USING CONCEPTUAL SPACES FOR ARTIFICIAL INTELLIGENCE

Dissertation
zur Erlangung des Doktorgrades
des Fachbereichs Humanwissenschaften

der Universitat Osnabriick

vorgelegt
von
Lucas Bechberger
aus
Baden-Baden

Osnabriick, 2022

Lucas Bechberger: Using Conceptual Spaces for Artificial Intelligence
© 2022

Dedicated to my wife Lera and my son Kai.

ABSTRACT

Concepts are mental representations of categories and lie at the core
of human cognition: They allow us to generalize from individual
sensations, which is a requirement for both logical reasoning and
effective communication. The cognitive framework of conceptual spaces
proposes to represent concepts as convex regions in low-dimensional
similarity spaces with interpretable dimensions. It has received attention
from a wide variety of disciplines, including psychology, philosophy,
linguistics, neuroscience, and artificial intelligence. Conceptual spaces
can be interpreted as an intermediate representational layer bridging
the traditional dichotomy into symbolic and subsymbolic approaches.
As such, the conceptual spaces framework promises to solve the symbol
grounding problem by relating symbols to regions in the conceptual
layer, whose dimensions are grounded in subsymbolic processes.

This dissertation investigates how conceptual spaces can be applied
in artificial agents. Using the distinction of three representational layers
(subsymbolic, conceptual, and symbolic), we identify three core prob-
lems that need to be solved, namely, the formalization of the conceptual
layer and learning processes for attaching it to the subsymbolic and the
symbolic layer, respectively.

In order to implement conceptual spaces in artificial agents, one needs
a thorough mathematical formalization of the framework which closes
many of the remaining degrees of freedom of the general proposal. For
instance, instead of only requiring conceptual regions to be convex, we
need a parametric description of these regions such that they can be
easily represented in a computer program.

The first major contribution of this dissertation consists in providing
such a mathematical formalization of the conceptual layer, along with
a publicly available implementation. This formalization makes use of
star-shapedness instead of convexity in order to encode correlations
between domains in a geometric way. It furthermore offers a wide
variety of cognitive operations, both for creating new concepts and for
quantifying relations between concepts.

The second problem concerns the grounding of the conceptual space
in subsymbolic processing: We need to find an automated way of
mapping raw perceptual input (such as camera images or other sensor
values) into the conceptual layer. Only if such a mapping is available,
an artificial agent can successfully conceptualize its surroundings and
harness the representational power of the conceptual layer.

In this dissertation, we introduce two important approaches for
grounding the dimensions of a conceptual space. On the one hand, we
consider machine learning techniques for dimensionality reduction,

with a special focus on representation learning with deep neural
networks. The mapping learned by this approach can be applied to
novel inputs but has little to no psychological grounding. On the other
hand, we consider an approach which is based on dissimilarity ratings
obtained from human subjects in psychological experiments. These
ratings can be translated into a spatial representation with a technique
called multidimensional scaling. Here, a psychological grounding of
the similarity space is obvious, but an application to novel inputs is
very difficult.

The second major contribution of this dissertation consists in the pro-
posal of a hybrid procedure, which attempts to combine the advantages
of these two traditional approaches: The structure of the conceptual
space is initialized based on human dissimilarity ratings, and deep
neural networks are then subsequently used to learn a mapping from
raw inputs to coordinates in this space. We support this proposal by
two experimental studies on two different datasets.

Thirdly, we cannot assume that the designer of an autonomous
system can foresee all possible circumstances in which this system may
operate. Therefore, a fixed set of manually created concepts will not
be sufficient for an autonomous system — the artificial agent needs to
be equipped with the ability to learn and adapt concepts based on the
observations it makes. In other words, we need an automated way of
extracting symbols from the conceptual layer.

In this dissertation, we discuss several ways of making current ma-
chine learning algorithms more cognitively plausible. This includes the
need for incremental processing (observations are typically made one
after another) and unsupervised or semi-supervised learning (not all
observations come with an explicit label). We furthermore consider the
grounding of concepts in language games (where a group of agents
needs to negotiate a common conceptualization of their environment)
and the incorporation of explicit top-down constraints from the sym-
bolic layer (reflecting the influence of abstract background knowledge).

Overall, the content of this dissertation presents progress with respect
to all three core issues. It illustrates how conceptual spaces can be used
as a neural-symbolic approach to cognitive Al, which is able to integrate
many ideas from different strands of research.

ZUSAMMENFASSUNG

Konzepte sind mentale Reprédsentationen von Kategorien und bilden
den Kern menschlicher Kognition: Sie erlauben es uns von einzelnen
Wahrnehmungen zu generalisieren, was eine Voraussetzung fiir lo-
gisches Schliefsen und effektive Kommunikation ist. Das kognitive
Framework der Conceptual Spaces schldgt vor, Konzepte als konvexe
Regionen in niedrigdimensionalen Ahnlichkeitsraiumen mit interpre-
tierbaren Dimensionen darzustellen. Es hat grofle Aufmerksamkeit in
verschiedenen Disziplinen erfahren, unter anderem Psychologie, Phi-
losophie, Linguistik, Neurowissenschaften und kiinstliche Intelligenz.
Conceptual Spaces konnen als eine intermedidre Reprédsentationsschicht
interpretiert werden, welche die traditionelle Zweiteilung in symboli-
sche und subsymbolische Ansitze iiberbriickt. Das Conceptual Spaces
Framework verspricht das Symbol Grounding Problem zu 16sen, indem
Symbole mit Regionen in der konzeptuellen Schicht verkniipft werden,
deren Dimensionen in subsymbolischen Prozessen verankert sind.

Diese Dissertation untersucht wie Conceptual Spaces in kiinstlichen
Agenten angewendet werden konnen. Mithilfe der Unterscheidung
in drei Reprasentationsschichten (subsymbolisch, konzeptuell, sowie
symbolisch) identifizieren wir drei Kernprobleme, die gel6st werden
miissen, ndmlich die Formalisierung der konzeptuellen Schicht sowie
Lernprozesse zur Verkniipfung mit der subsymbolischen und der sym-
bolischen Schicht.

Um Conceptual Spaces in kiinstlichen Agenten zu implementie-
ren bendtigt man eine griindliche mathematische Formalisierung des
Frameworks, die viele der im generellen Ansatz verbliebenen Freiheits-
grade schliefst. Anstatt nur zu fordern, dass konzeptuelle Regionen
konvex sind, benétigt man beispielsweise eine parametrische Beschrei-
bung dieser Regionen, sodass sie in einem Computerprogramm gut
reprdsentiert werden kénnen.

Der erste Hauptbeitrag dieser Dissertation besteht darin solch eine
mathematische Formalisierung der konzeptuellen Schicht bereitzu-
stellen, gemeinsam mit einer 6ffentlich verfiigbaren Implementierung.
Diese Formalisierung benutzt Sternformigkeit statt Konvexitdt, um Kor-
relationen zwischen Doménen in einer geometrischen Art und Weise
darzustellen. Sie bietet auflerdem eine grofse Bandbreite an kognitiven
Operationen, sowohl um neue Konzepte zu erzeugen, als auch um
Beziehungen zwischen Konzepten zu quantifizieren.

Das zweite Problem bezieht sich auf die Verankerung des Conceptual
Space in subsymbolischen Prozessen: Wir bendtigen einen automatisier-
ten Weg um perzeptuellen Input (wie zum Beispiel Kamerabilder oder
andere Sensorwerte) in die konzeptuelle Schicht zu projizieren. Nur

vii

wenn eine solche Funktion verfiigbar ist, kann ein kiinstlicher Agent
erfolgreich seine Umgebung konzeptualisieren und das Reprasentati-
onsvermogen der konzeptuellen Schicht ausnutzen.

In dieser Dissertation stellen wir zwei wichtige Ansédtze fiir die
Verankerung der Dimensionen eines Conceptual Space vor. Einerseits
betrachten wir Techniken des maschinellen Lernens zur Dimensionsre-
duktion mit einem besonderen Augenmerk auf Repréasentationslernen
mit tiefen neuronalen Netzen. Die Funktion, die von diesen neuronalen
Netzen gelernt wird, kann auf neue Stimuli angewendet werden, hat
aber nur wenig bis keine psychologische Plausibilitidt. Andererseits
betrachten wir einen Ansatz, der auf Ahnlichkeitsbewertungen von
Teilnehmern psychologischer Experimente basiert. Diese Bewertungen
konnen mithilfe einer Technik namens Multidimensional Scaling in
eine rdumliche Repréasentation tiberfiihrt werden. In diesem Fall ist eine
psychologische Verankerung des Ahnlichkeitsraumes offensichtlich,
allerdings ist eine Anwendung auf neue Stimuli sehr schwierig.

Der zweite Hauptbeitrag dieser Disseration besteht aus dem Vor-
schlag einer hybriden Vorgehensweise, welche versucht die Vorteile der
beiden traditionellen Ansitze zu verbinden: Die Struktur des Concep-
tual Space wird basierend auf menschlichen Ahnlichkeitsbewertungen
initialisiert und tiefe neuronale Netze werden anschlieffend verwendet,
um eine Funktion von rohen Inputs zu Koordinaten in diesem Raum zu
lernen. Wir untermauern diesen Vorschlag mit zwei experimentellen
Studien auf zwei unterschiedlichen Datensets.

Drittens konnen wir nicht annehmen, dass der Entwickler eines auto-
nomen Systems alle moglichen Umstande vorhersehen kann, in welchen
dieses System agieren wird. Deshalb wird eine festgelegte Menge an
manuell erstellten Konzepten fiir autonome Systeme nicht ausreichen
— der kiinstliche Agent muss mit der Fahigkeit ausgestattet sein, Kon-
zepte aufgrund der gemachten Beobachtungen zu erzeugen und zu
modifizieren. In anderen Worten: Wir benétigen einen automatisierten
Weg, um Symbole aus der konzeptuellen Schicht zu extrahieren.

In dieser Dissertation diskutieren wir verschiedene Moglichkeiten,
um aktuelle Algorithmen des maschinellen Lernens kognitiv plausi-
bler zu machen. Dies schliefst die Notwendigkeit fiir inkrementelle
Verarbeitung (Beobachtungen werden typischerweise sequentiell ge-
macht) und uniiberwachten oder semi-tiberwachten Lernens (nicht
alle Beobachtungen haben ein explizites Label) ein. Wir betrachten
aufierdem die Verankerung von Konzepten in Language Games (wo
eine Gruppe von Agenten eine gemeinsame Konzeptualisierung ihrer
Umgebung aushandeln muss) und die Beriichsichtigung expliziter
top-down Beschrankungen aus der symbolischen Schicht (was den
Einfluss abstrakten Hintergrundwissens widerspiegelt).

Insgesamt prasentiert der Inhalt dieser Dissertation Fortschritte
beziiglich aller drei Kernprobleme. Er zeigt, wie Conceptual Spaces als
ein neurosymbolischer Ansatz kognitiver KI genutzt werden kann, der
es ermdglicht, verschiedene Forschungsstrange zu integrieren.

PUBLICATIONS

The research presented in this thesis has appeared previously in the
following publications:

o Formalization and Implementation of Conceptual Spaces

— Lucas Bechberger and Kai-Uwe Kiihnberger. A Thorough For-
malization of Conceptual Spaces. In Gabriele Kern-Isberner,
Johannes Filirnkranz, and Matthias Thimm, editors, KI 2017:
Advances in Artificial Intelligence, volume 10505 of Lecture
Notes in Computer Science, pages 58—71, Cham, 2017. Springer
International Publishing.

