (L∗
dimension), the

red-green channel (a∗ dimension), and the yellow-blue channel (b∗

dimension). As stimuli, Steels and Belpaeme used Munsell color chips,

which cover the CIE L∗a∗b∗ color space in a regular pattern. In contrast

to the talking heads setup, Steels and Belpaeme used a prototype-

based approach for representing color concepts. More specifically, the

activation of each color category k was computed as a weighted sum of

J locally reactive units based on a radial basis function (RBF):

yk(x⃗) =
J∑︂
j=1

wj · e
− 1

2

∑︁n
i=1

(︄
xi−p

(j)
i

σ

)︄2
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Here, p
(j)
i is the ith coordinate of the jth prototype for concept k, andPrototype-based

representation of

concepts

σ specifies the size of the receptive fields. This RBF-based approach

can be connected to the conceptual spaces theory, if one assumes J = 1,

i.e., a single receptive field per concept: In this case, p⃗(1) corresponds to

the prototype associated with the concept, and the activation function

yk(x⃗) is convex. In order to update the RBF network associated with

each concept, Steels and Belpaeme use the following strategy: In case

of a success, the weight of each RBF unit j is increased based on its

individual activation. In case of a failure, a new RBF unit is created,

which is centered on the stimulus, and either associated to the best

matching category or to a new category. After each step, a weight decay

mechanism is used to slowly decrease all association weights between

RBF units and concepts to simulate forgetting.

In their experiments, Steels and Belpaeme found, that a sharedResults

category structure can only emerge, if the agents in their population

played the guessing game. If only individual discrimination games were

played, the agents ended up with fairly different conceptual boundaries.

Bleys et al. [67] have provided an additional study on the colorEmbodied guessing

game for colors
domain, using, however, perceptual input from humanoid robots in

order to investigate the effects of domain structure and perceptual

deviation. Their scenes were based on an office environment with

two to four colored objects from an overall set of 20 objects. In the

perceptual layer of their architecture, they first segmented the image

into regions and then computed each objects’ color as the average CIE

L∗a∗b∗ coordinates of all of its pixels. For each scene, they recorded

images from two humanoid robots with different perspectives. The

conceptual layer of their setup was based on prototype theory: Each

concept was represented by a prototypical point in color space, and a

Voronoi tessellation was used for making classifications.

Updates to this conceptual representation were based on three strate-Update strategies

gies: The invention strategy was used to create a new category (with

the prototype being identical to the focal object) and to associate this

category to a newly created word. The invention strategy was triggered,

if the current categorization was not successful in discriminating the

focal object from the context. The adoption strategy, on the other hand,

was used, if the hearer encountered an unknown word, and consisted

simply of creating a new concept centered on the focal object and

associating this new concept with the novel word. Finally, the align-

ment strategy was used to update existing categories at the end of the

guessing game in both agents: In case of a success, the success score

of the category was increased and its prototype was moved slightly

towards the focal object. In case of a failure, the category score was

decreased. Categories with a low score were removed from the lexicon

after some time. Unlike previous setups, the model by Bleys et al. did

not use an associative memory for mapping concepts to words, but

rather assumed a fixed 1:1 mapping.

In their experiments, Bleys et al. considered three embodiment condi-Experimental results

tions: In shared simulated perception, both agents had an identical world
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model based on randomly chosen Munsell chips, similar to the setup

by Steels and Belpaeme [391]. In shared grounded perception, an identical

world model was based on the perceptual input to the same humanoid

robot. Finally, in individual grounded perception, perceptual input from

two different humanoid robots with slightly different perspectives on

the same scene was used. In their experiments, Bleys et al. investigated

the influence of the embodiment conditions and the initial concept

inventory on communicative success. They observed, that the added

structure from embodiment had a positive impact, while perceptual

deviation had a limited negative impact. Agents were able to success-

fully play the guessing game with the given update strategies, both

when using a predefined color lexicon of English color terms, and

when starting from a blank slate. In the latter case, a larger number of

categories evolved in the population, which allowed for finer-grained

distinctions. The resulting category structure was in this case, however,

less similar to English color terms. Overall, their experiments showed,

that a simple prototype-based model with some fairly straightforward

update mechanism is capable of overcoming the difficulties stemming

from embodiment.

Eyre and Lawry [149] have explicitly used a representation based Conceptual spaces

for language games
on conceptual spaces for language games. Their representation of

concepts is based on the formalization by Lewis and Lawry [253] (cf.

Sections 2.4.2, 2.5.3, and 7.2.3): Each concept Ck was described by a

prototypical point p⃗(k) and an uncertain distance threshold ϵk ≥ 0
(whose probability distribution was given by δk). The concept Ck was

deemed applicable to a given observation x⃗ if d(p⃗(k), x⃗) ≤ ϵk. This leads

to a fuzzy membership function, which is based on the probability

of x⃗ falling under Ck with the given distribution δk over the distance

threshold ϵk:
µk(x⃗) = P(d(p⃗

(k), x⃗) < ϵk | ϵk ∼ δk)

Eyre and Lawry consider a population of N agents. Each agent has Update strategies

an importance weight w, which reflects their respective "seniority"

within the population. Overall, there is a fixed number of concepts,

which remains constant during the experiment. At each step,
N
2 parallel

interactions take place, where the speaker asserts that "x⃗ is Ck" or "x⃗
is ¬Ck". The assertion to make is chosen through Bayesian reasoning

based on the membership values of x⃗ to the individual concepts. The

hearer then calculates the probability of this assertion being true based

on their own definition of the underlying concepts. If this probability is

larger than the seniority weight w of the speaker, no action is taken. If

this probability is, however, smaller than w, then the hearer updates

their representation of the concept Ck: In case of a positive assertion

("x⃗ is Ck"), this corresponds to moving the prototype of Ck closer to

the observation x⃗ and increasing the concept’s threshold ϵk (which

corresponds to widening the concept). In case of a negative assertion

("x⃗ is ¬Ck"), the update consists in moving p⃗(k) further away from x⃗
and decreasing the concept’s membership threshold ϵk (thus making it
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more narrow). The size of the update is determined in such a way, that

the assertion’s degree of truth equals w and that minimal changes are

made to the overall conceptual inventory.

In their simulations, Eyre and Lawry used 100 agents, a fixed numberSimulations

of 11 concepts, and a three-dimensional artificial feature space. The

initial seniority level of the agents was chosen randomly from the in-

terval [0.1, 0.9] and slightly increased after each interaction, simulating

the process of aging. As soon as the seniority weight reached a value

of 0.9, it was reset to 0.1 to simulate agents leaving and joining the

population. Eyre and Lawry observed, that the agents successfully

converged on a common conceptual system, as measured both through

the overlap of their conceptual regions and through overlap in the

generated assertions for novel stimuli. Eyre and Lawry furthermore

showed, that negative assertions, which use the negation of a concept,

can be a useful communication tool in such scenarios – an aspect, which

has been missing from most language game studies.

Also Vogt [421] has considered the combination of language gamesCo-evolution of

domains and

compositionality

and conceptual spaces. The focus of his research is, however, on the

co-evolution of conceptual domains and compositional language. He

notes, that while some domains are probably innate (such as the color

domain), other domains may be at least partially determined by culture.

Also the compositional nature of language, where the meaning of an

overall utterance is based on the meaning of the individual terms,

may be attributed to cultural rather than biological evolution. In his

simulations, Vogt aims to show, that the compositionality of language

and the division of an overall conceptual space into different domains

can co-evolve in the course of repeated embodied interactions.

In his simulations, Vogt uses 120 colored geometrical shapes, whichThe perceptual and

conceptual layer
are represented by four features in total. Three features describe the red,

green, and blue channel of color perception, while the fourth feature

represents the object’s shape. Each of these dimensions is discretized

into categories based on a set of prototypical values. By mapping each

feature value onto its corresponding category, an observation can be

described as a vector of four category labels. This vector is then used

as a concept in the discrimination game: If the description of the focal

object in terms of these category labels differs from all other objects

in the current context, the discrimination game was successful. If this

is not the case, then the raw values on the dimensions are used to

create the prototypes for new feature-wise categories. Vogt notes, that

the overall conceptual space has four dimensions, but that individual

domains can be constructed by combining a subset of these dimensions.

The concepts from the different domains can then be used as basic

meanings in the agent’s language. Compositionality then corresponds

to the combination of meanings from different domains.

The grammar for mapping between concepts and utterances is basedThe lexical layer

on simple rewrite rules with an associated confidence score. These

rules can be either holistic (i.e., using all dimensions) or compositional
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(i.e., using different domains for different parts of the utterance, thus

introducing one level of indirection in the rewrite process).

In his simulations, Vogt used 50 agents, which played a total number Simulations

of one million guessing games with a context of eight objects. As

Vogt notes, a division of the overall conceptual space into a color

domain (using the red, green, and blue dimensions) and a shape

domain (using only the shape dimension) is most efficient with respect

to the number of rules needed to generate and interpret utterances.

However, since the red channel was quite informative for the given

dataset, one may also expect agents to use a separate domain for the

red dimension, while combining all remaining dimensions into another

domain. The simulations showed, that if the pool of agents was kept

fixed, communicative success reached a level of 80%. However, agents

used the same type of internal rules only in 50% of the interactions. Thus,

even though agents tended to produce the same utterance, they did so

using different types of rules (i.e., different domain structures). Holistic

rules were very frequent in the beginning of the experiments, but were

subsequently replaced by compositional rules. The most frequent rule

type were rules, which distinguished the color domain from the shape

domain, but other types of rules were also able to survive.

In a second set of simulations, Vogt still kept the overall number Adding a life cycle

of agents fixed, but introduced a life cycle similar to the one used

by Eyre and Lawry [149]: After having played a certain number of

guessing games, agents were removed with a certain probability from

the population and replaced by new agents without any conceptual or

grammatical knowledge. As Vogt observed, the results were less stable

than in the first experiment (due to the additional fluctuation in the

population), but communicative success reached comparable levels.

More importantly, the agents used the same rule types in about 75% of

the interactions, with a much stronger emphasis on compositional rules

using a distinction into the color domain and the shape domain. It

thus seems like the influx of new agents prevented the population from

getting trapped in a local optimum by introducing another pressure,

which favors more compact language systems.

Let us conclude our discussion with the work by Ohmer et al. [305, Language games

with neural networks
306] as a recent example for combining language games with deep

neural networks. Their studies focus on the mutual influence between

perceptual biases and emergent languages. In their experiments, Ohmer

et al. used a reference game, where the speaker was presented only with

the focal object and then created a multi-word utterance. This utterance

was then used by the hearer to identify the focal object in a context

of distractors. Both speaker and hearer were implemented using a

convolutional neural network (cf. Section 6.2.2) for perception and a

recurrent neural network for translating between the CNN’s high-level

representation and the multi-word utterance. Due to the immense

computational complexity of training large neural networks, Ohmer et

al. only simulated a single pair of agents with fixed role assignment

instead of using a complete population of agents. Their work can thus
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be seen as an intermediate case between vertical transmission (using a

single pair of agents with fixed role) and horizontal transmission (both

agents adapting their strategies).

Ohmer et al. used the 3dshapes dataset, which contains artificialAdding perceptual

bias with relational

label smoothing

images of colored objects in front of a (differently) colored background,

and which has, for instance, also be used for evaluating the SCAN

system [197] (cf. Section 6.4.1). Ohmer et al. defined different classes

based on combinations of the color, shape, and size of the foreground

object, and used these classes to pretrain the CNNs on a classification

task. In order to obtain different perceptual biases for the agents,

they used a technique called relational label smoothing [276]: Instead of

using a one-hot vector for encoding the target classification output,

they used a target value of 1 − ϵ for the true class and
ϵ
K for the K

classes, which shared the respective bias feature with the target class.

For instance, in order to induce a perceptual bias towards the shape

domain, an input consisting of a small red cube caused also the classes

representing a small yellow cube or a large green cube to receive a

nonzero target value. Unlike the general label smoothing approach (cf.

Section 6.2.3), which distributes a fraction of the output probabilities

not among all other classes, relational label smoothing thus only makes

such a distribution among semantically related classes. This tends to

lead to representations, which respect the similarity relations among

classes [276]. Ohmer et al. pretrained different CNN variants either

without relational label smoothing (default configuration), by using

relational label smoothing with respect to a single feature (color,

shape, and size), or with respect to all three features at the same time

(all configuration). By assessing the average Cosine similarities of the

CNNs’ learned representations for pairs of examples from all possible

class combinations, Ohmer et al. were able to show, that the learned

representations exhibited a bias towards the respectively targeted

feature.

In a first set of language game experiments, Ohmer et al. investigatedExperiments

combinations of agents with the same or different biases. If both agents

exhibited the same bias, the messages, which evolved as part of the

reference game, showed a clear grounding of the preferred feature,

as indicated by entropy-based evaluation metrics. An unbiased agent

tended to adapt its language to a biased interlocutor, which the effect

being stronger for a biased speaker than for a biased hearer. Moreover,

a pair of against with an all bias received higher rewards than an

unbiased pair of agents, indicating, that the perception of relevant

similarity relationships improved communication. In a second set of

experiments, Ohmer et al. investigated the influence of language on

perception by allowing the agents to fine-tune the weights of their

pretrained CNNs. They compared the Cosine similarities for pairs

of images between the speaker’s CNN and the hearer’s CNN, and

observed a co-adaption of their perceptual layers, where the hearer was

influenced by the speaker more strongly than the other way around.

Finally, Ohmer et al. considered a population of agents with an identical

perceptual bias, and analyzed, whether an agent with a different bias
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was able to "intrude" this population by obtaining consistently higher

rewards than its current members. They found, that a population

of agents with an all bias could not be invaded, indicating, that a

perceptual bias for all relevant perceptual features is an evolutionary

stable solution.

7.5 summary

As we have seen in this chapter, there are many aspects and approaches Lessons learned

for making machine learning approaches more cognitively plausible.

We have focused on three aspects, which we deemed to be the most

relevant to conceptual spaces: In Section 7.2, we considered the in-

corporation of background knowledge, and we discussed logic tensor

networks as a promising way for connecting the symbolic and the

conceptual layer. The usage of unlabeled data with a focus on concept

formation algorithms was then discussed in Section 7.3, before we

focused on learning in the context of communication in Section 7.4 in

the form of language games. There are, of course, several other strands

of research, which are relevant and may spark interesting research

programs, such as active learning [361], learning with incomplete in-

formation and insufficient resources [425], or multi-modal embodied

learning [301].

An obvious questions, which arises in this context, concerns the Open ends: using

our formalization
relation to our formalization of conceptual spaces from Part I of this

dissertation. In Section 7.2.3, we have argued, that logic tensor networks

can in principle be used with our proposed membership function.

However, this membership function may have serious limitations with

respect to the gradients it provides. Nevertheless, this seems to be

a promising research direction, since the incorporation of explicit

top-down constraints has so far not been addressed in the context of

conceptual spaces. In Section 7.3, we have already discussed, that when

using our formalization as means of representation, one can certainly

take inspiration from existing concept formation algorithms, but would

need to adapt many concrete measures and update steps. In Section 7.4,

we already noted, that some researchers have already used conceptual

spaces as a representation format for language games. One could

extend this approach by using our formalization of the framework,

which would allow to also introduce operations on concepts: Agents

could then for instance also pick a word like AND as referring to

the intersection operation from Section 3.1.2, and then use utterances

such as "red and round" to describe an object, which is both red

and round. Again, such an application of our formalization would,

however, require the development of specific update procedures for

the conceptual representations based on the results of the interactions.

In the end, the final goal is of course to combine all three aspects Combining multiple

aspects
discussed in this chapter into a single algorithm. This single learning

mechanism would then use an incremental procedure, which is able to
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work in an entirely unsupervised way, but which can also incorporate

the indirect feedback from language games. Moreover, it would be able

to extract structured knowledge (such as "all apples are round") from

the geometric representation and to use this background knowledge as

constraints for subsequent learning tasks.

Needless to say, such a tight integration of different aspects in aFirst steps

single algorithm is very complex and thus difficult to achieve. First

steps into this direction should thus probably concentrate on individual

aspects. For instance, Alomari et al. [12] attempted to learn a grounding

of natural language concepts in visual perception. They considered

video clips of different activities, which were annotated with natural

language commands. After applying object detection to a given scene,

they used multiple feature spaces to represent each object, namely

color, shape, and location, as well as relative distance and relative

orientation of two objects to each other. This resembles the domain

structure of a conceptual space. In each feature space, they used an

incremental Gaussian mixture model to cluster the raw values into

Gaussian components, which can be interpreted as properties within

the respective domain. On top of these properties, Alomari et al. cre-

ated a graph-based representation of the overall scene, which can be

thought of as a description in the symbolic layer. They then mapped

subsequences of the natural language commands to subgraphs of the

overall scene graph by counting relative co-occurrences. Overall, the

approach by Alomari et al. can be related to research in conceptual

spaces and explicitly targets incremental, loosely supervised learning.

This chapter marks the end of our background on machine learningOutlook

algorithms. In the next chapter, we will introduce an optimization tech-

nique called multidimensional scaling, which obtains similarity spaces

based on dissimilarity ratings from psychological studies. We will fur-

thermore argue, that a combination of this psychological approach with

the representation learning techniques introduced in Chapter 6 can

combine psychological validity with the ability to generalize to novel

inputs. This hybrid approach will then be applied to two exemplary

datasets in Part III of this dissertation.
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In Chapter 6, we have considered the usage of artificial neural net- Psychological

implausibility of

ANNs

works (ANNs) for extracting the dimensions of a conceptual space. One

great weakness of this approach is its lack of psychological plausibility:

The solutions are found by iteratively optimizing a given error measure

on a large dataset of examples – a procedure, which is not necessarily

cognitively plausible. Insights from psychological studies are typically

433
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not taken into account by this approach. In this chapter, we therefore

introduce another way for obtaining conceptual spaces, namely, the

technique of multidimensional scaling (MDS). This approach is typically

followed in psychophysics and cognitive psychology.

Multidimensional scaling is based on pairwise dissimilarity ratings forEliciting

dissimilarity ratings
a given set of stimuli. These dissimilarity ratings are typically obtained

through psychological studies. We will introduce different ways of

eliciting such dissimilarity ratings in Section 8.1. The result of this

collection step for a set ofN stimuli is usually represented as a so-called

dissimilarity matrix ∆ of size N ×N .

The input to multidimensional scaling then consists of this dissim-Multidimensional

scaling
ilarity matrix ∆ and the desired number n of dimensions for the

similarity space. MDS then represents each stimulus as a point in an

n-dimensional space, and tries to arrange these points in such a way,

that the distance of two points accurately reflects the dissimilarity rating

of the stimuli they represent. The underlying optimization problem of

minimizing the so-called Stress measure will be treated more formally

in Section 8.2. There exists a variety of different algorithms for solving

the MDS optimization problem. In Section 8.3, we introduce classical

MDS, which finds an analytical solution based on an eigenvalue decom-

position. Afterwards, we describe Kruskal’s algorithm (which is based

on gradient descent) in Section 8.4, before discussing the SMACOF

algorithm (which uses iterative function majorization) in Section 8.5.

Choosing the optimal value for the number n of dimensions isEvaluating and

interpreting

similarity spaces

often not trivial. Therefore, one typically creates similarity spaces for

different values of n, and compares them to each other. In Section

8.6, we introduce two evaluation approaches for the similarity spaces

produced by MDS. On the one hand, one can directly measure how well

the optimization problem has been solved by quantifying the remaining

level of Stress. On the other hand, one can analyze, whether the similarity

space is structured in a meaningful way. Since the solutions provided

by MDS are invariant under rotation and reflection, the coordinates of

the resulting configuration typically do not coincide with interpretable

features. We will also show in Section 8.6, how one can find directions

in the similarity space, which correspond to such interpretable features.

A serious drawback of the MDS approach is, that it is inherentlyA hybrid approach:

combining MDS

with ANNs

limited to the stimuli from the psychological experiment. If a previously

unseen stimulus arrives, it is in general impossible to directly map

it onto a point in the conceptual space without eliciting a sufficient

amount of dissimilarity judgments between this new stimulus and

stimuli from the original study [35]. Such additional dissimilarity judg-

ments could then be used to either triangulate the position of the new

stimulus in the conceptual space, or to re-run the MDS algorithm with

an enlarged dissimilarity matrix of size (N + 1)× (N + 1). While such

a procedure may be acceptable, if one is only interested in doing psy-

chological research, it is clearly not suitable for applications in artificial

intelligence. In Section 8.7, we propose to initialize a similarity space

with MDS, and then to harvest the generalization capability of artificial
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neural networks for learning a mapping from raw stimuli to points in

the conceptual space. We argue, that this hybrid approach combines

the psychological grounding of MDS with the generalization capability

of ANNs, thus taking the best from both worlds.

Finally, in Section 8.8, we summarize the key insights from this

chapter, and give a brief outlook on our experimental studies reported

in Part III of this dissertation.

The content of this chapter is partially based on work previously

published in [40, 47].
1

Moreover, much of the general background

information is based on the textbook by Borg and Groenen [71].

8.1 obtaining dissimilarity ratings

In order to apply multidimensional scaling, one needs to provide a Direct and indirect

methods
matrix ∆ of pair-wise dissimilarities for all stimuli under consideration.

In order to collect dissimilarity ratings from human participants, several

different techniques can be used (see e.g., [71, Chapter 6] and [169,

201, 433]). Table 8.1 gives an overview of the different methods, which

we will cover in this section. Typically, one distinguishes direct from

indirect methods: In direct methods, participants are fully aware that

they rate, sort, or classify different stimuli according to their pairwise

(dis-)similarities. Indirect methods, on the other hand, are based on

secondary empirical measurements such as correlations, confusion

probabilities, or reaction times. An appropriate transformation of these

secondary measurements results in so-called derived dissimilarities.

In Table 8.1, we also introduce a second way of classifying the elici- Pair-based and

stimulus-based

methods

tation methods, namely into pair-based and stimulus-based methods:

In pair-based methods, participants are presented with pairs of stimuli,

and their task is directly based on these stimulus pairs. Here, dissimi-

larity information is collected for each pair of stimuli individually. In

stimulus-based methods, on the other hand, participants operate mainly

on individual stimuli, e.g., by grouping or rating them individually.

Dissimilarity ratings for pairs of stimuli can then be obtained by com-

bining the ratings of the individual stimuli in an appropriate way (e.g.,

by computing their correlation).

Since the classification into direct and indirect methods is much Overview

more prevalent in the literature, the remainder of this section will be

organized according to this distinction: We will give an overview of

several direct methods in Section 8.1.1. In Section 8.1.2, we will look at

one of the direct methods, namely the Spatial Arrangement Method

(SpAM), in more detail. Afterwards, we will give an overview of several

1 The initial workshop paper [40] has been joint work with Elektra Kypridemou. In [40],

Elektra Kypridemou has described the background with respect to multidimensional

scaling (MDS), and has extracted similarity spaces with MDS from the raw data, while

I have mainly developed and described the hybrid approach, and implemented and

evaluated the machine learning experiments.
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Direct Indirect

Pairwise comparisons Perceptual confusion

Ranking Conversion-based

Binary ranking

Q-sort

Pair-based

Anchor stimulus

Constrained sorting Correlation-based

Free sorting Attribute profiles

Triad Co-occurrence-based

Stimulus-based

Spatial arrangement

Table 8.1: Classification of psychological methods for eliciting dissimilarities.

indirect methods in Section 8.1.3. Some general considerations with

respect to the experimental setup apply to both types of elicitation

methods. They are discussed in Section 8.1.4, where the distinction into

pair-based and stimulus-based techniques will again play a role.

In addition to the elicitation of dissimilarity ratings in psychologicalDissimilarities from

other sources
studies, it is also possible to derive dissimilarities from other sources

such as text corpora or pretrained artificial neural networks. While these

dissimilarities can no longer claim to be cognitively grounded, their

collection can be automated and thus easily be scaled up to thousands

of stimuli. In Section 8.1.5, we therefore summarize an approach for

deriving dissimilarities from text corpora as well as a study investigat-

ing whether the activations of artificial neural networks can be used to

predict human dissimilarity ratings.

At this point, we would also like to refer back to relative distance con-Relation to metric

learning
straints from metric learning (cf. Section 5.3.3), which can be expressed

as follows for a set R of data point triples (x⃗(j1), x⃗(j2), x⃗(j3)), the desired

distance function d̂, and a margin s > 0:

∀(x⃗(j1), x⃗(j2), x⃗(j3)) ∈ R : d̂(x⃗(j1), x⃗(j2)) < d̂(x⃗(j1), x⃗(j3)) + s (5.26)

In Section 5.3.3, we noted, that such relative distance constraints canRelative distance

constraints based on

dissimilarities

be based on class labels, with x⃗(j1) and x⃗(j2) belonging to the same class,

but x⃗(j3) belonging to a different class. One can easily see, that also the

entries of a dissimilarity matrix ∆ can be used to create such constraints,

namely, by choosing stimuli x⃗(j1), x⃗(j2), x⃗(j3), for which δj1j2 < δj1j3 + t
for a margin t > 0, i.e., whose pairwise dissimilarities differ at least

by t.2 This would be one possible way of grounding machine learning

techniques in psychological data. A deeper discussion of this idea, is,

however, beyond the scope of this dissertation.

2 Since dissimilarity ratings and desired distances may be scaled differently, we use two

different margins s and t.
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8.1.1 Direct Methods

The probably most common way of collecting dissimilarities in a direct Pairwise

comparisons
way is based on explicit ratings for pairwise comparisons (see [71, Chapter

6] and [169, 201, 229, 433]): In this approach, all possible pairs from a

set of stimuli are presented to participants (one pair at a time), and

participants rate the dissimilarity of each pair on a given dissimilarity

scale. Each point of the dissimilarity scale is associated with a numeric

value, where large values correspond to large dissimilarities and small

values express small dissimilarities. This method is conceptually very

straightforward, and the obtained ratings can be directly used for sub-

sequent analysis without further transformations.

Instead of asking for numerical dissimilarity ratings, ranking tasks Ranking tasks

try to elicit a ranking of the dissimilarities (see [71, Chapter 6] and

[433]). Participants are presented with a set of cards, which contain

pairs of stimuli. They are then asked to sort these cards according to

the dissimilarity of the stimulus pairs printed on them: The card with

the most similar stimulus pair should be on top of the resulting stack,

while the card with the most dissimilar item pair should be on the

bottom of the stack. This full ranking thus implies a dissimilarity scale

with
N ·(N−1)

2 points for a set of N stimuli.

Creating a complete ordering of all stimulus pairs is, however, quite Binary ranking

demanding for participants, especially when the number of stimuli is

very large. A binary ranking task thus only requires participants to sort

the cards into two piles, one for similar and one for dissimilar pairs of

stimuli [433]. This is somewhat reminiscent of the absolute constraints

for metric learning discussed in Section 5.3.3, where pairs of data points

were also defined to be either similar or dissimilar.

Binary ranking, however, only gives very coarse-grained information. Hierarchical binary

ranking
As a compromise between cognitive workload and fine-grained results,

one can thus ask the participants to again divide up each pile into two

sub-piles by distinguishing more similar from less similar stimulus pairs

[71, Chapter 6]. This can be recursively repeated, until the participants

are no longer able to make a distinction. The resulting equivalence

classes can then be transformed into numeric dissimilarity values.

Another way of reducing the workload for the participants in ranking Q-sort

tasks consists in predefining the number of piles. Each pile represents

one degree of dissimilarity and can be assigned a numeric dissimilarity

value. Sorting cards with stimulus pairs into these pre-defined piles thus

results in dissimilarity ratings similar to the ones from pairwise com-

parisons. If one furthermore defines, how many cards need to be placed

into each pile (typically following a normal distribution), one arrives

at the so-called Q-sort technique [71, Chapter 6]. This additional con-

straint on the distribution of the dissimilarity ratings is easily enforced

when sorting cards into piles, but is not directly applicable to pairwise

comparisons, where the participants only see one stimulus pair at a time.
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Another direct method based on stimulus pairs is called the anchorAnchor stimulus

method stimulus method [71, Chapter 6], which elicits conditional dissimilarities.

Here, one stimulus is picked as an anchor, and participants are asked

to judge the respective dissimilarity of all other stimuli to this anchor

stimulus on a given dissimilarity scale. In the experimental design,

each stimulus needs to be selected as anchor once. The resulting dis-

similarity ratings are now conditional in the sense, that they depend

on the anchor: One can only make a meaningful comparison between

the dissimilarities of two stimulus pairs, if they involve a common

anchor. While this can account for asymmetric dissimilarities (which

have already played a role in Section 4.4.1), one needs to employ special

MDS algorithms for processing these conditional dissimilarities.

Sorting tasks again ask participants sort cards into piles. However, inSorting tasks

contrast to the methods described above, this time each card contains a

single stimulus instead of a stimulus pair. Participants are now asked to

build piles of similar items. If the number of piles is pre-defined by the

experimenter, one could call this constrained sorting. Typically, however,

the number of piles is left to the discretion of the participants. The

resulting method is then called free sorting [169, 229, 433]. Dissimilarity

scores for stimulus pairs can be derived based on their co-occurrence:

If tow stimuli are found in the same pile, they receive a dissimilarity

score of zero. If two stimuli have been sorted into different piles, they

obtain a dissimilarity score of one. The elicited dissimilarities are thus

binary in nature.

A more constrained version of the sorting task is called the triadTriad method

method [201]: Here, only a subset of three stimuli is shown at once, and

participants are asked to put them into two piles. This corresponds to

selecting which stimulus pair is the most similar one. Again, this results

in a binary notion of dissimilarity. The triad method obviously needs

to be repeated multiple times, until many (or preferably all) triples of

stimuli have been presented. It can be related to the relative constraints

for metric learning discussed in Section 5.3.3, where one also considers

triples of data points. One can moreover view the third stimulus in this

comparison as a context, which highlights the commonalities among

the two other stimuli [194]. The overall similarity between two stimuli

can then for instance be approximated by their probability of being

grouped together, irrespective of the context [194].

8.1.2 The Spatial Arrangement Method

The Spatial Arrangement Method (SpAM) proposed by Goldstone [169] isSpAM in a nutshell

a direct method of eliciting dissimilarity ratings, which makes use of a

geometric approach. In this collection technique, multiple visual stimuli

are displayed on a computer screen. In the beginning, the arrangement

of these stimuli is randomized, and participants are then asked to

arrange them via drag and drop in such a way, that the distances

between the stimuli are proportional to their respective dissimilarity.
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Once participants are satisfied with their solution, they can store the

arrangement. The dissimilarity of two stimuli is then recorded as their

Euclidean distance in pixels. Let us assume, thatN stimuli are displayed

at the same time. If the participant modifies the position of a single

stimulus, its distance to all otherN−1 stimuli have been changed. Thus,

each modification by the participant updatesN − 1 dissimilarity values

at the same time which makes this procedure very efficient. Moreover,

SpAM quite naturally incorporates geometric constraints: If A and B
are placed close together, and C if is placed far away from A, then it

cannot be very close to B.

It is a natural thought to combine the similarity ratings obtained SpAM and MDS

through SpAM with a subsequent application of multidimensional

scaling: In both cases, a spatial representation of dissimilarities is used,

dissimilarity is assumed to be a symmetric relation, and a full matrix of

dissimilarities is expected. As Goldstone put it:

As such, the technique can be thought of as requiring

subjects to create their own personal multidimensional

scaling (MDS) solutions. [169, p. 381]

In an experiment with 64 uppercase letters, Goldstone [169] demon- Quality of the

resulting ratings
strated, that the similarity values obtained through SpAM have a high

correlation to similarity values gathered from pairwise comparisons

and from confusion tasks. Instead of displaying all 64 stimuli at once on

the screen, he conducted multiple runs of SpAM with randomly chosen

subsets of 20 stimuli each. By aggregating over these multiple runs, he

was able to fill the complete dissimilarity matrix, while keeping the

cognitive load for the participants at a manageable level. Moreover,

Goldstone found, that with SpAM he could collect similarity ratings for

all 64 stimuli within a one-hour session, whereas for the other methods,

only a similarity matrix of 15 stimuli could be collected in the same

amount of time. This highlights, that SpAM is very efficient, while at

the same time producing similarity ratings of a high quality.

Constraining the participants to a two-dimensional space for express- The 2D constraint

ing similarity relations can in theory be a very strong constraint, which

may negatively affect the quality of the results: If the given stimuli

differ in n≫ 2 dimensions, then participants might not be able to make

a meaningful arrangement in two dimensions. However, Goldstone

[169] found, that the optimal MDS solution for his stimulus set of

upper case letters involved five dimensions, even though the collec-

tion technique limited participants to two-dimensional arrangements.

Thus, it is possible to extract high-dimensional similarity spaces from

low-dimensional spatial arrangements. By looking at the results of

this experiment, Goldstone also noted, that SpAM seemed to reflect

cognitive similarity (e.g., category membership) rather than perceptual

similarity (e.g., visual appearance).

More recently, Hout et al. [201] have conducted additional exper- Additional

experiments
iments to evaluate the SpAM technique. They found, that SpAM

provided MDS solutions, whose quality was comparable to that of the
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pairwise comparison method. Moreover, the MDS solutions based on

SpAM were quite stable with respect to multiple runs of the MDS algo-

rithm, and with respect to the removal of entries from the dissimilarity

matrix. In their experiments, contrary to Goldstone [169], they found

that SpAM worked well not only for extracting conceptual similarities,

but also for extracting perceptual similarities.

Overall, Hout et al. argue that SpAM provides fine-grained dissimi-General properties of

SpAM
larity ratings, which are limited only by the screen resolution. Moreover,

they classify SpAM as intuitive and user friendly. Another advantage

of using SpAM is that participants are automatically "calibrated": By

seeing a large subset of the stimulus set at once, they are provided

with enough context to make consistent judgments. In contrast to that,

if users are presented with one pair of stimuli at a time, their first

ratings might be quite unreliable, because they make these ratings

without any context. Later ratings might, however, be influenced by

the stimulus pairs observed before. Hout et al. also note, that while

being a promising technique for collecting similarity judgments, SpAM

is inherently limited to the visual domain, because stimuli need to be

presented on a computer screen.

Richie et al. [328] have recently investigated whether SpAM is alsoSpAM for abstract

stimuli
applicable for higher-dimensional, conceptual stimuli in the form of

words. With their work, they try to address the common skepticism,

that the two-dimensional arrangements created with SpAM may im-

plicitly restrict participants to focus their similarity ratings on only

two underlying dimensions. It is thus somewhat unclear, whether

higher-dimensional structures (such as presumably used by conceptual

rather than perceptual stimuli) can be recovered from SpAM ratings.

In their experiments, Richie et al. confirmed, that the SpAM ratings

had a high correlation with pairwise comparison ratings. Moreover,

they successfully reconstructed the five-dimensional BigFive space of

personality traits from SpAM-based dissimilarity ratings on personality

trait adjectives like "sentimental" or "approachable".

Also Verheyen et al. [418] have compared SpAM to the pairwiseSpAM and

contextualized

pairwise comparisons

comparison method. However, they considered a variant called total-set

pairwise comparison, where the full set of stimuli is always shown to

the participants as a reference while judging the pairwise similari-

ties. Verheyen et al. confirmed, that SpAM was considerably faster

than pairwise comparisons, but also found, that the elicited ratings

were less reliable, i.e., less comparable across different participants.

However, if ratings were aggregated across different participants, the

resulting averaged similarities were of a comparable quality for both

approaches. Verheyen et al. also noted, that SpAM was biased towards

spatial representations of the data (such as obtained via MDS), but

that a feature-based representation (where each stimulus is described

by the presence or absence of certain features, cf. Sections 1.1.1 and

4.4.1) is difficult to extract from these ratings. Ratings based on total-set

pairwise comparisons, on the other hand, were not found to have

such a bias in their study. However, Verheyen et al. also point out,
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that perceptual stimuli (which are the main focus in this dissertation)

usually lend themselves to a spatial representation, while feature-based

representations seem to be mainly beneficial for more abstract stimuli.

Kriegeskorte and Mur [229] have proposed a variant of SpAM called Multi-arrangement

method
the multi-arrangement method: Like Goldstone, they propose to ask

participants for multiple arrangements of different subsets of the overall

set of stimuli. However, instead of using randomly chosen subsets, they

initially collect an arrangement of the overall set of stimuli. Then, based

on this initial arrangement they present clusters of similar items on

subsequent trials – in some sense, they "zoom in" in order to obtain

finer-grained distinctions. Kriegeskorte and Mur propose to use an

online algorithm for selecting the next subset, which keeps track the

amount of evidence collected for each item pair, and which selects a

subset of items, such that additional ratings are collects for the stimulus

pairs with the currently weakest evidence.

Due to the "zooming in" effect, the dissimilarities collected in the Inverse MDS

individual trials no longer reflect the same order of magnitude. In

order to nevertheless aggregate them into a global dissimilarity matrix,

Kriegeskorte and Mur propose an inverse MDS approach: An initial

estimate of the dissimilarity matrix is used to obtain a two-dimensional

arrangement with metric MDS for all stimulus subsets used in the dif-

ferent trials. The initial dissimilarity matrix is then iteratively adjusted,

such that the resulting MDS arrangements are more closely aligned with

the actual two-dimensional arrangements provided by participants.

The final dissimilarity matrix (which achieves the best agreement with

the two-dimensional arrangements) can then be used for subsequent

analyses, such as extracting higher-dimensional similarity spaces with

MDS. When comparing their proposed multi-arrangement method to

pairwise comparisons, Kriegeskorte and Mur found a similar test-retest

reliability (i.e., results were consistent across different experimental

sessions) and a high correlation of the resulting dissimilarities.

8.1.3 Indirect Methods

In indirect methods, participants are typically not aware, that dissimilar- General approach

ity ratings are collected. This also implies, that dissimilarity is measured

only indirectly based on other quantities such as reaction times or cor-

relations. The dissimilarity matrix is then derived afterwards by an

appropriate transformation of the measured quantities.

One popular indirect method uses perceptual confusion tasks. Typically, Perceptual confusion

tasks
participants are asked to report as fast as possible, whether two stimuli

(which may be only presented for a very brief amount of time) are the

same or different [169]. This is done for all pairs of stimuli. In this case,

confusion probabilities and reaction times are measured in order to

infer the dissimilarities. The underlying assumptions are the following:

On the one hand, incorrectly responding "same", even if the stimuli
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are different, is much more likely for pairs of similar stimuli than for

pairs of dissimilar stimuli. On the other hand, the decision to correctly

respond "different" for pairs of similar stimuli takes more time than for

pairs of dissimilar stimuli.

This approach has the advantage of being very close to the perceptualStrengths and

weaknesses
level [433], because participants do not have enough time to involve

complex cognitive operations. Therefore, data collected through per-

ceptual confusion tasks may be less biased by background knowledge

and context. However, the stimulus set must be chosen in such a way,

that perceptual confusions are likely enough to take place. Moreover,

the dissimilarity data obtained based on perceptual confusion tasks

might be asymmetric, which is problematic for many standard MDS

algorithms, which require symmetric dissimilarity values.

Conversion-based methods [71, Chapter 6] take another approach: PairsConversion-based

methods
of stimuli are presented, and participants are asked to choose one of the

two stimuli based on a given criterion. If the stimulus set consists of cars,

one could for instance ask participants to choose the more attractive

one. If both stimuli are very similar, one would expect that they are

both selected by about 50% of the participants. Dissimilarity can then

be computed as the degree to which the selection probability differs

from 50%. Obviously, the resulting dissimilarity ratings are strongly

influenced by the decision criterion used for elicitation.

Correlation-based methods [433] start by asking participants to rateCorrelation-based

methods
individual stimuli on a single given scale (e.g., to rate cars with respect

to their attractiveness). The similarity of two stimuli is then computed

as the correlation between their ratings across participants. That is, two

stimuli are considered to be similar, if a higher rating for the first stimu-

lus is associated with a higher rating for the second stimulus. A matrix

of dissimilarities can then for instance be obtained by multiplying the

correlation coefficient with minus one in order to convert similarities

into dissimilarities.

Another indirect method is based on attribute profiles [71, Chapter 6].Attribute profiles

Here, participants are asked to rate individual stimuli with respect to

multiple attributes (e.g., rating cars with respect to performance, econ-

omy, and luxury). One can obtain a so-called stimulus-attribute matrix by

averaging the ratings across all participants. In this stimulus-attribute

matrix, each stimulus is represented by a vector of attribute values,

which is similar to the design matrix used in machine learning (cf.

Section 5.1.2), where each example is represented as a vector of feature

values. Dissimilarities between pairs of stimuli can now be derived by

computing for example the Manhattan distance between their attribute

vectors. One can also compute the correlation of the different stimuli

based on their average attribute values [433]. A crucial design decision

for the analysis of attribute profiles concerns the choice of an appropri-

ate distance function in the context of on the given application.



8.1 obtaining dissimilarity ratings 443

A final type of indirect methods is co-occurrence-based [71, Chapter 6]: Co-occurrence-based

methods
Here, participants are asked, whether or not given binary features apply

to a given stimulus or not. Instead of estimating the similarity of the

stimuli (as in the attribute profiles approach), we can now determine

the similarity of the features by counting how often they co-occur.

One possible choice for a distance metric is the Jaccard similarity

SimJ(A,B) = |A∩B|
|A∪B| , which divides the number of stimuli, that have

been labeled with both featuresA andB, by the number of stimuli, that

have been labeled with at least one of the features (cf. Section 4.4.2).

8.1.4 General Considerations

Many of the direct and indirect methods introduced above explicitly Pair-based methods

do not scale well
consider all pairs of stimuli. Since the number of stimulus pairs grows

quadratically with the number of stimuli, these pair-based collection

techniques tend to be relatively inefficient. As Borg and Groenen [71,

Chapter 6] note, one can drastically reduce the number of item pairs by

assuming, that dissimilarities are symmetric, and that the dissimilarity

of any given stimulus to itself is always zero. As we will see, this is in line

with the assumptions made by typical MDS algorithms. If we plan to

analyze the collected dissimilarity ratings with MDS, these assumptions

are therefore justified. Instead of collecting N2
ratings for N stimuli,

one then only needs to collect
N ·(N−1)

2 judgments. Nevertheless, the

number of stimulus pairs under consideration grows quite quickly with

an increasing number of stimuli. If participants are required to rate all

N ·(N−1)
2 pairs, this increases the duration of the experimental sessions.

Long-lasting experimental sessions are not only time consuming, but

they might also result in both training effects (i.e., participants changing

their strategy over time) and fatigue effects (i.e., participants losing

concentration and/or interest over time) [169].

Borg and Groenen [71, Chapter 6] therefore propose to collect ratings Collecting

incomplete data
only for a subset of the stimulus pairs. According to them, MDS still

works reasonably well even with incomplete dissimilarity matrices –

provided, that the data quality is high enough. Kruskal [234] for example

claims, that a dissimilarity matrix, which is only filled to 25-50%, may

still be sufficient for good results, if the entries are properly distributed

to cover all stimuli to a sufficient degree. Hout et al. [201], however, note,

that most researchers still prefer to collect full dissimilarity matrices,

because they tend to provide more robust and precise solutions. A

reasonable compromise between these two approaches might consist in

collecting an incomplete dissimilarity matrix for each participant, but to

make sure, that each stimulus pair is rated by some of the participants

through a counter-balanced design. When aggregating the individual

dissimilarity ratings across participants, one can then nevertheless

obtain a complete global dissimilarity matrix. Borg and Groenen [71,

Chapter 6] furthermore propose to use coarse-grained rating scales in

order to speed up the rating procedure (in the extreme case using only

two classes, namely, similar and dissimilar). Again, they argue, that
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MDS can still yield reasonably good results, if the overall data quality

is high otherwise.

Borg and Groenen [71, Chapter 6] furthermore note, that the orderOrdering effects

of stimuli within a pair and the order, in which the stimulus pairs are

presented to the participants, can have an influence on the resulting

rating. They recommend to either randomize the orders or to use a

counter-balanced experimental design, such that these ordering effects

cancel out, when the dissimilarities are aggregated across participants.

Goldstone [169] points out, that many pair-based methods do notSystematicity effects

make use of systematicities, that are to be expected. For instance, if A
and B are considered to be similar to each other, while C is deemed to

be quite dissimilar from A, then B and C are not expected to be very

similar to each other. This systematicity is, however, not necessarily

respected, if stimulus pairs are rated independently of each other. All

collection techniques based on individual stimuli incorporate these

systematicities more naturally, because the dissimilarities are based

on a suitable distance function applied to the individual stimuli. This

distance function typically satisfies the above-mentioned constraints.

Elicitation methods based on individual stimuli rather than stimulusStimulus-based

methods require

post-processing

pairs have the disadvantage that the dissimilarity information needs

to be extracted through an additional post-processing step [433]. This

extraction of dissimilarities sometimes requires additional assumptions

(such as which exact transformation function should be applied), and

might add further noise to the collected data. However, stimulus-based

methods can be more intuitive for participants.

When comparing different elicitation methods, it seems, that pairwiseComparison of

methods
comparison and free sorting result in the highest data quality and

provide engaging tasks for the participants [71, Chapter 6]. Also SpAM

has been shown to yield high-quality results, while providing an

intuitive interface for participants [169, 201]. On the other hand, the

anchor stimulus method is often considered as boring by participants

[71, Chapter 6]. Dry and Storms [139] have compared the pairwise

comparison method to various attribute profile approaches. They found

that similarities based on attribute profiles (converted into similarity

ratings by using correlations, distances, or common/distinctive features)

were easier to fit by metric MDS than pairwise comparison. Moreover,

the resulting similarity spaces gave better predictions for typicality

effects. However, especially for perceptual stimuli, for which it is difficult

to define a comprehensive list of features, attribute profile approaches

may not be easily applicable.

Above, we have presented many different approaches for obtainingChoosing and

appropriate method
dissimilarity data. A natural question that may arise is which approach

should be taken for a given research problem. As we have seen, all of

them have their individual strengths and weaknesses. It is therefore

recommended to start with the current research problem in mind and

to seek an elicitation method, which fits the current requirements best.

Some approaches might be obviously unfit (e.g., perceptual confusion
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tasks, if the stimuli are not easily confusable) and can be ruled out in

advance. Another example is given by Borg and Groenen [71, Chapter

6]: When eliciting dissimilarities for a psychological study on human

perception, many indirect methods (such as attribute profiles) are not

applicable, because they impose an experimenter-chosen structure (e.g.,

the list of attributes deemed relevant) onto the participants’ ratings,

which might obscure the results. In this case, direct methods (where

participants are not constrained with respect to how they judge dissim-

ilarities) are preferable. Often, multiple methods seem appropriate and

it is up to the researcher to decide which one is easiest to implement or

promises to give higher quality data.

All of the above mentioned methods are limited to a relatively Noise in the data

small number of stimuli, because each similarity judgment made by a

human requires a certain amount of time. Although SpAM provides

a considerable improvement in terms of efficiency, it can hardly be

scaled to thousands of stimuli. Moreover, the psychological experiments

need to be carefully prepared and conducted in order to minimize the

amount of noise in the dissimilarity judgments. Also the variability

between participants might introduce considerable amounts of noise

into the collected data. As argued by Goldstone [170], one can in general

assume, that the dissimilarity ratings from psychological studies are

quite noisy. Before applying MDS, one therefore typically averages the

similarity ratings across all participants in order to get more stable

values, usually by applying the arithmetic mean [139, 248, 433].

Whenever processing dissimilarities one should explicitly consider Measurement scales

the underlying type of measurement scale [392]:

• If dissimilarities are nominally scaled, then we can only say,

whether two dissimilarity ratings are the same or different.

• If they are ordinally scaled, we can also determine, whether one

dissimilarity rating is larger or smaller than another one.

• If dissimilarities lie on an interval scale, also differences between

two dissimilarity ratings can be computed and are meaningful.

• For ratio scaled dissimilarities, we are additionally allowed to

compute ratios of two dissimilarities.

In general, one assumes at least an ordinal scale, since we want to Are SpAM ratings

ratio scaled?
distinguish low dissimilarities from high dissimilarities. Assuming an

interval or a ratio scale allows for more powerful analysis methods,

but is often not justified for ratings elicited in psychological studies.

With respect to the SpAM approach, it has, however, been argued,

that the collected dissimilarities are ratio scaled [200], because they

are based on Euclidean distances on the computer screen. However, as

participants are likely to make only a rough arrangement of the stimuli,

this assumption might be too strong in practice. One can therefore

argue, that it is nevertheless preferable to assume only an ordinal scale.
3

3 Personal communication with Robert Goldstone, January 2019.
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As we will see in Section 8.2, the assumption about the underlying scale

type influences the type of MDS algorithm one should use on a given

dissimilarity matrix. We will return to this question in Chapter 9, where

we analyze a dissimilarity matrix based on SpAM.

Moreover, the scale type plays a role when aggregating dissimilarityMeasurement scale

and aggregation
ratings across participants. As stated above, it is common practice

to take the arithmetic mean of the individual participants’ ratings in

order to eliminate noise [139, 248, 433]. However, the arithmetic mean

is only applicable to interval and ratio scales, because it involves the

computation of differences. If we assume that, the dissimilarities are

only ordinally scaled, then we are strictly speaking not permitted to use

the arithmetic mean for aggregating them – one should instead use the

median, which also provides a central tendency, but only requires an

ordinal scale. In Chapters 10 and 11, we will provide a comparison of

the mean and median aggregation over participants, when analyzing

ratings with respect to visual dissimilarity.

8.1.5 Extracting Dissimilarity Ratings From Datasets

As mentioned before, eliciting similarity ratings from humans can be aAutomating the

elicitation process
very time consuming process. In principle, however, multidimensional

scaling can be applied to any matrix of dissimilarities. Therefore, one

can also define a measure of dissimilarity for a given domain of stimuli

and automatically compute the dissimilarity matrix. In this section, we

will summarize the approach taken by Derrac and Schockaert [123] (cf.

Section 1.2.5, 6.3.2, and 7.1.3), who use natural language processing

techniques on tags and review texts to automatically extract dissimi-

larities for the domains of place type, movie, and wine. Moreover, we

will introduce the work of Peterson et al. [318, 319], who investigated,

whether the internal activations of artificial neural networks can be

used to predict human dissimilarity ratings on pairs of images.

Derrac and Schockaert [123] extracted similarity spaces for threeCollecting data for

the place type

domain

domains (namely, place type, movie, and wine) based on textual data.

They used tags from the image sharing website Flickr
4

to derive dissim-

ilarities between different place types. Starting with a set of candidate

place types from given taxonomies (GeoNames
5
, Foursquare

6
, and

OpenCYC
7

[281]), they retrieved 22 million images from Flickr, which

were tagged with at least one of these place types. For composite terms

like "football stadium", they considered both the whole phrase and

individual words (i.e., "football" and "stadium") as matching tags. After

removing all place types with less than 1,000 associated images, Derrac

and Schockaert represented each place type as a bag of words (cf.

Section 6.3.2) containing all of its associated tags.

4 See https://flickr.com/.
5 See https://www.geonames.org/export/codes.html.
6 See https://developer.foursquare.com/docs/categories.
7 OpenCyc was a publicly available subset of the commercial Cyc ontology (see https:
//cyc.com/), which has been discontinued in 2017.

https://flickr.com/
https://www.geonames.org/export/codes.html
https://developer.foursquare.com/docs/categories
https://cyc.com/
https://cyc.com/
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The dissimilarities for the movie domain are based on movie reviews Collecting data for

the movie domain
from IMDB

8
, Rotten Tomatoes

9
, and other sources. Derrac and Schock-

aert started with the 50,000 movies, which had the most votes on IMDB,

and selected the 15,000 movies, for which the concatenation of all

reviews contained the most words. Each movie was then represented

by a bag of words containing all words from all reviews converted to

lower case, excluding very frequently occurring words like "the" as well

as punctuation and accents.

Finally, the dissimilarity matrix for the wine domain is based on the Collecting data for

the wine domain
wine review corpus of the SNAP project [282], which includes two

million reviews of almost 500,000 wines. Each wine is tagged with

its so-called variant, e.g., Syrah. Derrac and Schockaert considered all

variants, whose reviews accumulated to at least 1,000 words. Analogous

to the movies, each variant was represented as a bag of words based on

the concatenation of all reviews.

In all three cases, each stimulus (i.e., place type, movie, wine variant) Identifying

diagnostic words
was represented by a bag of words. Derrac and Schockaert used positive

pointwise mutual information (PPMI) to define the association strength

between a wordw and a given stimulus s. Please recall from Section 6.3.2,

that PPMI assigns high association strengths only to word-stimulus

combinations, where the word w occurs rarely in the overall corpus,

but frequently in the representation of the stimulus s. In other words, it

assigns a large weight to very diagnostic words.

Each stimulus was then represented as a vector of PPMI values Obtaining

dissimilarities
with one entry for each word in the vocabulary.

10
In order to derive a

dissimilarity rating for pairs of stimuli, Derrac and Schockaert use the

normalized angular difference between the PPMI vectors of the respec-

tive stimuli. This normalized angular difference essentially measures

the angle between the two PPMI vectors, and can thus be related to

the Cosine similarity discussed in Section 6.3.2. If the angle between

the two vectors is small, they point in a similar direction and contain

similar diagnostic words. The pair of underlying stimuli thus receives a

low dissimilarity value. On the other hand, if the angle between the

vectors is large, they contain very different diagnostic words and the

underlying stimuli are therefore judged to be very dissimilar.

As Derrac and Schockaert were able to show, the similarity spaces PPMI-based

attribute profiles
extracted from these dissimilarity matrices give intuitive results with

respect to semantic distance and semantic betweenness (cf. Section

7.1.3). We will return to their further analysis of the similarity spaces

in Section 8.6. When comparing their approach to the psychological

methods discussed above, it seems that Derrac and Schockaert followed

the attribute profile approach, where the attributes correspond to the

PPMI values of the individual words, and where the normalized angu-

lar difference was used as a distance metric.

8 See https://www.imdb.com/.
9 See https://www.rottentomatoes.com/.

10 All of these PPMI vectors as well as further data from their study are publicly available

online at http://www.cs.cf.ac.uk/semanticspaces/.

https://www.imdb.com/
https://www.rottentomatoes.com/
http://www.cs.cf.ac.uk/semanticspaces/
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Peterson et al. [318, 319] have investigated, whether the activationPredicting

dissimilarity

judgments with

pretrained ANNs

vectors of an artificial neural network can be used to predict human

dissimilarity ratings. In order to motivate their research, they argue, that

deep learning networks achieve their excellent performance on image

datasets, because they are able to effectively extract useful features from

high-dimensional inputs – a task that the human brain is faced with

as well. Although adversarial examples [401] clearly show, that neural

networks do not discover the exact same set of features as humans

for classifying visual input, Peterson et al. assume, that there is still a

considerable amount of overlap.

While most psychological studies are limited to small sets of artificialPotential

applications of

ANN-based

dissimilarities

stimuli (where the features are well-defined and easy to manipulate

by the experimenter), artificial neural networks can be applied to large

numbers of natural stimuli. Peterson et al. argue, that predicting human

similarity judgments from the activations of neural networks can enable

researchers to validate psychological theories on large datasets of

real world images. Moreover, it is difficult to directly compare the

representations extracted by artificial neural networks to the ones used

by humans, because human mental representations are not directly

accessible by an experimenter. However, an indirect comparison is

possible, if the dissimilarity judgments produced by these two types of

representations are considered.

In their study, they used six datasets of different visual domainsStimuli and human

ratings
(namely, animal, automobile, fruit, furniture, vegetable, and various),

each containing 120 images with a resolution of 300 by 300 pixels.

Peterson et al. conducted a psychological study, which elicited pair-

wise dissimilarity ratings for all pairs of images using the pairwise

comparison approach. When applying multidimensional scaling to the

resulting dissimilarity matrix, they were able to identify clear clusters

in the resulting similarity space (e.g., all birds being located in a similar

region of the animal space). Also when applying a hierarchical cluster-

ing algorithm (cf. Section 7.3.1) on the collected dissimilarity data, a

meaningful dendrogram emerged.

In order to extract dissimilarity ratings from five different neuralExtracting

dissimilarities from

ANNs

networks (four convolutional feedforward networks and one unsuper-

vised GAN variant, all pretrained on ImageNet [120]), Peterson et al.

used the following procedure: For each of the images, they computed

the activation in the second-to-last layer of the network. Then for each

pair of images, they defined their similarity as the inner product of

these activation vectors. Here, the inner product of two n-dimensional

vectors u and v is defined as uT v =
∑︁n

i=1 uivi. These similarities can be

easily converted into dissimilarities by inverting them. When applying

MDS to the resulting dissimilarity matrix, no meaningful clusters were

observed. Also a hierarchical clustering algorithm did not result in a

meaningful dendrogram. When considering the correlation between

the dissimilarity ratings obtained from the neural networks and the

human dissimilarity matrix, Peterson et al. were able to achieve values

of R2
between 0.19 and 0.58 (depending on the visual domain). Overall,

all feedforward convolutional networks achieved comparable perfor-
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mance, while the unsupervised GAN variant showed inferior results.

Peterson et al. also found, that using the last hidden layer of the neural

network led to better results than using either the output layer or any

of the earlier hidden layers.

In order to further improve their results, Peterson et al. argued that Adding feature

weights
the activation vectors in the second-to-last layer of a neural network are

subject to a linear transformation (by being multiplied with a weight

matrix) before being used for classification. This is, however, not taken

into account, when their inner product is computed in order to obtain

similarity scores. Peterson et al. therefore modified their extraction

mechanism by using a weighted version of the inner product with one

weight wi per feature, i.e.,

∑︁n
i=1wiuivi. The weights wi were optimized

by a linear regression, such that the difference between the resulting

similarity scores and the human dissimilarity ratings was minimized. In

order to avoid overfitting, Peterson et al. used L2 regularization on the

weights. The resulting ridge regression was trained in a six-fold cross

validation, using a hyperparameter search for the optimal strength of

regularization. By applying this procedure, Peterson et al. found, that

their results considerably improved: Both the similarity space obtained

by MDS and the dendrogram obtained by hierarchical clustering became

more human-like. Moreover, the correlation between the predicted

dissimilarities and the human dissimilarity ratings increased to values

of R2
between 0.35 and 0.74.

Peterson et al. noted, that this transformation does, however, not Generalization

between domains
generalize well to other domains: For instance, if the weights were

estimated on the animal domain, performance on the automobile

domain was worse than for unweighted dissimilarities. Nevertheless,

Peterson et al. were able to show, that estimating the weights based

on five out of their six domains and applying the results onto the

remaining domain helped to mitigate this effect: In this case, values of

R2
between 0.53 and 0.63 were obtainable.

In a final experimental step, Peterson et al. investigated, whether the Generalization to

other cognitive tasks
predicted dissimilarity ratings generalized to other cognitive tasks on

unseen data points. In order to do this, they picked 120 additional stimuli

from each domain and extracted their ANN-based dissimilarities. They

used the k-means clustering algorithm (cf. Section 7.3.1) on the resulting

dissimilarity matrix in order to divide the stimuli into k categories.

Participants were then trained to categorize the new stimuli into these

categories. Peterson et al. found, that participants were more successful

in learning the categorization in those cases, where the ANN-based

dissimilarities were closer to the human similarity judgments.

Also the approach by Peterson et al. can be interpreted as a variant ANN-based attribute

profiles
of the attribute profile method, this time using the ANN activation

vectors as attribute vectors and the negated inner product as distance

measure. Please note, that Peterson et al. are not the only researchers

following this approach: Kubilius et al. [235] have found, that pretrained

artificial neural networks can predict human judgments with respect to

shape similarity quite well. Their analysis furthermore showed, that

the lower layers of the network were better at predicting raw visual
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similarity (measured as pixel-wise difference of the images), while

higher layers of the network were more closely related to higher-level

similarity judgments as elicited from humans. Erdogan et al. [146]

have used the triad method to collect human shape similarity rat-

ings for artificial block-based objects. In their results, they found, that

pretrained artificial neural networks were able to predict the binary

human similarity judgments with an accuracy of about 60%, being

only outperformed by a Bayesian inference model explicitly targeted

at shape similarity. Both studies will be discussed in more detail in

Chapter 10 in the context of the shape domain. For now, it suffices to no-

tice, that their results are in line with the ones provided by Peterson et al.

Both studies presented above are similar in nature and can be seenAdvantages of the

data-driven approach
as two different examples of a general data-driven approach. One

advantage of this overall approach is that it is more capable of dealing

with new stimuli: Dissimilarity is not based on human ratings, which

are expensive to collect, but on a mathematical function, that can be

automatically evaluated. Therefore, it is relatively easy to compute

dissimilarity ratings between a new stimulus and all previously known

stimuli, making it possible to enlarge the dissimilarity matrix and

to re-run the MDS algorithm if necessary. Moreover, the data-driven

approach can process a much larger stimulus set than the psychological

approach. Even though the computation of the N × N dissimilarity

matrix becomes computationally expensive for large numbers of N , the

runtime of a computer program is negligible to the amount of time

necessary for conducting a psychological experiment.

However, this data-driven approach also comes with some drawbacks:Disadvantages of the

data-driven approach
First of all, the psychological plausibility of the resulting dissimilarities

is unclear, because we have no direct grounding in a psychological

experiment. This criticism mainly applies to the work by Derrac and

Schockaert, while Peterson et al. explicitly compare their ANN-based

dissimilarities to dissimilarities from a psychological experiment. More-

over, the mathematical definition of the dissimilarity function is a very

critical design decision in this approach. If the dissimilarity function

is flawed in some way, the resulting dissimilarity matrix may not be

very useful for further processing. Derrac and Schockaert use text

documents and tag collections as data source and can build upon

dissimilarity measures already established in the natural language

processing community. The results by Peterson et al. indicate, that their

choice of the negated inner product seems to work well on the ANN

activation vectors. However, despite these limitations, it seems, that

the data-driven approach to collecting dissimilarities is a worthwhile

avenue for further research.
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8.2 multidimensional scaling as an optimiza-
tion problem

Given a set of stimuli and their pairwise dissimilarities, multidimen- MDS as

dimensionality

reduction

sional scaling (MDS) tries to represent each stimulus as a point in a

similarity space, such that the distances between these points are an

adequate representation of the dissimilarities of the respective stimuli.

As argued by Goldstone [170], applying MDS can be seen as a form of

information compression: Instead of a dissimilarity matrix ∆ of size

N ×N , we get an N × n matrix X representing the coordinates of N
stimuli in an n-dimensional space. If n is considerably smaller than N
(which is usually the case), then the information from ∆ needs to be

compressed in order to fit into X . We can thus interpret MDS as a form

of dimensionality reduction, more specifically as a feature extraction

approach (cf. Section 5.3.2). The distance of two points according to the

configuration X is not only influenced by the dissimilarity rating of the

corresponding stimulus pair from ∆, but also by the dissimilarities of

other stimulus pairs. These additional constraints help to cancel out

noise contained in the original ratings. Thus, the similarities derived

based on the distance within the resulting similarity space can be

thought of as more robust than the original similarity ratings.

In Section 8.2.1, we will provide a mathematical definition of the Overview

optimization problem underlying MDS, mainly based on [71, Chapters

3, 8, and 9] and [233]. We then introduce the distinction into metric and

nonmetric MDS in Section 8.2.2. Section 8.2.3 contains some general

remarks, and Section 8.2.4 concludes our general discussion with an

illustrative example.

8.2.1 The Optimization Problem

Multidimensional scaling takes as input an N × N matrix ∆ of pair- MDS in general

wise dissimilarities δj1j2 for all pairs of stimuli j1 and j2. Usually, one

assumes, that δj1j2 = δj2j1 , and that δjj = 0, i.e., that dissimilarities

are symmetric, and that self-dissimilarity is zero [233]. Moreover, one

needs to specify the dimensionality n of the target similarity space.

Multidimensional scaling then tries to find an arrangement of N points

in an n-dimensional space, whose pairwise distances reflect the dissim-

ilarities as closely as possible. Typically, the solution is represented by

an N × n matrix X , whose rows correspond to the points, and whose

columns correspond to the coordinate axes of the similarity space [71,

Chapter 3]. Based on X , once can compute an N ×N distance matrix

D(X), which contains all pairwise distances of these points. While one

can in theory use any kind of distance metric (e.g., a general Minkowski

metric [233]), one usually employs the Euclidean distance.

In its most simple variant, MDS tries to find an exact match between Quantifying solution

quality with Stress
distances and dissimilarities. A perfect match may, however, not be

achievable in practice, for example due to noise in the dissimilarity



452 multidimensional scaling and a hybrid proposal

matrix ∆, or because the dimensionality n of the similarity space was

set too small. If a perfect solution is not obtainable, we are nevertheless

interested in a configurationX , which is as good as possible. In order to

quantify the quality of a configuration, one uses a loss function called

Stress, which is the sum of squared representation errors:

σr(X) =
N∑︂
j1=1

N∑︂
j2=j1+1

(dj1j2(X)− δj1j2)
2

(8.1)

One can easily see, that by minimizing raw Stress as defined inProperties of Stress

Equation 8.1, we obtain a configuration of points X , whose distances

match the dissimilarities as closely as possible. Here, we only sum

over all j1 < j2, i.e., all matrix entries above the diagonal, because we

assume, that∆ is symmetric, and that the entries on the diagonal are not

informative. Please note, that Stress is invariant to rotations, reflections,

and translations of the configuration X , because these operations do

not affect the distances between the points.

One may note that raw Stress as defined in Equation 8.1 correspondsMDS and machine

learning
to the mean squared error (cf. Section 5.1.2) of the distance matrix

D(X) with respect to the dissimilarity matrix ∆. However, we would

like to emphasize, that Stress minimization should be interpreted as

an optimization rather than a machine learning problem: While we

minimize the mean squared error of the model’s predicted distances

with respect to the psychological ground truth, this model does not

provide an input-output mapping like typical machine learning models.

Therefore, the resulting model cannot be applied to novel inputs, and is

incapable of generalizing – which is, however, the key aspect of machine

learning [172, Chapter 5]. We will address this lack of generalization

capabilities again in Section 8.7.

Raw Stress as defined in Equation 8.1 depends on the scale of bothNormalizing Stress

the distances and the dissimilarities [71, Chapter 3]. Therefore, one

typically normalizes Equation 8.1 by dividing through the sum of

squared distances and taking the square root [233]. The resulting

measure is called Stress-1 and can be computed as follows:

σ1(X) =

⌜⃓⃓⎷∑︁N
j1=1

∑︁N
j2=j1+1 (dj1j2(X)− δj1j2)

2∑︁N
j1=1

∑︁N
j2=j1+1 d

2
j1j2

(X)
(8.2)

Since it is normalized, Stress-1 is more suitable for comparing the

representational quality of different configurations to each other.

The optimization problem introduced so far is actually a specialTransforming

dissimilarities into

disparities

case of MDS, because it assumes, that the dissimilarities from the

dissimilarity matrix∆ can directly be interpreted as geometric distances.

Based on the elicitation method used for collecting these dissimilarities,

this assumption might, however, be too strong. One can generalize raw

Stress as defined in Equation 8.1 by introducing a so-called representation

function f , which maps the dissimilarities δj1j2 to so-called disparities
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d̂j1j2 [71, Chapter 3], which represent the distances, that are expected

for the given dissimilarities. MDS then tries to minimize the difference

between the distances dj1j2(X) and the disparities d̂j1j2 = f(δj1j2). The

representation function f thus determines, how dissimilarities and

distances should be related to each other. A generalized version of raw

Stress can thus be written as follows:

σr(X) =
N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · (dj1j2(X)− f (δj1j2))
2

=
N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 ·
(︂
dj1j2(X)− d̂j1j2

)︂2
(8.3)

In Equation 8.3, we have also introduced weights wj1j2 , which assign Adding weights

an importance to each pair of stimuli. In most cases, all weights are set

to one, but they can also be used to indicate the reliability of a given

dissimilarity rating. As one can see, the choice of f heavily influences

the value of raw Stress. Since MDS attempts to minimize raw Stress,

different choices of f may lead to different optimal configurations X .

Also Stress-1 can be adapted accordingly to consider disparities instead

of dissimilarities:

σ1(X) =

⌜⃓⃓⎷∑︁N
j1=1

∑︁N
j2=j1+1wj1j2 · (dj1j2(X)− f (δj1j2))

2∑︁N
j1=1

∑︁N
j2=j1+1wj1j2 · d2j1j2(X)

=

⌜⃓⃓⃓
⎷∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 ·

(︂
dj1j2(X)− d̂j1j2

)︂2
∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 · d2j1j2(X)

(8.4)

It is important to note, that the representation function f maps from Comparing distances

rather than

dissimilarities

dissimilarities to distances, and not the other way around. Stress is

therefore computed as a difference between expected and actual dis-

tances in the MDS space, not as a difference between expected and

actual dissimilarity ratings. The reasons for this are twofold: Firstly, we

try to optimize the configuration X of points in the MDS space. Since

the coordinates of these points are our variables and the dissimilarity

ratings are our constants, it makes sense to measure Stress based on

the distances. If Stress depends on the configuration of points, we can

use it as a feedback signal to improve those configurations. Secondly,

the dissimilarities may only be ordinally scaled, which means that

differences and ratios are not meaningful. We are therefore not allowed

to compute terms like δj1j2− δ̂j1j2 [233]. Distances in the similarity space

are, however, ratio scaled, and do therefore not pose such a problem.

Usually, the representation function f is not exactly determined, but Optimizing

disparities
it is only constrained to belong to a specific family of functions. For

instance, one can require that f is a linear function of the dissimilarities,

i.e., f(δj1j2) = a · δj1j2 + b, while leaving the values of the parameters

a and b unspecified. Minimizing Stress as defined in Equations 8.3 or
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8.4 then involves both optimizing the coordinates in X and estimating

the parameters of the representation function f . Most MDS algorithms

minimize Stress in an iterative way, i.e., by repeatedly applying small

updates to the coordinates in X . In this case, the introduction of the

representation function f results in an iteratively alternating update of

the configuration X and the optimal disparities d̂j1j2 . This alternating

way of optimizing can be linked to the expectation maximization (EM)

algorithm [119]. Please recall from Section 7.3.1, that the EM algorithm

estimates parameters of a probabilistic model by iteratively alternating

between the computation of probability values for the observed data

points (expectation step) and the optimization of the model parame-

ters based on these probabilities (maximization step). In the case of

our MDS problem, computing the disparities d̂j1j2 corresponds to the

expectation step, while updating the coordinates X is equivalent to the

maximization step.

As Borg and Groenen [71, Chapter 9] point out, a trivial solutionAvoiding trivial

solutions
when optimizing over both X and f is given by X = 0 and f(δj1j2) = 0
which guarantees minimal raw Stress. In order to avoid this degenerate

solution, they propose to ensure that the d̂j1j2 are normalized, e.g., by

enforcing that

∑︁N
j1=1

∑︁N
j2=j1+1wj1j2 · d̂

2

j1j2 = N ·(N−1)
2 . This ensures, that

f(δj1j2) ̸= 0. Other authors such as Kruskal [233] avoid the degenerate

solution by optimizing Stress-1 instead of raw Stress. In this case,

dividing raw Stress by the sum of squared distances ensures, that the

distances dj1j2(X) do not become zero, which prevents X = 0.

8.2.2 Metric and Nonmetric MDS

Depending on the type of representation function f being used, one canTypes of

representation

functions

distinguish different types of MDS. A broad distinction can be made

into metric MDS (where f is continuous) and nonmetric MDS (where f
is not continuous) [71, Chapter 9]. Typically, metric MDS assumes, that

the dissimilarities are on a ratio or interval scale, while nonmetric MDS

only assumes an ordinal scale.

Metric MDS includes the following three linear models, which con-Variants of metric

MDS
stitute the most important metric MDS models [71, Chapter 9]:

• Absolute MDS, where f(δj1j2) = δj1j2 . This is the simplified caseAbsolute MDS:

dissimilarities are

distance

considered in Equations 8.1 and 8.2. In absolute MDS, the dissim-

ilarities are therefore treated as distances, and are assumed to be

ratio scaled. Since there are no free parameters in f , we only need

to optimize over X for minimizing Stress.

• Ratio MDS, where f(δj1j2) = a · δj1j2 . Adding a free parameter inRatio MDS:

re-scaling allowed
the form of a scaling factor a allows us to rescale the solution as

needed. This means, that the order of magnitude of the dissimi-

larities is not important, but that we still assume a ratio scale: The

ratio of any two dissimilarities should be equal to the ratio of the
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corresponding distances. Optimizing over f involves finding an

optimal scaling factor a, which minimizes Stress.

• Interval MDS, where f(δj1j2) = a · δj1j2 + b. By also allowing for Interval MDS:

adding an intercept
an additive constant b, interval MDS is a further generalization

of ratio MDS. Now, we expect only the ratios of differences

("intervals") on the dissimilarities to correspond to the ratio of

differences on the distances.

In all three cases, the optimization over f can be done by using a Nonlinear metric

MDS
linear least-squares regression [71, Chapter 3]. In theory, also nonlinear

representation functions are possible, e.g., logarithmic, exponential, or

polynomial functions. This may, however, cause mathematical problems

during the optimization procedures, because the optimal disparities

might become negative, whereas distances are nonnegative by definition

[71, Chapter 9]. One should therefore only use nonlinear representation

functions, if there is a strong justification for this, e.g., based on the way,

in which the dissimilarities were collected.

Nonmetric MDS goes back to the pioneering work of Shepard [366] Variants of

nonmetric MDS
and Kruskal [233] and does not assume a continuous representation

function. Typically, the representation function is thus not defined

based on a equation (as for metric MDS), but based on constraints,

which need to be fulfilled. Borg and Groenen [71, Chapter 9] make a

distinction into further subtypes of nonmetric MDS:

• Ordinal MDS, where δj1j2 < δj3j4 ⇒ d̂j1j2 ≤ d̂j3j4 . In other words, Ordinal MDS: using

a monotone

representation

function

f is required to be a monotone function, but is left unspecified

otherwise. The underlying assumption is that the recorded dissim-

ilarities are based on a monotone distortion of the true semantic

distances of item pairs [234]. The optimal disparities d̂j1j2 can be

found by using a monotone regression from the dissimilarities to

the distances. We will introduce Kruskal’s monotone regression

algorithm in Section 8.4. Please note, that also the linear models

discussed in metric MDS are monotone functions, and can thus

be considered a special case of ordinal MDS.

• Nominal MDS, where δj1j2 = δj3j4 ⇒ d̂j1j2 = d̂j3j4 . This type of Nominal MDS: only

using a nominal scale
MDS is only applicable, if the number of different values in the

dissimilarity matrix is small, and if these different dissimilarities

are only on a nominal scale, i.e., cannot be put in a meaningful

order. In practice, nominal MDS is rarely used, because the

resulting similarity spaces are typically not easy to interpret.

• Ad hoc MDS models, where f consists of different component func- Ad hoc MDS:

application-specific

constraints

tions. Typically, the exact constraints on f are based on theoretical

considerations with respect to the collected dissimilarities and

the respective domain. One example is an ordinal MDS approach,

where f is also required to be negatively accelerated (i.e., to show

a saturation tendency).
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In practice, the terms "nonmetric MDS" and "ordinal MDS" areBreaking ties in

ordinal MDS
often used interchangeably, because nominal MDS and ad hoc MDS

models are rarely used. In ordinal MDS, a problem arises for ties in

the dissimilarity matrix, i.e., for pairs of entries with δj1j2 = δj3j4 . The

so-called primary approach to ties does not impose any constraints on

the corresponding disparities, while the secondary approach requires,

that then also d̂j1j2 = d̂j3j4 (cf. [71, Chapter 9] and [233]). The primary

approach is often preferable in practice, because ties in the dissimilarity

matrix may be rather an artifact of the data collection process than

a useful piece of information: Depending on the elicitation method

and the number of decimal places used, ties may not indicate that the

dissimilarity of the pairs is exactly identical. Moreover, an exact equality

of distances in the similarity space may be quite a strong constraint in

practice, which is much harder to fulfill than an ordering constraint.

Most MDS algorithms therefore use the primary approach by default.

8.2.3 General Remarks

Let us now turn to some general considerations with respect to multi-Incomplete

dissimilarities
dimensional scaling. First of all, the matrix ∆ of dissimilarities might

be incomplete. In order to account for these missing entries, we can

simply remove the corresponding dissimilarities δj1j2 and distances

dj1j2 from the equation for computing Stress [233]. This can be achieved

by setting the corresponding weight wj1j2 to zero in Equations 8.3 and

8.4. The optimization then only takes place over the given dissimilarities.

If for each pair j1, j2 of stimuli, K different dissimilarity values areProcessing multiple

ratings
given (e.g., the ratings obtained from K different participants), MDS

can be applied in different ways [71, Chapter 3]:

• Scale-then-Merge: One can first apply MDS to each of the KMDS first, data

merging second
matrices individually, and then compare the resulting similarity

spaces, and merge them into a global space. Using this approach

enables the researcher to investigate differences between the

similarity spaces of different individuals. Since the ratings of a

single participant may, however, not be reliable, the quality of the

individual spaces might be relatively low. Moreover, one needs to

specify, how exactly the different similarity spaces can be merged,

i.e., how to obtain the final coordinates of the stimuli.

• Merge-then-Scale: One can also first merge the K matrices (e.g., byData merging first,

MDS second
simply computing the average over all participants for each matrix

entry [115, 248, 433]), and then apply MDS once on this global

dissimilarity matrix. By creating a global dissimilarity matrix, the

noise of the individual participants cancels out at least partially,

which potentially leads to a solution with a higher quality. How-

ever, comparisons between individual participants are no longer

possible. Moreover, if participants differed considerably with
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respect to their rating behavior, the global dissimilarity matrix

and thus also the resulting space may not be very informative.

• Merge-while-Scaling: A third option consists in redefining the An integrated

approach
representation function f as a mapping from {δj1j2k}Kk=1 to d̂j1j2 .

In this case, the merging takes place as part of the optimization

itself. While being an elegant and powerful way to incorporate

additional constraints into the merging procedure, this approach

requires a good understanding of the desired mapping and

might come with higher computational costs when computing

the optimal disparities.

In practical applications, especially if one is interested in a general Merge-then-scale for

general similarity

spaces

similarity space for a given domain, the merge-then-scale approach

is the most straightforward one and thus quite popular. Also for the

studies in Chapters 9, 10, and 11, we will follow this approach by using

a single global dissimilarity matrix.

Borg and Groenen [71, Chapter 9] also note, that instead of specifying Transforming

dissimilarities
a representation function f , which is included in the optimization

procedure, one can also first apply a transformation to the dissimilarity

matrix∆, and then use absolute MDS on the transformed dissimilarities.

This makes the optimization problem easier, because the parameters

of f do not need to be estimated. However, this approach requires

good domain knowledge for identifying the optimal transformation

of the dissimilarities. In practice, one might thus need to tune this

transformation in an external rather than internal way: Instead of

finding the optimal transformation inside the MDS algorithm, one then

needs to systematically vary the transformation and repeatedly apply

MDS on the transformed data to find the transformation, which yields

lowest Stress. Please note, that this external approach to transforming

the dissimilarities is only easily applicable to metric MDS, where the

transformation function can be specified by an explicit equation.

8.2.4 An Illustrative Example

We will illustrate the three MDS algorithms presented in the following Stimuli and

dissimilarities
sections by using a simple example consisting of four fruit stimuli. In

Table 8.2, we have provided a dissimilarity matrix ∆ for the stimuli

apple, banana, lemon, and pear. Please note, that the dissimilarity

ratings in Table 8.2 are not based on a psychological experiment, but are

entirely artificial. They have been inspired by our fruit space example

from Part I of this dissertation. Although MDS is typically applied to

much larger dissimilarity matrices, limiting ourselves to four stimuli

allows us to explicitly carry out computations, which illustrate the inner

workings of the algorithms.
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apple banana lemon pear

apple 0.0 2.5 3.5 1.4

banana 2.5 0.0 3.5 2.0

lemon 3.5 3.5 0.0 3.7

pear 1.4 2.0 3.7 0.0

Table 8.2: Example dissimilarities for four fruit stimuli.

Figure 8.1: The initial configuration X0 for our fruit example.

For the two iterative MDS algorithms considered in Sections 8.4 andInitial configuration

8.5, we will compute an update for the initial configuration X0 shown

in Figure 8.1 and defined as follows:

X0 =

⎛⎜⎜⎜⎜⎝
−0.2673 −0.2673

−0.8018 1.3363

0.2673 −0.8018

0.8018 −0.2673

⎞⎟⎟⎟⎟⎠
As one can easily see by comparing Figure 8.1 to Table 8.2,X0 does notDistances based on

the initial

configuration

accurately reflect the dissimilarities. For instance, apple should be closer

to banana than to lemon, but the opposite is the case. As discussed

before, Stress is being used as a mathematical way of quantifying this

representational error. We will thus use X0 to illustrate the way in

which Stress is computed. We first need to compute the Euclidean

distances between all points in X0:

D(X0) ≈

⎛⎜⎜⎜⎜⎝
0 1.6903 0.7560 1.0691

1.6903 0 2.3905 2.2678

0.7560 2.3905 0 0.7559

1.0691 2.2678 0.7559 0

⎞⎟⎟⎟⎟⎠
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Let us first consider absolute MDS, where d̂j1j2 = f(δj1j2) = δj1j2 , Computing absolute

raw Stress
i.e., where no transformation of the dissimilarities takes place. We can

use Equation 8.1 to compute the raw Stress of configuration X0:

σr(X0) =

N∑︂
j1=1

N∑︂
j2=j1+1

(dj1j2(X0)− δj1j2)
2

≈ (1.6903− 2.5000)2 + (0.7560− 3.5000)2

+ (1.0691− 1.4000)2 + (2.3905− 3.5000)2

+ (2.2678− 2.0000)2 + (0.7559− 3.7000)2

≈ 18.2653

By normalizing σr(X0), we can get Stress-1 according to Equation 8.2: Computing absolute

Stress-1

σ1(X0) =

⌜⃓⃓⎷∑︁N
j1=1

∑︁N
j2=j1+1 (dj1j2(X0)− δj1j2)

2∑︁N
j1=1

∑︁N
j2=j1+1 dj1j2(X0)2

=

√︄
σr(X0)∑︁N

j1=1

∑︁N
j2=j1+1 dj1j2(X0)2

≈
√︃

18.2653

16.0001
≈ 1.0684

As noted before, it makes more sense to use ordinal MDS with Disparities for

ordinal MDS
psychological data. Let us therefore also consider raw Stress and Stress-

1 for ordinal MDS. In this case, we have d̂j1j2 = f(δj1j2), where f
represents an optimal monotone transformation of the dissimilarities,

given the distances of the current configuration. In our case, the optimal

disparities are given as follows:

D̂ =

⎛⎜⎜⎜⎜⎝
0 1.5714 1.5714 1.0691

1.5714 0 1.5732 1.5714

1.5714 1.5732 0 1.5732

1.0691 1.5714 1.5732 0

⎞⎟⎟⎟⎟⎠
We will show in Section 8.4, how D̂ can be computed for this example, Computing ordinal

raw Stress
when we introduce Kruskal’s algorithm for monotone regression. For

now, let us just take D̂ as given. We can now compute raw Stress based

on Equation 8.3, where we assume, that all weights are set to one:

σr(X0) =

N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 ·
(︂
dj1j2(X0)− d̂j1j2

)︂2
≈ (1.6903− 1.5714)2 + (0.7560− 0.5714)2

+ (1.0691− 1.0691)2 + (2.3905− 1.5732)2

+ (2.2678− 1.5714)2 + (0.7559− 1.5732)2

≈ 2.5000
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By normalizing σr(X0), we can get again obtain Stress-1, this timeComputing ordinal

Stress-1
according to Equation 8.4:

σ1(X0) =

⌜⃓⃓⃓
⎷∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 ·

(︂
dj1j2(X0)− d̂j1j2

)︂2
∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 · dj1j2(X0)2

=

√︄
σr(X0)∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 · dj1j2(X0)2

≈
√︃

2.5000

16.0001
≈ 0.3953

For both metric and nonmetric MDS, the normalization procedureComparing the Stress

values
causes Stress-1 to be considerably smaller than raw Stress. Moreover,

we can observe, that both raw Stress and Stress-1 are smaller for the

ordinal MDS problem than for the absolute MDS problem. This can

be easily explained by the fact, that in ordinal MDS, we are allowed to

transform the dissimilarities into disparities, while in absolute MDS

no such transformation is permitted. Since we always use the optimal

transformation for computing Stress, ordinal MDS has the clear advan-

tage of being able to tune free parameters, which lowers the resulting

value. These differences observed in our example highlight, that it

is always important to only compare Stress values, which have been

computed in the same way.

8.3 analytical solutions with classical mds

In this section, we will describe classical MDS, which was developedGeneral properties of

classical MDS
by Torgerson [408] and Gower [174]. Classical MDS assumes, that

the dissimilarities can be interpreted as distances (cf. absolute MDS,

Section 8.2.2), and uses matrix transformations and an eigenvalue

decomposition to find an analytical solution. In contrast to most other

MDS algorithms, classical MDS thus does not require an interative

procedure, but is able to find a solution to the MDS problem in an

analytical way. The remainder of this section is based on the treatment

of classical MDS by Borg and Groenen [71, Chapters 7, 12]. We start

with some mathematical background in Section 8.3.1, before deriving

the algorithm itself in Section 8.3.2. Finally, in Section 8.3.3, we apply

classical MDS to our fruit example from Section 8.2.4.

8.3.1 Mathematical Background

Before we can introduce the algorithm behind classical MDS, we needOverview

to cover some mathematical background about the underlying matrix

transformations based on [71, Chapter 7]. This involves three ingredi-

ents, namely, the computation of distances through matrices, how to

center a vector, and the eigenvalue decomposition.
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Let us assume, that the coordinates of N points in an n-dimensional Computing distances

space are given in the form of an N × n matrix X . That means, that

each row of the matrix contains the coordinates of one point, while each

column of the matrix represents one coordinate axis of the underlying

space. This is essentially identical to the design matrix considered

in machine learning (cf. Section 5.1.2). The entry x
(j)
i represents the

ith coordinate of the jth point. We would like to compute an N ×N
distance matrix D(X), where each entry dj1j2(X) corresponds to the

Euclidean distance between the points x⃗j1 and x⃗j2 from the coordinate

matrix X :

dj1j2(X) =

⌜⃓⃓⎷ n∑︂
i=1

(︂
x
(j1)
i − x

(j2)
i

)︂2
We can transform D(X) into a matrix of squared distance D(2)(X) Squared distances

by taking the element-wise square:

d2j1j2(X) =
n∑︂
i=1

(︂
x
(j1)
i − x

(j2)
i

)︂2
=

n∑︂
i=1

(︃(︂
x
(j1)
i

)︂2
+
(︂
x
(j2)
i

)︂2
− 2x

(j1)
i x

(j2)
i

)︃
(8.5)

Let B = XXT
(where XT

denotes the transpose of X) and c⃗ be Scalar product

matrix
a vector containing the elements on the main diagonal of B (i.e.,

cj = bjj =
∑︁n

i=1(x
(j)
i )2). B is called the scalar product matrix and will

play an important role later on. Please note, that B is guaranteed to

be symmetric (i.e., bj1j2 = bj2j1). One can show, that D(2)(X) can be

expressed in terms of B and c⃗:

D(2)(X) = c⃗1⃗
T
+ 1⃗c⃗T − 2B (8.6)

Here, 1⃗ is an N × 1 vector consisting only of ones. To see, that the Spelling out the

equivalence
equivalence from Equation 8.6 holds, we spell out the right hand side:

A = c⃗1⃗
T
+ 1⃗c⃗T − 2B

=

⎛⎜⎜⎜⎜⎝
b11

b22
.
.
.

bNN

⎞⎟⎟⎟⎟⎠
(︂

1 1 . . . 1
)︂

+

⎛⎜⎜⎜⎜⎝
1

1
.
.
.

1

⎞⎟⎟⎟⎟⎠
(︂
b11 b22 . . . bNN

)︂

− 2

⎛⎜⎜⎜⎜⎝
b11 b12 . . . b1N

b21 b22 . . . b2N
.
.
.

.

.

.

.
.
.

.

.

.

bN1 bN2 . . . bNN

⎞⎟⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎝
b11 b11 . . . b11

b22 b22 . . . b22
.
.
.

.

.

.

.
.
.

.

.

.

bNN bNN . . . bNN

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
b11 b22 . . . bNN

b11 b22 . . . bNN
.
.
.

.

.

.

.
.
.

.

.

.

b11 b22 . . . bNN

⎞⎟⎟⎟⎟⎠

− 2

⎛⎜⎜⎜⎜⎝
b11 b12 . . . b1N

b21 b22 . . . b2N
.
.
.

.

.

.

.
.
.

.

.

.

bN1 bN2 . . . bNN

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 b11 + b22 − 2b12 . . . b11 + bNN − 2b1N

b22 + b11 − 2b21 0 . . . b22 + bNN − 2b2N
.
.
.

.

.

.

.
.
.

.

.

.

bNN + b11 − 2bN1 bNN + b22 − 2bN2 . . . 0

⎞⎟⎟⎟⎠
Since bj1j2 =

∑︁n
i=1 x

(j1)
i xj2i , we can easily see, thataj1j2 =

∑︁n
i=1(x

(j1)
i )2+Computing distances

with matrix

transformations

(x
(j2)
i )2 − 2x

(j1)
i x

(j2)
i , which is identical to Equation 8.5. We can thus use

Equation 8.6 to transform the coordinate matrix X into the matrix of

squared Euclidean distances D(2)(X) based only on matrix multiplica-

tions and matrix additions. If we afterwards apply the element-wise

square root to D(2)(X), we get the matrix of Euclidean distances D(X).
Classical MDS provides us with a way of inverting this procedure, such

that we can go from Euclidean distances to coordinates. Equation 8.6

will play a crucial role for this.

We will later also need to center a vector x⃗ around its mean valueCentering a vector

x̄ = 1
N

∑︁N
j=1 xj , i.e., to compute x⃗− x⃗(avg) with x

(avg)
j = x̄. In order to

do this, we first need to compute x⃗(avg) based on a given vector x⃗:

x⃗(avg) =
1

N
1⃗1⃗
T
x⃗

In order to see, why this equivalence is true, consider that 1⃗1⃗
T

resultsComputing the mean

in an N × N matrix filled with ones. Multiplying x⃗ with this matrix

of ones results in a column vector, where each entry corresponds to∑︁N
j=1 xj . Dividing this vector by N gives us a column vector where

each entry is equal to x̄, i.e., the arithmetic mean of x⃗.

Now in order to compute x⃗− x⃗(avg), we simply need to do an element-Subtraction as

matrix

multiplication

wise subtraction. This can also be rewritten in the following way, where

I is the identity matrix of size N ×N :

x⃗− x⃗(avg) = x⃗− 1

N
1⃗1⃗
T
x⃗ =

(︃
I − 1

N
1⃗1⃗
T
)︃

⏞ ⏟⏟ ⏞
=J

x (8.7)

The matrix J = I − 1
N 1⃗1⃗

T
is called the centering matrix and will playThe centering matrix

a role when transforming the distance matrix D into the scalar product

matrix B. Please note, that J is symmetric, i.e., JT = J .
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A final ingredient needed for classical MDS is the eigenvalue de- Eigenvalue

decomposition
composition of an N ×N matrix A, which has the following form (cf.

Section 5.3.2):

A = Q Λ QT (5.19)

Please recall from Section 5.3.2, that Λ is a diagonal matrix of eigen- Eigenvectors and

eigenvaluesvalues and Q is a matrix of eigenvectors, both being of size N × N .

Each column of Q corresponds to one eigenvector q⃗(j), and the corre-

sponding diagonal entry λj of Λ to its associated eigenvalue, such that

Aq⃗(j) = λj q⃗
(j)

. If the matrix A is symmetric and positive semi-definite

(e.g., because A = Y Y T
), then all eigenvalues λj are guaranteed to be

non-negative. In Section 5.3.2, we have also seen, that based on Equation

5.19, we can rewrite A as a sum of individual matrices, which are based

on the different eigenvectors and eigenvalues:

A = Q Λ QT =
(︂
λ1q⃗

(1) λ2q⃗
(2) . . . λN q⃗

(N)
)︂
⎛⎜⎜⎜⎜⎝

(q⃗(1))T

(q⃗(2))T

.

.

.

(q⃗(N))T

⎞⎟⎟⎟⎟⎠
= λ1q⃗

(1)(q⃗(1))T + λ2q⃗
(2)(q⃗(2))T + · · ·+ λN q⃗

(N)(q⃗(N))T (5.20)

If the eigenvalues are sorted in descending order, then the individual Approximation with

eigenvalue

decomposition

matrices in Equation 5.20 are ordered in such a way, that the first matrices

have a larger impact on the overall result. In Section 5.3.2, we therefore

argued, that we can approximate A based on the first n eigenvalues

and their associated eigenvectors. The eigenvalue decomposition will

play an important role when extracting the coordinate matrix from the

scalar product matrix.

8.3.2 The Algorithm

In order to understand the algorithm for classical MDS, let us describe, From distances to

coordinates
how to transform a matrix D(2)(X) of squared Euclidean distances into

a matrix X of coordinates [71, Chapter 12]. We will assume, that the

points are centered around the origin, i.e., that X has column means

equal to zero. This is not a restriction in practice, because a centering

around the origin can be easily obtained through a translation, which

leaves the distances intact.

First of all, we apply Equation 8.6 to translate D(2)(X) into the scalar Applying Equation

8.6
product matrix B. Moreover, we multiply with the centering matrix J
from both sides:

J D(2)(X) J = J
(︂
c⃗1⃗
T
+ 1⃗c⃗T − 2B

)︂
J

=
(︂
J c⃗1⃗

T
J
)︂
+
(︂
J 1⃗c⃗T J

)︂
+ (2 J B J)

Since Jx⃗ = x⃗ − x⃗(avg) (cf. Equation 8.7), it is easy to see, that J 1⃗ = Centering a vector of

ones
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1⃗− 1⃗
(avg)

= 0. Moreover, J is symmetric, so we analogously get 1⃗
T
J = 0.

Therefore, the first two terms on the right hand side of the equation

become zero. We thus get the following intermediate result:

J D(2)(X) J = −2 J B J

We can now multiply both sides of the equation with −1
2 :Rescaling

−1

2
J D(2)(X) J = J B J

We assumed earlier, that X is column-centered, therefore applyingCentering the scalar

product matrix
the centering matrix J to X does not change anything: JX = X .

Moreover, J is symmetric (i.e., J = JT ) and B = XXT
. We thus get the

following result:

J B J = J X XT J = (J X)
(︁
JT X

)︁T
= (J X) (J X)T = X XT = B

Overall, we thus obtain the following transformation for translatingFrom distances to the

scalar product matrix
the matrix D(2)(X) of squared Euclidean distances into the scalar

product matrix B:

B = −1

2
J D(2)(X) J (8.8)

Since we apply the centering matrix J twice to D(2)(X) in order toDouble centering

arrive at B, applying Equation 8.8 is also called double centering.

After having successfully extracted the scalar product matrix B =From the scalar

product matrix to

coordinates

XXT
, we now need to recover the coordinate matrix X . This can be

done using an eigenvalue decomposition of B [71, Chapter 7]:

B = Q Λ QT

Any matrix of the form A = Y Y T
is symmetric and positive semi-Taking the square

root of the

eigenvalues

definite (i.e., has only non-negative eigenvalues). We therefore know,

that all λj are non-negative. This allows us to define Λ0.5
as the diagonal

matrix obtained by taking the element-wise square root ofΛ. It is easy to

see that Λ = Λ0.5 Λ0.5
. Applying this to our eigenvalue decomposition

results in the following observation:

B = Q Λ QT = Q Λ0.5 Λ0.5 QT

=
(︁
Q Λ0.5

)︁⏞ ⏟⏟ ⏞
=U

T(︁
Q Λ0.5

)︁⏞ ⏟⏟ ⏞
=U

This means, that the matrix U = QΛ0.5
contains coordinates, whichObtaining rotated

coordinates
give rise to the scalar product matrix B, i.e., which respect the squared

Euclidean distances given in D(2)(X). This also means, that the dis-

tances between the points in U and the distances between the points

in X are identical. However, one should note that in general U ̸= X ,

because the coordinates are only determined up to a rotation around
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Algorithm 8.1: Classical MDS algorithm as described by Borg

and Groenen [71, Chapter 12].

Input: Dissimilarity matrix ∆, number of dimensions n
Output: Coordinate matrix X

1 Apply the element-wise square to ∆ in order to obtain ∆(2)

2 Apply double centering: B∆ = −1
2J∆

(2)J
3 Compute eigenvalue decomposition B∆ = QΛQT

4 Take the n largest positive eigenvalues and their corresponding

eigenvectors to construct Λ+ and Q+

5 Estimate coordinate matrix X = Q+Λ
0.5
+

6 return X

the origin. If necessary, one can find a rotation matrix R to transform U
intoX , but this is rarely done in practice, since we are mostly interested

in the relative configuration of the points.

So if we have a matrix D(X) of Euclidean distances, we can recover Classical MDS:

assume, that ∆
contains distances

the relative coordinates of the original points through double-centering

and an eigenvalue decomposition. The dissimilarity matrix ∆ used

for MDS does, however, in general not contain Euclidean distances.

Nevertheless, one can apply the procedure from above to estimate a

configuration of points, whose distances reflect the dissimilarities as

closely as possible. The corresponding procedure for applying classical

MDS is shown in Algorithm 8.1 [71, Chapter 12].

The main difference between Algorithm 8.1 and our prior mathemat- Ignoring

non-positive

eigenvalues

ical derivation concerns line 4: Since the dissimilarities in ∆ are not

necessarily Euclidean distances, the eigenvalue decomposition of B∆

may contain some eigenvalues, which are zero or negative. Negative

eigenvalues are, however, problematic, because taking their square root

is not permitted. In classical MDS, these non-positive eigenvalues are

therefore ignored as error, and their corresponding eigenvectors are

not taken into account when constructing the coordinate matrix X .

One should furthermore note, that taking into consideration only Taking n eigenvalues

and optimizing

Strain

the n largest eigenvalues can be seen as a form of approximating B∆.

Moreover, one can show, that classical MDS optimizes the so-called

Strain ||XXT − B∆||2, i.e., the reconstruction error of X with respect

to B∆. Thus, the solution obtained by classical MDS tries to mimic the

scalar products of the coordinates as closely as possible. This is, however,

not equivalent to minimizing absolute Stress, where the coordinates

try to approximate the distances as closely as possible.

Classical MDS differs from most other MDS approaches by providing Nested solutions

an analytical solution, which can be computed in a deterministic,

non-iterative way. Moreover, the solutions provided by classical MDS

are "nested" in the sense, that the first n′ < n dimensions of the

n-dimensional solution are identical to the n′-dimensional solution.

This nesting of dimensions is based on the fact, that the eigenvalue
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decomposition is always the same, independent of the dimensionality

of the target space (cf. line 3 in Algorithm 8.1). Such a nesting of

dimensions is not expected to happen for other MDS algorithms, which

iteratively minimize Stress – there, the dimensionality of the space is

defined in the beginning, and a minimum of Stress is searched in the

given n-dimensional space.

As you may have noted, both the principal components analysisRelation to PCA

(PCA) discussed in Section 5.3.2 and classical MDS make use of an

eigenvalue decomposition of the scalar product matrix B = XXT
,

and are thus tightly related. However, they start from different inputs

and have slightly different goals: A PCA starts with a design matrix

X ∈ RN×n
and tries to project it into a lower-dimensional space by

computing an eigenvalue decomposition of the scalar product matrix

XXT
. In the case of a PCA, the original coordinates are thus already

given. In classical MDS, on the other hand, we start with a dissimilarity

matrix ∆, which we interpret as containing Euclidean distances. We

then apply double centering to obtain (an approximation of) XXT
,

and an eigenvalue decomposition to recover the underlying coordinate

matrixX . Here, obtaining coordinates from distances is our main focus,

and finding a low-dimensional solution is only a secondary issue.

Finally, let us comment on the configuration obtained by classicalProperties of the

configuration
MDS: Since we assume, that X is column-centered, the solutions

provided by classical MDS are always centered around the origin.

They are thus in some sense normalized by removing one degree

of freedom (namely, the translation with respect to the origin). The

scale of the solution (i.e., the average distance of the points to the

origin) is determined by the values of the dissimilarities: Classical MDS

provides a solution, where the distances between the points try to

reflect the numerical values of the dissimilarity matrix as closely as

possible. A normalization with respect to the scale can thus be achieved

either by normalizing the dissimilarity matrix or by normalizing the

resulting space afterwards. Finally, the resulting configurations are not

determined with respect to their rotation around the origin. This means,

that semantically meaningful directions do not necessarily coincide

with the axes of the coordinate system.

8.3.3 An Illustrative Example

Let us now finally take a look at our fruit example from SectionSquaring

dissimilarities
8.2.4 in order to illustrate how classical MDS works. We start in line

1 of Algorithm 8.1 by computing the element-wise square of the

dissimilarities:

∆ =

⎛⎜⎜⎜⎜⎝
0 2.5 3.5 1.4

2.5 0 3.5 2.0

3.5 3.5 0 3.7

1.4 2.0 3.7 0

⎞⎟⎟⎟⎟⎠
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∆(2) =

⎛⎜⎜⎜⎜⎝
0 6.25 12.25 1.96

6.25 0 12.25 4.0

12.25 12.25 0 13.69

1.96 4.0 13.69 0

⎞⎟⎟⎟⎟⎠
Next, we need to apply double-centering to ∆(2)

in order to obtain Applying

double-centering
the estimate of the scalar product matrix (cf. line 2 in Algorithm 8.1

and Equation 8.8):

B∆ = −1

2
J∆(2)J

= −1

2

⎛⎜⎜⎜⎜⎝
0.75 −0.25 −0.25 −0.25

−0.25 0.75 −0.25 −0.25

−0.25 −0.25 0.75 −0.25

−0.25 −0.25 −0.25 0.75

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0 6.25 12.25 1.96

6.25 0 12.25 4.0

12.25 12.25 0 13.69

1.96 4.0 13.69 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0.75 −0.25 −0.25 −0.25

−0.25 0.75 −0.25 −0.25

−0.25 −0.25 0.75 −0.25

−0.25 −0.25 −0.25 0.75

⎞⎟⎟⎟⎟⎠

≈

⎛⎜⎜⎜⎜⎝
1.9650 −0.9050 −1.9438 0.8838

−0.9050 2.4750 −1.6888 0.1188

−1.9438 −1.6888 6.3975 −2.7650

0.8838 0.1188 −2.7650 1.7625

⎞⎟⎟⎟⎟⎠
We are now in line 3 of Algorithm 8.1, where we now compute the Eigenvalue

decomposition
eigenvalue decomposition of B∆ into Q and Λ:

B∆ = QΛQT with Λ ≈

⎛⎜⎜⎜⎜⎝
8.6478 0 0 0

0 3.2420 0 0

0 0 0.7102 0

0 0 0 0

⎞⎟⎟⎟⎟⎠

and Q ≈

⎛⎜⎜⎜⎜⎝
0.2731 −0.5761 −0.5861 −0.5

0.2023 0.7993 −0.2649 −0.5

−0.8588 −0.0654 0.0907 −0.5

0.3834 −0.1578 0.7603 −0.5

⎞⎟⎟⎟⎟⎠
As we can see, there are three positive eigenvalues, thus we can Taking the two

largest eigenvalues
maximally construct a three-dimensional solution. For visualization

purposes, we confine ourselves to n = 2, i.e., a two-dimensional simi-

larity space. We thus obtain Λ+ and Q+ as follows:
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Figure 8.2: (a) Initial configuration from Section 8.2.4. (b) Two-dimensional

similarity space obtained by classical MDS for our fruit example.

Absolute MDS Ordinal MDS

σr(X) σ1(X) σr(X) σ1(X)

Initial configuration 18.2653 1.0684 2.5000 0.3953

Classical MDS 0.3792 0.08929 0.0000 0.0000

Table 8.3: Stress values for the initial configuration from Section 8.2.4 and for

the solution provided by classical MDS.

Λ+ ≈

(︄
8.6478 0

0 3.2420

)︄
and Q+ ≈

⎛⎜⎜⎜⎜⎝
0.2731 −0.5761

0.2023 0.7993

−0.8588 −0.0654

0.3834 −0.1578

⎞⎟⎟⎟⎟⎠
According to line 5 of Algorithm 8.1, we can now estimate ourEstimating

coordinates
coordinate matrix X as follows:

X = Q+Λ
0.5
+ ≈

⎛⎜⎜⎜⎜⎝
0.2731 −0.5761

0.2023 0.7993

−0.8588 −0.0654

0.3834 −0.1578

⎞⎟⎟⎟⎟⎠
(︄

2.9407 0

0 1.8006

)︄

≈

⎛⎜⎜⎜⎜⎝
0.8031 −1.0374

0.5949 1.4392

−2.5254 −0.1177

1.1275 −0.2841

⎞⎟⎟⎟⎟⎠
This configuration of points is illustrated in Figure 8.2. When com-Interpreting the

results
paring Figure 8.2 to the original dissimilarities from Table 8.2, we note,

that the overall arrangement seems to capture the dissimilarities quite

well. We can check this intuition by computing raw Stress and Stress-1,

both based on an absolute MDS model and an ordinal MDS model.

The results can be seen in Table 8.3 and are compared to the respective

Stress values of the initial configuration from Section 8.2.4. As we can
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Algorithm 8.2: General gradient descent procedure.

Input: Function f : Rn → R, learning rate α, threshold ϵ
Output: Point x⃗ ∈ Rn which approximately minimizes f

1 Set x⃗ to an arbitrary starting value

2 repeat

3 Compute gradient ∇x⃗f(x⃗) =
(︂
∂f(x⃗)
∂x1

, . . . , ∂f(x⃗)∂xn

)︂
4 Update x⃗ = x⃗− α · ∇x⃗f(x⃗)

5 until |∇x⃗f(x⃗)| < ϵ
6 return x⃗

see, absolute Stress is very small for the solution obtained through

classical MDS and considerably better than for the initial configuration.

Moreover, classical MDS is able to push ordinal Stress to zero, i.e., the

distances are indeed a monotone transformation of the dissimilarities.

This is a nice result, especially given, that classical MDS does not

explicitly optimize any of the Stress variants shown in Table 8.3. One

should, however, keep in mind, that the results obtained on our very

small example do not necessarily carry over to larger and more complex

dissimilarity matrices.

8.4 kruskal’s gradient descent approach

The first thoroughly formalized algorithm for nonmetric MDS was Nonmetric MDS

with gradient descent
developed by Kruskal [233, 234]. It optimizes Stress-1 (i.e., raw Stress

normalized by the squared distances of the points) by using a form of

gradient descent. This section is based almost entirely on [234], using,

however, the notation introduced in Section 8.2.1.

In Section 8.4.1, we give a short rehash of gradient descent, which

has already been introduced in Section 5.2.2. In Section 8.4.2, we then

introduce Kruskal’s algorithm for monotone regression. Section 8.4.3

applies this monotone regression to our fruit example. We then explain

Kruskal’s overall MDS algorithm in Section 8.4.4 and illustrate its inner

workings with our fruit example in Section 8.4.5.

8.4.1 Gradient Descent for Stress

Please recall from Section 5.2.2, that gradient descent is an iterative Iterative

optimization with

gradient descent

optimization method. It is applied mainly, if analytical solutions are

either not possible or too costly to compute [71, Chapter 8]. The general

procedure of gradient descent is re-printed in Algorithm 8.2 and

illustrated in Figure 8.3.

The gradient∇x⃗f(x⃗) (which corresponds in the one-dimensional case Gradient descent in a

nutshell
to the derivative f ′(x)) of a function f(x⃗) is zero in all of its so-called sta-

tionary points (i.e., all minima, maxima, and saddle points). The function

f(x) in Figure 8.3 has two local minima (x1 and the global minimum
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Figure 8.3: Illustration of gradient descent for a function f .

x∗). In both of these points, the derivative of f is zero as indicated by

the tangents. Gradient descent aims at finding the global minimum

by iteratively improving its current estimate, namely by moving in the

opposite direction of the gradient. For instance, if our current estimate

of the global minimum in Figure 8.3 is x0, gradient descent slightly

increases the current estimate to x+∆x, because f ′(x0) < 0. In order

to define the step size used for updating x, one typically multiplies the

gradient with a constant α, which is called the learning rate. Thus, our

update rule is xt+1 = xt − α · f ′(x) (cf. line 4 in Algorithm 8.2). Gradi-

ent descent iteratively makes such small updates, until the gradient

becomes close to zero, indicating, that a local minimum has been found.

In order to apply gradient descent to the minimization of Stress, weMinimizing Stress-1

need to compute the respective gradient of the Stress function. Kruskal’s

algorithm minimizes Stress-1, which was defined in Equation 8.4 as

follows, assuming that the disparities d̂j1j2 = f(δj1j2) are given:

σ1(X) =

⌜⃓⃓⃓
⎷∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 ·

(︂
dj1j2(X)− d̂j1j2

)︂2
∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 · d2j1j2(X)

=

√︄
σr(X)

T (X)

According to Kruskal [234], the gradient g
(j)
i = ∂σ1(X)

∂x
(j)
i

, i.e., withGradient for Stress-1

respect to the ith coordinate of the jth point in the configuration, can

be computed as follows:

g
(j)
i = σ1(X)

N∑︂
j1=1

N∑︂
j2=1

[︂(︂
δ(jj1) − δ(jj2)

)︂
(︄
dj1j2(X)− d̂j1j2

σr(X)
− dj1j2(X)

T (X)

)︄
x
(j1)
i − x

(j2)
i

dj1j2(X)

]︄
(8.9)

Here, δ(j1j2) is the Kronecker delta with δ(j1j2) = 1 if j1 = j2 and

δj1j2 = 0 if j1 ̸= j2. We can thus compute the N × n matrix G corre-

sponding to the overall gradient ∇Xσ1(X) by using Equation 8.9 to
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populate its entries g
(j)
i . Our update rule for the coordinate matrix then

becomes X = X − α · G, i.e., an element-wise update based on the

negated gradient.

8.4.2 Monotone Regression

As mentioned in Section 8.2, all iterative optimization techniques ap- Block-based

monotone regression
plied to the MDS problem need to make an alternating update of the

configuration X and the optimal disparities D̂. Thus, we also need

to specify how the optimal disparities for a given configuration can

be derived. As mentioned before, this can be done with a monotone

regression. Kruskal [234] has provided Algorithm 8.3 for computing

such a monotone regression. Its basic idea is, that the dissimilarities are

partitioned into consecutive blocks. The disparity value d̂ assigned to

each block corresponds to the average across the respective distances

dj1j2(X) in this block. The algorithm ensures, that these disparities

are non-decreasing by iteratively merging neighboring blocks, which

violate the monotonicity requirement.

Let us now take a closer look at Algorithm 8.3. We define a block Initializing the list of

blocksb = (δ(b), d(b)) as a tuple of two sets, namely the set of dissimilarities

δ(b) and the set of distances d(b). We furthermore define the disparity of

a block b as d̂(b) = 1
|d(b)|

∑︁
d∈d(b) d. In the beginning, each block contains

only a single dissimilarity value along with its corresponding distance

(see lines 1-5). All these blocks are kept in a sorted list B (line 6). Please

note, that if for two blocks b ̸= b′ we have δ(b) = δ(b′) (i.e., there is a tie

in the dissimilarity matrix), we use d(b) as a secondary sorting key. This

corresponds to using the primary approach to ties (cf. Section 8.2.2).

A block is called up-satisfied, if its disparity is less than the disparity Satisfaction and

activity
of the next block (see line 10). It is called down-satisfied, if its disparity is

greater than the disparity of the previous block (see line 11). A block

can be either inactive, up-active, or down-active.

If a block is up-active, we try to ensure, that it is also up-satisfied Merging blocks

by merging it with the next block if necessary (lines 14-19). On the

other hand, if a block is down-active, we try to ensure, that it is down-

satisfied, again if necessary by merging it with the previous block (lines

20-26). Two blocks are merged by merging their sets of dissimilarities

and their sets of distances, respectively. This results in an updated

disparity value for the resulting block, which lies between the original

disparities of the original blocks, and removes the violation of the

monotonicity requirement. By repeatedly merging blocks, we ensure

that all violations are resolved and in the end, dissimilarities are mapped

to a monotonically non-decreasing sequence of disparities.

If such a merge occurs, the direction of activity is reversed (cf. lines 18 Changing directions

and 24). The algorithm then checks in the next step, whether the updated

disparity value of the merged block has "broken" the satisfaction status

with respect to the other direction. If an active block is both up-satisfied
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Algorithm 8.3: Monotone regression as described in [234].

Input: Dissimilarity matrix ∆, distance matrix D(X)
Output: Disparity matrix D̂

1 B = ⟨⟩
2 forall j1 ≤ j2 do

3 b = ({δj1j2} , {dj1j2(X)})
4 Append b to B

5 end

6 Sort B in ascending order based on δ(b)
7 Mark first block of B as up-active

8 while there is an active block b ∈ B do

9 Denote by b− and b+ the previous and the next block,

respectively

10 sup ⇔
(︂
d̂(b) < d̂(b+)

)︂
∨ b is the last block

11 sdown ⇔
(︂
d̂(b−) < d̂(b)

)︂
∨ b is the first block

12 if sup ∧ sdown then

13 Mark b as inactive, mark b+ as up-active

14 else if b is up-active then

15 if sup then

16 Mark b as down-active

17 else

18 Merge b with b+, mark resulting block as down-active

19 end

20 else // b is down-active
21 if sdown then

22 Mark b as up-active

23 else

24 Merge b with b−, mark resulting block as up-active

25 end

26 end

27 end

28 Initialize N ×N matrix D̂ with entries d̂j1j2 = 0
29 forall j1 ≤ j2 do

30 Find block b ∈ B, such that δj1j2 ∈ δ(b)

31 d̂j1j2 = d̂j1j2 = d̂(b)

32 end

33 return D̂
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and down-satisfied, no further merging is required at this point. Thus,

it becomes inactive and we consider the next block (lines 12-13).

The algorithm starts by marking the first block as up-active (line 7). The main loop

It terminates when all blocks are both up-satisfied and down-satisfied

and thus no block is active any more (line 8). In the end, we copy the

disparities from the blocks into the disparity matrix (lines 28-33).

8.4.3 Example for Monotone Regression

In order to illustrate, how Algorithm 8.3 works, let us apply it to the Starting point

initial configuration X0 from Section 8.2.4. We therefore assume the

following variables to be given:

D(X0) ≈

⎛⎜⎜⎜⎜⎝
0 1.6903 0.7560 1.0691

1.6903 0 2.3905 2.2678

0.7560 2.3905 0 0.7559

1.0691 2.2678 0.7559 0

⎞⎟⎟⎟⎟⎠

∆ =

⎛⎜⎜⎜⎜⎝
0 2.5 3.5 1.4

2.5 0 3.5 2.0

3.5 3.5 0 3.7

1.4 2.0 3.7 0

⎞⎟⎟⎟⎟⎠
First, we have to construct the sorted list B of blocks (lines 1-6) and A sorted list of blocks

mark the first block as up-active (line 7). In our example, this results

in the following state of B, where each column represents one block b,
whose entries δ(b) and d̂(b) are shown in separate rows:

δ14 = 1.4 δ24 = 2.0 δ12 = 2.5 δ13 = 3.5 δ23 = 3.5 δ34 = 3.7

1.0691 2.2678 1.6903 0.7560 2.3905 0.7559

up-active

The first block is both up-satisfied and down-satisfied (lines 10-11), Processing the first

block
therefore, we mark the second block as up-active (lines 12-13):

δ14 = 1.4 δ24 = 2.0 δ12 = 2.5 δ13 = 3.5 δ23 = 3.5 δ34 = 3.7

1.0691 2.2678 1.6903 0.7560 2.3905 0.7559

up-active

The second block is up-active and down-satisfied, but not up-satisfied, Merging upwards

because its right neighbor has a lower disparity of 1.6903 < 2.2678.

We therefore execute line 18, merge the blocks, and mark the result as

down-active:

δ14 = 1.4 δ24 = 2.0, δ12 = 2.5 δ13 = 3.5 δ23 = 3.5 δ34 = 3.7

1.0691 1.9791 0.7560 2.3905 0.7559

down-active
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The current block is now down-active and down-satisfied, hence weChanging directions

change it to being up-active (line 24):

δ14 = 1.4 δ24 = 2.0, δ12 = 2.5 δ13 = 3.5 δ23 = 3.5 δ34 = 3.7

1.0691 1.9791 0.7560 2.3905 0.7559

up-active

Again, we have the situation that, the current block is up-active, butAnother upward

merge
not up-satisfied, causing us again to merge it with the next block and

marking the result as down-active (line 18):

δ14 = 1.4 δ24 = 2.0, δ12 = 2.5, δ13 = 3.5 δ23 = 3.5 δ34 = 3.7

1.0691 1.5714 2.3905 0.7559

down-active

The resulting block is still down-satisfied, so we can mark it again asAnother change of

directions
up-active (line 24):

δ14 = 1.4 δ24 = 2.0, δ12 = 2.5, δ13 = 3.5 δ23 = 3.5 δ34 = 3.7

1.0691 1.5714 2.3905 0.7559

up-active

Now, our current block is both up-satisfied and down-satisfied. WeMoving on

can therefore leave it as is and move on to the next block (line 13):

δ14 = 1.4 δ24 = 2.0, δ12 = 2.5, δ13 = 3.5 δ23 = 3.5 δ34 = 3.7

1.0691 1.5714 2.3905 0.7559

up-active

A third time, we observe, that the current block is up-active, but notMerging the last two

blocks
up-satisfied. We therefore merge it with its successor and mark the

resulting block as down-active (line 18):

δ14 = 1.4 δ24 = 2.0, δ12 = 2.5, δ13 = 3.5 δ23 = 3.5, δ34 = 3.7

1.0691 1.5714 1.5732

down-active

The current block is both up-satisfied and down-satisfied. Since thisPost-processing

is the last block in our list, the regression loop (lines 8-27) terminates.

Now all that is left to do is to transfer the disparities into the disparity

matrix D̂ (lines 28-33). We therefore get the following result:

D̂ =

⎛⎜⎜⎜⎜⎝
0 1.5714 1.5714 1.0691

1.5714 0 1.5732 1.5714

1.5714 1.5732 0 1.5732

1.0691 1.5714 1.5732 0

⎞⎟⎟⎟⎟⎠
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8.4.4 The Algorithm

Having established both a way of computing the gradient of Stress-1 Putting everything

together
in Section 8.4.1 and a method for computing a monotone regression

in Section 8.4.2, we can now specialize the general gradient descent

procedure from Algorithm 8.2 into Kruskal’s nonmetric MDS algorithm.

Algorithm 8.4 starts by initializing the configuration of points (line 1), Initialization

e.g., by using a random number generator, and by setting the learning

rate α to 0.2 (line 2). After initializingX , we ensure that it is normalized,

i.e., that the centroid of the configuration lies in the origin, and that

root-mean-square distance of the points from the origin equals one.

This can be done by centering X and by afterwards dividing all its

coordinates by

√︂
1
N

∑︁N
j=1

∑︁n
i=1(x

(j)
i )2.

In each step of the optimization loop (lines 4-15), a number of Main computational

steps
computations take place: First of all, we compute the optimal disparities

D̂ for the given configuration X by using the monotone regression

from Algorithm 8.3 (line 4). The resulting disparities are then used

to compute Stress-1 in line 5 (based on Equation 8.4) as well as the

gradient of Stress-1 in line 6 (using Equation 8.9). In line 7, we then

compute the magnitude |∇Xσ1(X)| of the gradient, which will be used

later both as a normalization factor in the update step and as part of

the stopping criterion. Afterwards, we compute three factors, which

are used to update the learning rate α:

The angle factor αa (line 8) measures the angle θ between the cur- Angle factor as a

variant of

momentum

rent and the previous gradient, interpreting these gradients as N · n-

dimensional vectors. If θ is close to 0°, then both gradients point in the

same direction and make similar adjustments to the configuration. In

this case, cos(θ) is close to 1, yielding a large angle factor αa. If θ is

close to 180°, then the gradients point into opposite directions, which

indicates conflicting updates. This results in cos(θ) being close to -1

and αa being small. The angle factor can thus be seen as a variant of

momentum (cf. Section 6.2.5): It tries to increase the step size as long

as the direction of the updates stays the same, but attempts to make

updates smaller, when the direction of the updates changes. Especially

a sharp turn indicated by θ ≈ 180° indicates, that the last update may

have corresponded to a jump over a valley (e.g., from x0 to x2 in Figure

8.3). In order to reach the bottom of this valley, it makes sense to reduce

the learning rate.

The relaxation factor αr (line 9) compares the current value of Stress-1 Relaxation factor

based on mid-term

improvements

σ
(c)
1 to the Stress value σ

(c−5)
1 from five iterations ago. If σ

(c)
1 > σ

(c−5)
1 ,

then Stress-1 has increased in the recent past. In this case, αr = 0.65,

which corresponds to slowing down the updates with the hope of

decreasing Stress again. However, ifσ
(c)
1 < 0.786·σ(c−5)

1 , thenαr > 1, i.e.,

the step size increases. Implicitly, we thus expect a relative improvement

of about 21.4% within five iterations – if the improvement is larger,

then we increase our step size, otherwise we decrease it. The relaxation

factor thus looks at the mid-term improvements of Stress-1.
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Algorithm 8.4: Kruskal’s MDS algorithm as described in [234].

Input: Dissimilarity matrix ∆, number of dimensions n,

threshold ϵ
Output: Coordinate matrix X

1 Choose an arbitrary N × n matrix X as initial configuration and

normalize it

2 Set c = 1 and α = 0.2
3 repeat

4 Compute disparities D̂ with Algorithm 8.3, using ∆ and

D(X)

5 Compute current Stress-1 σ
(c)
1 = σ1(X)

6 Compute gradient ∇Xσ1(X) = ∂σ1(X)
∂X

7 Compute magnitude of the gradient |∇Xσ1(X)|
8 Compute angle factor αa = 4cos(θ)

3

9 Compute relaxation factor αr = 1.3 /

(︄
1 + min

(︃
1,

σ
(c)
1

σ
(c−5)
1

)︃5
)︄

10 Compute good luck factor αgl = min

(︃
1,

σ
(c)
1

σ
(c−1)
1

)︃
11 Update learning rate α = α · αa · αr · αgl
12 Update X = X − α

|∇Xσ1(X)| · ∇Xσ1(X)

13 Normalize X
14 Increase c

15 until |∇Xσ1(X)| < ϵ
16 return X

The good luck factor αgl (line 10) considers the direct improvementGood luck factor

based on short-term

improvements

of Stress-1 with respect to the previous iteration: If σ
(c)
1 < σ

(c−1)
1 , then

the step size is reduced, while for σ
(c)
1 > σ

(c−1)
1 , the step size remains

constant. The good luck factor therefore reduces the step size as long as

Stress is improving. The relaxation factor αr and the good luck factor

αgl are thus somewhat conflicting with αr increasing the step size for

decreasing Stress values and αgl increasing it. While αr can thus be seen

as rewarding recent improvements, αgl tries to slow down the search

for sudden jumps in order to avoid overstepping close-by minima.

The overall learning rate α is then updated based on these threeOverall update

factors (line 11). The updated α is normalized by the magnitude of the

gradient when applying the update to the configuration X in line 12.

Afterwards, we ensure, that the updated configuration is normalized

by following the procedure described above (line 13). The algorithm

terminates, once the magnitude of the gradient becomes smaller than a

given threshold ϵ (line 15), which indicates, that X is close enough to a

local minimum. Based on his experimentations, Kruskal proposes to

set ϵ to about 2% of the expected Stress-1 for an arbitrary configuration.
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As Kruskal notes, his algorithm is not guaranteed to find the global Local optima

minimum of Stress-1 – it may as well converge to an (arbitrarily bad)

local minimum. This is a general property of gradient descent as already

discussed in Sections 5.2.2 and 6.2.5. Kruskal proposes to deal with

this problem by running the algorithm multiple times with different

randomly chosen initial configurations and by keeping the best result.

Moreover, he argues, that the interpretability of the resulting configu-

ration can indicate, whether a global minimum has been reached.

His update of the learning rate α is based on the intuition, that one Learning rate

modifications
should start with a relatively large learning rate, which decreases over

time: In the beginning, larger updates are needed in order to reach a

region of low Stress values. Once this target region has been reached,

smaller updates are used to find the actual minimum. His three update

factors αa, αr, and αgl try to capture this intuition mathematically,

and have emerged from extensive experimentation. However, one can

criticize them for being quite arbitrarily chosen. Other subsequent de-

velopments in the area of artificial neural networks, such as momentum

or automatic learning rate adaption (cf. Section 6.2.5) may be superior

to Kruskal’s handcrafted learning rate updates, especially, since they

stand on a stronger theoretical foundation.

De Leeuw [115] pointed out, that Kruskal’s gradient descent method Shortcomings of

Kruskal’s algorithm
has two major shortcomings: Firstly, if the points for two stimuli coincide

(i.e., x⃗(j1) = x⃗(j2)), then the distance function of these two points is not

differentiable. Since Kruskal’s algorithm uses gradient descent for the

optimization, this can lead to problems. Secondly, Kruskal was not able

give a proof of convergence for his algorithm – we are therefore not

guaranteed, that the algorithm terminates at all. In order to overcome

these limitations, de Leeuw derived the SMACOF algorithm, which

will be introduced in Section 8.5.

8.4.5 An Illustrative Example

Let us again use our fruit example from Section 8.2.4 to illustrate the Starting points

inner workings of Kruskal’s MDS algorithm. We will consider a single

update to the initial configuration X0. We have already shown, how to

compute the disparities D̂ in Section 8.4.3. We therefore assume the

following variables to be given:

X0 =

⎛⎜⎜⎜⎜⎝
−0.2673 −0.2673

−0.8018 1.3363

0.2673 −0.8018

0.8018 −0.2673

⎞⎟⎟⎟⎟⎠

D(X0) ≈

⎛⎜⎜⎜⎜⎝
0 1.6903 0.7560 1.0691

1.6903 0 2.3905 2.2678

0.7560 2.3905 0 0.7559

1.0691 2.2678 0.7559 0

⎞⎟⎟⎟⎟⎠
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∆ =

⎛⎜⎜⎜⎜⎝
0 2.5 3.5 1.4

2.5 0 3.5 2.0

3.5 3.5 0 3.7

1.4 2.0 3.7 0

⎞⎟⎟⎟⎟⎠

D̂ ≈

⎛⎜⎜⎜⎜⎝
0 1.5714 1.5714 1.0691

1.5714 0 1.5732 1.5714

1.5714 1.5732 0 1.5732

1.0691 1.5714 1.5732 0

⎞⎟⎟⎟⎟⎠
Please note, that X0 is already properly normalized, i.e., centeredComputing Stress-1

around the origin with a root mean squared distance of one. We can

now look at the optimization loop of Algorithm 8.4. The next step after

initializing X0 and α (lines 1-2) and after computing D̂ (line 4) consists

in computing the value of Stress-1 for the current configuration (line 5).

This has already been done in Section 8.2.4. From there, we know that

σ
(1)
1 = σ1(X0) ≈ 0.3953.

Now we compute the gradient ∇Xσ1(X0) of Stress-1 with respect toComputing the

gradient
the coordinates in X0 by using Equation 8.9 (see line 6). This results in

the following gradient:

∇Xσ1(X0) ≈

⎛⎜⎜⎜⎜⎝
0.1235 −0.0826

−0.0624 0.0793

0.0316 0.1462

−0.0927 −0.1428

⎞⎟⎟⎟⎟⎠
Afterwards, in line 7, we compute the magnitude of this gradient,Updating the

configuration
which results in |∇Xσ1(X0)| ≈ 0.0209. Since we are in the first iteration

of the algorithm, there is no prior gradient or prior Stress value. In

these cases, we simply use the first value, which has been computed

[234], i.e., the one from the current iteration. We therefore get θ = 0°,

αa = 4, αr = 0.65, and αgl = 1 (lines 8-10). Our initial learning rate of

α = 0.2 is thus updated to α = 0.2 · 4 · 0.65 · 1 = 0.52 (line 11). Now we

can perform our update of X according to line 12:

X = X0 −
α

|∇Xσ1(X0)|
· ∇Xσ1(X0)

≈

⎛⎜⎜⎜⎜⎝
−0.2673 −0.2673

−0.8018 1.3363

0.2673 −0.8018

0.8018 −0.2673

⎞⎟⎟⎟⎟⎠− 0.5200

0.0209
·

⎛⎜⎜⎜⎜⎝
0.1235 −0.0826

−0.0624 0.0793

0.0316 0.1462

−0.0927 −0.1428

⎞⎟⎟⎟⎟⎠

≈

⎛⎜⎜⎜⎜⎝
−3.3403 1.7871

0.7498 −0.6347

−0.5183 −4.4381

3.1088 3.2856

⎞⎟⎟⎟⎟⎠
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Figure 8.4: Illustration of initial configuration X0 (a) and the update for

Kruskal’s algorithm (b).

Absolute MDS Ordinal MDS

σr(X) σ1(X) σr(X) σ1(X)

Initial configuration 18.2653 1.0684 2.5000 0.3953

Updated configuration 12.9152 0.8984 0.2763 0.1314

Table 8.4: Stress values for the initial configuration and the first update pro-

vided by Kruskal’s algorithm.

Now we normalize X by subtracting the mean and dividing by Normalizing X

the root mean squared distance (line 13). This results in our updated

configuration, which is illustrated in Figure 8.4:

X ≈

⎛⎜⎜⎜⎜⎝
−0.8948 0.4787

0.2008 −0.1700

−0.1388 −1.1889

0.8328 0.8802

⎞⎟⎟⎟⎟⎠
As we can see in Figure 8.4, the configuration of points has changed Interpreting the

results
considerably in this first optimization step, which is in line with the

relatively high learning rate used for the update. In Table 8.4, we have

compared the Stress values of the updated configuration to the ones of

the initial configuration. We can see a clear improvement with respect

to ordinal Stress (which is explicitly being optimized by Kruskal’s

algorithm). Also the values for absolute Stress have decreased slightly.

However, looking at Figure 8.4 reveals, that the updated configuration

is not yet optimal. For instance, the pair apple–pear has the lowest

dissimilarity, but the corresponding points are quite far away from

each other. So while the update seems to actually have improved the

configuration, further updates in subsequent iterations are necessary

before reaching convergence. Since the goal of this section was only

to illustrate the general processing steps of Algorithm 8.4, we do not

consider any further updates and leave the discussion of Kruskal’s

algorithm at this stage.
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8.5 iterative stress majorization through
smacof

The SMACOF algorithm (an acronym for "Scaling by Majorizing a

Complicated Function") was developed by de Leeuw [115] in order to

overcome certain shortcomings of gradient-based approaches. We base

our treatment mainly on the derivation of the algorithm provided by

Borg and Groenen [71, Chapters 8,9].

In Section 8.5.1, we introduce the necessary mathematical back-

ground, namely, iterative majorization and matrix traces. We then

derive a majorizing function for raw Stress in Section 8.5.2, which will

be used in the SMACOF algorithm presented in Section 8.5.3. In Section

8.5.4, we apply SMACOF to our fruit example from Section 8.2.4.

8.5.1 Mathematical Background

The SMACOF algorithm is a special case of a general optimization ap-Iterative majorization

proach called iterative majorization [71, Chapter 8]. Iterative majorization

is used to find the minimum of a given function in an iterative way,

if solving the problem analytically (i.e., by computing the function’s

derivative and setting it to zero) is not feasible. It has thus the same

goal as gradient descent, but follows a different approach: In order to

minimize a given function f(x⃗), one first constructs a so-called majoriz-

ing function g(x⃗, z⃗) (where z⃗ is treated as a constant), which fulfills the

following three properties:

1. g(x⃗, z⃗) is easier to minimize than f(x⃗)

2. ∀x⃗, z⃗ : f(x⃗) ≤ g(x⃗, z⃗)

3. ∀z⃗ : f(z⃗) = g(z⃗, z⃗)

Let z⃗ be arbitrary but fixed, and let g(x⃗, z⃗) obtain its minimum overImportant property

of the majorizing

function

x⃗ for this fixed value of z⃗ in x⃗∗. Based on properties 2 and 3, one can

easily see, that the following inequality holds:

f(x⃗∗) ≤ g(x⃗∗, z⃗) ≤ g(z⃗, z⃗) = f(z⃗) (8.10)

Equation 8.10 is the basis for the general procedure of iterativeThe general

algorithm
majorization shown in Algorithm 8.5 and illustrated in Figure 8.5. We

start by picking an arbitrary first estimate z⃗ of the minimum (line 1).

Then, we repeatedly compute the current value of the function f at

z⃗ (line 3), and try to find a point x⃗, which decreases the value of the

majorizing function g (line 4). If g is simple enough (e.g., a quadratic

function), we can directly jump to its global minimum. In the more

general case, we are, however, already satisfied if we can find a point

x⃗, which decreases the function value of g. Since g(x⃗, z⃗) ≤ g(z⃗, z⃗),
we know based on Equation 8.10, that also f(x⃗) ≤ f(z⃗). That is, by

repeatedly decreasing the function value of g, we iteratively minimize

f . This is achieved by using the new estimate x⃗ of the minimum as
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Algorithm 8.5: General iterative majorization algorithm.

Input: Function f : Rn → R, majorizing function g, threshold ϵ
Output: Point x⃗ ∈ Rn, which approximately minimizes f

1 Set z⃗ to an arbitrary starting value

2 repeat

3 Compute y = f(z⃗)
4 Find x⃗, such that g(x⃗, z⃗) ≤ g(z⃗, z⃗)
5 Set z⃗ = x⃗

6 until y − f(x⃗) < ϵ
7 return x⃗

Figure 8.5: Illustration of iterative majorization for a function f .

starting point z⃗ in the next iteration (line 5). If f(z⃗) and f(x⃗) are almost

indistinguishable (line 6), a stationary point has been found.

Let us consider the example from Figure 8.5, assuming, that the A simple example

current estimate of the minimum is x0. In this example, g(x, z) is a

quadratic function, which can be easily minimized. In Figure 8.5, the

point x2 minimizes g(x, x0), thus our next estimate for the minimum

of f(x) is x2. We can see in Figure 8.5 that f(x2) < f(x0), i.e., we have

improved our estimate. In the next step, we will then need to minimize

g(x, x2) in order to get closer to the global minimum x∗.
Overall, iterative majorization generates a monotonically nonincreas- Properties of iterative

majorization
ing sequence of function values. In general, the iterative majorization

algorithm can stop at any stationary point (i.e., any point, where the

derivative is zero, which includes for example also saddle points), but

typically finds a local minimum. In our example from Figure 8.5, we

therefore expect to converge to either x∗ or x1. In comparison to other

optimization algorithms such as gradient descent, iterative majoriza-

tion is not very fast, but it is guaranteed to converge, if the function

f is bounded from below. A key challenge when applying iterative

majorization is the definition of a suitable majorizing function g, which

fulfills all three required properties. We will derive such a majorizing

function for raw Stress in Section 8.5.2.
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Before we moving on, we need to introduce the matrix trace. The traceMatrix trace

of an N ×N matrix A is defined as trA =
∑︁N

j=1 ajj , i.e., the sum over

the entries on the main diagonal. The trace is useful for expressing

linear and quadratic functions. Consider, for instance, a linear function,

which takes a square matrix X ∈ RN×N
as an argument:

f(X) = f(x11, ..., xj1j2 , ..., xNN ) =

N∑︂
j1=1

N∑︂
j2=1

aj1j2xj2j1

Using the matrix trace, we can write f in a more compact way asMatrix trace and

linear functions f(X) = trAX . In order to show this equivalence, let us defineB = AX .

The diagonal entries ofB can then be written as bj1j1 =
∑︁N

j2=1 aj1j2xj2j1 .

We then get:

trAX = trB =
N∑︂
j1=1

bj1j1 =

N∑︂
j1=1

N∑︂
j2=1

aj1j2xj2j1 = f(X) (8.11)

In a similar way, one can easily show the following equivalence forMatrix trace and

quadratic functions
quadratic functions of X :

∀X ∈ RN×N : trXTX =
N∑︂
j1=1

N∑︂
j2=1

x2j1j2 (8.12)

8.5.2 A Majorizing Function for Stress

SMACOF applies iterative majorization to raw Stress. Let us assume thatRewriting raw Stress

D̂ is a matrix of optimal disparities d̂j1j2 = f(δj1j2), which are based on

the dissimilarities δj1j2 . Based on the binomial formula, we can then

rewrite raw Stress from Equation 8.3 as a sum of three components (cf.

[71, Chapter 9] and [115]):

σr(X) =
N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2(dj1j2(X)− d̂j1j2)
2

=
N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2

(︂
d2j1j2(X)− 2 · dj1j2(X) · d̂j1j2 + d̂

2

j1j2

)︂

=

N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · d̂
2

j1j2⏞ ⏟⏟ ⏞
η2(D̂)

+

N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · d2j1j2(X)⏞ ⏟⏟ ⏞
η2(X)

− 2
N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · d̂j1j2dj1j2(X)⏞ ⏟⏟ ⏞
ρ(X,D̂)

The first term, η2(D̂), depends only on the weights wj1j2 and theThree components of

raw Stress
disparities d̂j1j2 , but not on the coordinates X . It can thus be treated as
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an additive constant, which is irrelevant when minimizing σr(X) over

X . The second component, η2(X) is a weighted sum of the squared

distances d2j1j2(X). Also the third component, ρ(X, D̂), can be seen as a

weighted sum, where the weights are given bywj1j2 d̂j1j2 , and where the

sum runs over the distances dj1j2(X). Both η2(X) and ρ(X, D̂) depend

on X and therefore play an important role when minimizing σr(X)
over X . In order to find a suitable majorizing function, we therefore

consider these two components in more detail, based on their treatment

in [71, Chapters 8 and 9] and [115].

Let us first consider η2(X) =
∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 · d2j1j2(X). We Computing squared

distances
would like to express η2(X) in the form of a matrix multiplication of

the coordinate matrix X with some helper matrix V . For now, let us

focus only on computing d2j1j2(X). Let us denote by Xi the column i of

the coordinate matrix X (i.e., the ith coordinate of all points) and by ej
the jth unit vector (i.e., a vector of lengthN , where the jth entry equals

one and all other entries are zero). It is easy to see, that ej1 −ej2 contains

the entries 1 at index j1 and -1 at index j2, while being filled with zeros

at all other positions. Therefore, x
(j1)
i − x

(j2)
i = (ej1 − ej2)

TXi. We can

then express d2j1j2(X) as follows:

d2j1j2(X) =

n∑︂
i=1

(︂
x
(j1)
i − x

(j2)
i

)︂2
=

n∑︂
i=1

XT
i (ej1 − ej2)(ej1 − ej2)

T⏞ ⏟⏟ ⏞
=Aj1j2

Xi (8.13)

One can easily see, that Aj1j2 is a matrix filled with zeros except for A helper matrix

aj1j1 = aj2j2 = 1 and aj1j2 = aj2j1 = −1. Using Aj1j2 and the matrix

trace (cf. Equations 8.11 and 8.12 from Section 8.5.1), we can rewrite

d2j1j2(X) as follows:

d2j1j2(X) =

n∑︂
i=1

XT
i (ej1 − ej2)(ej1 − ej2)

TXi

=

n∑︂
i=1

XT
i Aj1j2Xi = trXTAj1j2X

The validity of the last transformation can be easily seen by remem- Applying the matrix

trace
bering, that the trace sums over the elements of the main diagonal. If

XTAj1j2X = B, then we sum over all bii = XT
i Aj1j2Xi.

Now that we have expressed the individual d2j1j2(X) in the form of Computing η2(X)

matrix multiplications and the trace function, we can construct a similar

formula for η2(X), which is just a weighted sum over these d2j1j2(X):

η2(X) =

N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · d2j1j2(X)



484 multidimensional scaling and a hybrid proposal

=

N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · trXTAj1j2X

=
N∑︂
j1=1

N∑︂
j2=j1+1

trXT (wj1j2 ·Aj1j2)X

= trXT

⎛⎝ N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 ·Aj1j2

⎞⎠X

Defining V =
∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 ·Aj1j2 , we can thus express η2(X)A quadratic function

as a quadratic function in X :

η2(X) = trXTV X

A quadratic function is easy to minimize, because it has exactly oneOptimizing η2(X)

extremum. The matrix V can also be defined as ∀j1 ̸= j2 : vj1j2 = −wj1j2
and vj1j1 =

∑︁
j2 ̸=j1 wj1j2 .

Let us now take a look at ρ(X, D̂) =
∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 · d̂j1j2 ·ρ(X, D̂) and the

Cauchy-Schwarz

inequality

dj1j2(X). Again, we will first focus on expressing the individual dj1j2(X).
For this, we will use the Cauchy-Schwarz inequality:

n∑︂
i=1

piqi ≤

⌜⃓⃓⎷ n∑︂
i=1

p2i

⌜⃓⃓⎷ n∑︂
i=1

q2i

Please note, that the two terms are identical, if qi = c · pi for anyInserting

coordinate-wise

differences

constant c ̸= 0. By replacing pi with (x
(j1)
i − x

(j2)
i ) and qi with (z

(j1)
i −

z
(j2)
i ), we get the following result, where equality happens for Z = X :

n∑︂
i=1

(x
(j1)
i −x(j2)i )(z

(j1)
i −z(j2)i ) ≤

⌜⃓⃓⎷ n∑︂
i=1

(x
(j1)
i − x

(j2)
i )2

⏞ ⏟⏟ ⏞
=dj1j2 (X)

⌜⃓⃓⎷ n∑︂
i=1

(z
(j1)
i − z

(j2)
i )2

⏞ ⏟⏟ ⏞
dj1j2 (Z)

As we can see, the factors on the right hand side of the inequalityA lower bound for

distances
are identical to the definition of the Euclidean distance, and can hence

be replaced by dj1j2 . Solving the inequality for dj1j2(X) results in the

following expression:

dj1j2(X) ≥
∑︁n

i=1(x
(j1)
i − x

(j2)
i )(z

(j1)
i − z

(j2)
i )

dj1j2(Z)
(8.14)

If dj1j2(Z) = 0, i.e., if the coordinates of the points j1 and j2 areFurther observations

identical in the matrix Z, then the right hand side of the inequality is

not defined. However, we know that in any case dj1j2(X) ≥ 0, because

distances cannot be negative. Thus, if dj1j2(Z) = 0, we can simply

replace the complete right hand side of the formula with zero and still
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have a valid lower bound. Based on our considerations for η2(X), we

furthermore know that the following equality holds (cf. Equation 8.13):

n∑︂
i=1

(x
(j1)
i − x

(j2)
i )(z

(j1)
i − z

(j2)
i ) = trXTAj1j2Z (8.15)

We can now derive the following expression for ρ(X, D̂) by combining A lower bound for

ρ(X, D̂)
Equations 8.14 and 8.15 to bound dj1j2(X) from below:

ρ(X, D̂) =
N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · d̂j1j2 · dj1j2(X)

≥
N∑︂
j1=1

N∑︂
j2=j1+1

(wj1j2 · d̂j1j2)
trXTAj1j2Z

dj1j2(Z)

=

N∑︂
j1=1

N∑︂
j2=j1+1

trXT

(︄
wj1j2 · d̂j1j2 ·Aj1j2

dj1j2(Z)

)︄
Z

= trXT

⎛⎝ N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · d̂j1j2
dj1j2(Z)

Aj1j2

⎞⎠
⏞ ⏟⏟ ⏞

=B(Z)

Z (8.16)

Analogously to V , the matrix B(Z) is defined as having the elements Properties of the

helper matrix∀j1 ̸= j2 : bj1j2 = −wj1j2
d̂j1j2

dj1j2 (Z)
, if dj1j2(Z) ̸= 0, and bj1j2 = 0 otherwise.

Moreover, bj1j1 = −
∑︁

j2 ̸=j1 bj1j2 . Since the inequality in Equation 8.16

is still based on the Cauchy-Schwarz inequality, we still get an equality

for Z = X . Therefore, we can write:

ρ(X, D̂) = trXTB(X)X ≥ trXTB(Z)Z

In our overall formula for Stress, ρ(X, D̂) appears with a negative Changing the sign

sign, thus it is convenient to multiply this formula with -1:

−ρ(X, D̂) = − trXTB(X)X ≤ − trXTB(Z)Z (8.17)

In other words, we found a way to majorize the component −ρ(X, D̂) Majorizing ρ(X, D̂)

of raw Stress with − trXTB(Z)Z, which is a linear function in X , and

which is thus much easier to minimize than −ρ(X, D̂).

After having considered the individual components of raw Stress, it Majorizing raw

Stress
is now time to put the pieces together in order to derive a majorizing

function for raw Stress. We simply replace η2(X) and ρ(X, D̂) by

trXTV X and trXTB(X)X , respectively, and apply Equation 8.17:

σr(X) = η2(D̂) + η2(X)− 2ρ(X, D̂)

= η2(D̂) + trXTV X − 2 trXTB(X)X

≤ η2(D̂) + trXTV X − 2 trXTB(Z)Z = τ(X,Z)

One can easily see, that τ(X,Z) is a majorizing function of σr(X). Minimizing

τ(X,Z)
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Moreover, τ(X,Z) is quadratic in X , which means, that it can be easily

minimized by setting its derivative ∇Xτ(X,Z) to zero. In analogy to

the derivative of quadratic functions of a scalar x ∈ R, the constant

term η2(D̂) disappears, the quadratic term trXTV X is translated into

a linear term 2V X , and the linear term trXTB(Z)Z is translated to a

constant 2B(Z)Z:

∇Xτ(X,Z) = 2V X − 2B(Z)Z = 0

In order to find a configuration X minimizing τ(X,Z), we thus needSolving for X

to solve the following equality for X :

V X = B(Z)Z

Normally, one could achieve this by premultiplying both sides of theInverting V

equation with V −1
, i.e., the inverse of V . However, V can unfortunately

not be inverted, because it does not have full rank. Instead, we use the

Moore-Pensore inverse, which is defined as follows:

V + = (V + 1⃗1⃗
T
)−1 −N−21⃗1⃗

T

By premultiplying with V +
, we obtain the following rule for mini-The update step

mizing τ(X,Z):

X = V +B(Z)Z (8.18)

If all weights wj1j2 are equal to one, then V + = N−1(I − N−11⃗1⃗
T
)A special case

and Equation 8.18 can be simplified to X = N−1B(Z)Z [71, Chapter 8].

8.5.3 The Algorithm

Having defined both the majorizing function τ(X,Z) and a formula forDeriving SMACOF

finding its minimum, we can now use the general iterative majorization

procedure from Algorithm 8.5 and apply it to the majorization of raw

Stress. The resulting SMACOF algorithm is shown in Algorithm 8.6.

Algorithm 8.6 assumes, that all weights are set to one. If this is notVariations of the

algorithm
the case, the update of the configuration in line 6 needs to be replaced

by the more general X = V +B(Z)Z from Equation 8.18, where V +
is

based on the weights wj1j2 as described in Section 8.5.2. Moreover, we

would like to point out, that we had to insert line 4 into the algorithm

to ensure, that also the disparities d̂j1j2 are updated in each step. This

alternating update of disparities and configuration is not part of the

general iterative majorization algorithm. If the representation function

f is linear (e.g., interval MDS), then the optimization of D̂ in line 4

can be carried out through a linear least squares regression. If f is

constrained to a monotone function (i.e., ordinal MDS), then Kruskal’s

algorithm for monotone regression from Section 8.4.2 can be used.

SMACOF guarantees a monotone convergence of Stress, because itProperties of

SMACOF
is based on iterative majorization. Moreover, one can show, that X
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Algorithm 8.6: The SMACOF algorithm.

Input: Dissimilarity matrix ∆, number of dimensions n,

representation function f , threshold ϵ
Output: Coordinate matrix X

1 Choose an arbitrary N × n matrix X as initial configuration

2 Set Z = X
3 repeat

4 Compute disparities D̂ ̸= 0 using ∆, f , and D(X)
5 Compute y = σr(X)
6 Compute X = N−1B(Z)Z
7 Set Z = X

8 until y − σr(X) < ϵ
9 return X

converges linearly to a stationary point [71, Chapter 8]. Furthermore,

edge cases, where two points x⃗(j1) and x⃗(j2) coincide, and thus dj1j2 = 0,

are not problematic, because we defined the respective matrix entry bj1j2
to be zero in such cases. These two properties (guaranteed convergence

and ability to handle zero distances) set SMACOF apart from Kruskal’s

gradient descent algorithm. While our treatment has only covered the

Euclidean distance, de Leeuw has also provided a generalization of the

SMACOF algorithm to arbitrary Minkowski metrics [115].

However, one should note, that also SMACOF may terminate in Limitations of

SMACOF
(arbitrarily bad) local minima, because there is no guarantee to converge

in a global minimum. Thus, also SMACOF is typically started multiple

times with different random initializations in order to improve the

chances of finding the global minimum in any of the runs. Moreover,

since iterative majorization is in general relatively slow, SMACOF might

take more time to converge than Kruskal’s gradient descent algorithm.

8.5.4 An Illustrative Example

Let us now take again a look at our fruit example. Since SMACOF was Starting point

explicitly designed to deal with an arbitrary representation function f ,

we will look at two variants: absolute SMACOF and ordinal SMACOF.

For absolute SMACOF, we simply use the original dissimilarities as

disparities, while for ordinal SMACOF, we employ Kruskal’s monotone

regression for obtaining disparities. Again, we consider a single update

step to the initial configuration X0 from Section 8.2.4. We therefore

assume the following variables to be given:

X0 =

⎛⎜⎜⎜⎜⎝
−0.2673 −0.2673

−0.8018 1.3363

0.2673 −0.8018

0.8018 −0.2673

⎞⎟⎟⎟⎟⎠
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D(X0) ≈

⎛⎜⎜⎜⎜⎝
0 1.6903 0.7560 1.0691

1.6903 0 2.3905 2.2678

0.7560 2.3905 0 0.7559

1.0691 2.2678 0.7559 0

⎞⎟⎟⎟⎟⎠

∆ =

⎛⎜⎜⎜⎜⎝
0 2.5 3.5 1.4

2.5 0 3.5 2.0

3.5 3.5 0 3.7

1.4 2.0 3.7 0

⎞⎟⎟⎟⎟⎠

D̂ ≈

⎛⎜⎜⎜⎜⎝
0 1.5714 1.5714 1.0691

1.5714 0 1.5732 1.5714

1.5714 1.5732 0 1.5732

1.0691 1.5714 1.5732 0

⎞⎟⎟⎟⎟⎠
In the first iteration of SMACOF, we thus only need to execute theComputing B(X0)

update in line 6 of Algorithm 8.6. In order to do so, we need to define the

matrix B(X0). Recall that ∀j1 ̸= j2 : bj1j2 = −wj1j2
d̂j1j2

dj1j2 (Z)
, if dj1j2(Z) ̸= 0,

and bj1j2 = 0 otherwise, and that ∀j1 : bj1j1 = −
∑︁

j2 ̸=j1 bj1j2 . In our

case, we assume that ∀jj , j2 : wj1j2 = 1. Depending on which disparities

we use, we thus get two different versions of B(X0):

Babs(X0) ≈

⎛⎜⎜⎜⎜⎝
7.4183 −1.4790 −4.6298 −1.3095

−1.4790 3.8250 −1.4641 −0.8819

−4.6298 −1.4641 10.9888 −4.8948

−1.3095 −0.8819 −4.8948 7.0863

⎞⎟⎟⎟⎟⎠

Bord(X0) ≈

⎛⎜⎜⎜⎜⎝
4.0893 −0.9296 −2.0786 −1.0000

−0.9296 2.2806 −0.6581 −0.6929

−2.0786 −0.6581 4.8180 −2.0812

−1.0000 −0.6929 −2.0812 3.7741

⎞⎟⎟⎟⎟⎠
We therefore get the following updated configurations, which areComputing the

update
illustrated in Figure 8.6:

Xabs =
1

4
Babs(X0)X0 ≈

⎛⎜⎜⎜⎜⎝
0.7711 −0.0257

0.9425 −1.7291

−0.3560 2.0554

−1.3576 −0.3005

⎞⎟⎟⎟⎟⎠

Xord =
1

4
Bord(X0)X0 ≈

⎛⎜⎜⎜⎜⎝
0.4209 0.0949

0.5779 −1.0022

−0.176 0.9076

−0.8232 −0.0003

⎞⎟⎟⎟⎟⎠
When comparing the two configurations Xabs and Xord in FigureComparing

configurations
8.6, one immediately notes, that the overall arrangement of points is
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Figure 8.6: Illustration of the update to the initial configurationX0 for absolute

(a) and ordinal (b) SMACOF.

Absolute MDS Ordinal MDS

σr(X) σ1(X) σr(X) σ1(X)

Initial configuration 18.2653 1.0684 2.5000 0.3953

Updated configuration (absolute) 4.5140 0.3239 1.5341 0.1881

Updated configuration (ordinal) 17.0210 1.1798 0.7390 0.2458

Table 8.5: Stress values for the initial configuration and the first update pro-

vided by absolute and ordinal SMACOF, respectively.

quite similar. Only lemon is placed further away from the other points

in absolute SMACOF than in ordinal SMACOF. However, the scale of

the configuration differs with absolute SMACOF resulting in larger

distances than ordinal SMACOF. This can be explained by the fact, that

absolute SMACOF tries to align D(X) with ∆, while ordinal SMACOF

tries to align D(X) with D̂. Since the values in ∆ are larger than the

ones in D̂, absolute SMACOF results in larger distance values than

ordinal SMACOF.

When comparing the Stress values in Table 8.5, a more fine-grained Comparing Stress

image emerges: Absolute SMACOF explicitly optimizes raw Stress of

absolute MDS, and thus is able to achieve a considerable improvement

on this metric. Improving absolute Stress also comes with reasonable

improvements with respect to ordinal Stress. Ordinal SMACOF, on the

other hand, optimizes raw ordinal Stress. It is clearly able to outperform

absolute SMACOF with respect to this metric. However, since it does

not pay attention to interval and ratio information, it is considerably

worse on absolute Stress. It is also interesting to note, that even though

absolute SMACOF is worse than ordinal SMACOF on raw ordinal Stress,

it is better with respect to ordinal Stress-1. The reason for this is, that

the distances produced by absolute SMACOF are larger than the ones

resulting from ordinal SMACOF, thus the denominator for computing

Stress-1 (cf. Equation 8.4) becomes larger.

As noted in prior examples, one should take the numbers from A word of caution

Table 8.5 as well as the configurations from Figure 8.6 with a grain of

salt: Firstly, they are intermediate results after a single iteration of the
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optimization loop and do thus not represent the final solution. Secondly,

we only considered a very small toy example, which is certainly not

representative of larger dissimilarity matrices.

8.6 evaluating mds solutions

As we have seen in Sections 8.3, 8.4, and 8.5, there are different algo-Motivation

rithms for solving the optimization MDS problem. In general, these

different algorithms will return at least slightly different similarity

spaces. If we have multiple MDS algorithms to choose from, we might

therefore be interested in using the one which gives the "best" results.

Moreover, every MDS algorithm expects that the dimensionality n of

the resulting similarity space is known in advance. This is, however,

hardly the case, if we apply MDS to dissimilarity ratings from a novel

domain. Thus, we are also interested in finding the optimal value of n
by comparing similarity spaces of different dimensionality according

to their quality.

Before we go into further detail with respect to the evaluation ap-Choosing the optimal

number of

dimensions

proaches, let us comment on the general trade-off involved when

choosing the number of dimensions. This issue is strongly related to

finding the optimal number of features in dimensionality reduction (cf.

Section 5.3) and to tuning the capacity of a machine learning model (cf.

Sections 5.1.1 and 5.1.4). While it is usually unclear, which value of nwill

prove to be optimal, one can expect certain general trends in the context

of MDS: If n is set too low (e.g., n = 1 for a very complex dataset, where

stimuli are expected to differ in multiple ways), then not all pieces of

information from the dissimilarity matrix ∆ can be represented in the

similarity space [71, Chapter 3]. On the other hand, if n is set too large,

then also the noise components from ∆ are included in the similarity

space [71, Chapter 3]. In the extreme case, one can perfectly represent

any dissimilarity matrix in ordinal MDS when using n = N − 2 dimen-

sions [71, Chapter 3]. In general, we thus face a trade-off between a good

compression (for small n) and more expressive spaces (for large n) [123].

One can distinguish two approaches for evaluating the quality of aStress-based

evaluation
given similarity space: Firstly, one compare different similarity spaces

based on their Stress values, which measure the difference between

the distances in the similarity space and the dissimilarity ratings from

the original dissimilarity matrix. We will give an overview of different

Stress-based evaluation approaches in Section 8.6.1.

Secondly, one can inspect the interpretability of a given similarityInterpretability-

based evaluation
space. This evaluation approach typically tries to identify meaningful

regions and directions in a given similarity space, which lend them-

selves to an intuitive interpretation. We will give more detail on how to

measure the interpretability of similarity spaces in Section 8.6.2.
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8.6.1 Stress-based Evaluation

Since Stress is being explicitly optimized in MDS, it makes sense to Interpreting Stress

directly
use it also for making a direct judgment about the quality of the

generated similarity space. For instance, Kruskal [233] proposes to

interpret nonmetric Stress-1 as follows: A value of 0.2 corresponds to

a poor reflection of the dissimilarities, 0.1 is deemed fair, 0.05 good,

0.025 excellent, and 0.0 perfect. Borg and Groenen [71, Chapter 3] have,

however, pointed out, that one should not trust this interpretation

too much, because the raw Stress values are influenced by various

circumstances:

• Representation function: Stress is generally higher for metric MDS

than for nonmetric MDS, because the latter has more degrees of

freedom in its representation function.

• Size of the dataset: A larger number N of stimuli generally tends to

increase Stress, because Stress is not normalized with respect to

the number of stimulus pairs.

• Number of ties: If the dissimilarity matrix ∆ contains many ties,

and if ordinal MDS with the primary tie-breaking approach is

used, then Stress is expected to be lower, because the tied stimulus

pairs are not considered when computing Stress.

• Missing data: Larger fractions of missing entries in ∆ generally

reduce Stress, because less pairs of stimuli are being considered.

• Noisy data: A higher error in the dissimilarity data (i.e., larger

amounts of noise) contributes to elevated Stress levels, because it

makes the data harder to fit by an MDS model.

• Dimensionality of the similarity space: Increasing the dimensionality

n of the similarity space typically leads to a decrease of Stress, be-

cause the model has more free parameters (i.e., more coordinates

per point) in order to fit the information from the dissimilarity

matrix.

Due to these external influences, it is in general preferable to rather Comparing Stress

values
compare the resulting Stress values different MDS solutions, which

were all based on the same dissimilarity matrix∆. One should note, that

in this case Stress-1 is preferable to raw Stress, because it is normalized

with respect to the distances in the similarity space (cf. Section 8.2.1).

Another way of inspecting the quality of a given similarity space is Shepard diagrams

given by the so-called Shepard diagram [71, Chapter 3]. The Shepard

diagram is a scatter plot, where the dissimilarities δj1j2 are plotted on

the x-axis and their corresponding distances dj1j2 from the similarity

space are plotted on the y-axis. Moreover, the regression line relating

dissimilarities to distances according to the representation function f
can be shown. The Shepard diagram therefore visualizes, how well
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Figure 8.7: Shepard diagram illustrating the relation between dissimilarities

and distances (based on the study presented in Chapter 10).

the representation function is capable of mapping dissimilarities to

distances. It is especially useful, if one uses ordinal MDS and is interested

in the exact shape of the monotone mapping function. Figure 8.7 shows

such a Shepard diagram from a study described in Chapter 10.

In the Shepard diagram, one can also easily spot outliers, i.e., theStress per point

individual pairs of stimuli, for which the mapping is not very successful.

A more mathematical way of capturing these outliers is Stress per point

[71, Chapter 3]. Stress per point is defined as the average squared

error which is not computed over all pairs (as in raw Stress), but only

over those pairs containing the given stimulus. Stress per point thus

measures, to what extent the dissimilarities for this given stimulus are

violated in the MDS solution.

In order to compare the Stress value of a given configuration to aRandom baseline

meaningful baseline, one can compute the expected Stress value for a

randomly generated matrix of sizeN×N when using an n-dimensional

space [71, Chapter 3]. The Stress value achieved by MDS on the real dis-

similarities should then be considerably lower than the expected value

for a random dissimilarity matrix. If this is not the case, then the given

dissimilarities do not lend themselves towards a spatial representation.

In order to optimize the number n of dimensions for the similarityScree plots

space, one can take a look at the so-called Scree plot, which visualizes

Stress as a function of n. If one can identify an "elbow" in this diagram

(i.e., a point, after which Stress decreases much slower than before),

this can point towards a useful value of n [233]. The rationale behind

this approach is as follows: If going from n− 1 to n dimensions leads to

a relatively large decrease in Stress, this means that the nth dimension
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Figure 8.8: Scree plot illustrating Stress as a function of n (based on the study

presented in Chapter 10).

represents additional meaningful information from the dissimilarity

matrix ∆. If at the same time going from n to n + 1 dimensions only

causes minor improvements in the Stress value, then the additional

dimension mainly captures noise [71, Chapter 3]. Therefore, an elbow

in the Scree plot indicates, that all pieces of meaningful information

are represented in the similarity space, while largely ignoring noise.

Figure 8.8 shows a Scree plot from a study described in Chapter 10.

If information about the reliability of the dissimilarity matrix ∆ is Using reliability

information
available (e.g., an independent estimate of its statistical error), then

one can choose n in such a way, that the remaining Stress corresponds

to the random component of the data (see [71, Chapter 3] and [233]).

This means, that for reliable dissimilarities with a small error, higher-

dimensional similarity spaces are chosen, whereas a lower-dimensional

space is preferred for noisy dissimilarities. However, in practice, such

reliability information is often not available.

8.6.2 Interpretability-based Evaluation

The Stress-based evaluation approach analyzes, to which extent the Motivation

dissimilarities are reflected correctly by the distances. One can, how-

ever, also analyze a similarity space by trying to interpret the overall

configuration of points. This can also be helpful for deciding how many

dimensions to use: If the optimal configuration in an n-dimensional

space has a sufficient degree of interpretability, and if the optimal con-

figuration in an n+ 1-dimensional space does not add more structure,

then an n-dimensional space might be sufficient [233].

The theory of conceptual spaces states, that a conceptual space is Interpretability based

on conceptual spaces
spanned by cognitively meaningful dimensions, and that this space

can be partitioned into convex regions, which represent categories of

objects [179]. We therefore focus our attention on finding meaningful

regions and interpretable directions in a given similarity space. Please
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note, that a manual analysis is limited to two- and three-dimensional

similarity spaces, which can be easily visualized. Moreover, it relies

heavily on the subjective impression of the experimenter. For these

reasons, we will focus on automated procedures, which can be also

applied to high-dimensional spaces, and which yield quantifiable (and

thus more objective) results.

Meaningful regions in a similarity space correspond to clustersRegions as clusters

of stimuli, which belong to the same semantic category. In order to

automate the analysis of regions, it is thus necessary, that the stimuli

are labeled with their respective categories. In general, we expect

points from the same category to have small distances, while points

from different categories are expected to have large distances. Since

the distances in an MDS solution are based on the dissimilarities,

this pattern should already be evident in the dissimilarity matrix.

Nevertheless, an additional analysis of the similarity space can ensure,

that this general expectation is met.

This can for instance be operationalized with a k nearest neighborMeasuring cluster

quality
classifier (cf. Section 5.2.5), whose performance can indicate, whether

the closest neighbors of any given stimulus belong to the same cate-

gory. Alternatively, a clustering algorithm such as k-means (cf. Section

7.3.1) can be used to identify clusters in the similarity space, whose

distribution of class labels can then be analyzed in a second step.

In addition to the general existence of such clusters, the conceptualConceptual overlap

spaces theory assumes, that the similarity space can be partitioned into

these clusters (given, that all classes under consideration lie on the

same level of the conceptual hierarchy). This means, that the individual

clusters should not overlap. We can verify, whether this additional

expectation is being met by constructing the convex hull for each of

the categories, and by investigating to which degree these convex hulls

overlap. Alternatively, one can investigate the classification performance

of Gärdenfors’ proposed Voronoi tessellations of the similarity space

(cf. Section 7.1.1).

Meaningful directions in a similarity space are expected to representFinding interpretable

directions
interpretable features from the domain under analysis. In order to

identify such meaningful directions, the stimuli therefore need to be

annotated with values for a given set of candidate features. For each of

these features, one can then try to identify a direction in the similarity

space, which orders the stimuli according to their respective values

on that feature. This overall approach is sometimes called property

vector fitting [179, Section 1.7]. We will now describe the procedure

followed by Derrac and Schockaert [123], which uses linear support

vector machines.

Please recall from Section 5.2.3, that a linear support vector machineSupport vector

machines
(SVM) [73, 110] tries to separate two classes with a hyperplane, which

maximizes the margin size M between the two classes. While other

machine learning algorithms based on a linear model (e.g., a logistic

regression) may also find a suitable hyperplane for separating positive
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Figure 8.9: (a) Non-optimal decision boundaries in a two-dimensional feature

space. (b) Maximum margin separating hyperplane.

from negative examples, these solutions may lie too close to the training

examples, and thus carry the risk of misclassifications (see Figure 8.9a).

Moreover, there may be multiple possible solutions, such that the result

depends also on the initialization of the algorithm. The maximum

margin hyperplane found by a SVM, on the other hand, is uniquely

defined and minimizes the expected generalization error.

The approach by Derrac and Schockaert [123] for finding interpretable Interpretable

directions with

SVMs

directions in their text-based similarity spaces (cf. Sections 6.3.2 and

8.1.5) works as follows: They started with a set of candidate features,

which in their case are terms and short phrases, that occurred frequently

in the underlying text corpus. For instance, in their movie domain, such

candidate features may include funny or organized crime. For each of

these features, they trained a linear support vector machine in order to

separate positive examples (i.e., entities, which were associated with

the given term) from negative examples (i.e., entities not associated

with the given term). If the linear SVM is successful in separating

these two classes, then the weight vector w⃗, which is perpendicular

to the separating hyperplane, corresponds to the direction pointing

from negative to positive examples (cf. Figure 8.9b). Thus, Derrac

and Schockaert use w⃗ as a direction in the similarity space which

represents the given candidate feature. Since w⃗ is uniquely determined,

the direction associated to a candidate feature such as funny can be

easily reproduced.

In order to evaluate, whether the SVM successfully solves the clas- Quantifying the

quality of a direction
sification problem, Derrac and Schockaert used Cohen’s κ, which is

an evaluation metric, that is robust with respect to imbalanced classes

(cf. Section 5.1.2). They only considered directions for candidate terms,

where κ was above a given threshold, which indicates, that the classes

can be reasonably well separated.

Derrac and Schockaert assumed, that the information about the Linear regression for

continuous data
candidate features is given by binary classification labels. However, if

we have continuous feature values, we can also make use of regression

techniques. One can for instance use so-called support vector regression
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Figure 8.10: Weight vector of a linear regression as direction in a two-

dimensional feature space.

machines, which extend SVMs from classification to regression tasks

[138]. However, also a simple least-squares linear regression may be

sufficient: As argued in Section 5.2.1, the weight vector learned by such

a linear regression can also be interpreted as a direction in the feature

space, pointing from examples with low target values to examples with

high target values (cf. Figure 8.10). Since the solution of an unregular-

ized linear regression is unique, also the directions extracted with a

linear regression can be easily reproduced.

As we have noted before, the Stress value of an MDS solution isFrom directions to

dimensions
invariant to rotation, reflection and translation. This means, that the

coordinate axes used by the MDS solutions do not necessarily coincide

with the underlying interpretable features. As Derrac and Schockaert

[123] have shown, one can now use the identified meaningful directions

as a new basis of the space, allowing to transform the coordinates

retrieved by MDS into values on interpretable dimensions.

In order to find a new basis for the conceptual space, Derrac andFinding a new basis

Schockaert proceeded as follows: They first eliminated all candidate

features (and their associated directions) with κ < 0.5 from their con-

siderations. They then started constructing the new basis by taking

the feature with the highest value of κ. Afterwards, they repeatedly

added the feature i to the basis, which minimized maxi′<i cos(w⃗i′ , w⃗i),
where w⃗i and w⃗i′ refer to the directions associated with features i and

i′, respectively. In other words, they iteratively added the direction,

which is least similar to the already selected ones. Since those directions

are not necessarily orthogonal or linearly independent, Derrac and

Schockaert collected 2n directions for an original similarity space with

n dimensions in order to ensure, that the full space can be regenerated

from the selected directions. Their approach can thus be criticized

for yielding a redundant space – it would be much more desirable to

ensure, that the dimensionality of the space remains constant.
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Ager et al. [6] have made a proposal for improving the interpretability Improving

interpretability
of the extracted dimensions. They argue, that some stimuli might be

very dissimilar to most other stimuli and are thus located far away from

all other stimuli in the similarity space. They may therefore have extreme

values when being projected onto the interpretable directions. In order

to deal with this potential weakness, Ager et al. propose to train a simple

feedforward network for recalibrating both the points and the directions

of the similarity space, such that a projection of the points onto the

directions respect the ranking with respect to the corresponding feature.

Ager et al. were able to show on four different datasets (the place type

and movie datasets of Derrac and Schockaert [123] plus two standard

NLP datasets), that this post-processing step considerably improves

the ranking of objects with respect to the interpretable directions.

However, one should keep in mind, that modifying the coordinates A trade-off

of the points probably increases Stress, because distances and dissimi-

larities may not be so well-aligned any more after the transformation.

One interesting avenue for future research could consist in devising

an MDS algorithm, which optimizes both Stress and the quality of the

interpretable directions at the same time. Such a joint optimization

could let the experimenter specify, how much weight to put on the

dissimilarities, and how much weight to put onto the interpretable

directions, thus making the trade-off mentioned above more explicit.

Also Schockaert and Jameel [351] extended the work of Derrac and A qualitative

representation of

concepts

Schockaert: They proposed to build a qualitative representation from

the interpretable directions. Schockaert and Jameel suggest to define

an ordering of entities for each of the interpretable dimensions, and to

use only these orderings for further processing. In order to represent

a concept, one could then define an interval on each of these order-

ings. For instance, all adventure movies could be described as lying

between two known entities emin and emax with respect to the exciting

dimension. If one interval per interpretable direction is used, concepts

are represented as cuboids. This is quite similar in spirit to our own

formalization developed in Part I of this dissertation with the crucial

difference, that we allow concepts to consist of multiple cuboids, which

allows us to represent correlations. Schockaert and Jameel argue, that

the important notion of conceptual betweenness can still be approxi-

mated based on these orderings, and that this is computationally much

cheaper than computing a convex hull in high-dimensional spaces.

Moreover, using only the qualitative orderings and not the underlying

space makes the representation easier to interpret.

Ager et al. [5] proposed to apply stacked denoising autoencoders (cf. Obtaining more

abstract spaces
Section 6.3.1) to the spaces obtained by Derrac and Schockaert [123]

in order to obtain more abstract representations. The hidden neurons

in the bottleneck layer of this autoencoder were then interpreted as

dimensions of a higher-level space, and Ager et al. applied the same

method as Derrac and Schockaert in this space for finding interpretable

dimensions. They repeated this procedure several times in order to find
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more and more abstract representations. Moreover, they used an off-the

shelf rule learner to infer rules, which connect the directions found in

the kth space to those existing in the preceding (k − 1)th space. An

exemplary rule extracted by this approach looks as follows:

IF scares2 AND blood2 AND NOT funniest2 THEN gore3

This can be interpreted as follows: If a movie received high scoresExperimental results

with respect to the scares and blood directions of the second level

space, and if that movie also has a low score with respect to the funniest

direction in that space, then this movie is likely to have a high score

on the gore direction in the third level space. One can interpret this

as a kind of definition: Movies are likely to contain acts related to

goring, if they are scary, contain blood and are not funny. In their

experiments, Ager et al. observed, that higher-level spaces tended to

contain more general properties like society and relationship, and that

the induced rules established meaningful links between the different

levels of abstraction.

8.7 a hybrid proposal

Multidimensional scaling provides us with psychologically groundedCombining MDS

with ANNs
similarity spaces, but is unable to generalize to unseen stimuli with-

out collecting additional dissimilarity ratings [35]. Artificial neural

networks, on the other hand, can hardly claim a high degree of psycho-

logical plausibility, but they are able to generalize to unseen examples.

In this section, we outline a general proposal for combining multidi-

mensional scaling with artificial neural networks in order combine their

strengths while eliminating their individual weaknesses. This hybrid

approach can result in a psychologically plausible and generalizable

mapping from raw stimuli into a conceptual similarity space.

In Section 8.7.1, we introduce the overall procedure, before discussing

possible network architectures in Section 8.7.2. We furthermore present

related studies and proposals from the literature in Section 8.7.3.

8.7.1 Proposed Procedure

In a nutshell, we propose to use MDS for initializing a similarity spaceOverview

and to use the resulting coordinates as training targets for an ANN. The

overall procedure is illustrated in Figure 8.11 and will now be explained

in more detail. Please note, that we confine our discussion to stimuli in

the form of images, but that the general approach can also be applied

to other types of stimuli, e.g., sounds.

After having determined the domain of interest (e.g., the domainObtaining a dataset

of animals), one first needs to acquire a dataset D of stimuli from this

domain. This dataset should cover a wide variety of stimuli, and it

should be large enough for applying machine learning algorithms.
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Figure 8.11: Illustration of the proposed hybrid procedure.

Using the whole dataset with potentially thousands of stimuli in a

psychological experiment is, however, infeasible in practice (cf. Sections

8.1.4 and 8.1.5): The number of entries in the dissimilarity matrix grows

quadratically with the number of stimuli. As each of these matrix entries

needs to be based on several dissimilarity judgments, the number of

participants and trials needed in a psychological study quickly becomes

prohibitively large. Therefore, a relatively small, but still sufficiently

representative subset DPsy ⊆ D of the overall dataset needs to be

selected for the elicitation of human similarity ratings.

This subset of stimuli is then used in a psychological experiment, Eliciting

dissimilarity ratings
where dissimilarity judgments by humans are obtained, using one

of the techniques described in Section 8.1. Please recall from Section

8.1.4, that the choice of the data collection method usually depends on

the type of stimuli, the size of the dataset, and the aims of the study.

Choosing an adequate elicitation method is crucial for the quality

of the resulting space [397]. If for instance a large number of visual

stimuli is used, for which mainly conceptual similarity is relevant, then

SpAM might be a promising method. On the other hand, if low-level

perceptual similarity information about auditory stimuli is desired,

then a perceptual confusion task might be more appropriate.

In the next step, one can apply MDS to the collected similarity judg- Applying MDS

ments in order to extract a spatial representation of the underlying

domain. As stated earlier, one needs to manually select the desired

number of dimensions – either based on prior knowledge or by manu-

ally optimizing the trade-off between high representational accuracy

and compactness. The resulting similarity space should ideally be

analyzed for meaningful structures and a good reflection of the original

dissimilarity ratings as discussed in Section 8.6.

Once this mapping from stimuli (e.g., images of animals) to points in A regression problem

a similarity space has been established, we can use it in order to derive

a ground truth for a machine learning problem: We can simply treat

the stimulus-point mappings as labeled training instances, where the

stimulus is identified with the input vector, and where the point in the

similarity space is used as its label. We can therefore set up a regression

task from the stimulus space to the similarity space.

Artificial neural networks (ANNs) are powerful regressors, which Applying ANNs

are capable of discovering highly non-linear relationships between
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raw low-level stimuli (such as images) and desired output variables.

We therefore propose to train an ANN to map from stimuli (e.g.,

images) to points in the similarity space. ANNs are typically a very

data-hungry machine learning method – they need large amounts of

training examples and many training iterations in order to achieve good

performance. However, the available number of stimulus-point pairs in

our proposed procedure is quite low for a machine learning problem –

as argued before, we can only look at a small number of stimuli in a

psychological experiment. We propose to resolve this dilemma not only

through data augmentation (cf. Sections 6.2.3 and 7.2.1), but also by

introducing an additional training objective (e.g., correctly classifying

the given images into their respective classes such as cat and dog). This

additional training objective can also be optimized on all stimuli from

D \DPsy, i.e., the part of the overall dataset, which has not been used in

the psychological experiment. Essentially, we thus propose to follow a

multi-task approach (cf. Section 6.2.3) with a regression task on stimuli

from DPsy and a secondary task for all stimuli from D.

The underlying intuition is as follows: If the network is forced to learnMotivation for

multi-task learning
a classification task, then it will likely develop an internal representa-

tion, where all members of the same class are represented in a similar

way. For learning this internal representation, also data points without

known coordinates in the similarity space are useful. The network

then "only" needs to learn a mapping from this internal representation

(which presumably already encodes at least some aspects of similarity

between stimuli) into the target similarity space. Therefore, the sec-

ondary training objective should help the network to learn the correct

mapping even from a relatively small number of data points.

If training the ANN is successful (as can be measured e.g., by thePromises of our

approach
mean squared error, when comparing its predictions to the ground

truth points), then it has learned a mapping from stimuli to points in

the similarity space. While MDS only maps from a fixed set of stimuli

to points in the similarity space, the ANN is expected to generalize

this mapping to previously unseen stimuli: The ANN’s internal repre-

sentation of a novel cat image is hopefully reasonably similar to the

internal representation of the cat stimulus from DPsy. Then, we can

expect, that also the predicted point in the similarity space will be

reasonably close to the ground truth point of the known cat stimulus.

Thus, the network can be queried for previously unseen stimuli and

return a corresponding point in the similarity space. In addition to

this generalization capability, the similarity space is psychologically

grounded, because it is based on various "anchor points", which have

been derived with MDS from the results of a psychological experiment.

The ANN’s predictions for novel stimuli can therefore also claim some

indirect psychological grounding.

At this point, we need to acknowledge, that while being a powerfulLimitations of our

approach
machine learning tool, also ANNs are prone to erroneous predictions

(as e.g., illustrated by adversarial examples [401]). The mapping learned

by the ANN may thus occasionally return points in the similarity space,
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which are clearly incorrect. This is, however, not a specific weakness

of our proposal, but rather a general problem of machine learning

models. We think, that in our application scenario, even an imperfect

mapping can be useful, since it provides us with coordinates in the

similarity space, which can then be used in downstream tasks (such

as classification). This is in our opinion an important step forward,

because an imperfect mapping for novel stimuli is better than no

mapping at all. Moreover, erroneous points in the similarity space

can potentially be discovered and properly handled as exceptions or

outliers in downstream tasks. Moreover, our approach is limited to

perceptual domains, since neural networks may have difficulties in

learning more abstract domains based for instance on affordances

or functional properties: The four legs of a horse are similar to the

four wheels of a car in the sense, that they support the main body of

the overall object, and that their local movement enables the overall

movement of the entire object.
11

It is somewhat unclear, whether ANNs

are capable of learning such non-perceptual notions of similarity.

8.7.2 Possible Network Architectures

Figure 8.12 illustrates different potential network architectures for Feedforward

classification network
our proposed procedure, where the dashed gray lines illustrate the

constraints used in the network’s loss function. Figure 8.12a shows

a standard feedforward network, where the mapping task is sup-

plemented by a secondary classification task. This approach is only

applicable, if the dataset contains class labels. As argued in Section

8.7.1, we expect, that the classification task incites the network to use

similar internal representations (i.e., activation patterns) for similar

inputs (i.e., stimuli from the same class). This similarity-based internal

representation should facilitate learning the mapping into the similarity

space. A transfer-learning variant of this approach (with two separate

training phases for the two training objectives) will be investigated in

our experimental studies in Chapter 9 and 12.

If we use the representation of the similarity space as second-to-last Similarity space as

internal

representation

layer in a classification network (see Figure 8.12b), we can use RBF units

(cf. Sections 5.2.3 and 7.4.3) in the output layer: Their Gaussian-shaped

activation function can be interpreted as a convex region in the sim-

ilarity space, which is in line with the conceptual spaces theory. By

using RBF neurons in the output layer for classification, the network

is implicitly steered towards encoding stimuli from the same class

with points, that have a small Euclidean distance. Moreover, one can

interpret the activation functions of the output neurons as describing a

membership function of the corresponding concepts in the similarity

space. Just as deep neural networks learn both the feature space and

the decision boundaries at the same time (cf. Section 6.2), this network

would learn both the psychological similarity space and the conceptual

regions inside it in a single training setup. Please note that this proposal

11 Thanks to Michael Marino for this criticism and this example.
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Figure 8.12: Potential network architectures for our proposed hybrid approach.

Constraints are shown as dashed gray lines. (a) A standard feed-

forward network with two separate outputs for coordinates and

class. (b) A standard feedforward network using the coordinates

as intermediate step for predicting the class. (c) An autoencoder

with a constrained bottleneck layer. (d) An autoencoder with

an unconstrained bottleneck layer and a separate output for the

coordinates. (e) An InfoGAN network [101] with an additional

reconstruction constraint for labeled images.
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is highly reminiscent of ProtoNet [381] from the area of metric learning

(cf. Section 5.3.3), where a neural network is trained to map from images

into a low-dimensional embedding space, and where then each class is

represented by a single prototype. However, ProtoNet does not consider

psychologically grounded similarity ratings when constructing the em-

bedding space, which we implicitly do by using the similarity spaces

obtained through MDS as a learning target. The general approach il-

lustrated in Figure 8.12b will play a role in our experiments in Chapter 12

Figure 8.12c shows the network structure of an autoencoder: The Autoencoders for

semi-supervised

learning

network is trained to minimize the difference between the input images

and their reconstruction, while being encouraged to use the similarity

space in its bottleneck layer. A variant of this approach does not use

the similarity space as the bottleneck layer of the autoencoder, but

rather uses an additional output, which predicts MDS coordinates

based on the unconstrained bottleneck layer (see Figure 8.12d). Since

the computation of the reconstruction error does not need any class

labels, this variant is applicable also to unlabeled datasets, which are in

general larger and easier obtain than labeled datasets.

In the case of an autoencoder, the underlying intuition of the sec- Intuition behind the

reconstruction

objective

ondary task is the following one: The network needs to accurately

reconstruct the given stimuli, while using only information from a

small bottleneck layer. On the one hand, the network needs to encode

all perceptually relevant information in this bottleneck layer. On the

other hand, the small size of the bottleneck layer creates an incentive to

encode similar input stimuli in such a way that the created reconstruc-

tions are also similar to each other (cf. Sections 6.3.1 and 6.3.4). The

network is therefore expected to implicitly learn a similarity relation of

its inputs, which should be useful for learning the mapping into the

similarity space. Of course, instead of using a regular autoencoder, one

can also employ VAE [224] or β-VAE [196] as discussed in Section 6.3.4.

The autoencoder structure has the additional advantage, that one can

use the decoder network to generate an image based on a point in the

similarity space. This can be a useful tool for visualization and further

analysis. We will investigate such autoencoder-based networks in our

experiments in Chapter 12.

Figure 8.12e shows an extended version of the InfoGAN framework InfoGAN

[101] (cf. Section 6.3.3), where the discriminator network is also con-

strained to correctly extract the coordinates in the similarity space. This

is in some sense reminiscent of the AC-GAN network [304], which,

however, predicts categorical class labels instead of continuous points in

a semantic space. Also this network architecture is capable of generating

images based on a given point in the conceptual space and does not

need a labeled dataset.

Of course, it is also possible to combine the proposed architectures, Combining multiple

approaches
e.g., by using both classification and reconstruction as secondary tasks.
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Moreover, there might be additional secondary tasks one might want

to consider, which may lead to other network architectures.

Instead of learning a direct mapping from images to points in a con-Predicting

dissimilarities

instead of coordinates

ceptual space, one can also train a network to predict the dissimilarity

ratings for pairs of images. In this case, the neural network receives

two images as input and predicts their similarity. This modification

causes the input size to double, but leads to a smaller output size and a

larger number of different training inputs. Again, an additional training

objective might be needed in order to prevent overfitting. In principle,

the approaches discussed above can be adapted also to this learning

problem. One can use such a network to indirectly map an image onto

a point in the similarity space as follows: The network predicts the

dissimilarity of the given image to a fixed set of "anchor images", for

which a mapping into the similarity space is known. One can then

use the points representing these anchor images together with the

predicted dissimilarity ratings to triangulate the point representing the

new image. This modified approach is highly reminiscent of the work

by Peterson et al. [318, 319] introduced in Section 8.1.5, who used the

internal representations of pretrained classification networks to predict

dissimilarity scores.

If the general approach described in Section 8.7.1 yields promisingAn ANN-based

MDS algorithm
and useful results, one could use the observation, that InfoGAN [101]

(cf. Section 6.3.3) and β-VAE [196] (cf. Section 6.3.4) tend to discover

meaningful dimensions, in order to devise a new MDS algorithm

based on these networks. This algorithm would train a standard β-

VAE or InfoGAN network, while ensuring through an additional term

in the loss function, that the hidden space extracted by the network

accurately reflects the psychological dissimilarity ratings. This overall

algorithm would thus result in a spatial representation of psychological

similarities, which generalizes to unseen images, uses interpretable

dimensions, and can be used to generate new images based on points

in the conceptual space.

If we for instance would like to extend the β-VAE framework fromModified β-VAE

Section 6.3.4 (Equation 6.4), we could simply add raw Stress as defined

in Section 8.2.1 (Equation 8.3) to the loss function:

Ez⃗∼Qϕ(z⃗|x⃗)[logPθ(x⃗ | z⃗)]− β ·DKL(Qϕ(z⃗ | x⃗)||P(z⃗))

− γ ·
N∑︂
j1=1

N∑︂
j2=j1+1

wj1j2 · Ez⃗(j1)∼Qϕ(z⃗
(j1)|x⃗(j1))

z⃗(j2)∼Qϕ(z⃗
(j2)|x⃗(j2))

[︃(︂
dj1j2(Z)− d̂j1j2

)︂2]︃
This introduces another hyperparameter γ, which represents theInterpreting the loss

function
relative importance of correctly representing the disparities d̂j1j2 . The

resulting network thus tries to achieve a compromise between recon-

struction (first term), interpretability (second term, weighted by β), and

psychological plausibility (third term, weighted by γ). In this case, β
and γ are two important hyperparameters of the model, which regulate

the trade-off between the different training objectives.
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On a final note, we want to comment on the difference between Perceptual and

conceptual similarity
perceptual and conceptual similarity (cf. Section 8.1.2) in the context

of our proposal. Perceptual similarity focuses on the similarity of the

raw stimuli, e.g., with respect to their shape, size, and color. Conceptual

similarity, on the other hand, works on a more abstract level and involves

conceptual information such as the typical usage of an object or the

typical ¢ontext, where a given object might be found. For instance, a

violin and a piano are perceptually not very similar, because they have

different size and shape. Conceptually, they might, however, be quite

similar, because they are both musical instruments, which can be found

in an orchestra.

While class labels can be assigned on both the perceptual (round Suitable network

architectures
vs. elongated) and the conceptual level (musical instrument vs. fruit),

the reconstruction objective always operates on the perceptual level.

If the dissimilarity data collected in the psychological experiment is

of perceptual nature, then all proposed networks architectures seem

promising. If we, however, target conceptual similarity, then a feed-

forward network with target classes on the conceptual level seems

to be preferable, because both the (variational) autoencoder and the

InfoGAN might be led astray by their reconstruction objective.

8.7.3 Related Work

As we have already discussed in Section 8.1.5, Peterson et al. [318, 319], ANNs and

dissimilarity ratings
Erdogan et al. [146], and Kubilius et al. [235] have investigated the

correlation between the internal representations used by ANNs and hu-

man dissimilarity ratings. While their respective results illustrate, that

there is a connection between the features learned by neural networks

and human dissimilarity ratings, their work differs from our proposed

approach in one important aspect: All of the above cited researchers

focus on the abstraction level of dissimilarity ratings, whereas we work

with similarity spaces. While they do apply MDS to investigate the

quality of the ANN’s predictions, their primary goal is to find a way

to predict the dissimilarity ratings directly. Our research, on the other

hand, is not that much interested in the actual dissimilarity ratings,

but in the underlying similarity space. Therefore, we use MDS in order

to generate a similarity space, whose structure we try to learn with a

neural network. Nevertheless, the results cited above provide support

for our general proposal by establishing a link between artificial neural

networks and human dissimilarity judgments.

Recently, Sanders and Nosofsky [346, 347] have independently made Predicting

coordinates in a

similarity space of

rocks

a very similar hybrid proposal for using artificial neural networks

to map input images to coordinates in MDS-based similarity spaces.

In their exemplary study, they trained an ensemble of convolutional

neural networks (cf. Section 6.2.2) to predict the correct coordinates in an

MDS-based similarity space for dataset of rocks. They used the dataset
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provided by Nosofsky et al. [303]
12

, which consists of 360 pictures of

rocks along with an 8-dimensional similarity space, which has been

extracted by using MDS on human dissimilarity ratings. Sanders and

Nosofsky split up this dataset into 180 images for training, 90 images for

validation, and 90 images for testing. Since this dataset is considerably

too small for training an ANN from scratch, they used a pretrained

network (ResNet50 [193], which was trained on ImageNet [120]) as a

starting point. They removed the topmost layer and replaced it by two

untrained fully connected layers with an output of eight linear units,

one per dimension of the similarity space. In order to increase the size

of their dataset, they applied data augmentation methods by flipping,

rotating, cropping, stretching and shrinking the original images (cf.

Sections 6.2.3 and 7.2.1). First, only the new layers were trained (using

Adam [223], cf. Section 6.2.5), before all weights of the whole network

were fine-tuned (using stochastic gradient descent with a low learning

rate and high momentum).

Their ensemble of ten networks (each trained using the same proce-Experimental results

dure, but with a different random initialization) achieved a coefficient

of determination ofR2 = 0.767 on the test set, which means, that almost

77% of the variance was accounted for by the neural network (cf. Section

5.1.2). As an additional means of evaluation, Sanders and Nosofsky

also conducted a categorization experiment with humans on a second

dataset of rocks. They then applied a simple exemplar-based classifica-

tion model on the original MDS space, the predictions of the trained

ANNs, and the activation vectors of a pretrained neural network. Their

results showed, that the original MDS space could account for 89.7% of

the variance in the human classifications, while the MDS coordinates

predicted by the ensemble of ANNs reached a slightly lower, but still

comparable value of R2 = 0.882. Using the hidden activations of a

pretrained neural network and optimized weights for the individual

dimensions (following the approach by Peterson et al. [319], cf. Section

8.1.5) yielded a considerably lower value ofR2 = 0.797. This highlights,

that off-the-shelf networks are clearly inferior to a hybrid approach.

In a final analysis step, Sanders and Nosofsky [347] manually ex-Extending the

similarity space
tended the MDS-based similarity space with five additional dimensions.

These additional dimensions corresponded to domain-specific features,

which are very discriminatory in classification tasks, but not very salient

when making general dissimilarity judgments. By extending the eight-

dimensional similarity space with these additional five features (scaled

in a suitable way to have a similar range of values as the MDS dimen-

sions), the exemplar model was able to explain 93.6% of the variance

observed in human classification performance. Sanders and Nososfsky

also re-trained their ensemble of ANNs in order to predict also the

values on the additional five dimensions with a test set performance of

R2 = 0.707. The difference to the value of R2 = 0.767 obtained on the

test set, when considering only the eight dimensions of the MDS space,

can be explained by the larger number of output dimensions, which

12 Publicly available online at https://osf.io/w64fv/.

https://osf.io/w64fv/
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makes the regression problem more difficult. An exemplar model on

the ANN-based predictions was able to predict 90.6% of the variance

observed in the psychological experiment, which indicates, that also a

hybrid approach is capable of taking into account additional features

in order to improve psychological validity.

The results by Sanders and Nosofsky clearly show that our proposed Relation to our work

hybrid procedure is feasible in practice. However, in contrast to our own

work, they do not work with the framework of conceptual spaces, and

therefore do not consider a distinction of different cognitive domains

(such as shape, size, and color). Moreover, all their experiments only

involve a single eight-dimensional target space. We will extend their

work in two studies reported in Chapters 9 and 12 by taking exactly

these two aspects into consideration.

We have already mentioned in Section 8.7.2, that one of our proposed Our hybrid approach

and metric learning
network architectures can be related to ProtoNet [381]. In general, our

hybrid proposal can be seen as a variant of nonlinear metric learning

[236] as introduced in Section 5.3.3: We seek to map raw images into a

low-dimensional similarity space by training an artificial neural network.

The training objective of most metric learning approaches leverages

classification information by requiring, that points belonging to the same

class should have a small distance in the similarity space, while points

belonging to different classes should have a large distance. In contrast

to that, our own approach tries to minimize the difference between the

network’s output and the coordinates in a similarity space obtained

by MDS. Our training objective thus depends (although indirectly) on

psychological similarity ratings. However, classification information

also indirectly plays a role, if the secondary training objective of the

network is related to classification.

Similar to what we discussed for the extended β-VAE in Section 8.7.2, Ideas for extensions

one can easily imagine to train a network from scratch with a training

objective explicitly based on the dissimilarity ratings and classification

information. In this case, the dissimilarity ratings (or disparities) give

rise to much finer-grained constraints than usually considered in metric

learning. The resulting system could then be interpreted as a novel

MDS algorithm, which makes use of additional information in the form

of class labels. Moreover, if values of candidate features are given, one

can interpret these as spanning a feature space. One could then try

to apply metric learning to this feature space, using the psychological

dissimilarities as additional relative constraints. By investigating the

learned mapping, one may then be able to gain information about the

relation of the interpretable features to the overall dissimilarity ratings.

In Section 7.4.3, we have already introduced relational label smooth- Our hybrid approach

and relational label

smoothing

ing [276] as a way of injecting background knowledge into artificial

neural networks: The target outputs for the final softmax layer of a

classification network are modified in such a way, that a fraction of

the probability mass is shifted from the correct class to semantically

related classes. This incites an internal representation, which respects
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the similarity relation between classes. Relational label smoothing can

thus be related to metric learning, with the key difference of defining

similarity constraints not on the level of individual data points, but on

the level of classes. Again, one can envision an overall system, which

takes into account human dissimilarity ratings for pairs of stimuli (in

the form of Stress), classification information (in the form of metric

learning constraints), and information about the relations between

classes (in the form of relational label smoothing).

In the context of few shot learning, Lampert et al. [241] have pro-Our hybrid approach

and few shot learning
posed to use attributes as an intermediate layer in a classifier cascade

(cf. Section 7.2.1). Essentially, they derive binary attributes for a given

set of example classes and train one classifier on each these attributes.

The classes are then defined based on the presence and absence of

attributes. Classification of a new stimulus then takes place by applying

the classifiers to retrieve attribute values, and the class definitions to de-

termine class membership. In a zero shot learning context, new classes

can then be added simply based on their definition in terms of the

already trained attributes. This overall proposal is somewhat similar to

our hybrid approach by introducing an intermediate representational

layer (binary attributes in their case, a continuous MDS-based similarity

space in our case). While Lampert et al. use multiple nonlinear SVMs

on traditional computer vision features to learn a mapping into the

space of attributes, we use a single convolutional neural network for

this mapping task. If we assume, that attribute values for our stimuli

are given, one could potentially augment our network architectures

with additional output units for predicting these attribute values. This

corresponds to finding interpretable directions in the similarity space.

Finally, we would also like to mention the work by Morgenstern etCombining computer

vision, MDS, and

ANNs

al. [297], which will be introduced in more detail in Chapter 10: They

started from a large number of computer vision features for describing

shapes and obtained a global dissimilarity matrix following a data-

driven way similar to the ones described in Section 8.1.5. By using

classical MDS, they obtained a 22-dimensional similarity space, which

aligned quite well with human dissimilarity judgments. Morgenstern

et al. then trained a convolutional neural network to map from raw

inputs (either low-resolution pixel information, or the coordinates for

points on the surface of the object) into this similarity space. Their

work thus essentially follows our proposed hybrid procedure, but uses

computer vision features rather than human dissimilarity ratings as a

starting point. Nevertheless, since their resulting similarity space seems

to correlate well with human ratings, it is to some extent psychologically

grounded. We will take a more detailed look at their work in Chapter

10 in the context of the shape domain.
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8.8 summary

In this chapter, we have introduced the technique of multidimensional Lessons learned

scaling, which can be used for constructing similarity spaces from

dissimilarity ratings collected in psychological studies. As we have

seen in Section 8.1, there are many different ways of collecting such

dissimilarity ratings. Moreover, there exists a wide variety of algorithms

for solving the MDS optimization problem (cf. Sections 8.2 to 8.5). The

resulting similarity spaces can be evaluated by using Stress, which

measures, how well the dissimilarities are reflected in the distances,

and which is explicitly being minimized by the algorithms. Moreover,

one can also take a look at the interpretability of the configurations

which includes the search for meaningful clusters and the identification

of directions corresponding to meaningful features (cf. Section 8.6).

The main advantage of constructing conceptual spaces through MDS Merits and

limitations of MDS
lies in its psychological grounding: Since the resulting similarity spaces

are directly based on ratings elicited in psychological studies, they

can be deemed to be psychological plausible. However, MDS also has

its shortcomings: On the one hand, the axes of the coordinate system

returned by MDS do in general not coincide with interpretable features

from the given domain. However, the conceptual spaces framework

assumes, that the similarity spaces are spanned by such meaningful fea-

tures. Semi-automated ways of discovering such features as directions

in the similarity spaces can alleviate this weakness and help to identify

a more meaningful basis for the similarity space (cf. Section 8.6.2).

Moreover, MDS is not able to generalize to unseen examples – we can Our hybrid approach

in general not predict the coordinates for novel stimuli, which were not

part of the psychological study. Our hybrid proposal from Section 8.7

aims at also alleviating this shortcoming by using neural networks for

this mapping task.

In the following chapters, we will present two studies based on MDS Outlook: a first

feasibility study...
and our hybrid proposal: Chapter 9 reports the results of a first feasibility

study. There, we investigate, whether the dissimilarities obtained with

SpAM should be interpreted as ratio scaled or as ordinally scaled

(cf. Section 8.1.4). This is done by comparing the results of metric

MDS (which assumes ratio scaled data) to nonmetric MDS (which only

assumes an ordinal scale). Moreover, we use a linear regression on top

of a pretrained convolutional neural network to provide a first proof of

concept for our hybrid approach.

Afterwards, we conduct a deeper analysis of the shape domain in ...and an

investigation of the

shape domain

Chapters 10 and 11, where we also investigate the effect of different

aggregators for averaging dissimilarities across participants. Moreover,

we compare different ways of automatically extracting directions in

the similarity space, which correspond to psychologically meaningful

shape features. Finally, in Chapter 12 we apply the second step of our

hybrid approach to the shape domain, comparing the transfer learning

approach from Chapter 9 to alternative architectures and training

schemes (cf. Section 8.7.2).





Part III

E X P E R I M E N TA L ST U D I E S

In the third part of this dissertation, we report the results of

two empirical studies based on our hybrid proposal from

Chapter 8: In Chapter 9, we conduct a first feasibility study

on a data set of novel and unknown objects, investigating

also the difference between metric and nonmetric multidi-

mensional scaling (MDS) on a dissimilarity data collected

with the spatial arrangement method. We afterwards shift

our focus to the shape domain: In Chapter 10, we summarize

related work on shape perception and representation from

both psychology and computer vision, before introducing

and analyzing a novel dataset of line drawings. This dataset

is then used in Chapter 11 to extract similarity spaces of the

shape domain using MDS. In this context, we also investi-

gate, whether central predictions of the conceptual spaces

theory are met by the resulting spaces, and whether aver-

aging the individual ratings with the mean or the median

makes a difference. Finally, in Chapter 12, we investigate

transfer learning and multi-task learning, based on both

classification networks and autoencoders for learning a

mapping from raw images into our shape similarity spaces.
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In this chapter, we use existing dissimilarity ratings for a dataset of A feasibility study

novel, but realistic stimuli as a first test bed for the hybrid approach

proposed in Section 8.7. Our analysis consists of two main steps: We

first obtain psychological similarity spaces with MDS, before using

regression algorithms to learn a mapping from raw images into these

similarity spaces.

The dissimilarities we use have been collected with the spatial ar- Comparing metric

and nonmetric MDS
rangement method (SpAM, cf. Section 8.1.2) [169], where participants

are repeatedly asked to arrange a subset of stimuli on their computer

screen based on their pairwise dissimilarity. The dissimilarity ratings

are then collected as Euclidean distances between the items, which

has led some researchers to interpret them as ratio scaled [200] (cf.

Section 8.1.4). In Section 9.1, we investigate, whether this assumption is

justified, by comparing the performance of four different MDS variants

(two metric and two nonmetric) based on the algorithms presented in

Chapter 8. If the dissimilarity values are indeed ratio scaled, then metric

MDS algorithms should have an advantage over nonmetric MDS, since

they explicitly take into account interval and ratio information. Since

the stimuli are novel, we furthermore assume, that the dissimilarity

judgments are mainly based on perceptual information. We therefore

also measure, to which degree two simple image-based approaches can

predict the dissimilarity ratings. These approaches are based on raw

pixel information and on the hidden activations of a pretrained neural

network, respectively (replicating the setup of Peterson et al. [318, 319],

cf. Section 8.1.5).

After having extracted and analyzed various similarity spaces, we Machine learning

experiments
consider the task of mapping raw images onto points in these similarity

spaces in Section 9.2. Our experiments in this context are strongly

513
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related to the study by Sanders and Nosofsky [346, 347] (cf. Section 8.7.3),

exploring, however, a wider variety of setups: We compare a simple

linear regression, a random forest regression, and a lasso regression on

two types of feature spaces, namely, the pixels of downscaled images and

the hidden activations of a pretrained neural network. These two feature

spaces correspond to the two image-based prediction approaches used

in Section 9.1. Moreover, we investigate the influence of the type of

MDS algorithm as well as the number of dimensions in the similarity

space on the regression results. Like Sanders and Nosofsky, we limit

ourselves to a classification-based transfer learning setup.

Section 9.3 then summarizes the main takeaways of our investigations.

The content of this chapter is partially based on work previously

published in [40, 47].
1

All raw results of our study and the source code

for reproducing them are publicly available on GitHub [37].
2

9.1 comparing metric and nonmetric mds

As already discussed in Section 8.1.4, it is debatable, whether metric orThe measurement

scale of SpAM

ratings

nonmetric MDS should be used with data collected through SpAM: On

the one hand, dissimilarity ratings are recorded as Euclidean distances

between items on the computer screen, and may thus be interpreted as

ratio scaled. If this is the case, then metric MDS should be able to include

the information about differences and ratios as useful constraints into

the optimization procedure. On the other hand, if the dissimilarities

are only ordinally scaled, then the main assumption of metric MDS is

violated. Nonmetric MDS makes less assumptions about the underlying

measurement scale and therefore seems to be the "safer" choice.

In this section, we use the NOUN dataset by Horst and Hout [199]Overview

in order to compare the spaces obtained with metric MDS to the ones

obtained with nonmetric MDS. This dataset is "freely available to the

scientific community from the authors for noncommercial use" [199].

In Section 9.1.1, we present this dataset in more detail, and we motivate

our hypotheses for this study. We afterwards describe the methods

used in our analysis in Section 9.1.2, before presenting the obtained

results in Section 9.1.3. Finally, in Section 9.1.4, we discuss the overall

findings and their implications.

9.1.1 The NOUN Dataset

For our study, we used existing dissimilarity ratings reported for theThe stimuli

Novel Object and Unusual Name (NOUN) dataset [199], a set of 64 images

1 The initial workshop paper [40] is based on a collaboration with Elektra Kypridemou.

In [40], Elektra Kypridemou has described the general background with respect to

multidimensional scaling (MDS), and has extracted similarity spaces with MDS from

the raw data, while I have mainly developed and described the hybrid approach, and

implemented and evaluated the machine learning experiments.

2 See https://github.com/lbechberger/LearningPsychologicalSpaces/.

https://github.com/lbechberger/LearningPsychologicalSpaces/
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Table 9.1: Overview of the stimuli in the NOUN dataset [199].

of three-dimensional objects, which were designed to be novel, but also

to look naturalistic. Table 9.1 visualizes all stimuli from this dataset.

Since the objects from the NOUN dataset are designed to be novel, Assuming perceptual

dissimilarities
they have only little resemblance with everyday objects. Hence, prior

knowledge about their typical usage or their relations to other objects

does not exist and therefore cannot influence the dissimilarity ratings.

We can thus expect, that the dissimilarities between pairs of these

objects are mainly based on perceptual information such as color,

shape, size, and texture. Since conceptual spaces are considered in this

dissertation mainly as a spatial representation of perceptual information,

this dataset seems to be a good starting point for a first feasibility

study. One should, however, note, that while being limited to visual

perception, the dissimilarity ratings from the NOUN dataset may still

combine information from multiple domains (e.g., shape and color).

Horst and Hout [199] adopted the SpAM approach [169] (cf. Section Eliciting

dissimilarities
8.1.2) in order to elicit pairwise dissimilarity ratings for these stimuli.

Participants were presented with 13 trials of 20 objects each, randomly

assigned in such a way, that all pairwise comparisons among the 64

images were evaluated. At the beginning of each trial, the 20 stimuli

were arranged in four rows and five columns on a computer screen.

Participants were then asked to re-arrange these stimuli in such a way,

that the distance between each pair of stimuli in the final configuration

reflected the dissimilarity of the two stimuli. The pixel-based Euclidean

distance of the stimuli in the final configuration was used in order to

calculate an overall dissimilarity matrix for each participant, which
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were then averaged into a global dissimilarity matrix.
3

In their analysis of the collected dissimilarity data, Horst and HoutApplying MDS

[199] applied metric MDS in order to obtain a four-dimensional psycho-

logical similarity space.
4

As argued by Hout et al. [200], dissimilarities

were treated as ratio-level data, because they were computed based on

the Euclidean distances on the computer screen.

However, as discussed in Section 8.1.4, it is debatable, whether theRatio or ordinal

scale?
dissimilarity ratings obtained through SpAM should be considered

as ratio scaled, since participants may produce only very rough ar-

rangements of the stimuli. In our current study, we therefore want to

investigate this issue by applying both metric MDS (which assumes a

ratio scale) and nonmetric MDS (which only assumes an ordinal scale)

to the data collected by Horst and Hout [199].
5

If the dissimilarities obtained with SpAM are ratio scaled, then theExpectations

differences and ratios of dissimilarities should contain considerable

amounts of additional information. Since metric MDS is able to use

this additional source of information, it should have a clear advantage

over nonmetric MDS and create spaces of a higher quality. If the

dissimilarities obtained with SpAM are, however, only ordinally scaled,

then the main assumption of metric MDS is violated. The differences and

ratios of dissimilarities are in this case not meaningful, and may thus be

misleading. In this case, we expect, that metric MDS produces solutions

of lower quality than nonmetric MDS. Hence, by comparing the results

obtained with metric MDS to the ones obtained with nonmetric MDS, we

can make some inferences about the underlying scale of measurement

of the dissimilarity ratings.

9.1.2 Methods

In order to investigate the differences between metric and nonmetricMDS algorithms

MDS in the context of dissimilarity ratings obtained with SpAM, we

compared the three MDS algorithms introduced in Chapter 8:

• Classical multidimensional scaling [174, 408] is a variant of metricClassical MDS as

metric approach
MDS, which uses an Eigenvalue decomposition in order to derive

the coordinates in the similarity space (cf. Section 8.3). We used

the cmdscale() function from the stats library in R.
6

• Kruskal’s nonmetric MDS algorithm [233, 234] is based on gradientKruskal’s nonmetric

algorithm
descent (cf. Section 8.4). We used the implementation available

in the MASS library of R.
7

We ran the algorithm with 256 random

3 We would like to thank Michael Hout for providing us with all participant-based

dissimilarity matrices.

4 The type of MDS algorithm being used is not stated explicitly in their paper, but was

confirmed through a private communication with Michael Hout in January 2019.

5 Please note, that we use the terms "metric MDS" and "nonmetric MDS" to refer to

absolute and ordinal MDS, respectively (cf. Section 8.2.2).

6 See https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cmdscale.
html.

7 See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/isoMDS.html.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cmdscale.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cmdscale.html
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/isoMDS.html
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starts, where the maximum number of iterations per random start

was set to 1,000. The overall best result over these 256 random

starts was kept as final result.

• The SMACOF algorithm [115] uses iterative function majorization Metric and

nonmetric SMACOF
for minimizing Stress, and can be used both in a metric and in a

nonmetric variant (cf. Section 8.5). The underlying algorithm stays

the same, only the definition of Stress and thus the optimization

target differs. Both variants were explored in our study, using the

original implementation from R’s smacof library [116].
8

We used

256 random starts with the maximum number of iterations per

random start set to 1,000. The overall best result over these 256

random starts was kept as final result.

For each of the four MDS variants, we constructed MDS spaces of The definition of

Stress
different dimensionality (ranging from one to ten dimensions). Most

MDS algorithms explicitly minimize Stress, i.e., the difference between

the dissimilarities predicted by the similarity space and the actual

dissimilarities. Remember from Section 8.2.1, that in its most general

form, Stress-1 of a configurationX is defined as follows (where dj1j2(X)
is the distance between the points j1 and j2 in the configuration X , the

weight wj1j2 indicates the importance of the item pair (j1, j2), and the

disparities d̂j1j2 are based on the original dissimilarities):

σ1(X) =

⌜⃓⃓⃓
⎷∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 ·

(︂
dj1j2(X)− d̂j1j2

)︂2
∑︁N

j1=1

∑︁N
j2=j1+1wj1j2 · d2j1j2(X)

(8.4)

For metric Stress, the disparities d̂j1j2 are identical to the original Computing Stress

dissimilarities δj1j2 , while for nonmetric Stress, they are obtained

through a monotone regression from dissimilarities to distances (cf.

Sections 8.2.2 and 8.4.2). We use the stress0 function from R’s smacof
package to compute both metric and nonmetric Stress-1 for all similarity

spaces, using the settings "ratio" and "ordinal", respectively. We

expect Stress to decrease as the number of dimensions increases.

Nonmetric Stress quantifies the difference between the ordering of Expectations

dissimilarities and distances, while metric Stress measures the differ-

ence between their actual numeric values. If the data obtained through

SpAM is ratio scaled, then we would expect, that metric MDS achieves

better values on metric Stress (and potentially also on nonmetric Stress)

than nonmetric MDS. If the SpAM dissimilarities are not ratio scaled,

then metric MDS should not have any advantage over nonmetric MDS.

As an additional way of evaluation, we measured the correlation Considering

correlations
between the distances in the MDS space and the original dissimilarity

ratings. Since a high correlation is expected to correspond to low values

of Stress and vice versa, this seems to be a valid approach of evaluation.

It has the advantage, that correlation coefficients are more well-known

8 See https://cran.r-project.org/web/packages/smacof/smacof.pdf

https://cran.r-project.org/web/packages/smacof/smacof.pdf
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and potentially easier to interpret than raw Stress values.
9

Since we

assume, that the dissimilarity ratings are mainly based on perceptual

information, we also investigated, to which extent they can be predicted

from the original images. In order to do so, we additionally included

two baselines into our correlation analysis, leading to the overall setup

depicted in Figure 9.1:

The pixel baseline uses the pixel-based distance of downscaled images:Pixel baseline

For each original image (with both a width and height of 300 pixels),

we created lower-resolution variants by aggregating all the pixels in

a k × k block into a single pixel (with k ∈ [2, 300]). We compared

different aggregation functions, namely, minimum, mean, median, and

maximum. The pixels of the resulting downscaled image were then

interpreted as a point in a ⌈300k ⌉ × ⌈300k ⌉ dimensional space. If the

dissimilarity ratings are based on the overall shape of the stimuli, then

a more coarse-grained representation of the images (corresponding to

larger block sizes) should yield better results.

For the ANN baseline, we extracted the activation vectors from theANN baseline

second-to-last layer of the inception-v3 network [400] (cf. Section 6.2.2)

for each of the images from the NOUN dataset. Each stimulus was

thus represented by its corresponding activation pattern. While the

downscaled images can be seen as surface level features, the activation

patterns of the neural network can be interpreted as a more abstract

representation of the image.

For each of the three representation variants (downscaled images,Distances

ANN activations, and points in an MDS-based similarity space), we

computed three types of distances between all pairs of stimuli, namely

the Euclidean distance dE , the Manhattan distance dM , and the negated

inner product dIP :

dE(x⃗
(j1), x⃗(j2)) =

⌜⃓⃓⎷ N∑︂
i=1

w2
i · (x

(j1)
i − x

(j2)
i )2

dM (x⃗(j1), x⃗(j2)) =
N∑︂
i=1

wi · |x(j1)i − x
(j2)
i |

dIP (x⃗
(j1), x⃗(j2)) = −1 ·

N∑︂
i=1

w2
i · x

(j1)
i · x(j2)i

While dE and dM measure distance in the usual sense (cf. SectionMotivation for the

inner product
2.1.1), dIP is based on the inner product of two vectors. The inner

product is often used as a measure of similarity for activation vectors

of artificial neural networks (cf. the study by Peterson et al. [318, 319],

Section 8.1.5, and the usage of the Cosine similarity in word embeddings

[291], Section 6.3.2). Since we are, however, interested in a measure of

dissimilarity, we simply take the negative value of the inner product.

In all of the distances listed above, we have included weights wi forDimension weights

9 Comparing dissimilarity matrices of different systems with correlation coefficients is

also known as relational similarity analysis (RSA) in neuroscience [230].
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Figure 9.1: Illustration of our analysis setup, which considers distances based

on raw pixels (left), activations of an artificial neural network

(middle), and similarity spaces obtained with MDS (right).

each of the dimensions i. By default, all of these weights are set to one,

i.e., all dimensions are considered to be of equal importance. However,

as Peterson et al. [318, 319] have shown, the quality of the dissimilarities

predicted by the activation vectors of a neural network can be greatly

improved by optimizing the dimension weights wi (cf. Section 8.1.5).

Similar to their approach, we use a non-negative least squares regres-

sion in a five-fold cross validation to estimate these weights. Especially

for the high-dimensional feature vectors produced by the ANN baseline

and the pixel baseline, this cross-validation scheme is necessary in order

to avoid overfitting: Since the number of dimensions is considerably

larger than the number of data points, it might otherwise be too easy to

find an optimal set of weights, which yields a very high correlation on

the training data, but does not generalize well. In our analysis, we will

consider both uniform and optimized weights.

For each of the resulting distance matrices, we compute four cor- Computing

correlations
relation coefficients with respect to the target dissimilarity ratings,

namely, Pearson’s r [315], Spearman’s ρ [384], Kendall’s τ [219], and

the coefficient of determination R2
[439] for a monotone regression.

When computing these correlation coefficients, we only consider matrix

entries above the diagonal, because the matrices are symmetric, and

because all distances on the diagonal are by definition zero. In the

following, we describe the four correlation coefficients in more detail.

Pearson’s r [315] measures the linear correlation of two random Pearson’s r

variables by dividing their covariance by the product of their individual
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variances. Given two vectors a⃗ and b⃗ (each containing k samples from the

random variables A and B, respectively), Pearson’s r can be estimated

as follows, where ā and b̄ are the average values of the two vectors:

rab =

∑︁k
l=1(al − ā)(bl − b̄)√︂∑︁k

l=1(al − ā)2
√︂∑︁k

l=1(bl − b̄)2

Pearson’s r computes the covariance of the two variables and nor-Interpreting the

numerator
malizes it with their respective standard deviations [155, Section 6.3].

It is greater than zero for positively correlated random variables and

less than zero for negatively correlated ones. In order to understand

this property of Pearson’s r, consider for now only a single term from

the numerator, i.e., (al − ā)(bl − b̄) for a fixed value of l. It is clear, that

this term can only become positive, if both of its constituents have

the same sign. This, however, can only happen, if al and bl are either

both greater than their corresponding mean, or both smaller than their

corresponding mean. This means, that the term (al− ā)(bl− b̄) can only

be positive if both al and bl lie on the same side of their respective mean.

If they lie on different sides (i.e., one being greater and the other one

being smaller than its respective mean), then the term (al − ā)(bl − b̄)
becomes negative. Overall, the sum over all l can only reach a large

absolute value, if there is a consistent trend in the observed sample, i.e.,

if either most of the terms are greater than zero, or most of them are

less than zero.

The denominator of the overall formula can be seen as a normalizationProperties of

Pearson’s r
term, which is always nonnegative, and which ensures, that r ∈ [−1, 1].
One can easily see, that Pearson’s r can only reach its maximum and

minimum value for linear dependencies. It is important to note, that

Pearson’s r implicitly assumes, that the data is at least interval scaled,

and that the two random variablesA andB follow a normal distribution

[155, Section 6.5]: If this assumption is not fulfilled, then computing

their mean, variance, and covariance is not meaningful.

Spearman’s ρ [384] generalizes Pearson’s r by allowing also for non-Spearman’s ρ

linear monotone relationships between the two variables. It can be

computed by replacing each observation al and bl with its correspond-

ing rank, i.e., its index in a sorted list, and by then computing Pearson’s

r on these ranks. By replacing the actual values with their ranks, the

actual numeric distances between the sample values lose their impor-

tance – what counts, is now only the correct ordering of the samples.

Spearman’s ρ can therefore also be applied to non-normally distributed

data [155, Section 6.5]. Like Pearson’s r, Spearman’s ρ is confined to

the interval [-1, 1] with positive values indicating a monotonically

increasing relationship.

Kendall’s τ [219] also measures the monotonicity of the relationshipKendall’s τ

between two random variables A and B. Instead of computing mean,

variance, and covariance of the given sample, Kendall’s τ is based

on frequency counts. Let us again assume, that a⃗ and b⃗ are vectors
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sampled from A and B. Each tuple (al, bl) is treated as one observation.

We now look at all possible pairs of observations (al1 , bl1), (al2 , bl2).
A pair of observations is called concordant, if al1 > al2 ∧ bl1 > bl2
or if al1 < al2 ∧ bl1 < bl2 . In other words, a pair of observations is

concordant, if it does not violate the assumption of a monotonically

increasing relation between the two variables. Pairs with al1 = al2 or

bl1 = bl2 are ignored, and all other pairs of observations (which support

a monotonically decreasing relation) are called discordant. Let Nc be

the number of concordant pairs, Nd the number of discordant pairs,

and N = k·(k−1)
2 be the number of all possible pairs of k observations.

Kendall’s τ is then defined as follows:

τab =
Nc −Nd

N

It is easy to see, that also Kendall’s τ is confined to the interval [-1, 1] Properties of

Kendall’s τ
with positive values corresponding to a monotonically increasing rela-

tionship. In contrast to Spearman’s ρ, Kendall’s τ explicitly considers

the correct ordering of pairs and is thus more similar to the nonmetric

Stress function used to obtain an MDS solution. Kendall’s τ is especially

recommended for small datasets with a large number of tied ranks [155,

Section 6.5].