— Lucas Bechberger and Kai-Uwe Kiithnberger. A Compre-
hensive Implementation of Conceptual Spaces. In 5th In-
ternational Workshop on Artificial Intelligence and Cognition,
2017.

— Lucas Bechberger. The Size of a Hyperball in a Conceptual
Space. arXiv preprint, arXiv:1708.05263, 2017.

— Lucas Bechberger and Kai-Uwe Kiihnberger. Measuring
Relations Between Concepts In Conceptual Spaces. In Max
Bramer and Miltos Petridis, editors, 37th SGAI International
Conference on Artificial Intelligence, pages 87-100. Springer
International Publishing, 2017.

- Lucas Bechberger and Kai-Uwe Kiihnberger. Formal Ways
for Measuring Relations between Concepts in Conceptual
Spaces. Expert Systems, 38(7):e12348, 2018.

— Lucas Bechberger and Kai-Uwe Kiithnberger. Formalized
Conceptual Spaces with a Geometric Representation of Cor-
relations. In Mauri Kaipainen, Frankz Zenker, Antti Hau-
tamdki, and Peter Gardenfors, editors, Conceptual Spaces:
Elaborations and Applications, volume 405 of Synthese Library,
pages 29-58. Springer International Publishing, Cham, 2019.

o Hybrid Approach for Grounding Conceptual Spaces

- Lucas Bechberger and Kai-Uwe Kiithnberger. Towards Ground-
ing Conceptual Spaces in Neural Representations. In 12th
International Workshop on Neural-Symbolic Learning and Rea-
soning, 2017.

— Lucas Bechberger and Elektra Kypridemou. Mapping Images
to Psychological Similarity Spaces Using Neural Networks.
In 6th International Workshop on Artificial Intelligence and Cog-
nition, pages 26-39, 2018.

— Lucas Bechberger and Margit Scheibel. Analyzing Psycholog-
ical Similarity Spaces for Shapes. In Mehwish Alam, Tanya
Braun, and Bruno Yun, editors, Ontologies and Concepts in
Mind and Machine, pages 204—207, Cham, 2020. Springer
International Publishing.

— Lucas Bechberger and Kai-Uwe Kiithnberger. Generalizing
Psychological Similarity Spaces to Unseen Stimuli — Combining
Multidimensional Scaling with Artificial Neural Networks. In
Lucas Bechberger, Kai-Uwe Kiihnberger, and Mingya Liu,
editors, Concepts in Action: Representation, Learning, and Ap-
plication, volume 9 of Language, Cognition, and Mind, pages
11-36. Springer International Publishing, Cham, 2021.

— Lucas Bechberger and Kai-Uwe Kiihnberger. Grounding Psy-
chological Shape Space in Convolutional Neural Networks.
In 3rd International Workshop on Cognition: Interdisciplinary
Foundations, Models, and Applications, 2021.

o Learning Conceptual Regions

— Lucas Bechberger. Towards Conceptual Logic Tensor Net-
works. In 5th Workshop on Cognition And OntologieS (CAOS),
2021.

o General Concept Research

— Lucas Bechberger and Mingya Liu. Concepts in Action: In-
troduction. In Lucas Bechberger, Kai-Uwe Kiithnberger, and
Mingya Liu, editors, Concepts in Action: Representation, Learn-
ing, and Application, volume 9 of Language, Cognition, and
Mind, pages 1—9. Springer International Publishing, Cham,
2021.

The following manuscript about the proposed hybrid approach is
currently in preparation:

o Lucas Bechberger and Margit Scheibel. Modeling the Holistic
Perception of Everyday Object Shapes with Conceptual Spaces.
In preparation.

The research presented in this dissertation has been presented orally
at the following occasions without an associated official publication:

e Lucas Bechberger and Kai-Uwe Kiihnberger. Towards Concept
Formation in Conceptual Spaces. In Interdisciplinary College, 2017.

e Lucas Bechberger. Conceptual Spaces: A Bridge Between Neural
and Symbolic Representations? In Dagstuhl Seminar “Human-Like
Neural-Symbolic Computing”, 2017.

o Lucas Bechberger. Conceptual Spaces for Artificial Intelligence:
Formalization, Domain Grounding, and Concept Formation. In
Workshop: Concept Learning and Reasoning in Conceptual Spaces,
2017.

¢ Lucas Bechberger. Machine Learning in Conceptual Spaces: Two
Learning Processes. In 1st International Workshop “Concepts in
Action: Representation, Learning, and Application”, 2018.

¢ LucasBechberger. Representing Correlations in Conceptual Spaces.

In Research Colloquium of the Diisseldorf Center for Logic and Philoso-
phy of Science, 2018.

o Lucas Bechberger. Using Conceptual Spaces for Cognitive Al In
TriCoLore 2.0 Workshop, 2019.

¢ Lucas Bechberger and Margit Scheibel. Representing Complex
Shapes with Conceptual Spaces. In 2nd International Workshop
"Concepts in Action: Representation, Learning, and Application”,
2020.

¢ Lucas Bechberger and Kai-Uwe Kiihnberger. Using Convolutional
Neural Networks to Map Line Drawings Into Psychological Shape
Space. In 3rd International Workshop “Concepts in Action: Represen-
tation, Learning, and Application”, 2021.

e Lucas Bechberger. Grounding Psychological Similarity Spaces
in Deep Neural Networks. In Computational Cognition Workshop,
2021.

Finally, published research by the author, which is not part of this
dissertation, includes the following publications:

o Lucas Bechberger, Maria Schmidt, Alex Waibel, and Marcello Fed-
erico. Personalized News Event Retrieval for Small Talk in Social
Dialog Systems. In 12th ITG Symposium on Speech Communication,
2016.

e Lucas Bechberger. Review of the Book “Cognitive Design for
Artificial Minds” by Antonio Lieto. ACM Computing Reviews,
2021.

e Paola Gega, Mingya Liu, and Lucas Bechberger. Numerical Con-
cepts in Context. In Lucas Bechberger, Kai-Uwe Kiithnberger, and
Mingya Liu, editors, Concepts in Action: Representation, Learning,
and Application, volume g of Language, Cognition, and Mind, pages
93-119. Springer International Publishing, Cham, 2021.

All relevant source code for the research presented in this dissertation
has been made publicly available on GitHub. The implementation of the
conceptual spaces formalization can be found at https://github. com/
1bechberger/ConceptualSpaces (current version: 1.3.2). Source code
for reproducing the results of the two experimental studies on the hy-
brid domain-grounding approach is available at ht tps: //github. com/
lbechberger/LearningPsychologicalSpaces (current version: 1.6).

Xi

https://github.com/lbechberger/ConceptualSpaces
https://github.com/lbechberger/ConceptualSpaces
https://github.com/lbechberger/LearningPsychologicalSpaces
https://github.com/lbechberger/LearningPsychologicalSpaces

PREFACE

This dissertation marks the end of a long PhD journey, which started
with first ideas for a PhD project in late 2015: I had the ambitious plan to
create an overall system for connecting the symbolic to the subsymbolic
layer through a complex concept formation algorithm. Of course, things
turned out to be much more complicated than I initially thought, so I
got quickly sidetracked into several sub-projects which contained even
more hidden complexity.

My aim of implementing conceptual spaces in software required a
mathematical formalization of the framework. What I had originally
estimated to be an easy one-month task quickly led down a rabbit hole
and kept me quite busy for almost two years.

Also the idea of grounding conceptual spaces in deep learning
seemed straightforward in the beginning, but required much more
experimentation and engineering than I had initially expected. A collab-
oration with Elektra Kypridemou, which started at the AIC workshop
in 2017, sparked the idea for an hybrid approach: Why not combine
deep learning with psychological similarity spaces? Combining two
approaches of course also doubled the workload, so this sub-project
has kept me busy for another two years and was finished just in time
for submitting this dissertation.

Along the way, I had somehow managed to collect several other
project ideas, on which I was eager to work on, but which unfortunately
never made it to the top of my priority list: After having read about
neural networks that could discover interpretable features from unla-
beled data, I tried to use them for my purposes. However, replicating
the results from the original paper was not very successful. Despite
the assistance from several students, the project never made it off the
ground and finally had to be abandoned.

At a Dagstuhl seminar in 2017, I was introduced to Logic Tensor
Networks, a neural framework for incorporating background knowledge
in the form of logical formulas into machine learning. I was immediately
hooked by the idea and started playing around with this approach in
the context of conceptual spaces. As it turned out, my initial setup was
not working very well, and while I had some good ideas about how to
improve things, I also had to put a (temporary) end to this project in
order to finish my dissertation.

Also creating the concept formation algorithm I had originally en-
visioned turned out to be infeasible given my finite time budget and
my plethora of sub-projects. Nevertheless, I am fairly satisfied with
the outcome of my PhD studies: I was able to cover a broad range of
interesting topics and I feel that I made meaningful progress on most
of them. In addition to the sub-projects I had to abandon, there are

Xiii

still many other open ends and ideas for further research — certainly
enough for at least one complete researcher life.

This dissertation presents the research I have conducted throughout
my PhD. These scientific contributions have also been made possible
through the support from a variety of directions:

I would like to thank my supervisor Kai-Uwe Kiihnberger, who
was very open to my unsolicited application, who gave me complete
freedom to explore different ideas in my research, and who was always
approachable and willing to give me valuable feedback on my work.
I would also like to thank the members of the Al group and my
colleagues at the Institute of Cognitive Science for creating a good
working climate and for giving me valuable impulses and feedback at
several internal talks and discussions. I want to especially highlight
three reading groups on conceptual spaces (Eleni Gregoromichelaki
and Nico Potyka), concept research (Danny Arlen de Jesus Gomez
Ramirez, Ulf Krumnack, and Mingya Liu) and deep learning (Holger
Finger, Ulf Krumnack, Julius Schéning, Leon Siitfeld, and many others),
which have helped me to obtain a better overview of the respective
fields and to gain a deeper understanding of the respective literature.

I am also grateful to my collaborators Elektra Kypridemou and Margit
Scheibel for the respective joint studies. Combining expertise from
different backgrounds was crucial for the success of these collaborations
and very stimulating for my own research. Moreover, I would like to
thank Peter Gardenfors, Rob Goldstone, Antonio Lieto, Luciano Serafini,
and Michael Spranger for acting as informal mentors. They provided
me with insightful discussions and guidance, both in person and via
email. The CARLA summer school, which I co-organized with Ulf
Krumnack and Mingya Liu, and the CARLA workshop, which we were
able to establish as a regular event (and which is currently co-organized
by Viviana Haase, Nicolds Araneda Hinrichs, Mingya Liu, Stefan
Schneider, Corina StréfSner, Alessandro Panunzi, and Paola Vernillo)
have been crucial in shaping my understanding of concept research as
an interdisciplinary endeavor. Moreover, I have immensely benefited
from interactions with other researchers at various conferences and
workshops, as well as from a number of personal email exchanges (for
instance with Jessica Horst and Michael Hout, who were very open
about sharing the raw similarity ratings for their NOUN data set).