While all of the previous metrics directly measure the relation be- Coefficient of

determination R2
tween two random variables, the coefficient of determination R2

[439]

quantifies the performance of a regressor with respect to a given ground

truth (cf. Section 5.1.2). Here, we assume, that the vector y⃗ contains the

ground truth values, and that the function f̂ represents the predictions

made by the regressor. Please recall from Section 5.1.2, that R2
is then

defined as follows [155, Section 7.2.3]:

R2 = 1− Sresidual
Stotal

=
Stotal − Sresidual

Stotal

with Sresidual =
N∑︂
j=1

(y(j) − f̂(x⃗(j)))2

and Stotal =

N∑︂
j=1

(y(j) − ȳ)2

Here, Stotal is the total sum of squares, which measures the overall Interpreting R2

variance in the ground truth data by quantifying how much the target

varies around its mean. Sresidual is called the residual sum of squares and

measures, how far the regressor’s predictions depart from the ground

truth. Please also recall, that the coefficient of determination can be

interpreted as the percentage of variance in the ground truth explained

by the regressor [155, Section 7.2.3]. The highest possible value of R2
is

one and can only be achieved if Sresidual becomes zero. For a regression

error larger than the variance of the ground truth,R2
becomes negative.

Since the regression error can become arbitrarily large, the possible

values of R2
are not bounded from below, hence R2 ∈ (−∞, 1].
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In principle, the formulation ofR2
is agnostic about the type of regres-Considering a

monotone regression
sion being used. One can, however, show, that for a linear least-squares

regression, R2
is identical the squared value of Pearson’s r. Since we

already consider Pearson’s r as evaluation metric, computing R2
for

a linear regression would not provide novel information. Instead, we

computeR2
for a monotone regression from distances to dissimilarities.

Also the coefficient of determination can be related to nonmetric Stress,

since it considers a monotone regression and the sum over the squared

differences to the ground truth.

Overall, we thus consider one metric based on a linear relationshipExpectations for

similarity spaces
(namely, Pearson’s r) and three metrics based on a monotone relation-

ship (Spearman’s ρ, Kendall’s τ , and R2
with a monotone regression).

We assume, that for the MDS-based similarity spaces all of these metrics

improve as the number of dimensions increases. A comparison between

the three monotone correlation metrics can reveal, whether any of

them is more informative than the others about differences between

the similarity spaces.

All MDS variants can be expected to find a configuration, such thatMetric vs. nonmetric

MDS
there is a monotone relationship between the distances in the similarity

space and the original dissimilarity matrix. That is, smaller dissimilari-

ties should correspond to smaller distances and larger dissimilarities

correspond to larger distances. We therefore do not expect notable

differences for the monotone correlation coefficients. Metric MDS also

assumes a linear relationship between dissimilarities and distances.

Therefore, if the dissimilarities obtained by SpAM are ratio scaled, then

metric MDS should give better results with respect to Pearson’s r than

nonmetric MDS.

For our two baselines, we expect overall lower correlation valuesExpectations for

baselines
than for the MDS-based similarity spaces, since they do not have access

to the original dissimilarity ratings. Due to its higher complexity, we

furthermore expect the ANN baseline to outperform the pixel baseline.

Since we have no strong reason to believe otherwise, we assume, that

all of these effects can be observed for all of the correlation metrics.

Another possible way of judging the quality of an MDS solutionInterpretability-

based evaluation
is to look for interpretable directions and meaningful clusters in the

resulting space (cf. Section 8.6.2). However, Horst and Hout [199] have

argued, that since their NOUN dataset consists of novel stimuli, there

are no obvious directions or clusters, which one would expect. Without

a list of candidate directions and categories, an efficient and objective

evaluation based on interpretable directions and meaningful clusters is,

however, difficult to achieve. We therefore limit ourselves to a simple

visual inspection of all two-dimensional spaces: If a visualization of a

given similarity space shows meaningful structures and clusters, this

indicates a high quality of the semantic space. We do not consider spaces

with more dimensions, because they are much harder to visualize.
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Figure 9.2: Scree plots showing the remaining metric (a) and nonmetric (b)

Stress, respectively, as a function of the number of dimensions for

the four MDS algorithms under consideration.

9.1.3 Results

Figure 9.2 shows the Scree plots (cf. Section 8.6.1) of the four MDS Scree plots

algorithms for both metric and nonmetric Stress. As one would expect,

Stress decreases for all four MDS variants with an increasing number

of dimensions: More dimensions help to represent the dissimilarity

ratings more accurately.

In both cases, classical MDS consistently yields higher Stress values Comparing the

algorithms
than the other MDS algorithms. We can explain this observation by

the fact, that (as discussed in Section 8.3.2) classical MDS is the only

algorithm in our study, which does not explicitly optimize Stress

(i.e., the difference between the distances and suitably transformed

dissimilarities). It rather optimizes the related, but different notion

of Stain (i.e., the difference between the inner product matrix of the

configuration and a suitable transformation of the dissimilarity matrix).

Due to its different optimization target, classical MDS can therefore

not be expected to find a solution minimizing Stress. All other MDS

algorithms yield almost identical performance with respect to both

metric and nonmetric Stress. This suggests, that interpreting the SpAM

dissimilarity ratings as ratio scaled is neither helpful nor harmful.

In order to identify the optimal number of dimensions for a concep- The optimal number

of dimensions
tual similarity space, one usually tries to identify an "elbow" in the

Scree plot (cf. Section 8.6.1). In both graphs, it seems, that two or three

dimensions might be a candidate for such an elbow, but the effect is

not very pronounced. Moreover, we can make the observation, that

the Stress curves start to saturate after five or six dimensions. This

is in line with the results by Horst and Hout [199], who selected a

four-dimensional space as a compact but faithful representation of the

dissimilarity ratings.
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R2

Baseline Weights Pearson’s r Spearman’s ρ Kendall’s τ
(Monotone)

Pixel uniform 0.2402 0.2472 0.1675 0.0939

Pixel optimized 0.3920 0.3820 0.2608 0.2018

ANN uniform 0.2580 0.2479 0.1660 0.0955

ANN optimized 0.5417 0.5145 0.3594 0.3562

Table 9.2: Performance comparison of pixel baseline and ANN baseline for

uniform and optimized weights.

Let us now turn to the results of our correlation analysis. In additionAnalyzing

correlations
to the four MDS algorithms, we also considered the pixel baseline

and the ANN baseline, as well as the four-dimensional space as pro-

vided by Horst and Hout [199]. Moreover, we generated 100 random

configurations of points for spaces from one to ten dimensions and

computed their average correlation coefficients. As one would expect,

the expected correlation for randomly generated configurations is zero

and does not depend on the number of dimensions. Any correlation

value considerably larger can thus be interpreted as a (partial) success

with respect to predicting human dissimilarity ratings.

Let us first focus on our two baselines. As we can see in Table 9.2,Performance of the

baselines
the pixel baseline and the ANN baseline yield almost identical perfor-

mance if used with uniform weights. For both baselines, the Manhattan

distance gave the highest correlation values. In both cases, we see a

considerable improvement, if optimized weights are used. This im-

provement is much more pronounced for the ANN baseline than for

the pixel baseline – it thus seems, that raw pixel information is less

useful in our scenario than the more high-level features extracted by

the ANN. In the case of optimized weights, the Euclidean distance

yielded the best results for both baselines. With respect to the ANN

baseline, this observation is somewhat surprising, because it conflicts

with the usage of the inner product in the study by Peterson et al.

[318, 319]. It is furthermore interesting to observe, that for each of the

baselines, the same configuration (i.e., distance function, and in case of

the pixel baseline also block size and aggregator) was optimal for all

evaluation metrics. For the pixel baseline, we furthermore observed,

that the minimum aggregator yielded the best results.

Figure 9.3 illustrates Pearson’s r for the pixel baseline (using theThe pixel baseline

with uniform weights
Manhattan metric and uniform weights) with respect to different aggre-

gators and different block sizes. We can make the following observations:

The maximum does not seem to be a very useful aggregator, because

its performance is considerably worse than that of the other options.

Overall, the minimum seems to be the best choice, having a slight

advantage over the mean and the median. Only for large block sizes

(corresponding to small resulting images), we can observe, that the

minimum performs slightly worse than the mean and the median. The

performance of all aggregators drops for very large block sizes (i.e.,
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Figure 9.3: Pearson’s r for pixel-based distances obtained through the Man-

hattan metric (using uniform weights) with respect to different

aggregators and different block sizes.

Figure 9.4: Pearson’s r for pixel-based distances obtained through the Eu-

clidean metric (using optimized weights) with respect to different

aggregators and different block sizes.

very small image sizes), indicating that crucial information is lost after a

certain point. Only the mean aggregator seems to be able to compensate

this effect quite well. Other than that, we do not observe a clear tendency,

which would imply a certain optimal image size, because the curves

for minimum, mean, and median are almost constant for most of the

block sizes. Plots for all other evaluation metrics and other distance

functions (using uniform weights) can be found in Appendix D.1 and

do in general conform with the observations described above.

Figure 9.4 shows a similar plot, but now using optimized weights The pixel baseline

with optimized

weights

and the Euclidean distance. Again, we observe that the maximum

yields relatively poor performance. In general, best performance is

reached for all aggregators when very small block sizes are used. This

corresponds to large image sizes and hence very high-dimensional

feature vectors. Since this implies, that a very large number of weights
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needs to be optimized, the performance advantage of small block sizes

may thus be explained by the larger degrees of freedom involved when

optimizing weights. However, due to the five-fold cross-validation used

for optimizing the weights (cf. Section 9.1.2), we know, that the numbers

shown in Figure 9.4 correspond to the generalization performance and

not to the (overly optimistic) training performance (cf. Section 5.1.2).

Thus, a higher model capacity (i.e., a larger number of weights to

optimize) does indeed yield a more accurate model, which is not subject

to extreme overfitting. Again, the minimum seems to be the best choice

overall, yielding relatively constant performance for a large variety of

block sizes. Appendix D.2 contains analogous plots for other evaluation

metrics and other distance functions, which follow the same pattern.

Overall, we observed a performance drop for very small images,The role of the image

size
but our prediction, that smaller images more accurately reflect dis-

similarities than high-resolution images did not match our practical

observations. The information about the overall rough shape of the

object can be better represented in low-resolution images than in high-

resolution ones (in the sense, that distracting noise is being removed),

whereas details are only available in high-resolution images. Since the

resolution did not play a major role, neither of these aspects seems to

be the main driver for the dissimilarity ratings. Probably both aspects

play a role, and no image size can capture them equally well.

The minimum has been identified as the best aggregation functionInterpreting the

aggregators
for the pixel baseline. Since the images are encoded using the RGB color

space, the white background of the images has values of 255 on all three

color channels. The object itself, on the other hand, is generally not

white, and has thus lower values on at least one of the color channels.

Using the minimum aggregator (which is applied to each color channel

individually) thus corresponds to detecting, whether the respective

block contains at least one pixel of the object. The maximum aggregator,

on the other hand, would correspond to a focus on the background,

while both the mean and the median provide some continuous notion

of the degree, to which a given block is filled. Since the minimum

yields the highest correlation values, it seems, that the aforementioned

focus on object detection ("is there at least one pixel of the object in this

block?") seems to be more useful in predicting dissimilarities.

The overall performance level of the ANN baseline is slightly belowPerformance of the

ANN baseline
the observations by Peterson et al. [318, 319]: They reported, that R2

(based on a linear regression) improved from a range of [0.19, 0.58] (uni-

form weights) to a range of [0.35, 0.74] (optimized weights), depending

on the dataset. In our case, we observed values of Pearson’s r ≈ 0.26
for uniform and r ≈ 0.54 for optimized weights, which correspond to

R2 = r2 ≈ 0.07 for uniform and R2 ≈ 0.29 for optimized weights. One

should, however, note, that the values reported by Peterson et al. differ

greatly based on the dataset being used. Our dataset consists of novel

objects, while the ANN was pretrained on images of real-life objects.

Also the datasets of Peterson et al. consisted of photographs of real-life

objects. Our dataset might thus pose a more difficult generalization
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Figure 9.5: Correlation analysis for the different MDS solutions and the base-

lines, visualized as function of the number of dimensions.

problem for the ANN than the natural categories used by Peterson et

al., which might cause the observed performance difference. Moreover,

it seems, that Peterson et al. computed their numbers based on the

complete distance matrix, whereas we only look at the part above the

diagonal. Since the diagonal entries are always guaranteed to be zero

for both the dissimilarity matrix and the distance matrix, this naturally

increases the correlation between the two matrices. This difference

might also contribute to the lower numbers observed on our dataset.

Let us now turn to the similarity spaces obtained by MDS. For almost Optimal distances for

MDS spaces
all similarity spaces, the Euclidean distance yielded higher correlations

than both the Manhattan distance and the negated inner product. This

is to be expected, because MDS constructs these spaces in such a way,

that the unweighted Euclidean distances reflect the dissimilarities as

closely as possible. The only exception to this observation were the

spaces created by classical MDS, where the negated inner product

yielded considerably higher correlations to the dissimilarities. This

exception may be explained by classical MDS trying to optimize Stain

(i.e., the inner product matrix of the configuration) instead of Stress (i.e.,

the distances). Using optimized weights did in general not improve
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Figure 9.6: Shepard diagram for the two-dimensional MDS space, based on

nonmetric SMACOF and the Euclidean distance.

results for the MDS spaces. In most cases, performance was equivalent

or slightly worse than for uniform weights. The latter case is probably

an artifact of the cross-validation procedure, where the weights are

optimized on 80% of the entries in the distance matrix and evaluated

on the remaining 20%. Only for the coefficient of determination R2
, we

were able to observe a slight, but consistent improvement based on the

weight optimization. Since this improvement was, however, in general

quite small (usually around 0.02 absolute), we conclude, that weight

optimization is not worthwhile on the MDS-based spaces. Again, the fact

that MDS chooses configurations of points, such that their unweighted

Euclidean distances reflect the dissimilarities as closely as possible,

explains this observation. Therefore, we only consider uniform weights

for the MDS-based spaces in the following analysis.

Figure 9.5 illustrates the correlation coefficients for the solutionsVisualizing

correlations
provided by the different MDS variants as a function of the number

of dimensions. For classical MDS, we use the correlations computed

based on the negated inner product, while for all other MDS algorithms,

the Euclidean distance was used. Figure 9.5 also shows the expected

correlation of random configurations of the same dimensionality as the

MDS solutions.
10

Moreover, it shows the best results of the two baselines

as well as the space provided by Horst and Hout [199]. All of these

three baselines are shown as horizontal lines, since the dimensionality

of their underlying space is fixed.

We can observe in Figure 9.5, that the MDS solutions provide us with aMDS spaces and

baselines
considerably better reflection of the dissimilarity ratings than both pixel-

10 The numbers shown in Figure 9.5 are based on normally distributed points using the

unweighted Euclidean distance. Using a uniform distribution or a different distance

metric resulted in almost indistinguishable results.
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Figure 9.7: Shepard diagram for the ANN baseline, based on the Euclidean

distance and optimized weights).

based and ANN-based distances, if we use at least a two-dimensional

similarity space. Figures 9.6 and 9.7 show two Shepard diagrams (cf.

Section 8.6.1) based on the distances of the two-dimensional similarity

space found by nonmetric SMACOF using uniform weights, and based

on the distances used by the ANN baseline with optimized weights, re-

spectively. In both Shepard diagrams, we can observe a monotone trend

(illustrated by the dashed red regression line), which is, however, much

clearer in the MDS space than for the ANN baseline. The visualizations

from Figures 9.6 and 9.7 thus support and confirm the observations

from Figure 9.5, where the two-dimensional MDS spaces are judged to

be superior to the ANN baseline with respect to all correlation metrics.

When comparing the different MDS variants, Figure 9.5 confirms Comparing MDS

algorithms
our overall observations from the Scree plots in Figure 9.2: Classical

MDS performs slightly worse than all other MDS variants, which yield

very similar performance on all the metrics. This again supports the

view, that the assumption of ratio scaled dissimilarity ratings is neither

beneficial nor harmful for our dataset. Again, classical MDS seems to

be inferior to iterative Stress-minimization methods. We think, that the

poorer performance of classical MDS is linked to the observation, that

although Euclidean distances are targeted when constructing the space,

the negated inner product allows us to make better predictions of the

original dissimilarities.

For one-dimensional spaces, it seems that both Kruskal’s algorithm Considering the

number of

dimensions

and classical MDS are considerably better than both SMACOF variants.

This gap, however, disappears as soon as two dimensions are used,

indicating that SMACOF is somewhat incapable of extracting one-

dimensional similarity spaces. The performance of the four-dimensional

space by Horst and Hout [199] coincides with the performance of the
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Figure 9.8: Two-dimensional similarity space based on classical MDS.

four-dimensional spaces as constructed by the algorithms used in our

study, showing again, that the choice of the MDS algorithm seems

to be largely irrelevant. Overall, we find the tendency of improved

performance with an increasing number of dimensions. This again

illustrates, that MDS is able to fit more information into the space,

if this space has a larger dimensionality. Just as with the Scree plots,

performance seems to level off after five or six dimensions.

When comparing the different correlation coefficients, we can note,Comparing

correlation

coefficients

that the absolute numbers seem to be somewhat lower for Kendall’s

τ and the coefficient of determination R2
than for Pearson’s r and

Spearman’s ρ. Other than that, we observe the same qualitative effects

on all four plots. When comparing Person’s r to the three other correla-

tion coefficients, this supports again the view, that metric MDS does

not have any advantage on data collected with SpAM. When focusing

on the three rank-based correlation coefficients, we can interpret this

observation as none of them being in principle preferable over the others.

Finally, let us look at the two-dimensional spaces generated by theVisual inspection

different MDS algorithms in order to get an intuitive feeling for their

semantic structure. Figures 9.8 to 9.11 visualize these spaces along with

the local neighborhood of three selected items. These neighborhoods

illustrate, whether stimuli are grouped in a meaningful way. The item

in the red dotted circle is a roundish object with a hole in the middle

and little structure otherwise. One can see, that in most spaces, it is

being grouped with other roundish objects with holes. The item in the

blue dashed circle is a vertically elongated object with a "head" on one

end. Again, it is grouped with other objects, which fit this description

in most of the spaces. Finally, the item in the green solid circle is a

horizontally elongated object, which is again mostly grouped with
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Figure 9.9: Two-dimensional similarity space based on Kruskal’s algorithm.

Figure 9.10: Two-dimensional similarity space based on metric SMACOF.
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Figure 9.11: Two-dimensional similarity space based on nonmetric SMACOF.

other elongated objects. In almost all of the spaces, the blue dashed

neighborhood and the green solid neighborhood are relatively close,

making up one larger neighborhood of elongated objects. From our

visual inspection, it thus seems, that all MDS variants create reasonable

semantic similarity spaces.

9.1.4 Discussion

Based on the results of our analysis, we can make the following conclu-Metric vs. nonmetric

MDS
sions: Overall, we do not find any systematic difference between metric

and nonmetric MDS on the given dataset. It thus seems, that assuming

a ratio scale is neither beneficial nor harmful when trying to extract a

similarity space from dissimilarity ratings collected with SpAM. On

the one hand, we cannot exclude, that the dissimilarities obtained

through SpAM are ratio scaled. On the other hand, the additional

information conveyed by differences and ratios of dissimilarities does

not seem to improve the overall results. We therefore advocate to use

nonmetric MDS due to the smaller amount of assumptions made about

the dissimilarity ratings.

The similarity spaces obtained by MDS are clearly superior to bothBaselines

the pixel baseline and the ANN baseline. This might indicate, that the

dissimilarity ratings are not directly based on raw perceptual similarity

(which is targeted by our baselines), but on more abstract and complex

conceptual similarity. This interpretation receives further support from

the observation, that the ANN baseline has a higher correlation to the

dissimilarities than the pixel baseline, since the features extracted by

the ANN can be viewed as more abstract and semantically meaningful

than raw pixel values [235]. Eliciting dissimilarity judgments from

humans therefore seems to be necessary even on a dataset of novel
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objects, for which background knowledge is not expected to play a

role. With respect to the pixel baseline, we found no clear effect of the

block size used for downscaling the images. It thus seems, that the

dissimilarity ratings focus neither on the overall shape of the objects

(which would correspond to large block sizes being optimal), nor on

the details of their texture (which would correspond to small block

sizes being clearly superior). We conclude, that probably both domains

play a role for the dissimilarities of the NOUN dataset.

The three monotone correlation metrics (namely, Spearman’s ρ, Correlation metrics

Kendall’s τ , and the coefficient of determination R2
based on a mono-

tone regression) did not show fundamentally different behaviors in

our investigations. It thus seems, that all three of them are equally well

equipped for this kind of analysis. Kendall’s τ and the coefficient of

determination R2
are closer in spirit to the formulation of Stress than

Spearman’s ρ. However, R2
is not confined to the nicely interpretable

interval [−1, 1]. We therefore recommend to use Kendall’s τ when

computing the correlation between distances and dissimilarities.

9.2 machine learning experiments

After having extracted and analyzed a variety of similarity spaces for Task and research

questions
the NOUN dataset, we now consider the task of mapping images onto

points in these similarity spaces. Instead of training a neural network

from scratch, we limit ourselves to simple off-the-shelf regressors (both

linear and nonlinear models) on top of features extracted either by a

pretrained image classification network or from raw pixels. With the

experiments in this study, we address the following research questions:

1. Can we learn a useful mapping from colored images into a low- Feasibility

dimensional psychological similarity space from a small dataset of

novel images, for which no background knowledge is available?

Our prediction: The learned mapping is able to clearly beat simple

baselines. However, it does not reach the level of generalization observed

in the study of Sanders and Nosofsky [346] due to the smaller amount

of data available.

2. To what extent do the type of feature space, the type of regressor, Machine learning

setup
and the amount of regularization influence the machine learning

results? Our prediction: ANN-based feature spaces are constructed

through a nonlinear transformation of the input pixels, therefore more

complex than simple pixel-based features, and hence more likely to give

good results. This is especially to be expected, if the target similarity

spaces are not exclusively based on the shape domain. Nonlinear re-

gressors are more powerful than linear models, but also more prone to

overfitting, especially in the context of small datasets. We therefore have

no clear expectation with respect to the type of regression model. Since

overfitting can expected to be an issue in our experiments, we also expect

regularization to have a positive effect on the regression results.
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3. How does the MDS algorithm being used to construct the targetMDS algorithms

similarity space influence the machine learning results?

Our prediction: There are no considerable differences between the different

spaces. If any, we expect more "well-behaved" spaces (i.e., spaces with a

more faithful reflection of the dissimilarity ratings) to lead to slightly

superior performance.

4. How does the dimensionality of the target similarity space influ-Dimensionality

ence the machine learning results?

Our prediction: Very small target spaces are not able to reflect the

similarity ratings very well and do not contain much meaningful struc-

ture. Very large target spaces on the other hand increase the number of

parameters in the regressor, which makes overfitting more likely. By this

reasoning, medium-sized target spaces should provide a good trade-off

between these tendencies, and should therefore also achieve the best

regression performance.

Each of these overarching research questions will be addressed in oneExperimental steps

experiment on our dataset. In Section 9.2.1, we first describe our overall

experimental setup, before analyzing our feature spaces and baselines

in Section 9.2.2. In Section 9.2.3, we then conduct first regression ex-

periments on a single target space, but with different feature spaces,

regressors, and regularization strengths (research questions 1 and 2).

The third research question is then considered in Section 9.2.4, where

we compare results obtained with respect to different target spaces of

the same dimensionality, but created with different MDS algorithms.

In Section 9.2.5, we finally investigate the influence of the target space’s

dimensionality on the regression results (research question 4). The

overall observations from these experiments are then further discussed

in Section 9.2.6.

One can interpret our study as an extension of the work by SandersRelation to Sanders

and Nosofsky
and Nosofsky [346, 347], which has been summarized in Section 8.7.3:

They used a dataset of 360 images of rocks and an eight-dimensional

target similarity space. In contrast to that, we confine ourselves to a

much smaller dataset of 64 images, which furthermore represent novel

and unfamiliar objects. Moreover, we investigate the effects of MDS

algorithm, regularization, and dimensionality of the similarity space.

These three external influences have not been investigated by Sanders

and Nosofsky, but may have a considerable influence on the results.

9.2.1 General Methods

In order to make the regression results in the different similarity spacesNormalizing MDS

spaces
comparable, it is crucial to normalize them. Kruskal [234] has noted,

that Stress is invariant under translation and uniform stretching and

shrinking of the similarity space. He proposed to normalize MDS

solutions by translating and stretching them in such a way, that the

centroid of the configuration resides in the origin, and that the mean
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Figure 9.12: Illustration of the network structure used in our experiments.

squared distance of the points from the origin equals one. More formally,

he proposes to ensure the following (where we use y
(j)
i to denote the

ith coordinate of the jth point in the similarity space):⎛⎝∀i ∈ {1, . . . , n} :
1

N
·
N∑︂
j=1

y
(j)
i = 0

⎞⎠ ∧

⎛⎝ 1

N

N∑︂
j=1

n∑︂
i=1

(︂
y
(j)
i

)︂2
= 1

⎞⎠
We have applied this procedure in order to normalize all similarity Applying the

normalization
spaces under consideration. This was achieved by a subtraction of the

centroid and a division through the mean squared distance of the

original configuration.

Please recall from Section 9.1.1, that the NOUN data base contains Dataset

augmentation
only 64 images with an image size of 300 by 300 pixels. Since this

number of training examples is too low for using machine learning

techniques, we augmented the dataset (cf. Sections 6.2.3 and 7.2.1) by

applying random crops, a Gaussian blur, additive Gaussian noise, affine

transformations (i.e., rotations, shears, translations, and scaling), and by

manipulating the image’s contrast and brightness. These augmentation

steps were executed in random order and with randomized parameter

settings. We did not consider horizontal and vertical flips for our ex-

periments, because they might influence the perception of an image

quite strongly and thus carry the risk of introducing too much noise

into the dataset. For each of the original 64 images, we created 1,000

augmented versions, resulting in a dataset of 64,000 images in total.

We assigned the target coordinates of the original image to each of the

1,000 augmented versions.

Given the small number of original images, training a regressor on Feature spaces

raw pixel input carries a very large risk of overfitting. We therefore

employed two types of lower-dimensional feature spaces: The pixels of

downscaled images and activation vectors of a pretrained ANN.

For the ANN-based features, we again used the pretrained inception- ANN-based features

v3 network [400] (cf. Section 6.2.2), which has already been employed for



536 feasibility study on novel objects

the ANN baseline in Section 9.1.2. It has been trained on ImageNet [120],

where it has achieved a state of the art top-5 error rate of 3.46% when

classifying images into one of 1,000 classes. For each of the augmented

images, we used the activations of the second-to-last layer as a 2048-

dimensional feature vector. Our network architecture can be considered

a special variant of the feedforward network proposed in Section

8.7.2: Instead of training both the mapping and the classification task

simultaneously, we use an already pretrained network, keep its weights

fixed, and augment it by an additional output layer for regression,

which is trained separately. This overall structure is visualized in Figure

9.12 and corresponds to a transfer learning setup (cf. Section 6.2.3).

As a comparison to the ANN-based features, we used an approachPixel-based features

similar to the pixel baseline from Section 9.1.2: We downscaled each of

the augmented images by dividing it into equally sized blocks and by

computing the minimum (which has shown the best correlation to the

dissimilarity ratings in Section 9.1.3) across all values in each of these

blocks as one entry of the feature vector. When choosing the block size,

we only considered factors of the original image size in order to avoid

introducing noise through zero-padding at the borders.

We created two pixel-based feature spaces of different dimensionality.Different

dimensionality
More specifically, we used block sizes of 12 and 24, resulting in feature

vectors of size 1875 and 507, respectively (based on three color channels

for downscaled images of size 25 x 25 and 13 x 13, respectively). By

comparing these two pixel-based feature spaces, we can analyze differ-

ences between low-dimensional and high-dimensional feature spaces.

Since the high-dimensional feature space is in the same order of magni-

tude as the ANN-based feature space, we can also make a meaningful

comparison between pixel-based features and ANN-based features.

Moreover, the two block sizes achieved a comparable correlation to

the dissimilarity ratings in Section 9.1.3, which makes a comparison

between them meaningful.

With this study, we aim to deliver a proof of concept for the overallRegressors

approach. Achieving outstanding performance is therefore not a con-

cern. While training a deep neural network from scratch might yield

superior performance, it involves many degrees of freedom and hence

requires a more thorough hyperparameter optimization. Hence, we

limit ourselves to three simple off-the-shelf regressors from Python’s

scikit-learn library [316].
11

Please recall from Section 5.2.1, that a linear least-squares regressionLinear regression

makes use of a simple linear model for each of the dimensions in

the target space. A linear regression is one of the simplest regression

approaches available and comes without any hyperparameters.

Since the number of features is quite high in our context, even aLasso regression

linear regression needs to estimate a large number of weights: If we use

a feature vector of size 2048 and a target space with four dimensions,

a linear regression needs to estimate more than 8,000 weights. In

11 See https://scikit-learn.org/.

https://scikit-learn.org/
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order to prevent overfitting, we also consider a lasso regression, which

learns a linear model, but additionally incorporates the L1 norm of

the weight matrix as regularization term (cf. Section 5.2.1). In our

experiments, we investigated the following values for the regularization

strength β (where β = 0 corresponds to an ordinary linear least squares

regression):

β ∈ {0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}

Before training both the linear and the lasso regression, we normalized Normalizing feature

spaces
the underlying feature space by subtracting the mean and dividing by

the standard deviation for each feature. This ensures, that the regression

weights (and thus also the regularization term) are in the same order of

magnitude for different feature spaces.

In order to incorporate also nonlinear regression techniques, we Random forest

regression
furthermore considered a random forest regression (cf. Section 5.2.4) with

100 trees. We used scikit-learn’s default hyperparameters and did

not perform any hyperparameter optimization. A linear regression can

easily be integrated into an existing neural network by adding linear

output units and using the mean squared error as the network’s loss

function. A random forest regressor on the other hand follows a different

internal logic and cannot be easily formulated in terms of artificial

neurons. However, in contrast to a linear regression, a random forest

regression can also approximate nonlinear functions. By also evaluating

the performance of a random forest regression, we can understand,

whether the overall system would benefit from a nonlinear mapping

from features to target MDS coordinates. If this is the case, such a

nonlinear mapping could be implemented by a simple feedforward

network (cf. Section 6.2.1) in the final system. For our feasibility study,

a random forest regression is, however, much faster and easier to work

with than a feedforward neural network.

In order to define a lower bound for regression performance, we con- Baselines

sidered the following four baselines: The zero baseline always predicts

the origin of the coordinate system. The mean baseline, on the other hand,

computes the mean of all target points from the training set and always

uses this point as prediction. The normal distribution baseline estimates

the mean and covariance matrix of the target points from the training set.

It draws a random sample from the corresponding multivariate normal

distribution when making predictions. Finally, the random draw baseline

uses a randomly selected target point from the training set as prediction.

As part of our experiments, we would also like to investigate, whether Shuffled targets

learning a mapping into a psychological similarity space is easier than

learning a mapping into an arbitrary space of the same dimensionality.

In addition to the real regression targets (which are the coordinates

from the similarity space obtained by MDS), we created another set

of regression targets by randomly shuffling the assignment from im-

ages to target points. We ensured, that all augmented images created

from the same original image were still mapped onto the same target

point. With this shuffling procedure, we aimed to destroy any semantic
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structure inherent in the target space. By using a shuffled mapping

rather than a mapping to randomly chosen points in the space, we

ensure, that the distribution of the target points remains constant. This

is necessary in order to make a meaningful comparison between the

two regression configurations. We expect that the regression works

better for the original targets than for the shuffled targets.

In order to evaluate our system, we used the following three differentEvaluation metrics

evaluation metrics:

• The mean squared error (MSE) as introduced in Section 5.1.2 is theMSE

loss function being minimized in a linear regression. It sums over

the average squared difference between the prediction and the

ground truth for each output dimension.

MSE =
n∑︂
i=1

1

N

N∑︂
j=1

(︂
y
(j)
i − f̂(x⃗(j))i

)︂2
• The mean euclidean distance (MED) is the average of the EuclideanMED

distance between the predicted point and the corresponding

ground truth point. It provides us with a way of quantifying the

average distance between the prediction and the target in the

similarity space.

MED =
1

N
·
N∑︂
j=1

⌜⃓⃓⎷ n∑︂
i=1

(︂
y
(j)
i − f̂(x⃗(j))i

)︂2
• The coefficient of determination R2

as introduced in Section 5.1.2R2

can be interpreted as the amount of variance in the targets, which

is explained by the regressor’s predictions.

R2 = 1− Sresidual
Stotal

=
Stotal − Sresidual

Stotal

with Sresidual =

N∑︂
j=1

(y
(j)
i − f̂(x⃗(j))i)

2

and Stotal =
N∑︂
j=1

(y
(j)
i − ȳi)

2

We evaluated all regressors using an eight-fold cross validation ap-Evaluation scheme

proach (cf. Section 5.1.2). Two augmented images, which were generated

based on the same original image, might still be relatively similar to

one another. If one of them is shown during training and the other one

during testing, this might constitute a serious information leak, giving

the system the opportunity to simply memorize the training examples

and showing good generalization to the test set without having learned

a general rule. We therefore made sure, that all augmented images
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based on the same original image belonged to the same fold. In each

iteration, one of these folds was used as test set, whereas all other folds

were used as training set. We aggregated all predictions over these

eight iterations (providing exactly one prediction per data point) and

computed the evaluation metrics on this set of aggregated predictions.

9.2.2 Analyzing Feature Spaces and Baselines

Before conducting our regression experiments, we first analyzed the Motivation

structure of the different feature spaces and the performance of four

simple baselines. This preliminary analysis is used to obtain some first

intuitions about the regression task and to form expectations for our

subsequent experiments.

In order to analyze, how structured the different feature spaces are, Clusters in feature

space
we investigated, whether the augmented images form strong clusters

in the feature space. If all augmented images, which are based on the

same original image, form a clear cluster in a given feature space, then

learning a mapping from this feature space to the target similarity space

might be easier than if there is no clear structure in the feature space.

We conducted a simple cluster analysis by assigning all feature vectors The Silhouette

coefficient
to the original image they are based on. This gives us a total amount of

64 clusters. We then quantified the quality of this cluster assignment

by using the Silhouette coefficient [339]. The Silhouette coefficient for a

single data point j is defined as follows:

s(j) =
b(j)− a(j)

max{a(j), b(j)}
Here, a(j) is the average distance of j to all other data points lying in Interpretation

the same cluster C as j. The value b(j) represents the average distance

of j to the nearest cluster C ′
, to which j has not been assigned. Overall,

the Silhouette coefficient of a given point therefore becomes large, if the

distance to other points in the same cluster is small, while the distance

to points from other clusters is large. By taking the average across all

data points, the Silhouette coefficient can also be computed for a whole

dataset. We can therefore use the Silhouette coefficient as an indication

for the overall structure of the feature space.

Table 9.3 shows the Silhouette coefficient for the different feature Analysis results

spaces, both for the correct assignment of feature vectors to original

images and for a shuffled assignment. In each of the feature spaces, we

computed the Silhouette coefficient based on the Euclidean, Manhattan,

and Cosine distance.

Let us first consider the ANN-based feature space. We can see from ANN-based features

Table 9.3, that the Silhouette coefficient is largest when considering

the Cosine distance, which corresponds to the inner product of the

normalized feature vectors. This is in line with Peterson et al. [318, 319],

who used the inner product for assessing the similarity of ANN activa-

tion vectors (cf. Section 8.1.5). However, this observation contradicts
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Feature Space

Silhouette coefficient

Euclidean Manhattan Cosine

distance distance distance

ANN (2048) 0.3699 0.3824 0.5966

(-0.0233) (-0.0229) (-0.0354)

Pixel (1875) 0.0054 0.0359 -0.0224

(-0.0360) (-0.0505) (-0.0664)

Pixel (507) 0.0203 0.0546 0.0062

(-0.0376) (-0.0510) (-0.0684)

Table 9.3: Silhouette coefficient for the different feature spaces. Values achieved

on a shuffled assignment of images to feature vectors are shown

in parentheses for comparison. Best values for each of the feature

spaces are highlighted in boldface.

the results from Section 9.1.3, where we found, that the Euclidean and

Manhattan distances were more useful in predicting the dissimilarities

of images in the context of the ANN baseline.

For both pixel-based feature spaces, the Silhouette coefficient hoversPixel-based features

around zero, indicating, that there are no well-separated clusters in these

spaces. Especially when comparing the results to the ones obtained on

a shuffled cluster assignment (where we do not expect any meaningful

clustering), one can clearly see, that pixel-based feature spaces are not

very structured: While the Silhouette coefficient is often higher on the

correct cluster assignment, the difference to the random assignment is

very small, especially when compared to the ANN-based features.

We can explain the observed difference between the ANN-basedInterpreting the

results
features and the pixel-based features as follows: The pixel-based features

are based on a simple surface-level aggregation of pixel values (namely,

taking the minimum value over a block of fixed size), whereas the

ANN-based features involve a cascade of nonlinear transformations.

In the data augmentation step, different versions of the same original

image were created by applying various surface-level transformations

(such as translations, rotations, and noise). The different variants of the

same original image thus differ on the surface level. Since the pixel-

based features also only operate on the surface level, these surface-level

differences are not filtered out. The ANN-based features, on the other

hand, operate on a "deeper" level: The cascade of nonlinear operations

on the raw pixel information seems to be able to filter out a large part

of the noise introduced in the augmentation step (e.g., by ignoring

translations though the use of convolutional processing steps, cf. Section

6.2.2). Therefore, the resulting feature vectors differ not as much as the

augmented images, leading to a better structure in the feature space.

Based on its superior structure, we therefore expect all regressionExpectations

results (independent of the actual regressor used) to be better for the

ANN-based feature space than for the pixel-based feature spaces.



9.2 machine learning experiments 541

Training Test

Baseline

MSE MED R2
MSE MED R2

Zero 1.0000 0.9962 0.0000 1.0000 0.9962 0.0000

Mean 0.9974 0.9946 0.0026 1.0389 1.0149 -0.0389

Normal

Distribution

1.9945 1.3432 -0.9947 2.0433 1.3635 -1.0439

Random

Draw

1.9958 1.3469 -0.9960 2.0377 1.3735 -1.0377

Table 9.4: Performance of different baselines on the four-dimensional space by

Horst and Hout [199]. Best values in each column are highlighted

in boldface.

Let us now consider our four simple baselines, which operate inde- Baseline performance

pendent of the feature space, and which therefore yield identical results

for the correct and the shuffled label assignment. Table 9.4 shows the

performance of the four baselines both on the training and the test

set for the four-dimensional similarity space provided by Horst and

Hout [199], which will be used in our first experiment. We can observe,

that the zero baseline (i.e., always predicting the origin) yields the best

results with respect to all evaluation metrics on the test set. The mean

baseline performs slightly better on the training set, but slightly worse

on the test set. Both nondeterministic baselines perform considerably

worse than the mean and the zero baseline. Again, we observe better

performance on the training set than on the test set.

The observed differences between training and test set performance Generalization

behavior
can be explained by the fact, that the latter three baselines use informa-

tion about the points from the training set for making their predictions.

Since the test set differs from the training set, these predictions are

not able to perfectly generalize. Consider, for instance, the difference

between the zero baseline and the mean baseline: In each iteration of

our cross-validation procedure, one fold based on eight original images

is used as test set. Since the coordinates of these points are not part of

the training set, and since the centroid of the overall dataset resides

in the origin, the centroid of the training set lies outside of the origin.

The mean baseline uses this centroid for making predictions, which is

more successful on the training set than predicting the origin, since this

centroid lies on average closer to the data point from the training set.

Since the centroid of the overall dataset lies in the origin, the centroid

of the test set, however, lies in the opposite direction from the origin

than the centroid of the training set. Using the centroid of the training

set as a prediction on the test set is thus in general worse than using

the origin of the coordinate system. Similar considerations also apply

to the other two baselines, and are again based on the normalization of

the similarity space.

The performance difference between the normal distribution baseline Constant vs. sampled

predictions
and the random draw baseline on the one hand, and the mean and the
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zero baseline on the other hand is based on their prediction behavior:

While mean and zero baseline make the same constant prediction all

the time, the other two baselines sample a point from a distribution (a

multivariate normal distribution in the similarity space, and a uniform

distribution over the points in the training set, respectively). This

predicted point might be closer to the ground truth than a constant

prediction, but it might also be further away. Based on the worse

performance of these two baselines, it seems, that these predictions

are in general worse than if one had simply predicted a constant point

somewhere in the center of the target space.

For our further considerations, we only take the zero baseline intoOutlook

account, because it outperformed all other baselines. Since it completely

disregards all input, its evaluation results are identical for training set,

test set, correct targets, and shuffled targets.

One might note, that even though the space has been normalized,MSE, MED, and

normalization
the MED achieved by the zero baseline does not equal one. However, it

is easy to see, that the normalization procedure targets the MSE rather

than the MED of the zero baseline:
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9.2.3 Comparing Feature Spaces and Regressors

With our first machine learning experiment, we would like to test theHypotheses

following fundamental hypotheses:

1. Our overall approach is able to clearly beat simple baselines.Feasibility

However, it does not reach the level of generalization observed

in the study of Sanders and Nosofsky [346] due to the smaller

amount of data available.

2. A regression from the ANN-based features is more successfulFeature spaces

than a regression from the pixel-based features.

3. Since the similarity spaces created by MDS encode semanticCorrect vs. shuffled

targets
similarity by geometric distance, we expect, that learning the

correct mapping generalizes better to the test set than learning a

shuffled mapping.

4. Due to the small amount of training data available, a nonlin-Overfitting

ear regression (which has more free parameters) suffers more

from overfitting than a simple linear regression. Introducing

regularization can help to reduce overfitting tendencies.

5. For smaller feature vectors, we expect less overfitting than forNumber of features

larger feature vectors. Therefore, less regularization should be

needed to achieve optimal performance.
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Feature Training Test

Space

Regressor Targets

MSE MED R2
MED MED R2

Zero

Any

Baseline

Any 1.0000 0.9962 0.0000 1.0000 0.9962 0.0000

Correct 0.0142 0.1089 0.8956 0.6076 0.7498 0.3766

ANN

Linear

Shuffled 0.0202 0.1296 0.9798 1.1440 1.0505 -0.1390

(2048) Random Correct 0.0019 0.0175 0.9980 0.7946 0.8667 0.1944

Forest Shuffled 0.0027 0.0262 0.9973 1.1338 1.0543 -0.1267

Correct 0.5029 0.6649 0.4941 1.3172 1.0845 -0.3251

Pixel

Linear

Shuffled 0.6037 0.7323 0.3990 1.6075 1.2099 -0.5955

(1875) Random Correct 0.0059 0.0473 0.9941 0.8891 0.9089 0.1037

Forest Shuffled 0.0073 0.0553 0.9927 1.2061 1.0708 -0.1915

Correct 0.5168 0.6757 0.4806 1.2073 1.0428 -0.2120

Pixel

Linear

Shuffled 0.6329 0.7528 0.3698 1.5853 1.2072 -0.5727

(507) Random Correct 0.0047 0.0368 0.9953 0.9035 0.9153 0.0886

Forest Shuffled 0.0059 0.0435 0.9941 1.2538 1.0925 -0.2367

Table 9.5: Performance of different regressors for different feature spaces and

correct vs. shuffled targets, with respect to the four-dimensional

target space by Horst and Hout [199]. The best results for each com-

bination of column and feature space are highlighted in boldface.

Figure 9.13: Illustration of selected regression results from Table 9.5, consid-

ering only correct targets.

In this experiment, we limit ourselves to a single target space, namely Target space

the four-dimensional MDS space by Horst and Hout [199] obtained

through metric MDS.

Let us first compare the results based on the different feature spaces, Unregularized

regression
considering only standard regression approaches, which do not make

use of explicit regularization. Table 9.5 shows the results obtained in

our experiments, grouped by the feature space, regression algorithm,

and target mapping used. Figure 9.13 illustrates selected results with

respect to the correct targets.

We first focus on the results obtained on the ANN-based feature ANN-based features

space. As we can see, both the linear regression and the random forest

are able to beat the zero baseline when trained on the correct targets.

While the random forest is able to achieve the best performance on the

training set, the linear regression performs better on the test set. Both

regressors show strong overfitting tendencies, observable as very large
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Figure 9.14: Illustration of the effect of correct vs. shuffled mappings on the

ANN-based feature space from Table 9.5.

differences between training and test performance. When trained on

the shuffled targets, both regressors obtain good results on the training

set, but completely fail to generalize to the test set (cf. Figure 9.14).

Since the linear regression is easily able to beat the baseline on theInterpretation

correct labels, our overall approach seems to be sound – it is indeed

possible to learn a mapping from images into the psychological sim-

ilarity space. Moreover, we do not observe any benefits from using a

more powerful random forest, indicating that a nonlinear mapping is

not necessarily required in this case. Due to its additional degrees of

freedom, the random forest is able to achieve better performance on

the training set, but it also suffers more heavily from overfitting. The

observation, that test set results based on the shuffled targets are not

able to exceed baseline performance, shows, that the correct mapping

(which has a semantic meaning) is easier to learn than an unstructured

mapping. In other words, the semantic structure of the similarity space

makes generalization possible.

Let us now consider the pixel-based feature spaces. For both ofPixel-based features

these spaces, we make similar observations: The linear regression

performs worse than the baseline, while the random forest is able to

outperform the baseline, and to achieve considerably better results on

both the training and the test set than the linear regression. However,

its performance is worse than on the ANN-based features. Moreover,

we can again see, that learning the shuffled mapping results in poorer

performance than learning the correct mapping. Overall, performance

on the pixel-based feature spaces is lower than on the ANN-based

feature space. Just as with the ANN-based feature space, we again

observe strong overfitting tendencies. Finally, when comparing the two

pixel-based feature spaces, we note, that the linear regression performs

slightly better on the smaller feature space, while the random forest

performs slightly better on the larger space. Overall, the differences

between the two pixel-based feature spaces are, however, quite small.

The observation, that a linear regression is not sufficient to beatInterpretation

a very simple baseline on the pixel-based feature spaces, indicates,

that these feature spaces are not as useful as the ANN-based one.

Since a random forest is capable of achieving better performance than
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Figure 9.15: Visualization of the effects of regularization based on Table 9.6.

both the zero baseline and the linear regression, one might argue,

that mapping the pixel-based feature vectors onto the target points

in the psychological similarity space requires a nonlinear mapping.

Overall, ANN-based features seem to be much more useful for our

mapping task than the simple pixel-based features. This is in line

with their higher correlation to the dissimilarity ratings observed in

Section 9.1.3 and their higher Silhouette values reported in Section 9.2.2.

In order to further improve the results from Table 9.5, we also Adding

regularization
considered a lasso regressor with various values for the regularization

factor β. The results can be seen in Table 9.6 and are visualized in Figure

9.15. Here, a value of β = 0 corresponds to a vanilla linear regression.

For the ANN-based feature space, we are able to achieve a slight, ANN-based features

but consistent improvement by introducing a regularization term:

Increasing β causes poorer performance on the training set, while

yielding improvements on the test set. The best results on the test set

are achieved for β ∈ {0.005, 0.01}. However, if β becomes too large,

then performance on the test set starts to decrease again – for β = 0.05
we do not see any considerable improvements over the vanilla linear

regression any more. For β ≥ 5, the lasso regression collapses and

becomes identical to the mean baseline.

Although we are able to improve our performance slightly, the gap Overfitting issues

between training set performance and test set performance still remains

quite high. It seems, that the overfitting problem can be somewhat

mitigated, but not solved on our dataset with the introduction of a

simple regularization term.

When comparing our best results to the ones obtained by Sanders Comparison to

Sanders and

Nosofsky

and Nosofsky [346, 347], who achieved values of R2 ≈ 0.77, we have

to recognize, that our approach performs considerably worse with

R2 ≈ 0.41. However, the much smaller number of data points in our

experiment (please recall, that their dataset contained about six times
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Feature Training Test

Space

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9962 0.0000 1.0000 0.9962 0.0000

Mean

Any

Baseline

0.9974 0.9946 0.0026 1.0389 1.0149 -0.0389

0 0.0142 0.1089 0.8956 0.6076 0.7498 0.3766

0.001 0.0154 0.1129 0.9844 0.5892 0.7362 0.3958

0.002 0.0168 0.1180 0.9829 0.5833 0.7322 0.4017

0.005 0.0202 0.1292 0.9795 0.5740 0.7264 0.4107

0.01 0.0243 0.1414 0.9753 0.5742 0.7264 0.4111

0.02 0.0302 0.1575 0.9694 0.5829 0.7324 0.4026

ANN 0.05 0.0431 0.1886 0.9562 0.6056 0.7444 0.3790

(2048) 0.1 0.0625 0.2287 0.9364 0.6249 0.7547 0.3590

0.2 0.1020 0.2966 0.8960 0.6302 0.7592 0.3539

0.5 0.2428 0.4725 0.7522 0.6432 0.7773 0.3424

1 0.5047 0.6984 0.4848 0.7456 0.8512 0.2377

2 0.9126 0.9509 0.0777 0.9779 0.9840 0.0144

≥ 5 0.9974 0.9946 0.0026 1.0389 1.0149 -0.0389

0 0.5029 0.6649 0.4941 1.3172 1.0845 -0.3251

0.001 0.5082 0.6694 0.4888 1.2655 1.0657 -0.2730

0.002 0.5127 0.6732 0.4842 1.2308 1.0528 -0.2380

0.005 0.5237 0.6826 0.4732 1.1653 1.0274 -0.1719

0.01 0.5390 0.6952 0.4578 1.1051 1.0034 -0.1112

Pixel 0.02 0.5632 0.7144 0.4337 1.0429 0.9784 -0.0483

(1875) 0.05 0.6106 0.7511 0.3864 0.9814 0.9548 0.0135

0.1 0.6574 0.7857 0.3391 0.9449 0.9431 0.0497

0.2 0.7143 0.8259 0.2808 0.9233 0.9391 0.0714

0.5 0.8112 0.8894 0.1837 0.9183 0.9465 0.0788

1 0.9095 0.9480 0.0882 0.9680 0.9783 0.0308

≥ 2 0.9974 0.9946 0.0026 1.0389 1.0149 -0.0389

0 0.5168 0.6757 0.4806 1.2073 1.0428 -0.2120

0.001 0.5251 0.6832 0.4723 1.1258 1.0103 -0.1302

0.002 0.5348 0.6912 0.4625 1.0801 0.9913 -0.0845

0.005 0.5603 0.7114 0.4371 1.0103 0.9618 -0.0149

0.01 0.5912 0.7352 0.4063 0.9670 0.9445 0.0282

Pixel 0.02 0.6300 0.7645 0.3670 (507) 0.9362 0.9342 0.0584

0.05 0.6962 0.8125 0.2993 0.9099 0.9292 0.0843

0.1 0.7661 0.8598 0.2287 0.8946 0.9293 0.1015

0.2 0.8517 0.9144 0.1445 0.9283 0.9551 0.0701

0.5 0.9959 0.9939 0.0043 1.0382 1.0146 -0.0381

≥ 1 0.9974 0.9946 0.0026 1.0389 1.0149 -0.0389

Table 9.6: Performance of the lasso regressor for different values of β with

respect to the four-dimensional target space by Horst and Hout

[199]. The best results for each combination of column and feature

space are highlighted in boldface.
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as many stimuli) makes our learning problem much harder than theirs.

Even though we use data augmentation, the small number of target data

points might put a hard limit on the quality of the results obtainable

in this setting. Moreover, Sanders and Nosofsky retrained the whole

neural network in their experiments, whereas we limited ourselves to

a linear regression on top of the features extracted by the pretrained

network. Since we are able to clearly beat our baselines, we nevertheless

interpret our results as supporting the general approach.

For the pixel-based feature spaces, we can also observe slight positive Large pixel-based

feature space
effects of regularization. For the large space, the best results on the test

set are achieved for larger values of β ∈ {0.2, 0.5}. These results are

better than the zero baseline, but still slightly worse than the random

forest regressor (cf. Table 9.5). However, the gap between training and

test set performance is smaller for the lasso regressor than for the

random forest regressor. Again, strong regularization causes test set

performance to decrease, leading to the mean baseline for β ≥ 2. It

is interesting to observe, that the mean baseline performs better with

respect to all evaluation metrics than a vanilla linear regression (β = 0).

For the small pixel-based feature space, the optimal value of β lies Small pixel-based

feature space
in {0.05, 0.1}, leading to a test set performance slightly superior to the

one obtained by the random forest on this feature space. In case of the

small pixel-based feature space, the model already collapses for β ≥ 1.

Comparing the regularization results on the three feature spaces, Comparison across

feature spaces
we can conclude, that regularization is indeed helpful, but only to a

small degree. On the ANN-based feature space, we still observe a large

amount of overfitting, and performance on the pixel-based feature

spaces is still far worse than on the ANN-based features. Looking at the

optimal values of β, it seems, that the lower-dimensional pixel-based

feature space needs less regularization than its higher-dimensional

counterpart. Presumably, this is caused by the smaller possibility for

overfitting in the lower-dimensional feature space. Even though the

larger pixel-based feature space and the ANN-based feature space have

a similar dimensionality, the pixel-based feature space requires a larger

degree of regularization for obtaining optimal performance, indicating

that it is more prone to overfitting than the ANN-based feature space.

Overall, our first experiment has shown, that learning a mapping from Summary

images to a psychological feature space is possible on our dataset. We

found, that for all regressors ANN-based features are much more useful

than pixel-based features. Poor performance on the shuffled mapping

in contrast to good performance on the correct mapping showed, that

the psychological similarity spaces contain semantic structures, which

help machine learning algorithms to generalize to unseen inputs. While

pixel-based feature spaces profit from the usage of random forests,

a linear regression seems to be sufficient for the ANN-based feature

space. Additional regularization was helpful to some extent, but only
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Target Space MSE MED R2

Horst and Hout [199] 1.0000 0.9962 0.0000

Classical MDS 1.0000 0.9636 0.0000

Kruskal’s Algorithm 1.0000 0.9957 0.0000

Metric SMACOF 1.0000 0.9981 0.0000

Nonmetric SMACOF 1.0000 0.9956 0.0000

Table 9.7: Performance of the zero baseline on the four-dimensional target

spaces derived with different MDS algorithms.

improved performance slightly – overfitting still remains a crucial issue

in our machine learning setup.

9.2.4 Comparing MDS Algorithms

After having analyzed the soundness of our overall approach in SectionMotivation

9.2.3, we will now compare target spaces of the same dimensionality,

but obtained with different MDS algorithms. More specifically, we look

at all four-dimensional spaces produced by the four MDS algorithms

investigated in Section 9.1.

In a first step, we can compare the different target spaces by takingThe zero baseline

a look at the behavior of the zero baseline in each of them (see Table

9.7). As we can see, the values for MSE and R2
are identical for all

of the different spaces due to the normalization of the configurations

and the usage of a constant prediction (cf. Section 9.2.2). Only for the

MED we can observe some variations, which can be explained by the

slightly different arrangements of points in the different similarity

spaces. Consider for example a similarity space with only two stimuli

A and B. This space is normalized under the following condition:

1

2

⎛⎜⎜⎜⎜⎝
n∑︂
i=1

(︂
y
(A)
i

)︂2
⏞ ⏟⏟ ⏞

zA

+
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(︂
y
(B)
i

)︂2
⏞ ⏟⏟ ⏞

zB

⎞⎟⎟⎟⎟⎠ = 1

If zA = zB = 1 (i.e., both points lie on the unit circle around the origin),MED and the

arrangement of

points

then the space is obviously normalized, andMED = 1
2

(︁√
zA +

√
zB
)︁
=

1
2 (1 + 1) = 1. Now let zA = 0.5 and zB = 1.5. The space is still

normalized, but MED = 1
2

(︁√
zA +

√
zB
)︁
= 1

2

(︁√
0.5 +

√
1.5
)︁
≈ 0.9659.

Finally, if zA = 0.25 and zB = 1.75, then the space is still normalized,

but MED = 1
2

(︁√
zA +

√
zB
)︁
= 1

2

(︁√
0.25 +

√
1.75

)︁
≈ 0.9114. As one

can see based on this small toy example, the MED of the zero baseline

becomes smaller as the distribution of the points in the similarity space

becomes less homogeneous.

The MED on the similarity space constructed by classical MDS isComparing the target

spaces
considerably smaller than for the other spaces, indicating a more un-

even distribution of the points in the similarity space. Apart from this
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Test Set Performance Degree of Overfitting

Target Space

MSE MED R2
MSE MED R2

Horst and

Hout [199]

0.6076 0.7498 0.3766 42.7093 6.8876 2.6171

Classical

MDS

0.5537 0.7063 0.4029 41.8626 6.7370 2.4475

Kruskal’s

Algorithm

0.6097 0.7460 0.3903 42.3550 6.8155 2.5250

Metric

SMACOF

0.6172 0.7560 0.3766 42.2885 6.8583 2.6162

Nonmetric

SMACOF

0.6086 0.7461 0.3706 42.4380 6.8305 2.6585

Table 9.8: Test set performance of the linear regression on ANN-based features

with respect to the different four-dimensional target similarity

spaces, along with the relative degree of overfitting. Best results in

each of the columns are highlighted in boldface.

Figure 9.16: Visualization of the unregularized regression results for the

different four-dimensional target spaces.

observation, we can, however, conclude, that based on the performance

of the zero baseline, the different spaces are comparable.

Let us now turn to the performance of a linear regression and a Unregularized

regression
random forest regression. We consider both ANN-based features and

the large pixel-based feature space. For the sake of simplicity, the small

pixel-based feature space was excluded from our considerations. On

all of the target spaces, we observed the same general effects already

described in Section 9.2.3 for our first experiment: Results on the correct

targets were considerably better than results on the shuffled targets

and the ANN-based feature space led to better performance than the

pixel-based feature space. On the ANN-based feature space, a linear

regression led to the best results, whereas on the pixel-based feature

space, the random forest yielded superior performance. Overall, large

degrees of overfitting could be witnessed. Detailed results can be found

in Appendix D.3.

Table 9.8 summarizes the test set results for the linear regression on Experimental results

the ANN-based feature space for each of the different target spaces. Ta-
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Test Set Performance Degree of Overfitting

Target Space

MSE MED R2
MSE MED R2

Horst and

Hout [199]

0.8891 0.9089 0.1037 151.2546 19.2047 9.5849

Classical

MDS

0.8556 0.8721 0.1174 146.7819 18.8177 8.4655

Kruskal’s

Algorithm

0.9002 0.9111 0.0972 149.6741 19.2624 10.2279

Metric

SMACOF

0.8913 0.9118 0.1063 150.5864 19.2871 9.3561

Nonmetric

SMACOF

0.9033 0.9118 0.0732 146.1260 19.1303 13.5712

Table 9.9: Test set performance of the random forest regression on the pixel-

based features with respect to the different four-dimensional target

similarity spaces, along with the relative degree of overfitting. Best

results in each of the columns are highlighted in boldface.

ble 9.9 shows analogous results for the random forest on the pixel-based

feature space. In both tables, we also report the degree of overfitting,

which was computed by dividing the test set error by the training set

error. A degree of overfitting of 10 for the MSE thus means, that the

MSE on the test set was ten times higher than the MSE on the training

set. Figure 9.16 illustrates these numbers with bar charts. As we can

see, the results on the different target spaces are in general comparable.

However, it seems, that the similarity space obtained by classical MDS

leads to slightly better results than the other spaces.

Based on our observations, it thus seems, that the target spaceOutperformance of

classical MDS
obtained by classical MDS is somewhat easier to work with in our

regression task than the spaces produced by other MDS variants. For

the mean Euclidean distance, this may not be surprising, since already

the zero baseline achieves lower values on this space than on the others.

For classical MDS, the MED is reduced by a linear regression on the

ANN-based feature space to 91.09 % of the baseline performance. This

is comparable to the other target spaces, where we observe reduction

to levels between 91.02 % and 92.55 % of the baseline performance.

However, for both mean squared error andR2
, the baseline performance

is identical across target spaces (cf. Table 9.7), but we are nevertheless

able to observe better regression performance for the target space

obtained by classical MDS.

These observations contradict our expectations: After all, classicalContradicting our

expectations
MDS yielded the poorest correlations to the original similarity ratings in

Section 9.1.3 (and preferred the inner product rather than the Euclidean

distance), whereas Kruskal’s algorithm and nonmetric SMACOF cre-

ated similarity spaces with a better reflection of the similarity ratings.
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However, in the machine learning results, classical MDS seems to pro-

duce an "easier" target space than any of the other MDS algorithms.

So while we expected that similarity spaces, which reflect the original

similarity ratings more faithfully, will lead to improved regression

performance, we were not able to find such an effect in our experiment.

Our conclusion from these observations is, that a better reflection of

human similarity ratings does not necessarily make the machine learn-

ing problem any easier or harder. It is unclear whether the superior

results on the space obtained by classical MDS can be explained by

the different optimization target (Stain vs. Stress). Our observations

therefore clearly urge for further investigations.

One could hypothesize, that the space obtained by classical MDS is A possible

explanation
easier to learn, because it is worse in representing the dissimilarities

than the spaces obtained by the other MDS variants. It may thus be

closer to the reflection of the dissimilarity ratings in the ANN-based

feature space, which was found in Section 9.1.3 to be inferior to all MDS

variants. In other words, the learning problem might be easier because

the "gap" between the feature space and the target space, when it comes

to representing dissimilarities, is smaller.

From a more technical perspective, there are two possible reasons The technical

perspective
for the superior test set performance on the target space created by

classical MDS: Either this target space makes generalization to unseen

data points easier (which would be reflected in a reduced amount of

overfitting), or it is simply easier to learn (which would be reflected in

better performance also on the training set, when compared to other

target spaces). In Tables 9.8 and 9.9, we have also reported the observed

degree of overfitting by dividing training set error by test set error.

Perfect generalization would thus result in an degree of overfitting of

one, while larger values reflect the factor to which the regression is

more successful on the training set than on the test set.

As we can see from Tables 9.8 and 9.9, the four-dimensional space Similar overfitting

behavior
created by classical MDS does indeed seem to have a slight advantage

with respect to overfitting when compared to the other target spaces,

indicating that the target space provided by classical MDS might make

generalization a bit easier. However, the difference to the other target

spaces is quite small and not sufficient to explain the considerable

performance difference. It thus seems that this target space is also in

some sense "easier" to learn than the other target spaces.

Since we only observed slight advantages for classical MDS, but none Metric vs. nonmetric

MDS
for metric SMACOF or the space by Horst and Hout [199], we cannot

assign this observation to the difference between metric and nonmetric

MDS. This adds further support to our results from Section 9.1: Also

when considering the usage as target space for machine learning, met-

ric MDS does not seem to have any clear advantage over nonmetric MDS.

Let us finally take a look at the effects of regularization by considering Adding

regularization
a lasso regression on the ANN-based features. We observed similar

effects for all of the target spaces: A certain amount of regularization is

helpful to improve test set performance, while too much emphasis on
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Linear Regression Lasso Regression

Target Space

MSE MED R2
MSE MED R2 β

Horst and

Hout [199]

0.6076 0.7498 0.3766 0.5740 0.7264 0.4111 0.005, 0.01

Classical

MDS

0.5537 0.7063 0.4029 0.5271 0.6855 0.4317 0.002

Kruskal’s

Algorithm

0.6097 0.7460 0.3903 0.6070 0.7420 0.3932 0.001

Metric

SMACOF

0.6172 0.7560 0.3766 0.6052 0.7458 0.3880 0.002

Nonmetric

SMACOF

0.6086 0.7461 0.3706 0.5937 0.7316 0.3853 0.005

Table 9.10: Test set performance of the lasso regression on the ANN-based

features with respect to the different four-dimensional target

spaces. Best results in each column are highlighted in boldface.

Figure 9.17: Visualization of the regularization effects on the ANN-based

feature space for the different four-dimensional target spaces,

based on Table 9.10.

the regularization term causes both training and test set performance to

collapse. Again, we still observe a large amount of overfitting even after

using regularization. Table 9.10 shows the optimal results of the lasso

regression (along with the optimal values for β) in comparison to the

results obtained by linear regression. Figure 9.17 illustrates these results.

Tables with all results for all values of β can be found in Appendix D.4.

We can observe, that again the target space obtained with classi-Results

cal MDS yields the best results with respect to all evaluation metrics.

All other target spaces show slightly worse performance. The opti-

mal values for the regularization parameter β are overall in a similar

region. When looking at the relative improvement obtained by the

regularization term, it seems that the space from Horst and Hout and

the space obtained through classical MDS benefit the most from the

additional regularization, while we can barely make improvements on

the similarity space provided by Kruskal’s algorithm.

Overall, the observations with respect to the lasso regressor thusInterpretation

support our conclusion, that there are no crucial differences between

the different target spaces, with classical MDS producing for some

reason slightly "easier" regression tasks.
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9.2.5 Generalization to Other Target Spaces

With our third and final experiment in this study, we investigated, to Overview

what extent the number of dimensions in the target space influences

the regression results. We compared similarity spaces with one to

ten dimensions, which had been created by the same MDS algorithm,

namely nonmetric SMACOF. We only considered the ANN-based

feature spaces and compute the results for the zero baseline, the linear

regression, and the lasso regression.

Larger target spaces lead to a larger number of regression weights, Expectations

which need to be estimated, increasing the risk for overfitting. On the

other hand, higher-dimensional similarity spaces reflect the similarity

ratings more accurately than lower-dimensional spaces (cf. Section

9.1.3). Based on these two observations, we expect that performance

suffers for both very low-dimensional spaces (because they are not able

to encode the similarity structure very well) and very high-dimensional

spaces (since the machine learning problem becomes harder). As a

consequence, we expect to observe a "performance peak" for medium-

sized target spaces. Moreover, given the larger risk for overfitting in

higher-dimensional target spaces, we expect that they require larger

amounts of regularization.

Table 9.11 summarizes the results of our third experiment. Let us first The zero baseline

consider the zero baseline on each of these spaces. We observe, that the

MED tends to grow with an increasing number of dimensions, with an

asymptote of one. This indicates, that in higher-dimensional spaces, the

points seem to lie closer to the surface of a unit hypersphere around the

origin (cf. our argumentation in Section 9.2.2). For both MSE and R2
,

we do not observe any differences between the target spaces. For the

MSE, this is based on the normalization of the target spaces, whereas

for R2
, this is a result of predicting a constant point.

Let us now consider the linear regression on the ANN-based feature Unregularized

regression
space for each of the different target spaces. It seems, that for all the

evaluation metrics, a two-dimensional target space yields the best

results. With an increasing number of dimensions in the target space,

performance tends to decrease. We can also observe, that the degree of

overfitting (again computed by dividing the test set error by the training

set error, cf. Section 9.2.4) is optimal for a two-dimensional space, and

that it tends to increase with an increasing number of dimensions. A

notable exception is the one-dimensional space, which suffers strongly

from overfitting, and whose performance with respect to all three

evaluation metrics is clearly worse than the zero baseline.

Let us now consider the optimal performance of a lasso regressor on Adding

regularization
the different target spaces when trained on the ANN-based features,

along with the optimal choices for β to achieve these results. Tables with

complete results for all target spaces and all values of β can be found in

Appendix D.5. For all target spaces, we made again the observation, that

the regularization can help to improve performance, but that too much

regularization decreases performance. Again, we can only counteract a
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Test Set Performance Degree of Overfitting

Regressor n
MSE MED R2

MSE MED R2
β

1 1.0000 0.8664 0.0000 1.0000 1.0000 1.0000 –

2 1.0000 0.9580 0.0000 1.0000 1.0000 1.0000 –

3 1.0000 0.9848 0.0000 1.0000 1.0000 1.0000 –

4 1.0000 0.9956 0.0000 1.0000 1.0000 1.0000 –

5 1.0000 0.9966 0.0000 1.0000 1.0000 1.0000 –

6 1.0000 0.9973 0.0000 1.0000 1.0000 1.0000 –

7 1.0000 0.9978 0.0000 1.0000 1.0000 1.0000 –

8 1.0000 0.9980 0.0000 1.0000 1.0000 1.0000 –

9 1.0000 0.9982 0.0000 1.0000 1.0000 1.0000 –

Baseline

10 1.0000 0.9984 0.0000 1.0000 1.0000 1.0000 –

1 1.1499 0.9046 -0.1499 59.0040 8.3419 -6.5413 –

2 0.4995 0.6370 0.5002 38.9046 6.5291 1.9734 –

3 0.5554 0.6979 0.4435 41.4309 6.7360 2.2243 –

4 0.6086 0.7461 0.3706 42.4380 6.8305 2.6585 –

5 0.6333 0.7692 0.3595 43.4577 6.9023 2.7405 –

6 0.6359 0.7734 0.3469 43.4900 6.8770 2.8397 –

7 0.6675 0.7956 0.3204 44.7364 6.9621 3.0741 –

8 0.6846 0.8094 0.3033 45.1247 6.9876 3.2459 –

9 0.6810 0.8078 0.2983 44.8367 6.9591 3.3004 –

Linear

10 0.7107 0.8259 0.2807 46.0530 7.0432 3.5076 –

1 0.9912 0.8368 0.0088 1.3656 1.7043 30.9878 1, 2

2 0.4728 0.6052 0.5271 19.1298 4.5081 1.8504 0.02

3 0.5322 0.6720 0.4722 19.4148 4.5725 2.0593 0.02

4 0.5938 0.7316 0.3853 29.1237 5.6497 2.5413 0.005

5 0.6180 0.7576 0.3755 35.1383 6.2167 2.6160 0.002

6 0.6274 0.7651 0.3548 35.0732 6.1797 2.7724 0.001, 0.002

7 0.6589 0.7839 0.3280 39.6352 5.0619 2.9979 0.001, 0.01

8 0.6752 0.8022 0.3117 39.5496 6.5669 3.1527 0.001

9 0.6680 0.7980 0.3108 38.8777 6.1359 3.1615 0.001, 0.002

Lasso

10 0.6993 0.8166 0.2924 35.3561 5.5563 3.3513 0.002, 0.005

Table 9.11: Performance of the zero baseline, the linear regression, and the

lasso regression on the ANN-based features and with respect to

target spaces of different dimensionality n derived with nonmetric

SMACOF, along with the relative degree of overfitting. Best values

for each column are highlighted for each of the regressors.
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Figure 9.18: Visualization of the regression results for MSE, MED, and R2
as

a function of the number of dimensions.

relatively small amount of the observed overfitting. As we can see in

Table 9.11, again a two-dimensional space yields the best results. By

comparing the results to the ones from the linear regression, we can

observe that the strongest relative improvements can be achieved for

relatively low-dimensional target spaces. For instance, the strong regu-

larization with β ∈ {1, 2} applied to the one-dimensional space suffices

to achieve performance levels slightly better than the baseline, while

an unregularized linear regression performs worse than the baseline.

Moreover, regularization tends to be less helpful in high-dimensional

target spaces, especially when considering MSE and MED. Here, the

degree of overfitting remains quite high, and we observe only modest

improvements in performance. For the optimal values of β, we can

observe the following rough general trend: For a one-dimensional

space (where a linear regression is not able to beat the baseline), a

large degree of regularization is needed. For the two-dimensional and

three-dimensional spaces, we found an intermediate value of β = 0.02
to yield the best performance, while for all higher-dimensional spaces,

only very small degrees of regularization are applied.

Figure 9.18 illustrates the results discussed before by showing the Visualizing the

results
performance of the regressors as a function of the target space’s di-

mensionality for MSE, MED, and R2
. For the linear regression and

the lasso regression, we can see clear performance "dents" for the

two-dimensional target space. Overall, Figure 9.18 also illustrates, that

performance decreases with an increasing number of dimensions. More-

over, we can see, that a lasso regression performs slightly better than

linear regression in all cases. However, the performance gain obtained

by introducing a regularization term is almost negligible in most cases.

Taken together, the results of our third experiment show that a Interpretation

higher-dimensional target space makes the regression problem more

difficult, but that a one-dimensional target space does not contain

enough semantic structure for a successful mapping. It seems that a

two-dimensional space is in our case the optimal trade-off.

Finally, Figure 9.19 illustrates the two-dimensional target space along Visualizing the

prediction error
with the performance with respect to the MED achieved by the different

regressors. In this visualization, we assume, that the predicted point

lies in the origin. The colored circles around the origin illustrate all
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Figure 9.19: Visualization of the two-dimensional target similarity space based

on nonmetric SMACOF, and the performance of the individual

regressors as measured with the MED.
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points, which have a distance of the given regressor’s MED to the origin,

i.e., they show the average location of the ground truth if the origin was

predicted. The blue solid circle shows the results for the zero baseline.

It reflects the overall distribution of the stimuli in the similarity space.

The orange dashed circle represents the performance of the linear

regression on the ANN-based feature space. It is considerably better

than the baseline. Finally, the green dotted circle illustrates the MED of

the lasso regression on the ANN-based feature space. As we can see,

performance is only slightly better than for the linear regression.

Overall, Figure 9.19 illustrates, that we are clearly able to beat the Interpretation

best baseline. However, it also highlights, that the performance level

achieved by our best regression is still far from satisfactory: While our

regression might be capable of identifying the overall region of the

similarity space correctly, the average distance between the prediction

and the ground truth is still too large for any practical applications.

9.2.6 Discussion

As we have seen in Section 9.2.3, our system is able to perform better Feature spaces and

baselines
than the baselines, indicating, that a mapping from images to points in

a psychological similarity space can be learned. Moreover, the observed

performance difference on the test set between learning the correct

mapping and learning the shuffled mapping indicates, that the semantic

structure of a similarity space facilitates generalization to unseen stimuli.

The ANN-based feature space turned out to be much more useful than

the pixel-based feature space, indicating that a nonlinear, "deep" feature

extraction is necessary for this task. Adding a regularization term to

the linear regression helped to improve performance, but the observed

strong overfitting tendencies persisted.

Target spaces of same dimensionality, but based on different MDS MDS algorithms

algorithms tended to yield similar performance (cf. Section 9.2.4). One

exception was the target space obtained through classical MDS, which

seems to pose an easier learning problem – however, at the cost of a less

faithful representation of the semantic similarity (cf. Section 9.1.3). As

argued before, we assume, that the observed differences are based on a

different distribution of the data points in the target space, which may

in turn be rooted in the different optimization target when constructing

the similarity space. In general, we did, however, not observe systematic

differences between metric and nonmetric MDS.

Finally, based on our analyses in Section 9.2.5, there seems to be a Number of

dimensions
sweet spot for regression performance when considering the dimension-

ality of the target space: A regression to a one-dimensional target space

was not very successful (probably due to its poor semantic structure, cf.

Section 9.1.3). Also for high-dimensional target spaces (consisting e.g.,

of ten dimensions), we can only observe poor regression performance –

probably due to the larger number of model parameters, which leads

to a very high risk of overfitting. A two-dimensional target space seems

to be a good trade-off between these two tendencies, because it results
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in the best regression performance. It has the additional advantage of

being easy to visualize.

These overall results are in line with our expectations and indicate,Soundness of our

approach
that our overall approach is sound and promising. The achieved per-

formance is still far from perfect and considerably worse than the

one reported by Sanders and Nosofsky [346], probably because of the

observed overfitting tendencies. However, the goal of this feasibility

study was not to aim for optimal performance, but to evaluate the

underlying idea of our approach.

We suspect, that the relatively large amount of overfitting is caused byReasons for

overfitting
the small set of original images and the large size of the extracted feature

vectors. Although we applied a variety of augmentation techniques

to the original images, the resulting feature vectors might still be too

similar to each other. This is for instance indicated by the relatively

high Silhouette values observed in Section 9.2.2. Moreover, since the

ANN-based feature vector contains 2048 entries, the linear regression

has to estimate a large number of parameters. Furthermore, being

limited to 64 different target points severely limits the variability of the

dataset. Finally, since the ANN-based features were extracted from a

pretrained network, which had been optimized on a different dataset

with different characteristics and a different task, we cannot expect a

perfect generalization.

From a different perspective, one could argue, that even humansDifficulty of the task

might fail to achieve optimal performance on this dataset, because the

given problem is inherently difficult: The similarity spaces were created

based on the dissimilarity ratings obtained in Horst and Hout’s [199]

study on a set of novel and unknown objects, for which the dissimilarity

judgments might differ to a large amount between different individuals.

This might be another aspect in which our dataset poses a more difficult

problem than the one used by Sanders and Nosofsky [346], who used

rocks as their domain of interest.

Although not reaching the performance level reported by SandersContributions of our

study
and Nosofsky [346], our three experiments make valuable contributions

to the overall research area: In our first experiment, we were able

to confirm, that artificial neural networks seem to be an adequate

machine learning technique for this task. In our second experiment, we

showed, that the type of MDS algorithm has no significant impact on the

regression results (if we exclude classical MDS from our considerations).

In our third experiment, we demonstrated, that the dimensionality of

the target space has a large influence on the overall results, highlighting,

that this is an important hyperparameter, which needs to be considered

in future studies.

While our overall approach seems to be sound and worth pursuing,Open ends

the observed overfitting tendencies and the clearly suboptimal perfor-

mance found in our experiments highlight the need to focus on better

performing approaches. Moreover, the performance advantage of the

spaces obtained with classical MDS requires further investigations.
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9.3 summary

In this chapter, we presented a first proof of concept application of our Metric vs. nonmetric

MDS
proposed hybrid approach for grounding conceptual spaces from Sec-

tion 8.7. In Section 9.1, we investigated, whether the dissimilarity ratings

obtained through SpAM are ratio scaled. This was analyzed by applying

both metric MDS (which assumes a ratio scale) and nonmetric MDS

(which only assumes an ordinal scale). Both MDS variants produced

comparable results – it thus seems, that assuming a ratio scale is neither

beneficial nor harmful. We therefore recommend to use nonmetric

MDS, because its underlying assumptions are weaker. Future studies

on other datasets obtained through SpAM should seek to confirm or

contradict our results. Moreover, we noticed, that neither pixel-based

nor ANN-based distances are sufficient for a good prediction of human

dissimilarities, but that ANN-based distances are clearly better than

pixel-based distances. In Section 9.1, we only considered Euclidean

similarity spaces, i.e., we tacitly assumed, that the resulting similarity

space represents a single cognitive domain. One should re-run our

analyses with similarity spaces based on the Manhattan metric, which

would reflect the assumption, that multiple cognitive domains (such as

shape, color, and texture) contributed to the dissimilarity ratings.
12

In Section 9.2, we then showed, that using the activations of a pre- Machine learning

trained ANN as features for a regression task is superior to pixel-based

feature spaces. Moreover, we demonstrated, that the choice of the

MDS algorithm used to construct the target similarity space is largely

irrelevant, while the dimensionality of the target space is of crucial

importance to regression performance. However, we observed very

strong overfitting tendencies in all of our experiments. Furthermore,

the overall performance level we were able to achieve is still far from

satisfactory. The results by Sanders and Nosofsky [346], however, show,

that larger amounts of training data can alleviate these problems. Future

work in this area should focus on improvements in performance and

robustness of our approach.

In the context of conceptual spaces, the results from our first empirical Outlook

study have the obvious limitation of incorporating information from

various domains such as shape, color, and texture. Since the dissimi-

larity ratings obtained by Horst and Hout [199] were not collected with

a focus on one specific cognitive domain, it is not possible to use their

dataset for domain-specific investigations. Moreover, due to the novel

nature of the stimuli, we have no obvious candidates for meaningful

directions or regions in the similarity space, limiting the types of anal-

yses we are able to apply. Nevertheless, their dataset has served as a

useful testbed for our ideas. In the following three chapters, we describe

further experiments carried out on a dataset targeting explicitly the

shape domain. There, we will re-use and extend the analysis methods

developed in this chapter.

12 Thanks to Corina Strößner for bringing up this point.
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It is well known, that the shape of an object is an important cue The shape bias

for category membership. One example for this is the so-called shape

bias in young children [212]: Given a novel name such as "dax" for an

unfamiliar object, infants tend to generalize this name to other objects

with similar shapes, while disregarding other visual cues such as size or

texture. However, when asked to select other objects, which are similar

to the presented object, no such preference for shape information can be

observed. It has therefore been argued, that the shape domain serves as

a bootstrapping device for constructing concepts [127, 242]. The shape

bias is especially prominent in young children, but continues to play

an important role also in adults [212, 242].
1

Learning concepts in a cognitive AI system should therefore be at least Importance of the

shape domain
partially based on the shape domain. It is, however, unclear, whether

the dissimilarity ratings of the NOUN dataset [199] used in Chapter 9

can be solely explained by shape similarity, or whether other additional

domains (such as color, size, and texture) were also involved. In this

chapter, we therefore present a new dataset, which focuses explicitly

on shape similarity.

Despite its rather obvious importance to human cognition, the inter- Related work

nal structure of the shape domain is still only poorly understood. In

Section 10.1, we review various proposals for representing the shape

1 While the shape bias is a relatively robust effect, some studies such as the one by

León-Villagrá et al. [254] find a preference for the color rather than the shape domain,

which may, however, be an artifact of their stimulus set and experimental setup.

561
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domain from different points of view, including psychological the-

ories, conceptual spaces, classical computer vision approaches, and

convolutional neural networks.

Afterwards, we present our dataset in Section 10.2. It consists of 60Our dataset

line drawings of common objects from six visually coherent and six

visually variable categories. We have elicited both visual and conceptual

dissimilarity ratings for all pairs of these stimuli. Moreover, each

stimulus has been rated with respect to three psychological shape

features using two different experimental paradigms.

Section 10.3 then provides an analysis of the raw information con-Data analysis

tained in our dataset. This includes a comparison between visual and

conceptual similarity, an analysis of the ratings obtained with respect to

the psychological shape features, and a comparison of visually coherent

and visually heterogeneous categories.

Finally, Section 10.4 summarizes the main results from this chapterSummary

and gives an outlook on future work.

The research described in this chapter has been conducted in cooper-

ation with Margit Scheibel.
2

Preliminary results have been published in

[52, 53], and a publication of our final results is currently in preparation

[54]. Both the elicited dissimilarity and feature ratings from the psycho-

logical experiments, and the source code necessary for reproducing

our results can be found on GitHub [39].
3

Due to copyright issues,

we are unfortunately not allowed to publicly share the full set of line

drawings used as stimuli in our dataset.
4

They are, however, available

upon request.

10.1 related work

Before presenting our own approach for grounding the shape domain,Different perspectives

on shape perception
we review related work about shape perception from different research

areas. This includes psychological theories of shape perception (Section

10.1.1), prior accounts of the shape domain in the context of conceptual

spaces (Section 10.1.2), shape features used in classical computer vision

setups (Section 10.1.3), and a discussion of the implicit shape sensitivity

of convolutional neural networks (Section 10.1.4).

10.1.1 Shape Perception in (Neuro-)Psychology

As argued above, the shape domain is of crucial importance for theOverview

2 Margit Scheibel has designed and conducted the psychological experiments (Section

10.2). The dataset was then analyzed jointly (Section 10.3): I have preprocessed the

raw ratings (e.g., aggregated them into dissimilarity matrices) and created several

visualizations, while Margit Scheibel has focused on the statistical analysis.

3 See https://github.com/lbechberger/LearningPsychologicalSpaces/.
4 In this and the following chapters, we use a parrot image with CC BY-NC 4.0 license

(source: http://clipartmag.com/cockatiel-drawing) and a manual redrawing of

the television stimulus as visual examples.

https://github.com/lbechberger/LearningPsychologicalSpaces/
http://clipartmag.com/cockatiel-drawing
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recognition and classification of objects. The scientific understanding

of human shape perception is, however, still quite limited, and no

general consensus has emerged among researchers. In the following,

we will give a brief summary of selected relevant studies in the areas of

psychology and neuroscience. A comprehensive literature review is,

however, beyond the scope of this dissertation.

One of the most well-known early neurological studies on visual The visual cortex of

cats
perception has been conducted by Hubel and Wiesel [203]. They studied

the receptive fields of individual neurons in the visual cortex of anes-

thetized cats by presenting different light stimuli (either on a screen or

directly projected onto the retina) and measuring the respective firing

rate of the neurons. For most neurons, they were able to identify a

clear receptive field consisting of excitatory and inhibitory regions. If

the light stimulus covered the excitatory regions, Hubel and Wiesel

observed an increased firing rate of the respective neuron, while a light

stimulus covering the inhibitory regions led to a decrease in neural

firing rate and an activity burst on the disappearance of the stimulus.

The strongest responses could be elicited by light stimuli covering Receptive fields

the entire excitatory regions, but no part of the inhibitory regions. In

other words, the shape of the light stimulus had to match the structure

of the receptive field. Hubel and Wiesel found, that the receptive fields

typically had a central region of one type (excitatory or inhibitory)

flanked by regions of the opposite type, leading to preferred stimuli of

a slit-like form. However, they also reported other forms of receptive

fields, for instance, with asymmetrical regions. Hubel and Wiesel

observed, that by rotating a rectangular light spot, one can find the

preferred stimulus orientation for neurons with slit-like receptive fields.

In many cases, moving this slit-like stimulus across the visual field was

necessary to elicit neural responses. Motion-sensitive neurons also had

a preferred stimulus orientation and movement direction, and tended

to respond asymmetrically to "forward" and "backward" movements.

Overall, the study by Hubel and Wiesel illustrates the importance Edges as building

blocks
of oriented edges for visual perception with respect to both stationary

and moving objects.

Neuroscientific research on shape perception has of course continued. Human fMRI results

For instance, Op de Beeck et al. [308] have conducted an fMRI study
5

with human participants using artificial stimuli from nine classes. These

classes had some overlap with respect to their aspect ratio and overall

region (called the shape envelope by Op de Beeck et al.), but differed

with respect to their local surface (smooth, spiky, or edgy; referred to as

shape features). Op de Beeck et al. found in their study, that pixel-based

similarity captures mostly the shape envelope, while human dissimilar-

ity ratings mostly referred to the local shape features. Moreover, shapes

judged as "similar" in a psychological rating experiment also resulted

5 Functional magnetic resonance imaging (fMRI) is a noninvasive technique for measuring

brain activity based on changes associated with blood flow – brain areas with increased

blood flow are assumed to be more active than brain areas with reduced blood flow.
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in similar brain activity in corresponding fMRI scans, highlighting, that

shape similarity has a neural grounding.

An example for a neuroscientifically motivated model of the humanThe HMAX model

visual system is the HMAX model as proposed by Riesenhuber and

Poggio [331]. Their motivation stems from the observation, that there

are cells in the inferotemporal cortex (a brain area associated with

high-level vision) of macaque monkeys, which respond selectively to

individual faces: They recognize their preferred stimulus independent

of its size and location in the visual field, and are at the same time

able to distinguish it from other faces in similar poses. The HMAX

model is a hierarchical feedforward architecture, which aims to obtain

viewpoint independence for higher-level neurons by pooling over a set

of viewpoint-sensitive neurons. Riesenhuber and Poggio note, that this

pooling can in principle be achieved through a linear summation of

activation values, or by considering only the maximal activation among

the inputs. They argue, that the maximum is expected to provide more

robust responses in the case of cluttered scenes, where additional objects

in the background can be expected to increase the activity of most input

cells: While the linear summation results in a considerably increased

output activity (since it sums the additional noise components from

all inputs), the nonlinear maximum does not consider the increased

activity of non-winning inputs. Reisenhuber and Poggio also discuss the

softmax function (cf. Section 6.2.1) as an anatomically more plausible

variant of maximum pooling: They note, that an approximation of

softmax can be explained for instance by lateral inhibition in the cortex.

The resulting model uses different layers of neurons, which com-Relation to ANNs

pute either a weighted sum of their inputs (in order to obtain more

complex features), or which apply the maximum over their inputs

(in order to obtain a more invariant representation). Riesenhuber and

Poggio successfully applied their model for a dataset of paper-clip-like

three-dimensional objects from different viewpoints. Their model used

handcrafted receptive fields (e.g., simple Gaussians of varying rotation

for the first layer, mimicking to some extent the slit-like receptive fields

observed by Hubel and Wiesel [203]) and fixed mappings between the

layers. The HMAX model should thus not be confused with ANN-based

machine learning approaches as introduced in Chapter 6. However,

the usage of a maximum operator for increasing feature stability can

be related to the usage of max-pooling layers in convolutional neural

networks (cf. Section 6.2.2). Also the emphasis on using nonlinear

operations can be related to the discussions from Section 6.2.

The HMAX model is an example of the bottom-up feature construc-The role of top-down

expectations
tion process associated with the visual ventral pathway, which uses

simple basic features such as orientation and location to construct a hi-

erarchy of more and more complex features based on vertices, multiple

parts, and different viewpoints. Bar [29] notices, that the existence of a

large number of top-down connections in the brain is often largely un-

acknowledged in such approaches. He argues, that top-down processes
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are nevertheless of crucial importance: The expectations about possible

interpretations of the input can serve as additional constraints for the

object recognition process. Only if the bottom-up and the top-down

processes meet and match, successful recognition can take place.
6

It

is, however, unclear, how such a top-down process could be initiated

at the same time as the bottom-up process, i.e., before the visual input

has been completely analyzed.

Bar notes, that spatial high-frequency information represents abrupt Spatial frequencies

spatial changes (such as edges or other fine details), while low-frequency

information corresponds to the global object shape (including its ori-

entation and proportions). The low-frequency information can thus

be interpreted as a blurred version of the original image, which can

be used to restrict the set of candidate categories for the given object.

Bar therefore speculates, that low spatial frequencies of the image

are transmitted to the prefrontal cortex and are there converted into

expectations about possible interpretations. These expectations are

then projected to the highest level of the visual hierarchy, where the

respective representations of the candidate categories are activated

and then integrated with the bottom-up analysis of the image. In Bar’s

account, a rough perception of the overall object shape therefore enables

a "first guess" about object identity, before the perception of finer details

disambiguates between different possible interpretations.

An important psychological study on relevant features in shape Two steps of visual

processing
perception has been conduced by Treisman and Gormican [409], who

have focused on differences between early and later stages of visual

processing. They assume, that early visual processes are responsible

for extracting a description of the three-dimensional object based on

visual primitives, while later stages of visual processing then use

this initial representation to perform object detection. Treisman and

Gormican furthermore assume, that attentional mechanisms can be

used to distinguish between earlier and later processing stages, since

they may change the perception of a given scene. For instance, an upright

T is harder to spot in a context of Ls than in a context of tilted Ts, where

it immediately "pops out" due to the different orientation of its vertical

line. Interestingly, this pop-out effect is relatively independent from the

number of objects in the current context. However, when explicitly

asking study participants about the respective visual similarity relations,

they typically insist that an upright T is more similar to an tilted T than

to an L. In this conscious comparison, the arrangement of the lines

seems to receive more attention than their exact orientation.

Treisman and Gormican now propose to use the aforementioned Using the pop-out

effect
visual pop-out effect as an indicator for the availability of features in

early visual processes: If a target stimulus differs from a context of

distractors only with respect to one visual property, and if the presence

or absence of the target stimulus can be quickly determined based

6 The general idea of matching bottom-up activation with top-down expectations has

already been discussed in Section 7.3.3 in the context of adaptive resonance theory

[90, 175].
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on the pop-out effect, then this feature is likely to be used in early

visual processes. Treisman and Gormican argue, that the recognition

of low-level features can be modeled though feature detectors, which

are applied to all areas of the visual scene simultaneously, and which

yield high activity, if the desired feature is detected, and low activity

otherwise. According to their reasoning, a spot of high activity on a

background of low activity is easier to detect than a spot of low activity

in a context of high activity. Treisman and Gormican therefore expect

asymmetries in the observed behavior: If the target differs from the

distractors through the presence of an additional property, it should

be easier to detect than if it differs from the distractors through the

absence of a given property.

In their study, Treisman and Gormican investigated twelve differentExperimental results

candidate features for shape. They employed a visual search task, where

they measured participants’ reaction times for simple stimuli consisting

of different types of lines. Features, which seemed to relate to early

vision (as indicated by the pop-out effect), include color and contrast,

line curvature, line orientation, line length, number of lines, and

closure (i.e., whether a given circles was closed or contained a gap).

Features, which seemed to be related to later visual processes (since

no pop-out effect could be observed), include arrangement of lines

(intersection, juncture, angles) and topological properties such as

connectedness, containment, and height-to-width ratio. For most of

the candidate features, Treisman and Gormican also found the expected

asymmetry effects, pointing towards a specific "default" value of the

feature (e.g., focal colors for the color feature).

In addition to the orientation sensitivity as already found by HubelRelation to other

studies
and Wiesel [203] and as implicitly used in the first layer of the HMAX

model [331], Treisman and Gormican thus provide a large variety of

candidate features for earlier and later stages in the visual process.

Especially the features relating to early vision can be linked to Bar’s

proposal [29] of using rough shape information in order to initiate

top-down processes.

Also other researchers have tried to establish basic shape features. ForOther studies on

basic shape features
instance, Ons et al. [307] have explicitly asked participants to analyze

given shapes according to their aspect ratio and their medial axis

curvature. They found, that participants were able to attend to these

two properties in a separable way (cf. Sections 1.2.1 and 2.1.1), which

supports their status as basic shape features.

Also Huang [202] has attempted to find basic dimensions of pre-A data-driven

approach
attentive shape features. However, instead of using a list of candidate

features, he followed a more data-driven approach. He used 14 different

filled shapes for his psychological experiment, which involved a texture

segregation task: One of the shapes was selected as background and

another one as foreground. These shapes were then placed in an overall

grid, where the foreground shape made up a horizontally or vertically

elongated rectangle and the background shape was used to fill the

remainder of the grid. For both foreground and background shapes,
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different rotations were used. Participants looked at the resulting image

for 100 ms and were then asked to decide, whether the rectangle had

been horizontally or vertically elongated. The underlying intuition

behind this task is, that visually dissimilar shapes should be relatively

easy to discriminate and should thus lead to higher accuracies.

Huang then used an optimization procedure similar to MDS in or- Analysis results

der to find an n-dimensional spatial representation, where distances

between points correlated well with the observed average accuracies.

He reports, that a three-dimensional space seemed to be sufficient to

obtain high correlations. By manually rotating the resulting solution,

he found three underlying shape features: The segmentability dimension

was sensitive to the presence or absence of a clear intersection or joint,

while the compactness dimension seemed to detect holes or concavities.

Finally, the spikiness dimension distinguished smooth contours from

sharp spikes.

One of the most well-known psychological models of shape per- Recognition by

components
ception is the recognition by components (RBC) model as proposed by

Biederman [64]. It uses a bottom-up process starting with an edge

detection phase, which gives rise to a two-dimensional representation

of the object similar to a line drawing. This edge-based representation

is used to split the overall object into multiple components by searching

for concave regions. For each of these components, different so-called

nonaccidental properties are detected, which are used to make inferences

about the three-dimensional real world based on the two-dimensional

information:

• Collinearity: Straight lines in a two-dimensional image correspond

to straight lines in the three-dimensional world.

• Curvilinearity: Smoothly curved elements in 2D correspond to

smoothly curved features in 3D.

• Symmetry: A symmetrical 2D image corresponds to a symmetrical

3D object.

• Parallelism: Parallel lines in 2D are also parallel in 3D.

• Cotermination: Lines, which meet in the 2D representation, also

meet in the 3D world.

These properties are called nonaccidental, since it is highly unlikely Nonaccidental

properties
to observe them "by accident". For instance, it is very unlikely that the

curved line of a three-dimensional object is perceived as straight in a

two-dimensional projection.

Using the nonaccidental properties, each component can now be Geons and their

properties
represented by so-called geons. These geons represent different simple

volumes such as boxes, cones, or horns. They can be parametrized by

looking at their cross section: The outer edges of a geon can be either

curved or straight. The overall cross section can be either symmetric

or asymmetric, and the cross section size may remain constant, it may
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expand in one direction, or it may expand and contract again. Finally,

the main axis of the object (perpendicular to the cross section) may be

straight or curved. Biederman now argues, that these four properties

can be directly grounded in the nonaccidental properties introduced

above: For instance, the distinction between curved and straight edges

is based on collinearity and curvilinearity.

In order to illustrate the definition of geons, let us consider twoExamples

elementary shapes. A box has straight edges, is symmetric, its cross

section has a constant size, and the object’s main axis is straight. A horn,

on the other hand, has also a symmetric cross-section, but it has curved

edges, an expanding size, and a curved main axis.

Once the geons representing the individual parts of the object haveObjects as

configurations of

geons

been determined, this overall description can be matched to the re-

spective conceptual description of several candidate objects. These

descriptions do not only consider the type of geons used for the differ-

ent parts, but also their configurations. This means, that the arrangement

of the object’s parts plays a crucial rule for object recognition.

The geons themselves only encode the rough shape, but not exactLimitations of the

model
properties such as width or aspect ratio. Also spatial relations between

these geons are only specified in coarse terms such as "above" or "left-of".

Thus, the shapes of a cow and a horse have the same structural de-

scription based on geons, while belonging to different categories – here,

finer-granular information (e.g., the length of the neck) is necessary to

make a distinction between categories [146].

Sablé-Meyer et al. [342] have recently proposed a compositionalA language of

thought for shapes
language of thought for the shape domain. They assume, that basic

shapes can be represented as short programs, which contain the neces-

sary instructions to draw the respective shape. In their account, shape

recognition corresponds to searching for the shortest program, which

correctly draws the perceived shape. Shape complexity can then be

linked to the length of the minimal program for describing this shape

(cf. the minimum description length (MDL) principle, Section 5.1.3).

Their proposed language contains three instructions for pen movement,

namely, turning (by a specified angle), moving (in a straight line for a

specified distance), and tracing a curve (based on specified duration

and curvature). Moreover, it includes three compositional structures,

namely, concatenation, repetition, and call to a subprogram. The MDL

of a given shape then corresponds to the number of nodes in the

corresponding program’s syntax tree.

As Sablé-Meyer et al. note, searching for the shortest program isShape recognition

computationally quite demanding due to a combinatorial explosion.

They propose to use an ANN-based program induction technique,

where a neural networks predicts prior probabilities for the different

language primitives based on the raw pixels of the image. The search

is then biased towards the types of operation, which are more likely

to be contained in the shortest program. For instance, if the input

shape contains many straight lines, then the ANN may predict a higher

probability for the movement operation than for the trace operation.
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Sablé-Meyer et al. found, that the shortest programs in their proposed Experimental results

language tended to produce quite simple shapes, which are relatively

widespread in different human cultures. In two psychological studies,

they furthermore confirmed, that the MDL according to their model

was a good predictor of shape complexity, according to both partici-

pants’ response times in a recognition task and subjective complexity

ratings. Since these observations also held for complex shapes (e.g., a

rectangle made of small circles), Sablé-Meyer et al. take their results

as supporting especially also their proposed compositional structures.

This focus on compositionality can be linked to the RBC model [64].

A recent overview of different shape representation theories has been Classification of

approaches
given by Erdogan et al. [146], who distinguish the following general

approaches, based on the classifications made by Palmer [314]:

Feature-based accounts of shape perception assume, that an object’s Feature-based

approaches: shapes as

lists of features

shape is represented by a list of feature values extracted from 2D images.

These features are assumed to be the result of a hierarchy of feature

extractors. The similarity of two shapes is then usually based on the

Euclidean distance of their respective feature values. According to

Erdogan et al. [146], this is the predominant view held in neuroscience.

Typical models from this class of approaches include HMAX [331] and

convolutional neural networks (cf. Section 6.2.2). Moreover, the studies

by Treisman and Gormican [409], Ons et al. [307], and Huang [202]

fall into this category, since they explicitly focuses on a feature-based

description of stimuli. Also conceptual spaces with their small number

of interpretable dimensions are a feature-based approach.

According to Erdogan et al. [146], the main shortcoming of feature- Limitations of

feature-based

approaches

based approaches, is that one needs to specify the features. This can

be done either explicitly (as in the HMAX model) or implicitly (as in

convolutional neural networks). An explicit specification of all relevant

features is unfortunately often difficult in practice. An implicit specifi-

cation of the features, on the other hand, corresponds to learning them

from data. Clear limitations of CNNs are, that they are hard to interpret,

and that the individual features learned by the systems may not only

depend on the chosen network architecture, but also on the training

data being used, the training objective, and the training procedure.

View-based approaches emphasize the viewpoint-dependency of shape View-based

approaches: shapes as

sets of views

perception. They represent the shape of an object by a collection of

memorized views from different viewpoints, and are thus a special

case of the exemplar approach to concepts (cf. Section 1.1.1). According

to Erodgan et al. [146], view-based approaches are in principle agnostic

about how exactly a view is represented, but often use a feature-list

representation in practical applications. The recognition of a given

stimulus shape is based on a comparison to all exemplar views. This

comparison may involve finding an optimal alignment of the views or a

transformation into a canonical view. From our discussion above, only

the HMAX model [331] explicitly considers multiple views.
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Erdogan et al. [146] argue, that the greatest weakness of view-basedLimitations of

view-based

approaches

approach is the assumption, that the same set of features can be ex-

tracted from all views, which is necessary for making comparisons.

Structural descriptions assume, that shape perception is hierarchicallyStructural

descriptions: shapes

as hierarchical

structures

structured. In these approaches, an object shape is represented by a

list of shape primitives and their spatial relations. Typically, three-

dimensional object-centered representations are being used. The most

well-known model of this type is Biederman’s RBC model [64], which

has been introduced above. Also the approach proposed by Sablé-Meyer

et al. falls into this category.

Erdogan et al. argue, that the extraction of a structural representationProperties of

structural

descriptions

from a given image may be complicated. On the other hand, structural

descriptions are capable of representing part-whole structures, which

gives them larger representational capabilities than the feature-based

and view-based approaches.

Erdogan et al. [146] also propose a new model for shape perception,Vision as Bayesian

inference
which aims at overcoming the shortcomings of the existing approaches.

They assume, that the human visual system needs to infer three-

dimensional shape information from the retina image. Based on the

current viewpoint, this inference may come with different degrees of un-

certainty about different parts of the object. This viewpoint-dependency

is modeled by assuming a probabilistic object representation (with the

underlying shape properties corresponding to random variables) and

by treating vision as a Bayesian inference process.
7

In a behavioral experiment, Erdogan et al. collected human similarityExperimental results

judgments using the triad method (cf. Section 8.1.1) for a dataset of

artificial block-based objects. In addition to their own model, they

also employed different models from the above mentioned categories,

including HMAX and CNNs (as feature-based models), a pixel-wise

comparison of images and an alignment-based model (as view-based

models), as well as a structural distance model using a tree-based object

representation. Their results showed, that their Bayesian inference

model agreed with the binary human responses in about 70% of the

cases. The CNNs reached an agreement of around 60%, while almost

all other approaches were only slightly better than chance.

Erdogan et al. acknowledge, that their model is limited in two respects:Limitations of their

model
Firstly, it is intended only for unfamiliar objects. This controls for

potential confounding factors such as object use. Erdogan et al. assume,

that familiar objects such as faces may be processed by specialized

systems. Secondly, their model is rather normative than descriptive –

since Bayesian inference is unlikely to happen in the human brain, their

approach describes an optimal way of solving the shape recognition

problem, but not necessarily the actual psychological process.

7 Bayesian inference has already been introduced in Section 7.1.2 in the context of concept

learning in conceptual spaces.
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10.1.2 The Shape Domain in Conceptual Spaces

Since the shape domain is quite critical for identifying and classifying Structural

descriptions of the

shape domain

objects, it has experienced prior treatment in the context of conceptual

spaces. We will now review two concrete proposals from the literature,

which can both be classified as structural approaches.

In his book outlining the conceptual spaces framework, Gärdenfors A cylinder-based

model
also discusses the importance of the shape domain [179, Section 3.10.2].

He mainly refers to the model proposed by Marr and Sishihara [278],

which uses configurations of cylinders to describe shapes on varying

levels of granularity. Marr and Sishihara have developed their model

mainly based on computational considerations: By interpreting human

vision as the computational problem of extracting relevant information

from raw visual data, they argue, that any psychologically plausible

shape representation should be object-centered (rather than viewer-

centered), volumetric (rather than surface-based), and modular (rather

than unorganized). Based on these three constraints, they claim, that

a representation similar to stick figures is promising, where primitive

components correspond to the major axes of the object. If one adds

information about length and diameter, each of these axes can be

represented by a cylinder. The shape of an object is then represented as

an arrangement of multiple cylinders, along with the respective lengths

and diameters of the individual cylinders.

This cylinder-based representation can be transformed into a coor- Deriving a similarity

space
dinate system: Each cylinder can be represented with two parameters

(its length and its diameter). The overall configuration of cylinders

can be described by defining for each cylinder its relative location

(with respect to the three spatial dimensions) and rotation (using polar

coordinates for the rotation angles). If the number of cylinders is fixed,

one can thus derive a conceptual space for the shape domain with a

fixed number of dimensions. As Gärdenfors [179, Section 3.10.2] argues,

it is relatively easy to define both a betweenness relation and a distance

function in this space.

Marr and Sishihara propose to use this representation scheme at Part-whole relations

multiple levels in the hierarchy. In Figure 10.1, one can see, that each

individual cylinder from a given level of granularity can again be

modeled in more detail by using multiple cylinders. For example, the

arm is modeled by a single cylinder in the overall model of the human.

A more detailed model of the arm, however, makes a distinction into

upper arm and fore-arm. It is important to note, that there is only a single

level of granularity for the overall human, and that each finer-granular

model only refers to a single part of its "parent model".

Figure 10.2 shows, that the proposal by Marr and Sishihara also Conceptual

hierarchies
accounts for conceptual hierarchies: Superordinate concepts (such as

biped or quadruped) determine the number of cylinders and their overall

arrangement, but leave their relative proportions largely unspecified.

Subordinate concepts (such as cow or giraffe) then further constrain the

parameters of the individual cylinders, e.g., by narrowing down their
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Figure 10.1: Part-whole relations in the proposal by Marr and Sishihara. Figure

taken from [278], reprinted with permission.

respective length and diameter. For instance, the cylinder representing

the neck of a quadruped exists in both cow and giraffe at the same

relative location. However, while it is relatively short for cow, it is quite

long for giraffe. These additional constraints on the individual param-

eters correspond to defining subintervals on the respective dimensions

of the similarity space. Thus, subordinate concepts are represented as

subregions of superordinate concepts.

While the model proposed by Marr and Sishihara follows a hand-Psychological

plausibility
crafting approach, there is some indirect psychological support for their

proposal: Firstly, they derived their model based on constraints, which

emerge from an interpretation of vision as a computational process.

Secondly, they argue, that stick figures such as the ones in Figures

10.1 and 10.2 are easily recognized and classified by humans, even

though they are a quite strong simplification of the actual shapes of the

underlying objects. Therefore, the information contained in their model

might be not too dissimilar from the information processed by humans

when recognizing arbitrary shapes. Marr and Sishihara also note, that

information about an object’s main axes can be easily extracted from

images based on simple computer vision algorithms.

The proposal by Marr and Sishihara is limited to cylinders as basicRelation to the RBC

model
components. It is thus incapable of faithfully representing round ob-

jects (such as apple or tennis ball) or box-like objects (such as book

or washing machine). It has therefore been criticized by Biederman

[64], whose geons in the RBC model cover a wider range of elementary

shapes. However, as already discussed in Section 10.1.1, these geons

are only defined in a qualitative way, while the cylinders used by Marr

and Sishihara can be quantitatively specified by denoting their length

and diameter.

Another proposal for representing the shape domain has been madeAn approach based

on superquadrics
by Chella et al. [97] (cf. Sections 1.2.4 and 2.4.3), who used conceptual

spaces in the context of computer vision. In order to represent simple
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Figure 10.2: Conceptual hierarchies in the proposal by Marr and Sishihara.

Figure taken from [278], reprinted with permission.
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Figure 10.3: Different superquadrics based on varying form factors ϵ1 (rows,

ranging from 0.2 to 1.5) and ϵ2 (columns, ranging from 0.2 to 1.5).

Figure taken from [97], reprinted with permission.

objects, they used so-called superquadrics, which can be described by

the following formula:

f(η, ω) =

⎡⎢⎣ ax cos
ϵ1 η cosϵ2 ω

ay cos
ϵ1 η sinϵ2 ω

az sin
ϵ1 η

⎤⎥⎦
The function f returns a vector containing the spatial coordinates ofSuperquadrics

the points on the surface of a superquadric, dependent on the input

angles η ∈ [−π
2 ,

π
2 ] and ω ∈ [−π, π). The three parameters ax, ay, az

represent the length of the superquadric with respect to the three

axes of the coordinate system. The form factors ϵ1, ϵ2 influence the

convexity/concavity of the resulting shape with respect to its longitude

and latitude, respectively. Figure 10.3 illustrates different superquadrics

for different values of ϵ1 and ϵ2.
Overall, any superquadric can be represented by a point in a five-Representational

power
dimensional similarity space using the aforementioned parameters

(ax, ay, az, ϵ1, ϵ2). Chella et al. argue, that superquadrics therefore pro-

vide a compact representation of basic shapes, while maintaining a

sufficient degree of expressive power. More specifically, many simple

geometric objects such as boxes, cylinders, and spheres form convex

regions in this similarity space. Furthermore, Chella et al. claim, that

the parameters of superquadrics are can be easily extracted from a

given image with specialized computer vision techniques.

Chella et al. use multiple superquadrics to represent objects, whichPart-whole relations

consist of multiple parts. For instance, a hammer is not represented

holistically, but in the form of two separate parts, namely its handle

and its head. Each of these parts is represented by a point in the overall

shape space, which is enriched by location and rotation information.

An object consisting of multiple parts is therefore represented by a set
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of points rather than a single point in the conceptual space (cf. Section

2.4.3, where we discussed their representation of part-whole structures

in more detail). One should note, that the proposal by Chella et al. is

not supported by any psychological evidence.