Last, but certainly not least, I want to thank my family and friends for
their support. This includes my brother Thomas, who has helped me to
fine-tune the style template I used for formatting this dissertation. My
special thanks go above all to my wife Lera, who has been by my side
throughout the whole PhD journey, who moved all across Germany
for me, and who always helped me to keep my focus on the important
things, both in research and in life.

Overview

H o @ N

N O Gl

Abstract
Zusammenfassung
Publications
Preface
Introduction

Formalizing Conceptual Spaces
Defining Conceptual Regions
Operations for Combining Concepts
Measuring Relations between Concepts

Machine Learning and Optimization Background
General Machine Learning Background

Representation Learning With Artificial Neural Networks
Learning Concepts in a Cognitive Way

Multidimensional Scaling and a Hybrid Proposal

Experimental Studies

Feasibility Study on Novel Objects

A Dataset on Shape Perception

A Psychological Similarity Space for Shapes
Learning a Mapping into Shape Space

IV Summary

13

OTTEHgNmE <

Conclusions

Bibliography

List of Figures

List of Tables

List of Algorithms

List of Definitions, Lemmata, Propositions, and Corollaries

Appendix

Defining Conceptual Regions

Operations for Combining Concepts
Measuring Relations Between Concepts
Feasibility Study on Novel Objects

A Dataset on Shape Perception

A Psychological Similarity Space for Shapes
Learning a Mapping into Shape Space

Vil
1X
xiii

53
101

147

211
281

357
433

513
561
623
665

725
751
791
809
819
821

825
833
843
867
889

895
901

XV

XVi | OVERVIEW

Declaration 913

Contents

Abstract v
Zusammenfassung vii
Publications ix
Preface Xiii
1 Introduction 1
1.1 Concepts From the View of Psychology 2
1.1.1 Psychological Theories of Concepts 3
1.1.2 Empirical Observations about Concepts 6
1.2 The Conceptual Spaces Framework 14
1.2.1 Overview of the Framework 14
1.2.2 Relation to Psychology 17
1.2.3 The Classical Layers of Representation 22

1.2.4 Using the Conceptual Layer to Solve the Symbol
Grounding Problem 25
1.2.5 Relation to Machine Learning 29
1.2.6 Neural Grounding 33
1.3 Contributions of This Dissertation 38
1.3.1 The Envisioned AISystem 40

1.3.2 A Comprehensive Formalization of the Framework 43
1.3.3 Obtaining the Dimensions of a Conceptual Space 45

1.3.4 Learning Conceptual Regions 49
I Formalizing Conceptual Spaces

2 Defining Conceptual Regions 53
2.1 The Original Conceptual Spaces Framework 54
2.1.1 The Structure of a Conceptual Space 54
2.1.2 Conceptual Regions 56
2.2 An Argument Against Convexity 60

2.2.1 Convex Sets Cannot Encode Cross-Domain Cor-
relations Lo L L 60
2.2.2 Potential Solutions 62
2.3 A Parametric Definition of Concepts 65
2.3.1 Formalizing Conceptual Similarity Spaces. . . . 66
2.3.2 Crisp Conceptual Regions 67
2.3.3 Fuzzy Conceptual Regions. 69
2.3.4 Implementation and Example: Fruit Space . .. 74
24 RelatedWork, 79
2.4.1 Related Generalldeas 79
2.4.2 Prior Formalizations of Conceptual Spaces . .. 82
2.4.3 Composite Concepts 86

XVii

XViii

| OVERVIEW

2.5 Detailed Comparison to Other Formalizations 88
2.5.1 Comparison to Adams and Raubal 91

2.5.2 ComparisontoRickard 93

2.5.3 Comparison to Lewis and Lawry 95

26 Summary 98
3 Operations for Combining Concepts 101
3.1 Intersection. oL 102
3.1.1 Intersectionof Cores 103

3.1.2 Intersection of Concepts 107

3.1.3 Implementation and Example 109

32 Union 116
3.2.1 Definition 116

3.2.2 Implementation and Example 118

33 Negation 122
3.4 Subspace Projection 124
3.4.1 Definition 125

3.4.2 Implementation and Example 126

3.5 Axis-ParallelCut 127
3.5.1 Definition 131

3.5.2 Implementation and Example 132

3.6 Supported Applications 135
3.6.1 Concept Formation 135

3.6.2 Concept Combination 136

3.7 Comparison to Other Formalizations 142
3.8 Summary 145
4 Measuring Relations between Concepts 147
41 ConceptSize L. 148
4.1.1 The Size of a Fuzzified Cuboid’s a-Cut 149
412 TheSizeofaConcept. 155

4.1.3 Implementation and Example 157

4.2 Subsethood. 161
4.2.1 Definition L. 162
4.2.2 Implementation and Example 166

4.3 Implication 168
4.3.1 Definitiono L. 168
4.3.2 Implementation and Example 169

4.4 Concept Similarity 171
4.4.1 Similarity as Inverse Distance 172

4.4.2 Definition 177

4.4.3 Implementation and Example 179

4.5 Betweenness 184
4.5.1 Betweenness in the Literature 185
452 Definition 187

4.5.3 Implementation and Example 190

4.6 Supported Applications 199
4.6.1 Concept Formation 199

4.6.2 Commonsense Reasoning 200

4.7 Comparison to Other Formalizations 203
48 Summary 206

OVERVIEW |

II' Machine Learning and Optimization Background

5 General Machine Learning Background 211
5.1 General Notions in Machine Learning 212
51.1 TaskandModel 213

5.1.2 Experience and Evaluation 215

5.1.3 Fitting the Model’s Parameters 222

5.1.4 Practical Considerations 225

5.2 Machine Learning Algorithms 228
5.2.1 Linear Regression 229

5.2.2 Logistic Regression 233

5.2.3 Support Vector Machines 238

5.2.4 DecisionTrees 250

5.2.5 k Nearest Neighbors 255

5.3 Dimensionality Reduction 258
5.3.1 FeatureSelection 259

5.3.2 Feature Extraction 265

5.3.3 MetricLearning 271

5.4 SUMMATYot i i 279
6 Representation Learning With Artificial Neural Networks 281
6.1 Representation Learning 282
6.1.1 Desiderata for Good Representations 283

6.1.2 Evaluating Representations 285

6.2 Artificial Neural Networks 291
6.2.1 Fully Connected Feedforward Networks 293

6.2.2 Convolutional Neural Networks 298

6.2.3 Regularization. 305

6.2.4 Backpropagation 309

6.2.5 Training Algorithms 311

6.2.6 Other Considerations. 315

6.3 Network Architectures for Representation Learning . . 318
6.3.1 Autoencoders 319

6.3.2 Word Embeddings 323

6.3.3 Generative Adversarial Networks 331

6.3.4 Variational Autoencoders 337

6.4 Representation Learning for Conceptual Spaces 346
6.4.1 General Considerations 347

6.4.2 The Rectangle Domain 353

6.5 Summary 356
7 Learning Concepts in a Cognitive Way 357
7.1 Concept Learning in Conceptual Spaces 359
7.1.1 Learning Concepts from Few Examples 359

7.1.2 The Bayesian Perspective 361

7.1.3 The Machine Learning Perspective 367

7.2 Learning Concepts under Knowledge-Based Constraints 370
7.2.1 General Approaches 372

7.2.2 Logic Tensor Networks 377

7.2.3 Towards Conceptual Logic Tensor Networks . . 384

7.3 Learning Concepts from Unlabeled Data 393

Xix

XX

| OVERVIEW

7.3.1 Classical Clustering Techniques 393

7.3.2 Hierarchical Concept Formation with COBWEB 400

7.3.3 Adaptive Resonance Theory 406

7.3.4 Incremental Category Learning with SUSTAIN . 410

7.4 Learning Concepts through Communication 414

7.4.1 General Considerations 415

7.4.2 Vertical Transmission 420

7.4.3 Horizontal Transmission 423

7.5 Summary 431

8 Multidimensional Scaling and a Hybrid Proposal 433

8.1 Obtaining Dissimilarity Ratings 435

8.1.1 DirectMethods 437

8.1.2 The Spatial Arrangement Method 438

8.1.3 IndirectMethods 441

8.1.4 General Considerations 443

8.1.5 Extracting Dissimilarity Ratings From Datasets . 446

8.2 Multidimensional Scaling as an Optimization Problem 451

8.2.1 The Optimization Problem 451

8.2.2 Metric and NonmetricMDS 454

823 General Remarks 456

8.2.4 AnIllustrative Example 457

8.3 Analytical Solutions with Classical MDS 460

8.3.1 Mathematical Background 460

8.3.2 The Algorithm 463

8.3.3 AnIllustrative Example 466

8.4 Kruskal’s Gradient Descent Approach 469

8.4.1 Gradient Descent for Stress 469

8.4.2 Monotone Regression 471

8.4.3 Example for Monotone Regression 473

8.4.4 The Algorithm 475

8.4.5 An Illustrative Example 477

8.5 Iterative Stress Majorization Through SMACOF 480

8.5.1 Mathematical Background 480

8.5.2 A Majorizing Function for Stress 482

8.5.3 The Algorithm 486

8.5.4 AnIllustrative Example 487

8.6 Evaluating MDS Solutions 490

8.6.1 Stress-based Evaluation 491

8.6.2 Interpretability-based Evaluation 493

8.7 AHybrid Proposal 498

8.7.1 Proposed Procedure 498

8.7.2 Possible Network Architectures 501

873 RelatedWork 505

88 Summary 509
III Experimental Studies

9 Feasibility Study on Novel Objects 513

9.1 Comparing Metric and NonmetricMDS 514

9.1.1

The NOUN Dataset 514

OVERVIEW |

9.1.2 Methods 516

913 Results 523

9.1.4 Discussion 532

9.2 Machine Learning Experiments 533

9.2.1 General Methods 534

9.2.2 Analyzing Feature Spaces and Baselines 539

9.2.3 Comparing Feature Spaces and Regressors . . . 542

9.2.4 Comparing MDS Algorithms 548

9.2.5 Generalization to Other Target Spaces 553

9.2.6 Discussion 557

93 Summary 559

10 A Dataset on Shape Perception 561

10.1 Related Work 562

10.1.1 Shape Perception in (Neuro-)Psychology 562

10.1.2 The Shape Domain in Conceptual Spaces 571

10.1.3 Shape Features in Computer Vision 577

10.1.4 Shape Sensitivity of CNNs 582

10.2 OurNew Dataset 591

1021 Stimuli o oL 591

10.2.2 Elicitation of Dissimilarity Ratings 593

10.2.3 Elicitation of Feature Ratings 595

10.3 Analysis of theDataset 600

10.3.1 Statistical Tools 600

10.3.2 Comparing Visual and Conceptual Similarity . . 607
10.3.3 Comparing Pre-Attentive and Attentive Feature

Ratings 615

104 Summary 620

11 A Psychological Similarity Space for Shapes 623

11.1 Obtaining Similarity Spaces with MDS 624
11.1.1 Comparing Mean Dissimilarities to Median Dis-

similarities 624

11.1.2 Extracting the Similarity Spaces. 626

11.2 Are Distances and Dissimilarities Correlated? 629

11.2.1 Methods L o L. 630

11.2.2 Baselines 0L 631

11.2.3 Similarity Spaces 639

11.3 Are Conceptual Regions Well-Formed? 645

11.3.1 Overlap of Conceptual Regions 646

11.3.2 Size of Conceptual Regions 648

11.4 Are There Interpretable Directions? 650

11.4.1 Methods 651

11.4.2 General Observations 653

11.4.3 Individual Features 657

115 Summary 661

12 Learning a Mapping into Shape Space 665

12.1 Sketch Recognition 667

12.1.1 Datasets 667

12.1.2 Approaches 670

XXi

xxii | OVERVIEW

12.2 Overall Approach 674
12.21 Data oL, 675
12.2.2 Architecture Lo oo 677
12.2.3 Training, Evaluation, and Hyperparameters. . . 680