The proposal by Chella et al. is strongly related to the one by Marr Comparison to Marr

and Sishihara
and Sishihara, since both make use of a structural representation. Marr

and Sishihara use cylinders as shape primitives, while Chella et al.

use the more flexible class of superquadrics. This makes their rep-

resentation more powerful, because both round and box-like objects

can be easily represented. It differs from Biederman’s geons [64] by

specifying the parts not only qualitatively, but also quantitatively. In

both the proposals by Chella et al. and Marr and Sishihara, complex

objects are represented as a configuration of multiple simple objects.

Marr and Sishihara impose a clear hierarchical structure, where each

cylinder can be described as a configurations of cylinders on a lower

level of granularity. In the approach by Chella et al., such an explicit

hierarchical structure is, however, missing.

The two approaches also differ with respect to the way, in which Representing

complex concepts in

part space

complex objects are represented: Chella et al. represent complex objects

by a set of points in the same part-based similarity space. Objects with

different numbers of parts are thus represented by a different number

of points, respectively, using, however, the same underlying similarity

space. This approach requires a more elaborate way of computing

distances: Instead of defining similarity based on distance between

points, one needs to consider distance between sets of points. Moreover,

in the conceptual spaces framework, concepts are defined as regions

in the similarity space, i.e., as sets of points. If complex objects are

represented by sets of points, concepts need to be represented by sets

of sets of points, adding another level of complexity.

Gärdenfors’ usage of the model by Marr and Sishihara, on the other Representing

complex objects in

the product of all

part spaces

hand, uses a single overall similarity space for describing complex

objects, where different subspaces are used to represent different parts.

Objects or concepts with different numbers of parts are then represented

by individual points in similarity spaces of different dimensionality.

For instance, in Figure 10.2, cow is represented using eight cylinders,

while human is represented using only six cylinders. This makes it quite

complicated to compute the shape-based similarity of two objects or

concepts with a different number of parts, because they are represented

in different similarity spaces. One could artificially fix the number

of cylinders and thus the number of dimensions in the shape space.

However, one then needs to account for unused cylinders.

As we have seen, neither of these approaches comes without problems. Drawbacks of

structural approaches
Moreover, both proposals (and most structural approaches in general)

face an additional challenge: Even if two objects or concepts use the

same number of parts, one still needs to align them correctly with each

other to ensure that the computed distance is meaningful.

Our approach for obtaining a shape space (to be described in Chapter Arguments for a

feature-based

approach

11) therefore does not follow a structural approach. We rather focus on
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a feature-based representation using a holistic similarity space with a

fixed number of dimensions. Moreover, unlike the proposals by both

Marr and Sishihara [278] and Chella et al. [97], we base our shape space

directly on psychological data. Since the same space is used for all

stimuli, we do not encounter the aforementioned complications when

computing distances. We think, that part-whole structures should be

added to the conceptual space as a whole (cf. the proposal by Fiorini

[158] discussed in Section 2.4.3) instead of being enforced only in the

shape domain. According to this reasoning, the same shape space can

be applied to the whole object (representing holistic perception) and

recursively to its parts, just like similarity spaces for color, size, and

other domains. The overall configuration of individual parts would in

this case be represented by the structure domain as proposed by Fiorini

[158] (cf. Section 2.4.3).

Our approach can thus also be related to the work by Li et al. [255],An angle-based

shape space
who constructed a stimulus space of 360 shapes. They noted, that the

well-established CIE L∗a∗b∗ color space can be projected onto a two-

dimensional color wheel, if luminance is fixed. In this two-dimensional

color wheel, similarity between different color stimuli can be measured

by the angle they enclose. Li et al. aim to create such a circular space

for shapes, where shape similarity can be measured through angles.

Starting with a small set prototypes of simplistic shapes (simple outline

drawings without any inner structure), they generated interpolations

between these prototypes and then collected dissimilarity ratings to

validate their respective psychological distances (using both the triad

and the pairwise rating method, cf. Section 8.1.1). Li et al. then created

similarity spaces from the resulting dissimilarity matrices using MDS.

They then computed the circularity of the resulting configuration

(i.e., whether stimuli lied approximately on a circle), and used this

information to select a new subset of more equally-spaced prototypes

for the next iteration of the aforementioned procedure. Overall, they

obtained a similarity space with 360 shapes, which is approximately

perceptually uniform.

Although Li et al. were able to obtain a two-dimensional shape space,Limitations from the

conceptual spaces

perspective

one should, however, note, that the resulting similarity space is not a

conceptual space: By considering the angle between stimuli in a circular

arrangement, it implicitly targets the Cosine similarity rather than the

Euclidean distance. Moreover, it is not based on interpretable dimen-

sions and does not have any clear conceptual regions. Nevertheless,

it may be useful for practical research, since it provides a continuous

interpolation between different shape stimuli, which are normalized

with respect to their pairwise similarity. It is, however, not adequate as

a model for the shape domain in the context of conceptual spaces. Our

own approach, on the other hand, will explicitly focus on interpretable

directions and meaningful conceptual regions.



10.1 related work 577

10.1.3 Shape Features in Computer Vision

In classical computer vision, the overall process of classifying an image Two steps in classical

computer vision
is split into two parts: In a first step, a relatively small set of manually

defined features are extracted from the overall image. The image itself

is then represented as a low-dimensional feature vector rather than by

its raw pixel values. In a second step, standard machine learning algo-

rithms (cf. Chapter 5) are applied to this feature-based representation

in order to extract classification rules from large datasets of examples.

With respect to shape perception, especially the first step of this process

is of relevance, i.e., the extraction of shape-related features.

Feature detection is as a low-level preprocessing step in computer Different types of

feature detection
vision which takes the original pixel intensities as input, and which

outputs basic information about the image’s structure [256]. One can

distinguish edge detection, corner detection and blob detection, which

focus on detecting different important structures in the image: Edge

detection aims to discover pixels, at which the image intensities change

abruptly. By connecting neighboring edges, one can obtain the contour

of an object. Corner detection can then be seen as the process of finding

intersections of edges or points on a contour, where the direction of the

contour changes abruptly. Interest region detection as a special case of

blob detection can be related to image segmentation, and aims to identify

closed sets of connected points. Li et al. [256] have given a recent

overview of various algorithms for solving these feature detection

problems. At this point, we should also highlight, that these processing

steps can be easily related to visual processes in humans as discussed

in Section 10.1.1, where both edges and corners are also viewed as

elementary building blocks for higher-level representations.

While feature detection allows us to identify the contours and regions Shape features on top

of feature detection
in a given image, they are usually not sufficient for giving a concise

description of the underlying object. Therefore, a wide variety of

higher-level shape features have been developed in the computer vision

community. We base our following summary on the overview articles

by Zhang and Lu [456] and by Mingqiang et al. [293]. They consider the

area of content-based image retrieval (where one aims to find similar

images to a given query image), and classify different shape features

according to different criteria:

• Global approaches represent the shape holistically, while structural Level of analysis

approaches use a list- or tree-based representation of individual

shape parts. This roughly reflects the distinction into feature-

based and structural approaches from Section 10.1.1.

• Contour-based methods focus exclusively on the contour of the Underlying structure

object, while region-based methods also take into account all pixels

from the inside of the shape’s region.

• Comparison between shapes can take place either in a spatial Domain of

comparisondomain (i.e., based on pixels/points) or in the transformed domain

(e.g., based on components of a Fourier transformation).
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• Information preserving features allow a faithful reconstruction ofReconstruction

capability
the original shape, while non information preserving features do

not support such a reconstruction.

• Finally, one can distinguish various types of feature extractionProcessing approach

processes, e.g., spatial interrelation (where a shape is described by

the relations between its pixels), or shape transformations (e.g., a

Fourier transformation, which transforms the pixel space into a

frequency space).

The following overview will be organized around the distinction intoOrganization

global and structural approaches, commenting on the classification

with respect to the other criteria where necessary and relevant.

The most straightforward way to describe a shape globally is given bySimple shape

descriptors: intuitive

high-level features

simple shape descriptors, which compute simple geometric features of the

given shape [293], and which can be applied both to the shape’s contour

and its region. Examples for such simple shape descriptors include

eccentricity (which divides the length of the major axis by the length of

the minor axis), circularity ratio (measured for example by dividing

the shape area by the area of an circle with the same perimeter as the

shape), and average bending energy (which looks at all arcs between

points on the shape’s contour and computes their average curvature).
8

In general, simple shape descriptors have a clear intuitive meaning,

but are only able to discriminate shapes with large differences [456].

They are thus only rarely used as standalone features, and are typically

supplemented by other shape descriptors. Alternatively, they can be

used as a first filtering step, which excludes clearly dissimilar shapes

from further consideration. These simple shape descriptors are closely

related in spirit to the features considered by Treisman and Gormican

[409], which also target simple geometric properties, that are easy to

interpret (cf. Section 10.1.1).

In correspondence-based shape matching, no explicit feature representa-Correspondence-

based shape

matching: distance

between sets of points

tion is extracted, but shapes are represented by the set of points defining

their contours. A comparison of two shapes is then based on a modified

version of the Hausdorff distance between the two sets of points [456].
9

Correspondence-based shape matching is quite inefficient, because its

underlying representation is not compact, and because the matching

function is computationally expensive. Moreover, it is quite sensitive to

noise. Grid-based methods are a variant of this approach, which create

a binary feature vector by overlaying a grid on the shape and noting,

whether a given grid cell is filled or not [456]. Comparisons between

shapes can then be made by using the Hamming distance
10

, provided

that the shapes have been normalized and rotated into a canonical

orientation (e.g., by aligning the shape’s major axis with the x-axis of

8 See [293] for a more detailed overview of simple shape descriptors.

9 The Hausdorff distance dH(A,B) of two sets A and B is defined as dH(A,B) =
max(supa∈A infb inB d(a, b), supb∈B infa∈A d(a, b)), cf. Section 4.7.

10 The Hamming distance dHam(x⃗, x⃗′) of two vectors x⃗ and x⃗′
is defined as dHam(x⃗, x⃗′) =

|{1 ≤ i ≤ n | xi ̸= x′
i}|, cf. Section 5.2.5.
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the coordinate system). However, this normalization and rotation pre-

processing can result in very different representations for very similar

shapes, if for example the difference between the major and the minor

axis is quite small. Moreover, correspondence-based shape matching in

general is limited to comparisons between shapes, but is incapable of

giving a more concise, higher-level description of a stimulus.

Scale space approaches generate a sequence of increasingly simplified Scale space

approaches: looking

at simplified

approximations

approximations of the shape boundary [293] and look for inflection

points, which remain present during these simplifications, and which

are then considered as important object characteristics [456]. It is, how-

ever, often difficult to give a clear semantic interpretation to the resulting

features. Scale space approaches can be related to Bar’s proposal [29] of

using coarse-grained information to obtain a first guess about possible

categories (cf. Section 10.1.1).

Another important global approach to describing shapes is given Shape signatures:

representing the

contour as a function

by shape signatures. A shape signature is a one-dimensional function,

which is derived from the shape’s boundary points. The most important

example for a shape signature is the centroid distance function. It

computes the centroid of the shape’s contour, and then measures for

each point on the boundary its distance to the centroid [456]. In general,

shape signatures allow for a reconstruction of the original shape, but

are usually quite sensitive to noise. Moreover, comparing two shapes is

computationally costly due to the non-compact representation [456].

Also invariance with respect to translation, scale, and orientation often

needs to be enforced manually [456]. Therefore, shape signatures

are often not used directly as shape features, but as an intermediate

processing step [293].

There are various ways of compressing the representation given by Autoregressive

model: compressing a

shape signature

shape signatures. For instance, one can fit an autoregressive model (which

predicts the next shape signature value based on a linear function of the

k previous values), and use its coefficients as a feature vector [456]. The

resulting feature vector is usually invariant with respect to translation,

rotation, and scale, but the interpretation of the model coefficients is

often difficult [456].

Another way of transforming shape signatures is given by bound- Boundary moments:

computing

higher-order mean

and variance

ary moments [456]: Given the shape signature, one computes the rth
moment (a generalization of the mean) and the rth central moment (a

generalization of the variance) as higher-level features. While being

easy to implement, the resulting features are often hard to interpret,

especially for large values of r. Please note, that similar moment-based

approaches can also be applied to the shape’s region (which can be

interpreted as a function of the coordinates in the image) [456]. They

provide concise, robust, and computationally efficient representations.

However, higher-order moments are again difficult to interpret.

A third way of compressing shape signatures is given by spectral Spectral transform: a

sine-based

approximation

transform approaches, which apply a transformation from the function

domain to the frequency domain, e.g., using a Fourier transformation

[456]. Essentially, this corresponds to an approximation of the shape
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signature function based on sine curves with different frequencies

and amplitudes. Such a transformation is often simple to compute.

Moreover, the resulting features can be associated with meaningful in-

terpretations, and they tend to capture both global and local properties

of the shape. Again, such transformations can also be directly applied

to the two-dimensional shape region [293].

Let us now turn to structural approaches, which treat the shape as aChain code: contour

as a sequence of

unit-length line

segments

collection of parts. The chain code representation represents the contour

of a shape as a sequence of unit-size line segments with a limited choice

of orientations (e.g., steps of 45 degrees) [456]. This often results in

a high-dimensional representation, which is quite sensitive to noise.

Moreover, the starting point for describing this sequence needs to be

chosen in a canonical way in order to make meaningful comparisons

between shapes possible.

Instead of unit-size line segments with a limited choice of orientation,Polygonal

representation:

approximating the

contour with a

polygon

one can use line segments of arbitrary length and orientation to ap-

proximate the contour of a shape. The result is a polygonal representation

of the shape, which ignores minor variations along the edges and

thus eliminates noise [293]. The overall shape can then be represented

either by the coordinates of the polygon’s corners or by the length

and orientation of the polygon lines. As Zhang and Lu [456] note, the

polygon decomposition works well for man-made objects, but is not

necessarily a good choice for natural objects, which cannot be easily

approximated with polygons. Mingqiang et al. [293] point out, that a

polygonal approximation of the shape’s contour can also be used as

a preprocessing step for filtering out noise before applying any other

feature extraction approach. The polygonal approach can be further

generalized by lifting the restriction to line segments and allowing for

curved segments, adding curvature as another parameter for describ-

ing each individual segment [456].

Not only the contour, but also the region of a shape can be decomposedConvex hull:

hierarchical

violations of

convexity

into parts. For example, convex hull based approaches [456] compute the

convex hull of the overall region, and detect concavities as the differences

between the region and its convex hull. Each of these concavities is again

approximated by its convex hull, and a second level of concavities can

be detected. By recursively applying this procedure (until the remaining

concavities are sufficiently small), one can thus generate a tree-like

structure of concavities. Each of these concavities can be described by

various parameters, including for example its area and the length of

the line needed to "close" this concavity.

Another structural approach for representing shape regions is basedMedial axis: create a

skeleton of the

shape’s region

on its medial axis [456]. These medial axes can be constructed by rep-

resenting the region with a set of disks, where each disk is as large as

possible. One can then construct a skeleton of the region by considering

the centers of these disks, which is called medial axis. Unfortunately,

this computation of the medial axis is a computationally challenging

problem, and the resulting representation tends to be sensitive to noise.
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Please note, that the medial axis representation can be related to the

proposals by Biederman [64] (Section 10.1.1), and by Marr and Sishi-

hara [278] (Section 10.1.2), both of which consider the main axes of the

respective object parts as important pieces of information.

The adaptive grid resolution representation of a shape’s region is based Adaptive grid

resolution: hierarchy

of filled image

quadrants

on a recursive division of the image into four quadrants [293]. Each

quadrant, which is partially filled by the shape, is further divided

into sub-quadrants, while quadrants, which are completely filled or

completely empty, are not divided further. This procedure results in a

so-called quad tree decomposition of the shape. Two shapes can then be

compared to each other by comparing their respective trees.

Finally, the bounding box representation starts by approximating the Bounding box:

hierarchy of tighter

and tighter

boundaries

overall shape region with one bounding box before dividing this global

bounding box into several vertical slices [293]. For each of these slices,

one computes again the bounding box of the respective part of the

shape region. This second-level bounding box is then split into hor-

izontal slices, repeating the process until a sufficiently fine-granular

division is reached. The overall shape region is then approximated

by a hierarchically organized set of non-overlapping bounding boxes,

which can be represented by their bottom left and top right corner point.

As one can see from our brief overview, a wide variety of shape Limitations of

computer vision

features

features have been proposed in the computer vision community. The

classification into global and structural approaches reflects the distinc-

tions into feature-based and structural descriptions as introduced in

Section 10.1.1. Many of these shape features are, however, not necessar-

ily easy to interpret, since their main aim is to improve classification

performance. Moreover, many of the shape features discussed in this

section mainly aim at the direct comparison of two shapes, but do not

consider a concise high-level summary of the respective input.

Recently, Morgenstern et al. [297] have proposed a similarity space for A similarity space

based on computer

vision

shapes based on a large set of computer vision features. Their underlying

motivation was, that different shape descriptors have complementary

strengths and weaknesses, and that they exhibit different sensitivities

and invariances. In order to obtain a more stable sense of shape similarity,

Morgenstern et al. thus proposed to combine a total number of 109 shape

descriptors. They started with a dataset of 25,000 animal silhouettes,

and computed the value of each shape descriptor for each image. They

then normalized the individual descriptors and combined them into a

single overall distance metric. Since they identified 22 clusters of related

features, Morgenstern et al. then applied classical MDS (cf. Section

8.3) to the overall dissimilarity matrix for the animal silhouettes to

obtain a 22-dimensional similarity space for shapes. This similarity

space is called ShapeComp, and its dimensions are a weighted linear

combination of the original shape descriptors.

In order to map a novel input into the ShapeComp space, Morgenstern Coordinates for novel

stimuli
et al. first obtained the respective values of all underlying shape descrip-

tors. They then computed the dissimilarity of the resulting data point
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to 500 anchor stimuli, before applying classical MDS on the resulting

dissimilarity matrix, obtaining again a 22-dimensional similarity space.

This new similarity space was then rotated and translated in such a way.

that the position of the 500 anchor stimuli matched their position in

ShapeComp as closely as possible. The coordinates of the novel stimulus

were then obtained from this rotated and translated configuration. This

indirect way of mapping novel stimuli into an MDS-based similarity

space has already been mentioned in Chapter 8. It is applicable in this

case, because the dissimilarity matrix can be computed automatically,

i.e., without the need for psychological experiments (cf. Section 8.1.5).

Morgenstern et al. then used generative adversarial networks [173]Psychological

plausibility
(cf. Section 6.3.3) on their initial dataset of animal silhouettes to create

novel stimuli. When comparing human dissimilarity ratings on these

novel stimuli to the predictions obtained from the ShapeComp (using the

above mentioned mapping procedure), they found a high correlation

of r = 0.91, indicating, that ShapeComp is able to capture human shape

similarity quite well.

In a final experimental step, Morgenstern et al. trained differentCNNs for a more

direct mapping
convolutional neural networks (CNNs, cf. Section 6.2.2), which used

either the two-dimensional coordinates of 384 points on the shape’s

contour, or a binary image with 40×40pixels as input. These CNNs were

then trained to predict the correct coordinates in the ShapeComp space.

Despite being quite shallow with only up to three convolutional layers,

and despite using a low-resolution input, the high-level activations of

the trained CNNs yielded better predictions for human shape similarity

than the representations of other off-the-shelf CNNs.

The work by Morgenstern et al. is certainly highly interesting in ourRelation to our

hybrid proposal
context, since they provide a neural network, which is able to map novel

stimuli into a shape similarity space, that has a good correlation with

human dissimilarity judgments. However, their similarity space is rather

based on an engineering approach with only limited psychological

support. Moreover, they consider only animal silhouettes without any

internal structure, while our own approach will deal with richer line

drawings of everyday objects from various categories.

10.1.4 Shape Sensitivity of CNNs

Recent research in both cognitive psychology [318, 319] (see also SectionCNNs and human

vision
8.1.5) and neuroscience [106, 443] has found, that the internal repre-

sentations of deep convolutional neural networks (CNNs, cf. Section

6.2.2) align surprisingly well with human representations for object

classification. Some authors go as far as proposing to use such neural

networks as a model of human visual processing [35, 151, 228] (cf. also

the usage of CNNs in the study by Erdogan et al. [146], Section 10.1.1).

Kubilius et al. [235] speculated, that one reason for the good perfor-Comparing CNNs

and humans on

silhouettes

mance of CNNs is, that they implicitly learn to recognize important

shape features. In a series of experiments, they investigated, whether
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this hypothesis is true.In a first experiment, they used line drawings of

everyday objects in three variants, namely colored, greyscale, and sil-

houettes. Clearly, the colored input is the richest, because the greyscale

variant lacks color information, and the silhouettes also lack all texture

information. On this dataset, Kubilius et al. compared the categorization

accuracy of three pretrained deep convolutional networks to the one

obtained by 30 human participants. Both humans and CNNs performed

best on the colored images and worst on the silhouettes. While the

networks were able to reach human level performance on the colored

images, their performance dropped much stronger than the ones of

humans when looking at greyscale or silhouette images. Neverthe-

less, their classification accuracy was still considerably above chance,

indicating, that shape information alone is still sufficient for making

reasonable classifications even though the networks had only been

trained on natural images. Moreover, Kubilius observed a reasonably

good correlation between human accuracy and CNN accuracy on in-

dividual items in the silhouette condition. Kubilius et al. interpreted

these results as a first indication that convolutional neural networks

implicitly learn shape features.

In their second experiment, Kubilius et al. looked at two different Surface level

information and

perceived shape

datasets. Their first dataset consisted of nine novel three-dimensional

shapes, which varied with respect to their overall form (vertical, square,

horizontal) and their surface structure (spiky, smoothie, cubie). The

second dataset consisted of six letters from six novel font families,

where the individual letters were not recognizable, but the different

letters within a font family shared a common style. The dissimilarity

of two shapes with respect to their physical form was in both cases

computed as difference in pixels, whereas the dissimilarity with respect

to their perceived shape was obtained though human ratings. For both

datasets, Kubilius et al. found, that the early layers of deep neural

networks correlated well with the physical form dissimilarities, while

higher levels reflected perceived shape dissimilarity quite well. Several

shallow models (such as pixel-wise comparisons) and the HMAX

model [331] (cf. Section 10.1.1) were not able to reflect perceived shape

similarity at all. According to Kubilius et al., these results show, that the

shape representation used by CNNs does not only capture surface-level

information, but also higher-level shape features, which are not readily

available in raw pixels.

The third experiment of Kibilius et al. focused on nonaccidental CNNs and

nonaccidental

properties

properties, which we have already introduced in the context of Bie-

derman’s RBC theory [64] (cf. Section 10.1.1), and which are assumed

to be invariant under possible natural variations. Typically, a change

in a nonaccidental feature is more salient to humans than a change

in an accidental feature, even though the pixel-based difference may

be similar. For instance, the difference between an object with slightly

curved edges and an object with straight edges can be expected to

be quite salient (cf. also the study by Treisman and Gormican [409],

Section 10.1.1). The difference between the same object with slightly

curved edges and a third object with more pronounced curvature, on
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the other hand, is expected to be less salient. On a dataset of 22 geons,

Kibilius et al. found, that also for deep neural networks, modifications

of nonaccidental properties cause larger differences in their internal

representations than modifications of accidental properties. Again, this

effect was mainly found in higher layers of the deep architectures. On

the other hand, no such preference for nonaccidental properties was

found for shallow models or HMAX. Kubilius et al. took these results

as further support for their hypothesis, that deep neural networks learn

human-like shape features.

As a motivation for their last experiment, Kubilius et al. note, thatShape properties and

semantic properties
shape properties and semantic properties (such as category member-

ship) are typically correlated, and that deep neural networks may learn

shape features, because they are useful for the categorization task they

are trained on. In order to investigate, whether the networks focus more

on shape information or on category information, they used a dataset

of photographs, where shape information and category information

was as orthogonal as possible. This dataset consisted of 54 images from

six semantic categories, where each category contained nine images,

each of a fixed shape type (e.g., horizontally elongated). This means,

that there were six semantic categories and nine shape types, and every

combination of semantic category and shape type occurred exactly

once in the dataset. Kubilius et al. collected human dissimilarity ratings

on both shape similarity and category similarity, and used the internal

representations of CNNs to predict these ratings. They found, that

human shape judgments were better reflected by the CNNs than human

category judgments. Nevertheless, the CNNs were able to capture at

least some of the semantic structure, while shallow and HMAX models

were only able to capture shape information. Kubilius et al. interpreted

these results as an indication, that deep neural networks capture shape

similarity rather than conceptual similarity in their representations.

Overall, the investigations by Kubilius et al. provide evidence, thatLessons learned

the internal representations of deep neural networks seem to be mainly

shape-based. Even though these networks are typically trained on

classifying images into different categories, they develop internal rep-

resentations, which reflect the subjective shape judgments of humans.

Since this was not observed for any of the simpler models under con-

sideration, Kubilius et al. conclude, that the ability to represent shape

information in a human-like way has been critical for the great success

of deep convolutional networks. Moreover, they highlight, that the

transformation of physical features in the early layers of the networks

into higher-level perceptual features in the later layers corresponds to

the different pieces of information processed in the early visual cortex

and higher visual areas in the human brain.

Also Baker et al. [24] have used the human sensitivity to shapeShape information

and adversarial

examples

perception as a way to compare the internal operation of pretrained

deep convolutional neural networks to the way, in which the human

visual system works. They note, that the results by Kubilius et al.

[235] indicate a certain shape sensitivity in CNNs, but that adversarial



10.1 related work 585

examples [401] on the other hand drive the network to making incorrect

classifications, while leaving the global shape information of an image

intact. In their paper, Baker et al. conduct a series of five experiments

on pretrained CNNs, investigating to which extent they make use of

shape information for determining their classification decision.

In their first experiment, Baker et al. created forty example images by Conflicting shapes

and textures
filling the silhouette of one object with the texture of another object. No

background or other context was contained in the image. The purpose

of this experiment was to evaluate, whether the CNN would predict the

class describing the shape of the input or the class describing its texture.

The pretrained CNN used by Baker et al. (VGG-19 [373], which consists

of 19 layers) predicted the correct shape in eight cases and the correct

texture in seven cases among its top five predictions, which corresponds

to a relatively poor performance level. It seems, that neither shape nor

texture was a main driver for classification. Baker et al. furthermore

observed, that object shape was predicted more frequently for artifacts

than for animals, while texture was predicted more often for animals

than for artifacts.

In their next two experiments, Baker et al. used input images without Glass figurines and

outline drawings
texture information. Their second experiment used ten images of glass

figurines, and their third experiment used forty outline drawings. In

both experiments, Baker et al. assumed, that a correct classification can

be made based on the shape of the object even in the absence of a texture.

However, they found, that in a large majority of the cases, the two CNNs

under consideration (AlexNet [232], an eight-layer architecture, and

VGG-19) predicted the correct class with a probability below 0.1%. This

corresponds to performance below the chance level, since the CNNs

had 1,000 class output units. It thus seems, that the neural networks

were not able to pick up on the cues provided by the shape of the object.

However, both glass figures and outline drawings are rather an edge

case in perception.

Next, Baker et al. attempted to replicate the results reported by Considering

silhouettes
Kubilius et al. [235] for silhouettes. They used the images from their

first experiment, but rather than filling the silhouettes with a non-

matching texture, they filled them with a uniform black color. Baker et

al. were able to replicate the findings by Kubilius et al., namely, that the

CNNs were able to report the correct class in their top 5 predictions in 15

or 20 out of 40 cases (AlexNet and VGG-19, respectively). Even though

no texture information was present, the neural networks were still able

to make some meaningful predictions. However, Baker et al. noticed,

that black silhouettes on white ground worked considerably better

than white silhouettes on black ground or red silhouettes on white

ground. Baker et al. explain the difference in performance between this

experiment and their prior experiments on outlines and glass figures

by the clearer separation between figure and ground and the complete

absence of texture. However, since classification performance was still

considerably worse on silhouettes than on photographs (in contrast

to human performance, which remains at a very high level), Baker et

al. hypothesize, that unlike humans, CNNs do not consider the global
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shape structure, but rather focus on local shape features when making

their classification.

In order to test this hypothesis, they conducted a fifth and finalGlobal shape

structure vs. local

shape features

experiment. In this experiment, they selected six silhouettes, which were

correctly classified by VGG-19 (when considering its top 5 predictions),

and they applied two kinds of modifications to these silhouettes: In

the first condition, they scrambled the global shape, while leaving

local shape features intact by re-arranging the parts of the objects. In

the second condition, they kept the global shape structure intact, but

added jagged edges to the silhouette’s bounding contour, resulting in a

saw-tooth effect and presumably scrambled local shape features. Baker

et al. observed, that VGG-19 was able to correctly classify five of the

six silhouettes with re-arranged parts, while it was unable to predict

the correct class for any of the silhouettes with jagged edges. In a small

study with human participants, they, however, found the reverse effect

of essentially unchanged performance for scrambled local features, but

a considerable performance drop for missing global shape structure.

Based on their experiments, Baker et al. conclude, that CNNs, whichCNNs only consider

local shape

information

have been trained for object recognition on ImageNet, do not make

explicit use of shape information in making their predictions. There

seems, however, to be a limited implicit use of local shape features with

respect to the contours of the object. Humans, on the other hand, seem

to rely much heavier on shape information in their visual processing, fo-

cusing especially on the overall arrangement of parts. Baker et al. point

out, that while their results indicate, that the pretrained networks were

not sensitive to shape, this does not imply, that CNNs are in principle

incapable of learning shape information. As we will see in Chapter 12,

there are CNN architectures, which reach human-level performance

in sketch recognition tasks. When classifying sketches, also no texture

or context information is available – this task is thus quite similar to

the outline drawings considered by Baker et al. in their third experiment.

Also Geirhos et al. [163] came to similar conclusions: When usingModified training

data can weaken the

texture bias

artificial images, where the texture and shape of two different objects

were combined (e.g., the texture of an elephant’s skin with the shape of

a cat, similar to the first experiment by Baker et al. [24]), CNNs classified

the resulting image mostly based on texture information, while humans

showed a stronger bias towards shape. Geirhos et al. then proposed to

transfer the photographs from ImageNet to different randomly selected

texture styles, resulting in a dataset called "Stylized-ImageNet". In this

dataset, texture is no longer a relevant clue for classification. Therefore,

CNNs trained on Stylized-ImageNet can be expected to rely heavier

on shape information. Interestingly, Geirhos et al. found, that this also

makes CNNs more robust to other types of image distortions. The work

by Geirhos et al. again highlights, that regular photograph-based CNNs

tend to base their classification decisions mainly on texture information.

However, their work also shows, that this texture bias can be avoided

by careful selection of the training data.



10.1 related work 587

More recently, Singer et al. [374, 375] have investigated the ability of Comparing

photographs, line

drawings, and

sketches

convolutional neural networks to generalize to higher levels of visual

abstraction, namely, from photographs to line drawings and sketches.

They used the VGG-16 architecture [373] and a small dataset of 42

objects, which were available as photographs (where objects were

cropped from their background), line drawings by a professional artist

(leaving contours intact, but strongly altering color and texture), and

sketches (containing even less detail and stronger distortions of the

object’s contour, e.g., by exaggerating some features).

Singer et al. used the classification accuracy of the trained network on General experimental

setup
their small dataset as means for evaluation. This classification accuracy

was compared to human performance in a labeling task (i.e., giving a

single-word label for a given image). Moreover, Singer et al. trained a

linear support vector machine (cf. Section 5.2.3) on the CNN’s internal

representation at varying levels of depth to distinguish man-made from

natural objects. Finally, they employed representational similarity analysis

(RSA) [230] by computing the correlation between the dissimilarity

matrices extracted from the CNN’s internal representation and human

dissimilarity ratings. This essentially corresponds to the ANN baseline

considered in our analysis setup for the NOUN dataset in Chapter 9.

Singer et al. used Pearson’s r as a distance metric to convert activation

patterns of the CNN into distances (yielding one separate dissimilarity

matrix for each input type), while the corresponding human data was

obtained using the triad method (cf. Section 8.1.1), where participants

were asked to select the "odd one out" among a set of three stimuli.

Human and CNN-based dissimilarities were then compared using

Spearman’s ρ.

In their first experiment, Singer et al. pretrained their CNN on Pretraining on

photographs

generalizes poorly

ImageNet [120], before evaluating its performance with respect to

their dataset. They reported a high accuracy on photographs, but

poor performance on both line drawings and sketches, while humans

performed almost equally well in all three conditions. The RSA showed a

high correlation between photographs and drawings for the lower layers

of the network, which, however, decreased in later layers. A similar

pattern was observed for the correlation between photographs and

sketches (albeit at a lower correlation level), while the representational

similarity between line drawings and sketches also improved, but

stayed then relatively constant in higher layers. This latter observation

together with the fact, that the linear SVM was still able to separate man-

made from natural objects for higher network layers in all conditions,

indicates, that the observed effects are not based on a representational

collapse (where all non-photographs would be represented by the same

activation pattern). Overall, Singer et al. thus conclude, that the general

object representation at lower and intermediate layers seems to be

similar across all three conditions, but that this similarity starts to fade

as the link to object categories becomes stronger in later layers, hinting

at a bias towards natural images.

In order to investigate, whether this drop in representational similar- Removing the texture

bias with different

training data

ity is based on the texture bias, Singer et al. trained another VGG-16
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architecture on Stylized-ImageNet [163] (cf. our discussion from above).

Since Stylized-ImageNet contains different types of textures for each

target class, the trained network was expected to be less biased to-

wards texture, and hence more reliant on shape. Singer et al. found

similar performance on photographs and improved performance on

line drawings, while the classification accuracy on sketches remained

low. Overall, pretraining without a texture bias considerably improved

the correlation between photographs and line drawings for later layers

of the network. Also the correlation between photographs and sketches

increased, while the drawing-sketch correlation remained on a similar

level as in the first experiment. Overall, Singer et al. thus confirmed the

results by Geirhos et al. [163]: reducing shape bias improved general-

ization from photographs to other types of images. Moreover, training

on Stylized-ImageNet increased the correlation between human and

CNN-based dissimilarities.

In their third experiment, Singer et al. now considered the photograph-Transfer learning via

fine-tuning
based CNN and fine-tuned the later layers of the network on the

ImageNet-Sketch dataset [424], which contains about 50 line drawings

for each of the 1,000 classes from ImageNet. Again, they found, that

both the classification accuracy on the line drawings and the correlation

of representations between the photograph and the line drawing inputs

improved. Classification performance on sketches remained poor, but

the representational correlation between sketches and photographs

increased as well. Interestingly, the correlation between drawings and

sketches was reduced through fine-tuning. Overall, the correlation

between CNN-based and human dissimilarities was reduced for pho-

tographs, but improved for both line drawings and sketches.

Taken together, the results by Singer et al. highlight again, that CNNs,Lessons learned

which are trained on photographs, exhibit a bias towards texture,

which makes generalization to line drawings and sketches difficult.

The internal representation of shape similarity is typically limited to

lower layers of the network, but both training on augmented data

(such as Stylized-ImageNet) and fine-tuning on line drawings (such as

ImageNet-Sketch) can help to reduce this texture bias, bringing CNNs

closer to the shape-based perception postulated for humans.

Also Fan et al. [151] have considered CNNs in the context of sketches,Comparing CNNs on

photographs and

sketches

using the architecture provided by Yamins et al. [443] as a model of

the ventral visual stream in the human brain. As a dataset for their

study, they used a subset of 105 classes from the TU Berlin sketch

corpus [143] (which will be introduced in more detail in Chapter 12),

along with photographs of the corresponding classes from ImageNet

[120]. In addition to relational similarity analysis (RSA, see above) [230]

based on Spearman’s ρ between the dissimilarity matrices for sketches

and photographs, Fan et al. also trained a support vector machine (cf.

Section 5.2.3) on the representation of each network layer in order to

classify the input image into its correct class. The RSA showed larger

correlations in higher network layers than in lower layers, and also

the SVM was more successful in its classification task when using the



10.1 related work 589

representation of later network layers. Based on a recognition study

with human participants on sketches, Fan et al. also found a high

correlation between human decisions and the network’s predictions. It

thus seems, that the perception of both photographs sketches uses the

same underlying representation in both humans and CNNs.

Fan et al. then investigated the effect of sketching practice by training The effects of

sketching practice
human participants to sketch objects of a given class, and by observing

the effects on classification performance and sketch similarity. They

found, that sketches improved with practice as indicated by a slightly

improved classification accuracy of their machine learning system. This

effect, however, only held for the specific classes, on which participants

were trained, and generalized neither to related nor to unrelated classes.

Moreover, Fan et al. observed, that later drawings of the same category

were more similar to one another than earlier drawings (as judged

by the CNN-based dissimilarity matrix), and that the distance of the

trained classes to other classes in the CNN’s representation increased. It

is important to emphasize, that the CNN was not modified at all in this

experimental setup, so the focus was rather on the inputs generated

by the trained human participants. By comparing the results of this

experiment to two control conditions (where participants did not draw

the sketches, but either viewed finished drawings, or observed the

stroke dynamics of a sketch), Fan et al. showed, that this training effect

is based on active sketching practice rather than the mere exposure to

additional sketches.

Fan et al. furthermore hypothesized, that the same internal rep- Recognition and

production
resentation for both photographs and sketches is not only used for

recognition, but also for production. Since the results of the previous

experiment could also be explained by improved motor control, they

conducted a final experiment, where participants underwent the same

procedure of repeated sketching as before, but were this time tested

in a sketch recognition task both before and after training. This task

used morphed versions of selected stimuli and involved a speeded

forced choice between the two endpoints of the underlying morph. By

modeling the decisions of the participants with a logistic regression

function, Fan et al. were able to compare the slope of the fitted function

before and after training. They reported, that the slope increased for

objects from the trained categories, which they interpret as sketching

practice improving recognition. No such effects were observed for

control objects from other classes, or for observing stroke dynamics

instead of drawing the sketch.

The study by Fan et al. confirms the observations from the other Lessons learned

studies reported above by establishing a link between the represen-

tation of rich photographs and more abstract sketches, thus linking

CNNs to shape perception. While other studies have focused on the

circumstances, under which shape-based recognition can work with

CNNs, Fan et al. have highlighted, that the same type of representation

seems to be used both for recognition (i.e., classifying a photograph or

a sketch) and production (i.e., creating a sketch).
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Most of the studies summarized above focus on the perception ofHuman sensitivity to

geometric

regularities

shapes in the form of outlines, silhouettes, line drawings, or sketches.

Recently, Sablé-Meyer et al. [343] have investigated, to which extent

CNNs can account for human perception of geometric regularities in

shapes. They first established, that human shape perception is sensitive

to geometric regularities (namely, parallel lines, equal sides, equal

angles, and right angles) by using an outlier detection task: They started

with eleven reference shapes, which were all quadrilaterals, i.e., closed

polygons with four vertices and four edges, and which varied in their

regularity. In each trial, they generated five instances of one reference

shape, varying in scale and orientation. They then added one deviant

shape, where the bottom right vertex was displaced in such a way,

that at least one of the geometric regularities did no longer hold. The

participants of their study were then presented with the overall set

of six stimuli and had to click on the outlier as fast and accurately as

possible. This experiment was carried out with four different groups of

participants, namely, French adults, French kindergardeners, Himba

adults, and baboons (a nonhuman primate).

The performance of French adults could be well predicted by theExperimental results

for adults
number of geometrical regularities in the reference shape. A statistical

analysis of the data revealed a main effect of shape (as specified by the

four geometric regularities), while size, rotation, and position of the

target stimulus had only minor or insignificant effects. Also subjective

ratings of shape regularity correlated well with error rates. Sablé-Meyer

et al. also noted, that there was no pre-attentive pop-out effect (cf. the

study by Treisman and Gormican [409], Section 10.1.1), indicating, that

geometric regularities require attentive processing.

In order to validate, whether the observed sensitivity to geometricComparing to other

groups
regularities was based on mathematical education, Sablé-Meyer et al.

also collected data for kindergardeners and Himba adults (a pastoral

people of northern Namibia). For both control groups, the geometric

regularity effect could be replicated (although to a somewhat lesser

degree), indicating, that it seems to relate to an universal intuition in

humans. Sablé-Meyer et al. then also trained baboons (a nonhuman

primate with a visual system similar to humans) on the outlier task. The

baboons were able to understand the overall task when prompted with

other stimuli, but their performance collapsed, when the shape stimuli

from the human study were used. Moreover, they did not show any

regularity effect, leading Sablé-Meyer et al. to conclude, that detecting

geometrical regularities seems to be a unique capability of humans.

Finally, Sablé-Meyer et al. attempted to find a model of human visualModeling the

regularity effect with

CNNs

perception, which predicts the observed regularity effect. They probed

different pretrained CNNs by obtaining their hidden representation

for the six input stimuli at various layers in the network, and by then

selecting the input, whose activation different most strongly from

the overall mean. As an alternative to this CNN-based model, they

assumed a symbolic description of quadrilaterals, where each input was

represented by the presence or absence of the four geometric regularities

(encoded as a vector of zeros and ones), and where the Manhattan
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distance was used to detect an outlier. When comparing the two models

on the psychological data, Sablé-Meyer et al. found, that the CNN-based

approach predicted the choices of baboons well, but failed to do so

for humans, while the symbolic model gave better predictions on the

French adults, but could not account for the baboons’ behavior. For

both kindergardeners and Himba adults, a combination of both models

yielded the best approximation of the experimental data. Sablé-Meyer

et al. also report, that neither using different network architectures

nor employing additional fine-tuning with a shape classification task

improved the predictive power of the CNN-based model.

The study by Sablé-Meyer et al. differs from most other studies re- Lessons learned

ported in this section by putting its focus on abstract geometric shapes

and by conducting extensive psychological experiments. It can thus also

be related to the studies by Treisman and Gormican [409] and Erdogan

et al. [146], which have been discussed in Section 10.1.1. Its important

contribution to the discussion of shape sensitivity in CNNs lies in the

observation, that some empirical effects in human shape perception,

such as the sensitivity to geometric regularity, are not captured by the

representations learned by CNNs.

10.2 our new dataset

In order to extract conceptual similarity spaces for the shape domain in a A dataset based on

line drawings
data-driven way, we have created a new dataset based on psychological

experiments. We have conducted two series of behavioral experiments

to investigate, how humans perceive two-dimensionally simplified, but

compositionally complex shapes of everyday objects. Both series of

experiments employed the same set of line drawings as stimuli. In

Section 10.2.1, we describe the visual stimuli used in our study, and

how they were selected.

In a first series of experiments (Section 10.2.2), we collected the Dissimilarity ratings

subjectively perceived degree of dissimilarity between two complex

shapes. We investigated both general conceptual dissimilarity and

shape-based visual dissimilarity.

Our second series of experiments (Section 10.2.3) investigated, how Shape features

primitive shape features of the complex shapes were perceived. We

focused on three features, which are supposed to be critical for shape

perception, namely the object’s overall form (elongated vs. blob-like),

its overall orientation (horizontal vs. diagonal vs. vertical), and the

shape of its lines (straight vs. curved).

10.2.1 Stimuli

The set of complex shapes employed in the behavioral studies was The line drawings

taken from a prior study by Scheibel and Indefrey [349]. Unfortunately,

copyright permissions of these images do not allow us to reprint them
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Figure 10.4: Example line drawings (parrot and television) similar to the ones

used in our study.

Visual Object

Type Type

Category Items

dishes bowl, glass, plate, tea pot, salt shaker

buildings church, igloo, lighthouse, pyramid, windmillartificial

vehicles bicycle, bus, car, scooter, tractor

insects ant, butterfly, dragonfly, fly, ladybug

fruits apple, banana, cherry, lemon, raspberry

variable

natural

vegetables asparagus, bell pepper, broccoli, carrot, onion

tools axe, hammer, pliers, saw, shovel

appliances dishwasher, microwave, television, toaster, washing machineartificial

clothes blouse, coat, jacket, shirt, uniform

plants dandelion, palm tree, rose, sunflower, tulip

ungulates cow, donkey, goat, horse, stag

coherent

natural

birds eagle, owl, parrot, pigeon, stork

Table 10.1: Overview of the 60 stimuli in our dataset, based on their categories.
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in this book. They are, however, available upon request from the author.

Two exemplary line drawings are shown in Figure 10.4. Our stimulus set

contains 60 standardized images of line drawings, showing the shape

of everyday objects in a simplified way. The original images were taken

from different sources and adjusted, such that they matched in relative

object size as well as object position and object orientation. Drawings

containing too many details were additionally simplified. All drawings

were fitted onto a 283 x 283 pixel white background and converted

into grayscale images. The standardized images have a horizontal and

vertical resolutions of 96 dpi, 32 bit depth. All of the reported image

modifications were done by Scheibel and Indefrey.

The depicted objects belong to twelve different semantic categories. Category structure

Half of these categories are labeled as visually coherent (VC; i.e., based

on objects with similar shapes), and the other half as visually variable

(VV; i.e., containing visually heterogeneous examples).
11

Half of the

categories of each visual type were categories of natural objects and the

other half categories of artificial, man-made objects. Table 10.1 gives an

overview of the different categories, their labels, and their associated

stimuli.

Overall, this stimulus set fulfills several desiderata: The images show Complexity

complex shapes, composed of different types of elementary components

(e.g. straight and curved lines) and different types of shape components

(e.g. elongated and round components).

The depicted objects are familiar to adult humans of central Europe, Familiarity

to which the participants of the studies belonged (pre-tested by Scheibel

and Indefrey [349]). We therefore assume, that evaluations on the shapes

are based on stored shape knowledge rather than ad-hoc criteria.

Visual information available in the images is as strongly as possible Focus on shape

restricted to shape information. There is for example no color or

texture information, and no information about the real size of the object.

We therefore assume, that confounding influences from knowledge

structures of other visual domains like color, size, or texture are

sufficiently eliminated.

Moreover, the usage of line drawings makes it easy to relate our work Relation to earlier

work
to earlier studies on shape perception, which also typically focused

on similar types of stimuli. This includes for example the RBC model

[64] and the early vision study by Treisman and Gromican [409] (both

Section 10.1.1), but also the machine learning experiments by Singer et

al. [375] (cf. Section 10.1.4).

10.2.2 Elicitation of Dissimilarity Ratings

In order to construct a similarity space of the shape domain, we are Visual and

conceptual similarity
interested in dissimilarity ratings with respect to visual similarity.

However, we also need to ensure, that these ratings indeed refer to

11 More details on the classification of the visual type of categories are given by Scheibel

and Indefrey [349]
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visual similarity and not to general conceptual similarity. Therefore,

we collected not only visual dissimilarity ratings, but also conceptual

dissimilarity ratings. In Section 10.3, we will compare these two sets of

dissimilarity ratings and investigate, whether and to which extent they

differ from each other.

Both rating studies were conducted by Scheibel and Indefrey [349] asRatings from

Scheibel and Indefrey
pre-tests to control the material selection in their study. We reused their

raw ratings (which they did not thoroughly analyze in their paper) as

part of our dataset. In the following, we describe how these ratings

were originally collected.

The procedure of the two rating studies was identical. In both ex-Pairwise

comparisons
periments, a direct rating method was used by considering pairwise

comparisons with Likert scales (cf. Section 8.1.1). This method was

selected, because it is applicable to both perceptual and conceptual

similarity, and because it has a long tradition in psychology.

The 60 stimuli as described in Section 10.2.1 were combined to imageImage pairs

pairs, such that all pairwise combinations of the images were obtained

(in total 1770). In order to limit the length of the experimental sessions

and to avoid fatigue effects, each participant only viewed a subset of

the image pairs: The overall set of images was partitioned into four

lists containing 442 or 443 image pairs each. Scheibel and Indefrey

controlled, that all lists included a similar proportion of within- and

between-category pairs, and that no category biases occurred. All lists

were tested with an equal number of participants. The order of the image

pairs was randomized for each participant individually. Image pairs

were horizontally aligned, and the individual images were randomly

assigned to the left or right position.

The rating study was conducted as web-based survey using SoSciTechnical platform

Survey [250]. The link to the study was published on various online

and offline platforms for students of the Heinrich Heine University

(HHU) in Düsseldorf, Germany. The study was conducted in German.

At the beginning of the survey, participants saw an introductionExperimental

instructions
to the procedure and task, including two examples of picture pairs

and possible ratings for these examples. For the elicitation of visual

dissimilarities, it was stressed that only the visual similarity of the

depicted shapes had to be judged (ignoring everything else they might

know about the stimuli). For the experiment targeting conceptual

dissimilarity ratings, the focus on semantic-conceptual similarity was

emphasized. In both experiments, fast and spontaneous ratings were

encouraged. Participants started the test phase individually by clicking

on the "start" button.

In the test phase, the image pairs appeared automatically one afterUser interface

another at the center of the screen. A Likert scale with five points was

displayed below the image pair on the bottom of the screen. For the

elicitation of visual dissimilarities, it ranged from "totally dissimilar

shapes" (numerically coded as 1) to "very similar shapes" (numerically

coded as 5). In the experiment targeting conceptual dissimilarity, the

endpoints were labeled as "conceptually similar / same category" (nu-
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merically coded as 1) and "conceptually different / different categories"

(numerically coded as 5).

Once a scale point was selected, the image pair disappeared from Experimental

workflow
the screen and the next trial began. There was no possibility to change

previous judgments. The study did not include a "back" button, and

clicking the "back" button of the browser terminated the study. There

was also no possibility to skip a trial. The study did not include a "next

trial" button during the automatic part of the test phase – each image

pair remained on the screen, until a scale point was selected. After a

block of 21 to 23 trials, a break was offered. The complete survey lasted

about 10 minutes on average.

62 students of HHU participated in the study on visual similarity. Visual similarity

The data collection was fully anonymous, so no information about the

age or sex of the participants were collected.

48 students of HHU took part in the study on conceptual similarity. Conceptual

similarity
Two participants were non-native German speakers. Their data was

discarded, because linguistic influences on the organization of semantic

knowledge structures cannot be ruled out. The 46 native German

speakers (32 female, 14 male) had a mean age of 25.26 years.

10.2.3 Elicitation of Feature Ratings

As we have seen in Section 10.1, there exists a large variety of approaches Three perceptual

features
for describing shape perception. For our study, we have selected three

perceptual features as promising candidates for the underlying dimen-

sions of a similarity space for the shape domain.

The form feature refers to the global shape structure and distinguishes form: elongated vs.

blob-like
elongated from blob-like objects. This can be related to coarse-to-

fine accounts such as Bar’s model [29], to the height-to-width ratio

investigated by Treisman and Gormican [409] and Ons et al. [307], and

to the shape envelope considered by Op de Beeck et al. [308] (cf. Section

10.1.1). It is also implicitly coded in the length and diameter of cylinders

in Marr and Sishihara’s proposal [278], and in the size parameters of the

superquadrics considered by Chella et al. [97] (cf. Section 10.1.2). Also

the eccentricity feature used in computer vision (cf. Section 10.1.3) is

related to the form feature.

The lines feature describes, whether the lines of the object are mostly lines: straight vs.

curved
straight or mostly curved. This feature is presumed to be an important

nonaccidental property in the RBC model [64] and has also been

identified as an early vision feature by Treisman and Gormican [409],

Op de Beeck et al. [308], and Ons et al. [307] (cf. Section 10.1.1). Moreover,

it can be related to the form factors of the superquadrics considered

by Chella et al. [97], which control the curvature of the object’s surface

(cf. Section 10.1.2). Finally, it is similar to the average bending energy

considered in computer vision (cf. Section 10.1.3).

The orientation of the lines describes an object as having a horizontal, orientation:

horizontal vs.

diagonal vs. vertical

vertical, or diagonal orientation. This feature has been explicitly investi-
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Figure 10.5: Trial structure for eliciting attentive feature ratings.

gated by Treisman and Gormican [409] (cf. Section 10.1.1). Moreover,

the overall orientation of object parts (and thus their main lines) is

explicitly coded in many structural approaches such as the models by

Marr and Sishihara [278], or the system by Chella et al. [97] (cf. Section

10.1.2). Also neuroscientific findings (e.g., by Hubel and Wiesel [203])

and theories (such as HMAX [331]) emphasize, that individual neurons

(especially in early visual processing) are sensitive to specific stimulus

orientations (cf. Section 10.1.1).

According to the current understanding of visual perception, mostAttentive and

pre-attentive

perception

of these primitive shape features are perceived very early, i.e. pre-

attentively [409] (cf. Section 10.1.1). To test, whether the duration of

perception changes the perceived main values of the primitive features,

we investigated both attentive and pre-attentive perception by varying

the viewing duration.

Our first experiment investigated the attentive perception of theEliciting attentive

feature ratings
primitive shape features. Each primitive shape feature was considered

separately. Overall, 27 students (15 female, 12 male, mean age = 24.07; all

but one were native German speakers) of the Heinrich Heine University

HHU in Düsseldorf, Germany, participated in the study. All had normal

or corrected to normal vision. Attentive feature ratings were elicited for

the 60 stimuli described in Section 10.2.1. Moreover, 24 additional filler

items were used in warm-up trials and for demonstrations of the tasks.

Figure 10.5 illustrates the trial structure of the experiment: The overallImage sets

set of 60 images was partitioned into 15 sets of four images each. All im-

age sets were categorically heterogeneous sets, i.e. each item belonged

to a distinct semantic category, two of them were visually variable (VV)

and two visually coherent (VC) categories. Half of the items of each set

were artificial objects, the other half natural objects. Visual biases within

image sets to a particular value of one of the features were avoided.
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The image sets were then organized into three blocks with five image Organization into

blocks
sets per block. Each block was assigned to one of the the three different

features. Each participant therefore performed each rating task only on

a small number of trials, which enhanced the sensitivity of the respec-

tive ratings and avoided image repetitions. The order of blocks, and

thus also the order of tasks, was counterbalanced across participants by

using a Latin square design
12

. The order of image sets within a block

was randomized for each participant individually. In order to avoid

grouping effects, three different assignments of stimuli to sets were

created, which were tested with an equal number of participants.

Subjects were tested in small groups of up to 15 people in a computer Technical platform

lab at HHU. The study was conducted with SoSci Survey software

[250] and as web-based survey. The participants received individual

passwords to the study to control the assignments of lists to participants.

The study was conducted in German.

At the beginning, participants were introduced to the user interface of Experimental

instructions
the software and the different rating tasks. The procedure of each rating

task was demonstrated with an example image set, including an explicit

introduction to the different rating scales. Participants were asked to

ignore everything but the to-be-rated primitive shape feature of the

images. Spontaneous ratings were encouraged. Participants started the

test phase individually by clicking on a "start" button.

The test phase consisted of three parts, one for each primitive shape Experimental

structure
feature. Each part started with a reminder of the specific rating task

and rating scale, including an example arrangement of example images.

The first trial of each part was always a warm-up filler trial, then the

five experimental trials were carried out. Between the experimental

parts, a short break was offered.

The rating scale and the four images of the current set were displayed User interface

on the screen. The images initially appeared at the bottom, below a

continuous scale with pictorially and verbally labeled endpoints (form:

"absolutely elongated" to "absolutely blob-like" ; lines: "absolutely

straight" to "absolutely curved"; orientation: "absolutely horizontal"

through "diagonal in any angle" to "absolutely vertical").

The task consisted in arranging the images on the scale per mouse Task and workflow

click, such that the final positions gave an accurate reflection of the

feature values of each item. Positions could be corrected during a trial,

but there was no possibility to change ratings from previous trials.
13

There was also no possibility to skip a trial, because the "next trial"

button only became active, when all images of a set were arranged

on the scale. When participants clicked on the "next trial" button, the

current arrangement of items was stored. The horizontal position of

the items on the rating scale was mapped to a numerical value in

the interval [−1, 1]. The scale ends corresponded to the borders of the

12 This means, that we ensured, that each block appeared in each position equally often

when considering all participants.

13 The study did not included a "back" button, and clicking the "back" button of the

browser terminated the study.
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interval and a linear mapping was used for intermediate positions.

The vertical position of the items was discarded. The complete session

lasted about 10 minutes on average.

For subsequent analyses, the ratings (in total 9 ratings per item forPost-processing

each primitive shape feature) were aggregated for each item and each

feature separately by using the mean. The 15 images with the highest

average values were selected as examples for the positive endpoint of

the respective scale, while the 15 images with the lowest average values

were selected as examples for the negative endpoint of this scale.

In a second line of experiments, we collected image-specific featureEliciting

pre-attentive feature

ratings

values which are based on pre-attentive image perception. We used

an extremely short view duration of 50 milliseconds, after which

participants had to select the feature value they believed to have seen.

We conducted one separate experiment for each feature.

Each experiment was carried out with 18 subjects (no double par-Participants

ticipation).
14

All participants were students at HHU, native German

speakers, and had normal or corrected to normal vision. The form

experiment had 16 female and 2 male participants with a mean age of

22.72. For the orientation experiment, we had 12 female and 6 male

subjects with a mean age of 22.11. Finally, 12 female and 6 male subjects

with a mean age of 22.28 participated in the lines experiment.

In addition to the 60 images as described in Section 10.2.1, we used 6Stimuli

filler items for a practice block. Each test shape was presented once to

each participant. The order of images was pseudo-randomized for each

participant individually.
15

Subjects were tested in a sound-attenuated, dimly lit cabin. TheTechnical setup

distance to computer screen was approximately 60 cm. The experiment

was controlled by Presentation Software (version 18.3). The stimuli

were presented on a BenQ-monitor (XL2430) with a screen resolution

of 1920 x 1080 pixel and a vertical refresh rate of 60 Hz. The study was

conducted in German.

At the beginning, participants received written instructions aboutExperimental

instructions
the procedure and the task. It was stressed, that the task was not

about shape identification, but only about a subjective perception of

the respective primitive shape feature. A practice block of six trials had

to be carried out by each participant to ensure, that the experimental

procedure and task were understood and performed correctly.

Participants started each trial individually by pressing the "next trial"Trial structure

button. The structure of a trial is illustrated in Figure 10.6. All stimuli

presented in a trial were presented at the center of the screen on a black

screen background.

14 In two experiments, some subjects performed the tasks not correctly, e.g. pressed only

one button, or too frequently the "no idea" button. The data of these subjects was

discarded (orientation experiment: 4; lines experiment: 1). The respective lists were

tested twice in order to obtain an equal number of data for each item in all studies.

15 Maximally three items of the same category type (combination of visual type (VV vs.

VC) and object type (artificial vs. natural)) appeared in successive trials. The same

semantic category never appeared in successive trials.
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Figure 10.6: Trial structure in the masked recognition experiments for eliciting

pre-attentive feature ratings.

The task was to decide as fast as possible by pressing a button, Task and workflow

which value of the respective primitive shape features pertained to

the target shape mostly. For the form feature, there were two response

options, namely, "elongated" (numerically coded as -1) and "blob-

like" (numerically coded as 1). Also the lines experiment featured two

response options, namely, "straight" (numerically coded -1) and "curved"

(numerically coded as 1). The experiment targeting the orientation

feature used four response options, namely "horizontal" (numerically

coded as -1), "vertical" (numerically coded as 1), "diagonal from bottom-

left to top-right", and "diagonal from top-left to bottom-right" (both

numerically coded as 0).
16

In all experiments an additional "no idea"

response button (numerically coded as 0) was provided. The assignment

of feature values to buttons were indicated on the respective keys of

the button box and pictorially and verbally displayed on the screen

whenever a button press was required. A testing session lasted about 4

minutes on average.

For each primitive shape feature, the categorical responses (in total 18 Post-processing

per item, each numerically coded with -1, 0 or 1) were aggregated per

item by using the arithmetic mean. Again, we took the 15 images with

the highest values as examples for the positive scale end, while storing

the 15 images with the lowest values as examples for the negative end

of the respective scale.

Please note, that we have made a considerable simplification with A simplified notion

of orientation
respect to the perceptual feature of orientation by representing it as a

scale with two endpoints in both types of feature rating experiments.

However, orientation can be thought of as rotation around the object’s

center. It would thus be more natural to represent this feature as a

circular dimension (e.g., by using the rotation angle). We nevertheless

16 Although we distinguished between two senses of "diagonal", we have coded them

identically. This was done, because the number of responses for the second variant

was very low (only about 7%), and because all images in our stimulus set seemed to

fall into the first category (cf. Table 10.1).
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decided to use a linear scale, since this allows for easier analysis and

increased comparability to the other two features under consideration.

One can furthermore argue, that the two endpoints of our scale (hor-

izontal and vertical) correspond to opposite positions on a circular

dimension. By looking only at the horizontal-vertical contrast, we thus

consider a subset of the information about an object’s orientation.

10.3 analysis of the dataset

In this section, we perform some analyses on the raw information fromOverview

our dataset in order to ensure, that it is a good basis for a shape similarity

space. First, in Section 10.3.1, we introduce the statistical tools used for

making some of the subsequent analyses. In Section 10.3.2, we then

compare the visual dissimilarity ratings to the conceptual dissimilarity

ratings, taking into account also the distinction into visually coherent

and visually variable categories. This is done to ensure, that the visual

dissimilarity ratings elicited in our psychological experiments indeed

refer to the shape domain and not to general conceptual similarity

(which may involve multiple domains). After this, we analyze the three

psychological shape features in Section 10.3.3, where we compare the

pre-attentive to the attentive ratings, and where we also investigate

correlations between different features.

10.3.1 Statistical Tools

In this section, we provide an overview of several statistical tools, whichOur toolbox

will be used in Sections 10.3.2 and 10.3.3 to analyze our dataset. This

includes general statistical terminology, Student’s t-test, cumulative

link mixture models (CLMMs), and confidence intervals for correlation

coefficients. Large parts of this section are based on the textbook by

Field et al. [155].

When analyzing the results of a typical psychological experiment,General statistical

terminology
researchers are usually interested in finding evidence for or against a

specific prediction of a scientific theory. The prediction under investi-

gation is usually called the alternative hypothesis. It states, that a given

experimental intervention causes some observable effect [155, Section

1.7.5]. The complement to this alternative hypothesis is the so-called

null hypothesis, which states, that no such effect exists [155, Section 1.7.5].

In any psychological experiment, we can only take a relatively small

sample from a very large (or potentially infinite) population. For instance,

in the experiments reported in Section 10.2, we used a sample of 60

images from a potentially infinite population of line drawings. Since

we only have access to a small sample, we cannot empirically prove,

that alternative hypothesis is true. Instead, one typically estimates the

probability of observing the given data under the assumption, that

the null hypothesis is true [268]. In other words, we estimate, how
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likely it is to make these observations by chance (e.g., based on which

samples were picked from the population), if there is no effect of the

experimental intervention on the overall population.

The general approach for such investigations is called inferential Statistical models

statistics, and involves the construction of statistical models [155, Section

2.6]. In order to compute the aforementioned probability, so-called test

statistics are used [155, Section 2.6]. They measure two types of variation

in the data: Systematic variation can be explained by the model, while

unsystematic variation reflects the remaining error (i.e., the difference

between the model’s predictions and the actual data). Most test statistics

can be computed as the ratio of systematic variation and unsystematic

variation. Since the underlying probability distribution for these test

statistics is typically known, one can easily calculate the probability

of obtaining the observed value of the test statistic, even if the null

hypothesis was true. If this probability is sufficiently low (usually, a

threshold of 5% is used), the null hypothesis can be rejected, and a

statistically significant effect of the experimental intervention can be

diagnosed [155, Section 1.7.5].

Since the inferential statistics approach is based on probabilities, Error types

there are two main types of errors, which can occur [155, Section 2.6]: A

type I error describes a situation, where the null hypothesis is rejected,

even if there is no true effect in the population. A type II error on the

other hand occurs, if we fail to reject the null hypothesis, even though

there is an actual effect in the population. The probabilities for both

types of errors are influenced by the significance level α (usually set to

5%), but in opposite directions: For instance, decreasing α reduces the

risk for type I errors, but increases the risk for type II errors.

One of the most popular statistical tests is called Student’s t-test. It Student’s t-test

dates back to the work of William Sealy Gossett [396], who published

his research under the pseudonym "Student" [268]. The t-test is based

on the observation, that scientific hypotheses can often be formulated

with respect to the value of the mean or the mean difference between

two groups [396]. The null hypothesis in this case states, that there

is no difference between the two groups. Therefore, large differences

between the observed group means are quite unlikely under the null

hypothesis [155, Chapter 9].

Depending on the experimental design, one can distinguish two Two types of t-test

types of the t-test [155, Chapter 9]: A dependent t-test is used in the

context of a so-called repeated measures design, where the same group

of participants is exposed to different experimental manipulations at

different points in time. Since each participant contributes to the data

from both groups, the samples are dependent. If the samples of the two

groups are on the other hand independent, an independent t-test can be

used. This is for instance applicable to experiments with a so-called

between-group design, where different people are exposed to different

experimental manipulations.
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Let us first consider the independent t-test, where we compare theIndependent t-test

observed difference between the sample group means X̄1 and X̄2 to

the expected difference between the population group means µ1 and µ2
under the null hypothesis. We can write this as (X̄1 − X̄2)− (µ1 − µ2).
Since the null hypothesis states that the groups are identical, the

expected difference µ1 − µ2 between group means is zero [155, Chapter

9], so we only need to consider X̄1−X̄2. This is the systematic variation,

that can be explained by our model of the alternative hypothesis

(namely, that the group means are different). In order to construct our

test statistic, we also need to account for the unsystematic variation

in the data. This is done by considering the standard error of differences

between groups [155, Chapter 9].

This quantity can be interpreted as follows [155, Chapter 9]: For eachStandard error of

differences
group, one draws one sample from the underlying population, and then

computes the difference between these two samples. The distribution

across these differences is centered on the difference of their group

means µ1−µ2. The standard deviation of this distribution is a variant of

the standard error. It describes, how far the observed difference between

sample means is expected to deviate from the difference between the

true population means [268]. The standard error of differences between

groups can be expressed as

√︂
s21
N1

+
s22
N2

with si and Ni representing the

standard deviation and number of data points in group i, respectively.
17

Overall, the t-statistic can be computed as follows:

t =
X̄1 − X̄2√︂
s21
N1

+
s22
N2

The resulting value of t is proportional to the probability, that theInterpreting the

t-statistic
observed difference between means is statistically significant [268]. In

general, the numerical value of t increases for larger differences between

means, smaller observed variances in the data, and a larger number of

data points [268, 396]. The test for statistical significance is conducted

by comparing the observed value of the t-statistic to the value of the

probability density function of a t-distribution with the same degrees

of freedom df [268]. These degrees of freedom correspond to the number

of observations, which are free to vary [155, Section 2.4.2]. Since we

compute a standard deviation si for the two groups, we make use of

the respective group mean. This means that we hold one parameter

(namely, the mean) constant: Ni − 1 out of Ni observations can vary,

but the remaining one is determined by the value of the mean and the

value of the Ni − 1 other observations [155, Section 2.4.2]. For the t-test,

we compute a standard deviation for two groups, hence, the degrees of

freedom is determined as df = N1 +N2 − 2 [155, Chapter 9].

Let us now turn to the dependent t-test, which is used, if the sameDependent t-test

participants contribute to both groups. Instead of first computing

the group means and then considering their difference (as in the

17 See [155, Chapter 9] for a derivation of this formula.
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independent t-test), we follow the opposite approach [155, Chapter 9]:

For each participant, we first compute their difference between the two

conditions, and then average these differences across all participants.

This results in the average difference D̄, which is an indicator of the

systematic variation in the data. This systematic variation is now divided

by the standard error of differences, which can be computed as

√︂
s2D
N (see

above). This division through the standard error contrasts the observed

difference D̄ with the expected difference and furthermore normalizes

the resulting value, such that it is independent from the original scale

of measurement. Overall, the formula used for a dependent t-test looks

as follows:

t =
D̄√︂
s2D
N

Again, one can compute the probability of obtaining the measured Using the t-statistic

value of t based on a t-distribution with N − 1 degrees of freedom.

The results of a t-test are usually reported by stating the mean and Reporting t-test

results
standard error for the respective groups, the degrees of freedom, the

value of t, and the level of statistical significance (i.e., the probability

of the data under the null hypothesis) [155, Chapter 9]. For instance,

t(11) = 2.47, p < .05 means, that a t-test with 11 degrees of freedom

was conducted, that the observed value for the t-statistic was 2.47, and

that this corresponds to a probability of less than 5% for observing the

given data, if the null hypothesis is true. Typically, instead of reporting

the actual value of p, only the rough level of significance is reported,

e.g., > .5, > .1, > .05, < .05, < .01, < .001, and < .0001.

It is furthermore important to mention, that the t-test can only be Assumptions and

limitations
applied, if several assumptions are met: The data must be measured at

least at the interval level, such that computing a mean and a standard de-

viation is meaningful [155, Chapter 9] (cf. also Section 8.1.4). Moreover,

one assumes, that the sampling distribution is approximately normal

[268]. For an independent t-test, this means, that the individual values

are normally distributed, while for a dependent t-test, the differences

between the values need to follow a normal distribution [155, Chapter

9]. For the independent t-test, the samples of the groups need to be

independent from each other, and the two groups are typically assumed

to have an equal variance [155, Chapter 9]. Finally, outliers in the data

and unequal sample sizes for the two groups can complicate an analysis

with the t-test [268].

Some of our subsequent analyses make use of so-called cumulative Cumulative link

mixture modelslink mixed models (CLMMs) and their implementation in the ordinal
package of R [103]

18
. CLMMs can be used to analyze the dependence

of ordinal response variables on a given set of predictors. They are

especially useful, if the collected ratings cannot be assumed to be

independent, since the data contains clusters [9]. Before introducing

18 See https://cran.r-project.org/web/packages/ordinal/index.html.

https://cran.r-project.org/web/packages/ordinal/index.html
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CLMMs, we first need to describe their predecessors: cumulative link

models (CLMs).

A cumulative link model (CLM) considers an ordinal response variableCumulative link

models y with J different levels and a vector x⃗ = (x1, . . . , xn) of predictor

variables. It tries to predict the probability of a given rating y = j ∈
{1, . . . , J} by estimating the cumulative probabilities P(y ≤ j) with a

suitably transformed linear model αj − x⃗T β⃗ [9, 104, 350]:

P(y ≤ j) = F (αj − x⃗T β⃗)

The monotonically increasing transformation function F is also calledComponents of the

model
"link", which together with the focus on cumulative probabilities gives

rise to the name "cumulative link model". The free parameters of

the model include the intercepts αj and the vector of coefficients β⃗ =
(β1, . . . , βn). The intercepts αj can be interpreted as thresholds for

the different levels of the ordinal variable. The coefficients βi model

the influence of the respective predictor variable xi on the response

variable y: Positive values βi > 0 cause the term αj− x⃗T β⃗ to decrease for

larger values of xi. Since this corresponds to reducing the cumulative

probability P(y ≤ j), it implicitly increases the probability P(y > j)
and thus leads to larger values of the response variable [350].

At this point, we should also note, that it is possible to model theInteraction of

variables
interaction of predictor variables by including their product into the

model [9]. The resulting model is then of course no longer linear, since

it contains the nonlinear term x1x2:

P(y ≤ j) = F (αj − β1x1 − β2x2 − β3x1x2)

In principle, different transformation functions F are possible. UsingTransformation

functions
the logistic function σ(z) = 1

1+e−z is referred to as a "logit link" and

gives rise to a multi-category generalization of logistic regression [9] (cf.

Section 5.2.2). Another popular choice is the cumulative distribution

function Φ(z) of a standard normal distribution, which is then called a

"probit link" [104].

CLMs implicitly make two assumptions [350]: Firstly, the coefficientsFrom CLMs to

CLMMs β are independent of the response level j, which is often called the

"proportional odds" assumption. Secondly, CLMs assume the indepen-

dence of individual observations. The latter assumption is, however,

often violated in practice, for instance, if there are clusters in the data

(such as repeated measurements from the same individual subject)

[9, 350]. Cumulative link mixed models (CLMMs) solve this problem by

allowing random effects based on the presumed clusters. In general,

CLMMs can be described as follows [9, 104, 350]:

P(y ≤ j) = F (αj − x⃗T β⃗ − z⃗Tc u⃗c)

Here, for each cluster c, z⃗c is a vector of explanatory variables forAdditional

coefficients
the random effects, and u⃗c contains additional coefficients for data
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points in cluster c. The coefficients of u⃗c are assumed to follow a normal

distribution and allow us to model correlations between members of

the same cluster [350]. On the one hand, they can be used for adding

random intercepts, i.e., to represent that the cluster averages differ.

For instance, one participant may consistently give higher ratings than

another one. In the limiting case of z⃗c = 1⃗, u⃗c corresponds to the

deviation of the respective participant from the overall average rating.

On the other hand, one can also add random slopes, for example, to

model different participants as having a different sensitivity to a given

predictor variable xi. This can be modeled by also including xi in z⃗c,
such that the respective entry of u⃗c models the increased (or decreased)

sensitivity of cluster c to the predictor xi.
One often uses a shorthand notation for describing the structure of An example

a CLMM. For instance, Christensen [102] considers a CLMM, which

models the bitterness rating of various wines based on the predictor

variables temperature and contact (i.e., whether juice and skin were

separated while crushing the grapes). He assumes, that there may be

systematic rating differences between judges, which he models through

the variable judge:

P(yrating ≤ j) = σ(αk − βtemperature · xtemperature
− βcontact · xcontact − ujudge)

This overall relation can be expressed more compactly by using the Shorthand notation

following shorthand notation [102, 103]:

rating ∼ temperature+ contact+ (1 | judge)

Here, (1 | judge) denotes, that each judge has their own intercept. Adding random

slopes
If we also include a group-level random slope for the temperature
variable, the shorthand notation looks as follows [81]:

rating ∼ temp+ contact+ (1 + temperature | judge)

Here, (1 + temperature | judge) denotes, that both the intercept (i.e., Interaction of

variables
a constant value of 1) and the coefficient with respect to the temperature
depend on the grouping variable judge. Finally, the interaction of two

predictor variables can be written as follows:

P(yrating ≤ j) = σ(αk − βtemperature · xtemperature
− βcontact · xcontact
− βinteraction · xtemperature · xcontact)

rating ∼ temperature · contact

CLMMs are used to analyze ordinal data by first specifying the Fitting CLMMs

model’s structure and then estimating the parameters α⃗, β⃗, and u⃗c
based on the available data. This is usually done by maximizing the

log likelihood of the data (cf. Section 5.1.3) [9, 104, 350]. For evaluation

purposes, one can optimize two separate models, which differ only with

respect to one aspect (e.g., the inclusion or exclusion of a given predictor
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variable). One can then measure, whether the difference between the

two models causes statistically significant differences with respect to

their ability to predict the ordinal response variable [104, 350]. This is

usually done by resorting to the likelihood ratio of the two models.

The likelihood ratio λ quantifies the relative likelihood of the observedLikelihood ratio

data with respect to the two models under consideration [166]. It can

be computed as follows, where pk is the probability density function

of the given model k, x⃗ is the vector of observations, and θ̂k are the

maximum-likelihood estimates for the parameters of model k [166]:

λ =
p2(x⃗ | θ̂2)
p1(x⃗ | θ̂1)

For λ > 1, the second model is preferred over the first one, since itInterpretation

gives a better account of the observed data. Conversely, for λ < 1, the

first model is preferred over the second one. In both cases, the order of

magnitude of λ indicates the strength of the preference.

Wilks [435] was able to show, that the quantity −2 lnλ follows aStatistical test for

model differences χ2
-distribution for sufficiently large sample sizes. The χ2

-distribution

is usually used in Pearson’s χ2
test, which analyzes the interaction of

two categorical variables [155, Chapter 18]. Since the χ2
-distribution

is already well-known in the context of statistical tests, one can apply

it also to the likelihood ratio in order to test for statistical significant

differences between two models: One computes the term −2 lnλ based

on the likelihood ratio λ, and then assesses the probability of obtaining

this value based on a χ2
distribution, whose degrees of freedom reflect

the difference in free parameters between the two models. The results

of the statistical test are reported by specifying the degrees of freedom,

the obtained value for −2 lnλ, and the significance level: For instance,

χ2(1) = 9.92, p < 0.05 indicates, that the models differed with respect

to a single parameter, that −2 lnλ = 9.92, and that the probability of

observing this value under the null hypothesis of no difference between

the models is below 5%.

In our subsequent statistical analyses, we will also make use of Pear-Statistical

significance for

Pearson’s r
son’s r. Remember from Section 9.1.2, that Pearson’s r is a correlation

coefficient, which measures the linear correlation between two quan-

tities. In addition to computing the raw value of Pearson’s r, we are

also interested in conducting a test of statistical significance. The null

hypothesis in this case is, that the true correlation in the underlying pop-

ulation equals zero [15]. We thus investigate, whether the correlation

coefficient is significantly different from zero. This can for instance be

done by resorting to a t-test, because the following expression follows a

t-distribution with N − 2 degrees of freedom (where N is the number

of observations) [155, Section 6.3]:

t =
r ·

√
N − 2√

1− r2
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In addition to a statistical test on the correlation coefficient, we will Confidence interval

for Pearson’s r
also provide a 95% confidence interval (CI). This confidence interval gives

us a range of plausible values for the true correlation coefficient of the

underlying population [365]. More specifically, we expect, that the true

value of the correlation coefficient lies within this confidence interval

for 95% of the samples, which can be drawn from the population [155,

Section 2.5.2].

The distribution of r as measured from samples is unfortunately not Using a z
transformation

necessarily normal, but often skewed, if the true correlation differs

strongly from zero [365]. It is therefore difficult to directly assess the

probability distribution of r in order to construct a confidence interval.

Instead, a so-called z transformation is used, where we compute an

auxiliary variable z as follows (see [365] and [155, Section 6.3]):

z =
1

2
ln

(︃
1 + r

1− r

)︃
The resulting variable z is approximately normally distributed with Distribution of z

a variance of σ2z = 1
N−3 (where N is the number of observations)

[15, 365]. Notably, this variance is independent from the value of r.
For the variable z, we can now easily define a 95% confidence interval

[zlower, zupper], since z follows a normal distribution [28, 365]:

zlower = z + v0.025 ·
√︃

1

N − 3
zupper = z + v0.975 ·

√︃
1

N − 3

For both bounds, we start at our estimate of z and move away from this Deriving the

boundaries
point estimate based on the standard deviation of z. The factors v0.025
and v0.975 reflect the thresholds for 2.5% and 97.5% of the probability

mass of a standard normal distribution, respectively. They correspond

to v0.025 ≈ −1.96 and v0.975 ≈ 1.96, respectively [155, Section 6.3]. This

95% confidence interval [zlower, zupper] for z can now be transformed

back into a 95% confidence interval [rlower, rupper] for the correlation

coefficient r by inverting the z transformation (cf. [28, 365] and [155,

Section 6.3]):

rlower = tanh(zlower) =
e2·zlower − 1

e2·zlower + 1

rupper = tanh(zupper) =
e2·zupper − 1

e2·zupper + 1

10.3.2 Comparing Visual and Conceptual Similarity

Before extracting similarity spaces from the visual dissimilarity ratings, Visual and

conceptual similarity
we need to ensure, that they indeed capture shape similarity and not

general conceptual similarity. As argued above, information about the

shape of objects plays a critical role in conceptualizing them. Therefore,

shape similarity can be seen as an important basis of conceptual sim-

ilarity. However, conceptual similarity also has additional sources of

information, such as size, color, and texture (which are also based
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Figure 10.7: Comparison of the visual and conceptual similarity ratings. (a)

Distribution of the ratings. (b) Boxplot of the ratings as a function

of the type of image pair.

on visual input), or weight, sound, and usage (which are not based on

visual input). Overall, we thus expect, that conceptual similarity and

shape similarity are correlated to a certain extent, but that we are also

able to identify clear differences between them.

We randomly selected 10 of the 15 shape similarity ratings per imageCLMM setup

pair in order to have the same number of data points for each rating

type. The numerical coding was standardized (1 for "very dissimilar" to

5 for "very similar") by inverting the scale of the conceptual dissimilarity

ratings.
19

For our analyses with CLMMs, we considered the variables

rating (i.e., the similarity rating for a given pair of items), ratingType
(conceptual similarity vs. visual similarity), visualType (visually co-

herent vs. visually variable categories), pairType (within-category vs.

between-category) and pairID (i.e., a unique ID for each pair of items).

Our basic CLMM used the following formula with a logit link:

rating ∼ ratingType+ (1 + ratingType | pairID)

We assumed, that the value of the ordinal similarity rating is consis-Interpreting the

CLMM
tently affected by the type of similarity (visual vs. conceptual), but that

there are also random effects with respect to both the intercept and the

slope based on the individual item pairs. In other words, if we ignore

the individual effects based on the respective item pairs, we expected

to find a clear trend based on the rating type (visual vs. conceptual).

Both types of ratings had a distribution across the full scale with aThe overall

distribution of

ratings

mode of 1 (see Figure 10.7a). The heavy bias towards non-similarity

in both types of ratings is due to both the much higher number of

19 As Tversky [412] has pointed out, such a simple inverse relationship between similarity

and dissimilarity, does, unfortunately, not always hold, when collecting psychological

data. He argues, that judging the similarity of two stimuli incites participants to

search for common features, while rating dissimilarity emphasizes distinctive features.

Tversky also supports his claims with data from a small study. Since we analyzed

a pre-existing set of ratings, which had been collected with two inverse scales, and

since re-conducting the experiments was not feasible with our given resources, we

nevertheless decided to make this simplifying assumption.
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between-category pairs than within-category pairs, and the lack of

shape similarities across categories for our stimulus set.
20

Although the

rating distributions were roughly similar, the central tendency of the

two rating types differed significantly (χ2(1) = 178.33, p < .0001), as a

likelihood ratio test of the following two CLMMs revealed:
21

rating ∼ ratingType+ (1 + ratingType | pairID)

rating ∼ 1 + (1 + ratingType | pairID)

Since the two models only differ with respect to a main effect based on Interpretation

the ratingType (i.e., visual vs. conceptual similarity), a statistically sig-

nificant difference between the two CLMMs shows, that the ratingType
has a significant impact on the overall rating, which cannot be explained

by random effects based on the individual pairIDs. This indicates, that

the perception of shape similarity was governed by different factors

than the perception of conceptual similarity.
22

A separate analysis of the results of between- and within-category Within-category vs.

between-category
pairs further supports this conclusion. As the boxplot in Figure 10.7b

shows, the level of conceptual similarity was clearly determined by

category membership with small variances (inter-quartile ranges
23

between 0 and 1), whereas the level of shape similarity was poorly

predicted by category membership (different medians in the three

groups and partially overlapping inter-quartile ranges).

We estimated with CLMMs, whether the two rating types also differed Looking at

between-category

pairs

significantly, when analyzing the within-category pairs and between-

category pairs separately. We first applied the following CLMMs only

to the between-category pairs in our data:

rating ∼ ratingType+ (1 + ratingType | pairID)

rating ∼ 1 + (1 + ratingType | pairID)

A likelihood ratio test revealed, that shape similarity tended to The effect persists

be significantly higher than conceptual similarity (χ2(1) = 281.95,

p < .0001), verifying that semantic relationship is not required in order

to perceive two shapes as visually similar.

The analysis of the within-category pairs was conducted with the Considering

within-category pairs
following four CLMMs, where the first one was used as alternative

20 As Verheyen et al. [418] noted, similarity ratings skewed towards dissimilarity are

usually captured quite well by spatial models – a promising observation with respect

our aim of extracting similarity spaces from these ratings.

21 Likelihood ratio tests were conducted using the anova() function.

22 One may argue, that this may to some extent be an artifact of our conversion of

dissimilarities to similarities as discussed above. However, given the very low p value

and the very similar elicitation method using Likert scales with labeled end points

(cf. Section 10.2.2), it seems unlikely, that our results can be solely explained by the

conversion of the ratings. This also holds for our subsequent analyses in the remainder

of this section.

23 The difference between the third and the first quartile of the data, illustrated by the

height of the respective box.
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hypothesis, while the other ones were used as null hypotheses to

investigate main effects and interactions, respectively:

rating ∼ ratingType ∗ visualType+ (1 + ratingType | pairID)
(10.1)

rating ∼ ratingType+ visualType+ (1 + ratingType | pairID)
(10.2)

rating ∼ visualType+ (1 + ratingType | pairID) (10.3)

rating ∼ ratingType+ (1 + ratingType | pairID) (10.4)

Here, we additionally included visualType as a predictor, sinceComparing VC with

VV categories
the type of category (visually coherent vs. visually variable) may

play an important role for within-category ratings, especially with

respect to visual similarity. Please recall from Section 10.3.1, that both

shorthand notations ratingType + visualType (as used for CLMM

10.2) and ratingType · visualType (CLMM 10.1) involve two individual

linear terms βratingType · xratingType and βvisualType · xvisualType, but

that ratingType · visualType also adds a nonlinear interaction term

βinteraction · xratingType · xvisualType to the model.

We found a significant difference between the shape similarity andResults

the conceptual similarity ratings: Shape similarity tended to be lower

than semantic similarity (i.e., main effect of ratingType: χ2(2) = 152.09,

p < .0001, obtained by comparing the CLMMs 10.1 and 10.3). This effect

was significantly stronger for visually variable (VV) categories than for

visually coherent (VC) categories (significant interaction: χ2(1) = 32.36,

p < .0001, comparison of CLMMs 10.1 and 10.2). This observation

verifies, that semantic relationship is also not a sufficient condition for

perceiving two shapes as visually similar. Finally, we also found a main

effect of visualType (χ2(2) = 116.19, p < .001, comparing CLMMs

10.1 and 10.4), indicating, that visually coherent (VC) categories led

to higher within-category ratings than visually variable (VV) categories.

We furthermore aggregated both types of similarity ratings intoGlobal similarity

matrices
global similarity matrices using the median as an aggregator in order

to meet the ordinal scale of measurement of the dependent variable,

and the same ten ratings per item pair as used above.

Analyzing the Kendall rank correlation [219] (cf. Section 9.1.2) be-Correlation of

aggregated ratings
tween the entries of the two matrices resulted in τ ≈ 0.39, indicating

that there is some limited correlation between visual and conceptual

similarity. Figure 10.8 shows a scatter plot for the entries of the two

matrices. One cannot observe a clear linear or monotone trend, but

there is a strong agreement on the lowest similarity value (visualized

by the size of the circle). Based on the observation from Figure 10.7a,

that both dissimilarity matrices contain a large amount of these values,

this is, however, not a large surprise.

Table 10.2 shows some item pairs with large and small differencesLooking at concrete

examples
between visual similarity (SimV is) and conceptual similarity (SimCon)

based on the entries of the respective dissimilarity matrix. As we can see,

conceptual similarity seems to be much larger than visual similarity,
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Figure 10.8: Scatter plot for the entries of the global similarity matrices based

on conceptual and visual similarity ratings.

SimV is ≪ SimCon SimV is ≫ SimCon SimV is = SimCon

carrot – bell pepper tea pot – apple dishwasher – washing machine

banana – cherry igloo – ladybug ant – fly

ladybug – horse asparagus – axe ladybug – axe

apple – asparagus banana – saw carrot – tea pot

Table 10.2: Examples for item pairs with different relations of visual and

conceptual similarity.

if the items belong to the same (super-)category (vegetables, fruit,

animals, and plants, respectively), but differ in their visual appearance.

On the other hand, visual similarity is much larger than conceptual

similarity, if the items have a similar shape, but belong to different cate-

gories. Finally, visual and conceptual similarity are identical either for

visually similar items from the same category, or for visually dissimilar

items from different categories. The latter case illustrates again the large

number of item pairs, which were rated as very dissimilar under both

conceptual and visual similarity. While the overall distribution of the

similarity ratings seems to be quite similar on a first glance, the exam-

ples from Table 10.2 indicate, that the statistically significant differences

between visual and conceptual similarities as reported above can be

easily interpreted and conform to our expectations.

As we have seen in our CLMM-based analysis above as well as in Item-based and

category-based visual

similarity

the box plot from Figure 10.7b, the distinction into visually coherent

and visually variable categories seems to be reflected in the visual, but

not in the conceptual similarity ratings. In the following, we investigate

this observation in more detail. In addition to the item-based similarity

matrices, we have also aggregated the raw similarity ratings based on
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Figure 10.9: Item-based similarity matrices for visual (above the diagonal)

and conceptual (below the diagonal) similarity ratings.
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Figure 10.10: (a) Category-based similarity matrix for visual similarity. (b)

Category-based similarity matrix for conceptual similarity.

the category structure, using the median to arrive at overall within-

category and between-category dissimilarities. Figures 10.9 and 10.10

show the item-based and the category-based similarity matrices for

both visual and conceptual similarity ratings.

The item-based shape similarity matrix is shown in Figure 10.9 Item-based shape

similarity
as triangular area above the diagonal. One can see, that obviously

similar shapes were consistently rated as very similar (black colored

combinations, e.g. blouse–jacket or teapot–apple), and that obviously

dissimilar shapes were consistently rated as very dissimilar (white

colored combinations, e.g. onion–carrot or plate–hammer), confirming

a general sensitivity of the ratings to shape properties. For both high

similarities and low similarities, we can find within-category and

between-category pairs, indicating that the perceived similarity was

not per se determined by semantic-taxonomic knowledge. However,

high similarity combinations tend to be clustered within categories.

Looking at the average similarity of within-category pairs only Shape similarity of

VV and VC

categories

(arranged at the diagonal of Figure 10.10a), one can see a clear distinction

between visually variables (VV) categories (low to medium, see top

left of the diagonal) and visually coherent (VC) categories (high for all

categories, see lower right of the diagonal), supporting the visual type

of the categories as classified by Scheibel and Indefrey [349].

Moreover, the average level of shape similarity for within-VV category VV categories and

between-category

ratings

pairs is not specific for these categories: Similar levels of shape similarity

can also be observed for between-category pairs, which – crucially –

can comprise semantically unrelated categories (such as ungulates

and vehicles). This finding gives some evidence against large semantic

confounds in the shape ratings.

The highest off-diagonal value in Figure 10.10a is given for the Visual similarity of

fruits and

vegetables

category combination fruits–vegetables. While both categories have

a low average intra-category visual similarity, we can observe high

inter-category shape similarity for some specific combinations of stim-

uli. This is illustrated in Figure 10.11: High similarities occur mainly
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Figure 10.11: Aggregated visual similarity for item pairs from the categories

vegetables and fruit.

for combinations of the roundish objects {apple, raspberry, lemon}
and {bell pepper,onion}, and for combinations of the elongated ob-

jects {banana} and {carrot,asparagus}. This already indicates the

relevance of the form feature for the perceived shape similarity. The

relatively high similarity between raspberry and cauliflower on the

other hand seems to refer also to their internal structure and hence to the

lines feature. While both categories are visually heterogeneous, some

subsets of items match well with each other resulting in a relatively

high overall inter-category similarity.

Let us now take a look at the conceptual similarity ratings. TheConsidering

conceptual similarity
category-based conceptual similarity matrix in Figure 10.10b shows,

that the average similarity level was high within all categories (black

colored, see the diagonal), and low for most of the between-category

pairs (white colored), confirming a general sensitivity of the ratings

to semantic-taxonomic knowledge. In Figure 10.10b, we can also find

a prominent cluster at the center of the matrix, where high between-

category similarities can be observed. This cluster is clearly delimited

to pairs of taxonomically related categories, which have a common

superordinate category (animals or living organisms), and corresponds

to the six categories of natural objects. The only other pair of categories

with a somewhat elevated conceptual similarity is appliances–dishes.

This cannot be explained by taxonomy, but may relate to shared con-

texts (e.g., a kitchen). As one can see in Figure 10.9 (entries below the

diagonal), high conceptual similarity outside these clusters is limited

to only a handful of exceptions, which might be negligible outliers.
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The category-based similarity matrix in Figure 10.10b furthermore Category type and

conceptual similarity
shows no difference in the intra-category level of conceptual similarity

for visually coherent (VC) and visually variable (VV) categories. This in-

dicates, that a strong semantic relationship between category members

was given for all categories, such that common shape characteristics

were secondary for making conceptual similarity judgments.

We can conclude our investigations by stating, that visual and concep- Summary

tual similarity differ from each other in meaningful ways. The ratings

obtained for visual similarity seem to refer to similarity of shapes rather

than conceptual similarity. For the remainder of this dissertation, we

will focus exclusively on the data concerning visual similarity.

10.3.3 Comparing Pre-Attentive and Attentive Feature Ratings

Let us now turn to the ratings with respect to the psychological shape Overview

features form, lines, and orientation. In this section, we investigate,

whether the three features are correlated with each other, and whether

we can observe considerable differences between attentive and pre-

attentive ratings. In order to compare attentive and pre-attentive ratings

in a meaningful way, we used the aggregated ratings as described in

Section 10.2.3 (i.e., a single average score per item across all partici-

pants). If we used the individual ratings instead (as in the analysis

of dissimilarity ratings in Section 10.3.2), we would need to compare

continuous attentive ratings to discrete pre-attentive ratings, which

would have made a clean analysis much more cumbersome.

The distributions of the aggregated feature values are displayed in Histograms

Figure 10.12, distinguishing between the three shape features and the

type of rating experiment (attentive vs. pre-attentive perception). As

the histograms illustrate, the ratings do not follow an obvious pattern

such as being uniformly distributed, showing two distinct clusters at

the ends of the scale, or following a normal distribution. In all cases, a

variety of different feature values can be observed, indicating, that the

features are able to differentiate between different stimuli.

In a first step, we investigated, whether the different psychological Are features

uncorrelated?
features are correlated with each other. Since they are typically viewed

as conveying orthogonal pieces of information, we expect them to be

largely uncorrelated. Correlation analyses have been conducted using

Pearson’s r [315] (cf. Sections 9.1.2 and 10.3.1).
24

Let us first focus on the attentive ratings. There was a small, but Attentive ratings

statistically insignificant positive relationship between form and lines

(r = 0.23, CI = (−0.02, 0.46), t(58) = 1.82, p > .05). There was no cor-

relation between lines and orientation (r = −0.08, CI = (−0.33, 0.18),
t(58) = −0.62, p > .5). The features form and orientation showed

a small negative, but not significant correlation (r = −0.19, CI =

24 Pearson correlation coefficients as well as 95% confidence intervals (CI) and statistical

significance values were estimated using the cor.test() function of R.
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Figure 10.12: Histograms for both attentive and pre-attentive ratings with

respect to form, lines, and orientation.
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Figure 10.13: Scatter plot for the features form and lines based on the attentive

feature ratings.

(−0.42, 0.07), t(58) = −1.96, p > .1), indicating that elongated shapes

tended to have a vertical orientation and blob-like shapes a horizontal

orientation. Since correlations between features were small and not

significant, the inspected primitive shape features seem to refer to

distinct shape qualities, which can be perceived selectively.

For the pre-attentive ratings, a similar picture emerged: There was a Pre-attentive ratings

small, but insignificant positive relationship between form and lines

(r = 0.22, CI = (−0.03, 0.45), t(58) = 1.75, p > .05), and we again

found no relationship between lines and orientation (r = −0.01,

CI = (−0.27, 0.24), t(58) = −0.10, p > .5). Also the features form and

orientation showed no correlation in the pre-attentive data (r = 0.06,

CI = (−0.20, 0.31), t(58) = 0.45, p > .5). Overall, correlations between

features were small and not significant, suggesting, that the inspected

primitive shape features refer to distinct shape qualities.

Figure 10.13 shows a scatter plot for the feature pair form and lines Visualizing form

and lines
based on the attentive feature ratings. Even though we have found a

small positive (but statistically not significant) correlation, we are not

able to see a clear monotone trend in the scatter plot. Similar observa-

tions can be made on the scatter plots for the other feature pairs (both

for attentive and pre-attentive ratings) which are reported in Appendix

E.1.
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Our second analysis of the feature ratings aimed at clarifying, whetherComparing attentive

and pre-attentive

ratings

the duration of perception systematically affected the feature values. In

other words, we investigated, how similar attentive and pre-attentive

ratings were for the three selected shape features. We considered each

feature separately, using dependent t-tests to estimate the significance

of the difference between attentive and pre-attentive feature values,

and Pearson’s r to estimate the strength of their correlation.

For the form feature, we observed no effect of viewing duration onform: no difference,

high correlation
the ratings (t(59) = −0.32, p > .5), indicating, that the global structure

of a shape is rapidly, pre-consciously perceived, and that this perception

is not changed by attentional mechanisms. Early form perceptions were

strongly correlated with form perceptions after normal viewing times

(r = 0.77, CI = (0.64, 0.85), t(58) = 9.1, p < .0001). The range of the

confidence interval was small and did not cross zero, indicating, that

the strong positive correlation can reliably be generalized.

When considering the orientation of the shapes, we found a sta-orientation:

significant difference,

high correlation

tistically significant effect of viewing duration (t(59) = 3.31, p < .01),

indicating, that the perception of shape orientation is changed by

attentive processes. The attentive perception of the shapes’ orienta-

tion (horizontal vs. vertical) was, however, highly correlated with the

pre-attentive perception (r = 0.81, CI = (0.70, 0.88), t(58) = 10.41,

p < .0001). The small confidence interval indicates, that this finding

can reliably be generalized.

As argued in Section 10.1.1, the orientation of lines is usually as-Interpreting the

difference
sociated with pre-attentive processes (cf. the studies by Treisman and

Gormican [409] and Hubel and Wiesel [203], but also the HMAX model

[331]). However, other studies (e.g., by Sagi and Julesz [344], by Palmer

et al. [313], and by Töllner et al. [413]) have also found, that while

pre-attentive processes are sufficient to decide about the presence or

absence of a target stimulus, which differs in its orientation from the

context objects, attentive processes are needed in order to determine

the exact value of the orientation feature (e.g., whether the "odd one

out" was horizontally or vertically oriented). The observed differences

between pre-attentive and attentive ratings for the orientation feature

are thus not entirely surprising, and match similar observations from

the literature.

Finally, there was no significant effect of viewing duration on thelines: no difference,

high correlation
perception of the main lines of the items (t(59) = 1.43, p > .1), in-

dicating, that the shape of the main lines is already pre-consciously

perceived, and that the perception of the lines does not change under

attentive viewing. The attentive perception of the lines was strongly

correlated with the pre-attentive perception (r = 0.74,CI = (0.60, 0.84),
t(58) = 8.40, p < .0001). Again, the small confidence interval indicates

that this finding can reliably be generalized.

Figure 10.14 shows a scatter plot illustrating the values of the ori-Differences in

orientation ratings
entation feature for all items based on pre-attentive and attentive

perception. We can see a monotone linear trend with some outliers,

including cherry, stork, stag, and church (where pre-attentive ratings

are higher than attentive ratings), as well as windmill, washing machine,
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Figure 10.14: Scatter plot comparing pre-attentive and attentive ratings for

the orientation feature.

and owl (with higher attentive than pre-attentive ratings). If we take a

closer look, these conflicts seems to make intuitive sense: For instance,

for the cherry, pre-attentive judgments may have focused on the vertical

stems, while attentive processing also took into account the overall

convex hull of the object. For stork, stag, and church, the presence

of both horizontal and vertical lines may have led to a pre-attentive

judgment of "quite diagonal", while the overall horizontal extension of

the objects may have played a more important role in attentive ratings.

For windmill, washing machine, and owl, we find many diagonal lines

(on which pre-attentive processing may have focused), while semantic

knowledge about the depicted objects may have led to ratings leaning

towards vertical orientation. Analogous scatter plot for the features

form and lines are similar in nature and can be found in Appendix E.2.

The inspected primitive shape features Form, Orientation, and lines Summary

seem to describe independent shape qualities, since we found no

significant correlations between features. This general finding supports

models on visual perception, which assume, that perceptual processing

includes the perception of primitives or low-level qualities. Moreover,

the perception of form and lines seems to be rather unaffected by the

duration of shape perception, since we found no difference between
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attentive and pre-attentive results. This indicates, that the identification

of reliable feature information about a shape is very early completed,

which is in line with models assuming, that primitive features are

identified at a pre-attentive level of visual processing [409]. The impact

of viewing duration on the ratings for the orientation feature indicate,

that this feature is less stable with respect to pre-attentive vs. attentive

processes, a finding, which is in line with the literature.

For our analysis of these features in the context of a similarity space forExpectations for

shape space
the shape domain, we expect, that meaningful directions corresponding

to these features can be found, independent from the underlying

rating type (pre-attentive vs. attentive). Moreover, we expect, that the

directions based on pre-attentive feature ratings are quite similar to the

directions based on attentive feature ratings. Finally, the correlations

between features should be reflected by the similarity of the extracted

directions – for instance, the directions corresponding to lines and

orientation should be orthogonal in the similarity space, because they

have been found to be uncorrelated in our analysis. We will compare

these expectations to our results in Chapter 11.

10.4 summary

In this chapter, we have given an overview of relevant literature onLessons learned: the

dataset...
shape perception from different subfields of cognitive science. Moreover,

we have presented and analyzed a dataset containing line drawings

of everyday objects. This dataset includes both conceptual and visual

dissimilarity ratings for a set of 60 stimuli, as well as ratings with respect

to the three shape features form, lines, and orientation. Values for

these features have been elicited both based on an attentive and a pre-

attentive experimental setting. Moreover, the ratings contained in our

dataset have been made publicly available, allowing other researchers

to develop their own models of shape perception and to conduct further

analyses. In addition to the conceptual spaces approach, which we will

present in the following chapter, this may also include feature-based

models as considered for example by Schubert and Endres [354].

Our analysis of the dissimilarity ratings has confirmed, that visual...and its analysis

dissimilarity ratings do refer to the shape domain, and that they differ

considerably from general semantic-conceptual dissimilarity ratings in

meaningful ways. With respect to the three shape features, our analyses

have confirmed their status as representing foundational aspects of

shape perception. This can be seen by the high correlation of attentive

and pre-attentive ratings, which indicate, that the features are already

formed at a relatively early stage of visual processing, and that they

remain largely unchanged later on. The orientation feature seems to

be the only one influenced by attentive processes, but it still shows a

high correlation between pre-attentive and attentive ratings.

In future work, one could investigate additional feature variants,Open ends:

additional features
e.g., by taking further inspiration from artificial systems. Some of
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the computer vision features discussed in Section 10.1.3 are strongly

related to the psychological features considered in our dataset (e.g.,

eccentricity seems to correspond to the form feature), but can be

extracted in an automated way from input images. It may thus be

interesting to analyze, to which extent psychological ratings can be

replaced by mathematically defined features, relating also to the study

by Morgenstern et al. [297] discussed in Section 10.1.3. Moreover, the

computer vision community considers a variety of features, which seem

to be different in nature from the psychological features considered in

our work. One may thus investigate, to which extent approaches such

as spectral transformations of the image are capable of explaining the

dissimilarity ratings collected in our experiments.

At this point, we should again point out, that our study used a quite The orientation

feature
simplified version of the orientation feature, essentially restricting it

to a horizontal-vertical contrast (cf. Section 10.2.3). Moreover, from the

perspective of conceptual spaces, one may argue, that orientation is

not part of the shape domain, but rather associated with the overall

configuration of an object (which also includes its location, cf. Sections

2.4.3 and 10.1.2). Also the statistically significant impact of viewing

duration on the feature ratings as reported in Section 10.3.3 highlight,

that more research with respect to the orientation feature.

The dataset presented in this chapter will serve as a basis for our Outlook

second exemplary application of the hybrid approach proposed in

Section 8.7.1: In Chapter 11, we will apply multidimensional scaling

(cf. Chapter 8) to the visual dissimilarity ratings in order to extract

similarity spaces of different dimensionality for the shape domain. The

different candidate similarity spaces will then be analyzed based on

both the category structure and the feature ratings from our dataset.

In Chapter 12, we will then train convolutional neural networks (cf.

Sections 6.2.2 and 10.1.4) on the task of mapping a given input image

onto its coordinates in shape space.
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In this chapter, we use the dataset from Chapter 10 to obtain a Analyzing shape

spaces
psychological similarity space for the shape domain. We follow a

similar procedure as in Chapter 9 for the NOUN dataset, but include

a more detailed analysis of the similarity spaces. This analysis is

based on three criteria, namely, the correlation between distances and

dissimilarities, the well-shapedness of conceptual regions, and the

existence of interpretable directions. We thus make use of both Stress-

based and interpretability-based evaluation methods as introduced in

Section 8.6.

We first create similarity spaces of varying dimensionality in Sec- Obtaining similarity

spaces
tion 11.1 using nonmetric multidimensional scaling (MDS). This also

includes the distinction of two aggregator functions: Typical studies

involving MDS compute the average dissimilarity ratings across all

individual participants by using the arithmetic mean. However, since

the original ratings are usually ordinally scaled, the median would be a

more appropriate choice (cf. Section 8.1.4). We use both aggregators

for constructing global dissimilarity matrices and similarity spaces in

order to investigate possible effects.

Like in Chapter 9, we then analyze in Section 11.2 the correlation Correlations between

distances and

dissimilarities

between the distances in the similarity spaces and the original dissimi-

larities. In addition to the pixel baseline and the ANN baseline already

known from Chapter 9, we also make use of the feature ratings as a

third baseline approach for predicting dissimilarities.

623
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In Section 11.3, we then analyze the category structure of the MDS-Conceptual regions

based similarity spaces. Since the stimuli from our dataset are grouped

into semantic categories, we investigate, whether these categories can be

represented by small and convex, non-overlapping regions, as predicted

by the conceptual spaces framework.

Inspired by the research of Derrac and Schockaert [123] (cf. SectionInterpretable

directions
8.6.2), we then use the ratings with respect to the three psychologi-

cal features form, lines, and orientation to search for interpretable

directions in the similarity spaces in Section 11.4.

Finally, Section 11.5 summarizes the main results from this chapterSummary

and gives an outlook on future work.

The research described in this chapter has been conducted in cooper-

ation with Margit Scheibel.
1

Preliminary results have been published in

[52, 53], and a publication of our final results is currently in preparation

[54]. Both the dissimilarity and feature ratings from our dataset, and

the source code necessary for reproducing our similarity spaces and

their analysis are publicly available on GitHub [39].
2

Due to copyright

issues, we are unfortunately not allowed to publicly share the line

drawings used as stimuli in our dataset. They are, however, available

upon request.

11.1 obtaining similarity spaces with mds

In this section, we use the visual similarity ratings from Chapter 10 toOverview

extract shape similarity spaces of various dimensionality. In Section

11.1.1, we discuss the difference between using the mean and the median

for aggregating ordinal dissimilarities. We also compare the resulting

dissimilarity matrices. In Section 11.1.2, we then describe in more detail,

how the similarity spaces were extracted using multidimensional

scaling (MDS), and we take a look at the resulting Scree plots as a form

of Stress-based evaluation.

11.1.1 Comparing Mean Dissimilarities to Median Dissimilarities

Since the individual dissimilarity ratings from our dataset have beenMean and median

aggregation
collected using a Likert scale (cf. Section 10.2.2), they are ordinally

scaled. This means, that one can only talk about their order, but for

example not about distances between them. Therefore, one is techni-

cally not allowed to aggregate them with the arithmetic mean, which

uses distance computations, and which thus requires an interval scale.

However, as already mentioned in Section 8.1.4, many studies use the

1 As already noted in Chapter 10, Margit Scheibel has designed and conducted the

psychological experiments discussed in Section 10.2. She has furthermore conducted

several statistical analyses of the collected data (cf. Section 10.3). The extraction of

similarity spaces and their subsequent analysis as reported in this chapter has been

completely carried out by myself.

2 See https://github.com/lbechberger/LearningPsychologicalSpaces/.

https://github.com/lbechberger/LearningPsychologicalSpaces/
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arithmetic mean for aggregating dissimilarity scores across participants

[139, 248, 433]. Instead, one should use the median of the dissimilarity

ratings, which assumes only an ordinal scale, and which furthermore

tends to be more robust against outliers. However, as the median has

a more limited co-domain than the mean (i.e., it produces a smaller

amount of unique values), the resulting dissimilarity matrix comes at a

lower "resolution".

In order to investigate the effect of the aggregator function (mean vs. Using both

aggregators
median), we aggregated the visual dissimilarity ratings (taking 15 ran-

domly chosen ratings per item pair and inverting the scale by defining

dissimilarity = 5− similarity) by using both the arithmetic mean and

the median and compared the resulting dissimilarity matrices. We will

refer to them as "mean matrix" and "median matrix", respectively.

The median and mean matrix differed mainly in two aspects: Firstly, First difference:

number of unique

values

the number of distinct values was much higher in the mean matrix

than in the median matrix (59 vs. 5). This comes as no surprise, because

the original ratings are based on a five-point Likert scale: The median

over an odd number of ratings is thus also a natural number between

zero and four. The arithmetic mean, on the other hand, may return any

rational number in the interval [0,4].

Secondly, the number of ties, i.e. the proportion of item pairs, which Second difference:

number of ties
have exactly the same dissimilarity value, amounted to 1% in the mean

matrix, but to 12% in the median matrix. This can be traced back to the

aforementioned difference in the number of unique values: Since the

median matrix contains only five unique values, ties are much more

likely than in the median matrix with its 59 distinct values.

The number of ties is typically ignored when computing Stress in the Ties and constraints

context of multidimensional scaling (cf. Section 8.2.2). This also means,

that the number of ties in a dissimilarity matrix of fixed size determines,

how strongly a possible MDS solution is constrained: Each non-tied

pair (x, y) of matrix entries enforces a constraint x > y or y < x on

the similarity space. Similarity spaces based on the mean matrix are

thus more constrained than similarity spaces based on the median

matrix. These additional constraints could on the one hand provide

valuable additional pieces of information, which could improve the

quality of the similarity spaces. On the other hand, it is also possible,

that these additional constraints mainly reflect random noise, which

would presumably deteriorate rather than improve the MDS solutions.