12.3 Obtaining Baseline Networks 684
12.3.1 Sketch Classification 684
12.3.2 Sketch Reconstruction 689

12.4 Transfer Learning 694
12.4.1 Photograph-Based Classification 695
12.4.2 Sketch Classification 699
12.4.3 Sketch Reconstruction 704

12.5 Multitask Learning 707
12.5.1 Sketch Classification 707
12.5.2 Sketch Reconstruction 709

12.6 Generalization to Other Target Spaces 712
12.6.1 Classification 712
12.6.2 Reconstruction 714

127 Summary 719

IV Summary

13 Conclusions 725
13.1 Formalizing the Conceptual Layer 726
13.1.1 LessonsLearned 726
13.12.2 OpenEnds 728
13.1.3 Outlook 730
13.2 Obtaining the Dimensions 734
13.2.1 LessonsLearned 734
1322 OpenEnds 737
13.2.3 Outlook 738
13.3 Learning Conceptual Regions 745
13.3.1 LessonsLearned 745
13.3.2 Outlook 746
13.4 The Big Picture 748
Bibliography 751
List of Figures 791
List of Tables 809
List of Algorithms 819
List of Definitions, Lemmata, Propositions, and Corollaries 821

V Appendix
A Defining Conceptual Regions 825
A1 An Argument Against Convexity 825
A2 Formalizing Conceptual Similarity Spaces 826
A3 Crisp Conceptual Regions 827
A4 Fuzzy Conceptual Regions 829
B Operations for Combining Concepts 833
B.1 Intersection. 833

B2 Union 835

OVERVIEW |

B.3 Subspace Projection 837
B.4 Axis-ParallelCut 840
Measuring Relations Between Concepts 843
c1 Size 843
c2 Subsethood. 855
c3 Similarity o 859
c.4 Betweenness 860
Feasibility Study on Novel Objects 867
p.1 Pixel Baseline with Uniform Weights 867
pD.2 Pixel Baseline with Optimized Weights 873
p.3 Unregularized Regression for Different MDS Algorithms 878
p.4 Lasso Regression for Different MDS Algorithms 880
p.5 Lasso Regression for Different Dimensionality 883
A Dataset on Shape Perception 889
.1 Correlations between Features 889
E.2 Attentive and Pre-Attentive Ratings 892
A Psychological Similarity Space for Shapes 895
r1 Pixel Baseline for the Mean Matrix 895
r2 Pixel Baseline for the Median Matrix 897
Learning a Mapping into Shape Space 901
G.1 Class Structure of Sketch Datasets 902
G.2 Transfer Learning on Sketch Classification 904
G.3 Transfer Learning on Sketch Reconstruction 906
G.4 Multitask Learning on Sketch Classification 907
G.5 Multitask Learning on Sketch Reconstruction 909
G.6 Classification-Based Generalization Experiments 910
G.7 Reconstruction-Based Generalization Experiments . . . 912

Declaration 913

XXiii

1 INTRODUCTION

1.1 Concepts From the View of Psychology 2
1.1.1 Psychological Theories of Concepts 3
1.1.2 Empirical Observations about Concepts 6
1.2 The Conceptual Spaces Framework 14
1.2.1 Overview of the Framework 14
1.2.2 Relation to Psychology 17
1.2.3 The Classical Layers of Representation 22

1.2.4 Using the Conceptual Layer to Solve the Symbol
Grounding Problem 25
1.2.5 Relation to Machine Learning 29
1.2.6 Neural Grounding 33
1.3 Contributions of This Dissertation 38
1.3.1 The Envisioned Al System 40

1.3.2 A Comprehensive Formalization of the Framework 43
1.3.3 Obtaining the Dimensions of a Conceptual Space 45
1.3.4 Learning Conceptual Regions 49

Recent years have seen great successes of artificial intelligence systems
based on deep neural networks. These include areas such as computer
vision (e.g., superhuman performance in image classification [193]),
natural language processing (e.g., language models capable of generat-
ing fluent texts in various styles [83]), and reinforcement learning (e.g.,
superhuman performance in the ancient game of Go [371]). However,
in all of these cases, the input-output mapping learned by the neural
networks is quite opaque and cannot be easily analyzed or interpreted
by human experts. The recent successes of deep neural networks have
thus been accompanied with an urge for more human-like, explainable
Al [113, 133, 259, 273, 274].

On the other hand, classical Al approaches based on formal logics and
hand-coded rules have already for decades been successfully applied to
various tasks such as planning [165], automated theorem proving [355],
and representing information in a structured way for the semantic web
[171]. These approaches result in systems which can be easily debugged
and which consist of interpretable components. However, they are
usually ill-equipped to deal with noise, uncertainty, and inconsistencies.
Moreover, it is unclear how to link their abstract symbolic descriptions
to perception and action in the real world.

Their individual successes indicate that both the connectionist and
the symbolic paradigm have their merits while at the same time facing
considerable limitations. The paradigm of neural-symbolic integration
[61, 111, 112, 279] proposes to devise hybrid systems encompassing
both neural and symbolic aspects in order to combine the strengths of
both approaches while eliminating their weaknesses. Our research can

Recent successes of
deep learning

Symbolic approaches
to artificial
intelligence

Neural-symbolic
integration

Quverview

What are concepts?

2

| INTRODUCTION

be seen in the context of neural-symbolic integration with an emphasis
cognitive Al, i.e., intelligent systems inspired by and based on findings
from cognitive psychology [177, 259, 273, 274]. By using human cog-
nition as a starting point for artificial systems, cognitive Al attempts
to avoid the limitations and pitfalls of purely mathematically derived
models. In this dissertation, we will focus on the psychological notion
of concepts, which are mental representations of categories in the world
allowing the human mind to abstract from individual observations.
More specifically, we employ a geometric representation of conceptual
knowledge in order to build a bridge between connectionist and sym-
bolic Al systems.

This introductory chapter sets the stage for the research contribu-
tions described in the remainder of this dissertation. In Section 1.1, we
present different psychological theories about the mental representation
of conceptual knowledge and consider several important empirical ob-
servations with respect to the processes involved in learning and using
concepts. This serves as a starting point for our research on concept-
based cognitive Al. We then give a broad overview of the conceptual
spaces framework in Section 1.2, describing its main components and
its relation to psychological theories, the symbol grounding problem,
machine learning, and neuroscience. Moreover, we summarize four
important example applications of this framework in the context of
artificial intelligence. Finally, in Section 1.3, we preview the structure of
this dissertation and its main research contributions, namely, a novel
mathematical formalization of the conceptual spaces framework and a
hybrid approach for grounding its dimensions.

The content of this chapter is partially based on material published
in [50] (Section 1.1) and [44] (Section 1.3.1).

1.1 CONCEPTS FROM THE VIEW OF PSYCHOLOGY

It is impossible to talk about human cognition without talking about
concepts since they form an abstraction of reality that is central to
the functioning of the human mind. A concept can be defined as a
"nonlinguistic psychological representation of a class of entities in the
world" [298, Chapter 11]. According to Goldstone [170], one of the
most important functions of concepts is that they allow us to treat all
members of a given category as equivalent for a given task, even though
we might be well aware of differences between them. This way, concepts
allow us to communicate efficiently, to make predictions (e.g., about
unobserved features of a category member), and to generalize beyond
individual objects and observations. But how are concepts represented
mentally? How are they acquired? How does the human mind use concepts
in cognitive tasks? Such questions have been a subject of discussion
since antiquity and remain highly relevant in multiple fields, including
(cognitive) psychology, philosophy, linguistics, and artificial intelligence
(see [49, 114, 189, 272, 275, 298]).

1.1 CONCEPTS FROM THE VIEW OF PSYCHOLOGY |

The remainder of this section is mainly based on the thorough
overview of psychological concept research provided by Murphy [298].
We first introduce different psychological theories about the mental
representation of concepts in Section 1.1.1. Afterwards, we summarize
empirical observations about concept usage in Section 1.1.2 and discuss
to what extent they can be explained by the different theories.

1.1.1 Psychological Theories of Concepts

In the following, we will briefly describe four broad views from the
psychological literature about how concepts are mentally represented.
We will also highlight connections to other disciplines, especially artifi-
cial intelligence and machine learning.

The classical view of concepts dates back to Aristotle and has been
the predominant approach held implicitly by many psychologists in
the beginning of concept research (e.g., [204]). It can be summarized
as follows [298, Chapter 2]: Concepts are mentally represented as
definitions, which provide a list of necessary and jointly sufficient
conditions for membership in the category. If one of these conditions
does not apply to an observation, this observation cannot be a member
of the category (necessity). Moreover, if an observation fulfills all of
the listed conditions, then it must be a member of the category (joint
sufficiency). In other words, the definition includes everything that
belongs to the category and excludes everything that does not. The
membership in the category is assumed to be binary, i.e., any given
observation either belongs to the category or it does not belong to
the category — there are no borderline cases. Moreover, the classical
view does not make any distinction between category members — all
observations meeting the definition are equally good representatives of
the category. Finally, since concepts are based on definitions, one can
use logical connectives like AND, OR, and IF to define more complex
concepts based on simpler ones. The resulting set of conditions for
such a complex concept can also be interpreted as a set of logical
rules determining category membership. The classical view of concepts
is thus tightly connected to formal logics, where concepts can be
interpreted as well-defined sets and logical connectives can be used to
combine them with each other.

The classical view has been challenged on theoretical grounds, for
instance by Wittgenstein [437] who noted that it is very difficult to
provide a definition of many everyday concepts such as sports based
on a set of necessary and jointly sufficient conditions. If concepts were
represented mentally by definitions, one would, however, not expect
such difficulties in listing the respective conditions. We will see in
Section 1.1.2 that the classical view also fails to account for many em-
pirical observations related to concept learning and concept use. It has
therefore been essentially abandoned in the field of psychology.

3

The classical view on
concepts

Challenges for the
classical view

Relation to artificial
intelligence

The prototype view
on concepts

Prototypes as feature
lists

Schema-based
representations of
prototypes

Relation to artificial
intelligence

4

| INTRODUCTION

Nevertheless, logic-based representations are still used in other sub-
fields of cognitive science which are concerned with concepts: For
instance, theoretical linguists pursue the goal of assigning more precise
meaning to natural language expressions by mainly applying logic-
based formalisms [17]. Moreover, the conceptual core of the semantic
web [59] is based on large ontologies [171] containing hierarchies of
concepts formulated in description logics. Finally, formal logics are also
prevalent in symbolic approaches to artificial intelligence [341].

The prototype theory of concepts dates back to the pioneering work of
Rosch [336]. It assumes that a concept is not represented by a logical
definition, but that it is based on a prototypical member. Category mem-
bership is then not based on the fulfillment of a list of conditions, but
on the similarity of the observation to the category prototype. Murphy
[298, Chapter 3] distinguishes two interpretations of this general idea:
On the one hand, one may interpret the prototype as the best example
of the category. This best example can either be an actual observation
or inferred from multiple observations (e.g., by defining an average).
However, this interpretation may be of limited practical usefulness, for
instance because it cannot encompass information about the variabil-
ity of the category. A different interpretation sees the prototype as a
summary representation of the whole category, describing typical and
possible features of its members.