Figure 11.1 compares the two matrices with a scatter plot of their Comparing the

matrix entries
entries. The correlation between the two matrices as measured with

Spearman’s ρ [384] (cf. Section 9.1.2) was statistically significant (ρ =
0.8, p = 0.0). This can be easily explained by the fact, that both matrices

were created from the same raw data. Critically, despite the high

correlation, the ordering of items pairs differed in a notable number

of cases. There were item pairs with a larger median than mean (e.g.,

the item pair (tea pot, stork): median = 4, mean = 2.8), but also item

pairs with a smaller median than mean (e.g. the pair (tea pot, car):
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Figure 11.1: Scatter plot for the entries of the mean and median matrix.

median = 3, mean = 3.07). The ordering of these two example item

pairs differs between the two matrices. Based on the mean matrix, tea

pot should be closer to stork than to car (since 2.8 < 3.07), while the

median matrix enforces the opposite constraint (since 3 < 4). This may

lead to differences in the resulting similarity spaces.

11.1.2 Extracting the Similarity Spaces

As discussed above, the dissimilarity ratings from our dataset wereUsing nonmetric

MDS
collected with ordinal Likert scales using pairwise comparisons. Due to

the ordinal scale, we only considered nonmetric MDS for our purposes.

As we have seen in Chapter 9, even in cases, where one can argue, that

the dissimilarity ratings are ratio scaled, using metric MDS does not

yield any advantages. Therefore, the choice of using nonmetric MDS in

unlikely to weaken our overall results.

We extracted similarity spaces from both the mean and the medianSMACOF setup

matrix running nonmetric SMACOF [115] (cf. Section 8.5) with 256

random starts and a maximum number of iterations of 1,000.
3

In our

analyses, we considered similarity spaces with up to ten dimensions.

Our setup was thus analogous to the one described in Section 9.1.2 for

the NOUN dataset [199], including also the normalization of the spaces

according to Kruskal’s proposal [234] (i.e., centering the configuration

3 We used the original implementation in R’s smacof library [116], see https://cran.
r-project.org/web/packages/smacof/smacof.pdf

https://cran.r-project.org/web/packages/smacof/smacof.pdf
https://cran.r-project.org/web/packages/smacof/smacof.pdf
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Figure 11.2: Scree plots showing the remaining nonmetric Stress as a function

of the number of dimensions. (a) Comparison of mean and median

matrices. (b) Comparison of shapes data and NOUN data.

around the origin, and ensuring, that the mean squared distance of the

points from the origin equals one; cf. Section 9.2.1).

Figure 11.2a shows a joint Scree plot for both the mean and the median Scree plot: mean vs.

median
matrix, plotting remaining Stress against the number of dimensions.

Possible candidates for elbows in the graph can be identified at two or

three dimensions, while Stress seems to level off after five dimensions.

This indicates, that spaces with two to five dimensions seem to be the

most promising candidates. While the two curves have a similar overall

shape, the absolute Stress values are about half as large for the median

matrix as for the mean matrix. This does, however, not indicate, that the

similarity spaces found for the median matrix are of a higher quality

than the ones found for the mean matrix: Stress expresses the degree, to

which the constraints from the dissimilarity matrix are violated in the

similarity space (cf. Section 8.2.1). Please remember from Section 11.1.1,

that the median matrix contains a much larger number of ties, i.e., a

smaller number of constraints than the mean matrix. If the absolute

number of constraints is lower, also the absolute number of violated

constraints can be expected to be smaller, resulting in a smaller absolute

value of Stress. A comparison of the absolute Stress values between the

two matrices is therefore not informative.
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Figure 11.3: Two-dimensional similarity space based on the mean matrix.

We can, however, compare the Scree plot of the mean matrix to theScree plot: shapes vs.

NOUN
analogous Scree plot for nonmetric SMACOF from our earlier study

on the NOUN dataset [199] (cf. Section 9.1.3): In both cases, nonmetric

Stress on a mean-based dissimilarity matrix was evaluated for the

nonmetric variant of the SMACOF algorithm. Figure 11.2b illustrates

both Stress curves in direct comparison. As we can see, the two curves

are almost parallel and have a very similar general shape. Moreover,

nonmetric Stress is slightly, but consistently lower for the shapes dataset

than for the NOUN dataset. It thus seems, that the shape dissimi-

larity ratings are slightly easier to fit with a geometric model. One

may speculate, that this is based on the fact, that we focus on a single

domain, but other explanations (such as the usage of everyday versus

novel objects, or the slightly lower number of stimuli) are also possible.

This comparison should therefore be interpreted with caution. Possi-

ble future investigations of the conceptual similarity ratings for the

line drawings could shed some further light on the observed differences.

Finally, let us take a look at the extracted two-dimensional similarityVisual inspection

spaces shown in Figures 11.3 and 11.4. Both spaces contain a meaning-

ful grouping of items based on their visual appearance with logical

transitions between groups. In fact, the rough category-based grouping

in the two similarity spaces can be mapped onto each other through

a reflection at the angle bisector of the first quadrant (i.e., the line

with y = x). A first visual inspection of the similarity spaces therefore
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Figure 11.4: Two-dimensional similarity space based on the median matrix.

looks promising. In the following sections, we will analyze these shape

similarity spaces in a more detailed, quantitative way.

11.2 are distances and dissimilarities cor-
related?

A central assumption of the conceptual spaces framework is, that Overview

large dissimilarities are represented by large distances in the similarity

space. In order to assess, whether this expectation is fulfilled for our

shape spaces, we computed the correlation between distances and

dissimilarities, and compared them to three baselines. In Section 11.2.1,

we introduce the pixel baseline and the ANN baseline from Chapter 9,

as well as a new baseline, which uses the three psychological features

form, lines, and orientation to predict the dissimilarities. Moreover,

we describe our general evaluation setup. In Section 11.2.2, we then

discuss the results obtained for these baselines, before focusing on

the results obtained by our different shape similarity spaces in Section

11.2.3. Overall, we expect, that the similarity spaces (especially high-

dimensional ones) give a considerably better account of the dissimilarity

ratings than our baselines.
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11.2.1 Methods

In order to analyze, how much information about the dissimilaritiesOur baselines

can be readily extracted from the images of the stimuli, we used the

two baselines already introduced in Section 9.1.2.

For our pixel baseline, we used the similarity of downscaled images:Pixel baseline

For each original image (with both a width and height of 283 pixels),

we created lower-resolution variants by aggregating all the pixels in

a k × k block into a single pixel (with k ∈ [2, 283]). We compared

different aggregation functions, namely, minimum, mean, median, and

maximum. The pixels of the resulting downscaled image were then

interpreted as a point in a ⌈283k ⌉ × ⌈283k ⌉ dimensional space.

For our ANN baseline, we extracted the activation vectors from theANN baseline

second-to-last layer of the pre-trained Inception-v3 network [400] for

each of the images from our dataset. Each stimulus was thus represented

by its corresponding activation pattern. While the downscaled images

represent surface level information, the activation patterns of the neural

network can be seen as more abstract representation of the image.

In addition to this, we used the ratings with respect to the threeFeature baseline

psychological features form, lines, and orientation as a third baseline,

henceforth referred to as the feature baseline. More specifically, we used

the scalar values obtained for the psychological features (both for pre-

attentive and attentive ratings) as dimensions of a low-dimensional

similarity space, and investigated, how well distances in this space

reflect the dissimilarity matrix.

For each of the four representation variants (downscaled images,Distances

ANN activations, feature values, and points in an MDS-based similarity

space), we computed three types of distances between all pairs of

stimuli, namely the Euclidean distance dE , the Manhattan distance dM ,

and the negated inner product dIP (cf. Section 9.1.2):

dE(x⃗
(j1), x⃗(j2)) =

⌜⃓⃓⎷ N∑︂
i=1

w2
i · (x

(j1)
i − x

(j2)
i )2

dM (x⃗(j1), x⃗(j2)) =
N∑︂
i=1

wi · |x(j1)i − x
(j2)
i |

dIP (x⃗
(j1), x⃗(j2)) = −1 ·

N∑︂
i=1

w2
i · x

(j1)
i · x(j2)i

We only report results for the best choice of the distance function.Dimension weights

For each distance function, we used two variants like in Chapter 9 for

the NOUN dataset: One, where all dimensions are weighted equally,

and another one, where optimal weights for the individual dimensions

were estimated based on a non-negative least squares regression in a

five-fold cross validation (cf. [319], who followed a similar procedure).
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As an evaluation metric, we computed Kendall’s τ [219] (cf. Section Correlation with

Kendall’s τ
9.1.2) between the distances predicted by the respective baseline and

the target dissimilarity matrix:

τab =
Nc −Nd

N

Please recall, that Kendall’s τ considers all possible pairs of obser- Interpreting

Kendall’s τ
vations (al1 , bl1), (al2 , bl2). Here, Nc is the number of concordant pairs

(i.e., pairs with al1 > al2 ∧ bl1 > bl2 or al1 < al2 ∧ bl1 < bl2), while Nd is

the number of discordant pairs (i.e., pairs with al1 > al2 ∧ bl1 < bl2 or

al1 < al2 ∧ bl1 > bl2), and N refers to the total number of pairs.

We chose Kendall’s τ as a measure for monotone correlation over Motivation for

Kendall’s τ
the more widely used Spearman’s ρ, because its definition is based

directly on the order of item pairs. This makes an easy interpretation

especially with respect to the reversal of item pair orders as described

in Section 11.1.1 much more straightforward. Moreover, by focusing

only on concordant and discordant pairs, ties are automatically ignored.

Therefore, Kendall’s τ is especially recommended for small datasets

with a large number of tied ranks [155, Section 6.5]. Finally, we have

seen in Section 9.1.3, that the same qualitative observations can be made

with both Kendall’s τ and Spearman’s ρ.

When computing Kendall’s τ , we considered only matrix entries Overall workflow

above the diagonal, because the matrices are symmetric, and because

all entries on the diagonal are guaranteed to be zero. Our overall

workflow for comparing dissimilarities and distances is illustrated in

Figure 11.5 and was applied to both the median and the mean matrix.
4

11.2.2 Baselines

Figure 11.6 illustrates the maximal correlation we were able to obtain Overview

for our various baselines. The expected correlation between randomly

drawn configurations of points and the dissimilarity matrices is zero.

Therefore, any value considerably above zero indicates a partial success

in predicting the dissimilarity ratings. Let us first discuss the big picture

from Figure 11.6, before elaborating on the individual baselines.

The feature baseline is able to obtain a correlation of τ ∈ [0.35, 0.38] Effects of weight

optimization
and does not really profit from optimizing the dimension weights.

On the other hand, both the ANN baseline and the pixel baseline

benefit greatly from the weight optimization procedure. We think, that

this difference can be explained based on the dimensionality of the

underlying feature space: While the feature baseline is limited to a

three-dimensional space, the activation vector of the ANN has 2048

entries. Since the number of dimensions directly corresponds to the

number of weights to be estimated, the weight optimization procedure

has considerably more degrees of freedom in the latter case.

4 Please note again, that this procedure of correlating the entries of dissimilarity matrices

from different systems is also known as relational similarity analysis [230] in the literature

(cf. Sections 9.1.2 and 10.1.4).



632 a psychological similarity space for shapes

Figure 11.5: Illustration of our correlation analysis setup, which considers

distances based on the pixels of downscaled images (far left),

activations of an artificial neural network (middle left), values of

psychological shape features (middle right), and similarity spaces

obtained with MDS (far right).

In the uniformly weighted case, the ANN baseline performs worseANN baseline

than the pixel baseline. However, when dimension weights are in-

troduced, the ANN baseline becomes competitive with the feature

baseline, while the pixel baseline shows a slightly inferior correlation.

This observation is in line with the claims by Kubilius et al. [235], that

ANNs are able to extract semantically meaningful shape information

(cf. Section 10.1.4). However, one should keep in mind, that the ANN

baseline still uses a feature space with 2048 dimensions in order to

achieve comparable performance to a three-dimensional space based

on psychological features, which seems to be very inefficient.

When comparing the results between the mean matrix and the me-Mean and median

matrix
dian matrix, the same qualitative effects can be observed. Also the

values of Kendall’s τ are in the same order of magnitude. However, it

seems, that the correlations to the median matrix are always slightly

higher except for the ANN baseline with optimized weights. This can,

however, be easily explained by the larger amount of ties in the median

matrix, which are not considered by Kendall’s τ : There are simply less

constraints, which need to be fulfilled, and thus fewer errors a predictor

can make (cf. the lower Stress values reported in Section 11.1.1).

Let us now take a closer look at the individual baselines. We beginConsidering the

feature baseline
by considering the feature baseline. Table 11.1 gives a more detailed

overview of the results for different variations of this approach. We can

make the following observations:

The correlation to the dissimilarity ratings always increases as moreNumber of features

features are added. The improvement from using a single feature to

using two features is considerably higher than the improvement when

adding the third feature. Nevertheless, also the latter step leads to a
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Figure 11.6: Optimal performance obtainable by the three baselines for both

the mean matrix and the median matrix, using both uniform and

optimized weights.

Matrix Ratings Weights 1D 2D 3D

uniform 0.2278 0.3163 0.3535

Attentive

optimized 0.2294 0.3157 0.3544

uniform 0.2223 0.3041 0.3507

Mean

Pre-attentive

optimized 0.2221 0.3031 0.3466

uniform 0.2517 0.3357 0.3794

Attentive

optimized 0.2517 0.3340 0.3781

uniform 0.2431 0.3207 0.3697

Median

Pre-attentive

optimized 0.2423 0.3214 0.3666

Table 11.1: Kendall’s τ for different variations of the feature baseline.

notable improvement. In all cases, the best single feature for predicting

the dissimilarities is form. orientation is always added as second

feature, and lines always comes last. One may speculate, that this

order indicates the relative importance of the three features for the

dissimilarity judgments on our stimulus set.
5

In all cases, the negated

inner product dIP produced considerably better results than both the

Euclidean and the Manhattan distance.

The inner product a · b = ||a⃗|| · ||b⃗|| · cos θ of two points a and b can be Interpreting the

inner product
interpreted as a similarity measure, which depends both on the length

of the corresponding vectors a⃗ and b⃗ and on the angle θ between them.

Consider Figure 11.7, where we have two pairs of points (a, b) and

(c, d) with the same Euclidean distance, but different distances from

the origin. The vectors a⃗ and b⃗ are shorter than the vectors c⃗ and d⃗, and

5 In Section 10.4, we remarked, that orientation may belong rather to the configuration

than to the shape domain. As we have seen here, it is, however, relevant to predicting our

visual dissimilarity ratings, and was hence rightfully included in our list of candidate

features.
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Figure 11.7: Example illustration for the inner product.

the angle θ1 between a⃗ and b⃗ is larger than the angle θ2 between c⃗ and d⃗.

This means that a ·b < c ·d, i.e., the pair (c, d) receives a higher similarity

value than the pair (a, b). Transferring this to our context, the inner

product rates an agreement of feature values higher, if these feature

values are located on the end of the scale rather than in the middle. In

other words, stimuli are judged to be more similar, if they have extreme

values on the psychological features, than if they have intermediate

values, even if the differences are of equal size. The observation, that

the negated inner product worked best in estimating dissimilarities

based on the feature ratings, indicates, that the ends of the scales may

be more important or reliable than the continuum between them.

We can furthermore observe in Table 11.1, that weight optimizationEffects of weight

optimization
is not very helpful for the feature baseline – we can only observe some

modest improvements, and in many cases the optimized weights even

cause a lower correlation to the dissimilarities than the uniform weights.

This performance deterioration can be explained by the cross-validation

scheme used in optimizing the weights: The overall dissimilarity matrix

is repeatedly partitioned into a training set (on which the weights are

optimized) and a test set (on which the correlation is computed). The

performance deterioration we observed is thus simply the generalization

error to unseen data. The observation, that weight optimization does

not lead to a considerable increase in the observed correlation values,

indicates, that the three features are of roughly equal importance on our

dataset: If one feature was more crucial in determining the dissimilarity

ratings, giving it a larger weight should considerably improve the

predictions of the feature baseline.
6

When comparing attentive to pre-attentive ratings, one can observe,Attentive and

pre-attentive ratings
that using the feature ratings from the attentive perception study yields

slightly higher correlation values in all cases. The observed difference is

6 Please note, that we consider only a monotone correlation in our analysis, but that

the values of this monotone correlation may also be influenced by dimension weights,

namely, if the order of pairs changes.
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Matrix Weights Kendall’s τ Distance Function

uniform 0.1697 Manhattan

Mean

optimized 0.3948 Euclidean

uniform 0.1872 Manhattan

Median

optimized 0.3773 Euclidean

Table 11.2: Kendall’s τ for different variations of the ANN baseline.

not very large, but seems to be quite consistent. One could potentially

explain this by the fact, that the dissimilarities were also collected in an

attentive fashion (cf. Section 10.2.2).

Finally, we can observe in Table 11.1, that Kendall’s τ is slightly, but Mean and median

matrix
consistently higher for the median matrix than for the mean matrix. As

already argued above, this can, however, be traced back to the larger

amount of ties in the median matrix.

The observation, that the feature baseline performs far from perfect, The need for more

features
indicates, that our set of features is not sufficient for accurately repre-

senting visual similarity. Introducing additional psychological features

might further increase the correlations between the feature ratings and

the overall dissimilarities, although we were able to observe a slight

trend towards diminishing returns when adding further features in

Table 11.1. With respect to the importance of the three given features,

no clear picture emerges: While we observed a clear order, in which

features were selected (namely, first form, then orientation, then lines),

using weight optimization was not able to increase the observed cor-

relation values. This question about feature importance thus requires

further research and additional analyses.

Table 11.2 shows the results obtained for the ANN baseline. Here, the Considering the

ANN baseline
negated inner product has always yielded the worst performance, the

Manhattan distance was slightly preferable for uniform weights, and

the Euclidean distance yielded the best results for optimized weights.

This contradicts the assumptions of the study by Peterson et al. [319],

where the inner product was used to obtain similarity judgments from

the hidden activations of pre-trained ANNs (cf. Section 8.1.5). For both

the mean and the median matrix, we can observe large performance

increases through weight optimization. If we use uniform weights, the

ANN baseline is the weakest among all baselines. We assume, that this is

based on the style of the underlying images: The ANN had been trained

on colored images of real objects, whereas the stimuli in our study are

greyscale line drawings. However, by weighting the individual entries

of the feature vector, we seem to be able to emphasize those parts of

the activation vector, which are also useful on the line drawings (e.g.,

features, which focus on edges in the image), while ignoring irrelevant

entries (e.g., features focusing on color or texture). Finally, the ANN

baseline obtains slightly higher correlation values on the median matrix

for uniform weights, while reaching higher performance on the mean

matrix when considering optimized weights.
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Kendall’s Distance Block

Matrix Weights

τ Function

Aggregator

Size

uniform 0.2481 Euclidean Minimum 24

Mean

optimized 0.3418 Euclidean – 1

uniform 0.2475 Euclidean Minimum 24

Median

optimized 0.3491 Euclidean Minimum 24

Table 11.3: Kendall’s τ for different variations of the pixel baseline.

We can compare the results of the ANN baseline on the meanComparison to the

NOUN dataset
dissimilarity matrix to analogous results of this baseline reported in

Section 9.1.3 for the NOUN dataset [199]. There, we observed values

of τ ≈ 0.1660 for uniform weights (using the Manhattan distance) and

τ ≈ 0.3594 for optimized weights (using the Euclidean distance). While

the correlation observed for uniform weights barely differs between the

two datasets, there is a considerable difference for the case of optimized

weights. The underlying neural network is the same and had been

trained on photographs. Even though the stimuli from the NOUN

dataset are closer in nature to photographs than the line drawings we

consider in the current study, the network makes better predictions

of dissimilarities for our shape stimuli. One may speculate, that by

weighting the individual dimensions of the network’s representation,

we can access the shape information inherent in the neural network (cf.

Section 10.1.4). Since the dissimilarity ratings from the NOUN dataset

are not confined to shape similarity, it may be more difficult to find an

adequate subset of ANN-based features. Again, this hypothesis could

be tested by running an additional study on the line drawings with the

conceptual rather than the visual dissimilarity ratings – such a study

could help to distinguish effects based on the input style (photographs

vs. line drawings) from effects based on the type of similarity (shape

similarity vs. overall similarity).

Table 11.3 summarizes the results obtained by the pixel baseline. InConsidering the pixel

baseline
all cases, the Euclidean distance in combination with the minimum

as aggregator function yielded the best results. Differences between

the median matrix and the mean matrix are mostly negligible. For

both matrices, we see considerable improvements when using weight

optimization – putting more emphasis on certain parts of the raw image

thus seems to be beneficial for explaining the dissimilarity ratings. The

optimal configurations for uniform weights are identical for the mean

matrix and the median matrix (block size of 24, resulting in downscaled

images of size 12 × 12). When considering optimized weights, the

optimal image size does not change for the median matrix, while the

optimal results on the mean matrix were obtained when using the

images in their full resolution.

Again, we can compare the performance level obtained for theComparison to the

NOUN dataset
mean matrix to the results from Section 9.1.3 on the NOUN dataset

[199]. There, we observed τ ≈ 0.1675 for uniform weights (using the
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Figure 11.8: Kendall’s τ between the pixel baseline and the mean matrix

as a function of block size and aggregator function, using the

Euclidean distance function with uniform weights.

Figure 11.9: Kendall’s τ between the pixel baseline and the mean matrix

as a function of block size and aggregator function, using the

Euclidean distance function with optimized weights.

Manhattan distance, the minimum aggregator, and a block size of

18), which increased to τ ≈ 0.2608 for optimized weights (Euclidean

distance on the full image, i.e., a block size of 1). Both of these numbers

are considerably lower than what we have seen in Table 11.3. One may

speculate, that the pixel baseline is simply much more applicable to

greyscale line drawings than to photographs, but also the focus on the

shape domain may have been helpful: The overall shape of an object

can be approximated reasonably well by using a downscaled version of

the image. Again, further investigations are needed in order to identify

the source of the observed differences.

Figure 11.8 visualizes the correlation of the pixel baseline to the mean Block size and

aggregator for

uniform weights

matrix as a function of the block size for the Euclidean distance function.

As we can see, this performance is highly dependent on both the block

size and the aggregator function being used. The performance of the
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mean aggregator is quite stable with respect to the block size. Both

median and maximum perform relatively poorly, especially as the block

size increases. The minimum function, however, clearly outperforms

the other aggregators. It reaches a peak between block sizes 13 and 32,

with both smaller and larger block sizes showing poorer performance.

This is in line with our results from Table 11.3, where 24 is identified

as optimal block size. It thus seems, that the pixel baseline can profit

from smaller image sizes (presumably by removing irrelevant noise),

but that it also needs a minimum image size to work properly (such

that all relevant information is still contained in the image). Black

pixels are encoded with a value of 0, while white pixels are encoded

with a value of 255. Therefore, using the minimum when aggregating

across pixels can be seen as a form of the logical OR operation: The

resulting pixel in the downscaled image will be black, if any of the

pixels inside the corresponding block of the original image have been

black. The aggregation with the minimum thus results in an image,

which represents the overall shape of the object by highlighting which

regions are at least partially occupied by the object. This seems to

work better than the alternatives of focusing on the average occupation

(aggregation with mean and median) or on the regions, which are only

completely occupied (aggregation with maximum).

Figure 11.9 illustrates the performance of the pixel baseline for theBlock size and

aggregator for

optimized weights

case of optimized weights. Here, we can make some similar, but also

some different observations than for the uniformly weighted case: On

the one hand, the relative order of the different aggregators is preserved,

i.e., the minimum outperforms the arithmetic mean, which in turn

outperforms both the median and the maximum. On the other hand,

we do no longer observe a performance improvement with increasing

block size. While the minimum aggregator yields relatively constant

performance (if the block size is not too large), the performance of

all other aggregators clearly deteriorates with increasing block size.

Optimal performance is in general observed for very small block sizes,

i.e., very large feature vectors. We think, that this effect might be caused

by the number of dimension weights, which can be optimized. We

would finally like to highlight, that the performance of the minimum

aggregator is relatively constant across different block sizes. This means,

that also the correlation reached with a block size of 24 is close to optimal

and might be preferable due to the smaller representational size.

We can again compare the observed effects from Figures 11.8 andAnother comparison

to the NOUN dataset
11.9 to analogous visualizations from Section 9.1.3. There, we observed

essentially the same order of aggregators (with the minimum perform-

ing best and the maximum performing worst) and also a performance

deterioration for large block sizes. However, on the NOUN dataset,

we were not able to observe a performance improvement for medium

block sizes in the uniformly weighted case – there, the correlation

was relatively constant across block sizes for the minimum aggregator.

One may again explain this by the focus on general conceptual rather

than purely visual similarity – a hypothesis, which should be further

investigated with additional experiments and analyses. Additional
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Figure 11.10: Shepard diagrams with respect to the mean dissimilarity matrix

for the ANN baseline with optimized weights (a), the pixel

baseline with optimized weights (b), and the feature baseline

with uniform weights, based on pre-attentive (c) and attentive

(d) feature ratings, respectively.

visualizations analogous to Figures 11.8 and 11.9, which consider also

the median matrix and alternative distance functions, can be found in

Appendices F.1 and F.2.

Finally, Figures 11.10 and 11.11 show Shepard diagrams, illustrating Shepard diagrams

the match between distances as predicted by the baselines and the

psychological dissimilarities from the mean and median matrices,

respectively. In all cases, we can only observe a weak monotone trend

in the data, highlighting, that all baselines are only partially successful

in predicting dissimilarities.

11.2.3 Similarity Spaces

After having established the quality of our baselines, let us now turn Expectations

to the similarity spaces extracted from the dissimilarity matrices. We
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Figure 11.11: Shepard diagrams with respect to the median dissimilarity ma-

trix for the ANN baseline with optimized weights (a), the pixel

baseline with optimized weights (b), and the feature baseline

with uniform weights, based on pre-attentive (c) and attentive

(d) feature ratings, respectively.
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Figure 11.12: Correlation of the different similarity spaces and baselines to

the mean matrix (a) and to the median matrix (b).

expect, that all MDS variants perform better than our baselines, and that

they profit from a larger number of dimensions. Moreover, we expect

overall higher correlation values for the median matrix than for the

mean matrix, since the former contains more ties and hence a smaller

number of discordant pairs. For each matrix of target dissimilarities,

we compared the correlations of both the mean spaces and the median

spaces in order to investigate, whether spaces constructed with one

matrix correlate well with the other matrix. Kendall’s rank correlation

between the entries of the two dissimilarity matrices is τ ≈ 0.70, which

gives an upper performance limit when generalizing between matrices.

For all similarity spaces, we found, that the Euclidean distance Distance metric and

dimension weights
resulted in the highest correlations to the dissimilarities. Moreover,

optimizing weights did not have any observable effect. Both observa-

tions are not surprising, given that the similarity spaces are constructed

in such a way, that the unweighted Euclidean distance represents the

dissimilarities as accurately as possible.

Figure 11.12 illustrates Kendall’s τ as a function of the number of Dimensionality of

the similarity space
dimensions for both the mean matrix and the median matrix. The

correlation curves for the similarity spaces show an elbow at two or
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three dimensions and seem to level off after five dimensions. This

confirms our observations from the Scree plots (cf. Section 11.1.2).

The similarity spaces created with MDS clearly outperform all base-Comparison to the

baselines
lines – already a one-dimensional similarity space is on par with the

ANN baseline, which uses a 2048-dimensional feature space. The perfor-

mance of the feature baseline grows roughly parallel to the performance

of the MDS spaces. Its peak performance is, however, only compara-

ble to that of a one-dimensional MDS space. This considerable offset

indicates, that the dissimilarity matrices contain more information

than represented by the three psychological features. It furthermore

seems like MDS is capable of successfully compressing this information

into very low-dimensional spaces. This, however, also implies, that the

dimensions of the MDS-based similarity spaces combine information

from multiple psychologically meaningful features. We speculate, that

by adding more features to the feature baseline, we may be able to

narrow the gap to the similarity spaces obtained through MDS.

A comparison of Figure 11.12a to the results of the NOUN studyComparison to the

NOUN dataset
(cf. Section 9.1.3) shows, that we are able to obtain similar correlation

levels (around 0.6 for a five-dimensional space and a bit below 0.7 for a

ten-dimensional space). There is, however, one major difference: The

one-dimensional similarity space of the NOUN dataset had a very poor

correlation of around 0.1 and performed thus worse than all baselines.

This effect could not be observed in our shape similarity spaces, where

a one-dimensional space performs comparably well as the best baseline.

When comparing the absolute values achieved on the two differentComparison between

target matrices
dissimilarity matrices, we observe, that the correlations to the mean

dissimilarities are slightly but consistently higher than the correlations

to the median dissimilarities. This is somewhat surprising and contra-

dicts our expectations, since the larger number of ties in the median

ratings should make them easier to fit, and is thus expected to increase

the values for Kendall’s τ .

Using the spaces based on the mean matrix to predict the dissimilari-Predicting

dissimilarities across

aggregators

ties from the median matrix works better than the other way around. We

think, that this effect is again based on the much larger number of ties

in the median matrix: Whenever two entries δA, δB from a given dissim-

ilarity matrix ∆ form a tie, we cannot define, how their corresponding

distances dA, dB should be ordered. When extracting a similarity space

from this dissimilarity matrix, we therefore do not enforce a constraint

on this pair of distances (cf. Section 8.2.2). In the resulting space (yield-

ing the distance matrix D), both orderings dA > dB and dA < dB are

thus possible. Moreover, when computing the correlation of a given

distance matrix D′
to the dissimilarity matrix ∆, the relation between

d′A and d′B does not influence the overall result because δA = δB . This

is easy to see, when considering again the definition of Kendall’s τ (cf.

Sections 9.1.2 and 11.2.1):

τab =
Nc −Nd

N
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Here, Nc is the number of concordant pairs, Nd the number of Ties and Kendall’s τ

discordant pairs, and N the overall number of pairs. Since δA = δB , the

pair (d′A, δA)− (d′B, δB) is neither concordant nor discordant, and thus

does not influence the overall correlation coefficient.

There are many pairs of matrix entries, which are tied in the median Median spaces and

mean matrix
matrix, but not in the mean matrix. In the median spaces, the corre-

sponding pairs of distances are therefore not expected to respect any

particular ordering. We can safely assume, that for at least some of them,

the resulting order will be in conflict with the respective constraint from

the mean matrix. When computing the Kendall correlation between

the median spaces and the mean matrix, these pairs thus count as

discordant and decrease the correlation coefficient. For the mean spaces,

we expect, however, a larger number of distance pairs to match the

requirements from the mean matrix.

On the other hand, when comparing the correlation of any given Mean spaces and

median matrix
similarity space to the median matrix, all ties in the median matrix are

disregarded. Even though the mean matrix enforces a certain ordering

on these distance pairs for the mean spaces, this does not influence the

overall correlation to the median matrix at all. This explains, why we

observe no considerable difference between mean spaces and median

spaces when comparing them to the median matrix.

The reversal of pairs observed in Section 11.1.1 is not capable of Considering

conflicting

constraints

explaining these observations. Please recall, that on average, the mean

ratings, which correspond to a given median rating of k, are smaller

than the mean ratings, which correspond to a given median rating of

k + 1. However, there are many examples violating this general trend.

These individual conflicts with respect to the ordering constraints are

expected to lead to different MDS solutions. Let us assume, that the poor

correlation of the median spaces to the mean matrix was caused by the

conflicting constraints. Since this conflict is symmetric, it should also

impair the correlation of the mean spaces to the median matrix. We are,

however, not able to observe this effect, thus the conflicts between the

matrices cannot be the main cause of the observed difference. Overall,

it thus seems, that the different number of ties has a greater influence

on the resulting spaces than conflicting constraints.

Finally, let us compare the one-dimensional to the five-dimensional Shepard diagrams

similarity spaces to get a better intuition about how the number of

dimensions influences the correlations. Figure 11.13 shows Shepard

diagrams for the mean and the median matrix in comparison to the

dissimilarities they were based on. In both cases, we see a clear improve-

ment of the monotone trend when adding more dimensions. Clearly, the

five-dimensional MDS spaces provide a better monotone trend than any

of the baselines (cf. Figures 11.10 and 11.11). Moreover, it is interesting

to note, that in the one-dimensional spaces many points are located

in the top left corner of the Shepard plot. This means, that in a one-

dimensional similarity space, there exist many pairs of points, which

have a small distance in the similarity space, but whose corresponding
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Figure 11.13: Shepard diagrams for the one-dimensional and the five-

dimensional similarity spaces based on the mean matrix (a)

and the median matrix (b).
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items have been ranked as quite dissimilar. In the five-dimensional

spaces, this effect has largely disappeared.

We can explain this observation as follows: The items in the one- Dimensionality and

distances
dimensional space have to be represented by a single scalar value.

When arranging the items on this single dimension, the largest distance

is achieved between the two items at the ends of the scale. All other

items need to be arranged between these two extreme values. Most

pairs of items are expected to have at least one item, which is located

somewhat close to the center of the scale. These pairs will therefore

have a relatively small distance. Overall, we then have many small, but

relatively few large distances in the space. As we have seen in Section

11.1.1 when analyzing the dissimilarity matrices, most item pairs are

judged to be very dissimilar, and only few are viewed as similar. This

inherent mismatch of the distribution of distances and dissimilarities

leads to the effect described above. As we add more dimensions to the

similarity space, the number of free parameter grows: Points can now

differ in multiple dimensions, and the distribution of distances can now

match the distribution of dissimilarities much better.

Overall, the results from our correlation analysis show, that both the Summary

mean and the median spaces clearly outperform the baselines. In both

cases, spaces with two to five dimensions seem to be good candidates for

further analysis. The first main difference, which we observed between

mean spaces and median spaces, indicates, that the mean spaces are

more successful in representing the median dissimilarities than vice

versa. We assume, that this is based on the finer granularity level of

the mean matrix, which causes a smaller amount of ties. The second

main difference concerns the overall correlation level obtainable on the

two matrices. Here, it seems, that higher correlations are possible on

the mean matrix than on the median matrix, which is counter-intuitive,

since the median matrix contains more ties and thus less constraints.

Taken together, these two observations might be interpreted as an

argument for preferring the mean spaces over the median spaces.

11.3 are conceptual regions well-formed?

One central idea of the conceptual spaces framework is to represent Overlap of

conceptual regions
concepts as convex regions in similarity spaces. These regions typically

do not overlap, unless one of them subsumes the other (such as German

Shepherd being a specialization of the more general dog concept). As

discussed in Section 10.2.1, the stimuli in our dataset are grouped

into twelve categories, half of which can be defined based on a com-

mon shape. We therefore expect, that the visually coherent categories

are represented by non-overlapping convex regions in the extracted

similarity spaces. Since the items from visually variable categories do

not have a common shape prototype (cf. Section 10.3.2), we do not

have any expectations for the regions representing these categories. In
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Section 11.3.1, we will investigate, to which extent these expectations

are fulfilled by our similarity spaces.

In addition to the overlap of the conceptual regions, we can alsoSize of conceptual

regions
analyze their size. Again, we expect to find a difference between visually

coherent and visually variable categories: Since visually coherent cate-

gories consist of objects with a very similar shape, the corresponding

points in the similarity spaces should be close to each other, leading

to a relatively small conceptual region. On the other hand, the points

representing the visually variable categories can be expected to be quite

scattered across shape space, leading to larger distances and a relatively

large conceptual region. We will analyze the size of conceptual regions

in Section 11.3.2.

11.3.1 Overlap of Conceptual Regions

In order to measure, to which extent our expectation of non-overlappingAnalysis method

convex regions is fulfilled, we have first created a convex hull for each

category. We then counted for each pair of categories C1, C2 how often

an item i ∈ C2 lies inside the convex hull of categoryC1. By constructing

the convex hull, we manually enforce convexity, and by checking for

intruders, we test, to which extend the conceptual regions overlap. If a

conceptual region is well-formed, then no items from another category

should lie within that region. We look both at the overall number of

violations of this well-formedness assumption for all categories, and at

more fine-grained information concerning the distinction into visually

coherent (VC) and visually variable (VV) categories.

In order to have a meaningful baseline for comparisons, we alsoBaselines

computed the expected number of violations for randomly drawn

points. More specifically, we used three baseline variants, drawing

points from a uniform distribution, a normal distribution, and the

set of points in the respective MDS solution. In order to approximate

the expected value for each of these baselines, we drew 100 random

samples and averaged the number of violations across them.

Overall, we expect, that all similarity spaces have a more meaning-Expectations

ful structure and thus a lower number of violations than our three

baselines. Moreover, we expect the number of violations to decrease

with an increasing number of dimensions. Finally, visually coherent

categories can be defined based on their shape. They should therefore

form non-overlapping convex regions and hence cause less violations

than visually variable categories.

Figure 11.14a shows the results from our analysis averaged across allOverlap and number

of dimensions
categories. As one can see, even for our baselines, the expected number

of violations becomes zero as soon as the space has five dimensions.

This can be explained by the fact, that our categories consist of five

examples each: It is very unlikely for a randomly chosen point in

an n-dimensional space to lie inside the convex hull of n randomly

chosen points. Consider for instance a two-dimensional space [0, 1]2
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Figure 11.14: Overlap between conceptual regions. (a) Overall number of

violations across all categories in comparison to three baselines.

(b) Number of violations by category type.

and two points x, y ∈ [0, 1]2. The convex hull of x and y corresponds

to a line-segment (i.e., a one-dimensional structure). When drawing

a third point z ∈ [0, 1]2, it is highly unlikely, that z lies exactly on

this line segment. Even if it lies only slightly above or below the line

connecting x and y, it will not count as an intruder. The same reasoning

applies also to higher-dimensional spaces such as convex hulls of three

points in a three-dimensional space (which are in general triangles,

i.e., two-dimensional structures), or categories with five examples in a

five-dimensional space (as observed in Figure 11.14a).

Even though the number of violations is therefore not very infor- Difference to

baselines
mative for spaces with five or more dimensions, we are nevertheless

able to make some observations for lower-dimensional spaces: The

strongest difference between the baselines and our similarity spaces can

be observed for one and two dimensions, where the similarity spaces

produce considerably less overlap between conceptual regions than

one would expect by chance. However, already for three-dimensional

spaces, this difference vanishes. Moreover, it seems, that conceptual

regions overlap slightly less in the one-dimensional median space than

in the one-dimensional mean space.

Figure 11.14b distinguishes among the type of category being used Effect of category

type
for constructing the convex hull. There, we can clearly observe for

the one-dimensional and also to some extent for the two-dimensional
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space, that visually coherent (VC) categories have a considerably smaller

number of intruders inside their convex hull than visually variable

(VV) categories. This fulfills our expectations, but the effect vanishes

for higher-dimensional spaces: In three-dimensional spaces, only a

single intruder is found (in both the mean and the median space for

a VV category), and for higher-dimensional spaces, no violations are

found for any category type. Moreover, the observed difference between

visually coherent and visually variable categories seems to be slightly

more pronounced in the mean space than in the median space.

Overall, we can conclude, that visually coherent categories formSummary

non-overlapping regions in our similarity spaces. This is, however, also

expected to be the case for a random sample of points, if the space has

enough dimensions. We are furthermore only able to observe minor

differences between the mean spaces and the median spaces, when it

comes to category overlap. In general, our analysis of conceptual overlap

seems to be of limited informativeness. If the number of examples per

category was considerably larger, one could investigate the robustness

of the observed effects.

11.3.2 Size of Conceptual Regions

Let us now investigate, whether visually coherent categories are repre-Analysis method

sented by smaller conceptual regions than visually variable categories.

For each category, we have defined the category prototype as the cen-

troid of the points belonging to this category. We have then computed

the size of a conceptual region as the average distance of its category

members to this prototype. Again, we have compared the numbers

observed for the similarity spaces to points randomly sampled from

a uniform distribution, a normal distribution, and the set of points in

the similarity space. The expected values of these baselines have again

been estimated by computing the average across 100 runs.

Figure 11.15a plots the average category size as a function of theCategory size and

number of

dimensions

number of dimensions of the similarity space. First of all, we can

observe, that the category size shrinks with an increasing number of

dimensions for all of the baselines. This is caused by the normalization

of the similarity spaces: All similarity spaces are centered around the

origin and are re-scaled in such a way, that the root mean squared

distance to the origin equals one [234] (cf. Sections 9.2.1 and 11.1.2):⌜⃓⃓⎷ 1

N
·
N∑︂
j=1

n∑︂
i=1

(︂
x
(j)
i

)︂2
= 1

This means, that on average,

∑︁
i

(︂
x
(j)
i

)︂2
= 1. If the number n ofMathematical

explanation

dimensions increases, then on average, the individual coordinates x
(j)
i

must become smaller, such that the sum can remain constant. Thus the



11.3 are conceptual regions well-formed? 649

Figure 11.15: Size of conceptual categories, divided into average size of all

categories (a), and average size by category type (b).

term |x(j1)i − x
(j2)
i | used to compute the Euclidean distance between

the points x(j1) and x(j2) is also bound to become smaller for each

dimension i, resulting in an overall smaller distance between points.

Hence, the observed effect of the number of dimensions on the expected

category size is to be expected, but differs from the effect observed with

respect to category overlap in Section 11.3.1.

In Figure 11.15a, we furthermore observe, that the average category Difference to

baselines
size in the similarity spaces is considerably smaller than one would

expect from the baselines. We are not able to observe any systematic

differences between mean spaces and median spaces.

Figure 11.15b differentiates between visually coherent (VC) and vi- Effect of category

type
sually variable (VV) categories. As expected, the average size of the

visually coherent categories is considerably smaller than the average

size of visually variable categories. Moreover, the size of the visually

coherent categories stays relatively constant, and seems to be largely

independent from the number of dimensions. The visually variable

categories, on the other hand, show a similar pattern as observed

for the baselines, which can be again mainly explained through the

normalization of the similarity spaces.
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Figure 11.16: Convex hulls of categories in the two-dimensional similarity

space based on the mean matrix.

Overall, we can conclude, that especially visually coherent categoriesSummary

form very small regions in the MDS-based similarity spaces. They

are considerably smaller than visually variable categories, which are

only slightly smaller than one would expect for randomly generated

configurations. Figures 11.16 and 11.17 visualize the two-dimensional

similarity spaces as obtained from the mean and the median matrix,

respectively. In this visualization, the convex hulls of visually coherent

categories are shown as green dashed lines, while the convex hulls of

visually variable categories are illustrated with red dotted lines. Our

observations from Figure 11.15b with respect to the size of conceptual

regions, but also the findings from Section 11.3.1 about their respective

overlap can both be verified in this two-dimensional visualization.

11.4 are there interpretable directions?

In general, the individual dimensions of a conceptual space shouldMotivation

be interpretable. Since the solutions provided by multidimensional

scaling are invariant under rotation, we can, however, not expect, that

the coordinates of the similarity spaces correspond to meaningful

features (cf. Section 8.6.2). Nevertheless, we should be able to find
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Figure 11.17: Convex hulls of categories in the two-dimensional similarity

space based on the median matrix.

meaningful features as interpretable directions in the similarity space.

This section is dedicated to searching for directions representing the

three psychological features form, lines, and orientation from our

dataset in each of the similarity spaces.

In Section 11.4.1, we describe our overall analysis methods, taking Overview

inspiration from the work by Derrac and Schockaert [123]. We then

present analyses of global effects averaged across all the psychological

features in Section 11.4.2, before comparing the three psychological

features to each other in Section 11.4.3.

11.4.1 Methods

In order to find a direction for each of the shape features from our Finding directions

through classification
dataset, we followed the procedure proposed by Derrac and Schockaert

[123], which has already been introduced in Section 8.6.2. For each of

the shape features and for each of the rating types (attentive and pre-

attentive), we defined a binary classification problem by using the 15

line drawings with the highest feature values as positive examples, and

the 15 line drawings with the lowest feature values as negative examples

(cf. Section 10.2.3). Focusing on the scale ends and removing all stimuli

with intermediate values can be expected to make the classification
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problem easier. We then trained a linear support vector machine (cf.

Section 5.2.3) on this classification problem, and used the normal vector

of its hyperplane as a candidate direction for the respective feature.

In addition to this classification-based approach, we also trained aFinding directions

through regression
linear regression to map from the points in the similarity space onto

the scalar values associated with the feature. Here, we made use of

the full set of stimuli. The weight vector found by the linear regression

was then interpreted as candidate direction for the given feature (cf.

Sections 5.2.1 and 8.6.2).

In addition to the mean and median spaces of different dimensional-Baselines

ity, we also considered random configurations of points as a baseline.

Again, we used the average across 100 random configurations based on

a uniform distribution, a normal distribution, and the configurations

from the MDS solution.

All candidate directions were then evaluated as follows: We projectedEvaluation metrics

the points from the similarity space onto the respective candidate

direction, obtaining a single scalar value for each stimulus. On the one

hand, we then computed Spearman’s ρ [384] (cf. Section 9.1.2) as a

measure of monotone correlation between the resulting ordering and

the values of the original feature scale. On the other hand, we looked

for an optimal threshold on these values, which separates the positive

from the negative training examples. Here, we followed again Derrac

and Schockaert [123] by using Cohen’s κ [108] as evaluation metric.

Please recall from Section 5.1.2, that Cohen’s κ corrects the classification

accuracy with the probability pe of random agreement:

κ =
Acc− pe
1− pe

Please note, that we use the same data points both for finding theEvaluation scheme

directions, and for evaluating their quality, i.e., training set and test

set were identical. It is well known, that this evaluation scheme tends

to lead to an overestimation of the model’s quality. The model should

therefore be tested on an independent dataset (cf. Section 5.1.2), which

would give a better impression of the model’s generalization capability.

In our case, a leave-one-out evaluation would be preferable due to the

heavily limited number of data points. Like Derrac and Schockaert

[123], we have, however, for our current analysis used all data points

for both training and testing the models, since we are not interested

in the generalization capability of the resulting predictor. The "test on

train" methodology is already sufficient for answering the question,

whether the feature values can in principle be mapped onto a direction

in the similarity space. However, for future work, a more elaborate

leave-one-out evaluation should seek to confirm our results.
7

7 Thanks to Viviane Kakerbeck for this criticism.
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In addition to the comparison between the extracted directions Similarity of

directions
and the original feature ratings, we have also investigated the pairwise

similarity of different candidate directions. In order to measure, whether

the different candidate directions for a given feature agree with each

other, we computed the average Cosine similarity between all pairs of

candidate dimensions for this feature. In order to compare the directions

of two different features, we considered all combinations of candidate

directions, and averaged their individual Cosine similarities.

Please recall from Section 6.3.2, that the Cosine similarity of two The Cosine similarity

vectors x⃗(j1) and x⃗(j2) is computed as their inner product x⃗(j1) · x⃗(j2)
divided by the product of their lengths:

Sim(x⃗(j1), x⃗(j2)) =
x⃗(j1) · x⃗(j1)

||x⃗(j1)|| · ||x⃗(j2)||
= cosα

The Cosine similarity takes values in the interval [-1,1] and is equiv- Interpreting the

Cosine similarity
alent to the Cosine of the angle α between the vectors x⃗(j1) and x⃗(j2):
Values close to +1 indicate that both vectors point into the same direc-

tion, while values of −1 are obtained for opposite directions. A Cosine

similarity of 0 indicates, that the two vectors are orthogonal to each other.

Overall, we expect to find more interpretable directions in higher- Expectations for

general effects
dimensional similarity spaces. Also the "confidence" in the extracted

directions (measured by Cohen’s κ and Spearman’s ρ) is expected to

increase with the number of dimensions, and to be considerably higher

for the MDS-based similarity spaces than for the random configurations.

Since we have not observed considerable differences between attentive

and pre-attentive feature ratings in Section 10.3.3, we do not expect

major differences with respect to the resulting directions. Finally, we

expect, that the linear regression achieves a higher correlation (as

measured with Spearman’s ρ) to the feature values than the SVM, since

the latter has only access to the end points of the scale. We do, however,

not expect any differences with respect to classification performance

(as measured with Cohen’s κ).

All candidate directions for the same feature are expected to point Expectations for

individual feature

directions

into roughly the same direction, which should be reflected by a large

Cosine similarity. Since the three psychological features are considered

to be relatively independent from each other, and since they have shown

only very small correlation values in Section 10.3.3, we expect, that

they are approximately perpendicular to each other, reflected by Cosine

similarities of zero.

11.4.2 General Observations

Before considering the individual features, let us first investigate some Overview

general observations, which we expected to make across all features.

More specifically, we will now analyze differences between MDS-based

similarity spaces and random configurations, between attentive and pre-
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Figure 11.18: Average quality of extracted directions for random configura-

tions and similarity spaces as measured by Cohen’s κ (a) and

Spearman’s ρ (b).

attentive feature ratings, and between the two machine learning models.

Figure 11.18 illustrates the average quality of the extracted direc-MDS spaces vs.

random

configurations

tions (aggregated across feature, rating type, and machine learning

algorithm) for both the random configurations and the MDS-based

similarity spaces. We can observe, that the performance of the different

baselines is almost indistinguishable, and that it increases slightly with

an increasing number of dimensions. This can be explained by the curse

of dimensionality (cf. Section 5.1.4): A larger number of dimensions cor-

responds to a larger number of free parameters in the machine learning

model. If the number of data points remains fixed, while the number of

dimensions is increased, the machine learning problem becomes easier

to solve, however, often at the cost of decreased generalization to previ-

ously unseen input. Since we do not consider generalization to unseen

examples in our evaluation (cf. Section 11.4.1), the performance of the

baselines increases as further dimensions are added, simply because

the probability of randomly sampling a linearly separable configuration

of points increases in higher-dimensional spaces. The observed effect

is therefore not directly related to the dimensionality-based effects

observed for the overlap and size of conceptual regions in Section 11.3.

Both the mean spaces and the median spaces perform considerablyFurther observations

better than the baseline spaces. The largest amount of improvement with
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Figure 11.19: Relative average quality of extracted directions for pre-attentive

and attentive feature ratings as measured by Cohen’s κ (a) and

Spearman’s ρ (b).

respect to both evaluation metrics takes place up to three-dimensional

spaces, and performance levels off at six dimensions. It furthermore

seems that the directions can be identified slightly more successfully in

the mean spaces than in the median spaces.

In Figure 11.19, we visualized differences between directions ex- Comparing attentive

and pre-attentive

ratings

tracted based on attentive and pre-attentive ratings, respectively. Again,

we averaged across all features and all machine learning algorithms,

but this time, we visualized only the difference to the overall average

obtained for the respective MDS space. This visualization of differences

rather than absolute values has been chosen, because it allows for a

more direct comparison, especially given, that all directions yielded

quite similar evaluation results. For both Cohen’s κ and Spearman’s ρ,

attentive ratings lead to slightly better results than pre-attentive ratings.

This effect is much more consistent for Spearman’s ρ than for Cohen’s

κ. Please recall from Section 11.2.2, that the attentive ratings were also

more successful than the pre-attentive ratings in predicting the entries

of the dissimilarity matrices. It thus seems, that the ranking obtained

from attentive ratings is more closely reflected in the dissimilarity

judgments. This may be based on the fact, that also the dissimilarity

ratings were obtained in an attentive procedure. However, since the



656 a psychological similarity space for shapes

Figure 11.20: Relative average quality of extracted directions for a linear

support vector machine (SVM) and a linear regression (LinReg)

as measured by Cohen’s κ (a) and Spearman’s ρ (b).

observed difference is rather small, it may not be of practical relevance.

In Figure 11.20, we finally compare the results obtained by the twoComparing machine

learning algorithms
machine learning algorithms to each other, averaging across all features

and both rating types, and again showing the difference to the overall

average. The results are almost identical, but we can see a very slight

advantage for the support vector machine with respect to Cohen’s

κ, and a slight advantage for the linear regression with respect to

Spearman’s ρ. These small differences can be explained by the fact, that

Cohen’s κ evaluates classification performance (which is optimized by

the support vector machine), while Spearman’s ρ evaluates regression

performance (which is optimized by the linear regression). Overall, the

differences are, however, negligible.

In general, we can thus conclude, that most of our predictionsSummary

have been fulfilled: We observed improved performance for higher-

dimensional spaces. MDS-based similarity spaces made a discovery

of interpretable directions considerably easier than randomly sam-

pled points. Both with respect to the distinction into attentive and

pre-attentive ratings, and with respect to the two machine learning

models, we were only able to find negligible differences. Overall, spaces
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Figure 11.21: Average quality of the extracted directions for the individual

features as measured by Cohen’s κ (a) and Spearman’s ρ (b) for

the mean spaces.

with three to six dimensions seem to offer a good trade-off between

compactness and expressiveness, which is in line with similar observa-

tions from Sections 11.1.2 and 11.2.3. Finally, the mean spaces seem to

be slightly superior to the median spaces.

11.4.3 Individual Features

After having considered several global effects, let us now take a look Raw results

at the individual features. Figures 11.21 and 11.22 show the evalua-

tion results for the different features in the mean and median spaces,

respectively, with respect to both Cohen’s κ and Spearman’s ρ. In all

cases, we have averaged across both types of machine learning models

(SVM and linear regression) and across both feature types (attentive

and pre-attentive).

For the mean spaces (Figure 11.21), we can see, that the features Mean spaces

form and orientation are already discovered in a two-dimensional

space as indicated by the already relatively high values for Cohen’s κ
and Spearman’s ρ. The lines feature on the other hand can be reliably

identified only from three dimensions onwards. Overall, the results are

relatively stable as soon as we reach a five-dimensional space, where
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Figure 11.22: Average quality of the extracted directions for the individual

features as measured by Cohen’s κ (a) and Spearman’s ρ (b) for

the median spaces.

we observe near-optimal classification and regression performance for

all three features.

In the median spaces (Figure 11.22), the features orientation and formMedian spaces

are again successfully identified already in a two-dimensional space,

followed by lines in three dimensions. Performance again seems to

saturate at five dimensions, reaching slightly lower levels than observed

for the mean spaces. Moreover, the quality of the identified directions

seems to fluctuate more strongly on the median spaces than on the

mean spaces.

Overall, we can thus reliably identify directions for all three psycho-Lessons learned

logical features already in a three-dimensional space, which highlights

their status as fundamental aspects of shape perception. The fact, that

a suitable direction for the lines feature could only be identified in a

three-dimensional space, indicates, that the two other features may be

more relevant for our given dataset. This is in line with the observations

made about the feature baseline in Section 11.2.2, where features were

selected in the order FORM–ORIENTATION–LINES

After having compared the quality of the extracted directions, let usStability of the

extracted directions
now focus on their stability. Table 11.4 compares the different candidate
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Number of

Space

Dimensions

form lines orientation

1 1.0000 1.0000 1.0000

2 0.9732 0.9927 0.9938

3 0.9837 0.9887 0.9891

4 0.9808 0.9931 0.9900

Mean 5 0.9767 0.9890 0.9801

Space 6 0.9808 0.9862 0.9741

7 0.9753 0.9817 0.9657

8 0.9778 0.9854 0.9717

9 0.9699 0.9752 0.9627

10 0.9602 0.9622 0.9713

1 1.0000 1.0000 1.0000

2 0.9647 0.9849 0.9960

3 0.9844 0.9898 0.9951

4 0.9826 0.9892 0.9821

Median 5 0.9754 0.9852 0.9812

Space 6 0.9706 0.9893 0.9853

7 0.9760 0.9867 0.9712

8 0.9668 0.9804 0.9747

9 0.9630 0.9733 0.9703

10 0.9394 0.9532 0.9444

Table 11.4: Average pairwise Cosine similarity of the different candidate

directions for the three psychological features and similarity spaces

of different dimensionality.

directions based on different rating types and ML models for each

psychological feature, using the average pairwise Cosine similarity. As

we can see, the candidate directions obtained by different machine

learning models based on different rating types have a high average

Cosine similarity for all features and all numbers of dimensions. This

confirms again our observations from Section 11.4.2, where we found

only negligible performance differences between attentive and pre-

attentive ratings, and between the two machine learning models.

Figure 11.23 illustrates, to which extent the directions for different Cosine similarity

across features
features point into similar directions, by considering the average Cosine

similarity of the directions for all pairs of features.
8

For both the

mean spaces and the median spaces, we are able to make the same

observations: From three dimensions onwards, the average cosine

similarity is quite stable for all pairs of features, with form-lines

hovering around 0.5 (which indicates an angle of about 60 degrees),

while the similarity of both form-orientation and lines-orientation

approaches zero.

8 Please note, that in a one-dimensional space, the Cosine similarity can only take values

of plus one and minus one, since the directions can be either identical or opposite.
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Figure 11.23: Average Cosine similarity of extracted directions for pairs of

features based on the mean (a) and the median spaces (b).

In Section 10.3.3, we observed, that the features form and lines wereSimilarity and

correlation
moderately positively correlated (albeit this effect was not statistically

significant), while the two other feature pairs were essentially uncor-

related. This positive correlation of form and lines on our dataset is

obviously reflected in the extracted directions – since stimuli with

high values on the form scale are more likely to also have high val-

ues on the lines scale, the two directions are not orthogonal to each other.

We can summarize our observations as follows: All psychological fea-Summary

tures can be found in all similarity spaces with at least three dimensions.

Extraction performance tends to level off after five dimensions, and

directions in the mean spaces tends to be more stable than on the me-

dian spaces. The Cosine similarity of the directions of the psychological

features matches the correlations of their underlying scales reason-

ably well. Both the feature type and the model have only a negligible

influence both on the resulting directions and their performance.

Figures 11.24 and 11.25 illustrate the two-dimensional similarityVisualization

spaces along with the interpretable directions for orientation and lines.

The directions shown in Figures 11.24 and 11.25 are averaged across

rating type and machine learning model for all features, which reached

a value of κ ≥ 0.8. The directions representing form and orientation are

found in both spaces and seem to be reasonable. The direction for lines
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Figure 11.24: Two-dimensional similarity space based on the mean matrix,

along with interpretable directions.

is not identified according to this criterion in any of the two-dimensional

spaces.

11.5 summary

With the analysis presented in this chapter, we have shown that it A holistic shape

space
is possible to extract a conceptual space for the shape domain from

dissimilarity ratings about the holistic visual similarity of complex

shapes. This illustrates, that part-whole structures do not need to be

explicitly incorporated into the definition of a shape space (as done in

prior accounts by Marr and Sishihara [278] and Chella et al. [97], cf.

Section 10.1.2). We have furthermore seen, that the predictions of the

conceptual spaces framework are largely fulfilled – dissimilarities can

be represented by distances, shape-based categories are represented by

small non-overlapping convex regions, and psychologically meaningful

features can be identified as directions in the similarity spaces.

Since conceptual spaces are often obtained via MDS on ordinally Mean vs. median

aggregation
scaled dissimilarity ratings, our comparison between the mean matrix

and the median matrix may also be informative to other researchers:

Even though an aggregation with the arithmetic mean is strictly speak-
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Figure 11.25: Two-dimensional similarity space based on the median matrix,

along with interpretable directions.

ing not permitted on ordinal data, the resulting dissimilarity matrix

does not have a lower quality than a dissimilarity matrix obtained by

taking the median dissimilarities. We can even observe slight advan-

tages for using the mean matrix in some cases, probably based on the

fact, that it permits a larger range of possible values for the matrix

entries, making the information more fine-grained and avoiding a large

number of ties.

Another overarching question in this chapter concerned the optimalThe optimal number

of dimensions
number of dimensions for a shape similarity space. Both the Stress

values (cf. Section 11.1.1) and the correlation to the dissimilarities (cf.

Section 11.2.3) indicate, that spaces with two to five dimensions are use-

ful candidates for further analysis. Also when looking at the extraction

of interpretable directions (cf. Sections 11.4.2 and 11.4.3), we observed

the largest improvements up to a three-dimensional space and then a

saturation of quality after six dimensions. Overall, it thus seems that

three to five dimensions are the preferable choice for our dataset.

We have touched upon the relative importance of the three psycho-Relative importance

of features
logical features in multiple points of our analysis. When considering

the feature baseline in our correlation analysis (cf. Section 11.2.2), we

found, that the form feature by itself was most predictive, that the
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orientation feature was the best addition, and that the lines feature

was chosen only if all three features were included. When searching

for interpretable directions (cf. Section 11.4.3), we observed, that the

features form and orientation tended to be identified first, followed by

lines in higher-dimensional spaces. It thus seems, that the lines feature

is less fundamental than the other two features. This is also indirectly

supported by the observation, that the pixel baseline performed bet-

ter for smaller image sizes if uniform weights were used (cf. Section

11.2.2). In such downscaled images, the overall form and orientation

of an object can still be represented, but details (like the curvature of

individual lines) are lost.

Although we were able to identify the three shape features as di- The need for

additional features
rections in three-dimensional similarity spaces, the feature values

themselves were only able to explain the dissimilarity ratings partially,

as indicated by the relatively poor performance of the feature baseline

in Section 11.2.2. In order to increase the explanatory power of the

feature set, additional shape features from the literature should be con-

sidered in future analyses. Candidates for such features could include

for example symmetry or line intersection, as proposed by both the

RBC model [64] and the early vision study by Treisman and Gormican

[409] (cf. Section 10.1.1).

Furthermore, we have observed various effects of increasing di- Dimensionality-

based effects
mensionality for random configurations of points: Both the overlap of

conceptual regions (cf. 11.3.1) and their respective size (cf. Section 11.3.2)

are expected to decrease with an increasing number of dimensions,

while we observed, that the quality of extracted directions increased

in higher-dimensional spaces (cf. Section 11.4.2). While these effects

can all be explained in different ways, they highlight the dependence

of results on the dimensionality of the underlying space. Related, but

different effects observable for high-dimensional spaces include the

"hubness" phenomenon [271] (i.e., the observation, that some "hub"

data points tend to belong to the k nearest neighbors of many other

data points) and the instability of proximity information [7] (i.e., the

observation, that the ratio of the distances of the nearest and farthest

neighbors to a given point approaches one).

Just as for our study on the NOUN dataset [199] from Chapter 9, one Distance metric

may criticize, that we only applied multidimensional scaling with the

Euclidean distance metric, but not with the Manhattan distance or an

intermediate Minkowski metric.
9

We thus implicitly assume, that the

dimensions of the underlying similarity space are integral rather than

separable (cf. Sections 1.2.1 and 2.1.1). Since our aim is to investigate the

shape domain, while ignoring information from all other domains, this

assumption seems to be justified in the context of conceptual spaces.

However, re-running our analyses based on Manhattan rather than

9 Again, thanks to Corina Strößner for this criticism.
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Euclidean spaces would be a good way to double-check the validity of

our assumption.

This may be especially useful, given, that the orientation feature mayInvolved domains

rather belong to the configuration rather than to the shape domain

(cf. Section 10.4).The orientation feature was useful for predicting

dissimilarities (cf. Section 11.2.2), and that it could be reliably identified

as a direction in the similarity spaces (cf. Section 11.4.3). These observa-

tions may indicate, that the similarity spaces extracted in this chapter

involve information from both the shape domain and the configura-

tion domain, but in a less explicit way than structural approaches (cf.

Section 10.1). Extracting spaces based on different distance metrics

may shed further light on this issue, since it relaxes the single-domain

assumption. For now, we can, however, treat our similarity spaces as a

good approximation for the visual similarity of line drawings.

Moreover, it may be worthwhile to apply multidimensional scalingConsidering

conceptual

dissimilarities

also to the set of conceptual rather than visual dissimilarity ratings.

Differences with respect to the remaining Stress level, convexity of

regions, and the existence of shape features as interpretable directions,

but also with respect to the performance of our baseline models may

illuminate the relation between shape similarity and general semantic

similarity on our dataset. Since our dataset contains ratings for both

cognitive and visual dissimilarity, one could furthermore attempt to

extract a conceptual space, which explains the cognitive dissimilarity

ratings, and which contains a dedicated subspace explaining the visual

dissimilarities. This may involve some specialized MDS algorithm ca-

pable of incorporating subspace constraints, which relates for example

to the work by Jameel et al. [208, 207] introduced in Section 6.3.2.

Future work with respect to conceptual spaces for the shape domainOutlook

should seek to apply our procedure to other stimulus sets (e.g., three-

dimensional shapes) in order to confirm the observed effects. Moreover,

it would be interesting to investigate, to which extent other existing

accounts of the shape domain within conceptual spaces (e.g., the ones

by Marr and Sishihara [278] and Chella et al. [97], cf. Section 10.1.2)

are able to predict the shape dissimilarity ratings from our dataset.

Finally, since the solutions provided by MDS are limited to the given

set of stimuli, using machine learning techniques to automatically map

arbitrary input images into the extracted similarity spaces (cf. Section

8.7.1) seems to be necessary for practical applications of the similarity

spaces presented in this chapter. In the following chapter, we will

investigate the capabilities of deep neural networks for learning such a

mapping, re-using and considerably extending our experimental setup

from Chapter 9.
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In the previous chapter, we have extracted similarity spaces of various Our hybrid approach

dimensionality for the shape domain, and we have showed, that they are

in line with important properties of the conceptual spaces framework.

This has essentially been the first step of the hybrid procedure we

proposed in Section 8.7.1. In this chapter, we will now implement the

second step of this hybrid procedure by training convolutional neural

networks (CNNs, cf. Section 6.2.2) to map from raw input images to

coordinates in the shape similarity spaces.

In Section 9.2, we used a photograph-based network as a starting point Overall setup

for our mapping experiments on the NOUN dataset [199]. Since the line

drawings from our dataset differ in their characteristics considerably

from photographs (e.g., by containing only black lines on white ground),

we will also consider sketches as as a source domain for our experiments.

By comparing a photograph-based network to a sketch-based network,

we will evaluate, whether the source domain has a considerable impact

on mapping performance. In Sections 8.7.1 and 8.7.2, we argued, that

learning the mapping task should be augmented by a secondary

training objective in order to harness larger amounts of data and to

reduce overfitting tendencies. In addition to the classification objective

investigated in Section 9.2, we will also consider a reconstruction

665
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objective in the form of a convolutional autoencoder (cf. Section 6.3.1) as

secondary task. Moreover, we consider two different learning regimes

(cf. Section 6.2.3): In transfer learning, we first train the CNN on its

secondary task, and then train a (regularized) linear regression on

top of the learned representation. This corresponds to two separate

training phases for the two tasks. In multitask learning, on the other

hand, performance on both the mapping task and the secondary task is

being optimized jointly.

The experiments presented in this chapter thus go beyond both theRelation to Sanders

and Nosofsky
study by Sanders and Nosofsky [346, 347] and our experiments on the

NOUN dataset [199] from Section 9.2: In addition to classification-based

transfer learning, we also consider a reconstruction objective and a

multitask learning setting. Moreover, our current investigations target a

single cognitive domain, while both the work by Sanders and Nosofsky

and our experiments on the NOUN dataset considered holistic similar-

ity spaces without distinguishing individual cognitive domains.

The remainder of this chapter is structured as follows: In Section 12.1,Overview

we briefly summarize important datasets and modeling approaches

from the area of sketch recognition. Section 12.2 then describes our

general machine learning setup as used in our subsequent experiments.

This includes a discussion of the data, the network architecture, and

the general training and evaluation procedure. We start our practical

experiments in Section 12.3 by training neural networks exclusively on

the tasks of sketch classification and sketch reconstruction, respectively.

For both types of networks, we optimize various hyperparameters in

order to identify promising settings for our subsequent mapping exper-

iments. In Section 12.4, we then apply the transfer learning approach

already used in Chapter 9 to our pretrained sketch-based networks

as well as to the pretrained photograph-based inception-v3 network

[400]. Afterwards, we investigate in Section 12.5, whether multitask

learning approaches (where multiple objectives are optimized jointly)

are able to outperform our simple transfer learners. In Section 12.6, we

then analyze the behavior of the different approaches on target spaces

of varying dimensionality. Finally, Section 12.7 summarizes the main

insights gained from our experiments and highlights some potential

directions for future research.

The experiments described in this chapter have been published in [48].

The code necessary for reproducing our results is publicly available on

GitHub [39].
1

The two sketch datasets used for training our networks

have both been made publicly available by their respective authors
2
,

while the line drawings from our psychological study are unfortunately

only available upon request due to copyright restrictions. All target

similarity spaces are included in our aforementioned GitHub repository.

1 See https://github.com/lbechberger/LearningPsychologicalSpaces/.
2 See http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/ for the

TU Berlin corpus [143] and https://sketchy.eye.gatech.edu/ for the Sketchy

dataset [348].

https://github.com/lbechberger/LearningPsychologicalSpaces/
http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
https://sketchy.eye.gatech.edu/
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12.1 sketch recognition

Sketching can be regarded as a universal form of communication [151], Importance of

sketching
which can potentially used as a low-threshold visual input modality

to computers [143, 442]. For instance, applications like sketch-based

image retrieval may allow also non-artist users to retrieve images with

specific content based on a rough sketch instead of an elaborate natural

language query [348].

Recognizing free-hand sketches poses, however, a difficult problem How sketches differ

from photographs
and differs from object recognition in photographs in various ways:

When making a sketch, humans tend to use iconic, simplified and

abstract representations focusing on salient object structures [143, 348,

446]. Moreover, individual object parts may be exaggerated, left out,

or caricatured [143, 348]. Furthermore, sketches are inherently diverse,

varying widely with respect to their level of detail and abstraction

[151, 446]. Moreover, they typically consist of black lines on white

ground, focusing only on a single object. This makes them much sparser

than photographs, which contain also a wide variety of background

and texture [442, 446]. Another crucial difference to photographs is the

inherent sequential nature of sketches [151], which can be represented as

an ordered list of strokes, while photographs are typically represented

based on pixel intensities [442, 446]. Even though sketches are quite

different from photographs, humans are still able to correctly recognize

them [151, 348].

Also the line drawings we considered in our psychological study Overview

from Chapter 10 have considerable differences to photographs, mostly

with respect to the focus on a single object, the absence of background,

and being made up of clearly visible individual lines. Generalizing from

photographs to our line drawings may thus pose a more difficult prob-

lem than generalizing from sketches. In the following, we present three

important datasets of sketches (Section 12.1.1) and give an overview of

several neural approaches towards sketch classification (Section 12.1.2).

This will then serve as a basis for our own experiments in Sections 12.3

to 12.6.

12.1.1 Datasets

Xu et al. [442] give a recent overview of neural approaches in the field of Classification of

datasets
sketch recognition. Their overview also contains a short discussion of

several datasets. Xu et al. classify them mainly based on their modality:

Single-modal datasets contain only sketches, and are mainly used for

training sketch recognition, retrieval, generation, or simplification tasks.

Multi-modal datasets on the other hand pair the sketches with other

sources of data such as photographs, 3D models of the depicted objects,

textual descriptions, or videos. They can thus also be employed for

tasks such as sketch-based retrieval of photographs or videos, or for

sketch-based video generation. Xu et al. furthermore note, that standard

web-crawling techniques, which are often used for gathering datasets of
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photographs, are not well-suited for creating sketch datasets, because

the sequence of strokes cannot be readily extracted from a pixel-based

representation. In the following, we introduce the three largest and

most popular datasets for sketches.

The first large-scale dataset of sketches was collected by Eitz et al.TU Berlin

[143], and is in the literature referred to as the TU Berlin dataset
3
. It is a

single-modal dataset containing 20,000 unique sketches of everyday

objects from 250 object categories. When defining the list of object

categories, Eitz et al. considered three desiderata: Firstly, they wanted

their overall set of categories to be exhaustive, i.e., to cover a wide variety

of objects commonly encountered in everyday life. Secondly, the object

categories needed to be recognizable based on a sketch. This implies, that

rough shape information needs to be sufficient for determining category

membership. Thirdly, Eitz et al. only included specific categories such

as dog or violin, but not superordinate concepts such as animal or

musical instrument in order to limit the visual variability within each

object category.

Sketches were collected from 1,350 participants through AmazonData collection

Mechanical Turk. Participants were instructed to only draw the outline of

the object (i.e., no filled regions) without including any context around

the object. Eitz et al. report a median drawing time of 86 seconds, and a

median number of 13 strokes per sketch. For each of the 250 categories,

Eitz et al. collected 90 sketches. After manually inspecting and cleaning

the complete dataset (i.e., removing sketches, which were in the wrong

category, or which did not follow the instructions), they truncated the

dataset, leaving 80 sketches in each category. The sketches are available

in a pixel-based format (png files with a resolution of 1111×1111 pixels)

and in a stroke-based format (svg files, where each stroke is encoded as

an individual spline).

Moreover, Eitz et al. tested the ability of human participants to cor-Human classification

performance
rectly classify the remaining sketches based on the 250 object categories.

In order to make this task easier for the participants of their study,

they arranged the categories into a hierarchy with 6 top-level super-

categories and 27 mid-level categories such as animal or building. Eitz

et al. found, that on average, humans reached a classification accuracy

of 73.1%. They furthermore observed large differences between differ-

ent categories, where confusions seemed to be most frequent between

semantically similar categories such as panda and bear.

Sangkloy et al. [348] have published the Sketchy database
4
, which con-The Sketchy database

tains both sketches and photographs. In total, this multi-modal dataset

contains 12,500 photographs in 125 categories and 75,471 sketches based

on these photographs. Sangkloy et al. argue, that the TU Berlin dataset

contains very iconic sketches, where the participants used poses and

viewpoints, which are easy to draw or canonical. In order to increase

3 See http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/.
4 See https://sketchy.eye.gatech.edu/.

http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
https://sketchy.eye.gatech.edu/
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the variety of poses and viewpoints, Sangkloy et al. primed their partic-

ipants with a photograph of the object to be sketched, and encouraged

them to adopt the pose and viewpoint from the photograph in their

own sketch. When determining the set of object categories, Sangkloy

et al. followed the same procedure as Eitz et al. [143] by considering

an exhaustive set of recognizable and specific categories. Their set

of categories is much smaller, but has a considerable overlap of 98

categories with the TU Berlin dataset.

Sangkloy et al. considered about 70,000 photographs from ImageNet Data collection

[120] as initial candidates for their Sketchy dataset. These photographs

were rated by a single volunteer according to a subjective five-point

"sketchability" scale, which was intended to reflect the difficulty of

sketching the object of interest based on this photograph. For each of

their 125 categories, Sangkloy et al. kept 100 photographs (40 rated as

"very easy", 30 rated as "easy", 20 rated as "average", 10 rated as "hard",

and 0 rated as "very hard"). Like Eitz et al. [143], they used Amazon Me-

chanical Turk for collecting sketches. More specifically, they prompted

participants with a particular photo for two seconds, which disappeared

afterwards. Participants were then asked to sketch the object of interest

with a pose similar to the one seen in the image, but without including

any context or shading of regions. For each photograph, Sangkloy et al.

collected five sketches from different participants.

In a manual post-processing step, Sangkloy et al. labeled each sketch Labeling

as correct, ambiguous, incorrect pose, environmental details, or erro-

neous. Overall, 64,560 sketches were labeled as correct. In contrast to

the TU Berlin dataset, all other sketches were kept in the dataset as well.

When analyzing the participants’ sketching behavior, Sangkloy et al.

observed a median sketching time of 85 seconds and a median number

of 14 strokes per sketch, which is very similar to the numbers reported

for the TU Berlin dataset. The sketches from the dataset are available

both in a pixel-based representation (png files with a resolution of

256× 256 pixels) and a stroke-based format (svg files).

The most recent dataset of free-hand sketches is called QuickDraw
5

QuickDraw

and was collected by Ha and Eck [186]. This single-modal dataset

contains 50 million sketches for objects in 345 categories. These sketches

were collected as part of a web-based game, where players were asked

to draw objects belonging to a particular object class in less than 20

seconds. The players’ goal was to draw the object in such a way, that

a machine learning system was able to correctly classify it into the

given category. For each of the categories, the dataset provides 70,000

training examples, 2,500 examples for validation and another 2,500

examples for testing. The sketches are available in a stroke-based format

(ndjason files with metadata and individual strokes) as well as in a

low-resolution pixel-based format (numpy bitmaps with a resolution of

28×28 pixels). The sketches from the QuickDraw dataset are very noisy,

since players had only 20 seconds for making each sketch, and since

5 See https://github.com/googlecreativelab/quickdraw-dataset.

https://github.com/googlecreativelab/quickdraw-dataset
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Figure 12.1: Illustrations of a parrot: (a) Our dataset
6
. (b) TU Berlin [143]. (c)

Sketchy [348]. (d) QuickDraw [186].

TU Berlin Sketchy QuickDraw

Criterion

[143] [348] [186]

Number of

Sketches

20,000 75,471 5,000,000

Number of

Categories

250 125 345

Type of Based on

Sketch

Free

Photograph

Free

Drawing Time 86 sec. 85 sec. ≤ 20 sec.

Strokes per Sketch 13 14 Unknown

Quality Control Filtered Labeled None

Table 12.1: Comparison of the three sketch datasets.

the collected sketches have not been manually cleaned [216]. Moreover,

players may not have finished a partial sketch, if it has already been

classified correctly.

Table 12.1 gives a systematic comparison of the three datasets, andComparison

Figure 12.1 compares an exemplary line drawing from our psychological

study to images from the respective category of the three datasets. The

QuickDraw dataset is considerably larger than the other two datasets,

but due to the time pressure involved in its collection, it contains very

large amounts of noise. It can thus be considered to be the poorest match

to the images from our dataset, which tend to be much more detailed.

Both the TU Berlin dataset and the Sketchy dataset were collected in

similar ways and have similar properties with respect to drawing time

and number of strokes. Moreover, they come with a manual quality

control, which ensures that the sketches are associated with the correct

category and follow the specifications. We therefore will use sketches

from both TU Berlin and Sketchy for our experiments.

12.1.2 Approaches

Early approaches to sketch recognition were mostly based on hand-Classical machine

learning
crafted computer vision features, which were originally designed for

photographs [446] (cf. Section 10.1.3). For instance, Eitz et al. [143] used

6 Image license CC BY-NC 4.0, source: http://clipartmag.com/cockatiel-drawing.

http://clipartmag.com/cockatiel-drawing
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features reflecting the line orientation within a small local neighbor-

hood, and trained both a support vector machine (cf. Section 5.2.3)

and a k nearest neighbors classifier (cf. Section 5.2.5) on the resulting

feature space. More recently, Abdelfattah and Zakaria [1] used a stroke-

based approach by first detecting visual primitives such as ellipses and

polygons and then using their relations (e.g., with respect to size and

position) as input to an SVM-based classifier. Since we aim to use sketch

classification as a secondary task for a neural network, which also maps

images onto points in a psychological similarity space, we will in the

following focus on neural approaches to sketch classification.

First neural approaches to sketch classification simply re-used existing AlexNet and

GoogLeNet
photograph-based architectures such as AlexNet [232], which was the

first convolutional neural network (CNN, cf. Section 6.2.2) to beat the

state of the art on ImageNet [120]. AlexNet (illustrated in Figure 12.2a)

uses five convolutional layers, max-pooling with overlapping areas

(pooling width of 3 and stride 2), and three fully connected layers.

It has 60 million parameters in total and consists of 650,000 different

neurons. While being considered a very large network at the time

of its creation, it has been surpassed by other architectures such as

GoogLeNet [399], which consists of 11 convolutional layers (most of

which run convolutions of different sizes in parallel) and a single fully

connected output layer.
7

Yu et al. [446] considered a three-fold cross validation on the TU Applying

photograph-based

networks on sketches

Berlin dataset [143], where the best non-neural approaches were able

to achieve 68.9% accuracy. A support vector machine trained on the

features extracted from a pretrained AlexNet achieved an accuracy of

67.1%, while the same network structure trained exclusively on the

sketch data achieved a slightly higher accuracy of 68.6%. This is still

below the human performance level of 73.1% classification accuracy

[143]. Sangkloy et al. [348] later used a pretrained version of AlexNet

as a baseline for their own system, and further fine-tuned its weights

on the TU Berlin dataset [143]. Using an 80-20 train-test split, they

observed an accuracy of 77.29% of the fine-tuned AlexNet. Applying

the same procedure to the deeper GoogLeNet resulted in an even higher

accuracy of 80.85%. Both of these network architectures are thus in

principle able to surpass the human performance level with respect to

sketch classification.

Sketch-a-Net [445, 446] was the first CNN specifically designed Sketch-a-Net as a

variant of AlexNet
for the task of sketch recognition [442]. Like AlexNet, it consists of

five convolutional layers, max-pooling with overlapping areas (pool

width of 3 and stride 2), and three fully connected layers (see Figure

12.2b). However, its overall number of parameters is with 8.5 million

considerably smaller than for the original AlexNet. This reduction in the

number of parameters is obtained by using fewer kernels, smaller fully-

7 Please note, that GoogLeNet is the predecessor of the inception-v3 network [400] (cf.

Section 6.2.2) used in Chapters 9 and 11, and in some of our subsequent experiments

in Sections 12.4.1 and 12.6.1.
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Figure 12.2: The overall structure of AlexNet [232] (a) and Sketch-a-Net [446]

(b). Differences are highlighted in boldface.
8

connected layers, and an additional max pooling layer to reduce the

representation size. Yu et al. [446] emphasize, that the overall network

structure is similar to standard photograph-based CNNs, since the

number of filters increases with depth, the stride of convolutional layers

is set to one for all but the first convolutional layer, and zero-padding is

used for layers, where the image size is not supposed to change. The

largest difference with respect to classical CNN architectures consists of

the filter size used in the first convolutional layer: While AlexNet uses

kernels of size 11×11, and while other architectures such as GoogLeNet

use even smaller kernel sizes, Yu et al. decided to use kernels of size

15 × 15. They argue, that sketches lack texture information, and that

one therefore needs to consider larger image patches in order to define

low-level features.

In their first version of Sketch-a-Net [446], Yu et al. modified theFirst version: input

channels and

downsampling

basic network architecture in two ways in order to capture stroke order

and multiple input scales. In order to model stroke order, they split

the underlying strokes of each sketch into three sequential groups. For

each group of strokes, they created an individual pixel representation,

and used this as one channel of the network’s input. Instead of using

a single grey-scale input channel, they thus used six input channels

(the three individual groups, the whole sketch, and combinations of

two subsequent groups). This did not change the network’s overall

8 Abbreviations: "96 conv 11×11 s4" = "convolutional layer with 96 kernels of size 11×11
and stride of 3", "Max pool 3 × 3 s2" = "max pooling layer with pool size 3 × 3 and

stride of 2", "FC 4096 (dropout)" = "fully connected layer with 4,096 neurons, trained

with dropout". Image sizes are shown next to the layers.
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structure and added only a relatively small number of weights to the

first convolutional layer. In order to incorporate multiple input scales, Yu

et al. used downsampling and subsequent upsampling to create blurred

versions of each input image. For each of their five downsampling

sizes (256, 224, 192, 128, and 64 pixels), they trained an independent

copy of the overall network. The resulting ensemble of networks used

Bayesian fusion to obtain an overall prediction for the given input.

In a three-fold cross-validation on the TU Berlin dataset [143], the

resulting architecture obtained an accuracy of 74.9%, making it the first

machine learning approach to beat humans with their reported 73.1%

classification accuracy on this task.

Later, Yu et al. [445] have removed the multichannel, multi-scale Second version: data

augmentation
aspects of the architecture. In the second version of Sketch-a-Net, they

have dealt with stroke order and input scale through data augmentation

steps (cf. Sections 6.2.3 and 7.2.1): In addition to translating, rotating,

and reflecting the overall sketch, they progressively removed individual

strokes from the overall sketch, where later and shorter strokes had a

higher probability of being deleted. As an additional means of data

augmentation, they further deformed the resulting sketch variants both

on the local level (by slightly modifying individual strokes themselves)

and on the global level (by deforming the convex hull of the overall

sketch). The resulting updated version of Sketch-a-Net used the same

network architecture, but needed less input channels and no ensemble

of networks. This simplification of the model, however, comes at the

cost of a more complex data preprocessing stage. After pretraining

their model on edge maps extracted from ImageNet [120], Yu et al. re-

ported an improved performance of 77.95% accuracy on TU Berlin [143].

Albeit being the first and most well-known example of sketch-based An alternative CNN

architecture for

sketches

CNNs, the work of Yu et al. is not the only approach in this direction.

For instance, Seddati et al. [357] have also trained a convolutional

neural network on the TU Berlin dataset [143], reaching an accuracy of

75.4% in a three-fold cross validation. Their architecture consists of five

convolutional layers and a single fully connected output layer, using

a relatively small kernel size of 7× 7 in their first convolutional layer.

They observed, that larger kernels just before the final classification

layer improved results, which they explain as sketch data requiring

the network to take into account larger overall structures in the input.

This is similar to the arguments by Yu et al., who, however, focused

on the earlier network layers when increasing the size of the receptive

field. Seddati et al. furthermore noted, that zero-padding of the original

image was helpful in achieving better performance. They analyzed the

representation learned by their network by using a bottleneck autoen-

coder (cf. Section 6.3.1) to reduce the dimensionality of intermediate

layers to 1024 entries. When looking at the k nearest neighbors of a

given sketch in these compressed feature spaces, Seddati et al. found,

that lower layers seemed to focus on local features, while middle lay-

ers encoded global shape information, and higher layers represented
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semantic similarity. This is in line with similar findings discussed in

Section 10.1.4 in the context of CNNs and shape perception.

Zhang et al. [457] have noted, that shape descriptors are widely usedSupplementing

CNNs with a

shape-based network

in standard computer vision approaches (cf. Section 10.1.3), but that

they are typically not learned by CNNs. They thus proposed to augment

the high-level representation learned by a classical CNN with informa-

tion extracted from a shape-focused neural network. This latter network

did not take a pixel image as input, but a randomly selected set of

points from the strokes making up the overall sketch. This set of points

was then mapped into an aligned space using an input-dependent

2× 2 affine transformation matrix in order to account for rotations and

different scales, before being fed into a fully connected feedforward

network. In the beginning, both networks were trained independently

on a classification task. After training, Zhang et al. simply concatenated

the features of the penultimate layers from both networks, and trained

a support vector machine on top of this hybrid feature space. They

reported an accuracy of 84.4% on the TU Berlin dataset [143] and an

accuracy of 82.7% on the Sketchy database [348].

Ha and Eck [186] were among the first to use recurrent neuralSketchRNN

networks for processing sketches. Their SketchRNN architecture corre-

sponds to a sequence-to-sequence variant of the variational autoencoder

framework introduced in Section 6.3.4. Instead of taking only a single

fixed input, their recurrent neural network processes one stroke at each

time step, keeping track of its internal hidden state over time. Overall,

their model maps an input sketch to a single latent vector, which can

then again be decoded into a sequence of strokes. In their experiments

on their QuickDraw dataset, Ha and Eck found, that the learned latent

code was able to create meaningful interpolations between sketches.

Moreover, it also supported simple vector arithmetics as also reported

for word embeddings (cf. Section 6.3.2).

Starting with the publication of SketchRNN, most sketch recognitionRecurrent neural

networks
studies (e.g., [86]) have focused on recurrent neural networks, which

interpret their input as a temporal sequence of individual strokes [442].

Since the line drawings used to create our shape spaces are, however,

only available in pixel-based format, we will use a CNN-based approach

as a basis for our experiments.

12.2 overall approach

As stated before, we use sketches as additional data for training ourOverview

neural networks, since the number of line drawings from our psycho-

logical study is considerably too low for applying machine learning

techniques. In Section 12.2.1, we give a more detailed overview of our

overall dataset, along with the data augmentation techniques being

used. In Section 12.2.2, we then present the overall architecture we

employ in our experiments, which aims to combine the three tasks of

reconstruction, classification, and mapping. Finally, we discuss the train-
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ing and evaluation procedure as well as important hyperparameters in

Section 12.2.3.

12.2.1 Data

The dataset of line drawings from Chapter 10, which we used for the Our shape stimuli

extraction of shape similarity spaces in Chapter 11, is limited to 60

individual stimuli. These stimuli are all annotated with their respective

coordinates in the target similarity space, and are thus our main source

of information for learning the mapping task. However, the number of

data points is clearly too low for training a neural network from scratch.

In addition to the 60 images from our dataset, we have 70 more line Additional line

drawings
drawings in a similar style, which were used in preliminary investiga-

tions or as filler items, but not included into the main psychological

studies for various reasons. Since their style is very similar to the stimuli

from the study, we included them as additional data points in our train-

ing set. Please note, that these 70 additional line drawings, however,

come without ground truth coordinates in the similarity space.

Since the number of data points is still considerably too low, we Sketch data: TU

Berlin and Sketchy
decided to use both the TU Berlin dataset [143] and the Sketchy dataset

[348] as secondary data sources. From the TU Berlin corpus, we used

all 20,000 sketches, while for the Sketchy corpus we selected a subset

of 62,500 images by first keeping only the sketches, which had been

labeled as correct by the authors, and by then randomly selecting

500 sketches from each of the 125 categories to ensure a balanced

distribution across classes. While the sketches from TU Berlin and

Sketchy do not come with coordinates in a psychological similarity

space, they are annotated with their respective class label, and thus lend

themselves to being used in a classification task. TU Berlin contains 250

classes and Sketchy uses 125 classes, and both datasets overlap on a

subset of 98 common classes. Overall, we thus consider a set of 277 dis-

tinct classes. The respective lists of classes can be found in Appendix G.1.

We used the following augmentation procedure to further increase Dataset

augmentation
the variety of inputs (cf. Section 6.2.3): For each original image, we first

applied a horizontal flip with probability 0.5, and then rotated and

sheared the image by an angle of up to 15 degrees, respectively. In the

resulting distorted image, we identified the bounding box around the

object, and cropped the overall image to the size of this bounding box.

The resulting cropped image was then uniformly rescaled, such that its

longer side had a randomly selected size between 168 and 224 pixels.

Using a randomly chosen offset, the rescaled image was then put in a

224 × 224 image, where remaining pixels were filled with white. We

used a uniform distribution over all possible resulting configurations

for a given object, which makes smaller object sizes more likely, since

they have more translation possibilities than larger object sizes. As a

result, around 50% of all augmented images have objects with sizes

between 168 and 182 pixels, while only about 10% of the generated
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Number of Number of

Data Source

Original Images

Factor

Augmented Images

Shapes

(Chapter 10)

60 (0.07%) 2,000 120,000 (16.00%)

Additional

Line Drawings

70 (0.08%) 2,000 140,000 (18.67%)

TU Berlin [143] 20,000 (23.49%) 12 240,000 (32.00%)

Sketchy [348] 65,000 (76.35%) 4 250,000 (33.33%)

Overall 85,130 ≈ 8.81 750,000

Table 12.2: Augmentation factors used for the individual data sources.

images contain objects of size 204 or larger. The overall average object

size is 185 pixels, which corresponds to about 82% of the image size

and is thus slightly larger than what has been reported for the raw TU

Berlin and Sketchy images (where the largest dimension of the object

covers around 78% of the overall canvas).

Please note, that we explicitly did not use the augmentation stepsDifferences between

data sources
of horizontal flips, random shears, and random rotations on the line

drawings from our shapes dataset, since the corresponding psychologi-

cal similarity space contains an interpretable direction, which reflects

the orientation of the object. If we used these transformation in the

augmentation step, we would also have to update the target coordinates

accordingly. For all other data sources (additional line drawings, TU

Berlin, and Sketchy), we, however, did apply horizontal flips, shears

and rotations in order to increase the input variety. We decided against

the usage of random crops, because they might remove parts of the

object. While this may be desirable for photographs (where the object

of interest may not be fully visible in the image), we think, that it

would remove important information from the already relatively sparse

sketches and line drawings.

Instead of using all possible augmentation variants (i.e., all possibleOverall

augmentation setup
rescaling sizes and translations), we decided to use only a randomly

selected subset in order to keep the size of the resulting overall data et

at a manageable size. Data augmentation was done as an explicit pre-

processing step rather than on the fly. While this approach comes with

a higher storage requirement, it reduces the number of computations

while training the system. Moreover, by doing the augmentation step

once in the beginning, we can easily ensure, that the same randomly

chosen augmentations are used in all experiments.

Table 12.2 lists the augmentation factors used for the different dataAugmentation

factors
sources. We chose these factors, such that each of the three sources

(line drawings, TU Berlin, Sketchy) contributes a roughly equal amount

of augmented data points to the resulting augmented dataset. This

of course means, that the line drawings (for which only a very small

number of examples is available) are more heavily augmented than the
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Figure 12.3: Illustration of our overall network architecture.
9

sketch datasets (which already contain a larger number of examples).

We nevertheless chose also a factor of four for the largest data source in

order to ensure some variability with respect to object size and location.

From the overall augmented dataset, all 750,000 inputs can be used for Data and tasks

training and evaluating a reconstruction objective (i.e., an autoencoder).

Only the 120,000 inputs generated based on the stimuli from our shapes

dataset can be used for learning and evaluating the mapping task,

which corresponds to about one sixth of the overall augmented dataset.

Finally, a classification of inputs into categories can be learned and

evaluated based on both TU Berlin and Sketchy with their 490,000 data

points, which make up about two thirds of the augmented dataset.

12.2.2 Architecture

Figure 12.3 illustrates the overall architecture used in our experiments. Overall architecture

with shared encoder
The three tasks of classification, reconstruction, and mapping all share

the bottom part of the architecture, namely the encoder network and

the resulting hidden representation. The classification takes place on

top of this shared hidden representation with a single fully connected

softmax layer, while the reconstruction is obtained through a separate

decoder network. In our experiments, we simply constrain the encoder

to produce the coordinates in the psychological similarity space in a

given subset of its outputs. We could also have included an additional

linear layer, which translates from the common hidden representation

to coordinates in the similarity space. This would, however, have

9 Image license of parrot drawing CC BY-NC 4.0, source: http://clipartmag.com/
cockatiel-drawing.

http://clipartmag.com/cockatiel-drawing
http://clipartmag.com/cockatiel-drawing
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introduced additional parameters into the model without any obvious

benefit. Moreover, since the mapping output is part of the common

bottleneck layer, it also receives a gradient from the other two tasks,

which provides an important factor of regularization. Our approach

can be related to the work by Salakhutdinov and Hinton [345], who

trained an autoencoder and constrained a part of its bottleneck layer

with a classification task in order to enforce metric learning constraints

(cf. Section 5.3.3).

Please note, that we use a single softmax layer with 277 outputs for theJoint classification

output
union of classes from TU Berlin and Sketchy. Of these 277 outputs, 152

are only relevant for the TU Berlin dataset, while 27 are only relevant for

Sketchy. The remaining 98 classes are shared between the two datasets.

A detailed list of all the classes can be found in Appendix G.1. During

training, we optimize the prediction with respect to all 277 outputs, but

we split the evaluation according to the two datasets.

In Figure 12.3, one can also see, that we apply salt and pepper noise (cf.Salt and pepper noise

Section 6.3.1) to the inputs, before feeding them through the encoder.

This additional noise further increases the variety of the network’s

inputs, and can be seen as an additional form of data augmentation. We

chose binary salt and pepper noise (which sets randomly selected pixels

to their minimal or maximal value) rather than Gaussian noise, since

the former seems to be more adequate for our near-binary inputs, where

most of the pixels are either black or white. Please note, that while the

encoder’s input is corrupted with noise, the decoder has to reconstruct

the original, uncorrupted image. We thus make use of a denoising

autoencoder [419, 420] (cf. Section 6.3.1). This can be interpreted as a

way of regularization: The function learned by the encoder needs to

be able to remove irrelevant noise, and thus implicitly needs to learn

about lines and strokes.

The overall architecture sketched so far leaves the concrete implemen-Concrete network

structures
tation of both the encoder and the decoder network unspecified. There

is a large number of possible network architectures one could employ

for the encoder and the decoder. In order to drastically reduce the search

space and to focus on our overall research question (namely, whether

we are able to learn the mapping from images to points in the similarity

space), we decided to base our own architecture on pre-existing models.

Figure 12.4a shows the structure of the Sketch-a-Net model [445,Sketch-a-Net as an

encoder
446], which has been introduced in Section 12.1.2. It was the first

CNN to achieve superhuman performance on sketch recognition, and

thus seems to be a good starting point for our research. Although its

performance has been surpassed in recent years by other approaches,

the simplicity of its network structure makes it an ideal candidate for

our encoder network.

Dosovitskiy and Brox [134] have used decoder networks consisting ofA decoder for

AlexNet
multiple upconvolutional layers (which contain an unpooling step and

a standard convolution, cf. Section 6.2.2) in order to reconstruct the orig-

inal inputs from the high-level activations of pretrained convolutional

neural networks. Figure 12.4b shows the network architecture they
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Figure 12.4: (a) Sketch-a-Net architecture [446]. (b) The decoder architecture

used by Dosovitskiy and Brox [134] for AlexNet. (c) Our overall

encoder-decoder structure (changes highlighted in boldface).
10

used for the final layers of AlexNet [232]. Dosovitskiy and Brox have

not only used this architecture to decode the features from a pretrained

AlexNet architecture, but they have also trained the two networks

jointly, obtaining a convolutional autoencoder. Since Sketch-a-Net can

be considered a smaller variant of AlexNet, we assume, that a slightly

modified version of the architecture used by Dosovitskiy and Brox is

also applicable to Sketch-a-Net.

Figure 12.4c illustrates the configuration of our overall autoencoder Our encoder network

(highlighting changes in boldface). The encoder part is almost com-

pletely identical to Sketch-a-Net. We used the last fully connected layer

as bottleneck layer, whose size will be treated as a hyperparameter of

the overall system. Moreover, we did not use dropout in the bottleneck

layer and made use of linear units instead of ReLUs to allow the network

to predict the MDS coordinates (which can also be negative) as part of

its output. Overall, the encoder network has about 8.5 million weights.

Our decoder is based on the structure provided by Dosovitskiy and Our decoder network

Brox with the following modifications: The first fully connected layer

has 512 units in order to reflect the second-to-last layer of the encoder.

In order to obtain an output size of 224× 224 pixels, we furthermore

introduced an additional upconvolutional layer and reduced the output

size of the second fully connected layer. Since the images in our dataset

contain only greyscale information, we need only a single color channel

at the decoder’s output. Since the desired output is of lower complexity,

we furthermore decided to reduce the number of kernels by a factor of

10 Abbreviations: "96 (u)conv 11× 11 s4" = "(up)convolutional layer with 96 kernels of

size 11× 11 and stride of 3", "Max pool 3× 3 s2" = "max pooling layer with pool size

3× 3 and stride of 2", "FC 4096 (dropout)" = "fully connected layer with 4,096 neurons,

trained with dropout". Image sizes are shown next to the layers.
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two, which further reduces the number of trainable parameters. Overall,

our decoder network has about 1.5 million trainable parameters.

The classifier (not shown in Figure 12.4) is implemented as a fullyOur classifier

network
connected softmax layer with 277 outputs on top of the bottleneck

layer. It comes with roughly 140,000 trainable weights. Taken together,

the overall architecture (encoder, classifier, and decoder) has about 10

million parameters.

12.2.3 Training, Evaluation, and Hyperparameters

In our experiments reported below, we will train the proposed overallThe overall loss

function
architecture to minimize a linear combination of the classification,

reconstruction, and mapping objective. In general, our loss function

has the following form:

J = λ1 · Jclassification + λ2 · Jreconstruction+λ3 · Jmapping (12.1)

with λ1, λ2, λ3 ∈ R+
0

The hyperparameters λ1, λ2, and λ2 control the trade-off betweenClassification and

mapping loss
the three different training objectives. Since the classification output

is realized with a softmax layer, we use the softmax cross-entropy (cf.

Section 6.2.1) for Jclassification, considering all 277 classes. The mapping

task is essentially a regression from image input to coordinates in the

psychological similarity space. Therefore, Jmapping is realized in the

form of the mean squared error (MSE, cf. Section 5.1.2).

For the reconstruction error Jreconstruction, we could also choose theReconstruction loss

mean squared error. However, even though our inputs and outputs are

not binary, they are limited to the integer interval [0, 255]. Moreover, both

the line drawings and the sketches mainly consist of white background

and black lines, as documented in Table 12.3. There, we can see, that

especially the sketches from TU Berlin and Sketchy are quite binary in

nature, but that also the line drawings have most of their pixel intensities

at the ends of the scale. We can thus approximate the distribution of

pixel intensities reasonably well with a Bernoulli distribution. We

normalize the pixel intensities to the interval [0, 1] and use sigmoid

units at the output layer of the decoder network, which allows us to

use the sigmoid cross entropy loss (cf. Section 6.2.1) for Jreconstruction.

Each of the three loss components was only computed on the set ofData points and loss

components
data points, to which it is relevant. While Jreconstruction can be computed

for all examples from the augmented dataset, Jclassification is only appli-

cable to data points from TU Berlin and Sketchy, and Jmapping is relevant

only for the line drawings from our psychological study. Combining

the three loss components on the overall dataset thus corresponds to

a form of semi-supervised learning (cf. Section 5.1.2), because not all

data points come with labels for all tasks.

When evaluating the network’s overall performance with respectEvaluation metrics

to the three tasks, we make use of the following evaluation metrics:

For the reconstruction task, we simply report Jreconstruction, i.e., the
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Pixel Values Shapes Additional TU Berlin Sketchy Overall

0 (total black) 0.28% 0.03% 0.00% 0.06% 0.07%

[0, 9] (black) 1.49% 0.82% 0.01% 0.63% 0.61%

[246, 255] (white) 86.97% 87.43% 93.14% 90.61% 90.25%

255 (total white) 69.15% 70.93% 91.08% 88.85% 83.07%

Table 12.3: Distribution of pixel intensities in the augmented dataset, split

according to the data source.

binary cross entropy with respect to the original input and the denoised

reconstruction. For the classification task, we report separate classifi-

cation accuracies (cf. Section 5.1.2) for the TU Berlin and the Sketchy

dataset, respectively, by using the respective examples from the test set.

By evaluating performance on the two datasets individually, we can

compare our obtained accuracies to the ones reported in the literature

(cf. Section 12.1.2). Finally, for the mapping task, we report the same

three metrics already used in Chapter 9, namely the mean squared error

(MSE), the coefficient of determination R2
, and the mean Euclidean

distance (MED) between the predicted point and the ground truth:

MSE =

n∑︂
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2

In the formulas from above, n refers to the number of dimensions Notation

in the target space and N to the number of data points, while y
(j)
i and

f̂(x⃗(j))i represent the target coordinate and the predicted coordinate, re-

spectively. ȳi denotes the average coordinate value across all data points

on the ith dimension. A more detailed explanation of the evaluation

metrics and their interpretation is given in Section 9.2.1.

We only used salt and pepper noise during training, but not during Noise regime

evaluation in order to avoid random fluctuations on the validation and

test set, which are only based on the different noise patterns applied to

the input. This makes the validation and test set results more compara-

ble across epochs and hyperparameter configurations.

Since the target coordinates used for learning and evaluating the Cross validation and

fold structure
mapping task are based only on 60 original stimuli, we decided to
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Setting Shapes Additional TU Berlin Sketchy

Classification (Section 12.3.1) 0 0 63 65

Classification + Mapping

(Section 12.5.1)

25 0 51 52

Reconstruction (+ Mapping)

(Sections 12.3.2 and 12.5.2)

21 24 41 42

Table 12.4: Creation of minibatches based on the four data sources for different

training settings.

follow a five-fold cross validation scheme. We divided the original data

points from each of the data sources into five folds of equal size, and

then applied the augmentation steps from Section 12.2.1 to each fold

individually. Therefore, all augmented images, which are based on the

same original data point, are guaranteed to belong to the same fold,

thus preventing potential information leaks between the different folds.

We created folds in such a way, that they were stratified with respect to

the given categories. With respect to the stimuli from our psychological

study, each fold contained exactly one stimulus from each of the twelve

categories. For the TU Berlin dataset, sixteen out of the 80 examples

were selected for each category, and for Sketchy, we used for each fold

100 of the 500 example sketches per category.

In our overall evaluation process, we rotated through these folds inCross validation

workflow
such a way, that we always used three folds for training, one fold for

testing, and the remaining fold as a validation set to implement early

stopping (cf. Section 6.2.5). For early stopping, we chose the epoch with

the lowest loss on the validation set (classification and reconstruction

loss for the initial hyperparamter optimizations in Section 12.3, and

mapping loss for the multitask learning experiments in Section 12.5)

across all of the 200 epochs. We ensured, that each fold was used once

for testing, once as validation set, and three times as part of the training

set. The reported numbers are always averaged across all folds. By

using this five-fold cross-validation technique, we implicitly trained five

neural networks with the same hyperparameter settings, but slightly

different data. Our averaged results can therefore also be interpreted as

an expected value of the neural network’s performance.

During training, we used the Adam optimizer [223] (cf. Section 6.2.5)Training algorithm

and minibatches
as a variant of stochastic gradient descent, with the initial learning rate

set to 0.0001, the default parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8
,

and a batch size of 128. We ensured, that each minibatch contained

examples from all relevant data sources. Table 12.4 shows, how each

minibatch was constructed for the different combinations of tasks,

reflecting the relative size of each relevant data source as accurately as

possible. During training, we only considered complete batches, which

means, that some examples were discarded, since the dataset size was

not integer divisible by the batch size. After each epoch, we shuffled

the training examples to create a different assignment of examples to

minibatches for the following epoch. For both the validation and the
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test data, also incomplete batches were evaluated to ensure, that the

complete set of examples was taken into account.

Since we need to estimate a large number of model parameters from a Regularization

limited amount of data, we may need to introduce several regularization

techniques (cf. Section 6.2.3). The form and strength of regularization

was treated as a hyperparameter to the overall system, which needs

to be manually tuned. More specifically, we considered the following

regularization techniques:

We added a weight decay penalty to the overall loss function, which Weight decay

incites the network to use small weights. A weight decay level commonly

reported in the literature is 0.0005 [232, 302], which we will use as a

starting point for our experiments. While some authors report, that

applying weight decay only to the encoder part of an autoencoder

network is preferable [300], others apply the weight decay also to the

decoder [302]. We will explore both variants when considering the

decoder network as part of our autoencoder experiments.

As already shown in Figure 12.4, dropout is commonly used in the Dropout

fully connected layers of standard convolutional networks. We will

investigate, whether using dropout in the penultimate layer of the

encoder is necessary, and whether the fully connected layers of the

decoder also profit from dropout regularization.

Thirdly, one could use batch normalization as an additional regulariza- Batch normalization

tion technique. Since, however, both original networks used as a starting

point for our own architecture do not make use of batch normalization,

we did not explore its effects in our studies.

The additional noise injected into the inputs can be considered another Noise

form of regularization, although an indirect one. As stated above, we

used salt and pepper noise, because our data is close to being binary.

When introducing stacked denoising autoencoders, Vincent et al. [420]

investigated salt and pepper noise added to 10%, 25%, and 55% of

the pixels. We will use their proposed values as possible noise levels

in our experiments. One should, however, note, that due to the very

high number of white pixels in our images, salting (i.e., setting random

pixels to white) will rarely have any observable effect.

Another way to regularize our architecture can be realized by varying Size of the bottleneck

layer
the size of the bottleneck layer. The original Sketch-a-Net architecture [446]

uses a fully connected layer with 512 neurons for making classifications

on the TU Berlin dataset. In addition to this default value, we also

investigated bottleneck layers with 256, 128, 64, 32, and 16 neurons.

Finally, the overall multitask learning setting used in our approach Multitask learning

also acts as a regularizer: By considering multiple tasks at once, the

encoder’s weights are constrained to be useful for all of these tasks,

making overfitting less likely. Whenever combining multiple objectives,

we will consider multiple settings for the mapping coefficients λ3 in

order to investigate synergies and trade-offs between the tasks.
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12.3 obtaining baseline networks

Since no pretrained weights have been published for Sketch-a-NetPretraining

Sketch-a-Net
[445, 446], we first need to train our sketch-based network from scratch in

order to obtain a starting point for our classification-based experiments.

We optimize our architecture for the classification task in Section 12.3.1,

where we also investigate the influence of different hyperparameters

on the network’s performance.

We are also not aware of any pretrained convolutional autoencodersPretraining the

autoencoder
for sketch data, hence we also need to train our proposed architecture

from scratch on the reconstruction task. This is done in Section 12.3.2,

where we also optimize the network’s hyperparameters.

For both tasks, we use the correlation between the learned hiddenCorrelation to

dissimilarities
representation and the dissimilarities from our psychological study

as an additional way of evaluating the expected usefulness of the

given setup for the mapping task. This correlation is computed using

Kendall’s τ [219] as described in Section 11.2.1 for the different baselines.

12.3.1 Sketch Classification

In our first experimental step, we used only the encoder network andBenchmark results on

TU Berlin and

Sketchy

the classification layer, and trained them exclusively on the classification

task. We can compare the results obtained by our architecture to the

best results obtained on the two sketch classification datasets so far.

While human performance on the TU Berlin dataset seems to be around

73.1% accuracy [143], the Sketch-a-Net architecture was able to achieve

up to 77.9% [445]. More recent approaches such as the one by Zhang

et al. [457] (cf. Section 12.1.2) use specialized elements in addition to

regular CNNs, and are able to achieve even higher accuracies of up to

84.4%. The Sketchy dataset is mostly used for evaluating sketch-based

image retrieval rather than sketch classification, hence we have fewer

reported classification accuracies. However, since Zhang et al. [457]

report an accuracy of 82.7% for their hybrid network, we can assume,

that also other approaches should obtain accuracies on Sketchy, which

are in a similar order of magnitude as observed for the TU Berlin dataset.

We started our experiments by considering a default setup of theDefault

hyperparameter

setup

hyperparameters, which is based directly on Sketch-a-Net [445, 446]

and AlexNet [232]: We used a weight decay of 0.0005, dropout in the

first fully connected layer, and 512 neurons for the bottleneck layer.

Moreover, we applied 10% of salt and pepper noise during training.

As evaluation metrics, we considered the accuracies reached on TU

Berlin and Sketchy, as well as the monotone correlation of distances in

the feature space to the dissimilarity ratings from our shapes dataset

(measured with Kendall’s τ ). The averaged results across all five folds

are reported in Table 12.5 as default configuration.

As we can see there, our default setup is able to achieve a correlationCorrelation to

dissimilarities
of τ ≈ 0.27 to the dissimilarity ratings from our psychological study.