The most straightforward implementation of the prototype theory
represents each concept by a list of features which are weighted accord-
ing to their relative importance [298, Chapter 3]. Classification can then
be conducted by comparing the features of the observed object to the
feature list representing the concept. This can be as rudimentary as
checking whether the weighted sum of matching features minus the
weighted sum of non-matching features exceeds a given threshold.

A more advanced model is based on schemata [298, Chapter 3]: A
schema is a set of slots with possible fillers. Each slot can also have
restrictions on the possible fillers, both with respect to their general type
and with respect to their actual values. As each slot can only be filled
with a single filler, the different fillers applicable to one slot compete
with each other. This prevents concrete examples from containing
conflicting information such as having both features rLies and poEs NOT
rLY. The different slots can furthermore be connected to each other by
constraining each others values, thus encoding correlations. If a concept
is represented as a schema, then its slots define the relevant features
(which can again be weighted based on relevance), and the possible
fillers can be weighted based on their frequency.

This idea of schema-based representations is quite similar to Minsky’s
frames [294], a knowledge representation framework from artificial
intelligence that has also been adopted in cognitive science [32]. These
frames have a potentially recursive attribute-value structure, which
can be augmented by structural invariants and constraints [393]. Also
ontologies in the area of the semantic web [171] often make use of
similar representational structures when defining features of a concept.

1.1 CONCEPTS FROM THE VIEW OF PSYCHOLOGY |

In the field of machine learning, a naive Bayes classifier [295, Chapter
6] can be seen as a probabilistic variant of the "weighted feature list"
approach: Each class is represented by its list of possible features and
their respective probabilities, as estimated based on frequencies in a
given dataset.

In contrast to both the classical and the prototype view, the exemplar
theory of concepts [287] rejects the idea that concepts are represented
by using summary representation of the whole category. Instead, the
exemplar theory argues that each concept is represented as the set of
all observations of category members that have been made so far. For
instance, the poc concept is represented by the set of all encounters
with actual dogs. A clear argument for this exemplar view is that in the
beginning of learning a concept, i.e., when the first example is observed,
there is not enough information for forming an abstraction, so one has
to memorize this example itself. The exemplar theory, however, goes
further by postulating that forming an abstraction is not necessary at
all, even after many examples have been observed.

Concept membership in the exemplar view is based on the similarity
of the observation to the stored exemplars of the concept. It can be
calculated as follows [298, Chapter 3]: The similarity of an observation to
a given exemplar is based on their similarity with respect to individual
features. For each feature, a matching score is defined, where a value of
one indicates a perfect match and a value of zero represents the greatest
possible mismatch. Based on the importance of a feature, this score can
be raised or lowered - for instance, a large difference on an unimportant
feature can still result in a similarity score close to one. These scores of
individual features are then aggregated through multiplication in order
to obtain the overall similarity between the given observation and the
given exemplar. By summing over all exemplars of the given concept,
one can obtain an overall similarity measure. In this way of computing
observation-concept similarity, it is better to have a high overlap with
few exemplars than moderate overlap with many exemplars. The overall
similarity score can then be compared to a given threshold in order to
determine whether the given observation belongs to the given concept.

The exemplar view can be linked to so-called lazy learning algorithms
in the field of machine learning [295, Chapter 8]: For instance, in a &
nearest neighbor classifier (to be introduced in Chapter 5)) each class is
represented by a set of examples. A newly observed observation is then
classified by finding the k& most similar examples seen so far and by
choosing the class with the highest frequency among these k examples.
Although the exact mechanism of assigning class membership differs
from the procedure described above, the underlying idea is quite similar.

The fourth approach to representing concepts we will consider here
can be called the knowledge view. It emphasizes that concepts do not
occur in isolation, but always stand in relations to other concepts and
to our general knowledge about the world [299]. It is based on the
observation that category learning is not only inductive (i.e., based

5

The exemplar view
on concepts

Concept membership
with exemplars

Relation to artificial
intelligence

The knowledge view
on concepts

Relations to artificial
intelligence

Quverview

6

| INTRODUCTION

Observa- Classical Prototype Exemplar Knowledge
tion View View View View

Typicality
Effects

Exemplar
Effects

Correlations

X v v -

X X| X
[

Hierarchies

Basic Level - -

\
X XX N SN
|

X
<

Induction

Concept
Combina- X v
tion
Knowledge
Effects

X
<

- - - v

Table 1.1: Overview of empirical observations about concept learning and
concept usage, and their relation with different psychological theo-

"

ries ("v"" means "predicted”, "X" means "conflicting", and "-" means
"neutral").

on observations) but often influenced by prior knowledge (e.g., for
determining which features are relevant). The knowledge view focuses
mainly on knowledge-based learning while largely ignoring empirical
learning. Individual concepts are often interpreted as mental "micro-
theories" about specific aspects of the world [298, Chapter 3]. These
micro-theories are often incomplete and only partially integrated, but
they provide explanations and relations to other micro-theories. For
example, under the knowledge view the concept poc represents the
role dogs play in our broader theories about biology, family life, and
hunting. Moreover, the poG concept contains micro-theories about the
anatomy of dogs (e.g., using the tongue to regulate body temperature)
and their behavior (e.g., circumstances under which dogs bark).

The knowledge view is again related to ontologies [171] from the
semantic web area, which provide a formal way of describing networks
of concepts. Moreover, in artificial intelligence it can be related to re-
search on commonsense reasoning [113], which tries to overcome the
limitation of purely logic-based symbolic systems by incorporating
general world knowledge in order to draw plausible conclusions even
if they are not justified by logical deduction.

1.1.2 Empirical Observations about Concepts

In this section, we will summarize several empirically observable effects
regarding the learning and use of concepts by humans. For each of
these effects, we will also argue to which extent it is compatible with the

1.1 CONCEPTS FROM THE VIEW OF PSYCHOLOGY |

different views presented in Section 1.1.1. Table 1.1 shows an overview
of this analysis. As one can see, the classical view is not able to explain
any of these effects while the three other approaches have different
strengths and weaknesses. Let us now take a look at the individual
effects in more detail. Again, we base our summary mainly on Murphy’s
comprehensive overview [298].

One of the strongest and most reliable effects in the categorization
literature is the so-called typicality effect [298, Chapter 2]. Roughly
speaking, the typicality effect is the observation that the members of
a category differ with respect to their typicality — there are category
members with are more typical than others. For example a rRoBIN is a
very typical BIRD, but a PENGUIN is a very atypical one. The typicality
effect is also closely related but not identical to the observation that
there are borderline cases for which no clear membership decision can
be made. For instance, it is debatable whether TomaTO is a FruIT Or a
VEGETABLE. Such borderline cases often are atypical members of one
category which have some features in common with other categories.
A tomarto is technically a rruit, albeit a very atypical one which shares
many features with members of the VEGETABLE category. In general,
a membership judgment for such borderline cases is slower than for
typical members or typical non-members of a category. The typicality
effect influences also many other behaviors and judgments which are
based on relating an observation to a category. For instance, typical
category members are produced more frequently and earlier than
atypical members when giving examples for category members. They
are also learned faster and are more useful for making inferences about
other category members.

The classical view cannot explain such typicality effects since all
category members are assumed to be equally good examples of the
category. The prototype view on the other hand was explicitly devel-
oped in order to explain these typicality effects — the more similar an
observation is to the category prototype, the more typical it is consid-
ered to be. However, also the exemplar view predicts typicality effects:
A typical member is expected to have a high similarity to most or all
exemplars of the category, while an atypical member is only similar to
a very small number of exemplars. Finally, the knowledge view does
not explicitly predict typicality effects, but it also does not have any
conflicting assumptions.

With respect to both category learning and categorization, one can
also observe exemplar effects [298, Chapter 4]: While learning a category,
the order in which examples are observed can influence the perfor-
mance when making classifications. For example, if three consecutive
observations share a certain subset of features, test items which also
have this subset of features are classified quite fast. If the same three
observations during learning do, however, not appear right after one
another, the same test item is classified considerably slower. Moreover,
superficial similarities between examples from the learning phase can

7

Typicality effects:
some category
members are more
typical than others

Typicality effects and
theories of concepts

Exemplar effects:
individual examples
matter

Exemplar effects in
classification

Exemplar effects and
theories of concepts

Correlations: feature
values don't vary
independently from
each other

influence which other commonalities among them are enforced when
extracting a general category description. For example, when learning
about groups of people, Ross et al. [337] presented participants of their
study with two exemplar members: One was described as liking ice
cream and having bought nails, while the other one was described as
liking Westerns and having bought a swim suit. The third exemplar
was always described to have bought both wood and a towel. If it was
furthermore described as liking sherbet, participants were reminded of
the first exemplar and generalized that all members of this group like
carpentry. However, if the third exemplar contained information about
liking cowboys, the overall group was interpreted as liking swimming.
Ross et al. noted that both generalizations were equally justified by
the three exemplars in both conditions and that therefore the third
exemplar’s value of the otherwise irrelevant feature has determined
the resulting generalization.

Also when classifying novel observations, one can observe effects
based on individual examples from the learning phase. For instance,
observations which are superficially similar to a category member seen
during training tend to be classified more accurately than observations
without such a matching exemplar. Moreover, even when an explicit
categorization rule is given, superficial similarity to an exemplar from
another category increases the risk of misclassifications. Finally, if
a known exemplar is categorized right after an observation that is
similar to this exemplar, classification takes place faster than if the same
exemplar was preceded by an unrelated observation.

Exemplar models naturally incorporate exemplar effects during clas-
sification. However, they have difficulties explaining the exemplar
effects observed during learning, since these effects seem to relate
to a generalization of the exemplars. Such a generalization beyond
exemplars is, however, explicitly refuted by the exemplar view. The
prototype theory on the other hand struggles to explain the catego-
rization effects discussed above as it assumes classification to be based
solely on the similarity to the category prototype. The exemplar effects
with respect to learning do not directly conflict with the prototype
view, although prototype models typically do not make any concrete
claims about the process of inferring a prototype from examples. Finally,
the knowledge view has little to say about exemplar effects, although
some of the generalizations discussed above seem to involve at least
some degree of background knowledge. The classical view identifies
concepts with rule-based definitions and can therefore not explain that
exemplar effects are present even if such a classification rule is explic-
itly given. Finally, one should note that exemplar effects are strongest
for artificial categories with a poor internal structure. It is thus un-
clear how relevant they are for natural categories with a richer structure.

Another important aspect of concepts are correlations among features
[298, Chapter 5]: Concepts typically contain clusters of correlated
features which play an important role both for learning [66] and
reasoning [298, Chapter 8]. Murphy [298, Chapter 5] argues that such

1.1 CONCEPTS FROM THE VIEW OF PSYCHOLOGY |

correlations are always implicitly encoded if we define concepts based
on a set of features: Typically, the features associated with a particular
concept are not associated with other concepts. Thus, if we observe some
of the features considered typical for the BIRD concept (e.g., HAS FEATHERS
and HAs wWINGs), we expect that also other features associated with the
BIRD concept are present (e.g., FLIEs and HAs BEAK). Moreover, certain
subsets of features within a have have even stronger correlations with
one another [395]. For instance, within the BIRD concept, the features
sINGs and sMmALL are strongly correlated with each other, even though
both may not be very important to the overall concept.

Murphy, however, notes that correlations usually do not influence
typicality judgments or classification performance. Moreover, humans
tend to consciously notice such correlations during learning only
if they are encouraged to do so through a secondary task such as
predicting missing features based on a list of given ones. Murphy
explains this by the assumption that the main task during category
learning is to associate features with categories, not features with
other features, which would be more demanding due to the much
larger number of possible combinations. The correlations between
features are then learned not directly, but indirectly through their
common association with the same category. In a series of simulations
and experiments, Billman et al. [65, 66, 220] have highlighted that
individual, unrelated correlations (e.g., having four features A, B, C,
and D, with high correlations between the feature pairs A-B and C-D,
but no other correlations) are less helpful in learning than systems of
such correlations (e.g., three features A, B, and C having high pairwise
correlations in all combinations). In natural categories, one can expect
that features come in such clusters of correlations.

Correlations also play an important role in concept combinations:
For instance, spoons in general are considered to be small, but wooden
spoons are expected to be large [288]. In this case, a correlation between
material and size is used to make additional inferences.

The exemplar view predicts correlations among features, since they
are implicitly encoded in the set of exemplars: Most BIRD exemplars
that have the feature sinGs also have the feature smaLr, hence one can
state that small birds tend to sing and vice versa. Please note that in
the exemplar view, this conclusion is not drawn for all birds in general.
Instead, whenever making an individual observation (e.g., a small
bird), only the exemplars relevant to this observation are retrieved
(i.e., BIRD exemplars which have the feature smatrL) and other features
they have in common (e.g., siNGs) are used to make predictions for this
individual observation. The prototype view is able to explain the overall
correlation of features with categories (e.g., birds having features Has
wiNGs and FLIES), but it does not necessarily predict strongly correlated,
but relatively infrequent features within a concept (e.g., small birds
tending to sing). However, schema-based prototype models contain
mechanisms for explicitly encoding also such intra-conceptual correla-
tions. The knowledge approach is in principle also in line with feature
correlations as at least some of these correlations can be explained based

9

Task and context
matter

Correlations and
concept combinations

Correlations and
theories of concepts

Conceptual
hierarchies: all dogs
are mammals

Violations of
transitivity

The basic level of
categorization: a
default level of
abstraction

10

| INTRODUCTION

on an underlying theory. For example, coLor and TasTE of a banana are
correlated due to the underlying process of riping. The classical view
can in principle account for general feature-category correlations if
features are used as conditions in the definition of a concept. However,
it struggles to accommodate correlations within a concept, since they
cannot be adequately represented by a set of necessary and jointly
sufficient conditions.

One can furthermore observe that concepts tend to be arranged
in a conceptual hierarchy which can be represented by a directed "isa"
relation (e.g., oG isa MAMMAL isa ANIMAL) [298, Chapter 7]. This relation
is typically assumed to be asymmetric and transitive, and to inherit
features (i.e., if all mammals have blood, then also all dogs have blood).
When modeling a concept hierarchy in an explicit way (similar to the
ontologies mentioned above), then each concept can be represented
with a node and each isa relationship by a directed edge between two
nodes. The resulting graph is then expected to represent a taxonomy
in the form of a tree (i.e., any category can have only one immediate
superordinate). Based on the principle of cognitive economy, common
features can then be stored at the highest abstraction level possible (e.g.,
having blood would not be associated with the poc concept, but with
the MAMMAL or ANIMAL concept).

However, there is experimental evidence indicating that transitivity is
often violated: For instance, people agree that a car SEAT is a cHAIR and
that a cHAIR is FURNITURE, but they insist that a cAR SET is not FURNITURE.
This indicates that conceptual hierarchies may (at least sometimes)
be computed on the fly by comparing the relevant features among
concepts. For example, by observing that poc has all important features
of MaMMAL, we can conclude that poG is a special kind of MAMMAL.
Murphy [298, Chapter 10] furthermore notes that while children’s word
usage is taxonomic (associating poc with car), their sorting behavior is
often thematic (associating poc with BoNE). The same can be observed to
some degree in adults, highlighting that not only hierarchical relations
but also thematic relations are relevant when using concepts in cognitive
tasks.

Associated strongly with the conceptual hierarchy is the basic level
of categorization, which is for instance often used when naming objects
(e.g., describing something as a "picture of a dog" instead of a "picture
of an animal" or a "picture of a Labrador") [298, Chapter 7]. Moreover,
humans are also faster in verifying claims about basic level concepts
(e.g., "birds have feathers") than about superordinate or subordinate
concepts (e.g., "robins have feathers"). The basic level seems to be a
compromise between informativeness and distinctiveness. Concepts at
the basic level therefore are both easy to distinguish from each other and
informative enough for making practically useful inferences. In general,
subordinate concepts refine the basic level concept by adding more
information while leaving the general picture unchanged. Also the
intra-category similarity only increases slightly when going from the
basic level to the subordinate level. Murphy [298, Chapter 7] also notes

1.1 CONCEPTS FROM THE VIEW OF PSYCHOLOGY |

that superordinate categories tend to be described by mass nouns (e.g.,
FURNITURE, FRUIT), Whereas basic level concepts tend to be described by
count nouns (e.g., CHAIR, APPLE), which may correspond to a distinction
into collections and classes [298, Chapter 10].

The classical view is consistent with an explicit encoding of concep-
tual hierarchies where definitions for subordinate concepts are simply
special cases of the definitions for their respective superordinate. How-
ever, it is unable to explain violations of the transitivity assumption
as observed in the car seaT example from above. Moreover, it does
not predict any basic level effects. Also the prototype theory does not
predict basic level effects, but it is consistent with them. Moreover,
it can explain violations of transitivity in the conceptual hierarchy if
this hierarchy is constructed dynamically by comparing prototypes:
While the overlap of features between car seat and cHAIR as well as
between cHAIR and FURNITURE may be sufficiently large to relate them
hierarchically, the overlap between car seaT and FURNITURE may be
too low. The exemplar theory has problems with reflecting concept
hierarchies in general: It is unclear how to make statements such as
"all dogs are animals" based on exemplars unless every poc exemplar
is also annotated as being a aNmMaL exemplar. This would, however,
require that each exemplar is annotated with all possible categories
it may belong to, which seems infeasible or at least highly inefficient.
Finally, also the knowledge view does not predict conceptual hierar-
chies or basic level effects, but is in principle able to accommodate them.

Induction is the reasoning process of inferring information or knowl-
edge about objects or categories [298, Chapter 8]. One important variant
is called category-based induction which describes that by knowing
to which category an object belongs, one can make predictions about
unobserved features based on the general information associated with
this category. For instance, by knowing that Wilbur is a pog, we can infer
that Wilbur probably has four legs and a tail, barks, and likes to play
fetch. These inferences can be mainly explained based on intra-category
similarity: As all members of the category are similar to each other,
any category member can be expected to share their common features.
Category-based induction can therefore also be related to the general
correlations between features and categories as discussed above.

Another aspect of induction is the transfer of knowledge between
categories (e.g., the presence of a given feature). This transfer is influ-
enced by different factors: Firstly, the typicality of the source category
plays a crucial role in making generalizations. A certain disease is more
likely to effect all birds if it has been observed for robins than if it has
been observed for penguins. Moreover, the similarity of the source
and the target category increases the likelihood of the induction: A
disease infesting ducks is more likely to also affect a geese than eagles.
If multiple source categories are given, their diversity can also give
important information. For example, if buck, PENGUIN, and EAGLE all
have a certain feature in common, we expect that this feature can also
be observed for rosIN. Finally, also the type of feature plays a role in

11

Conceptual
hierarchies, basic
level effects, and
theories of concepts

Induction: making
educated guesses

Knowledge transfer
between categories

Induction and
theories of concepts

Concept

combination:

creating new
concepts based on
existing ones

12

| INTRODUCTION

making inductions: While biological features (such as the chemical
composition of an animal’s blood) are generalized from RABBIT to WHALE,
but not from TUNA to WHALE, the opposite effect can be observed for
behavioral features (such as feeding strategies).

While the classical view can explain category-based induction (since
all features are given in the concept’s definition), it cannot account for
the effects based on similarity and typicality observed for inductions
across categories. Prototype models on the other hand can account for
both types of inductions. In fact, prototype-like representations are
often implicitly assumed in studies about induction. Also the exemplar
view can in principle also account for similarity effects. However, it
has problems to account for a generalization across hierarchy levels
(e.g., from ROBIN to BIRD), since conceptual hierarchies cannot be well
represented with exemplars. Moreover, explicitly adding features to a
category based on cross-category induction is difficult in an exemplar-
based representation since all individual exemplars would need to be
updated with this information. All other views which make use of a
summary representation can easily incorporate such pieces of informa-
tion. The knowledge approach is supported by the effects observed with
respect to the feature type, where background knowledge is required
in order to decide that physiological features can be generalized based
on a common biological background (e.g., from raBsIT to WwHALE), while
behavioral features require a common habitat (e.g., TUNA and WHALE).

In addition to transferring information between concepts, one can
also directly combine them in order to arrive at novel concepts. This
process of concept combination has received considerable attention in
the literature (see e.g., [187, 189, 288, 379]), also since it can be related
to the interpretation of natural language phrases [298, Chapters 11
and 12]. Especially conjunctive concept combinations in the form of
so-called modifier-head phrases have been investigated. A naive model
of conjunctive concept combination could use the intersection of the
concept’s extensions (i.e., the sets of their respective members). However,
this simple intersection-based approach faces various difficulties [298,
Chapter 12]: It can neither deal with relative adjectives in examples
such as LARGE BaBY nor model non-predicating adjectives as in aromic
ENGINEER. Also noun-noun combinations such as MOVIE PSYCHIATRIST
cannot be modeled by simple set intersections. Moreover, while the
set intersection is commutative (i.e., AN B = B N A), this does not
hold for concept combinations, where BIRD boG and poG BIRD are clearly
not identical. Furthermore, one can often observe conjunction effects,
where for example a picture of brown apple is judged to be more typical
for BROWN APPLE than for both BRowN THING or for appLE. A related effect
are overextensions, where for instance cHEss is not considered to be a
SPORT, but it is judged to be a sporT wHICH 15 A GaME [187]. Also prior
knowledge seems to play an important role in concept combinations:
A TIGER SQUIRREL is typically interpreted as a sQuIrRrReL with stripes,
hence taking only a single feature from the modifier. Moreover, a
MOUNTAIN JACKET is presumably a JACKET one wears while being in the

1.1 CONCEPTS FROM THE VIEW OF PSYCHOLOGY |

mountains, while a MOUNTAIN MAGAZINE is expected to be a MAGAZINE
about mountains and hiking.

As concept combination under the classical view is based on set inter-
section, it cannot account for the variety of effects described above. One
should, however, note that there have been recent attempts to model
typicality effects in concept combination (as observed in the BrRowN
APPLE example) with special variants of description logics [263, 333],
which are implicitly based on the classical view on concepts. Again,
most of the models used for explaining concept combination (such as
the selective modification model by Smith et al. [379]) implicitly make
use of a prototype-based representation where information about the
overall concept is given in a schema-like structure and where concept
combination operates on the individual slots and fillers. The exemplar
theory of concepts has difficulties in modeling concept combination
since it assumes that no summary representation is necessary. Modeling
the effects mentioned above only based on exemplars is therefore quite
challenging. Finally, almost every concept combination example from
above involves some sort of background knowledge in order to decide
which modifications to apply to the original concepts. This is a very
strong support for the knowledge view, which can also explain the
emergence of additional features (such as an EmpTY sTORE making a
deficit) based on causal explanations.