12.3 obtaining baseline networks 685

This value was achieved using optimized weights and the Manhattan

distance, but is considerably lower than the correlation of τ ≈ 0.39,

which we reported for the inception-v3 network [400] in Section 11.2.2. It

may thus seem, that the features extracted by our sketch-based network

are less useful than the ones extracted by more complex photograph-

based architectures. This difference may simply be based on the smaller

dataset used in our study, on the considerably simpler network archi-

tecture, and on the smaller size of the bottleneck layer. It is interesting

to observe, that for fixed dimension weights, the features from our

network correlate better with the dissimilarity ratings (τ ≈ 0.23) than

the ones from the inception-v3 network (τ ≈ 0.17). The optimization of

dimension weights allows us to focus on some dimension of the feature

vector, while largely ignoring others. This seems to be more useful for

the photograph-based than the sketch-based network. Our observation

may thus indicate, that while to photograph-based network contains

more shape-related information than our sketch-based network, it also

contains many irrelevant pieces of information (for instance with respect

to domains such as texture or color).

When looking at classification performance, we observe, that the Classification

performance
accuracy on the TU Berlin data is slightly above 63%, while we are

able to reach 79% accuracy on the Sketchy dataset. These numbers

are clearly lower than the ones reported above for the current state

of the art with respect to CNNs. The observed difference can, how-

ever, be explained by our simpler network architecture and our less

sophisticated augmentation procedure. Moreover, in comparison to

Sketch-a-Net [445, 446], we have removed the nonlinearity in the second

fully connected layer (cf. Section 12.2.2) in order to allow the network to

represent also negative coordinates when used in the multitask setting.

This lack of a nonlinearity in the second fully connected layer reduces

the representational capacity of the network, since the two subsequent

linear transformations before the softmax classification layer are math-

ematically equivalent to a single linear transformation. Nevertheless,

our network is considerably better than chance on both datasets, where

one would expect accuracies of 0.4% and 0.8% respectively, based on

the 250 and 125 classes contained in the two datasets. This difference

in the number of classes also explains, why the accuracy on Sketchy

is higher than the one on TU Berlin. Although our network achieves

only moderate performance levels, we think, that it is still a reasonable

starting point for our further investigations.

Our choice of hyperparameters so far was motivated by earlier Hyperparameter

optimization
literature, but may nevertheless be somewhat arbitrary. Moreover, since

our network architecture and dataset differ from other studies, we may

need a different degree of regularization. Therefore, we investigated

the influence of the individual regularization hyperparameters on the

network’s performance.

Conducting a full grid search with all of these potential hyperparam- A two-phase grid

search
eter settings would involve 180 different network configurations, each

of which would need to be trained five times (once for each of the folds).



686 learning a mapping into shape space

Hyper- Number of Kendall’s Accuracy on Accuracy on

parameter

Setting

Epochs τ TU Berlin Sketchy

None Default 188.6 0.2743 0.6320 0.7933

0.0 12.2 0.2831 0.5514 0.7479

0.0002 12.6 0.2931 0.5408 0.7364

0.0005 188.6 0.2743 0.6320 0.7933
0.001 163.8 0.2870 0.6110 0.7811

Weight

Decay

0.002 168.0 0.2758 0.5761 0.7666

True 188.6 0.2743 0.6320 0.7933
Dropout

False 4.8 0.3195 0.3963 0.6349

10% 188.6 0.2743 0.6320 0.7933
25% 190.8 0.2824 0.6094 0.7828

Noise

Level

55% 138.6 0.2825 0.3873 0.7424

2048 170 0.2994 0.6315 0.7885

512 188.6 0.2743 0.6320 0.7933
256 178.4 0.2777 0.6274 0.7908

128 181.2 0.2621 0.6239 0.7875

64 178.6 0.2340 0.6209 0.7813

32 167.4 0.2332 0.5916 0.7597

Bottleneck

Size

16 111.0 0.2196 0.4651 0.6780

Table 12.5: Results of our initial sketch classification experiments using the

default setup and variations with respect to a single hyperparame-

ter. For each hyperparameter, the default setup is shown in italics,

and the best values for each of the three evaluation criteria are

shown in boldface.

Since this would lead to an infeasible computational effort, we decided

to first conduct individual investigations for the different hyperparame-

ters. This reduces our initial search space to twelve different settings,

and allows us to obtain some first insights into the regularization effects

of the individual hyperparameters. Afterwards, we selected the default

setting as well as the most promising other setting for each of the

hyperparameters, leaving us with only 16 configurations for our grid

search. This two-phase approach massively reduces the number of

computations, while still yielding reasonable insights.

Table 12.5 summarizes the results of our first explorations with re-Effects of weight

decay
spect to the individual hyperparameters. When considering the strength

of the weight decay, we can observe, that our default setting is optimal

for classification performance. Stronger regularization leads to a slight

decrease in performance, while weaker regularization causes more

pronounced performance drops. Optimal validation set performance is

found after around twelve epochs for the low regularization settings,

which indicates a stronger tendency towards overfitting. When con-

sidering the correlation to the dissimilarity ratings, however, all other

weight decay settings are more promising than our default choice, the

best results being yielded by a slightly smaller degree of regularization.

Since a weight decay setting of 0.001 also leads to a notably improved
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correlation without the heavy downside of reduced prediction accuracy,

we will consider the two weight decay rates of 0.0005 (default) and

0.001 for our grid search.

When comparing our default setup to the configuration where dropout Effects of dropout

was turned off, we can make two somewhat contradictory observations:

On the one hand, removing dropout from the first fully connected layer

considerably increases the correlation to the dissimilarity ratings. On the

other hand, we also get a considerable drop in classification performance.

So although dropout clearly provides important regularization for the

classification task, it causes the bottleneck representation to be less well

correlated to human dissimilarity judgments. One may speculate, that

this is caused by the fact, that during training, a random selection of

inputs to the bottleneck layer are disabled, thus making its input less

stable. Again, the observation, that optimal validation set performance

is reached after only about five epochs, illustrates, that without dropout,

overfitting is very likely to happen.

Let us now take a look at the different noise levels. As we can see in Effects of noise level

Table 12.5, a higher proportion of salt and pepper noise in the inputs can

be at least partially beneficial: The correlation to human dissimilarity

ratings increases considerably for both a noise level of 25% and 55%. On

the other hand, classification accuracy suffers from stronger input noise.

While this effect is relatively mild for 25% noise, it is quite pronounced

for 55% noise. Since the correlation to the dissimilarity ratings is almost

identical for the two higher noise levels, we will investigate 10% and

25% noise in our subsequent grid search.

As a final hyperparameter, we considered the size of the bottleneck Effects of bottleneck

sizelayer.
11

Somewhat surprisingly, classification performance is relatively

robust to a reduction of the number of units: Even for only 64 bottleneck

units, classification accuracies are only slightly below the ones obtained

in the default setting. Only if we reduce the size of the bottleneck layer

to 32 or 16 units, we observe a relatively strong decrease in classifica-

tion performance. The correlation to the dissimilarity ratings, however,

seems to be more sensitive to the size of the bottleneck layer. For the

grid search, we consider 512 units (as in the default setting, which has

yielded the best classification performance) and 256 units, since this

setup resulted in comparable performance to 512 units with respect

to all three evaluation metrics. Moreover, a smaller representation

size seems desirable for both transfer learning and multitask learning:

When training a linear regression on top of the bottleneck layer in our

transfer learning experiments, a reduction of the bottleneck size causes

a reduction in the number of free parameters in the regression, thus

reducing the risk of overfitting. Also when training the network on the

classification task and the mapping task simultaneously in the multitask

learning setting, a smaller overall size of the bottleneck layer implies,

that a larger fraction of the bottleneck units is used to represent the

11 Due to considerably larger training times for larger number of bottleneck units, we

only explored a single setting with more than 512 neurons. We decided to use 2048

rather than 1024 units, because this allows a better comparability to the inception-v3

network, which also uses an internal representation with 2048 neurons.
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Bottleneck Weight Noise Number of Kendall’s Accuracy Accuracy

Size Decay

Dropout

Level Epochs τ TU Berlin Sketchy

512 0.0005 True 10% 188.6 0.2743 0.6320 0.7933

512 0.0005 True 25% 190.8 0.2824 0.6094 0.7827

512 0.0005 False 10% 4.8 0.3195 0.3963 0.6349

512 0.0005 False 25% 150.8 0.2865 0.5067 0.6938

512 0.001 True 10% 163.8 0.2870 0.6110 0.7811

512 0.001 True 25% 172.6 0.2556 0.5420 0.7715

512 0.001 False 10% 5.6 0.3292 0.3636 0.6146

512 0.001 False 25% 186 0.2911 0.5344 0.7016

256 0.0005 True 10% 178.4 0.2777 0.6274 0.7908

256 0.0005 True 25% 181 0.2563 0.5816 0.7781

256 0.0005 False 10% 5.2 0.3066 0.3528 0.6172

256 0.0005 False 25% 191.4 0.2725 0.5478 0.7074

256 0.001 True 10% 170.6 0.2701 0.6138 0.7830

256 0.001 True 25% 187.8 0.2645 0.5420 0.7701

256 0.001 False 10% 5.6 0.3049 0.3405 0.6088

256 0.001 False 25% 177.8 0.2478 0.5296 0.6994

Table 12.6: Results of our grid search for the sketch classification network. The

best values for each of the three evaluation criteria are highlighted

in boldface.

psychological similarity space. Since they constitute a larger proportion

of the overall bottleneck layer, the additional constraints coming from

the classification layer may have a stronger regularization effect on the

mapping task, potentially aiding generalization.

Overall, it seems that our default setup has already found a sweet spotInvestigating the

interaction of

hyperparameters

with respect to classification performance. However, the correlation to

the dissimilarity ratings can in principle benefit from different varia-

tions of its hyperparameters. So far, we have, however, only considered

the different hyperparameters individually without taking into account

potential interactions. For instance, it may be an interesting idea to

deactivate dropout in order to increase the correlation to the dissimi-

larities, but to compensate for the loss in regularization by increasing

the noise level. We therefore conducted a small grid search involving

two possible settings for each hyperparameter. As motivated above, we

considered weight decays of 0.0005 and 0.001, dropout being active and

inactive, noise levels of 10% and 25%, and bottleneck layers with 512

and 256 units.

Table 12.6 shows the results of our grid search. As we can see, theOptimal correlation

highest correlation to the dissimilarity ratings can be achieved with a

bottleneck size of 512 units, a weight decay of 0.001, enabled dropout,

and a noise level of 10%: We improve from τ ≈ 0.27 for our default setup

to τ ≈ 0.33. This is still somewhat lower than the correlation of τ ≈ 0.39
observed for the inception-v3 network, but nevertheless a considerable

improvement. We will further investigate this configuration under the
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name Ccorrelation. When looking closer at Table 12.6, we can observe,

that correlations of τ ≥ 0.30 are only achieved for disabled dropout

and a very small number of epochs. We assume, that the small number

of epochs is based on the missing regularization effect from dropout:

The network quickly starts to overfit the training data, hence the lowest

loss value on the validation set is observed quite early. The increased

correlation reported for these configurations may thus be an artifact of

simply terminating the training procedure much earlier.

When focusing on classification accuracy, our default configuration Optimal

classification

performance

with a bottleneck size of 512, a weight decay of 0.0005, enabled dropout,

and a noise level of 10% yields the best performance with accuracies

of about 0.63 and 0.79 for TU Berlin and Sketchy, respectively. We will

further investigate this configuration under the name Cdefault. It seems,

that as soon as dropout is disabled, the classification performance

considerably drops. This effect seems to be independent from the

number of epochs used for training. Also higher noise levels lead to a

slight deterioration of classification performance.

We argued above, that a reduced bottleneck size of 256 instead of Different bottleneck

sizes
512 units is attractive for our downstream mapping task. As our grid

search revealed, halving the size of the bottleneck layer only slightly

decreases performance. The configuration with 256 hidden units and

otherwise default parameters will be investigated under the name

Csmall. Moreover, for better comparability to the inception-v3 network

with its 2048 hidden units, we will also consider a configuration named

Clarge, which uses a bottleneck layer with 2048 units and otherwise

default hyperparameter settings (see Table 12.5).

Overall, we have selected four configurations for our subsequent Selected

hyperparameter

settings

experiments: Our Cdefault setup (which has yielded the highest clas-

sification accuracies), the configuration Ccorrelation with the highest

correlation to the dissimilarity ratings, and two variations of our default

setup, where the number of units in the bottleneck layer has been

increased to 2048 (Clarge) or reduced to 256 (Csmall). By comparing the

results obtained with these configurations, we can investigate which

aspect is most important for a good performance in the mapping task:

Correlation to the dissimilarities, classification accuracy, or compactness

of representation.

12.3.2 Sketch Reconstruction

As an additional avenue of research, we explored the usage of an Experimental setup

autoencoder instead of a classification network as a basis for our

mapping task. Since autoencoders have to reconstruct the original

pixels of the input image, they tend to focus on perceptual aspects of the

input (cf. Sections 6.3.1 and 8.7.2) – a property, which may be useful in the

context of shape similarity. Our default setup for the autoencoder makes

use of the default encoder settings from Section 12.3.1 (weight decay of

0.0005, enabled dropout, 10% salt and pepper noise, and a bottleneck

layer with 512 units) as well as an unregularized decoder (no weight
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decay and no dropout). Similar to our sketch classification experiments,

we again first conducted some initial experiments, where we varied

individual hyperparameters in order to explore their influence on the

overall results. For evaluation purposes, we used the reconstruction

error on the test set as well as the correlation of distances in the learned

representation to the original dissimilarity ratings (measured with

Kendall’s τ ).

Table 12.7 shows the results of this analysis. As we can see, our defaultPerformance of the

default setup
setup results in a reconstruction error of approximately 0.13. This num-

ber is by itself difficult to interpret, but can nevertheless serve as a basis

for relative comparisons between different hyperparameter settings.

The correlation to the dissimilarity ratings of τ ≈ 0.22 is considerably

lower than what we have observed for the default classification setting

in Section 12.3.1, where we obtained τ ≈ 0.27.

When considering different weight decay settings for the encoderEffects of encoder

weight decay
network, we observed two opposing effects: On the one hand, the

reconstruction error improved considerably, if the weight decay penalty

was decreased, and became larger for stronger regularization. On the

other hand, the correlation to the dissimilarity ratings seems to behave in

the opposite direction with stronger regularization leading to increased

values of Kendall’s τ . Since the gains with respect to reconstruction

performance seem to be more pronounced than the improvements with

respect to the correlations, we will consider the weight decay settings

of 0.0 and 0.0005 for the encoder in our subsequent grid search.

In our default setup, we did not impose any weight decay on the decoderEffects of decoder

weight decay
network. As Table 12.7 shows, introducing such a weight decay penalty

on the weights of the decoder drastically reduced the correlation to the

dissimilarities. It also considerably increased the reconstruction error.
12

We thus will not consider a weight decay for the decoder network in

our subsequent experiments.

In our classification experiments from Section 12.3.1, disablingEffects of encoder

dropout droupout in the encoder network led to an improved correlation to the

dissimilarities, but also resulted in considerably poorer classification

performance. In our autoencoder setup, however, disabling dropout

in the encoder yields clearly superior results with respect to both

evaluation metrics. It therefore seems, that dropout is necessary for

good classification performance, but makes reconstruction considerably

more difficult. We therefore will not consider dropout in the encoder in

our remaining investigations.

Interestingly, enabling dropout in the decoder did not have such aEffects of decoder

dropout
pronounced effect: The results with respect to both the reconstruction

error and the correlation became only slightly worse. Nevertheless,

since dropout in the decoder did not seem to be beneficial, we excluded

this way of regularization from our further considerations.

12 When the decoder weight decay was set to 0.002, the correlation values for the second

fold returned NaN (not a number). They have been excluded for computing the average

value reported in Table 12.7. Since all correlation values for enabled decoder weight

decay are very small, this does not considerably impact our overall results.
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Hyper- Number of Kendall’s Reconstruction

parameter

Setting

Epochs τ Error

None Default 56.2 0.2228 0.1303

0.0 178.8 0.1496 0.1098

Weight 0.0002 49.0 0.2244 0.1220

Decay 0.0005 56.2 0.2228 0.1303

Encoder 0.001 80.2 0.2318 0.1367

0.002 168.0 0.2346 0.1454

0.0 56.2 0.2228 0.1303
Weight 0.0002 124.4 0.0641 0.1647

Decay 0.0005 145.4 0.0651 0.1645

Decoder 0.001 170.2 0.0635 0.1651

0.002 167.4 0.0610 0.1693

Dropout True 56.2 0.2228 0.1303

Encoder False 160.2 0.2745 0.1194

Dropout True 75.6 0.2156 0.1315

Decoder False 56.2 0.2228 0.1303
10% 56.2 0.2228 0.1303
25% 24.0 0.2216 0.1396

Noise

Level

55% 156.0 0.1315 0.1527

2048 101.2 0.2382 0.1319

512 56.2 0.2228 0.1303

256 72.8 0.2057 0.1290

128 91.0 0.2057 0.1304

64 87.8 0.1997 0.1297

32 74.6 0.1847 0.1309

Bottleneck

Size

16 73.2 0.1598 0.1328

Table 12.7: Results of our initial autoencoder experiments using the default

setup and variations with respect to a single hyperparameter. For

each hyperparameter, the default setup is shown in italics, and the

best values for each of the three evaluation criteria are highlighted

in boldface.
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With respect to the noise level, our default setting of 10% salt andEffects of noise level

pepper noise seems to be optimal: Adding more noise made the denois-

ing reconstruction task more difficult, and did not lead to improved

generalization. While increasing the noise level to 25% only had a lim-

ited negative impact on performance, 55% noise heavily impaired both

correlation and reconstruction error. Since 10% of salt and pepper noise

have also turned out to be appropriate in our classification experiments

(cf. Section 12.3.1), we also keep the noise level in our subsequent

reconstruction experiments fixed to this value.

The size of the bottleneck layer seems to have its main impact on theEffects of bottleneck

size
correlation values: More hidden units lead to an increased correlation to

the dissimilarity ratings, while less hidden units cause the correlation to

drop. With respect to the reconstruction error, the effects of a differently

sized representation seem to be only minor: Even for only 16 bottleneck

units, we still obtained a reconstruction error only slightly larger than

observed in our default setup. It seems, that the sweet spot for the

reconstruction error lies at 256 units, which is why we further investigate

512 and 256 units.

Our observations can be related to the results by Newson et al. [300],Relation to prior

work
which were summarized in Section 6.4.2: Newson et al. investigated

the performance of autoencoders on a dataset of disks, using only a

single unit in the bottleneck layer. Their investigations showed, that the

combination of a regularized encoder and an unregularized decoder

led to the most stable results. Our dataset contains considerably more

complex stimuli, and we employed a considerably larger bottleneck

layer. Moreover, we used a denoising reconstruction objective, which

can also be interpreted as a general form of regularization. While also

our experiments showed, that an unregularized decoder is highly fa-

vorable, we also profit from an unregularized encoder.

In our classification experiments in Section 12.3.1, we have conductedComputational

complexity of a grid

search

a grid search using two promising candidate values for each of the four

hyperparameters. Due to the usage of a second decoder network, we

now have two additional hyperparameters to consider, which would

result in 26 = 64 instead of 24 = 16 overall configurations to evaluate as

part of the grid search. Due to the increased complexity of training an

autoencoder (which has a more complex output and a larger number

of weights to optimize), this was computationally not feasible with our

given resources. Luckily, we observed clear tendencies for many of the

individual hyperparameters in Table 12.7, and can thus simply fix them

to their supposed optimal value.

Overall, in our subsequent grid search, we used a fixed noise level ofGrid search setup

10%, no dropout, and no weight decay for the weights of the decoder

network. This leaves us with only two hyperparameters, namely, the

size of the bottleneck layer (256 vs. 512 units) and the weight decay for

the encoder network (0.0 vs. 0.0005).

As we can see in Table 12.8, the configuration with 512 bottleneckSelected

hyperparameter

settings

units and disabled weight decay scored best with respect to both

Kendall’s τ and the reconstruction error. It has therefore been selected
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Bottleneck Weight Decay Number of Kendall’s Reconstruction

Size Encoder Epochs τ Error

512 0.0 192.4 0.3019 0.0828

512 0.0005 160.2 0.2745 0.1194

256 0.0 192.0 0.2764 0.0834

256 0.0005 156.2 0.2592 0.1170

Table 12.8: Results of our grid search for the autoencoder. The best values for

each of the two evaluation criteria are highlighted in boldface.

for further investigations under the name Rbest. Please note, that the

highest correlation of τ ≈ 0.30, which we were able to achieve with

the autoencoder, is notably lower than the highest values of τ ≈ 0.33
observed for the classifier in Section 12.3.1. However, this higher cor-

relation was only obtained by sacrificing considerable amounts of

performance on the classification task, while the selected configura-

tion for the reconstruction task is optimal with respect to both the

correlation and the reconstruction objective. This may indicate, that the

reconstruction objective is more useful in our scenario, since improved

reconstruction performance also leads to a more human-like represen-

tation. We will investigate in the following, whether this also results

in improved mapping performance compared to a classification-based

network. In order to see, whether the hyperparameter optimization

conducted in this section has any impact on the mapping performance,

we will compare the Rbest configuration to our initial default setup,

henceforth labeled as Rdefault.

Figure 12.5 illustrates various reconstruction results for the parrot Visualizing

reconstruction

performance

stimulus from our original dataset. We only show reconstructions of

network configurations, where the presented stimulus was part of

the test set in order to focus on generalization performance. Figure

12.5a shows the original stimulus (without salt and pepper noise) as

well as reconstruction results by the Rdefault and Rbest configurations,

respectively. For both reconstructions, 10% salt and pepper noise had

been applied to the raw input. Figure 12.5a nicely illustrates, how a

reduction in the reconstruction error from 0.1303 to 0.0828 leads to a

much cleaner reconstruction of the original image, where not only the

overall shape of the object, but also some aspects of its inner structure

(such as the wing) and more details of its contour (such as the beak and

the feet) are captured.

Figure 12.5b shows reconstruction results with theRbest configuration Robustness to noise

for four different noise patterns based on 10% salt and pepper noise

with different seeds. As we can see, the resulting reconstructions barely

differ, which illustrates that the autoencoder succeeds in denoising its

input. Finally, Figure 12.5c shows reconstruction results for various

levels of noise. While the differences between 0% and 10% noise are

negligible, we can observe, that the system breaks down for higher

levels of noise: For 25% noise, the overall shape is roughly preserved,
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Figure 12.5: Reconstruction examples of the parrot stimulus. (a) Original im-

age
12

and reconstruction with theRdefault andRbest configurations.

(b) Reconstruction with the Rbest configuration for different noise

patterns applied to the input. (c) Reconstruction with the Rbest

configuration for different noise levels (0%, 10%, 25%, 55%).

but some artifacts start to appear, while for 55% noise the shape of the

original input is barely recognizable in the reconstruction.

12.4 transfer learning

In this section, we report on our first set of experiments for learningOverview

a mapping from images to our shape similarity space. In our transfer

learning setting (cf. Section 6.2.3), we will train a linear regression

on top of the high-level activations of a pretrained neural network,

resembling the setup of our machine learning experiments from Section

9.2. We will first investigate the performance of the photograph-based

inception-v3 network [400] in Section 12.4.1, using a publicly available

set of pretrained weights.
13

In Sections 12.4.2 and 12.4.3, we will then

apply the same transfer learning procedure to the classification-based

and reconstruction-based networks from Sections 12.3.1 and 12.3.2,

respectively. By comparing the results of these individual experiments,

we hope to gain some insights with respect to the question, to which

extent CNNs are capable of modeling human shape perception (cf. the

discussions from Section 10.1.4).

In all of these experiments, we will employ the four-dimensionalThe target space

mean space from Chapter 11 as target space for the mapping task. The

12 Image license CC BY-NC 4.0, source: http://clipartmag.com/cockatiel-drawing.
13 These weights can be found at http://download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgz.

http://clipartmag.com/cockatiel-drawing
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
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choice of the target space has been motivated by the observation from

Section 11.5, that similarity spaces with three to five dimensions give

a good trade-off between compactness and expressiveness. Moreover,

similarity spaces based on the mean dissimilarity matrix seemed to

be slightly favorable over spaces based on the median matrix. Finally,

using a four-dimensional target space allows us to make meaningful

comparisons to our transfer learning experiments on the NOUN dataset

[199] (cf. Section 9.2), which also used a four-dimensional target space.

In all experiments, we extracted the hidden representation of the Machine learning

models
respective network for each of the augmented line drawings. We then

trained a linear regression (cf. Section 5.2.1) from these feature spaces to

the four-dimensional target space. In addition to the linear regression,

we also considered a lasso regression (which introduces an additional

L1 penalty on the model’s weights, cf. Section 5.2.1) with the following

settings for the regularization strength β:

β ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}

We considered the mean squared error (MSE), the coefficient of Evaluation

determinationR2
, and the mean Euclidean distance (MED) as evaluation

metrics in our five-fold cross-validation (cf. Sections 9.2.1 and 12.2.3).

12.4.1 Photograph-Based Classification

In our first experimental step, we replicate the setup from our NOUN Overall setup

experiments in Section 9.2 as closely as possible. We again used the

2048 features extracted by the photograph-based inception-v3 network

[400] as a feature space (henceforth referred to as Cinception) for both

a linear and a lasso regression. For the linear regression, we again

considered both correct and shuffled target coordinates in order to

check, whether the structure of the similarity space is necessary for

successful generalization. In order to make the results more comparable

to the ones obtained by our sketch-based networks, we furthermore

considered three noise levels for salt and pepper noise during training,

namely, 10%, 25%, and 55%. During testing, no salt and pepper noise

was applied. Moreover, in this section, we consider four-dimensional

spaces based both on the mean and the median matrix in order to

validate, that our choice of the mean space has only minor impact on

the results. We compared our results to the zero baseline, which always

predicts the origin of the target space (cf. Section 9.2.1).

Tables 12.9 and 12.10 show the results obtained for a linear regression Results for a linear

regression
into the four-dimensional target spaces based on the mean and the

median ratings, respectively. In both cases, we can observe the same

general effects: The linear regression is clearly able to beat the zero

baseline when trained on the correct targets with small to medium

noise levels. However, if the assignment of input images to target

coordinates is shuffled, then the linear regression fails to generalize

to the test set, although its performance on the training set is only
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Noise Training Test

Regressor

Level

Targets

MSE MED R2
MSE MED R2

Baseline All All 1.0000 0.9940 0.0000 1.0000 0.9940 0.0000

Correct 0.0110 0.0961 0.9891 0.5506 0.7161 0.4513

0.1

Shuffled 0.0207 0.1319 0.9792 1.2567 1.0997 -0.2592

Correct 0.0196 0.1275 0.9805 0.6488 0.7835 0.3559

0.25

Shuffled 0.0382 0.1781 0.9614 1.2614 1.0998 -0.2646

Correct 0.1919 0.3932 0.8071 3.3461 1.7295 -2.2726

Linear

0.55

Shuffled 0.2890 0.4892 0.7084 3.3354 1.7193 -2.3434

Table 12.9: Results for the zero baseline and a linear regression into the four-

dimensional mean space, using different noise levels. Best results

on the test set are highlighted in boldface.

Noise Training Test

Regressor

Level

Targets

MSE MED R2
MSE MED R2

Baseline All All 1.0000 0.9781 0.0000 1.0000 0.9781 0.0000

Correct 0.0112 0.0969 0.9885 0.5410 0.6960 0.4366

0.1

Shuffled 0.0199 0.1293 0.9797 1.2016 1.0655 -0.2206

Correct 0.0198 0.1283 0.9793 0.6285 0.7596 0.3523

0.25

Shuffled 0.0371 0.1749 0.9623 1.2260 1.0746 -0.2276

Correct 0.1883 0.3889 0.8015 3.2534 1.7185 -2.4289

Linear

0.55

Shuffled 0.2808 0.4801 0.7203 2.9972 1.6256 -2.0284

Table 12.10: Results for the zero baseline and a linear regression into the

four-dimensional median space, using different noise levels. Best

results on the test set are highlighted in boldface.

moderately impaired. This indicates, that the semantic structure of

the target spaces is meaningful and required for generalization. With

increased noise levels, both the training and the test set performance

deteriorate. While the difference between 10% noise and 25% noise is

relatively small, adding 55% noise to the inputs causes the regression

to collapse completely: It is not able to generalize to the test set at

all, being considerably worse than the baseline for both correct and

shuffled target coordinates. Also in Section 12.3, a noise level of 10%

was preferable for both sketch classification and sketch reconstruction

networks. In the following, we therefore only consider the scenario

with 10% salt and pepper noise.

A comparison between Tables 12.9 and 12.10 shows, that both targetMean vs. median

targets
spaces result in similar performance levels. While MSE and MED are

slightly better on the median space, the mean space reaches a slightly

higher value for R2
. The difference with respect to the MED of the zero

baseline indicates, that the distribution of points in the mean space

is closer to the surface of a unit hypersphere than the distribution of

points in the median space (cf. Section 9.2.4).

So far, the difference between mean and median spaces seems toThe effect of target

space dimensionality
be negligible. In order to test, whether this observation generalizes
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Figure 12.6: Test set results for the linear regression onCinception for both mean

and median spaces of different dimensionality.

also to higher- and lower-dimensional target spaces, we obtained the

performance of the zero baseline and the linear regression for all other

possible target spaces (mean and median, one to ten dimensions),

using a noise level of 10% during training and correct targets. Figure

12.6 visualizes the results of this experimental step. As we can see,

performance with respect to all three metrics tends to get worse with

an increasing number of dimensions of the target space. For the mean

spaces, one or two dimensions seem to be preferable, while the median

spaces reach their highest performance in a one-dimensional space.

Overall, it seems, that the median spaces tend to perform slightly better

for a smaller number of dimensions, while the mean spaces are slightly

preferable for higher-dimensional spaces. This is somewhat surprising,

since so such effect has been observed in our analysis of the similarity

spaces in Chapter 11. Please note, that also for the zero baseline, the

MED tends to increase, an effect, which has been observed before in

Section 9.2.5, and which can be explained by the distribution of points

becoming more uniform in higher-dimensional spaces.

We were furthermore able to observe, that an increase in the number Overfitting

tendencies
of dimensions impacts test set performance much more than training

set performance, which indicates, that overfitting plays a crucial role in

our experiments. In fact, test set performance tended to be best when

the degree of overfitting (computed as the fraction of test set error and

training set error, cf. Section 9.2.4) was lowest. The preference for low-

dimensional target spaces is in line with our observations from Section

9.2.5, and can again be explained by the reduced risk of overfitting. It

is, however, somewhat surprising, that a one-dimensional similarity

space is optimal for the median spaces, since one-dimensional spaces

have shown a poor reflection of dissimilarity ratings in Section 11.2.3.

Table 12.11 shows the results of a lasso regressor on the four- Results for a lasso

regressor
dimensional target spaces, using 10% noise and varying values of

the regularization strength β. A regularization strength of zero corre-

sponds to the linear regression results reported in Tables 12.9 and 12.10.

As we can see, a modest degree of regularization can help to improve

the results slightly. The optimum is reached for β ∈ {0.005, 0.01}. If

regularization becomes too strong, there are no improvements over

the linear regression (β ≥ 0.5 for the mean space, and β ≥ 0.1 for the
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Mean Space Median Space

β
MSE MED R2

MSE MED R2

0 0.5506 0.7161 0.4513 0.5410 0.6960 0.4366

0.001 0.5252 0.6972 0.4764 0.5234 0.6832 0.4560

0.002 0.5159 0.6898 0.4856 0.5137 0.6758 0.4676

0.005 0.5090 0.6828 0.4924 0.5035 0.6670 0.4801

0.01 0.5164 0.6861 0.4847 0.5008 0.6633 0.4834

0.02 0.5182 0.6859 0.4826 0.5025 0.6657 0.4800

0.05 0.5204 0.6872 0.4806 0.5211 0.6818 0.4613

0.1 0.5241 0.6934 0.4763 0.5541 0.7053 0.4306

0.2 0.5319 0.7005 0.4680 0.5942 0.7330 0.3898

0.5 0.6022 0.7506 0.3983 0.6579 0.7833 0.3192

1 0.7488 0.8525 0.2527 0.7871 0.8675 0.1872

2 0.9799 0.9839 0.0204 0.9633 0.9604 0.0246

5 1.0146 1.0010 -0.0147 1.0085 0.9821 -0.0084

10 1.0146 1.0010 -0.0147 1.0085 0.9821 -0.0084

Table 12.11: Test set results for the lasso regressor with respect to the four-

dimensional target spaces, using 10% salt and pepper noise in

during training and no noise during testing.

median space). For β ≥ 5, the model collapses and performs slightly

worse than the baseline.

Again, performance differences between the mean and the medianMean vs. median

targets
spaces are relatively small, with the mean space performing better with

respect toR2
, and the median spaces yielding better values with respect

to MSE and MED. Since we found only negligible differences between

mean and median spaces for both regressors, we will only consider

mean spaces for the remainder of this chapter.

Overall, we observe similar effects as for our study on the NOUNComparison to the

NOUN experiments
dataset [199] from Section 9.2: Like in Section 9.2.3, learning the correct

mapping successfully generalized to the test set, while learning a

shuffled mapping did not generalize well. We also again observed

large overfitting effects, which can be somewhat mitigated through

regularization. In Section 9.2.4, we compared similarity spaces obtained

by different MDS algorithms, and found only negligible differences. In

this section, we considered similarity spaces based on the mean and

median dissimilarity ratings, respectively, and were again only able

to find small performance differences. Again, low-dimensional target

spaces tend to yield better results than high-dimensional target spaces,

an effect already observed in Section 9.2.5 and attributed mainly to the

increased risk of overfitting.

Table 12.12 compares the results from Chapter 9 with respect toA more direct

comparison
the four-dimensional space obtained from nonmetric SMACOF to the
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Dataset Regressor MSE MED R2

Linear 0.6076 0.7461 0.3706

NOUN

Lasso (β ∈ {0.005, 0.01}) 0.5937 0.7316 0.3853

Linear 0.5506 0.7161 0.4513

Shapes

Lasso (β ∈ {0.005, 0.01}) 0.5090 0.6828 0.4924

Table 12.12: Comparison between the results from our NOUN study (Section

9.2.4) and our results on the shapes data.

results described in this section based on the four-dimensional mean

space. Both target spaces have the same dimensionality, have been

created with the same MDS algorithm, and are based on an aggregation

of individual dissimilarities with the arithmetic mean. Moreover, the

same machine learning approaches (linear and lasso regression on top

of the inception-v3 network) have been applied. The only differences

concern the underlying stimuli (photographs of novel objects vs. line

drawings of everyday objects), the type of similarity judgments (overall

similarity vs. visual similarity), and the elicitation method for the

dissimilarity ratings (SpAM vs. pairwise ratings).

As we can see in Table 12.12, both the absolute performance level Differences and

potential reasons
and the relative gains from regularization are higher for our shape

space than for the NOUN dataset. Since such effects are unlikely

to be based on the elicitation method (cf. Section 8.1.2, where we

discussed multiple studies that found a good match between the two

elicitation methods), we can attribute them to the underlying stimulus

set or the type of similarity. It thus seems, that our shape spaces

are somewhat easier to fit – either because they use simpler input

images, or because they focus on a single cognitive domain. Additional

investigations are required to disambiguate between these potential

sources of performance differences.

12.4.2 Sketch Classification

We have argued in Section 12.1, that sketches may be a more useful Motivation

source domain than photographs when it comes to processing line

drawings. In this section, we test this hypothesis by applying the transfer

learning approach from Section 12.4.1 to the sketch-based classification

network from Section 12.3.1.

We considered all four network variants, i.e., Cdefault, Clarge, Csmall, Experimental setup

and Ccorrelation. For each of these four networks, we extracted the

features of the bottleneck layer and trained both a linear and a lasso

regression from the respective feature space into the four-dimensional

mean space. We again applied 10% salt and pepper noise during

training and no noise during testing. In Section 12.3.1, each network

configuration has been trained on the sketch classification task in a

five-fold cross-validation, resulting in five different sets of weights (one

per fold). For each of these sets of weights, we trained and evaluated
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Feature Training Test

Space

Regressor

MSE MED R2
MSE MED R2

Any Zero Baseline 1.0000 0.9940 0.0000 1.0000 0.9940 0.0000

Cinception Linear 0.0110 0.0961 0.9891 0.5506 0.7161 0.4513

(2048) Lasso (β = 0.005) 0.0173 0.1204 0.9828 0.5090 0.6828 0.4924

Clarge Linear 0.0513 0.2073 0.9486 0.5540 0.6848 0.4451

(2048) Lasso (β = 0.2) 0.1851 0.3983 0.8139 0.5065 0.6602 0.4929

Cdefault Linear 0.0479 0.2004 0.9520 0.5567 0.6879 0.4409

(512) Lasso (β = 0.05) 0.1911 0.4062 0.8080 0.4775 0.6419 0.5216

Csmall Linear 0.0541 0.2129 0.9457 0.5373 0.6737 0.4575

(256) Lasso (β = 0.02) 0.1872 0.4009 0.8117 0.4737 0.6396 0.5246

Ccorrelation Linear 0.0563 0.2145 0.9433 0.7307 0.7825 0.2624

(512) Lasso (β = 0.05) 0.2184 0.4299 0.7801 0.5478 0.6815 0.4505

Table 12.13: Results of our transfer learning experiments based on the sketch

classification network. The best values for each of the three

evaluation criteria on the test set are highlighted in boldface.

the regressors in another five-fold cross validation analogously to the

procedure from Section 12.4.1. We took the average regression perfor-

mance across all of these five folds and across all five sets of network

weights when reporting our results. We only considered correct targets,

and report only the best performance of the lasso regressor along with

the selected optimization strength. The full set of results for the lasso

regressor can be found in Appendix G.2.

Table 12.13 shows the result of these transfer learning experimentsExperimental

Results
and compares them to the results on Cinception feature space from Sec-

tion 12.4.1. As we can see, the linear regression performs considerably

better than the zero baseline in all cases. Moreover, additional regular-

ization through a lasso regression further helps to improve regression

performance on all feature spaces.

Performance on the training set was comparable across all of our ownFitting the training

examples
network configurations and notably worse than training performance

on Cinception. This indicates, that the feature space learned by our sketch

classification network is somehow harder to fit than the feature space

obtained from the inception-v3 network. Since training performance

does not differ much between our different network setups, we can

assume, that the size of the bottleneck layer (and thus the dimensionality

of the feature space) does not play a major role for fitting the training

set. We still observe a difference between Cinception and Clarge, although

both feature spaces have the same number of dimensions. One may thus

conclude, that the ease of fitting the training set is more determined by

the type of features rather than by their number.

When comparing performance of the linear regression on the testConsidering test set

performance
set, we can again see barely any influence of the representation size

on the results: The configurations Clarge, Cdefault, and Csmall yield

almost identical performance, which is quite similar to the performance
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observed for the Cinception feature space as reported in Section 12.4.1.

However, we see slight advantages of our approach with respect to

the mean Euclidean distance (MED). The Ccorrelation configuration

(which sacrificed classification accuracy for a higher correlation to the

psychological dissimilarity ratings) performs considerably worse than

all other approaches with respect to all evaluation metrics. Even when

using regularization in the form of a lasso regressor, it is barely able

to reach the performance level obtained by a linear regression on the

other feature spaces.

Regularization seems to be more helpful on our sketch-based feature Effects of

regularization
spaces than on the photograph-based Cinception. It furthermore seems,

that a smaller bottleneck size is beneficial in this case. Moreover, we

can observe, that the regularization strength required for optimal

performance of a lasso regressor is roughly proportional to the size of

the bottleneck layer: Larger feature spaces require more regularization.

This observation, however, only holds for our own feature spaces, which

need considerably larger amounts of regularization than Cinception.

Overall, our feature spaces seem to be more robust towards overfit- Comparison to

Cinceptionting than Cinception as indicated by the smaller gap between training

and test performance. At the same time, the regression benefits from

larger degrees of regularization on our feature spaces, which shows,

that a simple penalty on the size of the weights can effectively reduce

overfitting tendencies even further. Summing up, transfer learning

on sketch data seems to be more successful than transfer learning on

photographs when considering a lasso regressor. Although the perfor-

mance differences are certainly notable, the overall performance level

remains quite low with MSE ≈ 0.47, MED ≈ 0.64, and R2 ≈ 0.52.

Unlike our sketch-based networks, the inception-v3 network [400] Robustness against

noise
has not been explicitly trained with salt and pepper noise. One may

thus speculate, that the observed performance difference is based on

the robustness against noise. In order to investigate this hypothesis,

we have compared the results of a linear regression for different noise

regimes. Table 12.14 compares the behavior of a linear regression on the

Cinception and Cdefault feature spaces, as well as on another variant of

the sketch recognition network, which has been pretrained without any

noise (labeled as Cno noise). We compare the results of training the linear

regression with 10% salt and pepper noise, while evaluating without

any noise to two settings, in which the noise level on the training and

the test set is identical (either 10% or 0%).

As we can see in Table 12.14, the linear regression on the Cinception Cinception is

noise-sensitive
feature space is quite sensitive to different noise regimes: Using the

same type of noise during training and testing considerably improves

performance on the test set. This observation indicates, that a change

in the noise level between training and evaluation is problematic for

Cinception, presumably because the inception-v3 network is not able to

successfully filter out the salt and pepper noise applied to its inputs.

Somewhat surprisingly, training and evaluating on corrupted images

yields even better results with respect to all three evaluation metrics
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Feature Noise Noise Training Test

Space Training Test MSE MED R2
MSE MED R2

10% 0% 0.0110 0.0961 0.9891 0.5506 0.7161 0.4513

0% 0% 0.0039 0.0573 0.9962 0.4413 0.6254 0.5604Cinception

10% 10% 0.0110 0.0961 0.9891 0.3681 0.5672 0.6337

10% 0% 0.0479 0.2004 0.9520 0.5567 0.6879 0.4409

0% 0% 0.0450 0.1936 0.9549 0.5472 0.6841 0.4504Cdefault

10% 10% 0.0478 0.2004 0.9520 0.5249 0.6684 0.4727

10% 0% 0.0919 0.2758 0.9077 65657.2780 96.1381 -66385.4946

0% 0% 0.0389 0.1799 0.9609 0.5300 0.6734 0.4675Cno noise

10% 10% 0.0919 0.2758 0.9077 7.9197 0.8132 -7.2002

Table 12.14: Dependence of the linear regression results on the noise regime

during training and testing. Best test set results for each feature

space are highlighted in boldface.

0% Noise 10% Noise

Feature Space

dE dM dC dE dM dC

Cinception (2048) 0.5273 0.5307 0.7704 0.3794 0.3833 0.6103

Clarge (2048) 0.4115 0.3950 0.6411 0.4030 0.3866 0.6329

Cdefault (512) 0.4147 0.4105 0.6448 0.4055 0.4014 0.6364

Csmall (256) 0.4045 0.4029 0.6347 0.3958 0.3943 0.6263

Ccorrelation (512) 0.3328 0.3328 0.5310 0.3225 0.3224 0.5180

Cno noise (512) 0.4059 0.4023 0.6341 0.2565 0.2556 0.4050

Table 12.15: Cluster analysis of the augmented images in the individual

classification-based feature spaces using the Silhouette coefficient

[339] (averaged across all folds, if applicable).

than always using uncorrupted images. One may speculate, that this

effect is related to the texture-dependency reported for convolutional

neural networks [24, 163, 375] (cf. Section 10.1.4): The added noise

may appear to the network like an (irregular) texture, helping it to

distinguish figure from ground.

For our Cdefault configuration, the performance differences betweenCdefault is more

robust
different noise regimes are much less pronounced. This indicates, that

our sketch-based network is capable of filtering out salt and pepper

noise, which is not surprising, since it has been explicitly trained in the

presence of noise. Classification results of the Cno noise configuration

were slightly better than in the Cdefault case, but the network turned

out to be extremely sensitive to noise: We only obtained reasonable

regression results in the complete absence of noise, while an insertion

of noise during training lead to a complete collapse of the regressor.

Since we are interested in a mapping function that is robust in bothOutlook

the presence and absence of noise, the superior results of the Cinception

feature space for identical noise conditions are not of crucial importance

for our overall investigations. However, they warrant further analysis

in subsequent studies.
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We have furthermore computed the Silhouette coefficient [339] (which Cluster analysis

measures, how well different classes are separated in a given feature

space, cf. Section 9.2.2) for all our candidate feature spaces in order to

investigate, how well the different augmented versions of our Shape

stimuli from Chapter 10 are separated in the different feature spaces.

The results of this analysis can be found in Table 12.15, where we report

the Silhouette coefficient for three commonly used distance metrics

(namely, the Euclidean distance dE , the Manhattan distance dM , and the

Cosine distance dC), and where we consider two noise settings (namely,

0% and 10% salt and pepper noise). Please recall from Section 9.2.2, that

larger values of the Silhouette coefficient indicate a clearer separation

of clusters. When looking at Table 12.15, we can see, that the structure

of the feature space depends heavily on the noise level for both the

Cinception and the Cno noise feature space. For all other feature spaces,

we observe only minor differences between the different noise settings,

supporting our claim, that our network is able to successfully filter out

noise. While the Cinception feature space yields a better clustering for

uncorrupted images, it is slightly inferior to our feature spaces in the

presence of noise.

We can furthermore observe, that the size of the bottleneck layer Differences between

configurations
(and hence the dimensionality of the feature space) does not seem to

play a major role for separating the different clusters. Moreover, the

Ccorrelation feature space is the least successful with regards to the

Silhouette coefficient. Although the arrangement of the original stimuli

in this feature space is better aligned with the original dissimilarity

ratings (as indicated by the large value of Kendall’s τ , cf. Section 12.3.1),

the different augmented versions of the same original stimulus are

not mapped onto similar feature vectors. This is even the case in the

absence of noise, indicating, that theCcorrelation setting is not capable of

undoing the other augmentation steps of rescaling and translating the

stimulus. We assume, that this is based on the fact, that the Ccorrelation

setup has obtained its minimal validation set loss after only about

five epochs (cf. Section 12.3.1): The network may simply not have had

enough time to learn about these invariances.

Finally, we would like to point out, that the inception-v3 network [400] Outlook

achieved state of the art classification results on ImageNet [120], while

our own sketch classification network performs notably worse than the

reported state of the art on sketch data (cf. Section 12.3.1). Moreover,

the inception-v3 network has considerably more trainable parameters

than our encoder network, and has been trained on a considerably

larger set of target classes with a considerably larger number of training

examples. If we further improved the performance of our own network

on sketch classification, we may obtain better results also with respect

to the mapping task, even in noise regimes, where the Cinception feature

space currently seems to have advantages.
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Feature Training Test

Space

Regressor

MSE MED R2
MSE MED R2

Any Zero Baseline 1.0000 0.9940 0.0000 1.0000 0.9940 0.0000

Cinception Linear 0.0110 0.0961 0.9891 0.5506 0.7161 0.4513

(2048) Lasso (β = 0.005) 0.0173 0.1204 0.9828 0.5090 0.6828 0.4924

Csmall Linear 0.0541 0.2129 0.9457 0.5373 0.6737 0.4575

(256) Lasso (β = 0.02) 0.1872 0.4009 0.8117 0.4737 0.6396 0.5246

Rdefault Linear 0.2206 0.4288 0.7773 0.9709 0.9054 0.0168

(512) Lasso (β ∈ {0.02, 0.05}) 0.6378 0.7283 0.3591 0.8315 0.8739 0.1631

Rbest Linear 0.1410 0.3383 0.8587 1.0791 0.9362 -0.0886

(512) Lasso (β = 0.02) 0.3610 0.5598 0.6383 0.7376 0.8102 0.2605

Table 12.16: Results of our transfer learning experiments with the autoencoder

(Rdefault andRbest) in comparison to the best results from Sections

12.4.1 (Cinception) and 12.4.2 (Csmall). The best values for each of

the three evaluation criteria on the test set are highlighted in

boldface for each type of pretraining objective.

12.4.3 Sketch Reconstruction

Analogously to our transfer learning experiments on the classificationExperimental setup

networks, we again extracted the bottleneck layer activations of the

pretrained autoencoders, and trained a linear regression and a lasso

regression on top of this representation. We considered the two config-

urations Rdefault and Rbest, and trained the regression for each of the

five network variants obtained from our cross-validation from Section

12.3.2. Again, a five-fold cross validation on the regression task was

used, and averaged results across all folds are reported. We again used

a noise level of 10% during training and no noise during testing.

Table 12.16 shows the results of these reconstruction-based transferResults

learning experiments. As a reference, it also contains the best results

obtained for transfer learning on the photograph-based and sketch-

based classification networks. As we can see, performance on the

reconstruction-based feature spaces is considerably worse than on

the classification-based feature spaces: A linear regression is barely

able to beat the zero baseline, and also the usage of moderate levels

of regularization only leads to relatively poor performance. A lasso

regression yields better results on the Rbest configuration than on

the Rdefault setting, but the opposite can be observed for the linear

regression: Here, the Rbest configuration performs even worse than the

baseline with respect to MSE and R2
.

A contributing factor for this relatively poor performance can beCluster analysis

seen in Table 12.17, where we analyze, how well the data points are

clustered, using again the Silhouette coefficient [339] (cf. Sections 9.2.2

and 12.4.2): The different augmented versions of the same original line

drawing do not form any notable clusters in the reconstruction-based

feature spaces. The Silhouette coefficient is practically zero in most

cases, which is a sharp contrast to our observations from Section 12.4.2.
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0% Noise 10% Noise

Feature Space

dE dM dC dE dM dC

Cinception (2048) 0.5273 0.5307 0.7704 0.3794 0.3833 0.6103

Cdefault (512) 0.4147 0.4105 0.6448 0.4055 0.4014 0.6364

Csmall (256) 0.4045 0.4029 0.6347 0.3958 0.3943 0.6263

Rdefault (512) 0.0197 0.0223 -0.0359 0.0223 0.0238 -0.0300

Rbest (512) 0.0351 0.0342 0.0818 0.0351 0.0344 0.0768

Table 12.17: Cluster analysis of the augmented images in both classification-

based and reconstruction-based feature spaces (averaged across

all folds, if applicable) using the Silhouette coefficient [339].

One may explain the observed difference in transfer learning perfor- First explanation:

global vs. local

features

mance through the distinction into global and local features, and the

respective training objective from pretraining. For sketch classification,

it is usually sufficient, if the network learns features relating to the

global shape of the object, because small details are not expected to

determine class membership. This was even an explicit criterion for the

selection of classes in both TU Berlin [143] and Sketchy [348] (cf. Section

12.1.1). In the context of a reconstruction objective, however, also local

shape features, which correspond to smaller details, need to be learned,

because the reconstruction objective works in a pixel-based way. Thus,

the autoencoder needs to learn both global and local shape features in its

bottleneck layer. Thus, the type of representation learned by a classifier

and by an autoencoder may be qualitatively different. Since our target

similarity space tends to focus on global rather than local features (as

indicated by interpretable directions for the three global features form,

lines, and orientation, cf. Section 11.4.3), classification-based pretrain-

ing may result in a more useful representation for our mapping task

than reconstruction-based pretraining. Using a somewhat higher-level

reconstruction objective, which abstracts away from individual pixel

values (such as in the work by Larsen et al. [244], which was introduced

in Section 6.3.4) could potentially alleviate this problem.

The explanation based on local features can, however, be criticized Limitations of this

explanation
from different angles: Firstly, the study by Baker et al. [24] (cf. Section

10.1.4) has shown, that also classifier CNNs often focus on local rather

than global shape features. One may argue, that their study considered

only photograph-based networks and not sketch-based ones. However,

we found good transfer learning performance also for the photograph-

based Cinception, but not for Rdefault and Rbest. If the explanation about

local vs. global shape features was correct, we would, however, not

expect such a performance difference. Secondly, the need to encode

both global and local shape features should imply the need for a larger

bottleneck layer than for sketch-based classification, where only global

features need to be encoded. However, when optimizing the hyperpa-

rameters of the autoencoder in Section 12.3.2, we could not find a strong

dependence of reconstruction quality on the size of the bottleneck layer.

In fact, the impact of bottleneck size seemed to be smaller than for the
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sketch classification network (cf. Section 12.3.1). Thirdly, the distinction

into global and local shape features cannot explain the clustering effects

from Table 12.17: In Table 12.17, we consider the similarity of the repre-

sentations for different augmented versions of the same original line

drawing. Please recall from Section 12.2.1, that our augmentation steps

for the line drawings consist only in rescaling and translating the object

– other modifications such as horizontal flips, rotations, and shears

were not applied. Thus, our augmentation leaves both the global and

the local shape structure intact – reconstruction-based representations

should thus have a similar clustering quality as classification-based

ones, which is, however, not observed in Table 12.17. Overall, this

explanation for the inferiority of reconstruction-based pretraining thus

seems to be at least questionable.

We can also explain the observed difference between classification-Second explanation:

data augmentation
based and reconstruction-based networks as follows: Data augmenta-

tion mainly consists in resizing and translating the object within the

overall image. While the information about the exact size and location

of the object is largely irrelevant in a classification context, it plays a

crucial role for reconstruction. After all, the reconstruction error can

only be minimized by reconstructing the object at the correct location in

the correct size. Hence, variations of object size and location in the input

need to be encoded in the bottleneck layer for a reconstruction task, but

not for a classification task. Since different augmented versions of the

same line drawing are thus represented in very different ways in the

reconstruction-based feature space, the linear regression has difficulties

in finding a straightforward mapping into the target similarity space.

Using a reconstruction objective by itself therefore does not seem to be

promising on our small dataset, where data augmentation is a necessary

preprocessing step in order to obtain enough training examples. Using

a more coarse-grained reconstruction objective may again be helpful to

avoid this problem.

This second explanation points towards an underlying entangledEntangled

representation as root

cause?

representation (cf. Section 6.1.1): The autoencoder network is appar-

ently able to represent the shape of the objects (as visualized by the

reconstructions in Figure 12.5), but we are not able to directly access

this information through a linear model, since it is tightly intertwined

with information about the location and size of the object.

Using approaches such as InfoGAN [101] (cf. Section 6.3.3) or β-Towards disentangled

representations
VAE [196] (cf. Section 6.3.4), which promise to learn a disentangled

representation of their inputs, may help to alleviate this problem:

Supposedly, information about object shape and about its location

and size would be encoded in different subspaces of the feature space

induced by the bottleneck layer. In this case, a regression to points in

our target similarity space should be relatively straightforward. Also

multitask learning may solve this problem to some extent: The network

can learn the coordinates of the target space as part of its bottleneck

representation (which would then presumably encode the object’s

shape), while the remainder of the bottleneck layer can be used to
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encode the location and size of the object. We will investigate this

further in Section 12.5.2.

12.5 multitask learning

In our multitask learning experiments, we trained the different con- Overview

figurations of our sketch-based networks again from scratch, using,

however, not only the classification or reconstruction loss as single

training objective, but also directly incorporating the mapping loss.

Instead of a two-phase process as used in the transfer learning setup, we

therefore optimized both objectives at once. For these multitask learning

experiments, we limited ourselves to the sketch-based networks, since

the photograph-based network would have been too computationally

costly to retrain given our resources. In Section 12.5.1, we will report on

the multitask learning experiments for the classification network, before

analyzing the behavior of our autoencoder in the multitask context in

Section 12.5.2.

Again, we confined the evaluation of the mapping performance to General experimental

setup
the four-dimensional similarity space based on the mean dissimilarity

ratings. We again used the mean squared error (MSE), the mean

Euclidean distance (MED), and the coefficient of determination R2
for

evaluating performance (cf. Sections 9.2.1 and 12.2.3). As before, we

applied a five-fold cross validation, and we will report the results as

average across all five test folds. In all experiments, we use a noise level

of 10% during training and no noise during testing.

12.5.1 Sketch Classification

For our classification-based multitask learning experiments, we consid- Hyperparameter

configurations
ered three of the network configurations from Section 12.3.1. In addition

to our Cdefault setting, we also employed the Csmall configuration with

its reduced bottleneck size, since it has shown promising results in

the transfer learning experiments (cf. Section 12.4.2). Although the

Ccorrelation configuration has not been very successful in the transfer

learning approach, we gave it another chance in the multitask setting.

We did not consider the Clarge configuration, since its performance

barely differed from the one of the Cdefault configuration, despite using

a considerably larger hidden representation, which implies a higher

demand for both computation time and memory.

When training the different network configurations, we set the weight Combining two loss

componentsλ1 of the classification loss to one, and we varied the weight λ3 of the

mapping loss in order to explore different trade-offs between the two

tasks (cf. Equation 12.1 from Section 12.2.3). We explored the following

settings for λ3:

λ3 ∈ {0.0625, 0.125, 0.25, 0.5, 1, 2}
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Acc. TU Acc.

Configuration Task λ3/β Corr.

Berlin Sketchy

MSE MED R2

Zero Baseline Any – – – – 1.0000 0.9940 0.0000

Cinception Transfer 0.005 0.3948 – – 0.5090 0.6828 0.4924

Transfer 0.05 0.2743 0.6320 0.7933 0.4775 0.6419 0.5216

Cdefault

Multitask 0.0625 0.4141 0.5640 0.7510 0.4041 0.5920 0.5775

Transfer 0.02 0.2777 0.6274 0.7908 0.4737 0.6396 0.5246

Csmall

Multitask 0.125 0.4118 0.6145 0.7818 0.4182 0.6020 0.5567

Transfer 0.05 0.3292 0.3636 0.6146 0.5478 0.6815 0.4505

Ccorrelation

Multitask 2 0.4534 0.5196 0.7018 0.4513 0.6115 0.5201

Table 12.18: Test set results of the multitask learning experiments for the

sketch-based classification setup. Best values for each of the

evaluation metrics are highlighted in boldface.

A mapping weight of λ3 = 0.25 in the context of a fixed classificationMotivation for

selected values
weight of λ1 = 1 approximately reflects the relative proportion of

mapping examples in our augmented dataset, where we have 490,000

examples for the classification task and 120,000 for the mapping task

(cf. Section 12.2.1). This value for λ3 thus seemed to be a good starting

point for our investigations. We also considered larger and smaller

values of λ3 based on the following intuitions: On the one hand, one

may need a stronger emphasis on the mapping task, since the mapping

loss (measured by the mean squared error) of a naive solution (namely,

the zero baseline) equals 1, while the classification loss (measured

by the categorical cross-entropy) of a naive solution (using the prior

probabilities of the classes) is considerably larger than one. On the other

hand, a smaller emphasis on the mapping task may be needed due to

the limited number of target coordinates, which may create a strong

risk for overfitting.

Table 12.18 summarizes the results of our multitask learning experi-Experimental results

ment and compares them to the transfer learning results from Sections

12.4.1 and 12.4.2. More detailed results can be found in Appendix

G.4. As we can observe, mapping performance is considerably bet-

ter in the multitask setting than in the transfer learning setting for

all of the configurations under investigation. The best results are ob-

tained for the Cdefault configuration, which is followed closely by Csmall.

The Ccorrelation configuration performs again considerably worse, al-

though its best multitask results are still slightly superior to all transfer

learning approaches. These observations indicate, that the multitask

learning regime is more promising than the transfer learning approach.

Moreover, classification accuracy seems to be a more helpful selection

criterion for hyperparameter configurations than the correlation to

the original dissimilarities, since Cdefault and Csmall clearly outperform

Ccorrelation.

When taking a closer look at the optimal values for λ3, we can note,The optimal trade-off

for good classifiers
that for both the Cdefault and the Csmall setting, relatively small values
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of λ3 ∈ {0.0625, 0.125} have been selected. It thus seems, that the risk

of overfitting outweighs the difference in the absolute loss sizes. This is

also reflected by the number of epochs, after which the early stopping

procedure terminated training: It was reduced from 188.6 to 76.4 for

the Cdefault setting and from 178.4 to 123.2 for the Csmall configuration,

when changing from singletask to multitask training. Since we always

trained the network for 200 full epochs and then picked the epoch

with the lowest mapping loss on the validation set, earlier termination

indicates an increased tendency towards overfitting.

We can furthermore observe, that the increase in mapping per- Effects on

classification

performance

formance is obtained by sacrificing a certain degree of classification

performance for both Cdefault and Csmall, with the effect being more

pronounced for Cdefault. This is somewhat surprising, since one would

expect, that a larger bottleneck allows for more redundancy and thus

more "slack" to cope with additional constraints. This observation thus

urges for further investigations. In both cases, the introduction of the

mapping loss leads to a considerable increase in the correlation τ to the

dissimilarity ratings. This effect is, however, to be expected, since the

mapping loss tries to align a part of the bottleneck representation with

the coordinates of the similarity space, which is explicitly based on the

psychological dissimilarity ratings.

For the Ccorrelation configuration, we make somewhat different obser- Mapping task as

regularizer for

Ccorrelation

vations: Here, a relatively large mapping weight of λ3 = 2 leads to the

best mapping results. Interestingly, this rather strong emphasis on the

mapping task also helps to improve performance on the classification

task quite drastically. We also observed, that the best results on the

validation set were observed after 96.6 epochs instead of 5.6 epochs as

in the classification-only setup from Section 12.3.1. The mapping task

thus seems to act as a kind of regularization term for the classification

task, which counteracts overfitting to some degree. However, the best

classification performance of the Ccorrelation configuration in the multi-

task learning setting is still notably worse than the results observed for

the Cdefault and the Csmall setting.

The largest correlation to the dissimilarity ratings reported in Table Correlations to

dissimilarities
12.18 is obtained for Ccorrelation. However, this is simply an artifact

of the larger mapping weight of λ3 = 2. Also for Cdefault and Csmall,

a strong emphasis on the mapping task (with λ3 ∈ {1, 2}) led to

comparable correlations of τ ≈ 0.45. The fact, that in these cases the

best mapping performance was nevertheless obtained for smaller values

of λ3, illustrates again, that a high correlation to the dissimilarity ratings

is not necessarily a good predictor of success in the mapping task.

12.5.2 Sketch Reconstruction

For the multitask learning setting based on our autoencoder, we con- Experimental setup

sidered the two configurations Rdefault and Rbest from Section 12.3.2.

Again, we used the four-dimensional mean space as target for our
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Rec.

Configuration Task λ3/β Corr.

Error

MSE MED R2

Zero Baseline Any – – – 1.0000 0.9940 0.0000

Transfer 0.05 0.2743 – 0.4775 0.6419 0.5216

Cdefault

Multitask 0.0625 0.4141 – 0.4041 0.5920 0.5775

Transfer 0.02, 0.05 0.2228 0.1303 0.8315 0.8739 0.1631

Rdefault

Multitask 2 0.3533 0.1391 0.6211 0.7297 0.3369

Transfer 0.02 0.3019 0.0828 0.7376 0.8102 0.2605

Multitask 0.25, 0.5, 2 0.4033 0.1114 0.5494 0.6846 0.4213Rbest

Multitask 0.0625 0.3893 0.1023 0.5504 0.6851 0.4144

Table 12.19: Test set results of the multitask learning experiments for the

sketch-based reconstruction setup. Best values of the reconstruc-

tion approach for each of the evaluation metrics are highlighted

in boldface.

regression experiments, applying the same five-fold cross validation

strategy as before. We again report MSE, MED, and R2
as averaged

across all test folds.

In order to investigate the optimal trade-off between the reconstruc-Combining loss

components
tion objective and the mapping objective, we fixed the reconstruction

weight λ2 in Equation 12.1 to a value of one, while varying the value of

the mapping weight λ3 in the same steps as used in Section 12.5.1:

λ3 ∈ {0.0625, 0.125, 0.25, 0.5, 1, 2}

Table 12.19 summarizes the results of these experiments, comparingExperimental results

them to both our transfer learning experiments from Section 12.4.3

and to the best classification-based multitask learning results from

Section 12.5.1. More detailed tables with the raw results can be found

in Appendix G.5.

As we can see, the multitask learning approach is able to beat bothMultitask learning

vs. transfer learning
the zero baseline and the transfer learning approach with respect to all

three metrics. This confirms our results from Section 12.5.1, where we

observed a similar pattern also for the classification-based networks.

Moreover, our speculations from Section 12.4.3 also seem to be some-

what fulfilled: Multitask learning is able to considerably outperform

transfer learning in the reconstruction setting, which can potentially

be explained by the pressure to disentangle location and size of the

stimulus (which are only relevant to the reconstruction task) from its

shape (which is relevant to both the reconstruction and the mapping ob-

jective). However, further investigations are needed to analyze, whether

the observed performance difference can actually be traced back to such

a (partial) disentanglement.

Let us now look at the two different hyperparameter configurationsConsidering Rdefault

Rdefault and Rbest in more detail. For the Rdefault configuration, a map-

ping weight of λ3 = 2 was found to be optimal with respect to all three

mapping evaluation metrics MSE, MED and R2
. Since this is the largest
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candidate value for λ3, which we investigated, it is certainly possible

that even larger values (e.g., λ3 = 5) would have further increased

performance. This should be tested in potential follow-up studies. Over-

all, we see a considerable improvement with respect to the mapping

performance, but also with respect to the correlation to the original

dissimilarity ratings. This is achieved by sacrificing only a relatively

small amount of reconstruction performance.

Just as in Section 12.4.3 for the transfer learning experiments, the Considering Rbest

Rdefault configuration is considerably outperformed by the Rbest con-

figuration. There, however, no clear optimal setting for λ3 could be

determined: The optimal value for R2
was achieved for λ3 = 0.25,

while the best value of the MSE was obtained with λ3 = 0.5, and

the lowest MSE was reported for λ3 = 2. The setting of λ3 = 0.0625
seems to be a reasonable compromise candidate, since it obtained the

second best results for MSE and MED, and the third best result for

R2
. Interestingly, this compromise setting is considerably smaller than

the three individually optimal settings, highlighting, that there is little

systematicity with respect to the optimal mapping weight λ3. Also for

Rbest, we again observed a considerable improvement over the transfer

learning setting. This improvement, however, comes at a notably higher

cost with respect to the reconstruction error.

For both hyperparameter configurations, we furthermore observed a The number of epochs

reduction in the number of epochs, for which the network was trained

with early stopping: The Rdefault configuration terminated after 42.2

epochs in the multitask setting (for the optimal setting of λ3 = 2), while

it used 56.2 epochs when trained on the reconstruction task exclusively.

For the Rbest setting, this effect was even more pronounced, reducing

the optimal number of epochs from 192.4 to values between 4.6 and 9.8

(depending on the value of λ3 under consideration). Since we always

trained the network for 200 full epochs and then used the snapshot with

the lowest mapping loss on the validation set, this may indicate, that

there is a strong tendency towards overfitting during multitask learning.

If we compare the reconstruction-based multitask learning results Comparison to

classification-based

results

from Table 12.19 to the results ofCdefault, we can observe, that the recon-

struction objective leads to systematically worse mapping results than

the classification objective: Reconstruction-based multitask learning still

performs slightly worse than classification-based transfer learning. It

thus seems, that even though multitask learning considerably improves

the results of an autoencoder network in comparison to the transfer

learning case, using a classification objective is superior with respect to

both performance and training time.

This observation may be somewhat surprising, given that the recon- Interpretation of

differences
struction objective is in theory closer to the perceptual level targeted by

our shape similarity spaces.
14

As already argued in Section 12.4.3, the

poor performance of our reconstruction-based networks can potentially

14 Remember from Section 11.4, that the pre-attentive feature ratings could be identified

as directions in our shape spaces. This means, that the structure of the similarity space

is at least partially available already in a pre-attentive stage of perceptual processing.
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be explained by our augmentation procedure, where we resized and

translated the object (cf. Section 12.2.1): While the location and size

information is important for the reconstruction objective, it is irrelevant

for the target coordinates in the similarity space. Apparently, although

multitask learning helps to disentangle these pieces of information to

some degree (as reflected by the improved performance in comparison

to transfer learning), the resulting internal representation is still not as

useful as a classification-based representation. It thus seems, that the

increased overhead of training a full autoencoder (which contains also

a decoder network and a more complex loss function, leading to con-

siderably longer training times), is not worth the effort in comparison

to a somewhat more straightforward classification objective.

12.6 generalization to other target spaces

So far, we have only considered the four-dimensional shape space,Overview

which was based on the mean dissimilarity ratings. In this section, we

aim to investigate, how well the different approaches generalize to target

spaces of different dimensionality. We consider all mean spaces with

one to ten dimensions as regression targets. Since the median spaces

have shown similar performance in our preliminary investigations

from Section 12.4.2, and since they seem to have a similar internal

structure as the mean spaces according to our analyses from Chapter

11, we confine ourselves to the mean spaces. Again, we report the

average MSE, MED, and R2
of a five-fold cross-validation, using 10%

noise during training and no noise during testing. We first consider

classification-based approaches in Section 12.6.1, before discussing the

reconstruction-based approaches in Section 12.6.2.

12.6.1 Classification

In the context of our classification-based networks, we considered theExperimental setup

following three setups: Firstly, we use the transfer learning approach on

the photograph-based Cinception feature space, where a lasso regression

with β = 0.005 has given the best results for our four-dimensional

target space (cf. Section 12.4.1). Secondly, we considered the best transfer

learning configuration of our sketch-based classification network, which

corresponds to a lasso regression with β = 0.02 on top of the Csmall

configuration (cf. Section 12.4.2). Thirdly, we investigated the multitask

learning approach with theCdefault configuration and a mapping weight

of λ3 = 0.0625 (cf. Section 12.5.1).

These three setups were applied to all other target spaces with oneTesting

generalization
to ten dimensions without any further modification or hyperparameter

tuning. This means, that the respective predictor (lasso regressor or

multitask network) was retrained from scratch on the new target spaces,

using the hyperparameter settings for β and λ3 as specified above.

Tuning β and λ3 on each target space individually may lead to better
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Figure 12.7: Results of our classification-based generalization experiment.

results, but keeping them fixed provides us with a "tougher" test of

generalization performance. Moreover, retraining multiple versions of

the multitask learner for each target space would have been computa-

tionally too costly.

Figure 12.7 visualizes the results of these generalization experiments Generalization

pattern of transfer

learning

for the three evaluation metrics with respect to the mapping task. Tables

with the raw experimental results can be found in Appendix G.6. We

can make the following general observations: Both transfer learning

approaches reach their peak performance for a two-dimensional target

space, even though they have been optimized on the four-dimensional

similarity space. Only with respect to the MED, performance is best

on the one-dimensional target space. However, also the MED of the

zero baseline is smallest for a one-dimensional space. If we consider

the relative MED (by dividing through the MED of the zero baseline),

then the best performance is again obtained on a two-dimensional

target space. In all cases, transfer learning on our Csmall configuration

is slightly superior to transfer learning based on the Cinception features.

For the multitask learning approach based on our Cdefault configu- Generalization

pattern of multitask

learning

ration, a slightly different picture emerges: Here, peak performance is

obtained for the four-dimensional target space with respect to both MSE

and R2
. With respect to the MED, the two-dimensional target space

yields slightly better results than the four-dimensional space. Moreover,

it seems, that the multitask learning approach is more sensitive to the

dimensionality of the target space than the transfer learning approach:

While our multitask learner consistently yields the best results for

all spaces with four or more dimensions, it performs worse than the

transfer learner for the two- and three-dimensional target spaces. It

collapses completely for a one-dimensional target space, as illustrated

by the negative value of R2
.

Table 12.20 contains information about the training time and the The number of epochs

classification performance of the multitask learner. When looking at

the training time for the different target spaces, we can observe, that

for both the one- and two-dimensional space, training was terminated

after less than 25 epochs, while larger target spaces tended to lead

to longer training. An early termination of the training procedure is

an indicator of overfitting, since the validation set error reaches its

minimum quite early in the training procedure. It is interesting to note,
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Number of Number of Accuracy Accuracy

Dimensions Epochs TU Berlin Sketchy

1 24.0 0.4421 0.6567

2 19.0 0.5090 0.7140

3 55.2 0.5253 0.7233

4 76.4 0.5640 0.751

5 75.4 0.5964 0.7725

6 25.6 0.5633 0.7534

7 95.2 0.5996 0.7760

8 104.8 0.6104 0.7813

9 135.6 0.6128 0.7852

10 145.6 0.6097 0.7843

Table 12.20: Training time and classification accuracy of the multitask learner

for target spaces of different dimensionality.

that also classification accuracy seems to be monotonically related to

the number of dimensions in the target space (and hence the number

of epochs). By choosing different regularization regimes (e.g., stronger

weight decay or a smaller weight for the mapping), one may thus be

able to counteract these overfitting tendencies, and to obtain better

results also for low-dimensional target spaces.

Overall, the results of this generalization experiment confirm theSummary

effects observed in Section 9.2.5 on the NOUN dataset [199], where

we also found a performance sweet spot for a two-dimensional target

space in a transfer learning setting. Again, we can argue, that this

strikes a balance between a clear semantic structure in the target space

and a small number of output variables to predict. While the transfer

learning setup shows a very regular generalization pattern to target

spaces of different dimensionality, the multitask learning approach

seems to be somewhat more volatile. This indicates, that the target space

should be carefully chosen before optimizing the multitask learner.

Nevertheless, we are able to see, that the multitask learner is able to

keep its performance advantage for a majority of the target spaces.

12.6.2 Reconstruction

Let us now also take a look at the generalization capabilities of ourExperimental setup

reconstruction-based approaches. For the transfer learning setting, we

considered a lasso regression on top of the pretrained Rbest features

with a fixed regularization strength of β = 0.02. For the multitask

learning setting, we trained the Rbest configuration from scratch using

both the reconstruction objective (λ2 = 1) and the mapping objective

(with the compromise candidate of λ3 = 0.0625 identified in Sec-

tion 12.5.2). Just like in Section 12.6.1, both setups were applied to all
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Figure 12.8: Results of our reconstruction-based generalization experiment.

Number of Number of Reconstruction

Dimensions Epochs Error

1 11.2 0.1063

2 4 0.1133

3 6.6 0.1079

4 9.8 0.1023

5 8.2 0.1105

6 4 0.1124

7 5.6 0.1086

8 13 0.1121

9 10 0.1051

10 7.4 0.1071

Table 12.21: Training time and reconstruction error of the multitask learner

for target spaces of different dimensionality.

target spaces from one to ten dimensions without further modifications.

Figure 12.8 illustrates the results of these experiments with respect General observations

to all three evaluation metrics targeting mapping performance. Tables

with the raw results of these experiments can be found in Appendix

G.7. As we can see, multitask learning is always more successful

than transfer learning, except for R2
on a one-dimensional target

space, where the multitask learner again collapses completely. For both

reconstruction-based approaches, we can observe a tendency for poorer

performance on higher-dimensional spaces and optimal performance

for a two-dimensional target space. Moreover, there seems to be a

dent at five dimensions for most graphs, which in many cases yields

better performance than both a four-dimensional and a six-dimensional

target space. We assume, that this is, however, simply an artifact of the

particular arrangement of stimuli in this five-dimensional space. As

Table 12.21 shows, there is no clear pattern with respect to training time

or reconstruction quality.

While similar generalization patterns have been observed for the Comparison to

classification-based

results

classification-based transfer learning approaches in Section 12.6.1, the

generalization pattern of the multitask learners seems to differ between

the two settings: In Figure 12.8, the multitask learner follows essen-
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Configuration Task MSE MED R2

Csmall Transfer 0.3893 0.5472 0.6070

Multitask 0.4178 0.5537 0.4525

Cdefault

Multitask (4D) 0.4041 0.5920 0.5775

Transfer 0.6637 0.7159 0.3337

Rbest

Multitask 0.3868 0.5263 0.5454

Table 12.22: Comparison of best mapping performance in the generalization

experiments. The best value for each evaluation metric is high-

lighted in boldface.

tially the same performance pattern as the transfer learner (with peak

performance at two dimensions), while in Section 12.6.1, the multitask

learner appeared to be less stable for lower dimensions and reached its

best performance at four dimensions. Moreover, for the reconstruction-

based network, we could not observe any clear effect of the target space

dimensionality on training time or reconstruction performance.

Table 12.22 summarizes generalization performance in the two-Comparison of best

performance
dimensional target space (which yielded the best performance for most

approaches) for both classification-based and reconstruction-based

learners. We additionally report the performance of the classification-

based multitask learner on the four-dimensional target space, where it

obtained its best performance.

As we can see in Table 12.22, the highest value for the coefficient ofObservations

determination was obtained by the classification-based transfer learner

with R2 ≈ 0.61, which is considerably larger than for all other ap-

proaches. Within the classification-based approaches, the transfer learn-

ing setup also achieved the best results with respect to MSE and MED.

The reconstruction-based transfer learner is also in these generaliza-

tion experiments clearly not competitive. However, the reconstruction-

based multitask learner is capable of slightly outperforming the best

classification-based approach with respect to both MSE and MED.

This observation may be somewhat surprising, given the fact thatA surprising effect

reconstruction-based multitask learning was not competitive at all on

the four-dimensional target space (cf. Section 12.5.2). Nevertheless, if we

train this configuration on the two-dimensional target space (without

further optimizing any hyperparameters such as the mapping weight

λ3), we are able to obtain very good results. How can this surprising

effect be explained?

Both multitask learners (based on the classification network andA possible

explanation
based on the autoencoder) used a mapping weight of λ3 = 0.0625,

i.e., the smallest value we investigated. While the influence of the

mapping task can thus be considered to be approximately equal in

both cases, the size of the classification and reconstruction loss has

differed considerably: For the classification-based network, we observed

a classification loss of around 1.3 to 1.6 on the test set, while for the

autoencoder, the reconstruction loss had a range of 0.10 to 0.12 on
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the test set. Since both losses are weighted with a weight of λ1 = 1
and λ2 = 1, respectively, the influence of the mapping objective on

the overall optimization is greater in the classification-based multitask

learner. This difference is not negligible, since it corresponds to a factor

of approximately ten. One may therefore speculate, that even smaller

values of λ3 would have benefited the classification-based multitask

learner for smaller target spaces.

Overall, one may thus need to conduct further experiments with a Outlook

larger variety of candidate values for λ3, or, alternatively, with other

fixed values for λ1 and λ2, which normalize the respective objective

onto the same order of magnitude. Our comparisons so far can thus not

yet be deemed conclusive and urge for further research. Nevertheless,

the observation, that reconstruction-based multitask learning gives

competitive results in our generalization experiments can be seen as an

argument for also further investigating autoencoders in the context of

the mapping task.

Figures 12.9 and 12.10 visualize the two-dimensional target space and Visualizing the

mapping

performance

the respective prediction performance of the individual approaches as

indicated by their MED. In these visualizations, we assume, that the

predicted point lies in the origin. The colored circles around the origin

illustrate all points, which have a distance of the given regressor’s MED

to the origin, i.e., they show the average location of the ground truth, if

the origin was predicted. The blue solid circle represents the results

for the zero baseline, which simply reflects the overall distribution of

the stimuli in the similarity space. As we can see, all other approaches

(both classification-based and reconstruction-based, and both transfer

learners and multitask learners) clearly outperform the baseline. In

the classification setting (Figure 12.9), both sketch-based approaches

yield comparable performance on this two-dimensional target space,

and they clearly outperform the photograph-based transfer learner.

Also the reconstruction-based approaches (Figure 12.10) show a similar

level of performance, but with a clearer distinction between transfer

learning (which is somewhat worse than photograph-based transfer

learning) and multitask learning (which slightly outperforms the best

classification-based approaches).

Overall, Figures 12.9 and 12.10 highlight, that the performance level The need for further

research
achieved by our best regression is still far from satisfactory: While our

regression might be capable of identifying the overall region of the

similarity space correctly, the average distance between the prediction

and the ground truth is still too large for any practical applications.

This is a similar observation as made in Section 9.2.5 for the NOUN

dataset [199], and it highlights, that further research and engineering

effort is needed in order to improve the system’s prediction quality.
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Figure 12.9: Visualization of the two-dimensional target similarity space and

the performance of the individual classification-based regressors

as measured with the MED.

Figure 12.10: Visualization of the two-dimensional target similarity space

and the performance of the individual reconstruction-based

regressors as measured with the MED.
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12.7 summary

In this chapter, we have aimed to learn a mapping from line drawings Lessons learned

to their corresponding coordinates in the shape spaces from Chapter

10. We have compared transfer learning to multitask learning, based on

both classification and reconstruction as secondary training objectives.

In Section 12.4, we replicated the transfer learning procedure from Transfer learning

Section 9.2 by using a linear regression on top of the features extracted

from a pretrained CNN. We were able to achieve better performance

with our sketch-based classifier than with a photograph-based CNN,

which seems to be mainly based on the increased robustness to varying

noise regimes. Transfer learning on a reconstruction-based network was

not competitive to the classification-based results, which we hypothe-

sized to be the consequence of a highly entangled representation. Also

Sanders and Nosofsky [346, 347] have used a similar transfer learning

setup (cf. Section 8.7.3), but they also fine-tuned the weights of lower

network layers. In contrast to that, our transfer learning approach only

estimated the weights of the final regression, while leaving all other

network parameters unchanged. We already observed strong overfit-

ting tendencies in all of our transfer learning experiments. Therefore,

fine-tuning the pretrained network was not investigated, because this

can be expected to further worsen the overfitting tendencies.

In Section 12.5, we then compared the results of the transfer learning Multitask learning

approach to a multitask learning setting, where the target coordi-

nates were predicted as part of the network’s bottleneck layer. Our

results showed, that a joint training regime in the form of multi-

task learning is more promising than a transfer learning approach.

Again, the classification-based approach was more successful than the

reconstruction-based approach.

Finally, we tested the generalization to target spaces of different di- Generalization

experiments
mensionality in Section 12.6. Similar to what we had observed in Section

9.2.5 for the NOUN dataset [199], there seems to be a trade-off between

a compact and an expressive representation in the target space: Lower-

dimensional target spaces were preferable in most cases (presumably,

because they pose an easier regression task), but a one-dimensional

space seemed to be too unstructured for good generalization.

Our experiments in this chapter have shown, that a more complex Limitations of

mapping

performance

setup can help us to improve performance over the more naive approach

from Chapter 9. Nevertheless, the performance level achieved so far

is still below the regression quality of R2 ≈ 0.78 reported by Sanders

and Nosofsky [346, 347]. However, they used more complex network

architectures and a considerably larger number of examples for the

mapping task (360 instead of 60 stimuli). Also the results reported by

Morgenstern et al. [297] (cf. Section 10.1.3) seem to surpass our own

performance considerably. While they used considerably simpler CNN

architectures, one may argue, that their stimuli were less complex (since

they used silhouettes instead of line drawings), and that they had access

to a much larger number of training examples (25,000 instead of 60).
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Finally, our best mapping results have been observed for photograph-

based transfer learning, if 10% salt and pepper noise was used during

both training and testing. These performance levels of R2 ≈ 0.63 have

never been achieved in any of our sketch-based experiments. All of

these observations urge for further experimentation with more complex

architectures, larger datasets, different augmentation techniques, and

additional regularization approaches.

There are several rather obvious ways, in which one could attemptPossibilities for

improvement
to improve our system’s performance. Firstly, using a larger stimulus

set for obtaining the similarity spaces, and hence a larger number of

training examples for the mapping task can be expected to improve

performance. Secondly, more excessive hyperparameter tuning (e.g., by

using a full grid search rather than our two-stage approach from Section

12.3, or optimizing hyperparameters for each target space individu-

ally) may lead to more promising configurations. Thirdly, as already

remarked in Section 12.4.2, the decision to use only linear units in our

bottleneck layer may have drastically reduced our network’s capacity –

using ReLUs for all bottleneck units, which do not predict coordinates,

seems thus a straightforward next step. Fourthly, increasing the number

of training examples for the classification and the reconstruction task

by considering additional sources such as QuickDraw [186] (which has

unfortunately a low drawing quality, cf. Section 12.2.1) or ImageNet-

Sketch [424] (which was published after the majority of our experiments

had been conducted, and whose drawings vary considerably in style)

may be beneficial as well.

As already discussed in Chapter 11, it would be interesting to compareConceptual vs. visual

similarity
similarity spaces based on visual and conceptual dissimilarity ratings,

respectively, which have been collected on the same set of stimuli.

Intuitively, similarity spaces based only on visual information should

be easier to learn by CNNs than similarity spaces which also take

into account nonvisual, conceptual information (such as intended

usage), since the latter cannot be directly extracted from images. Such

comparative experiments could support or challenge this intuition and

provide arguments for or against studying individual domains (as in

this chapter) rather than holistic similarity spaces (as for instance done

by Sanders and Nosofsky [346, 347]).

In Section 12.2.1, we included 70 additional line drawings into ourEvaluation with

additional line

drawings

dataset. Since these line drawings are quite similar in style to the

stimuli used to elicit dissimilarity ratings in Section 10.2, one could

use them as additional means of evaluation. On the one hand, one

could, for instance, predict the coordinates of these line drawings

in a two-dimensional shape space and visually inspect the resulting

arrangement. On the other hand, since some of the additional line

drawings belong to the same semantic categories as the original stimuli

(e.g., birds or clothes, both of which are based on visual similarity), one

could evaluate, whether their predicted coordinates lead to a correct

classification base on simple prototype-based or convex-hull-based

classification schemes. Such additional evaluation approaches would
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further test the generalization capabilities of the different machine

learning setups, which can yield informative insights.

With respect to our reconstruction-based experiments, we reasoned, Towards disentangled

representations
that the poor mapping performance may be caused by an entangled

representation, where information about location and size on the one

hand, and object shape on the other hand are tightly intertwined (cf.

Section 12.4.3). In Chapter 6, we have introduced approaches such as

InfoGAN [101] (cf. Section 6.3.3) and β-VAE [196] (cf. Section 6.3.4),

which claim to learn disentangled representations from visual input.

Using such approaches instead of a regular autoencoder may be able to

improve the reconstruction-based mapping performance. One could

also investigate whether, such an approach would be able to discover

the psychological shape features form, lines, and orientation available

in our dataset in an unsupervised way.

Our comparison of photograph-based and sketch-based approaches Investigating

photograph-based

networks

has been quite brief due to limited computational resources. More

thorough investigations of photograph-based CNNs could include

additional network architectures such as AlexNet [232], which is more

comparable to our encoder, which was based on Sketch-a-Net [445, 446],

than the more complex inception-v3 architecture [399], which we

used as a representative of photograph-based CNNs in our experi-

ments. Training the exact same architecture on different data would

certainly be the cleanest way of comparing photograph-based networks

to sketch-based CNNs. Additional experiments could then also include

photograph-based reconstruction, multitask learning on photographs,

and applying different noise regimes during training and testing. The

results of these experiments could provide valuable additions to the

debate on the shape sensitivity of CNNs (cf. Section 10.1.4).

The overall work presented in this chapter can be criticized for being General criticism:

incrementality ...
only incremental with respect to prior work in this area (i.e., the study by

Sanders and Nosofsky [346, 347], the system proposed by Morgenstern

et al. [297], and our own experiments on the NOUN dataset [199] from

Chapter 9). While we do indeed not propose a radically new approach,

we provide valuable extensions of prior investigations by comparing

transfer learning to multitask learning, and classification-based to

reconstruction-based approaches. Our results thus provide further

insights, which can serve as starting points for future investigations.

Moreover, we put our focus on a single cognitive domain, where

the target spaces have been thoroughly analyzed with respect to the

conceptual spaces framework (cf. Chapter 11). Since a cognitively

grounded and at the same time computationally accessible (in the sense

of automatically obtaining coordinates for perceptual input) model of

the shape domain has so far not been proposed in this context, our work

from the last three chapters fills an important gap of the conceptual

spaces framework.

One may furthermore criticize, that our results are not surprising: ... and unsurprising

results
One may already a priori expect, that multitask learning is superior

to transfer learning, and that classifier-based approaches outperform
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reconstruction-based ones. While the former intuition is relatively clear,

it is questionable, whether the additional effort of training a multitask

network from scratch really pays off in comparison to simply reusing a

pretrained network. Since our results showed considerable performance

improvements for multitask learning, we provide evidence for the use-

fulness of such a computationally more demanding approach. When

considering classification-based and autoencoder-based approaches,

one may also argue, that autoencoders are closer to the perceptual level

than classifiers, and may thus be more suitable for similarity spaces

of the shape domain. While our results in general favor classification

over reconstruction, the generalization experiments from Section 12.6.2

justify further investigations of reconstruction-based approaches.

Once the limitations of our experiments have been addressed, andOutlook

once the quality of the learned mapping becomes reasonably good,

the similarity spaces from Chapter 11 and be used in combination

with the trained CNNs to equip artificial agents with a cognitively

grounded and computationally accessible spatial representation of the

shape domain. Such an automated mapping from raw perceptual input

to coordinates in shape space can then serve as a basis for commonsense

reasoning on top of this spatial representation, e.g., based on conceptual

regions (cf. Section 11.3) or interpretable directions (cf. Section 11.4).

In combination with other domains such as color and size, which can

be more readily extracted from visual input, or non-visual domains

like weight or taste, these shape spaces can then be used together

with our proposed formalization of conceptual regions from Part I of

this dissertation (along with their supported reasoning processes) and

possible learning mechanisms discussed in Chapter 7 to arrive at an

overall system for an artificial agent based on conceptual spaces.



Part IV

S U M M A RY

In the final part of this dissertation, we summarize the main

research results obtained as part of our research. Moreover,

we give a general outlook on potential future developments.
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In Chapter 1, we have motivated the overall research presented in Our overall

motivation
this dissertation by the need for cognitive AI [259, 274], i.e., artificial

intelligence, which takes direct inspiration from human cognition in

order to overcome the limitations of purely functional systems. We have

moreover argued, that concepts as mental representations of real-world

categories play an important role in human cognition, and that it is

therefore important to equip artificial agents with a psychologically

plausible representation of conceptual knowledge.

The cognitive framework of conceptual spaces [179, 181] proposes Conceptual spaces

to represent concepts geometrically, which can be interpreted as an

intermediate layer of representation between the traditional distinction

into subsymbolic and symbolic approaches (cf. Section 1.2). Conceptual

spaces can thus provide a bridge between these two types of systems,

and therefore help to solve the symbol grounding problem [190].

While the overall goal of building an artificial system, which bridges Three core problems

all three representational levels, is too ambitious to be reached within a

single dissertation, we have identified three key problems in Section

1.3, which need to be solved as a prerequisite for progress with respect

to the overall goal:

Firstly, practical applications of the conceptual spaces framework Formalizing the

conceptual layer
require an actual implementation in software. This implementation

has to be based on a thorough mathematical formalization, which

closes many of the open degrees of freedom inherent in the general

proposal. We have provided such a formalization and implementa-

tion of the framework in Part I of this dissertation (Chapters 2, 3, and

4). This formalization also includes many operations, which can sup-

port different learning and reasoning processes (cf. Sections 3.6 and 4.6).
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Secondly, one needs to define the structure of the conceptual space,Obtaining the

dimensions
especially its underlying dimensions. We have reviewed two approaches

in detail: Representation learning with artificial neural networks (Chap-

ter 6) and multidimensional scaling based on dissimilarity ratings from

psychological experiments (Chapter 8). Since both approaches have

their individual advantages and shortcomings, we have also proposed

a hybrid approach in Section 8.7, which has then been tested in Part III

of this dissertation (Chapters 9 to 12).

Thirdly, one needs to find a mechanism for identifying meaningfulLearning conceptual

regions
conceptual regions in a given conceptual space based on a set of exam-

ples. We have reviewed general machine learning algorithms in Chapter

5, and have then discussed more cognitively plausible approaches in

Chapter 7, where we focused on the incorporation of prior knowledge,

the ability to leverage unlabeled data, and the grounding of concepts

in communication with other agents. We have proposed to consider

logic tensor networks [21, 358] as one particularly interesting avenue

for future research.

The structure of this conclusion chapter is organized around theseStructure

three main issues: We first summarize our formalization of the con-

ceptual layer in Section 13.1. Afterwards, we discuss in Section 13.2,

what has been achieved with respect to learning the dimensions of a

conceptual space, before summarizing our thoughts about cognitively

plausible ways of identifying conceptual regions in Section 13.3. For all

of these three topics, we provide a summary of our main results and

contributions, as well as an outlook on possible future work in this area.

Finally, Section 13.4 takes a step back and provides a general outlook

with respect to the overall big picture.

13.1 formalizing the conceptual layer

As a first step towards using conceptual spaces in artificial agents,Overview

we have developed a thorough mathematical formalization of the

framework in Part I of this dissertation. In the following, we will

first summarize the main contributions made in Chapters 2 to 4 in

Section 13.1.1, before highlighting open ends and possibilities for further

development in Section 13.1.2. We then give a more general outlook

with respect to formalized conceptual spaces in Section 13.1.3.

13.1.1 Lessons Learned

In Chapter 2, we proposed a new formalization of the conceptual spacesFormalizing

conceptual regions
framework. Our considerations started with the desire to represent

correlations between domains in a geometric way, i.e., through the

shape of the conceptual regions. Most other formalizations either do

not consider correlations at all [3] or model them in a non-geometric

way [329]. We observed in Section 2.2.1, that convexity under the Man-
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hattan metric (which is used to combine multiple domains) leads to

axis-aligned cuboids, which are not able to represent correlations. We

therefore considered the more general notion of star-shapedness instead

of Gärdenfors’ favored constraint of convexity (cf. Section 2.2.2). Since

a union of convex sets with a non-empty intersection is guaranteed to

be star-shaped, we defined concepts based on multiple cuboids, whose

intersection is interpreted as prototypical region (cf. Section 2.3.2).

In order to allow for imprecise concept boundaries, we introduced a

fuzzy membership function in Section 2.3.3, which assigns degrees of

membership to all points in the conceptual space, and which is based

on an exponential decay of the distance to the concept’s crisp core.

In Chapter 3, we have then extended our formalization of the con- Operations for

combining concepts
ceptual spaces framework with a comprehensive set of operations for

creating new concepts based on existing ones: The intersection of con-

cepts (cf. Section 3.1) can be used to define the concept green banana

based on the individual concepts green and banana. Higher-level con-

cepts such as citrus fruit can be obtained by taking the union of several

sub-concepts such as lime, orange, and grapefruit (cf. Section 3.2). As

an intermediate step in reasoning, a projection of a concept onto a subset

of domains (cf. Section 3.4) can be used to obtain properties such as

skin-colored based on a full-fleshed concept such as skin. Finally, we

introduced the axis-parallel cut (cf. Section 3.5) as a way of splitting

a concept into two sub-concepts based on a threshold on one of the

dimensions. Moreover, we have sketched in Section 3.6, how this set of

operations is useful for carrying out both learning tasks (e.g., concept

formation) and reasoning tasks (such as concept combination).

In Chapter 4, we have further extended our formalization of the Measuring relations

between concepts
conceptual spaces framework by providing mathematical ways for mea-

suring relations between different concepts. The size of a concept can

be used to describe its specificity (cf. Section 4.1): Smaller conceptual

regions correspond to very specific concepts (such as Granny Smith),

while larger conceptual regions are typically used to describe more

general concepts (such as apple or fruit). In order to extract a conceptual

hierarchy (such as "Granny Smith is a sub-concept of apple"), a fuzzy

notion of subsethood has been introduced in Section 4.2. As we have

argued in Section 4.3, this subsethood measure can also be used to

quantify the degree of truth for a given implication: "apple ⇒ red" is

true to the degree, to which the projection of the apple concept onto

the color domain is a subset of the region representing red. We also

provided generalizations of the geometric notions of betweenness and

similarity from points to fuzzy conceptual regions (cf. Sections 4.5 and

4.4, respectively). Again, we have sketched how the relations we defined

can be used in the context of concept formation and commonsense

reasoning (cf. Section 4.6).

The large set of operations, both for creating new concepts and for A comprehensive and

fully implemented

formalization

measuring relations between concepts, makes our formalization (to
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the best of our knowledge) the most thorough and comprehensive

formalization of conceptual spaces developed so far (cf. Sections 3.7

and 4.7). Also with respect to a list of representational desiderata

(including for instance imprecise concept boundaries and a uniform

treatment of properties and concepts), our formalization is superior to

prior approaches (cf. Section 2.4.2 and 2.5). Moreover, we provided a

comprehensive implementation of this formalization (cf. Section 2.3.4).

Our implementation [51] and its source code are publicly available
1
,

and can be used by any scholar as a starting point for practical research

on conceptual spaces.

13.1.2 Open Ends

Although we argued, that our formalization is superior to any ofPart-whole relations

its predecessors, there are certain ways, in which the definition of

conceptual regions from Chapter 2 can be further improved: We have

sketched in Section 2.4.3, how part-whole structures could be included

in our formalization, but we have not given a mathematical treatment.

Future work could consist in formalizing Fiorini’s proposal [158] in the

context of our work.

Moreover, in our current account, the computation of the salienceDetermining salience

weights
weights is under-determined. Future research could compare different

ways of deriving those salience weights with respect to their respective

advantages and shortcomings. For instance, the work by Sileno et al.

[370] on contrast in conceptual spaces seems to be a promising avenue

of research (cf. Section 2.3.3).

Also the question, whether the convexity constraint should be en-Convexity for

properties
forced for properties (by representing them with a single cuboid) has

been left open for future studies (cf. Section 2.2.2).

Furthermore, our formalization currently does not differentiate be-Membership vs.

typicality
tween concept membership and typicality. However, as for instance

Hampton [188] has argued, a given observation can be a full member of

a concept without being very typical: A penguin is definitely a bird, but

not a very typical one. Another possible extension of our formalization

would thus be the definition of a typicality function, which could for

instance be based on the distance to the concept’s central area P .

There are also several open ends with respect to the operations definedRepair mechanism

in Chapter 3: With respect to the intersection and union operations,

we have argued to use a simple midpoint heuristic for restoring star-

shapedness. The exact implications of using this heuristic instead of

a numerical optimization for finding the optimal solution are unclear

and should be investigated. Moreover, one can analyze, whether there

are any benefits from returning multiple results for a single intersection

instead of using a repair mechanism for ensuring star-shapedness.

As we noted in our runtime analysis in Section 3.1.3, the intersectionRuntime of

intersection
operation tends to become quite slow for both a large number of cuboids

1 See https://github.com/lbechberger/ConceptualSpaces/.

https://github.com/lbechberger/ConceptualSpaces/
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per concept and a large number of dimensions in the similarity space.

One should therefore investigate, whether our current implementation

of the intersection can be further optimized, or whether fast and accurate

approximations can be obtained.

Furthermore, we observed in Section 3.2.2, that the union of lemon More complex

example spaces
and orange in our example fruit space yields unintuitive results. We

explained this by the very simplified structure of our example space.

This of course calls for more complex conceptual spaces to be used as

further test cases for all the operations from our formalization.

Moreover, our approach is so far lacking a meaningful negation Conceptual negation

operation (cf. Section 3.3). Given that this is an inherent weakness of

the conceptual spaces framework itself, it might also be a worthwhile

avenue of future research, which would not only benefit our formaliza-

tion, but the conceptual spaces community as a whole.

Also our treatment of relations between concepts from Chapter 4 is Runtime of size

still somewhat incomplete: For instance, the computation of a concept’s

size is quite complex (cf. Section 4.1.3. Even though computing the

closed formula is significantly faster than numerically approximating

the integral over the concept’s membership function, we observed an

exponential growth in runtime. For high-dimensional spaces, one may

thus need to use a fast approximation of the concept size.

Moreover, due to technical reasons laid out in Section 4.2.1, our Subsethood and

implication
proposed degree of subsethood is not always confined to the interval

[0,1]. Future research should investigate, whether there is a straightfor-

ward and computationally feasible way of overcoming this limitation.

Moreover, we have argued in Section 4.3.1, that the implication relation

between two concepts can be equated with their subsethood relation.

This argument could use some further empirical support by using the

subsethood relation as implication in a reasoning application.

We have furthermore provided two different definitions for concep- Conceptual

similarity
tual similarity in Section 4.4.2 – it remains an open question, which

one of them is preferable in which contexts. Again, an empirical study

in an application scenario can help to clarify this issue. Moreover,

additional candidate definitions for conceptual similarity (e.g., based

on the maximal Hausdorff distance over all α-cuts, inspired by [11])

could be investigated.

Finally, Derrac and Schockaert [123] have argued, that the degree of Analogy-based

reasoning
parallelism for pairs of difference vectors can be a useful measure for

supporting analogy-based reasoning: If dog relates to puppy like cat

relates to kitten, then the geometrical direction from the dog concept

to the puppy concept should be parallel to the corresponding direction

from cat to kitten. Obviously, a formalization of this intuition in our

framework would be an interesting additional measure, which could

support yet another approach to commonsense reasoning.
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13.1.3 Outlook

We have argued in Part I of this dissertation, that our proposed formal-Learning star-shaped

concepts is difficult
ization and its implementation are superior to many other proposals

in the literature: We are able to geometrically represent correlations,

and we offer a plethora of different operations. However, this increased

expressive power comes at a cost, namely, at increased representational

complexity. Other approaches only need to keep track of a single proto-

typical point for representing a given concept, whereas we need to store

multiple cuboids, a set of domain weights, and a sensitivity parame-

ter. This increases not only the computational and cognitive burden,

but also makes learning more difficult:
2

It is much easier to learn a

single prototype from a given set of examples than to find the optimal

configuration for a star-shaped set, simply because the number of free

parameters is lower. In machine learning terms, one could say, that

our formalization has a higher capacity than a simple prototype-based

representation (cf. Section 5.1.1). In order to make learning tractable,

one may thus need to introduce appropriate regularization schemes

(e.g., by penalizing the number of cuboids used for representing a

concept, or by inciting more uniformly distributed salience weights).

We therefore need practical machine learning experiments with ourThe need for machine

learning experiments
proposed formalization in order to understand, how problematic its

increased capacity is in practice for learning conceptual regions. Addi-

tional experiments considering reasoning and concept combinations

can inform us about the actual advantages gained from our more

complex way of representing concepts. Our hope is, of course, that the

additional predictions provided by our formalization outweigh the

increased difficulty in learning concepts, but this can only be assessed

based on practical experiments.

Strößner [395] has recently conducted a thorough philosophical anal-Natural

multi-domain

concepts

ysis of multi-domain concepts, correlations, naturalness, and convexity

in the context of conceptual spaces. She has noted, that one should

not talk about "the" convexity criterion, because one can distinguish

at least five different formulations from the literature, ranging from

"convexity is required only for properties, but not for concepts" to

"conceptual regions in the overall conceptual space must be convex".

She furthermore points out, that convexity is currently only empirically

supported within individual domains, but not for multi-domain con-

cepts. These multi-domain concepts are, however, often easier to learn

(cf. the complex first paradox [430] briefly discussed in Section 7.1.2)

and more informative than single-domain concepts (i.e., properties).

In order to specify the naturalness of multi-domain concepts, Strößner

proposes the following altered version of criterion C:

Definition 13.1 (Natural Multi-Domain Concept)

A natural multi-domain concept is represented as a set of non-locational

and characteristic regions in several independent conceptual spaces.

2 Thanks to Leonard Frommelt for pointing me towards this issue.



13.1 formalizing the conceptual layer 731

Figure 13.1: Reconsideration of our child example from Section 2.2.1: (a) Our

solution with a single star-shaped region. (b) Strößner’s [395]

solution with multiple convex sub-regions.

In Definition 13.1, non-locationality is used to exclude instable fea- Non-locationality

and

characteristicness

tures (such as day of birth for the concept newborn): Locational features

describe the position of an entity in space-time, while non-locational

features describe the entity itself and are thus less volatile. Character-

isticness, on the other hand, is intended to capture, how well a given

feature can predict concept membership – the given region should have

a strong association to the given concept, but not to other concepts.

For instance, red in the color domain is not very characteristic for the

strawberry concept, because strawberries can also be green (when they

are still unripe), and (more importantly) because also apples and toma-

toes can be red. A much more characteristic feature for the strawberry

concept is its region in the shape domain.

Strößner furthermore claims, that multi-domain concepts capture Two types of

correlations
correlations, i.e., probabilistic dependencies of individual features.

This happens on two levels: From the outside, when determining

concept membership ("dog-shaped animals tend to bark", cf. Section

1.1.2), but also from the inside of the concept, when discriminating

among members (e.g., "red strawberries tend to be sweeter than green

ones"). Exactly this latter type of correlation is explicitly targeted by the

star-shaped regions of our proposed formalization.

Strößner argues, that the concept-internal correlations are used to Criticism of our

approach: the child

concept ...

prevent uninhabitated regions in the similarity space (i.e., regions

without any observations) from belonging to any concept. Referring to

our example with the child concept from Section 2.2.1, she notes, that

our proposed solution (shown in Figure 13.1a) succeeds in excluding

uninhabitated regions (such as a newborn with a height of 1.50 meters)

from the child concept, but she also criticizes our approach in two

ways: Firstly, she argues, that our proposed star-shaped region is a

misrepresentation of the child concept, since an extremely tall 13 year

old is still a child, albeit an atypical one. She also points out, that

other important features for defining the child concept (relating for

example to cognitive development) are completely missing. As already

noted in Section 2.2.1, our example is a quite simplified one. We did not

attempt to provide a good definition of the child concept, but merely

an intuitively graspable example for illustrating the need to encode

correlations in a geometric way.
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Her second and more important criticism targets our usage of star-... and

star-shapedness
shapedness instead of convexity for solving the representational prob-

lem. Strößner argues, that the child concept can simply be split up into

multiple sub-concepts such as infant, toddler, child (in the narrow

sense), and teenager, all of which can be represented by a convex

region. This proposal is visualized in Figure 13.1b. By representing the

overall child concept as a collection of multiple sub-concepts, one can

thus exclude uninhabitated regions, encode correlations, and keep the

convexity requirement intact. In our point of view, there are, however,

two issues with this proposal: Firstly, we now need to deal with two

types of representations for concepts, namely, convex conceptual re-

gions like toddler on the one hand, and sets of sub-concepts like child

on the other hand. This requires two separate learning and reasoning

strategies for the different representation types, which is somewhat

inelegant.
3

Secondly, while such an approach with sub-concepts is easily

applicable to child, one may struggle to define similar sub-concepts

for other concepts with internal correlations such as banana (with a

correlation between color and taste) or bird (with a correlation between

size and singing). We are thus convinced, that our star-shaped regions

are nevertheless a valuable approach, which should be contrasted with

other proposals based on empirical data.

A first practical usage of our formalization and implementation hasUsage of our

formalization in the

smart home domain

been reported by Pol and Diaconescu [321, 322]. They considered auto-

nomic systems in the context of smart homes, and proposed a cognitive

control system, which dynamically creates novel concepts at runtime

and performs reasoning on them. The overall system consists of two

parts: The reactive subsystem uses conceptual spaces for representing

the current state of system variables (such as the current power con-

sumption, temperature, or luminosity). The deliberative subsystem on

the other hand uses simulations, novelty detection, and argumenta-

tion procedures for generating new concepts and adaption plans for

fulfilling the system’s goals. Pol and Diaconescu also provide a first

simulation of their envisioned system based on a smart home dataset,

and use our implementation of the conceptual spaces framework in

order to implement their reactive subsystem. This illustrates, that our

formalization can be used in practice.

However, they do not report on a real-world application so far. More-Limitations

over, their work so far only uses a small part of our formalization,

namely, the creation of concepts (which use a single point as core)

and the computation of concept membership
4
. Pol and Diaconescu

interpret basic concepts as being defined on a single dimension, and

more abstract concepts as involving multiple dimensions of the same

domain [322]. This differs from our own approach, where we can

only distinguish properties (which are defined on a single, potentially

multi-dimensional domain) from concepts (which involve multiple

3 This relates to our criticism of Rickard’s formalization [329], where properties and

concepts are represented in fundamentally different ways (cf. Sections 2.4.2 and 2.5.2).

4 Personal communication with Marius Pol, 11.09.2020.
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Figure 13.2: Cone-based representation as proposed by Özçep et al. [312]. (a)

Convex cone X and its polar cone X°. (b) Axis-aligned cones

X = R+ ×R−
and Y = R× {0}.

domains at once). Taken together, their work therefore provides only

very limited empirical evidence for the usefulness of our formalization,

and needs to be followed up by additional applications, which harness

the expressive power of our formalization.

Finally, we would like to highlight, that our formalization of concep- Concepts as convex

cones
tual spaces should not only be compared to other formalizations of

this framework, but to related ideas from other subfields. For instance,

Özçep et al. [312] have recently proposed an embedding of ontologies

into real-valued vector spaces based on axis-aligned convex cones. A

region X is called a convex cone, if ∀λ, µ ≥ 0 : v, w ∈ X ⇒ λv + µw ∈ X
(see Figure 13.2a). The polar cone X° of X can then be defined as

X° = {v ∈ Rn | ∀w ∈ X : ⟨v, w⟩ ≤ 0} (where ⟨·, ·⟩ denotes the

scalar product), and is a convex cone representing the negation of

X (see Figure 13.2a). Özçep et al. now consider the special case of

axis-aligned cones, which can be defined as X = X1 × · · · ×Xn, where

Xi ∈ {R,R+,R−, {0}} (see Figure 13.2b). They note, that axis-aligned

cones are convex, and that they are closed under intersection and nega-

tion. In order to represent a convex union of two axis-aligned cones X
and Y , Özçep et al. make use of de Morgan’s law

5
:X ∪ Y = (X°∩ Y °)°.

Thus, they are able to represent conceptual intersection, union, and

negation. Moreover, Özçep et al. derive a way of representing universal

and existential quantifiers for encoding relations between concepts.

The proposal by Özçep et al. is simple and mathematically elegant. Relation to

conceptual spaces
Its usage of convex cones can be related to Gärdenfors’ convexity

requirement for conceptual regions. Moreover, requiring the cones to

be axis-aligned is similar to our own usage of axis-aligned cuboids.