Let us finally consider knowledge effects as a topic cutting across all
the above-mentioned empirical observations. As we have seen above,
prior knowledge influences the selection of relevant features, learning
categories and applying them in categorization, making inductions,
and combining concepts. Typically, everyday knowledge can be used
to explain a category, but not to predict its existence [298, Chapter 6].
The knowledge employed when it comes to learning and applying
conceptual knowledge is also usually quite shallow: One knows that
knives are made of metal, because metal is hard. However, the reason
implying that metal is hard is typically unknown and irrelevant. Natu-
rally, knowledge effects are the strong suit of the knowledge view, while
all other approaches have little to say about them.

As Murphy [298, Chapter 13] argues, the overall picture emerging
from Table 1.1 and the discussion above indicates that the prototype
theory (especially in the schema-based variant) seems to be a good start-
ing point for future research. The knowledge approach is in some sense
complementary to it, since it emphasizes the relations between concepts
instead of the way individual concepts are represented. Murphy thus
argues for a combination of these two approaches. However, he notes
that also the exemplar view should not be neglected since the learning
of prototypes needs to start from individual examples. Also Lieto et al.
[260] have argued for an approach integrating multiple views in order
to arrive at a more complete model of conceptual knowledge.

13

Concept combination
and theories of
concepts

Knowledge effects:
background
knowledge plays a
role

Taking stock

Quverview

Quality dimensions
and semantic
similarity

Domains contain
dimensions which
inherently belong

together

Properties are convex
regions

14

| INTRODUCTION

1.2 THE CONCEPTUAL SPACES FRAMEWORK

In this section, we present the cognitive framework of conceptual
spaces [179, 181] which proposes to represent concepts as convex
regions in psychological similarity spaces. Moreover, at different points
in this section, we will refer to example applications of conceptual
spaces in artificial intelligence. After presenting the main aspects of
the framework in Section 1.2.1, we relate it to other psychological
theories of concepts in Section 1.2.2. We then introduce the two classical
layers of representation along with the symbol grounding problem in
Section 1.2.3, before illustrating how conceptual spaces can serve as
an intermediate representation format for integrating the two classical
layers in Section 1.2.4. Afterwards, we show how conceptual spaces
can be related to feature spaces from machine learning in Section
1.2.5. Finally, in Section 1.2.6, we discuss how conceptual spaces can be
grounded in neural processing.

1.2.1 Overview of the Framework

In the following, we summarize the main points of the conceptual
spaces framework as presented by Géardenfors [179, 181].

A conceptual space is a similarity space spanned by a number of
interpretable quality dimensions (e.g., TEMPERATURE, TIME, HUE, PITCH)
which are cognitively relevant and typically assumed to be based
on perception. One can measure the semantic distance between two
observations with respect to each of these dimensions. By aggregating
these individual distance measures, one can obtain a global notion
of semantic distance. Semantic similarity is assumed to be inversely
related to semantic distance. More specifically, Gardenfors uses an
exponentially decaying function of distance in order to define similarity
as Sim(z,y) = e~“%) with a sensitivity parameter ¢ > 0.

We furthermore assume that the conceptual space is structured into
so-called domains. Typically, each perceptual modality (e.g., coLoR,
SHAPE, SIZE, TASTE, WEIGHT, and soUND) is represented by one domain,
which consists of the dimensions immediately relevant to this modality.
The coLor domain for instance can be represented by the three dimen-
siONs HUE, SATURATION, and LIGHTNEss (see Figure 1.1), while the sounp
domain is spanned by the two dimensions pirch and LoUDNEss. Based
on psychological evidence [19, 211, 367, 368], Gdrdenfors defines that
distance within a domain is measured with the Euclidean metric, and
that the domain-wise distances are then aggregated with the Manhattan
metric into a global notion of semantic distance.

Gardenfors defines properties like RED, ROUND, and SWEET as convex
regions within a single domain (namely, coLOR, sHAPE, and TASTE,
respectively). A property thus corresponds to a set of observations from
a single perceptual modality. By requiring that the regions must be

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

.. SKY BLUE

SSaujybig

Figure 1.1: A conceptual space for the coLor domain (based on [364], image
license CC BY-SA 3.0) with dimensions HUE, SATURATION, and
LIGHTNESS, and with conceptual regions for BLUE and sky BLUE.

convex, Gardenfors enforces a certain well-formedness: If both x and =
belong to the property rep, then any linear interpolationy = t-z+(1—t)-
z (with t € [0, 1]) also belongs to rep. Even though it is not necessary to
restrict properties to being convex, Gardenfors argues that the convexity
assumption gives rise to many empirical predictions. Moreover it is
supported by the principle of cognitive economy since convex regions
are easier to store and process than arbitrarily shaped regions. For
instance, the intersection of two convex regions is guaranteed to be
again convex. Concept hierarchies as introduced in Section 1.1.2 are an
emergent property of this spatial representation: If the sky BLUE region
is a subset of the BLUE region (cf. Figure 1.1), this implicitly encodes that
SKY BLUE is a special shade of BLUE.

Based on properties, Gardenfors now defines full-fleshed concepts
like APPLE or DOG as involving multiple domains. More specifically,
a concept is represented by one convex region per domain, a set of
salience weights (which represent the relevance of the given domain to
the given concept) and information about cross-domain correlations.
The appLE concept may thus be represented by the rRep region in the
coLor domain, the swgeT region in the TasTe domain, and the RounD
region in the sHAPE domain. Presumably, the salience weight for the
sHAPE domain would be highest, since shape information is crucial in
determining membership to the appLE concept. Please note that these
salience weights can also be used to represent the current context. For
example, when eating an apple, its TasTE is much more prominent than
when throwing it — in the latter case, size and weiGHT are more relevant.

As Murphy [298, Chapter 11] has argued, word classes can be
grounded in different types of concepts: Nouns, verbs, and adjectives,
arise from concepts for objects, events, and properties, respectively. This
is also captured in the conceptual spaces framework: Generally, adjec-
tives like RED, ROUND, and swEEeT are represented by properties in their
respective domains, while nouns such as appLE and DoG are represented
by concepts. Events are defined as composite structures consisting of
agent, patient, force vector, and result vector [181, Chapters 8, 9, and

15

Concepts involve
multiple domains

Word classes in
conceptual spaces

Design criteria for
conceptual regions

Two types of learning
processes

Learning domains
and dimensions

Learning conceptual
regions

16

| INTRODUCTION

10]. Here, agent and patient are concepts, the force vector describes a
pattern of forces in the rForce domain, and the result vector describes
a change of state in the patient’s properties. Verbs like pusa and Move
then refer to the force vector and the result vector of such an event,
respectively. Finally, prepositions such as ABove and TowarDs can be
interpreted as regions and directions in physical space [181, Chapter 11].

Even under the constraint of convexity, there are still infinitely many
ways to partition a given similarity space into different conceptual re-
gions. Douven and Géardenfors [137] have listed several design criteria
for a good conceptual system. More specifically, they consider parsi-
mony (being memory efficient), informativeness (good coverage of the
underlying domain), representation (availability of representative pro-
totypes), contrast (difference between concepts), and learnability (being
learnable from a small number of examples). Douven and Gérdenfors
argue that convexity by itself covers parsimony and representation,
and to some extent also learnability. However, in order to also cover
informativeness and contrast, a second principle called well-formedness
needs to be introduced, which essentially requires a high similarity
of observations belonging to the same concept and a low similarity
between observations belonging to different concepts. Douven and Gér-
denfors illustrate using the color space that the constraints of convexity
and well-formedness can together with asymmetries in the perceptual
similarity space determine an optimal partition of this similarity space
with respect to their design criteria.

Gardenfors [182] identifies two different types of learning processes
in his framework. He argues that the first learning process consists
of constructing the dimensions and domains of the conceptual space,
whereas the second learning process focuses on finding meaningful
regions in this space.

Gardenfors [182, 183] argues that the domains of a conceptual space
are based on invariants of the sensory input that help to drastically
reduce its dimensionality. The process of learning these domains
involves a transformation from rapidly changing raw sensations to
more stable, invariant representations of the environment. For instance,
an egocentric representation of physical space is invariant with respect
to the position of one’s own head. An allocentric representation of
physical space is in addition to that independent of one’s own location
in physical space. Giardenfors argues that these invariants are the basis
for identifying and learning domains. We would like to emphasize
that the separation of domains seems to be at least partially based on
learning and not completely innate. This is for example indicated by the
observation that young infants have difficulties in separating domains
such as sHAPE and coLor from each other [298, Chapter 9].

With respect to the process of learning conceptual regions, Gardenfors
argues that perceptual information is not random but comes in clusters:
There are certain combinations of properties which tend to co-occur in
objects (cf. the discussion on correlations in Section 1.1.2). Therefore,

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

objects tend to form clusters in the conceptual space. By generalizing
these sets of points to regions, one can learn the concepts describing the
underlying categories. In his book [179] Gdrdenfors has illustrated this
learning process with a supervised algorithm, but later [182] he has
also argued for unsupervised methods like k-means clustering (both to
be described in more detail in Chapter 5).

1.2.2 Relation to Psychology

Gérdenfors argues that the convexity requirement allows us to relate
the conceptual spaces framework to the prototype theory of concepts.
Recall from Section 1.1.1 that the prototype view states that concepts
can be described by a prototype and that concept membership is based
on similarity to this prototype. This can explain why some members
of a category are deemed to be more typical than others. Gardenfors
[179, Section 3.8] now argues that if concepts are represented by convex
regions, one can assign a degree of centrality to each of the points in
this region by measuring its distance from the center of the region.
Thus, a prototype (in the "best example" sense) can be obtained by
computing the center of gravity for the conceptual region. Conversely,
Gardenfors [179, Section 3.9] shows that by assuming a prototype-based
representation, one can easily generate convex region. For instance,
if color properties such as RED and ORANGE are represented by their
prototypical points in corLor space (e.g., their corresponding focal
colors), one can partition the overall space into convex regions by
assigning each point in the space to its closest prototype. This way
of partitioning a space is called a Voronoi tessellation and is used by
Gérdenfors for most of his arguments and illustrations. Using this
prototype-based interpretation of conceptual spaces, one can easily
model concept learning by defining the prototype as an average across
all examples seen for the corresponding concept.

Recently, Lewis and Lawry [253] have argued that such a Voronoi
tessellation of the space has, however, the disadvantage that each
individual point in the conceptual space has to be assigned to exactly
one prototype and hence to exactly one concept. If instead points are
assigned to a concept if their distance to this concept’s prototype is
below a given threshold, one can also model cases where an observation
can be described by multiple concepts at once or by none at all.