The main difference to the conceptual spaces framework concerns

5 De Morgan’s law states, that the negation of a disjunction is equivalent to the conjunction

of the negations, i.e., A ∪B = A ∩B.
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the underlying notion of similarity: While conceptual spaces consider

the Euclidean and Manhattan distances as reflecting dissimilarity, the

proposal by Özçep et al. makes use of the scalar product, and thus

implicitly of the Cosine similarity. Hence, it can be related to word

embeddings as introduced in Section 6.3.2. Moreover, Özçep et al. do

not consider a domain structure as proposed by the conceptual spaces

framework. Correlations between different dimensions can be implicitly

encoded, but only to a certain degree: For instance, the axis-aligned cone

X in Figure 13.2b can be interpreted as encoding a negative correlation

between the two features corresponding to the x-axis and the y-axis,

respectively. However, such a correlation could also be encoded through

X° = R− × R+
, i.e. the concept’s negation. Overall, the proposal by

Özçep et al. is certainly interesting and relevant, but differs from

conceptual spaces in general and our own formalization in particular

in some important aspects such as the underlying distance metric used

in the representation space. Nevertheless, such comparisons may lead

to further insights and are thus a worthwhile endeavor.

13.2 obtaining the dimensions

As already discussed in Chapter 1, another main challenge for applyingOverview

the conceptual spaces framework in practice is the correct identification

of the dimensions, which span its domains. We have examined this

problem from the two perspectives of machine learning (Chapters 5

and 6) and psychology (Chapter 8). Our main contribution consists

of the proposal of a hybrid approach (cf. Section 8.7, which has been

empirically tested in Part III of this dissertation. In the following, we first

summarize the main insights from theory and practice in Section 13.2.1,

before looking at open ends in Section 13.2.2, and general ongoing

developments in this research area in Section 13.2.3.

13.2.1 Lessons Learned

In Section 5.3, we discussed different approaches for dimensionalityDimensionality

reduction
reduction, which can be related to the translation of high-dimensional

subsymbolic information to the lower-dimensional conceptual layer:

In feature selection (cf. Section 5.3.1), one aims to select a subset of the

original features, which is in some sense optimal for the downstream

machine learning problem. A concrete example in the context of con-

ceptual spaces is the approach taken by Banaee et al. [27], which also

partitions the set of selected features into different conceptual domains.

In feature extraction, on the other hand, one tries to create a new set of

features by combining different original features. For feature extraction,

we gave two examples: The popular principal components analysis

(PCA, cf. Section 5.3.2) defines new features as linear combinations of

the original features, such that variance in the data is captured as well

as possible. Moreover, the area of metric learning (cf. Section 5.3.3) tries
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to automatically obtain a distance metric between examples (which

implicitly defines a similarity space), such that certain desiderata such

as low intra-class distances are fulfilled.

In Chapter 6, we have then introduced artificial neural networks Representation

Learning
as a powerful machine learning algorithm, which is capable of learn-

ing abstract representations of its perceptual inputs: Each layer of the

network computes a nonlinear transformation of its inputs, resulting

in a hierarchy of more and more abstract features. We have covered

different representation learning approaches such as word embeddings

(cf. Section 6.3.2)
6
, InfoGAN [101] (cf. Section 6.3.3), and β-VAE [196]

(cf. Section 6.3.4). Moreover, we introduced various evaluation metrics

for quantifying the degree of disentanglement achieved in the resulting

representations (cf. Section 6.1.2). An advantage of ANN-based repre-

sentation learning is that a trained network is often able to successfully

generalize to unseen inputs. However, training deep networks is a

computationally very expensive process and often requires the complex

tuning of several hyperparameters. Moreover, representations learned

by neural networks can in general not claim any psychological validity.

In Chapter 8, we have then introduced the technique of multidimen- Multidimensional

scaling
sional scaling (MDS), which can be used for constructing similarity

spaces from dissimilarity ratings collected in psychological studies. We

have covered different ways of collecting such dissimilarity ratings, and

various algorithms for solving the MDS optimization problem. We have

also discussed different evaluation approaches based on the match

between distances and dissimilarities, and based on the interpretability

of the resulting configurations. The main advantage of constructing

conceptual spaces through MDS lies in its psychological grounding:

Since the resulting similarity spaces are directly based on ratings elicited

in psychological studies, they can be deemed to be cognitively plausible.

However, MDS is not able to generalize to unseen examples – we can in

general not predict the coordinates for novel stimuli, which were not

part of the psychological study.

In order to combine the strengths of both the ANN-based approach Our proposed hybrid

approach
(namely, being able to generalize to unseen inputs) and the MDS-based

approach (namely, being grounded in psychological data), we have thus

made a hybrid proposal in Section 8.7: The similarity space is initialized

by applying MDS to dissimilarity ratings from a psychological experi-

ment, and ANNs are then subsequently used to learn a mapping from

raw stimuli to their corresponding points in the similarity space. This

hybrid approach can be considered our main theoretical contribution

with respect to the grounding of dimensions, and has in a similar form

been independently developed by Sanders and Nosofsky [347].

We have tested our hybrid approach in Part III of this dissertation on The NOUN study

two different datasets. In Chapter 9, we presented a first proof of concept

6 In Section 6.3.2, as well as at various other points of this dissertation, we have discussed

the work by Steven Schockaert. A recent article [75] gives a good overview of his

research program, which aims to learn conceptual spaces from data.
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using the NOUN database [199], which contains images and similarity

ratings for novel objects. Here, we first compared the spaces obtained

from different MDS algorithms, and found only minor differences. We

then considered a transfer learning task, where we trained a linear

regression on top of a pretrained neural network in order to map raw

images into the obtained similarity spaces. Our results showed, that this

approach seems to work in principle, although the overall performance

level was still very low with strong overfitting tendencies. Moreover,

we found, that the dimensionality of the target similarity space had a

strong influence on regression performance, with a two-dimensional

similarity space yielding the best overall results.

In Chapter 10, we have then focused on the shape domain by firstConsidering the

shape domain
summarizing related work from both psychology and computer vi-

sion, and by then analyzing a dataset of 60 line drawings belonging

to 12 categories. In Chapter 11, an analysis of the similarity spaces

obtained through MDS has shown, that our dataset can be represented

with three to five dimensions. Moreover, we found, that the three

psychological features form (elongated vs. blob-like), lines (straight

vs. curved), and orientation (horizontal vs. diagonal vs. vertical) can

be successfully mapped onto linearly independent directions in these

spaces. Furthermore, especially visually coherent categories formed

small, non-overlapping convex regions. Since the original dissimilarity

ratings are ordinally scaled, only the aggregation through the median is

permitted, but many researchers nevertheless use the arithmetic mean.

We have compared the impact of the aggregation function on the overall

results, and were only able to observe relatively small differences, with

the mean aggregator yielding slightly preferable results. Overall, the

similarity spaces extracted from the visual dissimilarity ratings seem

to be good candidates for representing the domain of shapes.

In Chapter 12, we have then attempted to learn a mapping from theLearning a mapping

into shape space
original line drawings into the extracted shape spaces, using convolu-

tional neural networks. We compared photograph-based networks to

sketch-based networks, classification networks to autoencoders, and

transfer learning to multitask learning. Using a sketch-based classifica-

tion network instead of a photograph-based classification network led

to improved results in the transfer learning setting, which highlights

the importance of the source domain: Since sketches are more similar

to line drawings (they consist of a small amount of black strokes on

white ground), the features extracted by a sketch classification network

seem to be a better starting point for learning a successful mapping.

Using a joint training phase for the sketch classification task and the

mapping task further helped to improve performance, indicating that

multitask learning can be more powerful than transfer learning. Also

for the autoencoder, we found multitask learning to yield superior

results than transfer learning. However, the feature spaces learned

by an autoencoder seem to be less useful for the mapping task than

classification-based features. We argued, that this may be caused by an

entangled representation, which also needs to encode location and

size of the object in order to obtain a correct reconstruction. Overall,
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our experiments in Chapter 12 showed, that additional effort (in the

form of training a network from scratch in a multitask learning setting)

is worthwhile and can considerably improve the results over the more

naive approach taken in Chapter 9. Nevertheless, our results are still

far from perfect and require further improvements.

13.2.2 Open Ends

In Section 6.4.1, we have argued, that representation learning may be Representation

learning for the

rectangle domain

a good fit for discovering the dimensions of a conceptual space in a

bottom-up fashion. Especially approaches such as InfoGAN [101] (cf.

Section 6.3.3) and β-VAE [196] (cf. Section 6.3.4) seem promising, since

they claim to learn disentangled representations. In these disentangled

representations, individual features correspond to interpretable factors

of the data generating process. However, the success in disentangling

these factors of variation has so far not been systematically evaluated

due to a wide variety of available datasets and evaluation metrics.

In Section 6.4.2, we have therefore proposed to use the domain of

rectangles as a first test case for such an approach: Already in this very

simple domain, stimuli can be described by two out of four candidate

dimensions, namely, width, height, area, and shape (i.e., aspect ratio).

One can thus use this setting to investigate, how stable the extraction of

interpretable dimensions is in practice, and whether the results align

with observations from psychological studies [71, Section 17.4].

In Chapter 9, we observed no considerable differences between Metric vs. nonmetric

MDS on SpAM

ratings

metric and nonmetric MDS when applied to similarity ratings obtained

through SpAM [169]. Since this is to our knowledge the first investigation

in this direction, further analyses of other datasets should seek to

confirm our results.

With respect to the shape spaces analyzed in Chapter 10, we have Analysis of shape

spaces
noted a good agreement with our theoretically derived predictions.

However, there are still some open questions: For instance, we have

hypothesized, that the differences between the mean and the median

spaces are mainly caused by the different number of constraints from

the respective matrices. A more fine-grained analysis should be con-

ducted in order to evaluate this hypothesis. Moreover, we have seen,

that the features under consideration (form, lines, and orientation)

were not sufficient for explaining the dissimilarity ratings. It may thus

be worthwhile to elicit ratings with respect to additional shape fea-

tures, and to re-run our analyses. Furthermore, one could attempt

an analysis on the raw similarity and feature ratings with the aim

to link the visually coherent categories to a description in terms of

the shape features. Finally, an analysis of other shape-based dissim-

ilarity ratings with our approach could be used to investigate the

robustness of our results, while an application to a different cognitive

domain can help to assess the generalization capability of our approach.
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In Chapters 9 and 12, we have used deep convolutional neuralMachine learning

experiments
networks for mapping images into psychological similarity spaces.

In Chapter 9, we have given a first proof of concept, illustrating that

transfer learning on top of a pretrained CNN is able to beat some

simple baselines. In Chapter 12, we have extended this approach by

also considering multitask learning. Although this resulted in notable

improvements, the overall robustness and performance of our approach

is still far from satisfactory. Larger datasets, more complex network

architectures, and more sophisticated augmentation and regularization

techniques need to be investigated in order to make the learned mapping

function precise enough for practical applications. The work by Sanders

and Nosofsky [346, 347] illustrates, that such improvements are in

principle possible.

13.2.3 Outlook

Since the original inception of our hybrid approach for groundingOverview

conceptual spaces [40], many other researchers have made similar

proposals. In the following, we try to give a short overview of this

newly emerging research area, which aims to combine machine learning

(mostly in the form of convolutional neural networks) with human data

obtained from psychological experiments. We will first present four

relevant datasets, before considering different modeling approaches

and experiments.

Peterson et al. [320] have noted, that most computer vision datasetsCIFAR-10H:

incorporating label

uncertainty

contain only a single ground truth label for each image in the collection.

Since a single label is not able to reflect human uncertainty about

the correct classification, they collected additional data in order to

approximate a probability distributions over different labels. They

considered the popular CIFAR-10 dataset [231], which contains 60,000

images in a resolution of 32× 32 pixels, labeled with 10 distinct classes.

Peterson et al. extended this dataset by collecting a total amount of

500,000 human categorizations for the 10,000 images in the CIFAR-10

test set. They refer to the resulting dataset as CIFAR-10H.

Peterson et al. assumed, that human confusions between classes givesConfusion

probabilities as

similarity measure

an indication of class similarity (cf. perceptual confusion tasks, Section

8.1.3), and can thus improve machine learning results. They therefore

trained a convolutional neural network to minimize the cross-entropy of

its output distribution to the human distribution of labels. Their results

showed, that the trained network was more robust against adversarial

attacks, where a small number of pixels is changed in order to pro-

voke misclassifications. Moreover, it showed increased generalization

capabilities. We would like to point out, that their approach can be

interpreted as a variant of relational label smoothing [276] (cf. Section

7.4.3), which is based on psychological data rather than pre-defined

class similarities.
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In a related vein, Roads and Love [334] have collected human simi- ImageNet-HSJ:

similarity ratings for

ImageNet

larity judgments for the validation set of ImageNet [120]. They argue,

that ImageNet is a very popular dataset for computer vision tasks,

but that evaluation is often limited to task-specific metrics such as the

classification accuracy. Roads and Love propose to use task-general

metrics in the form of a correlation of the similarities of the system’s

internal representations to the human similarity judgments (cf. rela-

tional similarity analysis [230], Section 9.1.2). They collected their data

through Amazon Mechanical Turk by asking participants to select the

two most similar images to a given query image from a set of eight

candidates. In order to present the most informative set of candidate

images, Roads and Love used an active learning approach. In addition

to the similarity ratings, their ImageNet-HSJ dataset also contains an

embedding of these ratings into a similarity space.

Convolutional neural networks are the predominant approach used Relation to

conceptual spaces
on ImageNet, therefore the extended dataset provided by Roads and

Love would make a good test case for our hybrid proposal. However,

since their similarity judgments refer to overall similarity, they are

less useful from a conceptual spaces perspective, where we are mainly

interested in individual domains.

Instead of augmenting an existing dataset from the computer vision Ecoset: a dataset

reflecting human

experience

community with human ratings, Mehrer et al. [289] have created a

completely novel dataset, which they call ecoset. Their motivation stems

from the observation, that deep convolutional neural networks are

currently the best model of visual information processing in the primate

brain. However, these models are typically trained on datasets such as

ImageNet [120], which were created from an engineering perspective,

but do not necessarily reflect human experience. For instance, ImageNet

contains 120 different dog breeds, but no categories for humans. The

human visual system, on the other hand, seems to be especially sensitive

to human faces and body parts.

Ecoset consists of 1.5 million images from 565 basic-level categories, Properties of ecoset

which were deemed more relevant to humans, as for instance indicated

by their frequency in linguistic usage. Mehrer et al. compared convo-

lutional neural networks trained on either ImageNet or ecoset, and

observed, that training on ecoset led to a better alignment with both

fMRI studies and human behavioral data.

Hebart et al. [194] have recently created the THINGS dataset, which THINGS: similarity

ratings across many

categories

contains 1,854 images of objects from a wide variety of categories. They

collected their data based on the triad method (where participants

repeatedly had to select the "odd one out" among a set of three objects,

cf. Section 8.1.1). They assumed, that the similarity between a pair of

objects i and j can be approximated by the probability of choosing

an arbitrary third object k as the "odd one out". Since a full similarity

matrix would require an infeasible amount of one billion responses,

Hebart et al. only sampled a random subset of unique trials, leading to

an incomplete and relatively sparse similarity matrix.
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Hebart et al. then used a shallow neural network for extracting aAn embedding based

on human ratings
meaningful embedding for all objects. Their model predicted the human

responses by comparing the dot product of the object embeddings. It

was trained by gradient descent minimizing both cross entropy loss

between its predictions and the observed behavior, as well as an L-

1 regularization on the weights, inciting a sparse representation (cf.

Section 5.2.1). The values on each dimension were restricted to be

positive in order to improve their interpretability.

Hebart et al. were able to show, that the resulting model extractedPerformance and

interpretability of the

embedding

49 interpretable dimensions, which were able to predict similarity

judgments on a held-out test set with an accuracy of 64.6%. Since the

agreement among humans was estimated at 67.22%, this is an excellent

result. Moreover, the similarity space spanned by these dimensions

proved to be useful both for classification with a prototype-based

classifier and typicality judgments. Hebart et al. also established, that

the individual dimensions could be reliably named by participants, and

that participants were also able to rate stimuli along these dimensions

in large agreement with the model.

Overall, the work by Hebart et al. combines an MDS-like approachRelation to

conceptual spaces
(using continuous dimensions) with traditional feature-like approaches

(which assume non-negative properties). Among the dimensions ex-

tracted from the data, the authors identified three groups, namely

semantic membership in high-level categories (e.g., food or animal),

conceptual properties (such as valuable, disgusting, or heat-related),

and perceptual features (e.g., roundness, elongation, color, or shini-

ness). Also in the conceptual spaces framework, both perceptual and

conceptual dimensions exist, and they are furthermore grouped into

domains based on their shared semantic properties. Semantic member-

ship is, however, modeled through regions in these domains rather than

as separate dimensions. While the embeddings obtained by Hebart et

al. thus resemble the conceptual spaces approach to some extent, one

can still find notable differences. It would be certainly interesting to

analyze the THINGS dataset with our proposed hybrid approach, and

to compare the results to the ones obtained by Hebart et al. with their

embedding approach.

Battleday et al. [35] have summarized recent research, which triesCNNs and

higher-level

cognition

to use convolutional neural networks (CNNs) as a basis for modeling

higher-level cognition such as similarity judgments and categorization.

They argue, that CNNs are able to represent a large set of complex

naturalistic stimuli, and that they can therefore be used as a substitute

for the internal representations used by humans. Cognitive models

on top of CNNs can therefore predict human behavior on naturalistic

instead of artificial stimuli, which allows one to study human behavior

in ecologically more valid settings. In the following, we will briefly

summarize several relevant studies in this area.

Lake et al. [240] were arguably the first researchers to combine CNNsPredicting typicality

ratings with CNNs
with cognitive models. In their experiments, they used the activations of

a pretrained CNN’s output layer in order to predict category typicality
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for a small set of photographs. When comparing the CNN’s predictions

to human ratings with Spearman’s ρ, they observed a rank correlation

of ρ ≈ 0.67, indicating, that the network’s classification probabilities

can indeed reflect typicality to some non-trivial degree. By visually

analyzing their set of stimuli (eight categories with 16 images each),

they observed, that humans tended to rate typicality based on similarity

to an idealized member, while the CNNs tended to judge typicality

based on frequency. For instance, humans gave the highest typicality

ratings for the banana class to an image of a yellow and spot-less

banana, while the CNNs also gave high ratings for spotted bananas or

a green plantain. Finally, Lake et al. observed, that later layers of the

network gave better typicality predictions than earlier layers.

In Section 8.1.5, we have already discussed the studies by Peterson Using

dimensionality

reduction for

predicting

similarities

et al. [318, 319], who predicted human similarity ratings by using a

weighted inner product of high-level CNN activations: The similarity

sij between two stimuli i and j (with embeddings z⃗i and z⃗j , respec-

tively) is computed as sij = z⃗Ti Wz⃗j with a diagonal weight matrix W.

Attarian et al. [18] have generalized this approach by introducing a

dimensionality reduction function f , yielding similarity predictions

of the form sij = f(z⃗i)
TWf(z⃗j). In their study, they implement this

function f by applying a principal component analysis (PCA, cf. Section

5.3.2) and keeping the top k principal components. Moreover, they

considered different constraints applied to the matrix W : In addition to

diagonality, they also considered symmetry (W = V TV , which implies,

that sij = (V f(z⃗i))
T (V f(z⃗j)), and which thus relates their approach to

metric learning [236], cf. Section 5.3.3), and a completely unconstrained

matrix. Their results of estimating the entries of W through gradient

descent showed, that removing constraints from the matrix improved

performance, and that 512 principal components were sufficient for pre-

dicting similarity ratings, which corresponds to a considerably smaller

space than the original 4096 units.

Instead of using a fixed dimensionality reduction function f and Learning the

dimensionality

reduction function

learning a weight matrix W , Jha et al. [209] have proposed to learn a

linear function f for dimensionality reduction, and then to use the raw

inner product in the resulting representation space: sij = fθ(z⃗i)
T fθ(z⃗j).

They argue, that a PCA as used by Attarian et al. [18] tries to preserve

all information contained in the high-dimensional feature space, while

a learned linear transformation is able to focus on the aspects rele-

vant to human similarity judgments. Jha et al. found, that prediction

performance as measured with R2
was higher for a 64-dimensional

compressed space than for the original CNN representation. Moreover,

they observed a saturation in performance already after ten to twenty

dimensions. In order to "orthogonalize" their low-dimensional repre-

sentation (i.e., to rotate it onto meaningful directions), they applied a

principal component analysis and found, that the resulting principal

components corresponded to interpretable features.

Marjieh et al. [277] have recently argued, that CNN-based approaches Predicting

similarities from text
are inherently limited to visual inputs. Their advantage with respect to
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using dissimilarity ratings from humans lies mainly in their scalability,

since there is usually one image per stimulus, while the number of

dissimilarity ratings grows quadratically with the number of stimuli.

Marjieh et al. proposed to use modern language models instead of

CNNs in order to generalize outside the visual domain: Again, the

number of textual descriptions grows linearly with the number of

stimuli, but the descriptions are not limited to photographs, but can

also be based on other domains such as sounds, or more complex

entities or events. Marjieh et al. used the image dataset by Peterson

et al. [318, 319] (cf. Section 8.1.5) as a first test bed, considering either

the image labels or short descriptions from human subjects as textual

representation of the stimuli. Using both word embeddings based on

ConceptNet [267] (a knowledge base of concept descriptions) and the

internal representation of BERT [125] ( modern neural language model),

they followed the same procedure as Peterson et al. by computing pair-

wise similarities as weighted dot product of the given feature vectors.

Marjieh et al. report, that their text-based system outperformed the

CNN-based approach originally proposed by Peterson et al. with a

prediction performance of R2 = 0.69 on the original similarity ratings.

Their experiments thus show, that also textual representations can be

used to similarities, relating their work to the approach by Derrac and

Schockaert [123], who extracted conceptual spaces from textual data

(cf. Section 8.1.5).

The studies summarized so far have mainly focused on predictingA hybrid approach in

the context of music
human similarity ratings. In contrast to this, and much in line with our

own hybrid proposal and the work by Sanders and Nosofsky [346, 347],

Esling et al. [147] have tried to learn a mapping from perceptual input

into an MDS-based similarity space. However, instead of considering

visual input, they focused on the domain of musical instruments and so-

called timbre spaces, which try to camputre the perceived differences in

sound between pairs of instruments playing the same note at the same

intensity. Esling et al. trained a β-VAE architecture [196] (cf. Section

6.3.4) on audio samples, and constrained the latent space of the net-

work, such that the distances between encoded audio samples matched

the distances of the respective instruments in a given timbre space,

which had been obtained with multidimensional scaling from human

dissimilarity ratings. They thus implicitly implemented our proposed

hybrid procedure as described in Section 8.7, using, however, audio

input instead of images. Esling et al. reported a good reconstruction

quality of the resulting system, which also generalized to audio samples

of previously unseen instruments. They moreover emphasize, that the

decoder network can be used to synthesize sounds for any point in

the timbre space, allowing for instance for meaningful interpolations

between instruments. Their work adds further support to our proposed

hybrid approach, highlighting, that the general procedure is not limited

to the visual domain. Their evaluation focuses, however, mostly on the

synthesis of sounds, and does not explicitly quantify the match between

the learned representation and the original similarity space. Its is thus
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difficult to make a straightforward comparison to our own experiments

or to the study by Sanders and Nososfsky [346, 347], where mapping

performance was the main evaluation criterion.

Other researchers have put their focus on higher-level cognitive Prototypes,

exemplars, and

CNNs

processes, which can operate on top of similarity spaces. For instance,

Battleday et al. [34] have investigated the performance of several psycho-

logical categorization models when applied to the representations of

pretrained CNNs. More specifically, they compared prototype models

(where each category is represented by its centroid, cf. Section 1.1.1)

to exemplar models (where each category is represented by the full

set of examples, cf. Section 1.1.1), using the activations of a pretrained

CNN as a feature space. Categorization is done based on similarity to

prototypes and exemplars, respectively, where similarity is defined as

an exponentially decaying function of a weighted Euclidean distance.

Battleday et al. compared this to a baseline model, which used the

class probabilities of a pretrained CNN as similarity measure. They

found, that these cognitive classification models improved predictions

for ambiguous images, and that prototype models were able to perform

comparably to exemplar models, if dimension weights were used in the

distance calculation.

Also Sorscher et al. [383] have recently applied prototype learning Prototypes and

signal-noise ratio
on top of CNN representations, reaching very high accuracies of 92%

for pretrained CNNs in a classification with 1,000 novel classes and

only a single example per class. They argue, that each concept can be

interpreted as a manifold in a high-dimensional feature space, and

that classification performance for a prototype classifier is based on

the signal-noise ratio between classes. This signal-noise ratio can be

influenced through different factors, such as the pairwise distance

between neighboring manifolds or their respective size.

Singh et al. [376] have also considered prototype and exemplar mod- Training an

end-to-end system
els in combination with CNNs. Instead of applying them on top of a

pretrained network, they, however, propose to train an overall end-to-

end system from scratch: In their work, the usual softmax output layer

of a regular CNN was replaced by a probabilistic version of prototype or

exemplar theory, which made use of Gaussian probability distributions:

While prototype models used one Gaussian component per concept,

exemplar models used one Gaussian component per example. Singh

et al. furthermore considered an intermediate case, where the number

of components was greater than one, but smaller than the number of

examples. They trained several CNNs on CIFAR-10 [231], and evaluated

the model’s prediction on CIFAR-10H [320] by measuring the cross

entropy between the model’s output distribution and the human label

distribution. They found, that their cognitive categorization approach

performed better than regular CNNs, and that both prototype and

exemplar models were outperformed by the intermediate case with a

small number of receptive fields. Their system is somewhat reminiscent

of ProtoNet [381], which had been introduced in Section 5.3.3 in the

context of metric learning: Both systems use CNNs to learn a similarity
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space, where a simple prototype-based model is used for classification.

Moreover, in both cases, the system is trained in an end-to-end manner.

While ProtoNet focuses on classification performance in a classical

machine learning setting, the approach by Singh et al. explicitly targets

human classification behavior. Moreover, in addition to a prototype-

based approach, it also considers exemplar models and intermediate

cases with subconcepts.

All of the approaches discussed above assume either explicitly orA word of caution

implicitly, that neural networks, especially CNNs, are a good model of

human (visual) perception. This view has been recently criticized by

Bowers et al. [77]. They point out, that deep neural networks account

for almost no results from psychological studies, which usually target a

manipulation of independent experimental variables and their influ-

ence on the observed behavior. Bowers et al. furthermore list various

shortcomings of CNNs with respect to cognitive plausibility, including

their texture bias (cf. Section 10.1.4), which stands in contrast to the

shape bias found in humans. They also criticize approaches based on

relational similarity analysis (RSA) [230], where the correlation between

similarity matrices of different systems is computed, by noting, that a

high correlation does not imply a similar internal mechanism: A digital

clock can predict the behavior of an analog clock with high accuracy

despite using fundamentally different internal mechanisms. Bowers

et al. conclude, that future research should focus on neural networks,

which are able to predict key psychological phenomena such as the

Gestalt principles of visual perception (i.e., visual input being organized

based on proximity, similarity, continuity, connectedness, and closure).

Also hybrid systems, which combine current CNNs with symbolic

components are deemed a worthwhile area for future research. In the

context of our current discussion, such more cognitively plausible net-

works may also be expected to provide better predictions of human data.

Our summary of the literature in this emerging research area hasOutlook

been necessarily brief. It nevertheless shows, that research on the

combination of deep neural networks with cognitive models is very

active, since most studies have been published within the last two to

three years. It furthermore illustrates, that there are different approaches

with encouraging results. One can easily relate this strand of research

to the conceptual spaces framework, since an intermediate geometric

level of representation is used. This representation is learned by neural

networks and supports the definition of similarity and categorization

based on psychological models. A tighter integration with conceptual

spaces (for instance through the incorporation of a domain structure)

seems to be a promising direction for future endeavors, especially in

the context of making these systems more cognitively plausible.
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13.3 learning conceptual regions

Once the dimensions of a conceptual space have been determined, one Overview

needs to identify conceptual regions within this space, and to connect

them to appropriate symbols from the symbolic layer. While we were

not able to conduct any practical experiments on this issue as part of

this dissertation, we have discussed the concept learning problem on a

theoretical basis in Part II, namely in Chapters 5 and (especially) 7. In

the following, we briefly summarize the main points of this discussion

(Section 13.3.1), before giving an outlook on further research directions

(Section 13.3.2).

13.3.1 Lessons Learned

In Section 5.2, we have presented several standard machine learning al- Classical machine

learning
gorithms without considering their cognitive plausibility. This included

linear models (Sections 5.2.1, 5.2.2, and 5.2.3: linear regression, logistic

regression, and support vector machines), rule-based approaches (such

as decision trees, Section 5.2.4), and instance-based algorithms (such

as k nearest neighbors, Section 5.2.5, which can be interpreted as an

instantiation of the exemplar theory of concepts, cf. Section 1.1.1). In

Chapter 7, we have then discussed on concept learning in the context

of conceptual spaces. We have focused on three distinct aspects for

making machine learning more cognitively plausible:

Firstly, we considered learning under knowledge-based constraints (cf. Knowledge-based

constraints
Section 7.2). In this context, we have introduced logic tensor networks

(LTNs) [359] as a promising tool for exploring the incorporation of

top-down information in the learning process. They can be applied to

conceptual spaces by using a suitably defined membership function,

for example the one proposed in Part I of this dissertation. Logic tensor

networks can then be used to close the gap between the conceptual

layer and the symbolic layer.

Secondly, we discussed incremental concept formation algorithms (cf. Concept formation

Section 7.3), which process observations in an incremental fashion, and

which do not need explicit access to ground truth labels. We introduced

COBWEB [159], ART [175], and SUSTAIN [270] as three prime examples

for this approach.

Thirdly, we discussed language games [389] (cf. Section 7.4) as a Language games

semi-supervised learning task, where multiple agents need to align

their conceptualization of the world by developing a shared vocabulary.

As we noted there, some researchers have already used conceptual

spaces as a representation format in this setting [149, 421].

Although our discussion of concept learning in conceptual spaces Summary

has stayed on a theoretical level, and although it has consisted mostly of

a literature review, the three strands of research discussed in Chapter 7

nevertheless highlight the integrative power of conceptual spaces. They

thus provide useful starting points for experimental studies.
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13.3.2 Outlook

In Chapter 7, we have only considered three selected aspects of conceptOther aspects of

concept learning
learning. There are of course several other subfields, which are relevant,

and which may spark interesting research programs. This includes

active learning [361], learning with incomplete information and insuffi-

cient resources [425], and multi-modal embodied learning [301]. Also

the grounding of abstract concepts (such as wisdom or beauty) in more

concrete concepts (such as book or sunset) [126] would be interesting

in this context.

We have proposed to use LTNs for learning conceptual regions underLTN experiments

the influence of top-down constraints. Since this proposal is only of

theoretical nature so far, practical studies are needed for empirically

testing its potential. We hypothesize, that the additional top-down

constraints are especially useful if only a (very) limited number of

training examples is available, i.e., in a few shot learning scenario.

Applying concept formation algorithms to conceptual spaces shouldConcept formation in

conceptual spaces
be relatively straightforward, since all algorithms discussed in Section

7.3 assume, that instances are represented as points in feature spaces.

Moreover, the presented algorithms make use of relatively straightfor-

ward representation schemes, which often relate to prototypes and thus

to Gärdenfors’ Voronoi representation. If one were, however, to use the

formalization developed in Part I of this dissertation (e.g., because it is

able to geometrically encode correlations), one may need to consider-

ably alter the internal evaluation measures and update steps of these

algorithms in order to reflect the higher representational complexity.

Both theoretical and practical studies are needed in order to evaluate,

whether such a modification is feasible and promising.

Conceptual spaces have already been successfully used in the contextLanguage games with

our formalization
of language games [149, 421]. One could extend these studies by using

our formalization of the framework, which would allow to also intro-

duce operations on concepts: Agents could then for instance also pick a

word that refers to the intersection operation from Section 3.1, and then

use utterances such as "red intersect round" to describe an object, which

is both red and round. Again, such an application of our formalization

would, however, require to develop specific update procedures for the

conceptual representations based on the results of the interactions.

In the end, the final goal is of course to combine all three aspectsCombining multiple

aspects
discussed in Chapter 7 into a single algorithm. This single learning

mechanism would then use an incremental procedure, which is able to

work in an entirely unsupervised way, but which can also incorporate

the indirect feedback from language games. Moreover, it would be able

to extract structured knowledge (such as "all apples are round") from

the geometric representation, and to use this background knowledge

as constraints for subsequent learning tasks. One could, for instance,

start such an endeavor by using logic tensor networks in an incremental

fashion, or by applying them in the context of language games.
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Figure 13.3: (a) Graphical model of a variational autoencoder [224]. (b) Graph-

ical model of a conceptual VAE [363].

As a recent proposal for concept learning in conceptual spaces, The conceptual VAE

we would now like to briefly introduce the work by Shaikh et al.

[363], which is based on variational autoencoders [224] (VAEs). Please

recall from Section 6.3.4, that the graphical model underlying the VAE

approach assumes a latent code z⃗ with a prior distribution P(z⃗), which

is then used to sample an observation x⃗ based on the conditional

distribution Pθ(x⃗|z⃗) (cf. Figure 13.3a). In VAEs, a recognition model

Qϕ(z⃗|x⃗) is employed to make inferences about the generative factors

based on an observation. VAEs implement both Pθ(x⃗|z⃗) and Qϕ(z⃗|x⃗) as

neural networks, which predict the mean and variance of a Gaussian

distribution, assuming that also P(z⃗) is Gaussian. Shaikh et al. note,

that the vanilla VAE model does not incorporate class labels – while

it is possible to infer a latent code for a given observation, one cannot

directly assign it to a category. Their conceptual VAE model adds an

explicit representation of concepts by introducing a class label c⃗ to

the underlying graphical model. As one can see in Figure 13.3b, the

starting point of the generative story now shifts from z⃗ to c⃗: First, a

class label c⃗ is generated based on the prior distribution P(c⃗), which is

then used to sample a latent code z⃗ based on Pψ(z⃗|c⃗). This distribution

Pψ(z⃗|c⃗) is assumed to be a multivariate Gaussian and corresponds to

the representation of c⃗ in the latent space. The remainder of the model

with Pθ(x⃗|z⃗) and Qϕ(z⃗|x⃗) remains unchanged.

Shaikh et al. argue, that the training procedure for a conceptual VAE Training and

classification
is largely identical to the original VAE approach: Given an observation

x⃗ with a class label c⃗, one first uses the encoder Qϕ(z⃗|x⃗) to sample a

latent code z⃗s, whose decoder distribution Pθ(x⃗|z⃗s) gives rise to the

reconstruction loss (cf. Section 6.3.4). Now instead of considering the

KL divergence between Qϕ(z⃗|x⃗) and P(z⃗) as in the original VAE, the

conceptual VAE uses the KL divergence between Qϕ(z⃗|x⃗) and Pψ(z⃗|c⃗)
as additional loss term, where now also the parameters ψ (i.e., the

shape of the conceptual regions) must be optimized. Shaikh et al. show

in their paper, that classifying a novel instance (which corresponds to

finding argmaxc⃗Pθ,ψ(c⃗|x⃗)) can be done by finding the class c⃗, whose

representation Pψ(z⃗|c⃗) has the smallest KL divergence to the given

observation’s encoding Qϕ(z⃗|x⃗).
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In their experiments, Shaikh et al. considered concepts, which wereExperimental results

based on the domains shape, color, size, and position – the classes c⃗
consisted of a vector with one label per domain. Shaikh et al. found,

that the conceptual VAE learned meaningful conceptual regions, which

were defined on a single latent dimension representing the respective

domain. Based on the labels, their system was able to disentangle the

predefined domains. Interestingly, a meaningful ordering of labels

within the domains was observed, for instance medium being located

between small and large in the size domain. Shaikh et al. also report

very high accuracies for their proposed classification approach, as well

as meaningful morphs between observations based on interpolations

in latent space.

Finally, Shaikh et al. establish a formal link of their model to theRelations to other

work
conceptual spaces framework by showing, that it fits nicely with work

linking conceptual spaces to category theory [70, 411], if one assumes

fuzzy concepts. The experiments by Shaikh et al. are somewhat limited

by assuming only a single dimension per domain, and by using a

predefined domain structure. Their work does not directly address any

of the three topics considered in Chapter 7, but by allowing for partially

filled class labels (representing, that only information with respect to a

subset of domains is available), they implicitly allow for semi-supervised

learning. While we have argued in Section 6.4, that VAEs may be a

useful tool for discovering the dimensions of a conceptual space, Shaikh

et al. rather apply them to concept learning. This difference in usage

may, however, be a starting point for an integrated system: For instance,

when considering our shape data from Chapter 10, one could use a

conceptual VAE to learn a representation of multidimensional shape

space (potentially aided by psychological constraints, cf. Section 8.7.2)

usingPθ(x⃗|z⃗) andQϕ(z⃗, x⃗), while at the same time enforcing a structure

with respect to the visually coherent categories or the interpretable

features FORM, LINES, and ORIENTATION using Pψ(z⃗|c⃗). Finally, one

can establish a link between the conceptual VAE and the SCAN network

[197] as discussed in Section 6.4.1: Both approaches augment standard

VAE approaches by additional structures for extracting domain-wise

labels from the latent representation. While SCAN uses a second VAE,

whose latent representation is tied to the latent space of the low-

level VAE, the conceptual VAE achieves the integration of class labels

by augmenting the underlying graphical model of the VAE with an

additional variable.

13.4 the big picture

Lieto et al. [260] have argued, that conceptual spaces can be used as aConceptual spaces as

"Lingua Franca"
"Lingua Franca" for cognitive architectures, because they offer a way

to integrate different representational approaches (cf. Section 1.2.4).

This role of conceptual spaces as a powerful integration tool has also

surfaced at many points during this dissertation.
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Conceptual spaces provide a platform, which enables interdisci- An interdisciplinary

perspective
plinary exchanges in cognitive science (cf. Section 1.2): They are based

on psychological similarity spaces and prototype theory, but also relate

to the feature spaces commonly used in machine learning. Moreover,

they can be linked to neuroscientific findings and provide a principled

way of grounding different linguistic word types. From the perspective

of AI, conceptual spaces can help to solve the symbol grounding prob-

lem [190], i.e., the problem of linking abstract symbols to the real world.

This much-needed interdisciplinary perspective is crucial to progress

in cognitive science.

Also when looking at the two learning processes in conceptual Learning processes

spaces [182], their integrative power becomes apparent: If we consider

the grounding of the conceptual space in the subsymbolic layer, the

framework allows us to link different strands of research, ranging

from dimensionality reduction and metric learning (cf. Section 5.3)

over word embeddings and representation learning (cf. Section 6.3) to

multidimensional scaling (cf. Chapter 8). Also with respect to learning

conceptual regions, we can use conceptual spaces to take a unified view

on few shot learning, incremental processing, language games, and

knowledge-based constraints (cf. Chapter 7).

In Section 1.3, we have identified three core issues for applying Reconsidering the

three core issues
conceptual spaces in the context of artificial intelligence. As we have

already summarized in Sections 13.1.1, 13.2.1, and 13.3.1, we were able

to make progress on all three fronts:

With respect to the conceptual layer, we were able to provide a Formalizing the

conceptual layer
thorough formalization and implementation of the framework, which

allows us to represent correlations in a geometric manner through the

shape of the conceptual regions. This increased expressiveness allows

for more powerful predictions, but comes at an increased complexity

for learning concepts and reasoning on them. Our publicly available

implementation can serve as a useful starting point for further practical

research on conceptual spaces.

We have also extensively discussed different ways of grounding Perceptual

grounding
the conceptual layer in subsymbolic computation. While a variety of

approaches is possible in principle, we have focused our efforts on

the integration of psychologically derived similarity spaces with deep

neural networks. Learning a mapping from images to coordinates in

the conceptual space proved to be a difficult task, limited mainly by

the small amount of available stimulus-point mappings. As discussed

in Section 13.2.3, the combination of neural networks and cognitive

models is an emerging area of research with many recent contributions.

This dissertation was not able to make any principled contributions Learning conceptual

regions
to the problem of learning conceptual regions. Nevertheless, we have

argued, that in theory, many off-the-shelf approaches can be adapted

to the conceptual spaces framework. Here, the main modifications

needed for such an adaption mostly concern the domain structure

of the conceptual space and the constraint for conceptual regions to

be convex or star-shaped. We have provided a first sketch, how logic
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tensor networks [21] can be employed to learn conceptual regions under

knowledge-based constraints.

Although we were able to make progress with respect to all threeTowards an

integrated system
core issues, we are still relatively far away from the overall vision of an

integrated system as sketched in Section 1.3.1.
7

Before such an overall

integrated system is feasible, further improvements on its individual

components need to be made. While the formalization of the conceptual

layer may already be in a good enough shape for first applications,

especially the grounding of domains in neural networks needs some

further work. Once the mapping learned by these networks is stable and

precise enough, they can be used in a first prototype of an integrated

system. Also for learning conceptual regions, some first feasibility

studies are needed in order to identify promising approaches and

configurations, before attempting an integration into an overall system.

Nevertheless, we should not put off the integration of these threeOutlook

modules for too long: None of them will become optimal in the fore-

seeable future, but we may still obtain valuable insights from their

combination. These insights about the interaction of multiple parts may

be crucial in shaping the overall envisioned system. Overall, such an

integrated prototype would be a valuable contribution to both aspects

of cognitive AI [259]: It can serve as a partial explanation for the human

mind with testable predictions, but it can also help us to build more

intelligent artificial agents.

7 Also Galetić et al. [162] have recently proposed an explainable AI system in the

aerospace manufacturing domain, which is based on conceptual spaces, and which

employs our shape spaces from Chapter 11. Since their paper provides only a high-level

overview of the proposed system, but no implementational details or evaluation results,

we assume, that their system is still in quite early stages of development.
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Part V

A P P E N D I X

The following appendices provide additional supplemen-

tary information for Parts I and III of this dissertation. Ap-

pendices A, B, and C contain formal mathematical proofs

for the lemmata and propositions from Chapters 2, 3, and 4,

respectively. The appendices E, F, and G provide additional

information and illustrations for our experimental studies

from Chapters 10, 11 and 12.





A D E F I N I N G C O N C E P T UA L
R E G I O N S

In this appendix, we give proofs for the lemmata and propositions from

Chapter 2, where we introduced our formalization of concepts as fuzzy

star-shaped regions.

a.1 an argument against convexity

In the following lemma, we show that the weighted Euclidean distance Euclidean distance of

Euclidean distances

is a Euclidean

distance

of weighted Euclidean distances can be expressed as a single weighted

Euclidean distance. This was used in Section 2.2.2 as an argument

against replacing the Manhattan distance with the Euclidean distance

in the conceptual spaces framework. Please recall that the weighted

Euclidean metric is a special case of the weighted Minkowski metric

for r = 2:

Definition 2.1 (Weighted Minkowski Metric)

Let x, y ∈ CS. Their distance according to the weighted Minkowski metric of

order r > 0 with weights wi is defined as follows:

dr(x, y) =

(︄
n∑︂
i=1

wi · |xi − yi|r
)︄ 1

r

Lemma A.1 (Weighted Euclidean Distance)

Let D be the set of dimensions d spanning a conceptual space CS. Let ∆ be

a partition of these dimensions into domains δ ⊆ D. Let moreover ∀δ ∈ ∆ :
dδ(x, y) =

√︁∑︁
d∈δ wd · |xd − yd|2 be the weighted Euclidean distance of two

points x, y within domain δ and let d(x, y) =
√︂∑︁

δ∈∆wδ · (dδ(x, y))
2

be the

weighted Euclidean distance between x and y of these intra-domain distances.

Then, we can write this overall distance as d(x, y) =
√︁∑︁

d∈D w
′
d · |xd − yd|2.

Proof. We can prove this lemma by making the following straightfor-

ward transformations:

d(x, y) =

√︄∑︂
δ∈∆

wδ · (dδ(x, y))2

=

⌜⃓⃓⃓
⎷∑︂

δ∈∆
wδ ·

⎛⎝√︄∑︂
d∈δ

wd · |xd − yd|2

⎞⎠2

=

√︄∑︂
δ∈∆

wδ ·
∑︂
d∈δ

wd · |xd − yd|2

825
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=

√︄∑︂
δ∈∆

∑︂
d∈δ

wδ · wd · |xd − yd|2

Now definew′
d = wδ ·wd and replace

∑︁
δ∈∆

∑︁
d∈δ by

∑︁
d∈D (the latter

is possible since ∆ is a partition of D). We can then write d(x, y) as a

weighted Euclidean distance:

d(x, y) =

√︄∑︂
d∈D

w′
d · |xd − yd|2

a.2 formalizing conceptual similarity spaces

In Section 2.3.1, we introduced the combined metric d∆C with W =
⟨W∆, {Wδ}δ∈∆⟩ containing the salience weights for both domains and

dimensions. Lemma 2.1 states that d∆C is a metric if W is kept fixed.

Definition 2.7 (Combined Metric)

LetCS be a conceptual space based on dimensions d ∈ D, which are partitioned

into domainsD ⊇ δ ∈ ∆. LetW∆ be the set of positive domain weights wδ for

all δ ∈ ∆ with

∑︁
δ∈∆wδ = |∆|. Let moreoverWδ be the set of positive domain

weights wd for all d ∈ δ with

∑︁
d∈δ wd = 1. Let furthermore x, y ∈ CS.

Their distance according to the combined metric is defined as follows, where

W = ⟨W∆, {Wδ}δ∈∆⟩:

d∆C (x, y,W ) =
∑︂
δ∈∆

wδ · dδE (x, y,Wδ) =
∑︂
δ∈∆

⎛⎝wδ ·√︄∑︂
d∈δ

wd · |xd − yd|2

⎞⎠
Lemma 2.1 (Metric Properties of d∆C )

d∆C with a fixed parameter W is a metric.

Proof. Let x, y, z ∈ CS be arbitrary, but fixed. As W is fixed, we write

d∆C (x, y) instead of d∆C (x, y,W ). We now show that d∆C fulfills all four

properties of a metric, i.e., non-negativity, identity of indiscernibles,

symmetry, and the triangle inequality.

(i) d∆C (x, y) ≥ 0:Non-negativity

We know that ∀d ∈ D : |xd − yd| ≥ 0, wd > 0 and that ∀δ ∈ ∆ :
wδ > 0. Moreover, the operations of squaring and computing the

square root always return nonnegative results. It therefore follows

that d∆C (x, y) ≥ 0.

(ii) d∆C (x, y) = 0 ⇔ x = y:Identity of

indiscernibles
One can make the following transformations:

(x = y) ⇔ (∀d ∈ D : xd = yd) ⇔ (∀d ∈ D : |xd − yd| = 0)

⇔
(︁
d∆C (x, y) = 0

)︁
The last equivalence holds also in direction ⇐, because all weights

wδ and wd are positive.
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(iii) d∆C (x, y) = d∆C (y, x): Symmetry

Since |xd − yd| = |yd − xd|, this property can be easily shown:

d∆C (x, y) =
∑︂
δ∈∆

⎛⎝wδ ·√︄∑︂
d∈δ

wd · |xd − yd|2

⎞⎠
=
∑︂
δ∈∆

⎛⎝wδ ·√︄∑︂
d∈δ

wd · |yd − xd|2

⎞⎠ = d∆C (y, x)

(iv) d∆C (x, z) ≤ d∆C (x, y) + d∆C (y, z): Triangle inequality

d∆C (x, y) + d∆C (y, z) =
∑︂
δ∈∆

(wδ · dδE(x, y)) +
∑︂
δ∈∆

(wδ · dδE(y, z))

=
∑︂
δ∈∆

wδ · (dδE(x, y) + dδE(y, z))

Since dδE is a metric, the following triangle inequality holds:

dδE(x, y) + dδE(y, z) ≥ dδE(x, z)

Therefore, we can write:

d∆C (x, y) + d∆C (y, z) =
∑︂
δ∈∆

wδ · (dδE(x, y) + dδE(y, z))

≥
∑︂
δ∈∆

wδ · dδE(x, z) = d∆C (x, z)

Since d∆C fulfills all properties of a metric, d∆C is a metric.

a.3 crisp conceptual regions

In Section 2.3.2, we defined the core of a conceptual region as a union Constructing

star-shaped regions

based on convex sets

of convex regions with a non-empty intersection. This was based on

Lemma 2.2, which relates the notions of convexity and star-shapedness

with each other. Both of them are defined based on the betweenness of

points x, y, z ∈ CS under a metric d:

Definition 2.2 (Betweenness)

Let x, y, z ∈ CS and d be a metric on CS. The point y is said to lie between x
and z (denoted as Bd(x, y, z)) if and only if d(x, y) + d(y, z) = d(x, z).

Definition 2.3 (Convexity)

A set C ⊆ CS in a conceptual space CS is convex under a metric d⇔
∀x ∈ C, z ∈ C, y ∈ CS : (Bd(x, y, z) → y ∈ C)

Definition 2.4 (Star-Shapedness)

A set S ∈ CS in a conceptual space CS is star-shaped under a metric d with

respect to a set P ⊆ S ⇔
∀p ∈ P, z ∈ S, y ∈ CS : (Bd(p, y, z) → y ∈ S)
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Lemma 2.2 (Union of Convex Sets)

Let C1, ..., Cm be convex sets under some metric d and let P =
⋂︁m
i=1Ci. If

P ̸= ∅, then S =
⋃︁m
i=1Ci is star-shaped under d with respect to P .

Proof. AssumeP =
⋂︁m
i=1Ci ̸= ∅ and letx ∈ P . Obviously,∀i ∈ {1, . . . ,m} :

x ∈ Ci. Pick any point z ∈ S =
⋃︁m
i=1Ci. We know that ∃i ∈ {1, . . . ,m} :

z ∈ Ci. As both x, z ∈ Ci and as Ci is convex under d, we know that

∀y ∈ CS : (Bd(x, y, z) → y ∈ Ci). Since Ci ⊆ S, this also implies that

y ∈ S. This holds for all x ∈ P and z ∈ S, therefore S is star-shaped

under d with respect to P .

We then based our cores on axis-parallel cuboids, which turn out toCuboids as building

blocks
be convex under the combined metric d∆C (see Lemma 2.3):

Definition 2.8 (Axis-Parallel Cuboid)

We describe an axis-parallel cuboid
1 C as a triple ⟨∆C , p

−, p+⟩.C is defined

on the domains ∆C ⊆ ∆, i.e., on the dimensions DC =
⋃︁
δ∈∆C

δ. We call

p−, p+ the support points of C and require that p+, p− ∈ DC . This means

that p+ and p− have an entry p+d , p
−
d for each dimension d ∈ DC . For all

d ∈ D \DC , we can for convenience assume that p+d = +∞ and p−d = −∞.

If for any d ∈ DC we have p−d > p+d , then the cuboid C is empty, i.e., C = ∅.

Then, we define the cuboid C in the following way:

C = {x ∈ CS | ∀d ∈ D : p−d ≤ xd ≤ p+d }

Lemma 2.3 (Cuboids are Convex)

A cuboid C is convex under d∆C
C , given a fixed set of weights W .Cuboids are convex

under dC
Proof. Let C be a cuboid and let x, z ∈ C. This means that ∀d ∈ DC :
p−d ≤ xd, zd ≤ p+d . Now let y ∈ CS such that B

d
∆C
C

(x, y, z).

B
d
∆C
C

(x, y, z) ⇔
(︂
d∆C
C (x, y) + d∆C

C (y, z) = d∆C
C (x, z)

)︂
⇔

⎛⎝∑︂
δ∈∆C

wδ · dδE(x, y) +
∑︂
δ∈∆C

wδ · dδE(y, z)

=
∑︂
δ∈∆C

wδ · dδE(x, z)

⎞⎠
⇔

⎛⎝∑︂
δ∈∆C

wδ · (dδE(x, y) + dδE(y, z))

=
∑︂
δ∈∆C

wδ · dδE(x, z)

⎞⎠
If for some domain δ ∈ ∆C we observed dδE(x, y) + dδE(y, z) >

dδE(x, z), we would need to find some other domain δ′ ∈ ∆C with

dδ
′
E(x, y) + dδ

′
E(y, z) < dδ

′
E(x, z) if we want the equation from above

1 We will drop the modifier "axis-parallel" from now on.
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to hold. However, this would violate the triangle equality for dδ
′
E .

Therefore, we can conclude that dδE(x, y) + dδE(y, z) = dδE(x, z) for all

δ ∈ ∆C . Moreover, since betweenness in the Euclidean sense refers to

all points on the line segment between the two end points x and z, we

can rewrite this by using a parameter t ∈ [0, 1]:

B
d
∆C
C

(x, y, z)

⇔ ∀δ ∈ ∆C : dδE(x, y) + dδE(y, z) = dδE(x, z)

⇔ ∀δ ∈ ∆C : ∃t ∈ [0, 1] : ∀d ∈ δ : yd = t · xd + (1− t) · zd

We already know that ∀d ∈ DC : xd, zd ∈ [p−d , p
+
d ]. Because yd is a

convex combination of xd and zd, one can easily see that ∀d ∈ DC : yd ∈
[p−d , p

+
d ]. This means that y ∈ C. Therefore, C is convex under d∆C

C .

This leads to our definition of a core, which will play a role again in Cores as union of

intersecting cuboids
the proofs of Section A.4:

Definition 2.9 (Core of a Conceptual Region)

We describe a core S as a tuple ⟨∆S , {C1, . . . , Cm}⟩ where ∆S ⊆ ∆ is a set

of domains on which the cuboids {C1, . . . , Cm} (and thus also S) are defined.

Again, we can deriveDS =
⋃︁
δ∈∆S

δ, i.e., the set of all dimensions on which S
is defined. We further require that the central region P =

⋂︁m
i=1Ci ̸= ∅. Then

the coret S is defined as follows:

S =

m⋃︂
i=1

Ci

a.4 fuzzy conceptual regions

In Section 2.3.3, we have defined concepts as fuzzy sets based on a given

core and a similarity-based membership function. The proofs below

are based on the following definitions:

Definition 2.10 (Fuzzy Set)

A fuzzy set
˜︁A on CS is defined by its membership function µ ˜︁A : CS → [0, 1].

For each x ∈ CS, µ ˜︁A(x) is interpreted as degree of membership of x in
˜︁A, with

µ ˜︁A(x) = 1 indicating full membership and µ ˜︁A(x) = 0 indicating complete

non-membership.

Definition 2.11 (α-Cut)

Given a fuzzy set
˜︁A on CS, its α-cut

˜︁Aα for α ∈ [0, 1] is defined as follows:

˜︁Aα = {x ∈ CS | µ ˜︁A(x) ≥ α}

The special case of
˜︁A1

is called the core of
˜︁A.

Definition 2.13 (Fuzzy Star-Shapedness)

A fuzzy set
˜︁A on CS is called star-shaped under a metric d with respect to a

crisp set P ⇔
∀α ∈ [0, 1] :

(︂ ˜︁Aα = ∅ or
˜︁Aα is star-shaped under d with respect to P

)︂
.
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Definition 2.14 (Concept as Fuzzy Region)

A concept
˜︁S is described by a quadruple ⟨S, µ0, c,W ⟩. The components of

this quadruple are the following:

• S = ⟨∆S , {C1, . . . , Cm}⟩ is a non-empty core as described in Definition

2.9.

• The parameter µ0 ∈ (0, 1] controls the highest possible membership to˜︁S and is usually set to 1.

• The sensitivity parameter c > 0 controls the rate of the exponential

decay in the similarity function and thus the overall fuzziness of
˜︁S.

• Finally, W = ⟨W∆S
, {Wδ}δ∈∆S

⟩ contains positive weights for all

domains in ∆S and all dimensions within these domains. These weights

are used when computing the combined metric d∆S
C and reflect the

relative importance of the respective domains and dimensions. As

argued in Section 2.3.1, we assume that

∑︁
δ∈∆S

wδ = |∆S | and that

∀δ ∈ ∆S :
∑︁

d∈δ wd = 1.

The membership function of
˜︁S is then defined as follows:

µ˜︁S(x) = µ0 ·max
y∈S

(︂
e−c·d

∆S
C (x,y,W )

)︂
Showing that concepts are fuzzy star-shaped regions becomes easierα-cuts are

ϵ-neighborhoods
by first demonstrating that each α-cut of the concept corresponds to an

ϵ-neighborhood of its core:

Lemma 2.4 (α-Cut is an ϵ-Neighborhood)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept and let α ≤ µ0. Then, the α-cut

˜︁Sα is

equivalent to an ϵ-neighborhood of S with ϵ = −1
c · ln

(︂
α
µ0

)︂
.

Proof. This lemma can be shown with the following straightforward

transformations:

x ∈ ˜︁Sα ⇔
(︃
µ˜︁S (x) = µ0 ·max

y∈S

(︂
e−c·d

∆S
C (x,y,W )

)︂
≥ α

)︃
⇔
(︃
e
−c·miny∈S

(︂
d
∆S
C (x,y,W )

)︂
≥ α

µ0

)︃
⇔
(︃
−c ·min

y∈S
d∆S
C (x, y,W ) ≥ ln

(︃
α

µ0

)︃)︃
⇔
(︃
min
y∈S

d∆S
C (x, y,W ) ≤ −1

c
· ln
(︃
α

µ0

)︃)︃
We can now finally show that fuzzy concepts as defined in DefinitionConcepts are fuzzy

star-shaped regions
2.14 are star-shaped according to Definition 2.13:

Proposition 2.1 (Concepts are Fuzzy Star-Shaped)

Any concept
˜︁S = ⟨S, µ0, c,W ⟩ is star-shaped with respect to P =

⋂︁m
i=1Ci

under d∆S
C .
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Proof. For α ≤ µ0, ˜︁Sα is an ϵ-neighborhood of S (Lemma 2.4). It The ϵ-neighborhood

of a cuboid
therefore suffices to consider ϵ-neighborhoods of S. We can define the

ϵ-neighborhood of a single cuboid Ci under d∆S
C as follows:

Cϵi =
{︁
z ∈ CS | ∀d ∈ DS : p−id − ud ≤ zd ≤ p+id + ud

}︁
Here, the vector u⃗ represents the largest possible difference between

x ∈ Ci and z ∈ Cϵi . Thus, u⃗ must fulfill the following constraints:⎛⎝∑︂
δ∈∆S

wδ ·
√︄∑︂

d∈δ
wd · (ud)2 ≤ ϵ

⎞⎠ ∧ (∀d ∈ DS : ud ≥ 0)

Let now x ∈ Ci be a point in the cuboid Ci and z ∈ Cϵi be a point in End points for

betweenness

considerations

this cuboid’s ϵ-neighborhood. We can write their coordinates as follows:

∀d ∈ DS : xd = p−id + ad with ad ∈ [0, p+id − p−id]

zd = p−id + bd with bd ∈ [−ud, p+id − p−id + ud]

We know that a point y ∈ CS is between x and z with respect to d∆S
C Considering

intermediate points
if the following condition is true:(︂

d∆S
C (x, y,W ) + d∆S

C (y, z,W ) = d∆S
C (x, z,W )

)︂
⇔
(︂
∀δ ∈ ∆S : dδE (x, y,Wδ) + dδE (y, z,Wδ) = dδE (x, z,Wδ)

)︂
⇔ (∀δ ∈ ∆S : ∃t ∈ [0, 1] : ∀d ∈ δ : yd = t · xd + (1− t) · zd)

The first equivalence holds because d∆S
C is a weighted sum of Eu-

clidean metrics dδE . The second equivalence has already been seen in

the proof of Lemma 2.3. We can thus re-write the components of y:

∀d ∈ DS : ∃t ∈ [0, 1] : yd = t · xd + (1− t) · zd
= t ·

(︁
p−id + ad

)︁
+ (1− t)

(︁
p−id + bd

)︁
= p−id + t · ad + (1− t) · bd⏞ ⏟⏟ ⏞

=cd

Because cd is a convex combination of ad and bd, we know that

cd ∈ [−ud, p+id − p−id + ud]. Therefore y ∈ Cϵi . So Cϵi is star-shaped with

respect to Ci under d∆S
C .

Since P ⊆ Ci, we also know that Cϵi is star-shaped with respect to Every

ϵ-neighborhood is

star-shaped

P under d∆S
C . Therefore, Sϵ =

⋃︁m
i=1C

ϵ
i is star-shaped under d∆S

C with

respect to P . Thus, all
˜︁Sα with α ≤ µ0 are star-shaped under d∆S

C with

respect to P . It is obvious that
˜︁Sα = ∅ if α > µ0, so

˜︁S is star-shaped

according to Definition 2.13.





B O P E R AT I O N S FO R
C O M B I N I N G C O N C E P TS

In this appendix, we give proofs for the lemmata and propositions

from Chapter 3, where we defined various operations for creating new

concepts based on additional ones.

b.1 intersection

The following two lemmata from Section 3.1.1 focus on the intersection Definitions of cuboid

and core
of cores and show under which circumstances the result of a naive set

intersection is again a valid core. For additional clarity, we re-print the

definitions of cuboids and cores:

Definition 2.8 (Axis-Parallel Cuboid)

We describe an axis-parallel cuboid
1 C as a triple ⟨∆C , p

−, p+⟩.C is defined

on the domains ∆C ⊆ ∆, i.e., on the dimensions DC =
⋃︁
δ∈∆C

δ. We call

p−, p+ the support points of C and require that p+, p− ∈ DC . This means

that p+ and p− have an entry p+d , p
−
d for each dimension d ∈ DC . For all

d ∈ D \DC , we can for convenience assume that p+d = +∞ and p−d = −∞.

If for any d ∈ DC we have p−d > p+d , then the cuboid C is empty, i.e., C = ∅.

Then, we define the cuboid C in the following way:

C = {x ∈ CS | ∀d ∈ D : p−d ≤ xd ≤ p+d }

Definition 2.9 (Core of a Conceptual Region)

We describe a core S as a tuple ⟨∆S , {C1, . . . , Cm}⟩ where ∆S ⊆ ∆ is a set

of domains on which the cuboids {C1, . . . , Cm} (and thus also S) are defined.

Again, we can deriveDS =
⋃︁
δ∈∆S

δ, i.e., the set of all dimensions on which S
is defined. We further require that the central region P =

⋂︁m
i=1Ci ̸= ∅. Then

the coret S is defined as follows:

S =
m⋃︂
i=1

Ci

Lemma 3.1 (Intersection of Cores is Union of Cuboids)

Let S1 =
⟨︂
∆S1 ,

{︂
C

(1)
1 , . . . , C

(1)
m1

}︂⟩︂
and S2 =

⟨︂
∆S2 ,

{︂
C

(2)
1 , . . . , C

(2)
m2

}︂⟩︂
be

two cores. Then S = S1 ∩ S2 can be written as union of cuboids, namely,

S =
⋃︁
i∈I Ci.

1 We will drop the modifier "axis-parallel" from now on.
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Proof. Let us first note that the resulting set S will be defined on theConditions for set

membership
domains ∆S = ∆S1 ∪∆S2 and thus on the dimensionsDS =

⋃︁
δ∈∆S

δ =
DS1 ∪DS2 . We can write S as follows, using the definition of cuboids:

S = S1 ∩ S2 =
m1⋃︂
i1=1

C
(1)
i1

∩
m2⋃︂
i2=1

C
(2)
i2

= {x ∈ CS | ∃i1 ∈ {1, . . . ,m1}, i2 ∈ {1, . . . ,m2} :

x ∈ C
(1)
i1

∧ x ∈ C
(2)
i2

}︂
= {x ∈ CS | ∃i1 ∈ {1, . . . ,m1}, i2 ∈ {1, . . . ,m2} :(︂

∀d ∈ D : p
−(1)
i1d

≤ xd ≤ p
+(1)
i1d

)︂
∧
(︂
∀d ∈ D : p

−(2)
i2d

≤ xd ≤ p
+(2)
i2d

)︂}︂
= {x ∈ CS | ∃i1 ∈ {1, . . . ,m1}, i2 ∈ {1, . . . ,m2} : ∀d ∈ DS :

max
(︂
p
−(1)
i1d

, p
−(2)
i2d

)︂
≤ xd ≤ min

(︂
p
+(1)
i1d

, p
+(2)
i2d

)︂}︂
Please recall from Definition 2.8 that if a cuboid is not defined onNon-overlapping

dimensions
a dimension d ∈ D, then p−d = −∞ and p+d = +∞. For instance, if

d /∈ DS1 , we know that p
−(1)
i1d

= −∞ and p
+(1)
i1d

= +∞. We can therefore

state the following:

∀d ∈ DS \DS1 : max
(︂
p
−(1)
i1d

, p
−(2)
i2d

)︂
= p

−(2)
i2d

∀d ∈ DS \DS1 : min
(︂
p
+(1)
i1d

, p
+(2)
i2d

)︂
= p

+(2)
i2d

∀d ∈ DS \DS2 : max
(︂
p
−(1)
i1d

, p
−(2)
i2d

)︂
= p

−(1)
i1d

∀d ∈ DS \DS2 : min
(︂
p
+(1)
i1d

, p
+(2)
i2d

)︂
= p

+(1)
i1d

Let us now consider for all i1 ∈ {1, . . . ,m1} and i2 ∈ {1, . . . ,m2} thePairwise intersection

of cuboids
intersection of C

(1)
i1

and C
(2)
i2

and label it as Ci1·m2+i2 :

Ci1·m2+i2 = C
(1)
i1

∩ C
(2)
i2

= {x ∈ CS | ∀d ∈ DS :

max
(︂
p
−(1)
i1d

, p
−(2)
i2d

)︂
≤ xd ≤ min

(︂
p
+(1)
i1d

, p
+(2)
i2d

)︂}︂
If we furthermore define i = i1 · m2 + i2, then we can write S =

S1 ∩ S2 =
⋃︁m1·m2
i=1 Ci. Obviously, each Ci is a cuboid, thus S can be

represented as a union of cuboids.

For mathematical convenience, it makes sense to remove all cuboidsRemoving empty

cuboids
that are empty from our definition of S: We therefore keep a set I
of indices such that ∀i ∈ I : Ci ̸= ∅. This does not change the set S
itself, because removing an empty set from a union has no effects: S =⋃︁
i∈I Ci =

⋃︁m1·m2
i=1 Ci. We can now define a central region P =

⋂︁
i∈I Ci

for the intersection result, which may, however, be empty.

In the following, we show a straightforward sufficient condition,Sufficient condition

for star-shaped

intersection result

which ensures that the intersection result is a valid core:
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Lemma 3.2 (Sufficient Condition for Star-Shaped Intersection Result)

Let S1 =
⟨︂
∆S1 ,

{︂
C

(1)
1 , . . . , C

(1)
m1

}︂⟩︂
and S2 =

⟨︂
∆S2 ,

{︂
C

(2)
1 , . . . , C

(2)
m2

}︂⟩︂
be two cores with central regions P1 and P2, respectively. Let furthermore

S = S1 ∩ S2 =
⋃︁
i∈I Ci, where Ci are the cuboids of the intersection result. If

P1 ∩ P2 ̸= ∅, then P =
⋂︁
i∈I Ci ̸= ∅

Proof. One can easily see the following equivalence:

(P1 ∩ P2 ̸= ∅) ⇔ (∃x ∈ CS : x ∈ P1 ∧ x ∈ P2)

⇔
(︂
∃x ∈ CS :

(︂
∀i1 ∈ {1, . . . ,m1} : x ∈ C

(1)
i1

)︂
∧
(︂
∀i2 ∈ {1, . . . ,m2} : x ∈ C

(2)
i2

)︂
Now take any i ∈ I . We know that there exist i1, i2, such that

Ci = C
(1)
i1

∩ C
(2)
i2

based on how Ci was constructed in the proof of

Lemma 3.1. Since x is both in C
(1)
i1

and in C
(2)
i2

, it is also in Ci. This holds

for any i ∈ I , therefore x ∈ P =
⋂︁
i∈I Ci, which shows that P is not

empty and S is a valid core.

b.2 union

In Section 3.2.1, we introduced our modified union operation for cores Definitions of the

union operation
and concepts:

Definition 3.5 (Modified Union of Cores)

Let S1 = ⟨∆S1 , {C
(1)
1 , . . . , C

(1)
m1}⟩ and S2 = ⟨∆S2 , {C

(2)
1 , . . . , C

(2)
m2}⟩ be two

cores. Their modified unionU(S1, S2) = ⟨∆S1 ∪∆S2 , {C ′
1, . . . C

′
m′}⟩ is based

on the cuboids C ′
i, which have been obtained from the corresponding cuboids

Ci from S1 and S2, using the heuristic from Section 3.1.1 to obtain a central

point p:

p =
1

m′ ·
m∑︂
i=1

(p−i + p+i )

2

∀d ∈ D : p−
′

id = min
(︁
p−id, pd

)︁
, p+

′

id = max
(︁
p+id, pd

)︁
Definition 3.6 (Modified Union of Concepts)

Let
˜︁S1 = ⟨S1, µ(1)0 , c(1),W (1)⟩ and

˜︁S2 = ⟨S2, µ(2)0 , c(2),W (2)⟩ be two con-

cepts. We define their modified union as
˜︁S′ = U(˜︁S1, ˜︁S2) = ⟨S′, µ′0, c

′,W ′⟩
with the following components:

• µ′0 = max
(︂
µ
(1)
0 , µ

(2)
0

)︂
• S′ = U (S1, S2)

• c′ = min
(︁
c(1), c(2)

)︁
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• W ′
with weights w′

δ, w
′
d defined as follows (using interpolation factors

s, t ∈ [0, 1]):

∀δ ∈ ∆S1 ∩∆S2 :
(︂(︂
w′
δ = s · w(1)

δ + (1− s) · w(2)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = t · w(1)

d + (1− t) · w(2)
d

)︂)︂
∀δ ∈ ∆S1 \∆S2 :

(︂(︂
w′
δ = w

(1)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = w

(1)
d

)︂)︂
∀δ ∈ ∆S2 \∆S1 :

(︂(︂
w′
δ = w

(2)
δ

)︂
∧ ∀d ∈ δ :

(︂
w′
d = w

(2)
d

)︂)︂
Definition 3.7 (Fuzzy Union)

Let
˜︁A, ˜︁B be two fuzzy sets on CS. Then, the membership function of their

fuzzy union is defined as follows:

∀x ∈ CS : µ ˜︁A∪ ˜︁B(x) = max
(︁
µ ˜︁A(x), µ ˜︁B(x))︁

The following proposition shows that the standard fuzzy set unionRelation of our

modified union to the

standard union of

fuzzy sets

from Definition 3.7 is under certain circumstances a fuzzy subset of our

modified union operation from Definition 3.6:

Proposition 3.1 (Modified Union as Superset of Standard Union)

Let
˜︁S1 = ⟨S1, µ(1)0 , c(1),W (1)⟩ and

˜︁S2 = ⟨S2, µ(2)0 , c(2),W (2)⟩ be two con-

cepts. If we assume that ∆S1 = ∆S2 and W (1) = W (2)
, then

˜︁S1 ∪ ˜︁S2 ⊆
U(˜︁S1, ˜︁S2) = ˜︁S′

, i.e., ∀x ∈ CS : µ˜︁S1∪˜︁S2
(x) ≤ µ

U(˜︁S1,˜︁S2)
(x).

Proof. We know that both original cores are contained in the new core,Preliminary

observations
because we use overextension as a repair mechanism (cf. Definition

3.5), i.e., S1 ∪ S2 ⊆ S′
. Moreover, because ∆S1 = ∆S2 and W (1) =W (2)

,

we get that ∆S′ = ∆S1 = ∆S2 (cf. Definition 3.5) and that W ′ =W (1) =
W (2)

(cf. Definition 3.6). Therefore, the distance functions used in the

membership function of the three concepts are identical:

∀x, y ∈ CS : d
∆S1
C

(︂
x, y,W (1)

)︂
= d

∆S2
C

(︂
x, y,W (2)

)︂
= d

∆S′
C

(︁
x, y,W ′)︁

In order to simplify our notation, we write d(x, y) to refer to thisRewriting the

membership function
distance function. We can now rewrite µ˜︁S1∪˜︁S2

(x) as follows:

µ˜︁S1∪˜︁S2
(x) = max

(︂
µ˜︁S1

(x), µ˜︁S2
(x)
)︂

= max

(︃
µ
(1)
0 ·max

y∈S1

e−c
(1)·d

∆S1
C (x,y,W (1)),

µ
(2)
0 ·max

y∈S2

e−c
(2)·d

∆S2
C (x,y,W (2))

)︃
(i)
= max

(︂
µ
(1)
0 · e−c(1)·miny∈S1

d(x,y), )

µ
(2)
0 · e−c(2)·miny∈S2

d(x,y)
)︂

(ii)

≤ µ′0 ·max
(︂
e−c

(1)·miny∈S1
d(x,y), e−c

(2)·miny∈S2
d(x,y)

)︂
(iii)

≤ µ′0 · e−c
′·min(miny∈S1

d(x,y),miny∈S2
d(x,y))
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(iv)

≤ µ′0 · e−c
′·miny∈S′ d(x,y) = µ′0 ·max

y∈S′
e−c

′·d
∆S′
C (x,y,W ′)

= µ˜︁S′(x)

In step (i), we use the equality of the distance functions. Steps Explanation of the

transformation steps(ii) and (iii) are based on the fact that according to Definition 3.6

µ′0 = max
(︂
µ
(1)
0 , µ

(2)
0

)︂
and c′ = min

(︁
c(1), c(2)

)︁
, respectively. Finally, step

(iv) applies our knowledge that S1 ∪ S2 ⊆ S′
. Overall, we thus get that

µ˜︁S1∪˜︁S2
(x) ≤ µ˜︁S′(x), i.e.,

˜︁S1 ∪ ˜︁S2 ⊆ U(˜︁S1, ˜︁S2).
b.3 subspace projection

In Section 3.4.1, we have defined the projection of a core onto a given Definitions of the

projection operation

for cuboids and cores

subset of domains based on the projections of its cuboids:

Definition 3.8 (Projection of a Cuboid)

Let C = ⟨∆C , p
−, p+⟩ be a cuboid defined on ∆C . The projection P (C,∆C′

of this cuboid onto a subspace ∆C′ ⊆ ∆C is defined as the cuboid C ′ =
⟨∆C′ , p−

′
, p+

′⟩, whose support points are defined as follows (using DC =⋃︁
δ∈∆C

δ and DC′ =
⋃︁
δ∈∆C′ δ):

∀d ∈ DC′ : p−
′

d = p−d ∧ p+′

d = p+d

∀d ∈ D \DC′ : p−
′

d = −∞∧ p+′

d = +∞

Definition 3.9 (Projection of a Core)

Let S = ⟨∆S , {C1, . . . , Cm}⟩ be a core. Let C ′
i = P (Ci,∆S′) be the pro-

jection of Ci onto the domains ∆S′ ⊆ ∆S . Then, S′ = P (S,∆S′) =
⟨∆S′ , {C ′

1, . . . , C
′
m}⟩ is the projected version of S.

In the following proposition, we show that if a core is projected onto Intersecting

complementary

projections of cores

two complementary subspaces, the intersection of these projections is a

superset of the original core. We will use Corollary 3.1 as part of this

proof, so we reprint here as well:

Corollary 3.1 (Intersection of Orthogonal Cores)

If two cores S1 and S2 are defined on completely different domains (i.e.,

∆S1 ∩∆S2 = ∅ and thereforeDS1 ∩DS2 = ∅), then P1 ∩P2 ̸= ∅ and S1 ∩S2
is a core.

Proposition 3.2 (Intersection of Projections of Cores)

Let S = ⟨∆S , {C1, . . . , Cm}⟩ be a core, and let S1 = P (S,∆1) and S2 =
P (S,∆2) be its projections, where ∆1 ∪∆2 = ∆S and ∆1 ∩∆2 = ∅. Then,

S ⊆ S′ = I(S1, S2).

Proof. Since S, S1, and S2 are cores, we can write them as unions of Writing cores as

unions of cuboids
cuboids:

S =

m⋃︂
i=1

Ci S1 =

m⋃︂
i=1

P (Ci,∆1) =

m⋃︂
i=1

C
(1)
i

S2 =

m⋃︂
i=1

P (Ci,∆2) =

m⋃︂
i=1

C
(2)
i
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As seen before in Lemma 3.1, we can also write the intersection

S′ = I(S1, S2) as a union of cuboids:

S′ =
m2⋃︂
i=1

C ′
i with C ′

i = C
(1)

⌊ i
m
⌋ ∩ C

(2)
i mod m

Please note that we use i = m2 · i1 + i2 in order to write i1 = ⌊ 1
m⌋

and i2 = i mod m, using the fact that m1 = m2 = m. So let Ci from S

be projected to C
(1)
i and C

(2)
i :

Ci =
{︁
x ∈ CS | ∀d ∈ DS : p−id ≤ xd ≤ p+id

}︁
C

(1)
i =

{︁
x ∈ CS | ∀d ∈ D1 : p

−
id ≤ xd ≤ p+id

}︁
C

(2)
i =

{︁
x ∈ CS | ∀d ∈ D2 : p

−
id ≤ xd ≤ p+id

}︁
Since D1 ∩D2 = ∅ and D1 ∪D2 = DS and C ′

i·m+i = C
(1)
i ∩C(2)

i = CiConsidering pairwise

intersections of

cuboids
can be defined by combining the constraints from C

(1)
i and C

(2)
i . We

hence re-create all the original Cis when defining S′
by combining their

respective projections. However, we also generate more cuboids C ′
i as

there are m2 ≥ m combinations of C
(1)
i1

and C
(2)
i2

. Since ∆1 ∩∆2 = ∅,

Corollary 3.1 tells us that S′ = S1 ∩ S2 is a valid core, i.e., that its

central region P =
⋂︁m2

i=1C
′
i is not empty. Overall, we therefore get that

S =
⋃︁m
i=1Ci ⊆

⋃︁m2

i=1C
(3)
i = S′

.

In Section 3.4.1, we then generalized the modified projection fromDefinition of the

projection operation

for concepts

cores to concepts as follows:

Definition 3.10 (Projection of a Concept)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept and ∆S′ ⊆ ∆S a subset of its domains.

The projection of
˜︁S on ∆S′ is defined as P (˜︁S,∆S′) = ⟨S′, µ0, c,W

′⟩ with

S′ = P (S,∆S′) and W ′ =

⟨︄{︃
|∆S′ | · wδ∑︁

δ′∈∆S′ wδ′

}︃
δ∈∆S′

, {Wδ}δ∈∆S′

⟩︄
.

In Proposition 3.3, we show that this definition is a fuzzy subset ofRelation of our

projection to the

standard fuzzy set

projection

the standard projection of fuzzy sets:

Definition 3.11 (Fuzzy Projection)

Let
˜︁A be a concept defined on a space d1 × · · · × dn. Its projection

˜︁A ↓
(d1 × · · · × dl) to a subspace d1 × · · · × dl (with l < n) is defined as follows:

µ ˜︁A↓(d1×···×dl)(x1, . . . , xl) = max
(xl+1,...,xn)
∈dl+1×···×dn

µ ˜︁A(x1, . . . , xl, xl+1, . . . , xn)

Proposition 3.3 (Modified Projection as a Subset of Standard Projection)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept. Let ∆S′ ⊆ ∆S and let P (˜︁S,∆S′) =

⟨S′, µ0, c,W
′⟩ be the projection of

˜︁S onto ∆S′ . Let furthermore
˜︁S↓∆S′ be the

standard fuzzy set projection of
˜︁S onto the domains ∆S′ as defined above.

Then, P (˜︁S,∆S′) ⊆ ˜︁S↓∆S′ , i.e., ∀x ∈ CS : µ
P (˜︁S,∆S′ )

(x) ≤ µ˜︁S↓∆S′
(x).
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Proof. For notational convenience, let
˜︁S′ = P (˜︁S,∆S′) and

˜︁S1 = ˜︁S↓∆S′ . Notation

We consider DS′ =
⋃︁
δ∈∆S′ δ, i.e., the set of all dimensions contained

in the domains of ∆S′ . Let furthermore {d1, . . . , dl} = DS \ DS′ and

{dl+1, . . . , dn} = DS′ in order to establish a notation convention bridg-

ing Definitions 3.10 and 3.11.

Using x̄ = (xd1 , . . . , xdl , xdl+1
, . . . , xdn), we can write the standard Rewriting the

standard projection
projection µ˜︁S1

(x) = µ˜︁S↓∆S′
(x) as follows (cf. Definition 3.11):

µ˜︁S1
(x) = µ˜︁S1

(xdl+1
, . . . , xdn)

= max
(xd1 ,...,xdl )

∈d1×···×dl

µ˜︁S(xd1 , . . . , xdl , xdl+1
, . . . , xdn)

= max
(xd1 ,...,xdl )

∈d1×···×dl

µ˜︁S(x̄) = max
(xd1 ,...,xdl )

∈d1×···×dl

µ0 ·max
y∈S

e−c·d
∆S
C (x̄,y,W )

= µ0 · e
−c·min(xd1

,...,xdl
)

∈d1×···×dl

miny∈S d
∆S
C (x̄,y,W )

= µ0 · e
−c·miny∈S min(xd1

,...,xdl
)

∈d1×···×dl

d
∆S
C (x̄,y,W )

(B.1)

On the other hand, the membership function of
˜︁S′ = P (˜︁S,∆S′) can Rewriting our

projection
be written as follows:

µ˜︁S′(x) = µ˜︁S′(xdl+1
, . . . , xdn) = µ0 ·max

y∈S′
e−c·d

∆S′
C (x,y,W ′)

= µ0 · e−c·miny∈S′ d
∆S′
C (x,y,W ′)

(B.2)

Based on Equations B.1 and B.2, it is easy to see that the following The condition to

show
equivalence holds:(︂

µ˜︁S′(x) ≤ µ˜︁S1
(x)
)︂

⇔

⎛⎜⎝min
y∈S′

d
∆S′
C (x, y,W ′) ≥ min

y∈S
min

(xd1 ,...,xdl )

∈d1×···×dl

d∆S
C (x̄, y,W )

⎞⎟⎠
Based on the definition of the combined metric d∆S

C , we moreover Irrelevance of the

removed dimensions
know the following:

min
y∈S

min
(xd1 ,...,xdl )

∈d1×···×dl

d∆S
C (x̄, y,W ) = min

y∈S
min

(xd1 ,...,xdl )

∈d1×···×dl

∑︂
δ∈∆S

wδ·
√︄∑︂

d∈δ
wd · |xd − yd|2

One can easily see that we can minimize this sum over (xd1 , . . . , xdl)
for a given y by using the following values:

∀i ∈ {1, . . . , l} : xdi = ydi

This way, we ensure that ∀i ∈ {1, . . . , l} : |xdi − ydi | = 0. The

dimensions d1, . . . , dl thus do not play any role for the computation of

µ˜︁S1
(x). Moreover, they are also not involved in computing µ˜︁S′(x), since

they do not belong to ∆S′ .
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Furthermore, the values of x on all other dimensions xl+1, . . . , xnDifferences in

distances must be

based on weights

are equal for both µ˜︁S1
(x) and µ˜︁S′(x). The only difference that can

arise between µ˜︁S1
(x) and µ˜︁S′(x) therefore stems from the weights.

The normalization procedure from Definition 3.10 guarantees for the

domain weights that ∀δ ∈ ∆S′ : w′
δ ≥ wδ. Moreover, the dimension

weights are left unchanged, i.e., ∀d ∈ DS′ : w′
d = wd. Since all weights

for potentially relevant domains and dimensions are not smaller in W ′

than in W , and because S′ = P (S,∆S′), we can conclude:

∀x ∈ CS : min
y∈S′

d
∆S′
C (x, y,W ′) ≥ min

y∈S
min

(xd1 ,...,xdl )

∈d1×···×dl

d∆S
C (x̄, y,W )

As stated above, this is equivalent to
˜︁S′ ⊆ ˜︁S1.

Finally, we can generalize Proposition 3.2 from cores to conceptsIntersecting

complementary

projections of

concepts

under one additional constraint:

Proposition 3.4 (Intersection of Projections of Concepts)

Let
˜︁S = ⟨S, µ0, c,W ⟩ be a concept, and let

˜︁S1 = P (˜︁S,∆1) and
˜︁S2 =

P (˜︁S,∆2) be its projections with ∆1 ∪ ∆2 = ∆S and ∆1 ∩ ∆2 = ∅. Let

furthermore
˜︁S′ = I(˜︁S1, ˜︁S2) as defined in Definition 3.2. If

∑︁
δ∈∆1

wδ = |∆1|
and

∑︁
δ∈∆2

wδ = |∆2|, then
˜︁S ⊆ ˜︁S′ = I(˜︁S1, ˜︁S2), i.e., ∀x ∈ CS : µ˜︁S(x) ≤

µ
I(˜︁S1,˜︁S2)

(x).

Proof. We can transform µ˜︁S(x) as follows:Transformationi of

the membership

function µ˜︁S(x) = µ0 ·max
y∈S

e−c·d
∆S
C (x,y,W ) (i)

= µ′0 ·max
y∈S

e−c
′·d∆S

C (x,y,W )

(ii)

≤ µ′0 ·max
y∈S′

e−c
′·d∆S

C (x,y,W ) (iii)
= µ′0 ·max

y∈S′
e−c

′·d∆S
C (x,y,W ′)

= µ˜︁S′(x)

In step (i), we use that µ′0 = µ0 and c′ = c, because both parametersExplanation of the

transformation steps
are not changed during projection and intersection (cf. Definitions 3.10

and 3.2, respectively). With respect to step (ii), we already know from

Proposition 3.2 that S ⊆ I(P (S,∆1), P (S,∆2)) = S′
. Finally, W (1)

only

contains weights for ∆1, whereas W (2)
only contains weights for ∆2.

Since

∑︁
δ∈∆i

wδ = |∆i| (for i ∈ {1, 2}), the weights are not changed

during the projection. As ∆1∩∆2 = ∅, they are also not changed during

the intersection, so W ′ =W . This allows us to make the transformation

of step (iii).

b.4 axis-parallel cut

In Section 3.5.1, we have defined the axis-parallel cut of a core as follows:Definition of the cut

operation for cores
Definition 3.12 (Axis-Parallel Cut of a Core)

Let S = ⟨∆S , {C1, . . . , Cm}⟩ be a core, d∗ ∈ DS be any dimension and v be

any value on this dimension. The axis-parallel cut of S based on a threshold

value v for a dimension d∗ is given by S− = {x ∈ S | xd∗ ≤ v} and

S+ = {x ∈ S | xd∗ ≥ v}.
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We now show that this cut always results in two valid cores.

Proposition 3.5 (Cut of a Core Results in Cores)

Let S be a core and S−, S+ = C(S, d∗, v) its cut at a threshold value v on a

dimension d∗ ∈ DS . Then, both S−
and S+

are valid cores.

Proof. We can prove this by distinguishing different five cases:

1. v ≥ maxi∈{1,...,m}(p
+
id∗): Cut above the

concept
In this case, S+ = ∅ and S− = S. Both S+

and S−
are obviously

star-shaped and can be represented by a union of cuboids.

2. v ≤ mini∈{1,...,m}(p
−
id∗): Cut below the

concept
In this case, S− = ∅ and S+ = S. Both S+

and S−
are obviously

star-shaped and can be represented by a union of cuboids.

3. maxi∈{1,...,m}(p
−
id∗) ≤ v ≤ mini∈{1,...,m}(p

+
id∗): Cut through the

central region
In this case, we dissect the central region P =

⋂︁
i∈{1,...,m}Ci. We

therefore get P− = {x ∈ P | xd∗ ≤ v} and P+ = {x ∈ P |
xd∗ ≥ v}. Obviously, P+ ⊆ S+

and P− ⊆ S−
. All the cuboids

Ci ∈ S are split into two parts C
(+)
i = {x ∈ Ci | xd∗ ≥ v} and

C
(−)
i = {x ∈ Ci | xd∗ ≤ v}. One can easily see that both C

(+)
i and

C
(−)
i are valid cuboids.

2
Moreover, P+ =

⋂︁
i∈{1,...,m}C

(+)
i and

P− =
⋂︁
i∈{1,...,m}C

(−)
i , so both S+

and S−
are valid cores.

4. mini∈{1,...,m}(p
+
id∗) < v < maxi∈{1,...,m}(p

+
id∗): Cut above the central

region
In this case, the cut occurs "above" the central region P and

therefore does not affect all cuboids. This is illustrated in Figure

B.1. Let T− = {Ci | p+id∗ ≤ v} and T+ = {Ci | p+id∗ > v}. Both

sets are not empty. All cuboids from T−
completely belong to S−

and do not play any role for S+
. All cuboids from T+

are split at

v. Their top part C
(+)
i belongs to S+

, their bottom part C
(−)
i to

S−
. It is obvious that P ⊆ S−

and one can easily see that S−
is

star-shaped with respect to P .

S+
only contains C

(+)
i based on Ci ∈ T+

. All original Ci inter-

sected in P with respect to all dimensions d ∈ DS . This also holds

if we only consider the Ci from T+
and if we only look at dimen-

sions d ∈ DS \ {d∗}. Moreover, the C
(+)
i agree with the Ci from

T+
on DS \ {d∗}. One can easily see that the C

(+)
i intersect also

with respect to d∗, as C
(+)
i = {x ∈ Ci | xd∗ ≥ v}. This means that

with respect to d∗, at least v is contained in each C
(+)
i . Therefore,

all cuboids C
(+)
i intersect on all dimensions d ∈ DS and their

intersection P+ =
⋂︁
i∈{1,...,m}C

(+)
i is not empty. Thus, also S+

is

star-shaped.

5. mini∈{1,...,m}(p
−
id∗) < v < maxi∈{1,...,m}(p

−
id∗): Cut below the central

region
Analogous to 4.

2 A strict inequality in the definition of C
(+)
i or C

(−)
i would not yield a cuboid.
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Figure B.1: Cut above the central region. (a) Original core

S = ⟨∆S , {C1, C2, C3}⟩. (b) Resulting cores S− =

⟨∆S , {C(−)
1 , C

(−)
2 , C

(−)
3 }⟩ and S+ = ⟨∆S , {C(+)

1 , C
(+)
2 }⟩



C M E A S U R I N G R E L AT I O N S
B E T W E E N C O N C E P TS

In this appendix, we give proofs for the lemmata and propositions from

Chapter 4, where we defined various relations between conceptual

regions. Moreover, some additional helper lemmata are included to

facilitate the proofs.

c.1 size

In Section 4.1, we introduced a way of measuring the size of a conceptual Size of a fuzzified

cuboid’s α-cut
region. This was mainly based on the size of a fuzzified cuboid’sα-cut as

motivate in Section 4.1.1. Most of the heavy lifting is done in Proposition

4.1, which provides a closed formula for the size of a hyperball under

the unweighted combined metric d∆C .
1

In order to provide a better structure to the proof of Proposition 4.1, we Helper lemmata for

simplifying nested

integrals

will now show three helper lemmata, that will allow us to considerably

simplify some mathematical terms and equations. They make use of

Euler’s gamma function Γ(z) =
∫︁∞
0 xz−1e−xdx (for which ∀n ∈ N :

Γ(n) = (n − 1)!), the beta function B(x, y) =
∫︁ 1
0 t

x−1(1 − t)y−1dt, and

their relation B(x, y) = Γ(x)Γ(y)
Γ(x+y) .

In the proof of Proposition 4.1, we will compute a nested integral over Nested integral over

angles
spherical coordinates. Lemma C.1 provides us with a way of simplifying

the part of this nested integral that concerns the angles ϕ1, . . . , ϕn−1:

Lemma C.1 (Simplification of an Integral over Angles)

Let n ∈ N and ϕ1, . . . , ϕn−1 ∈ R. With Γ(·) being Euler’s gamma function,

the following equality holds:∫︂ 2π

0

∫︂ π

0

∫︂ π

0
· · ·
∫︂ π

0
sinn−2(ϕ1) sin

n−3(ϕ2) . . .

sin(ϕn−2) dϕ1 . . . dϕn−1 = 2 · π
n
2

Γ
(︁
n
2

)︁
Proof. We start by restructuring the overall integral: Restructuring the

integral

I =

∫︂ 2π

0

∫︂ π

0

∫︂ π

0
· · ·
∫︂ π

0
sinn−2(ϕ1) sin

n−3(ϕ2) . . .

sin(ϕn−2)dϕ1 . . . dϕn−1

=

⎛⎝ 2π∫︂
0

1 dϕn−1

⎞⎠⎛⎝ π∫︂
0

sin(ϕn−2) dϕn−2

⎞⎠ · · ·

⎛⎝ π∫︂
0

sinn−2(ϕ1) dϕ1

⎞⎠
1 The proofs contained in this section have been published in [36] as a preprint.
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=

⎛⎜⎝4 ·

π
2∫︂

0

1 dϕn−1

⎞⎟⎠
⎛⎜⎝2 ·

π
2∫︂

0

sin(ϕn−2) dϕn−2

⎞⎟⎠ · · ·

⎛⎜⎝2 ·

π
2∫︂

0

sinn−2(ϕ1) dϕ1

⎞⎟⎠
We now apply the following, alternative definition of the beta function:Applying the beta

function

B(x, y) = 2 ·

π
2∫︂

0

sin2x−1(ϕ) cos2y−1(ϕ) dϕ

Using y = 1
2 , we get:

I =

⎛⎜⎝4 ·

π
2∫︂

0

1 dϕn−1

⎞⎟⎠
⎛⎜⎝2 ·

π
2∫︂

0

sin(ϕn−2) dϕn−2

⎞⎟⎠ · · ·

⎛⎜⎝2 ·

π
2∫︂

0

sinn−2(ϕ1) dϕ1

⎞⎟⎠
= 2 ·B

(︃
1

2
,
1

2

)︃
·B
(︃
1,

1

2

)︃
· · ·B

(︃
n− 2

2
,
1

2

)︃
·B
(︃
n− 1

2
,
1

2

)︃
Next, we use the identity B(x, y) = Γ(x)Γ(y)

Γ(x+y) with Euler’s gammaSimplification with

the gamma function
function Γ and the fact that Γ(12) =

√
π. Since most of the terms cancel

out, we arrive at our desired result:

I = 2 ·
Γ
(︁
1
2

)︁
Γ
(︁
1
2

)︁
Γ(1)

·
Γ(1)Γ

(︁
1
2

)︁
Γ
(︁
3
2

)︁ · · ·
Γ
(︁
n−2
2

)︁
Γ
(︁
1
2

)︁
Γ
(︁
n−1
2

)︁ ·
Γ
(︁
n−1
2

)︁
Γ
(︁
1
2

)︁
Γ
(︁
n
2

)︁
= 2 ·

Γ
(︁
1
2

)︁n
Γ
(︁
n
2

)︁ = 2 ·
√
π
n

Γ
(︁
n
2

)︁ = 2 · π
n
2

Γ
(︁
n
2

)︁
In addition to integrating over angles, we will also need to integrateNested integral over

radii
over radii rδ within the different domains δ ∈ ∆ in our conceptual space.

Lemma C.2 provides us with an intermediate step for simplifying a

nested integral over these radii in Lemma C.3.
2

Lemma C.2 (Simplification of an Integral over a Single Radius)

Let n, j ∈ N with n > j, a, b ∈ R, and r1, . . . , rn ∈ R+
. For r =

∑︁n
i=1 rj ,

the following equation holds:∫︂ r−
∑︁j−1

i=1 ri

0
ra−1
j ·

(︄
r −

j∑︂
i=1

ri

)︄b
drj = B(a, b+ 1) ·

(︄
r −

j−1∑︂
i=1

ri

)︄a+b
Proof. It is easy to see that rj = r−

∑︁j−1
i=1 ri > 0. We can therefore makeVariable change

2 I am indebted to the user Andreas (user:317854) on StackEx-

change, who has provided me with the key insight for proving these

lemmata, see https://math.stackexchange.com/questions/2222064/
proof-of-equation-with-nested-dependent-integrals.

https://math.stackexchange.com/questions/2222064/proof-of-equation-with-nested-dependent-integrals
https://math.stackexchange.com/questions/2222064/proof-of-equation-with-nested-dependent-integrals
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a variable change from rj to z by defining rj =
(︂
r −

∑︁j−1
i=1 ri

)︂
· z which

gives drj =
(︂
r −

∑︁j−1
i=1 ri

)︂
· dz:

I =

∫︂ r−
∑︁j−1

i=1 ri

0
ra−1
j ·

(︄
r −

j∑︂
i=1

ri

)︄b
drj

=

∫︂ r−
∑︁j−1

i=1 ri

0
ra−1
j ·

(︄
r −

j−1∑︂
i=1

ri − rj

)︄b
drj

=

∫︂ 1

0

(︄
r −

j−1∑︂
i=1

ri

)︄a−1

· za−1 ·

(︄
r −

j−1∑︂
i=1

ri −

(︄
r −

j−1∑︂
i=1

ri

)︄
· z

)︄b

·

(︄
r −

j−1∑︂
i=1

ri

)︄
dz

By factoring out

(︂
r −

∑︁j
i=1 ri

)︂
, this can be further simplified: Factoring out rj

I =

∫︂ 1

0

(︄
r −

j−1∑︂
i=1

ri

)︄a−1

· za−1 ·

(︄
r −

j−1∑︂
i=1

ri −

(︄
r −

j−1∑︂
i=1

ri

)︄
· z

)︄b

·

(︄
r −

j−1∑︂
i=1

ri

)︄
dz

=

∫︂ 1

0

(︄
r −

j−1∑︂
i=1

ri

)︄a
· za−1 ·

(︄(︄
r −

j−1∑︂
i=1

ri

)︄
(1− z)

)︄b
dz

=

(︄
r −

j−1∑︂
i=1

ri

)︄a+b ∫︂ 1

0
za−1(1− z)bdz

Since B(x, y) =
∫︁ 1
0 t

x−1(1− t)y−1dt, this can be written as follows: Using the beta

function

I =

(︄
r −

j−1∑︂
i=1

ri

)︄a+b ∫︂ 1

0
za−1(1− z)bdz

=

(︄
r −

j−1∑︂
i=1

ri

)︄a+b
·B(a, b+ 1)

Lemma C.3 (Simplification of an Integral over Multiple Radii)

For any k ∈ N, any r1, . . . , rk, n1, . . . , nk ∈ R+
, n =

∑︁k
i=0 ni, and r =∑︁k

i=1 ri, the following equation holds:∫︂ r

0
rn1−1
1

∫︂ r−r1

0
rn2−1
2 · · ·

∫︂ r−
∑︁k−1

i=1 ri

0
rnk−1
k drk . . . dr1

=
rn

Γ(n+ 1)

k∏︂
i=1

Γ(ni)
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Proof. The innermost integral

∫︁ r−∑︁k−1
i=1

0 ri can be simplified using LemmaSimplifying the

innermost integral
C.2 with j = k, a = nk, b = 0:

I =

∫︂ r

0
rn1−1
1

∫︂ r−r1

0
rn2−1
2 · · ·

∫︂ r−
∑︁k−1

i=1 ri

0
rnk−1
k drk . . . dr1

=

∫︂ r

0
rn1−1
1

∫︂ r−r1

0
rn2−1
2 · · ·

∫︂ r−
∑︁k−2

i=1 ri

0
r
nk−1−1
k−1 ·B(nk, 1)

·

(︄
r −

k−1∑︂
i=1

ri

)︄nk

drk−1 . . . dr1

= B(nk, 1) ·
∫︂ r

0
rn1−1
1 · · ·

∫︂ r−
∑︁k−2

i=1 ri

0
r
nk−1−1
k−1 ·

(︄
r −

k−1∑︂
i=1

ri

)︄nk

drk−1 . . . dr1

As one can see, we can again apply Lemma C.2 to the innermostNext simplification

step
integral (this time using j = k − 1, a = nk−1, b = nk):

I = B(nk, 1) ·
∫︂ r

0
rn1−1
1 · · ·

∫︂ r−
∑︁k−2

i=1 ri

0
r
nk−1−1
k−1 ·

(︄
r −

k−1∑︂
i=1

ri

)︄nk

drk−1 . . . dr1

= B(nk, 1) ·B(nk−1, nk + 1)·∫︂ r

0
rn1−1
1 · · ·

∫︂ r−
∑︁k−3

i=1 ri

0
r
nk−2−1
k−2 ·

(︄
r −

k−2∑︂
i=1

ri

)︄nk+nk−1

drk−1 . . . dr1

We can further simplify this expression by repeatedly applyingRepeated

simplifications
Lemma C.2. In the last application of Lemma C.2, we use j = 1, a = n1,

and b = n2+· · ·+nk. Hence,

(︂
r −

∑︁j−1
i=1 ri

)︂a+b
corresponds to rn1+···+nk

.

Overall, we thus get the following equation:

I = B(nk, 1) ·B(nk−1, nk + 1) · · · · ·B(n1, n2 + · · ·+ nk + 1) · rn1+···+nk

We can now use B(x, y) = Γ(x)Γ(y)
Γ(x+y) in order to rewrite this equation:Using the gamma

function

I = rn1+···+nk · Γ(nk)Γ(1)
Γ(nk + 1)

·Γ(nk−1)Γ(nk + 1)

Γ(nk−1 + nk + 1)

· · · Γ(n1)Γ(n2 + · · ·+ nk + 1)

Γ(n1 + n2 + · · ·+ nk + 1)

Because Γ(1) = 1 and n =
∑︁k

i=1 ni, and because most of the terms

cancel out, this reduces to:

I = rn1+···+nk · Γ(nk) · · ·Γ(n1) ·
1

Γ(n1 + · · ·+ nk + 1)

=
rn

Γ(n+ 1)

k∏︂
i=1

Γ(ni)
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Using Lemmata C.1 and C.3, we can now prove Proposition 4.1: Hyperball volume

under d∆C without

salience weights
Proposition 4.1 (Volume of a Hyperball without Salience Weights)

The size of a hyperball with radius r in a space with the combined metric d∆C ,

the domain structure ∆, and without domain and dimension weights can be

computed in the following way, where n is the overall number of dimensions, nδ
is the number of dimensions in domain δ, and Γ(·) is Euler’s gamma function:

V (r,∆) =
rn

n!

∏︂
δ∈∆

(︄
nδ!

π
nδ
2

Γ
(︁
nδ
2 + 1

)︁)︄

Proof. A hyperball of radius r can be defined as the set of all points that Hyperballs

have a distance of at most r to its center. Without loss of generality, we

assume that this center is identical to the origin. Since all wδ and all wd
are assumed to be one, this can be written as follows:

H =
{︂
x ∈ CS | d∆C (x, 0) =

∑︂
δ∈∆

√︄∑︂
d∈δ

x2d ≤ r
}︂

If we define ∀δ ∈ ∆ : rδ =
√︂∑︁

d∈δ x
2
d, we can easily see that Domain-based radii∑︁

δ∈∆ rδ ≤ r. The term rδ can be interpreted as the distance between

x and the origin within the domain δ. The constraint

∑︁
δ∈∆ rδ ≤ r

then simply means that the sum of domain-wise distances is less than

the given radius. One can thus interpret rδ as the radius within domain δ.

The size (or hypervolume) of the hyperball H can be computed with Obtaining the size

through integration
the following integral:

V (r,∆) =

∫︂
· · ·
∫︂
H
1 dH (C.1)

This integration becomes much easier if we use spherical coordinates

instead of the Cartesian coordinates provided by our conceptual space.

Let us first consider the case of a single domain δ with nδ dimensions. Spherical coordinates

within a domain
A single domain corresponds to a standard Euclidean space, therefore

we can use the standard procedure of changing to spherical coordinates,

following [121]. Let us index the dimensions of δ as d1, . . . , dnδ
. The

coordinate change within the domain δ then looks like this:

x1 = rδ · cos(ϕ1)
x2 = rδ · sin(ϕ1) · cos(ϕ2)

.

.

.

xnδ−1 = rδ · sin(ϕ1) · · · sin(ϕnδ−2) · cos(ϕnδ−1)

xnδ
= rδ · sin(ϕ1) · · · sin(ϕnδ−2) · sin(ϕnδ−1)

This means, that we can express each coordinate xi based on the

distance rδ to the origin and the rotation angles ϕ1, . . . , ϕnδ−1.
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In order to switch the integral to spherical coordinates, we need toUsing the Jacobian

matrix to determine

the volume element

calculate the so-called volume element, which will replace the constant

value 1 in Equation C.1 when the variables to integrate over are changed

to rδ, ϕ1, . . . , ϕnδ−1. The volume element can be found by looking at the

determinant of the transformation’s Jacobian matrix, which contains

the partial derivatives of all original coordinates (i.e., x1, . . . , xnδ
) with

respect to all new coordinates (i.e., rδ, ϕ1, . . . , ϕnδ−1). The Jacobian

matrix of the transformation of a single domain δ can be written as

follows:

Jδ =

⎡⎢⎢⎢⎢⎢⎢⎣
δx1
δrδ

δx1
δϕ1

. . . δx1
δϕnδ−1

δx2
δrδ

δx2
δϕ1

. . . δx2
δϕnδ−1

.

.

.

.

.

.

.
.
.

.

.

.

δxnδ
δrδ

δxnδ
δϕ1

. . .
δxnδ
δϕnδ−1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos(ϕ1) −rδ sin(ϕ1) 0 0 . . . 0

sin(ϕ1) cos(ϕ2) rδ cos(ϕ1) cos(ϕ2) −rδ sin(ϕ1) sin(ϕ2) 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

sin(ϕ1) · · · sin(ϕnδ−2) cos(ϕnδ−1) . . . . . . . . . . . . −rδ sin(ϕ1) · · · sin(ϕnδ−2) sin(ϕnδ−1)

sin(ϕ1) · · · sin(ϕnδ−2) sin(ϕnδ−1) . . . . . . . . . . . . rδ sin(ϕ1) · · · sin(ϕnδ−2) cos(ϕnδ−1)

⎤⎥⎥⎥⎦
The determinant of this matrix can be computed as follows:

det(Jδ) = rnδ−1
δ · sinnδ−2(ϕ1) · sinnδ−3(ϕ2) · · · sin(ϕnδ−2)

We can now translate from Cartesian to spherical coordinates forSpherical coordinates

for all domains
the overall conceptual space by performing this coordinate change for

each domain individually. Let us index the Cartesian coordinates of a

point x in domain δ by xδ,1, . . . , xδ,nδ
. Let us further index the spherical

coordinates of domain δ by rδ and ϕδ,1, . . . , ϕδ,nδ−1. Let k = |∆| denote

the total number of domains.

Because xδ,j is defined independently from rδ′ and ϕδ′,j′ for different

domains δ ̸= δ′, any derivative
δxδ,j
δrδ′

or
δxδ,j
δϕδ′,j′

will be zero. If we apply

the coordinate change to all domains at once, the Jacobian matrix of

the overall transformation has therefore the structure of a block matrix:

J =

⎡⎢⎢⎢⎢⎣
J1 0 . . . 0

0 J2 . . . 0
.
.
.

.

.

.

.
.
.

.

.

.

0 0 . . . Jk

⎤⎥⎥⎥⎥⎦
The blocks on the diagonal are the Jacobian matrices of the individualObtaining the overall

volume element
domains as defined above, and all other blocks are filled with zeros

because all cross-domain derivatives are zero. Since the overall J is a

block matrix, we get that det(J) =
∏︁
δ∈∆ det(Jδ) (cf. [372]). Our overall

volume element can thus be computed as follows:

det(J) =
∏︂
δ∈∆

det(Jδ)

=
∏︂
δ∈∆

rnδ−1
δ sinnδ−2(ϕδ,1) sin

nδ−3(ϕδ,2) · · · sin(ϕδ,nδ−2)
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The limits of the angle integrals for each domain are [0, 2π] for the Limits of the

integrals
outermost and [0, π] for all other integrals. Based on our constraint∑︁

δ∈∆ rδ ≤ r, we can derive the limits for the integrals over the rδ
as follows, assuming an arbitrarily ordered indexing δ1, . . . , δk of the

domains:

r1 ∈ [0, r]

r2 ∈ [0, r − r1]

r3 ∈ [0, r − r1 − r2]

.

.

.

rk ∈ [0, r −
k−1∑︂
i=1

ri]

In general, we can write ∀j ∈ {1, . . . , k} : rj ∈ [0, r −
∑︁j−1

i=1 ri]. The Applying the overall

coordinate change
overall coordinate change therefore looks like this:

V (r,∆) =

∫︂
· · ·
∫︂
H
1 dH

=

2π∫︂
ϕ1,n1−1=0

π∫︂
ϕ1,n1−2=0

· · ·
π∫︂

ϕ1,1=0

r∫︂
r1=0⏞ ⏟⏟ ⏞

δ=1

· · ·
2π∫︂

ϕk,nk−1=0

π∫︂
ϕk,nk−2=0

· · ·
π∫︂

ϕk,1=0

r−
∑︁k−1

i=1 ri∫︂
rk=0⏞ ⏟⏟ ⏞

δ=k

rn1−1
1 sinn1−2(ϕ1,1) · · · sin(ϕ1,n1−2)⏞ ⏟⏟ ⏞

δ=1

· · · rnk−1
k sinnk−2(ϕk,1) · · · sin(ϕk,nk−2)⏞ ⏟⏟ ⏞

δ=k

drkdϕk,1 . . . dϕk,nk−1⏞ ⏟⏟ ⏞
δ=k

. . . dr1dϕ1,1 . . . dϕ1,n1−1⏞ ⏟⏟ ⏞
δ=1

=

2π∫︂
0

π∫︂
0

· · ·
π∫︂

0

sinn1−2(ϕ1,1) · · · sin(ϕ1,n1−2) dϕ1,1 . . . dϕ1,n1−1⏞ ⏟⏟ ⏞
δ=1

· · ·
2π∫︂
0

π∫︂
0

· · ·
π∫︂

0

sinnk−2(ϕk,1) · · · sin(ϕk,nk−2) dϕk,1 . . . dϕk,nk−1⏞ ⏟⏟ ⏞
δ=k
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r∫︂
0

rn1−1
1 · · ·

r−
∑︁k−1

i=1 ri∫︂
0

rnk−1
k dr1 . . . drk

By applying Lemma C.1 and Lemma C.3, we can derive a considerablyApplying the helper

lemmata
more compact expression:

V (r,∆) =

(︄
2 · π

n1
2

Γ
(︁
n1
2

)︁)︄ · · ·

(︄
2 · π

nk
2

Γ
(︁
nk
2

)︁)︄ · rn

Γ(n+ 1)

k∏︂
i=1

Γ(ni)

=
rn

Γ(n+ 1)
·
k∏︂
i=1

(︄
2 · π

ni
2 · Γ (ni)

Γ
(︁
ni
2

)︁)︄

We can simplify this formula further by using the identities ∀n ∈Further

simplifications N : Γ(n + 1) = n! (step (i)), ∀n ∈ N : n! = n · (n − 1)! (step (ii)), and

∀x ∈ R+ : Γ(x) · x = Γ(x+ 1) (step (iii)). Moreover, we can change our

notation be using

∏︁k
i=0 ˆ︁=∏︁δ∈∆. We therefore get the following result:

V (r,∆) =
rn

Γ(n+ 1)
·
k∏︂
i=1

(︃
2 · π

ni
2 · Γ(ni)

Γ(ni
2 )

)︃
(i)
=
rn

n!
·
∏︂
δ∈∆

(︃
2 · π

nδ
2 · (nδ − 1)!

Γ(nδ
2 )

)︃
(ii)
=

rn

n!
·
∏︂
δ∈∆

(︄
2 · nδ!

nδ
· π

nδ
2

Γ(nδ
2 )

)︄

=
rn

n!
·
∏︂
δ∈∆

(︄
nδ! ·

π
nδ
2

nδ
2 · Γ(nδ

2 )

)︄
(iii)
=

rn

n!
·
∏︂
δ∈∆

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄

Now that the heavy lifting has been done, we can generalize theAdding salience

weights
result from Proposition 4.1 to the weighted combined distance d∆C :

Proposition 4.2 (Volume of a Hyperball with Salience Weights)

The size of a hyperball with radius r in a space with the weighted combined

metric dC , the domain structure ∆, and the set of weights W can be computed

in the following way, where n is the overall number of dimensions, nδ is the

number of dimensions in domain δ, Γ(·) is Euler’s gamma function, and δ(d)
is the unique δ ∈ ∆ with d ∈ δ:

V (r,∆,W ) =
1∏︁

d∈D wδ(d)
√
wd

· r
n

n!
·
∏︂
δ∈∆

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄

Proof. As Gärdenfors has already argued in [179, Section 4.7.2], puttingWeighting as

stretching
weights on dimensions in a conceptual space is equivalent to stretching

each dimension of the unweighted space by the weight assigned to it.

This has also been illustrated for the two-dimensional case in Figure

4.2 in Section 4.1.1 of this dissertation.
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If the overall radius of a ball is r, and some dimension has the weight Computing the

scaling factorw, then the farthest away any point x can be from the origin on this

dimension must satisfy w · x = r, i.e., x = r
w . That is, the ball needs

to be stretched by a factor
1
w in the given dimension, thus its size also

changes by a factor of
1
w . A hyperball under the weighted metric is

thus equivalent to a hyperellipse under the unweighted metric. In our

case, the weight for any dimension d within a domain δ corresponds to

wδ ·
√
wd.

Let us denote by δ(d) the domain to which dimension d belongs. Stretching the

hyperball
If we look at a point x with coordinates (0, . . . , 0, xd, 0, . . . , 0), then

dDC elta(0, x) = wδ(d) ·
√︂
wd · x2d = wδ(d) ·

√
wd · |xd|. If we multiply the

size of the hyperball by
1

wδ(d)·
√
wd

for each dimension d, we get the

following result:

V (r,∆,W ) =
1∏︁

d∈D wδ(d)
√
wd

· V (r,∆)

=
1∏︁

d∈D wδ(d)
√
wd

· r
n

n!
·
∏︂
δ∈∆

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄

Now that we have a way of computing the size of a hyperball under The size of an α-cut

the weighted combined metric, we can use this to derive the size of an

entire α-cut. This requires us to insert the formula from Proposition 4.2

into Equation 4.7 from Section 4.1.1, which is re-printed below:

V ( ˜︁Cα) = n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

bd

⎞⎟⎟⎠
·V
(︃
−1

c
· ln
(︃
α

µ0

)︃
,∆{d1,...,di},W

)︃)︃
(4.7)

Proposition 4.3 (Size of an α-Cut)

For a given fuzzified cuboid
˜︁C = ⟨C, µ0, c,W ⟩ and α ∈ [0, µ0], we can

describe the size of its α-cut as follows, using ad = wδ(d) ·
√
wd · (p+d − p−d ) · c:

V ( ˜︁Cα) = 1

cn
∏︁
d∈D wδ(d)

√
wd

n∑︂
i=0

⎛⎜⎜⎝(−1)i · ln
(︂
α
µ0

)︂i
i!

·
∑︂

{d1,...,di}
⊆D

⎛⎝ ∏︂
d∈D\{d1,...,di}

ad

⎞⎠ ·

∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
Proof. We start by applying Proposition 4.2 to Equation 4.7: Combining the two

formulas
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V ( ˜︁Cα) = n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

bd

⎞⎟⎟⎠
·V
(︃
−1

c
· ln
(︃
α

µ0

)︃
,W,∆{d1,...,di}

)︃)︃

=
n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

bd

⎞⎟⎟⎠ · 1∏︁
d∈{d1,...,di}wδ(d)

√
wd

·

(︂
−1
c · ln

(︂
α
µ0

)︂)︂i
i!

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠

=
n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

∏︁
d∈D\{d1,...,di} bd∏︁

d∈{d1,...,di}wδ(d)
√
wd

·
(−1)i · ln

(︂
α
µ0

)︂i
ci · i!

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
A simple extension of both numerators and denominators in the innerSome simplifications

sum with cn−i and

∏︁
d∈D\{d1,...,di}wδ(d)

√
wd can be used to simplify this:

V ( ˜︁Cα) = cn−i

cn−i

n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

∏︁
d∈D\{d1,...,di}wδ(d)

√
wd∏︁

d∈D\{d1,...,di}wδ(d)
√
wd

·
∏︁
d∈D\{d1,...,di} bd∏︁

d∈{d1,...,di}wδ(d)
√
wd

·
cn−i · (−1)i · ln

(︂
α
µ0

)︂i
cn−i · ci · i!

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠

=

n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

cn−i · (−1)i · ln
(︂
α
µ0

)︂i
cn−i · ci · i!

·

(︂∏︁
d∈D\{d1,...,di}wδ(d)

√
wd

)︂(︂∏︁
d∈D\{d1,...,di} bd

)︂
(︂∏︁

d∈D\{d1,...,di}wδ(d)
√
wd

)︂(︂∏︁
d∈{d1,...,di}wδ(d)

√
wd

)︂
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·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠

=

n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

(−1)i · ln
(︂
α
µ0

)︂i
i!

·
∏︁
d∈D\{d1,...,di}wδ(d) ·

√
wd · bd · c

cn
∏︁
d∈D wδ(d)

√
wd

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
Finally, we can use the shorthand notation ad = wδ(d)·

√
wd·(p+d −p

−
d )·c Slight notational

changes
and move some terms in front of the sum:

V ( ˜︁Cα) = 1

cn
∏︁
d∈D wδ(d)

√
wd

n∑︂
i=0

⎛⎜⎝(−1)i · ln
(︂
α
µ0

)︂i
i!

·
∑︂

{d1,...,di}
⊆D

⎛⎝ ∏︂
d∈D\{d1,...,di}

ad

⎞⎠

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
In Section 4.1.2, we have used the insights gained so far in order to The size of a fuzzified

cuboid
compute the overall size of a fuzzified cuboid. This can be done by

combining Proposition 4.3 with Equation 4.8 from Section 4.1.2, which

is re-printed below:

M( ˜︁A) = ∫︂ 1

0
V ( ˜︁Aα) dα (4.8)

Moreover, we will use the following helper lemma in order to simplify

the resulting equation:

Lemma C.4 (Simplification of an Integral over an Exponentiated Loga-

rithm)

Let n ∈ N. Then,

∫︁ 1
0 ln(x)ndx = (−1)n · n!

Proof. Let us make the following substitution: x = et (implying dx = First substitution

et dt and changing the limits of the integral from 0 and 1 to −∞ and 0,

respectively). This results in the following transformation:

I =

∫︂ 1

0
ln(x)ndx =

∫︂ 0

−∞
ln(et)n · etdt =

∫︂ 0

−∞
tn · etdt



854 measuring relations between concepts

Another substitution of s = −t yields:Second substitution

I =

∫︂ 0

−∞
tn · etdt =

∫︂ ∞

0
(−s)n · e−sds

=

∫︂ ∞

0
(−1)n · sn · e−sds = (−1)n ·

∫︂ ∞

0
sn · e−sds

We can now use the definition of the gamma functionΓ(z) =
∫︁∞
0 xz−1·Using the gamma

function e−xdx and the fact that for positive integers, Γ(z) = (z − 1)!

I = (−1)n ·
∫︂ ∞

0
sn · e−sds = (−1)n · Γ(n+ 1) = (−1)n · n!

Proposition 4.4 (Size of a Fuzzified Cuboid)

The size of a fuzzified cuboid
˜︁C can be computed as follows:

M( ˜︁C) = µ0
cn
∏︁
d∈D wδ(d)

√
wd

n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

ad

⎞⎟⎟⎠

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
Proof. We know that ∀α > µ0 : ˜︁Cα = ∅. Therefore,

∫︁ 1
0 V ( ˜︁Cα) dα =Empty α-cuts and a

substitution
∫︁ µ0
0 V ( ˜︁Cα) dα. By substituting x = α

µ0
(implying dα = µ0 · dx), we get

the following intermediate result:

M( ˜︁C) = ∫︂ µ0

0
V ( ˜︁Cα) dα =

∫︂ 1

0
V ( ˜︁Cµ0·x) · µ0 dx = µ0 ·

∫︂ 1

0
V ( ˜︁Cµ0·x)dx

Simply inserting our formula for V ( ˜︁Cα) from Proposition 4.3 yieldsApplying

Proposition 4.3
the following expression:

M( ˜︁C) = µ0 ·
∫︂ 1

0

1

cn
∏︁
d∈D wδ(d)

√
wd

n∑︂
i=0

⎛⎜⎜⎝(−1)i · ln
(︂
µ0·x
µ0

)︂i
i!

·
∑︂

{d1,...,di}
⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

ad

⎞⎟⎟⎠

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠ dx

Since the integral only concerns ln
(︂
µ0·x
µ0

)︂i
, we can move it inside theMoving the integral

sign
outer sum:
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M( ˜︁C) = µ0
cn
∏︁
d∈D wδ(d)

√
wd

n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

ad

⎞⎟⎟⎠

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠
·
∫︂ 1

0

(−1)i · ln(x)i

i!
dx

We can now apply Lemma C.4 to the integral, which allows us to Applying Lemma C.4

make the following simplification:

∫︂ 1

0

(−1)i · ln(x)i

i!
dx =

(−1)i · (−1)i · i!
i!

= (−1)2i =
(︁
(−1)2

)︁i
= 1i = 1

Inserting this into M( ˜︁C) results in the following formula:

M( ˜︁C) = µ0
cn
∏︁
d∈D wδ(d)

√
wd

n∑︂
i=0

⎛⎜⎜⎝ ∑︂
{d1,...,di}

⊆D

⎛⎜⎜⎝ ∏︂
d∈

D\{d1,...,di}

ad

⎞⎟⎟⎠

·
∏︂
δ∈

∆{d1,...,di}

(︄
nδ! ·

π
nδ
2

Γ(nδ
2 + 1)

)︄⎞⎟⎟⎠

c.2 subsethood

In Section 4.2.1, we have considered a formal notion of crisp subsethood Crisp subsethood

for both crisp and fuzzy conceptual regions:

Definition 4.3 (Subsethood for Crisp Sets)

Let S1 and S2 be two crisp sets in a conceptual space CS. We say that S1 is a

subset of S2 (S1 ⊆ S2) if and only if ∀x ∈ CS : (x ∈ S1 ⇒ x ∈ S2).

Definition 4.4 (Subsethood for Fuzzy Sets)

Let
˜︁S1 and

˜︁S2 be two fuzzy sets in a conceptual space CS. We say that
˜︁S1 is

a subset of
˜︁S2 (

˜︁S1 ⊆ ˜︁S2) if and only if ∀x ∈ CS : µ˜︁S1
(x) ≤ µ˜︁S2

(x). This is

equivalent to requiring subsethood according to Definition 4.3 for all α-cuts˜︁Sα1 and
˜︁Sα2 .

The following proposition gives us a list of necessary and jointly Conditions for

subsethood
sufficient conditions for crisp subsethood of two concepts.

Proposition 4.5 (Conditions for Crisp Subsethood)

Let
˜︁S1 = ⟨S1, µ(1)0 , c(1),W (1)⟩ and

˜︁S2 = ⟨S2, µ(2)0 , c(2),W (2)⟩ be two con-

cepts. Then,
˜︁S1 ⊆ ˜︁S2 if and only if all of the following conditions are fulfilled:
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1. µ
(1)
0 ≤ µ

(2)
0

2. S1 ⊆ ˜︁Sµ(1)0
2

3. ∆S2 ⊆ ∆S1

4. ∀d ∈ DS2 : c(1) · w(1)
δ(d) ·

√︂
w

(1)
d ≥ c(2) · w(2)

δ(d) ·
√︂
w

(2)
d

Proof. We prove the two directions of the equivalence separately.

˜︁S1 ⊆ ˜︁S2 ⇒ conditionsNecessity of the

conditions
Let

˜︁S1 ⊆ ˜︁S2, i.e., ∀x ∈ CS : µ˜︁S1
(x) ≤ µ˜︁S2

(x). We now show that each

of the four conditions is fulfilled.

Condition 1 (µ0): If µ
(1)
0 > µ

(2)
0 , then ∃x ∈ S1 : µ˜︁S1

(x) = µ
(1)
0 > µ

(2)
0 ≥First condition

µ˜︁S2
(x), which is a contradiction to

˜︁S1 ⊆ ˜︁S2. Therefore, µ
(1)
0 ≤ µ

(2)
0 .

Condition 2 (S): If S1 ̸⊆ ˜︁Sµ(1)0
2 , then ∃x ∈ S1 : µ˜︁S1

(x) = µ
(1)
0 > µ˜︁S2

(x),Second condition

which is a contradiction to
˜︁S1 ⊆ ˜︁S2. Therefore, S1 ⊆ ˜︁Sµ(1)0

2 .

Condition 3 (∆): If ∆S2 ̸⊆ ∆S1 , then ∃δ ∈ ∆S2 : δ /∈ ∆S1 . Pick anyThird condition

d ∈ δ and any x ∈ CS with xd ≫ p+d for all C ∈ S2. Thus, even for

small weights wδ and wd, we get miny∈S2 d
∆
C (x, y,W

(2)) ≫ 0. A large

value of xd leads to a large value of miny∈S2 d
∆S2
C (x, y,W (2)), i.e., a small

membership µ˜︁S2
(x). On the other hand, as δ /∈ ∆S1 , the value of xd does

not affect µ˜︁S1
(x). If xd is chosen large enough, we can thus construct

an example with µ˜︁S1
(x) > µ˜︁S2

(x), which is a contradiction to
˜︁S1 ⊆ ˜︁S2.

Therefore, ∆S2 ⊆ ∆S1 .

Condition 4 (c and W ): Assume for some d∗ ∈ D2 that c(1) · w(1)
δ(d∗) ·Fourth condition √︂

w
(1)
d∗ < c(2) · w(2)

δ(d∗) ·
√︂
w

(2)
d∗ . In the most simple case, S1 = S2. Pick

y ∈ S1 = S2 on the upper border of S1 with respect to d∗ (i.e., such

that yd∗ = maxi∈{1,...,m} p
+(1)
id ) and define a point x ∈ CS by setting

∀d ∈ D \ {d∗} : xd = yd and xd∗ > yd∗ . The membership of x in
˜︁S2 can

be written as follows:

µ˜︁S2
(x) = µ

(2)
0 · e−c

(2)·miny∈S2

∑︁
δ∈∆2

w
(2)
δ ·
√︂∑︁

d∈δ w
(2)
d ·|xd−yd|2

= µ
(2)
0 · e

−miny∈S2

∑︁
δ∈∆2

√︄∑︁
d∈δ

(︃
c(2)·w(2)

δ ·
√︂
w

(2)
d

)︃2

·|xd−yd|2

(i)
= µ

(2)
0 · e

−
(︃
c(2)·w(2)

δ(d∗)·
√︂
w

(2)
d∗

)︃
·|xd∗−yd∗ |

(ii)
= µ

(2)
0 · e

−
(︃
c(1)·w(1)

δ(d∗)·
√︂
w

(1)
d∗ +ϵ

)︃
·|xd∗−yd∗ |

= µ
(2)
0 · e−c

(1)·w(1)
δ(d∗)·

√︂
w

(1)
d∗ ·|xd∗−yd∗ | · e−ϵ·|xd∗−yd∗ | (C.2)
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In step (i), we use that ∀d ∈ D\{d∗} : xd = yd, and hence |xd−yd| = 0.

In step (ii), we use our assumption that c(1) · w(1)
δ(d∗) ·

√︂
w

(1)
d∗ < c(2) ·

w
(2)
δ(d∗) ·

√︂
w

(2)
d∗ , where ϵ > 0 denotes their difference.

The insight that ∀d ∈ D \ {d∗} : |xd − yd| = 0 allows us to express

µ˜︁S1
(x) in a similar way:

µ˜︁S1
(x) = µ

(1)
0 · e−c

(1)·w(1)
δ(d∗)·

√︂
w

(1)
d∗ ·|xd∗−yd∗ |

(C.3)

We can see based on equations C.2 and C.3 that µ˜︁S2
(x) is smaller

than µ˜︁S1
(x) if and only if µ

(1)
0 · e−ϵ·|xd∗−yd∗ | < µ

(2)
0 , which happens if

|xd∗ − yd∗ | > −1
ϵ ln

(︃
µ
(2)
0

µ
(1)
0

)︃
. Thus, if we pick xd∗ large enough, then

µ˜︁S1
(x) > µ˜︁S2

(x), which is a contradiction to
˜︁S1 ⊆ ˜︁S2.

Let us now remove the simplifying assumption of S1 = S2. If we Considering the

general case
construct x based on y(1) ∈ S1 then we still know that ∀d ∈ D \ {d∗} :

|xd − y
(1)
d | = 0. However, for the optimal y(2) ∈ S2 that minimizes

d∆2
C (x, y(2), we only know that |xd − y

(2)
d | ≥ 0 = |xd − y

(1)
d |. This

means that the distance from x to the closest y(2) ∈ S2 with respect

to all dimensions d ∈ D \ {d∗} is not smaller than to the closest

y(1) ∈ S1. Since y(1) ̸= y(2), we now need to consider cases where

|xd∗ − y
(1)
d∗ | ≥ |xd∗ − y

(2)
d∗ |. In this case, we know that µ˜︁S2

(x) is smaller

than µ˜︁S1
(x) under the following condition:[︃

c(1)w
(1)
δ(d∗)

√︂
w

(1)
d∗

⃓⃓⃓
xd∗ − y

(1)
d∗

⃓⃓⃓
< c(2)w

(2)
δ(d∗)

√︂
w

(2)
d∗

⃓⃓⃓
xd∗ − y

(2)
d∗

⃓⃓⃓
=

(︃
c(1)w

(1)
δ(d∗)

√︂
w

(1)
d∗ + ϵ

)︃ ⃓⃓⃓
xd∗ − y

(2)
d∗

⃓⃓⃓]︃

⇔

⎡⎢⎣ϵ ⃓⃓⃓xd∗ − y
(2)
d∗

⃓⃓⃓
> c(1)w

(1)
δ(d∗)

√︂
w

(1)
d∗

(︂⃓⃓⃓
xd∗ − y

(1)
d∗

⃓⃓⃓
−
⃓⃓⃓
xd∗ − y

(2)
d∗

⃓⃓⃓)︂
⏞ ⏟⏟ ⏞

=a

⎤⎥⎦
One can easily see that a is a constant independent of xd∗ . Since

also c(1)w
(1)
δ(d∗)

√︂
w

(1)
d∗ is a constant, we can find a large enough xd∗ to

make the above inequality true. Then, ∀d ∈ DS2 : c(1) · w(1)
δ(d) ·

√︂
w

(1)
d ≥

c(2) · w(2)
δ(d) ·

√︂
w

(2)
d , which is a contradiction to

˜︁S1 ⊆ ˜︁S2.
Conditions ⇒ ( ˜︁S1 ⊆ ˜︁S2) Joint sufficiency of

the conditions
Let

˜︁S1, ˜︁S2 be tow concepts which fulfill all four conditions, and let

x ∈ CS be arbitrary but fixed. Let us transform µ˜︁S1
(x) as follows:

µ˜︁S1
(x) = µ

(1)
0 · e−c

(1)·miny∈S1

∑︁
δ∈∆1

w
(1)
δ ·
√︂∑︁

d∈δ w
(1)
d ·|xd−yd|2

(i)

≤ µ
(1)
0 · e

−c(1)·min

y∈˜︁Sµ
(1)
0

2

∑︁
δ∈∆1

w
(1)
δ ·
√︂∑︁

d∈δ w
(1)
d ·|xd−yd|2
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(ii)

≤ µ
(1)
0 · e

−c(1)·min

y∈˜︁Sµ
(1)
0

2

∑︁
δ∈∆2

w
(1)
δ ·
√︂∑︁

d∈δ w
(1)
d ·|xd−yd|2

= µ
(1)
0 · e

−min

y∈˜︁Sµ
(1)
0

2

∑︁
δ∈∆2

√︄∑︁
d∈δ

(︃
c(1)·w(1)

δ ·
√︂
w

(1)
d

)︃2

·|xd−yd|2

(iii)

≤ µ
(1)
0 · e

−min

y∈˜︁Sµ
(1)
0

2

∑︁
δ∈∆2

√︄∑︁
d∈δ

(︃
c(2)·w(2)

δ ·
√︂
w

(2)
d

)︃2

·|xd−yd|2

= µ
(1)
0 · e

−c(2)·min

y∈˜︁Sµ
(1)
0

2

∑︁
δ∈∆2

·w(2)
δ ·
√︂∑︁

d∈δ w
(2)
d ·|xd−yd|2

= f(x)

In step (i), we applied S1 ⊆ ˜︁Sµ(1)0
2 (condition 2), which also implicitly

uses that µ
(1)
0 ≤ µ

(2)
0 (condition 1). In step (ii), we then used that

∆S2 ⊆ ∆S1 (condition 3). Finally, in step (iii), we used that ∀d ∈ DS2 :

c(1) · w(1)
δ(d) ·

√︂
w

(1)
d ≥ c(2) · w(2)

δ(d) ·
√︂
w

(2)
d (condition 4).

One can easily see that ∀x ∈ ˜︁Sµ(1)0
2 : f(x) = µ

(1)
0 ≤ µ˜︁S2

(x). Thus, we

only need to consider x /∈ ˜︁Sµ(1)0
2 . Now for each x /∈ ˜︁Sµ(1)0

2 (i.e., with

µ˜︁S2
(x) < µ

(1)
0 ) there is an z ∈ CS with B

d
∆2
C

(x, z, y) for the closest

y ∈ S2 and µ˜︁S2
(z) = µ

(1)
0 . This is true because µ˜︁S2

(x) = µ
(1)
0 ≤ µ

(2)
0 =

µwidetildeS2(y) and since µ˜︁S2
(x) continuously decreases between y and

x. We can now split µ˜︁S2
(x) into two parts:

µ˜︁S2
(x) = µ

(2)
0 · e−c(2)·d

∆S2
C (x,y,W (2))

(i)
= µ

(2)
0 · e

−c(2)·
(︃
d
∆S2
C (x,z,W (2))+d

∆S2
C (z,y,W (2))

)︃

= µ
(2)
0 · e−c(2)·d

∆S2
C (z,y,W (2)) · e−c(2)·d

∆S2
C (x,z,W (2))

(ii)
= µ

(1)
0 · e−c(2)·d

∆S2
C (x,z,W (2))

Step (i) is based on the definition of betweenness (cf. Definition 2.2)

and step (ii) uses that µ˜︁S2
(z) = µ

(1)
0 . So instead of calculating µ˜︁S2

(x)
based on the distance between x and S2, we can calculate µ˜︁S2

(x) based

on the distance between x and
˜︁Sµ(1)0
2 and rescale the result, such that

it is at most µ
(1)
0 . Obviously, z ∈ ˜︁Sµ(1)0

2 , and since B
d
∆2
C

(x, z, y), it is

also the point in
˜︁Sµ(1)0
2 which minimizes the distance to x. Therefore,

f(x) = µ˜︁S2
(x) for x /∈ ˜︁Sµ(1)0

2 . Thus µ˜︁S1
(x) ≤ f(x) ≤ µ˜︁S2

(x) for all

x ∈ CS, which means that
˜︁S1 ⊆ ˜︁S2.
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c.3 similarity

In Section 4.4.2, we introduced two possible definitions for the similarity Criteria for

similarity functions
of concepts, based on subsethood and the Jaccard index, respectively.

For clarity, we re-print our definition of a similarity function.

Definition 4.8 (Similarity Function)

A function Sim(˜︁S1, ˜︁S2) ∈ [0, 1] is called a similarity function, if it fulfills the

following criteria for all concepts
˜︁S1, ˜︁S2:

1.

(︂
Sim(˜︁S1, ˜︁S2) = 1

)︂
⇒
(︂
Sub(˜︁S1, ˜︁S2) = 1

)︂
2.

(︂˜︁S1 = ˜︁S2)︂⇒
(︂
Sim(˜︁S1, ˜︁S2) = 1

)︂
3.

(︂˜︁S1 ⊆ ˜︁S2)︂⇒
(︂
Sim(˜︁S1, ˜︁S2) ≥ Sim(˜︁S2, ˜︁S1))︂

Let us first consider the option of re-using the definition of conceptual Similarity as

subsethood
subsethood from Section 4.2.1.

Proposition 4.6 (SimS is a Similarity Function)

SimS(˜︁S1, ˜︁S2) = Sub(˜︁S1, ˜︁S2) is a similarity function according to Definition

4.8.

Proof. Let us consider each property from Definition 4.8 individually.

1. Trivial, since SimS(˜︁S1, ˜︁S2) = Sub(˜︁S1, ˜︁S2).
2. Let

˜︁S1 = ˜︁S2. Then also
˜︁S1 ⊆ ˜︁S2 and therefore SimS(˜︁S1, ˜︁S2) =

Sub(˜︁S1, ˜︁S2) = 1.

3.
˜︁S1 ⊆ ˜︁S2 implies that Sub(˜︁S1, ˜︁S2) = 1 which implies by definition

that SimS(˜︁S1, ˜︁S2) = 1. Because SimS(˜︁S2, ˜︁S1) ≤ 1, we get that

SimS(˜︁S1, ˜︁S2) ≥ SimS(˜︁S2, ˜︁S1).
Let us now consider an alternative definition for the similarity of Similarity based on

the Jaccard index
concepts based on the Jaccard index:

Proposition 4.7 (SimJ is a Similarity Function)

SimJ(˜︁S1, ˜︁S2) = M(I(˜︁S1,˜︁S2))

M(U(˜︁S1,˜︁S2))
is a similarity function according to Definition

4.8.

Proof. Let us consider each property from Definition 4.8 individually.

1. Let
˜︁SI = I(˜︁S1, ˜︁S2) and

˜︁SU = U(˜︁S1, ˜︁S2). As we know from

Definitions 3.2 and 3.6, both intersection and union use the

same way of estimating updated weights and sensitivity pa-

rameters, hence c(I) = c(U)
and W (I) = W (U)

. It is easy to

see that µ
(I)
0 ≤ min(µ

(1)
0 , µ

(2)
0 ) ≤ max(µ

(1)
0 , µ

(2)
0 ) = µ

(U)
0 . More-

over, |SI | ≤ |SU |, because SU is the star-shaped closure of all

cuboids from S1 and S2, while SI is based on the highest inter-

secting α-cut and only contains points between the two origi-

nal concepts.. Therefore, SimJ(˜︁S1, ˜︁S2) = 1 can only happen if
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˜︁SI = ˜︁SU , which implies that also µ
(I)
0 = µ

(U)
0 . The observation

that µ
(I)
0 = µ

(U)
0 implies that µ

(1)
0 = µ

(2)
0 (as µ

(I)
0 ≤ min(µ

(1)
0 , µ

(2)
0 )

and µ
(U)
0 = max(µ

(1)
0 , µ

(2)
0 )) and that S1 ∩ S2 ̸= ∅. If

˜︁SI = ˜︁SU ,

then also SI = SU . Then, I(S1, S2) = SI (because S1 ∩ S2 ̸= ∅
and µ

(1)
0 = µ

(2)
0 ) and U(S1, S2) = SU (by definition of the union).

Thus, I(S1, S2) = U(S1, S2). This is only possible if S1 = S2. Then,

Sub(˜︁S1, ˜︁S2) = M(I(˜︁S1,˜︁S2))2

M(˜︁S1)2
= M(˜︁S1)2

M(˜︁S1)2
= 1 (where we use M(˜︁S)i to

denote that W (i)
and c(i) are used for computing the size).

2. Let
˜︁S1 = ˜︁S2. Obviously, I(˜︁S1, ˜︁S2) = ˜︁S1 = U(˜︁S1, ˜︁S2) and therefore

SimJ(˜︁S1, ˜︁S2) = M(I(˜︁S1,˜︁S2))

M(U(˜︁S1,˜︁S2))
= M(˜︁S1˜︁S1

= 1

3. Because I(˜︁S1, ˜︁S2) = I(˜︁S2, ˜︁S1) and U(˜︁S1, ˜︁S2) = U(˜︁S2, ˜︁S1), we

get that SimJ(˜︁S1, ˜︁S2) = SimJ(˜︁S2, ˜︁S1) for all
˜︁S1, ˜︁S2. Thus, the

consequent of the implication is always true.

c.4 betweenness

In Section 4.5.2, we have developed two definitions for a soft degree ofInfimum-based

degree of betweenness
fuzzy betweenness. Let us first consider Binf

soft, which is defined based

on an infimum over α-cuts:

Definition 4.9 (Infimum-Based Betweenness)

Let
˜︁S1, ˜︁S2, and

˜︁S3 be three concepts defined on the same set of domains ∆S .

The soft degree to which
˜︁S2 lies between

˜︁S1 and
˜︁S3 can be computed as follows:

Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) = inf
α∈[0,1]

inf
y∈˜︁Sα

2

sup
x∈˜︁Sα

1

sup
z∈˜︁Sα

3

d∆S

C (x, z,W (2))

d∆S

C (x, y,W (2)) + d∆S

C (y, z,W (2))

We also illustrated in Section 4.5.2 that Binf
soft yields some ratherPathological failures

of Binf
soft unintuitive results under certain circumstances. On of these cases is

now treated more formally in Proposition 4.8:

Proposition 4.8 (Problematic Case for Binf
soft)

Let
˜︁S1, ˜︁S2, and

˜︁S3 be three concepts. Assume we find a dimensiond∗ ∈ δ∗ ∈ ∆S

for which the following is true:

c(2)w
(2)
δ∗

√︂
w

(2)
d∗ < min

(︃
c(1)w

(1)
δ∗

√︂
w

(1)
d∗ , c

(3)w
(3)
δ∗

√︂
w

(3)
d∗

)︃
Then, Binf

soft(
˜︁S1, ˜︁S2, ˜︁S3) = 0.

Proof. We know from Lemma 2.4 that each α-cut of a given conceptα-cuts as

ϵ-neighborhoods ˜︁S = ⟨S, µ0, c,W ⟩ is equivalent to an ϵ-neighborhood of its core S:

˜︁Sα =

{︃
x ∈ CS

⃓⃓⃓⃓
min
y∈S

d∆S
C (x, y,W ) ≤ −1

c
· ln
(︃
α

µ0

)︃}︃
Let us for now only consider points x ∈ CS that differ from their

closest point y ∈ S only with respect to the dimension d∗ ∈ δ∗ (i.e.,
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∀d ∈ D \ {d∗} : xd = yd). Without loss of generality, assume that

xd∗ > yd∗ . The weighted combined metric between x and y can then be

computed as follows:

min
y∈S

d∆S
C (x, y,W ) = min

y∈S

∑︂
δ∈∆S

wδ ·
√︄∑︂

d∈δ
wd · |xd − yd|2

= wδ∗
√︁
wd∗(xd∗ − yd∗)2

= wδ∗
√
wd∗(xd∗ − yd∗)

The largest value of xd∗ such that x ∈ ˜︁Sα can thus be obtained with Upper border of the

α-cut with respect to

d∗
the following transformations:(︃

min
y∈S

d∆S
C (x, y,W ) = −1

c
· ln
(︃
α

µ0

)︃)︃
⇔
(︃
wδ∗

√
wd∗(xd∗ − yd∗) = −1

c
· ln
(︃
α

µ0

)︃)︃
⇔
(︃
xd∗ − yd∗ = − 1

cwδ∗
√
wd∗

· (ln (α)− ln (µ0))

)︃
⇔
(︃
xd∗ = yd∗ −

ln (α)

cwδ∗
√
wd∗

+
ln (µ0)

cwδ∗
√
wd∗

)︃
(C.4)

The coordinate xd∗ thus increases logarithmically with a decreasing

value of α, mediated by a factor of
1

cwδ∗
√
wd∗

. The other two terms are

independent of α and are thus constants in our considerations.

The condition of this proposition assumes that for d∗ ∈ δ∗, the Growth rates of the

three α-cuts
following is true with respect to the three concepts

˜︁S1, ˜︁S2, and
˜︁S3:

c(2)w
(2)
δ∗

√︂
w

(2)
d∗ < min

(︃
c(1)w

(1)
δ∗

√︂
w

(1)
d∗ , c

(3)w
(3)
δ∗

√︂
w

(3)
d∗

)︃
This implies the following relation:

1

c(2)w
(2)
δ∗

√︂
w

(2)
d∗

> max

⎛⎝ 1

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

,
1

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

⎞⎠
This means that with decreasing value of α, x

(2)
d∗ grows faster than

both x
(1)
d∗ and x

(3)
d∗ . Even if it is smaller for large values of α (due to

the location of S2, which influences yd∗ , or due to the value of µ
(2)
0 ), it

will eventually outgrow them as α→ 0. Figure C.1 illustrates this case,

where x
(2)
d∗ > max(x

(1)
d∗ , x

(3)
d∗ ) for a given fixed value of α.

Recall from Definition 4.9 that Binf
soft is defined based on the pairwise Pairwise distances

distances between x(1), x(2), and x(3). From Figure C.1, we can see

that these distances can be computed as follows, where we use the
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Figure C.1: Illustration of distance computations with respect to d∗.

shorthand notations d(x(i), Si) = miny(i)∈Si
d∆S
C (x(i), y(i),W (2)), and

d(Si, Sj) = maxy(i)∈Si
miny(j)∈Sj

d∆S
C (y(i), y(j),W (2)):

d∆S
C (x(1), x(2),W (2)) = d(x(2), S2) + d(S2, S1)− d(x(1), S1) (C.5)

d∆S
C (x(1), x(3),W (2)) = d(x(3), S3) + d(S3, S1)− d(x(1), S1) (C.6)

d∆S
C (x(2), x(3),W (2)) = d(x(2), S2) + d(S3, S2)− d(x(3), S3) (C.7)

We can furthermore write d(x(i), Si) (i.e., the distance between x(i)Distance of a point to

its core
and the closest point in Si, where the distance is computed with the

weights W (2)
instead of W (i)

) as follows, using that x
(i)
d = y

(i)
d for all

d ∈ D \ {d∗} (step (i)), that x
(i)
d∗ > y

(i)
d∗ (step (ii), and Equation C.4 from

above for x
(i)
d∗ (step (iii)):

d(x(i),Si)

= d∆S
C (x(i), y(i),W (2)) =

∑︂
δ∈∆

w
(2)
δ ·

√︄∑︂
d∈δ

w
(2)
d · |x(i)d − y

(i)
d |2

(i)
= w

(2)
δ∗ ·

√︂
w

(2)
d∗ · |x(i)d∗ − y

(i)
d∗ |2

(ii)
= w

(2)
δ∗

√︂
w

(2)
d∗

(︂
x
(i)
d∗ − y

(i)
d∗

)︂
(iii)
= w

(2)
δ∗

√︂
w

(2)
d∗

⎛⎝y(i)d∗ − ln(α)

c(i)w
(i)
δ∗

√︂
w

(i)
d∗

+
ln
(︂
µ
(i)
0

)︂
c(i)w

(i)
δ∗

√︂
w

(i)
d∗

− y
(i)
d∗

⎞⎠
= −

w
(2)
δ∗

√︂
w

(2)
d∗

c(i)w
(i)
δ∗

√︂
w

(i)
d∗

(︂
ln(α)− ln

(︂
µ
(i)
0

)︂)︂

= − 1

c(2)

(︂
ln(α)− ln

(︂
µ
(i)
0

)︂)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(i)w
(i)
δ∗

√︂
w

(i)
d∗

(C.8)

Let us first consider Bsoft(x
(1), x(2), x(3)) for a fixed value of α. WeSoft betweenness of

points
know that Bsoft(x

(1), x(2), x(3)) is based on the pairwise distances

between x(1), x(2), and x(3):

Bsoft(x
(1), x(2), x(3)) =

d∆S

C (x(1), x(3),W (2))

d∆S

C (x(1), x(2),W (2)) + d∆S

C (x(2), x(3),W (2))
(C.9)

The numerator of this fraction can be expressed as follows, based onRewriting the

numerator
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our insights from above, namely, Equation C.6 for step (i) and Equation

C.8 for step (ii):

d∆S
C (x(1), x(3),W (2))

(i)
= d(x(3), S3) + d(S3, S1)− d(x(1), S1)

(ii)
= − 1

c(2)

(︂
ln(α)− ln

(︂
µ
(3)
0

)︂)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

+ d(S3, S1)

+
1

c(2)

(︂
ln(α) + ln

(︂
µ
(1)
0

)︂)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

= − 1

c(2)
· ln(α) ·

⎡⎣c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

−
c(2)w

(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

⎤⎦
+

1

c(2)
ln
(︂
µ
(3)
0

)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

− 1

c(2)
ln
(︂
µ
(1)
0

)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

+ d(S3, S1) (C.10)

Also the denominator of Equation C.9 can be rewritten based on Rewriting the

denominator
Equations C.5 and C.7 (step (i)), and Equation C.8 (step (ii)), yielding

the following result:

d∆S
C (x(1), x(2),W (2)) + d∆S

C (x(2), x(3),W (2))

(i)
= d(x(2), S2) + d(S2, S1)− d(x(1), S1)

+ d(x(2), S2)− d(S3, S2)− d(x(3), S3)

(ii)
= − 1

c(2)

(︂
ln(α)− ln

(︂
µ
(2)
0

)︂)︂
+ d(S2, S1)

+
1

c(2)

(︂
ln(α)− ln

(︂
µ
(1)
0

)︂)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

− 1

c(2)

(︂
ln(α)− ln

(︂
µ
(2)
0

)︂)︂
− d(S3, S2)

+
1

c(2)

(︂
ln(α)− ln

(︂
µ
(3)
0

)︂)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

= − 1

c(2)
· ln(α) ·

⎡⎣1− c(2)w
(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

+ 1−
c(2)w

(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

⎤⎦
+

1

c(2)
· ln
(︂
µ
(2)
0

)︂
+ d(S2, S1)
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− 1

c(2)
ln
(︂
µ
(1)
0

)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

+
1

c(2)
· ln
(︂
µ
(2)
0

)︂
− d(S3, S2)

− 1

c(2)
ln
(︂
µ
(3)
0

)︂ c(2)w(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

(C.11)

Since d(Si, Sj) operates on the crisp cores, it is independent of αThe denominator

grows faster than the

numerator

and can therefore be ignored for our analysis. In order to show that

Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) = 0, we now show that Bsoft(x
(1), x(2), x(3))

α→0−→ 0 by

proving that the denominator (Equation C.11) grows faster than the

numerator (Equation C.10) for decreasing values of α. We use the fact

that c(2)w
(2)
δ∗

√︂
w

(2)
d∗ < c(3)w

(3)
δ∗

√︂
w

(3)
d∗ , which implies that the fraction

c(2)w
(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

is smaller than one:

1−
c(2)w

(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

+ 1−
c(2)w

(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

> 1−
c(2)w

(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

+ 1− 1

= 1−
c(2)w

(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

>
c(2)w

(2)
δ∗

√︂
w

(2)
d∗

c(3)w
(3)
δ∗

√︂
w

(3)
d∗

−
c(2)w

(2)
δ∗

√︂
w

(2)
d∗

c(1)w
(1)
δ∗

√︂
w

(1)
d∗

Since the factor associated with − ln(α) is thus greater in the denomi-

nator than in the numerator, it is easy to see thatBsoft(x
(1), x(2), x(3))

α→0−→
0. Please note that this result is independent of any differences be-

tween the cores with respect to other dimensions oof the conceptual

space: These differences on other domains do influence the values of

d∆S
C (x(i), x(j),W (2)), but they do not depend on α and are therefore

constants in our considerations. They thus do not influence the overall

limit value analysis. Based on the definition of Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3), we

thus get the desired result:

Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) = inf
α∈[0,1]

min
x(2)∈˜︁Sα

2

max
x(1)∈˜︁Sα

1

max
x(3)∈˜︁Sα

3

Bsoft(x
(1), x(2), x(3)) = 0

One may argue that if we for example chose in Figure C.1 the pointx
(1)
BChoice of x(1)

does

not affect results
instead ofx(1), for which bothd∆S

C (x
(1)
B , x(3),W (2)) > d∆S

C (x(1), x(3),W (2))
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and d∆C (x
(1)
B , x(2),W (2)) > d∆S

C (x(1), x(2),W (2)), the desired result may

no longer hold. However,
˜︁Sα2 grows faster than both

˜︁Sα1 and
˜︁Sα3 for

decreasing α. Thus, x(2) will always be able to "outrun" x(1) and x(3),

causing d∆S
C (x(1), x(2),W (2)) and d∆S

C (x(2), x(3),W (2)) to grow faster

than d∆S
C (x(1), x(3),W (2)). Analogously to the case investigated above,

one can show that alsoBsoft(x
(1)
B , x(2), x(3))

α→0−→ 0. Thus, if the condition

with respect to the sensitivity parameters and the weights is fulfilled,

Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) = 0.

In order to circumvent these pathological cases, we have then intro- Integral-based degree

of betweenness
duced an integral-based soft notion of betweenness:

Definition 4.10 (Integral-Based Betweenness)

Let
˜︁S1, ˜︁S2, and

˜︁S3 be three concepts defined on the same set of domains ∆S .

The integral-based soft degree to which
˜︁S2 lies between

˜︁S1 and
˜︁S3 can be

computed as follows:

Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3) = ∫︂ 1

0
min
y∈˜︁Sα

2

max
x∈˜︁Sα

1

max
z∈˜︁Sα

3

Btw3(x, y, z)dα

On can easily see that Binf
soft cannot be larger than Bint

soft: Relation between the

two definitions

Lemma 4.1 (Bint
soft is Bounded by Binf

soft)

Let
˜︁S1, ˜︁S2, and

˜︁S3 be three concepts. Then, the following inequation holds:

Binf
soft(

˜︁S1, ˜︁S2, ˜︁S3) ≤ Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3)
Proof. Both Binf

soft and Bint
soft use the same way to compute betweenness

for a given α-cut:

Bsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) = min
y∈˜︁Sα

2

max
x∈˜︁Sα

1

max
z∈˜︁Sα

3

Bsoft(x, y, z)

The only difference between Binf
soft and Bint

soft is the way in which they

aggregate across different values of α, namely with the infimum and

the integral, respectively.

We can bound the integral

∫︁ 1
0 Bsoft(

˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 )dα from below by

using the lower Riemann sum for a fixed number nα of α-cuts:∫︂ 1

0
Bsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 )dα ≥

nα∑︂
i=1

inf
α∈
[︂
i−1
nα

, i
nα

]︂Bsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) · 1

nα

For computing this bound, we thus split the interval [0, 1], over which

α is optimized, into nα equally sized parts. For each of these parts, we

compute the infimum ofBsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) and multiply it with the size

of this part. By summing over all parts, we obtain an estimate of the

overall integral which is guaranteed to be not larger than the actual
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integral. For nα → ∞, both sides of the equation become identical.

Moreover, one can easily see that the following inequality is true:

nα∑︂
i=1

inf
α∈
[︂
i−1
nα

, i
nα

]︂Bsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) · 1

nα

≥
nα∑︂
i=1

inf
α∈[0,1]

Bsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) · 1

nα
= inf

α∈[0,1]
Bsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 )

We therefore get the expected result:

Bint
soft(

˜︁S1, ˜︁S2, ˜︁S3) = ∫︂ 1

0
Bsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 )dα
≥ inf

α∈[0,1]
Bsoft(˜︁Sα1 , ˜︁Sα2 , ˜︁Sα3 ) = Binf

soft(
˜︁S1, ˜︁S2, ˜︁S3)



D F E A S I B I L I T Y ST U DY O N
N OV E L O B J E C TS

In this appendix, we provide further visualizations and raw results Overview

with respect to our study from Chapter 9, where we applied our hybrid

approach to the NOUN dataset [199]. In Sections D.1 and D.2, we pro-

vide additional visualizations of the pixel baseline (supplementing the

visualizations from Section 9.1.3) for different distances and correlation

metrics, and with respect to uniform and optimized dimension weights,

respectively. Sections D.3 and D.4 contain additional tables with results

for our second machine learning experiment from Section 9.2.4, namely,

for unregularized and regularized regressions, respectively, with re-

spect to target spaces from different MDS algorithms. Finally, Section

D.5 provides detailed results for the lasso regression with respect to

target spaces of different dimensionality (cf. Section 9.2.5).

d.1 pixel baseline with uniform weights

Figure D.1: Pearson’s r for pixel-based distances obtained through the Eu-

clidean metric (using uniform weights) with respect to different

aggregators and different block sizes.

867
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Figure D.2: Pearson’s r for pixel-based distances obtained through the negated

inner product (using uniform weights) with respect to different

aggregators and different block sizes.

Figure D.3: Spearman’s ρ for pixel-based distances obtained through the

Euclidean metric (using uniform weights) with respect to different

aggregators and different block sizes.
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Figure D.4: Spearman’s ρ for pixel-based distances obtained through the

Manhattan metric (using uniform weights) with respect to different

aggregators and different block sizes.

Figure D.5: Spearman’s ρ for pixel-based distances obtained through the

negated inner product (using uniform weights) with respect to

different aggregators and different block sizes.
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Figure D.6: Kendall’s τ for pixel-based distances obtained through the Eu-

clidean metric (using uniform weights) with respect to different

aggregators and different block sizes.

Figure D.7: Kendall’s τ for pixel-based distances obtained through the Man-

hattan metric (using uniform weights) with respect to different

aggregators and different block sizes.
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Figure D.8: Kendall’s τ for pixel-based distances obtained through the negated

inner product (using uniform weights) with respect to different

aggregators and different block sizes.

Figure D.9: Coefficient of determination R2
of a monotone regression for

pixel-based distances obtained through the Euclidean metric

(using uniform weights) with respect to different aggregators and

different block sizes.
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Figure D.10: Coefficient of determination R2
of a monotone regression for

pixel-based distances obtained through the Manhattan metric

(using uniform weights) with respect to different aggregators

and different block sizes.

Figure D.11: Coefficient of determination R2
of a monotone regression for

pixel-based distances obtained through the negated inner product

(using uniform weights) with respect to different aggregators

and different block sizes.
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d.2 pixel baseline with optimized weights

Figure D.12: Pearson’s r for pixel-based distances obtained through the Man-

hattan metric (using optimized weights) with respect to different

aggregators and different block sizes.

Figure D.13: Pearson’s r for pixel-based distances obtained through the

negated inner product (using optimized weights) with respect to

different aggregators and different block sizes.
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Figure D.14: Spearman’s ρ for pixel-based distances obtained through the

Euclidean metric (using optimized weights) with respect to

different aggregators and different block sizes.

Figure D.15: Spearman’s ρ for pixel-based distances obtained through the

Manhattan metric (using optimized weights) with respect to

different aggregators and different block sizes.
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Figure D.16: Spearman’s ρ for pixel-based distances obtained through the

negated inner product (using optimized weights) with respect to

different aggregators and different block sizes.

Figure D.17: Kendall’s τ for pixel-based distances obtained through the Eu-

clidean metric (using optimized weights) with respect to different

aggregators and different block sizes.
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Figure D.18: Kendall’s τ for pixel-based distances obtained through the Man-

hattan metric (using optimized weights) with respect to different

aggregators and different block sizes.

Figure D.19: Kendall’s τ for pixel-based distances obtained through the

negated inner product (using optimized weights) with respect to

different aggregators and different block sizes.
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Figure D.20: Coefficient of determination R2
of a monotone regression for

pixel-based distances obtained through the Euclidean metric

(using optimized weights) with respect to different aggregators

and different block sizes.

Figure D.21: Coefficient of determination R2
of a monotone regression for

pixel-based distances obtained through the Manhattan metric

(using optimized weights) with respect to different aggregators

and different block sizes.
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Figure D.22: Coefficient of determination R2
of a monotone regression for

pixel-based distances obtained through the negated inner product

(using optimized weights) with respect to different aggregators

and different block sizes.

d.3 unregularized regression for differ-
ent mds algorithms

Feature Training Test

Space

Regressor Targets

MSE MED R2
MED MED R2

Zero

Any

Baseline

Any 1.0000 0.9962 0.0000 1.0000 0.9962 0.0000

Correct 0.0132 0.1048 0.9862 0.5537 0.7063 0.4029

ANN

Linear

Shuffled 0.0204 0.1296 0.9797 1.1510 1.0323 -0.1346

(2048) Random Correct 0.0017 0.0158 0.9983 0.7504 0.8257 0.2091

Forest Shuffled 0.0025 0.0248 0.9975 1.1322 1.0236 -0.1109

Correct 0.4844 0.6460 0.5022 1.2302 1.0449 -0.2613

Pixel

Linear

Shuffled 0.6171 0.7292 0.3856 1.6067 1.1989 -0.6058

(1875) Random Correct 0.0058 0.0463 0.9939 0.8556 0.8721 0.1174

Forest Shuffled 0.0071 0.0539 0.9930 1.1766 1.0344 -0.1477

Table D.1: Performance of different regressors for different feature spaces and

correct vs. shuffled targets, with respect to the four-dimensional

target space based on classical MDS. The best results for each com-

bination of column and feature space are highlighted in boldface.
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Feature Training Test

Space

Regressor Targets

MSE MED R2
MED MED R2

Zero

Any

Baseline

Any 1.0000 0.9962 0.0000 1.0000 0.9962 0.0000

Correct 0.0144 0.1095 0.9856 0.6097 0.7460 0.3903

ANN

Linear

Shuffled 0.0209 0.1315 0.9791 1.2400 1.0894 -0.2406

(2048) Random Correct 0.0019 0.0178 0.9981 0.8036 0.8676 0.1959

Forest Shuffled 0.0029 0.0261 0.9971 1.1900 1.0763 -0.1882

Correct 0.5052 0.6668 0.4935 1.3384 1.0947 -0.3415

Pixel

Linear

Shuffled 0.5997 0.7292 0.3996 1.6110 1.2113 -0.6099

(1875) Random Correct 0.0060 0.0473 0.9937 0.9002 0.9111 0.0972

Forest Shuffled 0.0073 0.0547 0.9927 1.2151 1.0729 -0.2156

Table D.2: Performance of different regressors for different feature spaces and

correct vs. shuffled targets, with respect to the four-dimensional

target space based on Kruskal’s MDS algorithm. The best results

for each combination of column and feature space are highlighted

in boldface.

Feature Training Test

Space

Regressor Targets

MSE MED R2
MED MED R2

Zero

Any

Baseline

Any 1.0000 0.9962 0.0000 1.0000 0.9962 0.0000

Correct 0.0146 0.1102 0.9854 0.6172 0.7560 0.3766

ANN

Linear

Shuffled 0.0206 0.1308 0.9794 1.2227 1.0838 -0.2240

(2048) Random Correct 0.0020 0.0183 0.9980 0.8325 0.8881 0.1604

Forest Shuffled 0.0027 0.0254 0.9973 1.1691 1.0702 -0.1693

Correct 0.5135 0.6718 0.4871 1.3178 1.0886 -0.3188

Pixel

Linear

Shuffled 0.6017 0.7315 0.4006 1.6061 1.2116 -0.5981

(1875) Random Correct 0.0059 0.0473 0.9941 0.8913 0.9118 0.1062

Forest Shuffled 0.0073 0.0554 0.9927 1.2253 1.0817 -0.2159

Table D.3: Performance of different regressors for different feature spaces and

correct vs. shuffled targets, with respect to the four-dimensional

target space based on metric SMACOF. The best results for each

combination of column and feature space are highlighted in bold-

face.
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Feature Training Test

Space

Regressor Targets

MSE MED R2
MED MED R2

Zero

Any

Baseline

Any 1.0000 0.9962 0.0000 1.0000 0.9962 0.0000

Correct 0.0143 0.1092 0.9853 0.6086 0.7461 0.3706

ANN

Linear

Shuffled 0.0208 0.1312 0.9792 1.2340 1.0869 -0.2366

(2048) Random Correct 0.0020 0.0180 0.9980 0.7926 0.8619 0.1899

Forest Shuffled 0.0027 0.0258 0.9973 1.1680 1.0673 -0.1626

Correct 0.5117 0.6704 0.4769 1.3305 1.0921 -0.3587

Pixel

Linear

Shuffled 0.6009 0.7300 0.4013 1.6071 1.2087 -0.5973

(1875) Random Correct 0.0062 0.0477 0.9936 0.9033 0.9120 0.0732

Forest Shuffled 0.0071 0.0550 0.9930 1.2278 1.0785 -0.2150

Table D.4: Performance of different regressors for different feature spaces and

correct vs. shuffled targets, with respect to the four-dimensional

target space based on nonmetric SMACOF. The best results for

each combination of column and feature space are highlighted in

boldface.

d.4 lasso regression for different mds
algorithms

Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9636 0.0000 1.0000 0.9636 0.0000

0 0.0132 0.1048 0.9862 0.5537 0.7063 0.4029

0.001 0.0144 0.1089 0.9849 0.5362 0.6934 0.4241

0.002 0.0190 0.1249 0.9801 0.5272 0.6856 0.4317

0.005 0.0158 0.1140 0.9835 0.5324 0.6896 0.4274

0.01 0.0227 0.1365 0.9762 0.5315 0.6889 0.4248

0.02 0.0282 0.1521 0.9703 0.5467 0.6993 0.4083

0.05 0.0410 0.1836 0.9565 0.5681 0.7151 0.3841

0.1 0.0596 0.2228 0.9363 0.5756 0.7203 0.3746

0.2 0.0968 0.2883 0.8956 0.5874 0.7283 0.3619

0.5 0.2339 0.4614 0.7450 0.6245 0.7572 0.3273

1 0.4746 0.6653 0.4832 0.6730 0.7887 0.2793

2 0.8300 0.8798 0.1287 0.8951 0.9110 0.0696

≥ 5 0.9972 0.9623 0.0026 1.0414 0.9822 -0.0389

Table D.5: Performance of the lasso regressor for different values of β with

respect to the four-dimensional target space based on classical MDS.

The best results for each combination of column and feature space

are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9957 0.0000 1.0000 0.9957 0.0000

0 0.0144 0.1095 0.9856 0.6097 0.7460 0.3903

0.001 0.0156 0.1135 0.9844 0.6070 0.7420 0.3932

0.002 0.0171 0.1186 0.9830 0.6097 0.7427 0.3906

0.005 0.0204 0.1297 0.9796 0.6162 0.7456 0.3839

0.01 0.0245 0.1419 0.9755 0.6294 0.7527 0.3707

0.02 0.0305 0.1580 0.9696 0.6424 0.7601 0.3577

0.05 0.0441 0.1906 0.9559 0.6679 0.7746 0.3321

0.1 0.0642 0.2314 0.9358 0.6759 0.7787 0.3244

0.2 0.1056 0.3011 0.8944 0.6856 0.7868 0.3142

0.5 0.2476 0.4764 0.7524 0.7182 0.8175 0.2809

1 0.5200 0.7093 0.4797 0.8045 0.8825 0.1951

2 0.9646 0.9776 0.0354 1.0202 1.0050 -0.0201

≥ 5 0.9977 0.9944 0.0023 1.0341 1.0119 -0.0342

Table D.6: Performance of the lasso regressor for different values of β with

respect to the four-dimensional target space based on Kruskal’s

MDS algorithm. The best results for each combination of column

and feature space are highlighted in boldface.

Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9981 0.0000 1.0000 0.9981 0.0000

0 0.0146 0.1102 0.9854 0.6172 0.7560 0.3766

0.001 0.0158 0.1143 0.9842 0.6086 0.7485 0.3848

0.002 0.0173 0.1194 0.9827 0.6052 0.7458 0.3880

0.005 0.0207 0.1307 0.9792 0.6056 0.7459 0.3873

0.01 0.0249 0.1432 0.9750 0.6151 0.7507 0.3775

0.02 0.0310 0.1597 0.9689 0.6298 0.7585 0.3622

0.05 0.0447 0.1923 0.9551 0.6611 0.7755 0.3294

0.1 0.0645 0.2327 0.9351 0.6762 0.7852 0.3128

0.2 0.1048 0.3014 0.8944 0.6837 0.7922 0.3038

0.5 0.2483 0.4802 0.7491 0.7294 0.8311 0.2547

1 0.5324 0.7212 0.4610 0.8389 0.9066 0.1481

2 0.9519 0.9731 0.0443 0.9996 0.9971 -0.0020

≥ 5 0.9980 0.9969 0.0019 1.0293 1.0122 -0.0290

Table D.7: Performance of the lasso regressor for different values of β with

respect to the four-dimensional target space based on metric SMA-

COF. The best results for each combination of column and feature

space are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9956 0.0000 1.0000 0.9956 0.0000

0 0.0143 0.1092 0.9853 0.6086 0.7461 0.3706

0.001 0.0155 0.1133 0.9841 0.5987 0.7373 0.3812

0.002 0.0170 0.1183 0.9826 0.5965 0.7348 0.3833

0.005 0.0204 0.1295 0.9791 0.5938 0.7316 0.3853

0.01 0.0245 0.1419 0.9748 0.5980 0.7331 0.3804

0.02 0.0439 0.1901 0.9548 0.6267 0.7495 0.3501

0.05 0.0305 0.1582 0.9687 0.6063 0.7375 0.3717

0.1 0.1044 0.2995 0.8921 0.6573 0.7715 0.3145

0.2 0.0637 0.2306 0.9343 0.6528 0.7660 0.3207

0.5 0.2476 0.4763 0.7433 0.6666 0.7868 0.3044

1 0.5206 0.7077 0.4591 0.7629 0.8581 0.2087

2 0.9073 0.9465 0.0771 0.9579 0.9718 0.0287

≥ 5 0.9977 0.9943 0.0022 1.0338 1.0117 -0.0329

Table D.8: Performance of the lasso regressor for different values of β with

respect to the four-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.



D.5 lasso regression for different dimensionality 883

d.5 lasso regression for different dimen-
sionality

Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.8664 0.0000 1.0000 0.8664 0.0000

0 0.0195 0.1084 0.9805 1.1499 0.9046 -0.1499

0.001 0.0199 0.1095 0.9801 1.1477 0.9038 -0.1477

0.002 0.0208 0.1117 0.9792 1.1474 0.9039 -0.1474

0.005 0.0234 0.1185 0.9766 1.1710 0.9129 -0.1710

0.01 0.0270 0.1273 0.9730 1.1955 0.9216 -0.1955

0.02 0.0326 0.1400 0.9674 1.1849 0.9153 -0.1849

0.05 0.0446 0.1638 0.9554 1.1392 0.8956 -0.1392

0.1 0.0605 0.1910 0.9395 1.1443 0.8942 -0.1443

0.2 0.0882 0.2320 0.9118 1.1095 0.8830 -0.1095

0.5 0.1774 0.3373 0.8226 1.0376 0.8492 -0.0376

1 0.3535 0.4910 0.6465 0.9968 0.8368 0.0032

2 0.7258 0.7307 0.2742 0.9911 0.8477 0.0088

≥ 5 0.9980 0.8647 0.0020 1.0306 0.8826 -0.0306

Table D.9: Performance of the lasso regressor for different values of β with

respect to the one-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9580 0.0000 1.0000 0.9580 0.0000

0 0.0128 0.0976 0.9872 0.4995 0.6370 0.5002

0.001 0.0136 0.1000 0.9864 0.5036 0.6350 0.4962

0.002 0.0146 0.1037 0.9854 0.5031 0.6319 0.4967

0.005 0.0172 0.1123 0.9828 0.4869 0.6174 0.5129

0.01 0.0203 0.1219 0.9797 0.4770 0.6079 0.5228

0.02 0.0247 0.1342 0.9753 0.4728 0.6052 0.5271

0.05 0.0339 0.1572 0.9661 0.4773 0.6113 0.5225

0.1 0.0464 0.1850 0.9536 0.4907 0.6213 0.5091

0.2 0.0699 0.2299 0.9301 0.4918 0.6209 0.5079

0.5 0.1518 0.3492 0.8481 0.5163 0.6458 0.4829

1 0.3139 0.5168 0.6859 0.5838 0.7043 0.4153

2 0.6626 0.7744 0.3370 0.8074 0.8525 0.1920

≥ 5 0.9973 0.9564 0.0027 1.0408 0.9760 -0.0408

Table D.10: Performance of the lasso regressor for different values of β with

respect to the two-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.

Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9848 0.0000 1.0000 0.9848 0.0000

0 0.0134 0.1036 0.9865 0.5554 0.69789 0.4435

0.001 0.0144 0.1069 0.9856 0.5509 0.6927 0.4486

0.002 0.0156 0.1113 0.9843 0.5443 0.6880 0.4556

0.005 0.0186 0.1214 0.9813 0.5343 0.6794 0.4677

0.01 0.0223 0.1325 0.9776 0.5337 0.6750 0.4700

0.02 0.0274 0.1469 0.9725 0.5322 0.6719 0.4722

0.05 0.0384 0.1741 0.9615 0.5489 0.6805 0.4543

0.1 0.0541 0.2081 0.9456 0.5816 0.7007 0.4205

0.2 0.0862 0.2666 0.9132 0.6093 0.7198 0.3937

0.5 0.1972 0.4159 0.8016 0.6104 0.7348 0.3918

1 0.4103 0.6156 0.5871 0.6593 0.7804 0.3401

2 0.7937 0.8746 0.2039 0.8840 0.9210 0.1164

≥ 5 0.9977 0.9834 0.0022 1.0351 1.0010 -0.03365

Table D.11: Performance of the lasso regressor for different values of β with

respect to the three-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9966 0.0000 1.0000 0.9966 0.0000

0 0.0146 0.1114 0.9853 0.6333 0.7692 0.3595

0.001 0.0160 0.1162 0.9839 0.6193 0.7588 0.3743

0.002 0.0176 0.1219 0.9822 0.6180 0.7576 0.3755

0.005 0.0213 0.1339 0.9785 0.6212 0.7578 0.3724

0.01 0.0256 0.1469 0.9741 0.6300 0.7610 0.3636

0.02 0.0321 0.1645 0.9675 0.6472 0.7699 0.3465

0.05 0.0466 0.1987 0.9529 0.6909 0.7946 0.3028

0.1 0.0686 0.2429 0.9306 0.7180 0.8115 0.2755

0.2 0.1157 0.3206 0.8828 0.7371 0.8261 0.2548

0.5 0.2842 0.5176 0.7118 0.7536 0.8482 0.2374

1 0.5966 0.7637 0.3963 0.8484 0.9111 0.1442

2 0.9723 0.9823 0.0254 1.0207 1.0060 -0.0217

≥ 5 0.9975 0.9951 0.0025 1.0373 1.0144 -0.0370

Table D.12: Performance of the lasso regressor for different values of β with

respect to the five-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.

Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9973 0.0000 1.0000 0.9973 0.0000

0 0.0146 0.1125 0.9852 0.6359 0.7734 0.3469

0.001 0.0162 0.1178 0.9836 0.6277 0.7662 0.3548

0.002 0.0179 0.1238 0.9819 0.6274 0.7651 0.3543

0.005 0.0218 0.1366 0.9779 0.6298 0.7655 0.3504

0.01 0.0264 0.1504 0.9732 0.6438 0.7732 0.3356

0.02 0.0334 0.1691 0.9660 0.6674 0.7864 0.3111

0.05 0.0499 0.2073 0.9493 0.6931 0.8004 0.2830

0.1 0.0743 0.2551 0.9243 0.7040 0.8069 0.2709

0.2 0.1262 0.3377 0.8711 0.7301 0.8254 0.2444

0.5 0.3160 0.5489 0.6762 0.7828 0.8673 0.1952

1 0.6563 0.8034 0.3292 0.8597 0.9205 0.1259

2 0.9781 0.9861 0.0183 1.0220 1.0077 -0.0238

≥ 5 0.9977 0.9960 0.0022 1.0341 1.0138 -0.0337

Table D.13: Performance of the lasso regressor for different values of β with

respect to the six-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9978 0.0000 1.0000 0.9978 0.0000

0 0.0149 0.1143 0.9850 0.6675 0.7956 0.3204

0.001 0.0166 0.1201 0.9832 0.6589 0.7889 0.3280

0.002 0.0185 0.1266 0.9813 0.6597 0.7880 0.3254

0.005 0.0228 0.1403 0.9770 0.6609 0.7864 0.3221

0.01 0.0278 0.1549 0.9720 0.6598 0.7839 0.3214

0.02 0.0351 0.1743 0.9645 0.6710 0.7899 0.3091

0.05 0.0523 0.2136 0.9470 0.7032 0.8093 0.2774

0.1 0.0790 0.2649 0.9198 0.7259 0.8243 0.2579

0.2 0.1369 0.3537 0.8608 0.7402 0.8360 0.2466

0.5 0.3446 0.5748 0.6487 0.7902 0.8747 0.2015

1 0.7204 0.8430 0.2681 0.9260 0.9568 0.0701

≥ 2 0.9976 0.9965 0.0023 1.0354 1.0148 -0.0349

Table D.14: Performance of the lasso regressor for different values of β with

respect to the seven-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.

Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9980 0.0000 1.0000 0.9980 0.0000

0 0.0152 0.1158 0.9846 0.6846 0.8094 0.3033

0.001 0.0171 0.1222 0.9827 0.6752 0.8022 0.3117

0.002 0.0191 0.1290 0.9806 0.6793 0.8038 0.3061

0.005 0.0235 0.1431 0.9761 0.6929 0.8104 0.2897

0.01 0.0288 0.1583 0.9707 0.7008 0.8140 0.2815

0.02 0.0368 0.1788 0.9625 0.7131 0.8203 0.2702

0.05 0.0555 0.2207 0.9433 0.7377 0.8343 0.2474

0.1 0.0843 0.2746 0.9136 0.7593 0.8477 0.2268

0.2 0.1488 0.3705 0.8474 0.7821 0.8649 0.2054

0.5 0.3884 0.6125 0.6010 0.8307 0.8993 0.1557

1 0.7702 0.8729 0.2146 0.9315 0.9606 0.0607

≥ 2 0.9978 0.9968 0.0022 1.0330 1.0140 -0.0324

Table D.15: Performance of the lasso regressor for different values of β with

respect to the eight-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9982 0.0000 1.0000 0.9982 0.0000

0 0.0152 0.1161 0.9845 0.6810 0.8078 0.2983

0.001 0.0172 0.1229 0.9825 0.6680 0.7988 0.3108

0.002 0.0193 0.1301 0.9803 0.6687 0.7980 0.3099

0.005 0.0239 0.1447 0.9756 0.6772 0.8010 0.3010

0.01 0.02931 0.1601 0.9700 0.6827 0.8034 0.2944

0.02 0.03735 0.1808 0.9617 0.6878 0.8059 0.2899

0.05 0.05665 0.2238 0.9417 0.7058 0.8170 0.2725

0.1 0.0871 0.2804 0.9101 0.7178 0.8259 0.2630

0.2 0.1556 0.3808 0.8389 0.7413 0.8429 0.2426

0.5 0.4081 0.6304 0.5770 0.8102 0.8902 0.1724

1 0.8222 0.9028 0.1535 0.9566 0.9746 0.0266

2 0.9931 0.9947 0.0052 1.0293 1.0124 -0.0297

≥ 5 0.9978 0.9971 0.0021 1.0329 1.0142 -0.0321

Table D.16: Performance of the lasso regressor for different values of β with

respect to the nine-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.

Training Test

β
MSE MED R2

MSE MED R2

Zero

Baseline

1.0000 0.9984 0.0000 1.0000 0.9984 0.0000

0 0.0154 0.1173 0.9844 0.7107 0.8259 0.2807

0.001 0.0176 0.1246 0.9823 0.7029 0.8202 0.2889

0.002 0.0198 0.1320 0.9800 0.6993 0.8172 0.2924

0.005 0.0246 0.1470 0.9752 0.7010 0.8166 0.2911

0.01 0.0302 0.1630 0.9695 0.7055 0.8183 0.2882

0.02 0.0387 0.1846 0.9609 0.7164 0.8241 0.2792

0.05 0.0594 0.2298 0.9401 0.7462 0.8415 0.2503

0.1 0.0929 0.2905 0.9063 0.7675 0.8546 0.2299

0.2 0.1672 0.3959 0.8312 0.7862 0.8685 0.2123

0.5 0.4274 0.6463 0.5681 0.8501 0.9131 0.1477

1 0.8516 0.9200 0.1415 0.9891 0.9916 0.0083

≥ 2 0.9976 0.9971 0.0024 1.0358 1.0158 -0.0360

Table D.17: Performance of the lasso regressor for different values of β with

respect to the ten-dimensional target space based on nonmetric

SMACOF. The best results for each combination of column and

feature space are highlighted in boldface.





E A DATA S E T O N S H A P E
P E R C E P T I O N

In Chapter 10, we have presented and analyzed a new dataset on shape Overview

perception. In this appendix, we provide additional scatter plots, which

further illustrate our analysis of feature ratings from Section 10.3.3:

Section E.1 contains scatter plots for two different features rated with the

same procedure, while Section E.2 provides scatter plots for attentive

vs. pre-attentive ratings of individual features.

e.1 correlations between features

Figure E.1: Scatter plot for the features form and lines based on the pre-

attentive feature scales.
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Figure E.2: Scatter plot for the features form and orientation based on the

pre-attentive feature scales.

Figure E.3: Scatter plot for the features form and orientation based on the

attentive feature scales.
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Figure E.4: Scatter plot for the features lines and orientation based on the

pre-attentive feature scales.

Figure E.5: Scatter plot for the features lines and orientation based on the

attentive feature scales.
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e.2 attentive and pre-attentive ratings

Figure E.6: Scatter plot comparing pre-attentive and attentive ratings for the

form feature.



E.2 attentive and pre-attentive ratings 893

Figure E.7: Scatter plot comparing pre-attentive and attentive ratings for the

lines feature.





F
A P SYC H O LO G I CA L
S I M I L A R I T Y S PAC E FO R
S H A P E S

This chapter provides further illustrations for our analysis of our shapes Overview

dataset with the usage of conceptual spaces in Chapter 11. In Section

11.2.2, we have tried to predict the entries of the overall dissimilarity

matrix with three baselines. For the pixel baseline (which considers the

distance of down-scaled images), we provide additional visualizations

with respect to both the mean and the median matrices in Sections

F.1 and F.2. These additional visualizations show the performance of

the pixel baseline as a function of aggregator function and block size,

considering different distance metrics.

f.1 pixel baseline for the mean matrix

Figure F.1: Kendall’s τ between the pixel baseline and the mean matrix as a

function of block size and aggregator function, using the Manhat-

tan distance function with uniform weights.
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Figure F.2: Kendall’s τ between the pixel baseline and the mean matrix as a

function of block size and aggregator function, using the Manhat-

tan distance function with optimized weights.

Figure F.3: Kendall’s τ between the pixel baseline and the mean matrix as a

function of block size and aggregator function, using the negated

inner product with uniform weights as distance function.
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Figure F.4: Kendall’s τ between the pixel baseline and the mean matrix as a

function of block size and aggregator function, using the negated

inner product with optimized weights as distance function.

f.2 pixel baseline for the median matrix

Figure F.5: Kendall’s τ between the pixel baseline and the median matrix as a

function of block size and aggregator function, using the Euclidean

distance function with uniform weights.
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Figure F.6: Kendall’s τ between the pixel baseline and the median matrix as a

function of block size and aggregator function, using the Euclidean

distance function with optimized weights.

Figure F.7: Kendall’s τ between the pixel baseline and the median matrix

as a function of block size and aggregator function, using the

Manhattan distance function with uniform weights.
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Figure F.8: Kendall’s τ between the pixel baseline and the median matrix

as a function of block size and aggregator function, using the

Manhattan distance function with optimized weights.

Figure F.9: Kendall’s τ between the pixel baseline and the median matrix as a

function of block size and aggregator function, using the negated

inner product with uniform weights as distance function.
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Figure F.10: Kendall’s τ between the pixel baseline and the median matrix as a

function of block size and aggregator function, using the negated

inner product with optimized weights as distance function.



G L E A R N I N G A M A P P I N G
I N TO S H A P E S PAC E

In Chapter 12, we trained different variants of convolutional neural Overview

networks (CNNs, cf. Section 6.2.2) on the task of mapping raw pixel

input onto coordinates in similarity spaces for the shape domain.

This appendix contains some additional pieces of information with

respect to our machine learning experiments. In Section G.1, we list

the classes contained in the datasets TU Berlin [143] and Sketchy

[348]. In Sections 12.4.2 and 12.4.3, we investigated the performance of

transfer learning with classification-based and reconstruction-based

networks, which were pretrained on sketch data, respectively. Sections

G.2 and G.3 provide the results of the respective lasso regressors for

different regularization strengths. In Sections 12.5.1 and 12.5.2, we then

conducted some multitask learning experiments, whose raw results can

be found in Sections G.4 and G.5, respectively. Finally, Sections 12.6.1

and 12.6.2 contained the results of some generalization experiments,

where we fixed the hyperparameter settings of the machine learning

architecture, and varied the dimensionality of the target similarity

space. The raw results of these experiments can be found in Sections

G.6 and G.7.
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g.1 class structure of sketch datasets

Common (98)

airplane alarm clock ant apple

axe banana bear bee

bell bench bicycle blimp

bread butterfly camel candle

cannon car castle cat

chair church couch cow

crab crocodile cup dog

dolphin door duck elephant

eyeglasses fan fish flower

frog giraffe guitar hamburger

hammer harp hat hedgehog

helicopter horse hot air balloon hotdog

hourglass kangaroo knife lion

lobster mouse motorcycle mushroom

owl parrot pear penguin

piano pickup truck pig pineapple

pistol pizza pretzel rabbit

rifle sailboat saxophone scissors

scorpion sea turtle seagull shark

sheep shoe skyscraper snail

snake spider spoon squirrel

strawberry swan sword table

teapot teddy bear tiger tree

trumpet umbrella violin windmill

wine bottle zebra

Table G.1: List of the 98 common categories shared by TU Berlin [143] and

Sketchy [348].
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TU Berlin only (152)

angel arm armchair ashtray

backpack barn baseball bat basket

bathtub bed beer mug binoculars

book bookshelf boomerang bottle opener

bowl brain bridge bulldozer

bus bush cabinet cactus

cake calculator camera canoe

carrot cell phone chandelier cigarette

cloud comb computer monitor computer mouse

crane crown diamond donut

door handle dragon ear envelope

eye face feather fire hydrant

flashlight floor lamp flying bird flying saucer

foot fork frying pan grapes

grenade hand head head phones

helmet house human skeleton ice cream cone

ipod key keyboard ladder

laptop leaf lightbulb lighter

loudspeaker mailbox megaphone mermaid

microphone microscope monkey moon

mosquito mouth mug nose

octopus palm tree panda paper clip

parachute parking meter pen person sitting

person walking pigeon pipe potted plant

power outlet present pumpkin purse

race car radio rainbow rollerblades

rooster santa clause sattelite sattelite dish

screwdriver ship shovel skateboard

skull snowboard snowman socks

space shuttle speed boat sponge bob standing bird

stapler streetlight submarine suitcase

sun suv syringe t-shirt

tablelamp teacup telephone tennis racket

tent tire toilet tomato

tooth toothbrush tractor traffic light

train trombone trousers truck

tv van vase walkie talkie

wheel wheelbarrow wineglass wrist watch

Table G.2: List of the categories, which are contained in TU Berlin [143], but

not in Sketchy [348].
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Sketchy only (27)

ape armor bat beetle

cabin chicken deer geyser

hermit crab jack o lantern jellyfish lizard

raccoon racket ray rhinoceros

rocket saw seal songbird

starfish tank turtle volcano

wading bird wheelchair window

Table G.3: List of the categories, which are contained in Sketchy [348], but not

in TU Berlin [143].

g.2 transfer learning on sketch classifi-
cation

Training Test

β
MSE MED R2

MSE MED R2

0 0.0479 0.2004 0.9520 0.5567 0.6879 0.4409

0.001 0.0748 0.2512 0.9249 0.5576 0.6846 0.4381

0.002 0.0819 0.2632 0.9176 0.5583 0.6840 0.4374

0.005 0.0960 0.2856 0.9035 0.5537 0.6797 0.4426

0.01 0.1116 0.3084 0.8879 0.5384 0.6704 0.4589

0.02 0.1350 0.3399 0.8642 0.5138 0.6574 0.4846

0.05 0.1911 0.4062 0.8080 0.4775 0.6419 0.5216

0.1 0.2754 0.4948 0.7237 0.4865 0.6586 0.5133

0.2 0.4475 0.6481 0.5519 0.5696 0.7309 0.4310

0.5 0.9356 0.9615 0.0642 0.9583 0.9728 0.0415

≥ 1 0.9984 0.9930 0.0016 1.0146 1.0010 -0.0147

Table G.4: Results for the lasso regressor based on Cdefault with respect to the

four-dimensional mean target space, using 10% salt and pepper

noise in the inputs during training, and no noise during testing.

Best test set results are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

0 0.0513 0.2073 0.9486 0.554 0.6848 0.4451

0.001 0.0557 0.2156 0.9442 0.5485 0.6806 0.4501

0.002 0.0598 0.2235 0.9400 0.5539 0.6830 0.4442

0.005 0.0689 0.2401 0.9309 0.5656 0.6876 0.4320

0.01 0.0783 0.2561 0.9214 0.5709 0.6899 0.4262

0.02 0.0900 0.2748 0.9097 0.5705 0.6898 0.4262

0.05 0.1123 0.3076 0.8872 0.5538 0.6806 0.4431

0.1 0.1395 0.3439 0.8597 0.5343 0.6718 0.4635

0.2 0.1851 0.3983 0.8139 0.5065 0.6602 0.4929

0.5 0.3121 0.5285 0.6871 0.5120 0.6783 0.4892

1 0.5238 0.7064 0.4763 0.6164 0.7654 0.3851

2 0.9233 0.9552 0.0770 0.9456 0.9664 0.0547

≥ 5 0.9984 0.9930 0.0016 1.0146 1.0010 -0.0147

Table G.5: Results for the lasso regressor based on Clarge with respect to the

four-dimensional mean target space, using 10% salt and pepper

noise in the inputs during training, and no noise during testing.

Best test set results are highlighted in boldface.

Training Test

β
MSE MED R2

MSE MED R2

0 0.0563 0.2145 0.9433 0.7307 0.7825 0.2624

0.001 0.0642 0.2287 0.9353 0.6723 0.7475 0.3219

0.002 0.0712 0.2408 0.9283 0.6502 0.7347 0.3444

0.005 0.0880 0.2682 0.9114 0.6275 0.7213 0.3682

0.01 0.1094 0.2996 0.8898 0.6038 0.7080 0.3925

0.02 0.1427 0.3433 0.8562 0.5778 0.6946 0.4190

0.05 0.2184 0.4299 0.7801 0.5478 0.6815 0.4505

0.1 0.3186 0.5313 0.6797 0.5584 0.6994 0.4406

0.2 0.5005 0.6874 0.4981 0.6471 0.7758 0.3521

0.5 0.9874 0.9875 0.0126 1.0084 0.9978 -0.0084

≥ 1 0.9984 0.9930 0.0016 1.0146 1.0010 -0.0147

Table G.6: Results for the lasso regressor based on Ccorrelation with respect to

the four-dimensional mean target space, using 10% salt and pepper

noise in the inputs during training, and no noise during testing.

Best test set results are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

0 0.0563 0.2145 0.9433 0.7307 0.7825 0.2624

0.001 0.0642 0.2287 0.9353 0.6723 0.7475 0.3219

0.002 0.0712 0.2408 0.9283 0.6502 0.7347 0.3444

0.005 0.0880 0.2682 0.9114 0.6275 0.7213 0.3682

0.01 0.1094 0.2996 0.8898 0.6038 0.7080 0.3925

0.02 0.1427 0.3433 0.8562 0.5778 0.6946 0.4190

0.05 0.2184 0.4299 0.7801 0.5478 0.6815 0.4505

0.1 0.3186 0.5313 0.6797 0.5584 0.6994 0.4406

0.2 0.5005 0.6874 0.4981 0.6471 0.7758 0.3521

0.5 0.9874 0.9875 0.0126 1.0084 0.9978 -0.0084

≥ 1 0.9984 0.9930 0.0016 1.0146 1.0010 -0.0147

Table G.7: Results for the lasso regressor based on Csmall with respect to the

four-dimensional mean target space, using 10% salt and pepper

noise in the inputs during training, and no noise during testing.

Best test set results are highlighted in boldface.

g.3 transfer learning on sketch recon-
struction

Training Test

β
MSE MED R2

MSE MED R2

0 0.2206 0.4288 0.7773 0.9709 0.9054 0.0168

0.001 0.3873 0.579 0.6098 0.8580 0.8664 0.1327

0.002 0.4480 0.6266 0.5488 0.8663 0.8743 0.1246

0.005 0.5179 0.6784 0.4787 0.8649 0.8784 0.1267

0.01 0.5532 0.7045 0.4436 0.8518 0.8760 0.1406

0.02 0.5845 0.7283 0.4125 0.8384 0.8739 0.1551

0.05 0.6378 0.7695 0.3591 0.8315 0.8797 0.1631

0.1 0.7058 0.8188 0.2907 0.8501 0.8988 0.1452

0.2 0.8220 0.8948 0.1742 0.9015 0.9367 0.0947

0.5 0.9981 0.9929 0.0019 1.0144 1.0009 -0.0145

≥ 1 0.9984 0.9930 0.0016 1.0146 1.0010 -0.0147

Table G.8: Results for the lasso regressor based on Rdefault with respect to the

four-dimensional mean target space, using 10% salt and pepper

noise in the inputs during training, and no noise during testing.

Best test set results are highlighted in boldface.
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Training Test

β
MSE MED R2

MSE MED R2

0 0.1410 0.3383 0.8587 1.0791 0.9362 -0.0886

0.001 0.1698 0.3710 0.8298 0.9160 0.8755 0.0767

0.002 0.1898 0.3931 0.8097 0.8697 0.8555 0.1245

0.005 0.2309 0.4361 0.7686 0.8002 0.8261 0.1958

0.01 0.2826 0.4873 0.7169 0.7571 0.8103 0.2400

0.02 0.3610 0.5598 0.6383 0.7376 0.8102 0.2605

0.05 0.5177 0.6894 0.4809 0.7536 0.8363 0.2443

0.1 0.6839 0.8083 0.3139 0.8268 0.8902 0.1708

0.2 0.8976 0.9384 0.1001 0.9518 0.9669 0.0465

≥ 0.5 0.9984 0.993 0.0016 1.0146 1.0010 -0.0147

Table G.9: Results for the lasso regressor based on Rbest with respect to the

four-dimensional mean target space, using 10% salt and pepper

noise in the inputs during training, and no noise during testing.

Best test set results are highlighted in boldface.

g.4 multitask learning on sketch classifi-
cation

Acc. TU Acc.

λ3 Epochs Corr.

Berlin Sketchy

MSE MED R2

0 188.6 0.2743 0.6320 0.7933 – – –

0.0625 76.4 0.4141 0.5640 0.7510 0.4041 0.5920 0.5775

0.125 101.8 0.4240 0.6113 0.7835 0.4316 0.6162 0.5481

0.25 66.8 0.4210 0.5570 0.7504 0.4733 0.6428 0.5054

0.5 55.6 0.4346 0.5034 0.7172 0.4668 0.6268 0.5114

1 106.2 0.4505 0.6063 0.7747 0.4521 0.6348 0.5321

2 68.4 0.4557 0.5333 0.7390 0.4819 0.6518 0.5014

Table G.10: Test set results for the multitask learner based on Cdefault with

respect to the four-dimensional mean target space, using 10%
salt and pepper noise in the inputs during training, and no

noise during testing. Best results for all evaluation metrics are

highlighted in boldface.
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Acc. TU Acc.

λ3 Epochs Corr.

Berlin Sketchy

MSE MED R2

0 178.4 0.2777 0.6274 0.7908 – – –

0.0625 103.0 0.4053 0.6059 0.7802 0.4513 0.6299 0.5208

0.125 123.2 0.4118 0.6145 0.7818 0.4182 0.6020 0.5567

0.25 106.6 0.4252 0.5938 0.7697 0.4641 0.6350 0.5111

0.5 108.6 0.4422 0.6115 0.7785 0.4318 0.6156 0.5471

1 111.8 0.4482 0.6111 0.7780 0.4664 0.6418 0.5157

2 67.2 0.4426 0.5754 0.7587 0.4771 0.6492 0.4999

Table G.11: Test set results for the multitask learner based on Csmall with

respect to the four-dimensional mean target space, using 10%
salt and pepper noise in the inputs during training, and no

noise during testing. Best results for all evaluation metrics are

highlighted in boldface.

Acc. TU Acc.

λ3 Epochs Corr.

Berlin Sketchy

MSE MED R2

0 5.6 0.3292 0.3636 0.6146 – – –

0.0625 72.2 0.4138 0.5058 0.6842 0.6121 0.7099 0.3683

0.125 95.2 0.4302 0.5160 0.6874 0.4912 0.6353 0.4913

0.25 115.2 0.4333 0.5153 0.6927 0.4879 0.6338 0.4905

0.5 82.2 0.4474 0.5131 0.6934 0.5086 0.6451 0.4727

1 23.0 0.4407 0.5113 0.6836 0.5572 0.6767 0.4160

2 96.6 0.4534 0.5196 0.7018 0.4513 0.6115 0.5201

Table G.12: Test set results for the multitask learner based on Ccorrelation

with respect to the four-dimensional mean target space, using

10% salt and pepper noise in the inputs during training, and no

noise during testing. Best results for all evaluation metrics are

highlighted in boldface.
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g.5 multitask learning on sketch recon-
struction

Rec.

λ3 Epochs Corr.

Error

MSE MED R2

0 56.2 0.2280 0.1303 – – –

0.0625 25.2 0.3895 0.1336 0.6712 0.7471 0.2831

0.125 41.4 0.3887 0.1332 0.6705 0.7470 0.2903

0.25 33.0 0.3833 0.1355 0.6692 0.7556 0.2944

0.5 42.4 0.3790 0.1356 0.6471 0.7402 0.3166

1 35.2 0.3837 0.1363 0.6384 0.7423 0.3179

2 42.4 0.3783 0.1391 0.6211 0.7297 0.3369

Table G.13: Test set results for the multitask learner based on Rdefault with

respect to the four-dimensional mean target space, using 10%
salt and pepper noise in the inputs during training, and no

noise during testing. Best results for all evaluation metrics are

highlighted in boldface.

Rec.

λ3 Epochs Corr.

Error

MSE MED R2

0 192.4 0.3019 0.0828 – – –

0.0625 9.8 0.3893 0.1023 0.5504 0.6851 0.4144

0.125 4.0 0.4049 0.1135 0.5587 0.6870 0.4036

0.25 4.6 0.4033 0.1114 0.5506 0.6855 0.4213

0.5 4.8 0.3987 0.1129 0.5494 0.6860 0.4205

1 6.4 0.3788 0.1876 0.6827 0.7507 0.2605

2 6.4 0.3948 0.1153 0.5520 0.6846 0.4141

Table G.14: Test set results for the multitask learner based onRbest with respect

to the four-dimensional mean target space, using 10% salt and

pepper noise in the inputs during training, and no noise during

testing. Best results for all evaluation metrics are highlighted in

boldface.
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g.6 classification-based generalization ex-
periments

Number of

Dimensions

MSE MED R2

1 1.0000 0.8628 0.0000

2 1.0000 0.9642 0.0000

3 1.0000 0.9904 0.0000

4 1.0000 0.9940 0.0000

5 1.0000 0.9957 0.0000

6 1.0000 0.9964 0.0000

7 1.0000 0.9971 0.0000

8 1.0000 0.9975 0.0000

9 1.0000 0.9977 0.0000

10 1.0000 0.9980 0.0000

Table G.15: Test set results for the zero baseline with respect to the mean target

spaces of different dimensionality, using 10% salt and pepper noise

in the inputs during training, and no noise during testing.

Number of

Dimensions

MSE MED R2

1 0.5618 0.5983 0.4382

2 0.4667 0.6236 0.5277

3 0.4875 0.6585 0.5088

4 0.5090 0.6828 0.4924

5 0.5427 0.7138 0.4515

6 0.5549 0.7246 0.4395

7 0.5715 0.7355 0.4100

8 0.5974 0.7527 0.3934

9 0.6282 0.7760 0.3588

10 0.6528 0.7906 0.3415

Table G.16: Test set results for the transfer learner with β = 0.005 based on

the Cinception feature space with respect to the mean target spaces

of different dimensionality, using 10% salt and pepper noise in

the inputs during training, and no noise during testing.
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Number of

Dimensions

MSE MED R2

1 0.5072 0.5396 0.4928

2 0.3893 0.5472 0.607

3 0.4353 0.5996 0.5585

4 0.4612 0.6337 0.5374

5 0.4666 0.6440 0.5288

6 0.5151 0.6826 0.4812

7 0.5305 0.6957 0.4519

8 0.5601 0.7188 0.4298

9 0.6037 0.7503 0.3652

10 0.6145 0.7594 0.3759

Table G.17: Test set results for the transfer learner with β = 0.02 based on

the Csmall feature space with respect to the mean target spaces of

different dimensionality, using 10% salt and pepper noise in the

inputs during training, and no noise during testing.

Number of

Dimensions

MSE MED R2

1 0.6356 0.5766 -130.4124

2 0.4178 0.5537 0.4525

3 0.4553 0.6064 0.5266

4 0.4041 0.5920 0.5775

5 0.4499 0.6332 0.5323

6 0.4560 0.6403 0.5273

7 0.5130 0.6839 0.4691

8 0.5376 0.7063 0.4488

9 0.5442 0.7132 0.4397

10 0.5895 0.7399 0.3978

Table G.18: Test set results for the multitask learner with λ3 = 0.0625 based on

the Cdefault configuration with respect to the mean target spaces

of different dimensionality, using 10% salt and pepper noise in

the inputs during training, and no noise during testing.
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g.7 reconstruction-based generalization
experiments

Number of

Dimensions

MSE MED R2

1 0.8255 0.7113 0.1745

2 0.6637 0.7159 0.3337

3 0.7145 0.7822 0.2790

4 0.7376 0.8102 0.2605

5 0.6982 0.7971 0.3049

6 0.7283 0.8204 0.2733

7 0.7672 0.8482 0.2249

8 0.7680 0.8522 0.2179

9 0.7926 0.8690 0.1846

10 0.8032 0.8771 0.1869

Table G.19: Test set results for the transfer learner with β = 0.02 based on

the Rbest feature space with respect to the mean target spaces of

different dimensionality, using 10% salt and pepper noise in the

inputs during training, and no noise during testing.

Number of

Dimensions

MSE MED R2

1 0.6126 0.5980 -62.8045

2 0.3868 0.5263 0.5454

3 0.4997 0.6456 0.4641

4 0.5504 0.6851 0.4144

5 0.5765 0.7099 0.3868

6 0.5634 0.7115 0.3977

7 0.5968 0.7354 0.3659

8 0.6421 0.7622 0.3211

9 0.7020 0.8022 0.2588

10 0.7011 0.8032 0.2584

Table G.20: Test set results for the multitask learner with λ3 = 0.0625 based

on the Rbest configuration with respect to the mean target spaces

of different dimensionality, using 10% salt and pepper noise in

the inputs during training, and no noise during testing.



E R K L Ä R U N G Ü B E R D I E
E I G E N STÄ N D I G K E I T D E R
E R B R AC H T E N
W I S S E N S C H A F T L I C H E N
L E I ST U N G

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige

Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfs-

mittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt

übernommenen Daten und Konzepte sind unter Angabe der Quelle

gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir

die nachstehend aufgeführten Personen in der jeweils beschriebenen

Weise entgeltlich/ unentgeltlich geholfen.

1. Mingya Liu und Ulf Krumnack haben (unentgeltlich) gemeinsam

mit mir den Antragstext für die Summer School "Concepts in

Action: Representation, Learning, and Application"geschrieben.

Dieser Antragstext wurde von Mingya Liu und mir teilweise

im Einleitungskapitel [50] zum gleichnamigen Sammelband [49]

wiederverwendet. Einige Textstellen daraus habe ich mit kleinen

Änderungen im Einleitungstext zu Kapitel 1 sowie in Abschnitt

1.1 verwendet.

2. Elektra Kypridemou hat (unentgeltlich) gemeinsam mit mir die

ursprüngliche Version der NOUN-Studie (Kapitel 9) durchge-

führt. Wie jeweils zu Beginn der Kapitel 8 und 9 bereits dargelegt,

hat Elektra Kypridemou bei unserer gemeinsamen Publikation

[40] den Hintergrund zu Ähnlichkeitsbewertungen und Multi-

dimensional Scaling beschrieben, sowie die dort betrachteten

Ähnlichkeitsräume aus den vorhandenen Ähnlichkeitsbewertun-

gen extrahiert. Der in Abschnitt 8.7 beschriebene hybride Ansatz

sowie die Machine Learning Experimente (siehe Abschnitt 9.2)

wurden von mir entwickelt. Die in Abschnitten 8.1, 8.2 und 8.7

dargestellten Inhalte basieren teilweise auf unserer gemeinsamen

Veröffentlichung, wurden von mir aber noch deutlich detaillier-

ter ausgearbeitet. Auch die in Kapitel 9 besprochene Studie auf

dem NOUN Datenset wurde von mir nach unserer Kollaboration

nochmals in verbesserter und vertiefter Weise wiederholt.



914 learning a mapping into shape space

3. Margit Scheibel hat mir freundlicherweise (unentgeltlich) Daten

aus einer ihrer Studien [349] bezüglich der visuellen Ähnlichkeit

von Strichzeichnungen zur Verfügung gestellt. In der daraus

erwachsenen (unentgeltlichen) Kooperation hat Margit Scheibel

die psychologischen Studien (siehe Abschnitt 10.2) geplant und

durchgeführt, sowie eine statistische Auswertung der Rohda-

ten (siehe Abschnitt 10.3) vorgenommen. Für die gegenwärtig

noch in Vorbereitung befindliche Publikation [54] hat sie au-

ßerdem relevante Quellen für den Literaturüberblick aus dem

Bereich (Neuro-)Psychologie gesichtet. Die in Abschnitten 10.2

und 10.3 enthaltenen Texte basieren auf unserem Entwurf für

einen gemeinsamen Artikel und wurden maßgeblich von Margit

Scheibel geschrieben, für den Kontext dieser Dissertation aller-

dings von mir noch angepasst. Da die ursprünglichen Skripte

zur statistischen Analyse nicht mehr verfügbar waren, habe ich

die statistische Analyse von Abschnitt 10.3 nochmals basierend

auf ihrer Beschreibung reimplementiert und selbst durchgeführt.

Für den Literaturüberblick in Abschnitt 10.1 habe ich mich an

den von Margit Scheibel ausgewählten Autoren und Quellen

orientiert und diese mit eigenen Rechercheergebnissen (vor allem

in Bezug auf Conceptual Spaces, Computer Vision und CNNs)

ergänzt und vertieft. Die in Kapitel 11 beschriebene Analyse der

Ähnlichkeitsräume wurde komplett von mir durchgeführt, ist

aber auch Teil der geplanten gemeinsamen Veröffentlichung.

Weitere Personen waren an der inhaltlichen materiellen Erstellung

der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich hierfür

nicht die entgeltliche Hilfe von Vermittlungs- bzw. Beratungsdiensten

(Promotionsberater oder andere Personen) in Anspruch genommen.

Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen

für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der

vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher

oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

St. Leon-Rot, 30.07.2022

(Ort, Datum) (Unterschrift)



colophon

This document was typeset using the typographical look-and-feel

classicthesis developed by André Miede and Ivo Pletikosić. The

style was inspired by Robert Bringhurst’s seminal book on typography

“The Elements of Typographic Style”. classicthesis is available for both

LAT
E
X and L

Y
X:

https://bitbucket.org/amiede/classicthesis/

Final Version as of October 20, 2023 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/

	Using Conceptual Spaces for Artificial Intelligence
	 Abstract
	 Zusammenfassung
	 Publications
	 Preface
	Overview
	Contents
	1 Introduction
	1.1 Concepts From the View of Psychology
	1.1.1 Psychological Theories of Concepts
	1.1.2 Empirical Observations about Concepts

	1.2 The Conceptual Spaces Framework
	1.2.1 Overview of the Framework
	1.2.2 Relation to Psychology
	1.2.3 The Classical Layers of Representation
	1.2.4 Using the Conceptual Layer to Solve the Symbol Grounding Problem
	1.2.5 Relation to Machine Learning
	1.2.6 Neural Grounding

	1.3 Contributions of This Dissertation
	1.3.1 The Envisioned AI System
	1.3.2 A Comprehensive Formalization of the Framework
	1.3.3 Obtaining the Dimensions of a Conceptual Space
	1.3.4 Learning Conceptual Regions


	 Formalizing Conceptual Spaces
	2 Defining Conceptual Regions
	2.1 The Original Conceptual Spaces Framework
	2.1.1 The Structure of a Conceptual Space
	2.1.2 Conceptual Regions

	2.2 An Argument Against Convexity
	2.2.1 Convex Sets Cannot Encode Cross-Domain Correlations
	2.2.2 Potential Solutions

	2.3 A Parametric Definition of Concepts
	2.3.1 Formalizing Conceptual Similarity Spaces
	2.3.2 Crisp Conceptual Regions
	2.3.3 Fuzzy Conceptual Regions
	2.3.4 Implementation and Example: Fruit Space

	2.4 Related Work
	2.4.1 Related General Ideas
	2.4.2 Prior Formalizations of Conceptual Spaces
	2.4.3 Composite Concepts

	2.5 Detailed Comparison to Other Formalizations
	2.5.1 Comparison to Adams and Raubal
	2.5.2 Comparison to Rickard
	2.5.3 Comparison to Lewis and Lawry

	2.6 Summary

	3 Operations for Combining Concepts
	3.1 Intersection
	3.1.1 Intersection of Cores
	3.1.2 Intersection of Concepts
	3.1.3 Implementation and Example

	3.2 Union
	3.2.1 Definition
	3.2.2 Implementation and Example

	3.3 Negation
	3.4 Subspace Projection
	3.4.1 Definition
	3.4.2 Implementation and Example

	3.5 Axis-Parallel Cut
	3.5.1 Definition
	3.5.2 Implementation and Example

	3.6 Supported Applications
	3.6.1 Concept Formation
	3.6.2 Concept Combination

	3.7 Comparison to Other Formalizations
	3.8 Summary

	4 Measuring Relations between Concepts
	4.1 Concept Size
	4.1.1 The Size of a Fuzzified Cuboid's α-Cut
	4.1.2 The Size of a Concept
	4.1.3 Implementation and Example

	4.2 Subsethood
	4.2.1 Definition
	4.2.2 Implementation and Example

	4.3 Implication
	4.3.1 Definition
	4.3.2 Implementation and Example

	4.4 Concept Similarity
	4.4.1 Similarity as Inverse Distance
	4.4.2 Definition
	4.4.3 Implementation and Example

	4.5 Betweenness
	4.5.1 Betweenness in the Literature
	4.5.2 Definition
	4.5.3 Implementation and Example

	4.6 Supported Applications
	4.6.1 Concept Formation
	4.6.2 Commonsense Reasoning

	4.7 Comparison to Other Formalizations
	4.8 Summary


	 Machine Learning and Optimization Background
	5 General Machine Learning Background
	5.1 General Notions in Machine Learning
	5.1.1 Task and Model
	5.1.2 Experience and Evaluation
	5.1.3 Fitting the Model's Parameters
	5.1.4 Practical Considerations

	5.2 Machine Learning Algorithms
	5.2.1 Linear Regression
	5.2.2 Logistic Regression
	5.2.3 Support Vector Machines
	5.2.4 Decision Trees
	5.2.5 k Nearest Neighbors

	5.3 Dimensionality Reduction
	5.3.1 Feature Selection
	5.3.2 Feature Extraction
	5.3.3 Metric Learning

	5.4 Summary

	6 Representation Learning With Artificial Neural Networks
	6.1 Representation Learning
	6.1.1 Desiderata for Good Representations
	6.1.2 Evaluating Representations

	6.2 Artificial Neural Networks
	6.2.1 Fully Connected Feedforward Networks
	6.2.2 Convolutional Neural Networks
	6.2.3 Regularization
	6.2.4 Backpropagation
	6.2.5 Training Algorithms
	6.2.6 Other Considerations

	6.3 Network Architectures for Representation Learning
	6.3.1 Autoencoders
	6.3.2 Word Embeddings
	6.3.3 Generative Adversarial Networks
	6.3.4 Variational Autoencoders

	6.4 Representation Learning for Conceptual Spaces
	6.4.1 General Considerations
	6.4.2 The Rectangle Domain

	6.5 Summary

	7 Learning Concepts in a Cognitive Way
	7.1 Concept Learning in Conceptual Spaces
	7.1.1 Learning Concepts from Few Examples
	7.1.2 The Bayesian Perspective
	7.1.3 The Machine Learning Perspective

	7.2 Learning Concepts under Knowledge-Based Constraints
	7.2.1 General Approaches
	7.2.2 Logic Tensor Networks
	7.2.3 Towards Conceptual Logic Tensor Networks

	7.3 Learning Concepts from Unlabeled Data
	7.3.1 Classical Clustering Techniques
	7.3.2 Hierarchical Concept Formation with COBWEB
	7.3.3 Adaptive Resonance Theory
	7.3.4 Incremental Category Learning with SUSTAIN

	7.4 Learning Concepts through Communication
	7.4.1 General Considerations
	7.4.2 Vertical Transmission
	7.4.3 Horizontal Transmission

	7.5 Summary

	8 Multidimensional Scaling and a Hybrid Proposal
	8.1 Obtaining Dissimilarity Ratings
	8.1.1 Direct Methods
	8.1.2 The Spatial Arrangement Method
	8.1.3 Indirect Methods
	8.1.4 General Considerations
	8.1.5 Extracting Dissimilarity Ratings From Datasets

	8.2 Multidimensional Scaling as an Optimization Problem
	8.2.1 The Optimization Problem
	8.2.2 Metric and Nonmetric MDS
	8.2.3 General Remarks
	8.2.4 An Illustrative Example

	8.3 Analytical Solutions with Classical MDS
	8.3.1 Mathematical Background
	8.3.2 The Algorithm
	8.3.3 An Illustrative Example

	8.4 Kruskal's Gradient Descent Approach
	8.4.1 Gradient Descent for Stress
	8.4.2 Monotone Regression
	8.4.3 Example for Monotone Regression
	8.4.4 The Algorithm
	8.4.5 An Illustrative Example

	8.5 Iterative Stress Majorization Through SMACOF
	8.5.1 Mathematical Background
	8.5.2 A Majorizing Function for Stress
	8.5.3 The Algorithm
	8.5.4 An Illustrative Example

	8.6 Evaluating MDS Solutions
	8.6.1 Stress-based Evaluation
	8.6.2 Interpretability-based Evaluation

	8.7 A Hybrid Proposal
	8.7.1 Proposed Procedure
	8.7.2 Possible Network Architectures
	8.7.3 Related Work

	8.8 Summary


	 Experimental Studies
	9 Feasibility Study on Novel Objects
	9.1 Comparing Metric and Nonmetric MDS
	9.1.1 The NOUN Dataset
	9.1.2 Methods
	9.1.3 Results
	9.1.4 Discussion

	9.2 Machine Learning Experiments
	9.2.1 General Methods
	9.2.2 Analyzing Feature Spaces and Baselines
	9.2.3 Comparing Feature Spaces and Regressors
	9.2.4 Comparing MDS Algorithms
	9.2.5 Generalization to Other Target Spaces
	9.2.6 Discussion

	9.3 Summary

	10 A Dataset on Shape Perception
	10.1 Related Work
	10.1.1 Shape Perception in (Neuro-)Psychology
	10.1.2 The Shape Domain in Conceptual Spaces
	10.1.3 Shape Features in Computer Vision
	10.1.4 Shape Sensitivity of CNNs

	10.2 Our New Dataset
	10.2.1 Stimuli
	10.2.2 Elicitation of Dissimilarity Ratings
	10.2.3 Elicitation of Feature Ratings

	10.3 Analysis of the Dataset
	10.3.1 Statistical Tools
	10.3.2 Comparing Visual and Conceptual Similarity
	10.3.3 Comparing Pre-Attentive and Attentive Feature Ratings

	10.4 Summary

	11 A Psychological Similarity Space for Shapes
	11.1 Obtaining Similarity Spaces with MDS
	11.1.1 Comparing Mean Dissimilarities to Median Dissimilarities
	11.1.2 Extracting the Similarity Spaces

	11.2 Are Distances and Dissimilarities Correlated?
	11.2.1 Methods
	11.2.2 Baselines
	11.2.3 Similarity Spaces

	11.3 Are Conceptual Regions Well-Formed?
	11.3.1 Overlap of Conceptual Regions
	11.3.2 Size of Conceptual Regions

	11.4 Are There Interpretable Directions?
	11.4.1 Methods
	11.4.2 General Observations
	11.4.3 Individual Features

	11.5 Summary

	12 Learning a Mapping into Shape Space
	12.1 Sketch Recognition
	12.1.1 Datasets
	12.1.2 Approaches

	12.2 Overall Approach
	12.2.1 Data
	12.2.2 Architecture
	12.2.3 Training, Evaluation, and Hyperparameters

	12.3 Obtaining Baseline Networks
	12.3.1 Sketch Classification
	12.3.2 Sketch Reconstruction

	12.4 Transfer Learning
	12.4.1 Photograph-Based Classification
	12.4.2 Sketch Classification
	12.4.3 Sketch Reconstruction

	12.5 Multitask Learning
	12.5.1 Sketch Classification
	12.5.2 Sketch Reconstruction

	12.6 Generalization to Other Target Spaces
	12.6.1 Classification
	12.6.2 Reconstruction

	12.7 Summary


	 Summary
	13 Conclusions
	13.1 Formalizing the Conceptual Layer
	13.1.1 Lessons Learned
	13.1.2 Open Ends
	13.1.3 Outlook

	13.2 Obtaining the Dimensions
	13.2.1 Lessons Learned
	13.2.2 Open Ends
	13.2.3 Outlook

	13.3 Learning Conceptual Regions
	13.3.1 Lessons Learned
	13.3.2 Outlook

	13.4 The Big Picture

	 Bibliography
	 List of Figures
	 List of Tables
	 List of Algorithms
	 List of Definitions, Lemmata, Propositions, and Corollaries

	 Appendix
	A Defining Conceptual Regions
	A.1 An Argument Against Convexity
	A.2 Formalizing Conceptual Similarity Spaces
	A.3 Crisp Conceptual Regions
	A.4 Fuzzy Conceptual Regions

	B Operations for Combining Concepts
	B.1 Intersection
	B.2 Union
	B.3 Subspace Projection
	B.4 Axis-Parallel Cut

	C Measuring Relations Between Concepts
	C.1 Size
	C.2 Subsethood
	C.3 Similarity
	C.4 Betweenness

	D Feasibility Study on Novel Objects
	D.1 Pixel Baseline with Uniform Weights
	D.2 Pixel Baseline with Optimized Weights
	D.3 Unregularized Regression for Different MDS Algorithms
	D.4 Lasso Regression for Different MDS Algorithms
	D.5 Lasso Regression for Different Dimensionality

	E A Dataset on Shape Perception
	E.1 Correlations between Features
	E.2 Attentive and Pre-Attentive Ratings

	F A Psychological Similarity Space for Shapes
	F.1 Pixel Baseline for the Mean Matrix
	F.2 Pixel Baseline for the Median Matrix

	G Learning a Mapping into Shape Space
	G.1 Class Structure of Sketch Datasets
	G.2 Transfer Learning on Sketch Classification
	G.3 Transfer Learning on Sketch Reconstruction
	G.4 Multitask Learning on Sketch Classification
	G.5 Multitask Learning on Sketch Reconstruction
	G.6 Classification-Based Generalization Experiments
	G.7 Reconstruction-Based Generalization Experiments

	 Declaration
	Colophon