Strofiner [393] has furthermore highlighted the similarities and differ-
ences between conceptual spaces and frames: Both approaches analyze
concepts in terms of attributes and values. Frames use a symbolic
representation of these values, which can be quite restrictive in compar-
ison to the quantitative information represented in conceptual spaces.
However, frames allow for complex and recursive structures, while the
structure of conceptual spaces is limited to domains and dimensions.
Strofsner emphasizes that combining frames and conceptual spaces may
create many synergies. For instance, one can use conceptual spaces for
modeling individual properties, and then define a frame-like structure

17

Conceptual spaces as
a spatial variant of
prototype theory

Limitations of
Voronoi tessellations

Conceptual spaces
and frames

Conceptual spaces as
a theory of concepts

Typicality effects

Exemplar effects

Correlations

Conceptual

hierarchies and basic

level

18

| INTRODUCTION

Observa- Classical Prototype = Exemplar = Knowledge Conceptual
tion View View View View Spaces
Typicality
Effects X v v - v
Exemplar
Effects X X v B B
Correlations X - v v v
Hierarchies X v X - v
Basic Level - - X - -
Induction X v X v v
Concept
Combina- X v X v v
tion
Knowledge 5 _ . v 5
Effects

Table 1.2: Overview of empirical observations about concept learning and con-
cept usage, and their relation with different psychological theories,
including the conceptual spaces framework ("v"" means "predicted”,
"X" means "conflicting", and "-" means "neutral").

on top of this in order to represent fully fleshed concepts which may
also include recursive part-whole structures. Moreover, conceptual
spaces may provide a useful way for modeling prototype effects within
a frame-based approach.

Let us now discuss to which extent conceptual spaces are capable
of modeling the empirically observed effects from the psychological
literature as discussed in Section 1.1.2. Table 1.2 shows an overview of
the different effects, the psychological models from Section 1.1.1, and
the conceptual spaces framework.

As argued above, conceptual spaces can be seen as a geometric variant
of prototype models. They are thus able to explain typicality effects based
on distances in the similarity space.

While exemplar effects are not easily explained by Gardenfors” account,
one can imagine to extend his framework by adding a small number
of exemplars to the representation of both properties and concepts. A
concrete example for such an extension will be discussed below.

Correlations between domains are explicitly included as an important
component of the definition of a concept. Although Gardenfors does
not specify how exactly these correlations should be represented, some
extensions of his work (e.g., [329]) have proposed concrete mechanisms
for representing these correlations.

As noted above, conceptual hierarchies are implicitly represented in
conceptual spaces through the subsethood relation of the respective
conceptual regions. The basic level of concepts can be modeled by trans-
lating informativeness and distinctiveness into spatial terms, namely,
a low intra-class distance and a high inter-class distance, respectively.
Essentially, the work by Douven and Géardenfors [137] discussed in
Section 1.2.1 tries to capture this with their proposed well-formedness

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

FISH

PET FISH

PET

Figure 1.2: Simple spatial representation of the pet fish example.

principle. The basic level then corresponds to a set of conceptual re-
gions which optimize the trade-off between being small and being
separated from each other by a clear margin. As we will see in Chapter
7, the underlying principle can be related to clustering techniques from
machine learning.

All induction effects based on typicality and similarity can also be
explained with conceptual spaces by resorting to the distances in the
underlying similarity spaces. Recently, Osta-Vélez and Gardenfors [311]
have demonstrated how this can be achieved with a relatively simple
mathematical model, which is able to account for many empirically
observed effects.

The conceptual spaces framework also provides a geometric ground-
ing for many concept combinations. Lieto et al. [260] use the pet fish
example by Osherson and Smith [309] to illustrate how concept combi-
nations in the conceptual spaces framework are capable of preserving
typicality structures: A GupPY is neither a typical PET nor a typical FisH,
but it is considered to be a very typical peT F1sH. In a conceptual space,
one can define typicality based on the distance to the center of the
respective region. Moreover, in a simplified version of the framework,
we can define the region describing pET FisH as the intersection of the
regions representing PEr and risH (see Figure 1.2). As we can see, GUPPY
is a subset of both risH and per, but it lies quite far away from the center
of both regions (marked by crosses). However, it is located quite close
to the center of the pet FisH region. Thus, the geometric representation
of conceptual knowledge provides an intuitive way of explaining the
pet fish example. We will take a closer look at concept combination
in conceptual spaces in Chapter 3 in the context of our mathematical
formalization of the framework.

Knowledge effects are not considered in conceptual spaces. One can,
however, imagine that background knowledge can be incorporated
in the form of external constraints on the way in which conceptual
regions are formed and combined. One way of incorporating such
external constraints is offered by the salience weights which define the
importance of the individual domains in the current context. Knowledge

19

Induction

Concept combination
in conceptual spaces

Knowledge effects

Taking stock

The Dual-PECCS
system

The conceptual space
of Dual-PECCS

Classification
procedure

20

| INTRODUCTION

effects will resurface in Chapters 4 and 7 in the context of defining
concept similarity and learning conceptual regions, respectively.
Overall, one can see that conceptual spaces are able to accommodate
almost all of the effects described in Section 1.1.2. This is mainly caused
by conceptual spaces being a geometric variant of the prototype theory.

Lieto et al. [258, 264, 265, 266] have used the conceptual spaces
framework in order to build a computational model of conceptual
categorization which unifies prototype theory, exemplar approaches,
and the classical view of concepts. They made use of the distinction of
cognitive processes into two types (cf. [217]): System 1 processes are
unconscious, parallel, fast, and based on associations, while system 2
processes are conscious, sequential, slow, and based on explicit rule
following. Lieto et al. mapped both exemplar and prototype theories to
commonsense reasoning strategies (which are a system 1 process) and
the classical view of concepts to deductive reasoning (i.e., a system 2
process). In their Dual-PECCS system, they used a hybrid knowledge
base which employed conceptual spaces for representing information
about prototypes and exemplars and which used the OpenCyc ontology"
[281] to represent classical definitional information about concepts.

Their example implementation focuses on finding the correct ani-
mal category (e.g., car) for short linguistic descriptions such as "the
mice hunter with whiskers and long tail". In order to prepare their
knowledge base accordingly, they extracted information about nine
domains (namely, sIzE, SHAPE, COLOR, LOCATION, FEEDING, LOCOMOTION,
HASPART, PARTOF, and MANRELATIONSHIP [262]) from ConceptNet [267].
Essentially, they scanned ConceptNet for relevant associations which
were then mapped onto the individual dimensions of the conceptual
space, using in some cases a translation dictionary to map symbolic
terms such as RED onto a numeric representation such as coordinates in
the color space [266]. The points obtained for basic level categories such
as cat were interpreted as prototypes for the respective concept, while
points obtained for subordinate categories such as CANADIAN SPHYNX
were interpreted as exemplars for their associated basic level category.

In order to find the correct category for a given linguistic description,
Lieto et al. first extracted the relevant pieces of information from
the query using standard tools for natural language processing. The
extracted information was then fed into their system 1 process which
operates on the prototypes and exemplars in the conceptual space. If
an exemplar was close enough to the given query point (taking only
into account dimensions for which there is information on the query
point), the category associated to this exemplar was used as system 1
response. If no matching exemplar was found, the system picked the
closest match among all prototypes and exemplars as system 1 response.
This preference for exemplars over prototypes had been motivated by
findings reported in the psychological literature [287]. The output of

1 OpenCyc was a publicly available subset of the commercial Cyc ontology (see https:
//cyc.com/), which has been discontinued in 2017.

https://cyc.com/
https://cyc.com/

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

system 1 was then validated by a system 2 process, which essentially
checked whether the query and the category identified by system
1 matched the definition from the ontology. One can thus say that
prototypes and exemplars were used to generate candidate responses
while the ontology was used to filter them.

Lieto et al. evaluated their system on a dataset of 112 linguistic
descriptions [265]. In a preliminary study with human subjects, Lieto
et al. established that 56 of these descriptions were interpreted as
referring to a prototype while the categorization of the remaining 56
descriptions was based on an exemplar. Lieto et al. were able to show
that their system identified the correct category more frequently than
standard search engines such as Google, Bing, and Wolfram Alpha when
considering their first ten responses [266]. In most cases, Dual-PECCS
used the expected representation (prototype or exemplar) for making its
response. The most confusions with respect to the representation type
arose when a prototype-based response was expected, but the system
used an exemplar to come to its conclusion. This can, however, easily
be explained by the preference given to exemplars when determining
the system 1 response. Since the implementation of this preference in
their cognitive model resulted in outputs that were not in line with
human responses, this observation can be seen as a contradiction to the
psychological data that motivated this design choice. It therefore urges
for more psychological research on this topic.

The Dual-PECCS system has successfully been integrated into four

cognitive architectures [265, 266], namely, ACT-R [13], CLARION [398],

SOAR [239], and LIDA [160]. Each of these cognitive architectures has
its own set of underlying assumptions about human cognition. For
example, the SOAR architecture assumes that cognition can be explained
mainly by symbol manipulation while CLARION emphasizes the tight
integration of symbolic and connectionist approaches in each of its
modules. Since Lieto et al. were able to integrate their representation
and reasoning mechanisms in all of these architectures despite their
different underlying assumptions, they argue that their approach can be
used as a common ground for knowledge representation and reasoning
in cognitive architectures in general (cf. also [260]). Finally, there was a
recent proposal for replacing the ontology used in Dual-PECCS with
a theory-based approach [258]. The resulting updated system then
computes a degree of consistency of the system 1 response with its
background knowledge in the form of theories instead of making a
binary decision based on necessary and sufficient criteria. Thus, in this
extension of the Dual-PECCS system, the classical view is discarded in
favor of the knowledge view.

The work by Lieto et al. makes an important contribution to concept
research: They propose a concrete way of combining different views
on concepts, considering both their representational mechanisms and
their classification procedures. Moreover, their system provides an
actual implementation of this proposal which makes it easy to validate
theoretical claims by practical experiments. Finally, their system shows
the value of conceptual spaces as a modeling tool for cognitive Al

21

Evaluation results

Integration into
cognitive
architectures

Relevance

A general dichotomy
of models

Subsymbolic models

Strengths and
weaknesses of
subsymbolic models

Symbolic models

22

| INTRODUCTION

1.2.3 The Classical Layers of Representation

Generally speaking, models of human cognition can be distinguished
into two broad classes, namely symbol systems and connectionist sys-
tems [190]. In the field of artificial intelligence, this is reflected by the
dichotomy of knowledge representation into the symbolic and the
subsymbolic layer. Gardenfors [179, Chapter 2] notes that in biological
systems, the distinction into symbolic and subsymbolic representations
corresponds to different ways of describing the same object, based
on different levels of granularity. In artificial systems, however, they
usually map to separate modules or layers. In the following, we will
describe these two classical layers in more detail.

The subsymbolic approach (often also called connectionism) views cogni-
tion as dynamic patterns of activity in a complex network of individual
nodes [190]. This definition originally also encompassed graph-based
representations where events and concepts are represented as nodes
and activation is spread among their connections [179, Chapter 2]. In the
recent past, it has, however, mostly been equated with artificial neural
networks which are a mathematical model for learning associations
between a given set of inputs and outputs [179, Chapter 2]. The input
to these neural networks is usually based directly on sensory input
[260] and the computations involved are mostly concerned with pattern
recognition [179, Chapter 7].

Connectionist models are capable of learning patterns by applying a
relatively small class of algorithms to a wide variety of tasks [190]. They
are therefore quite flexible and relatively robust to noise [179, Chapter
2]. Depending on the actual model, they can also be mapped to the
structure and activity of human brains (see e.g., [106, 443]). However,
connectionist models are in general incapable of modeling systematic
symbolic properties such as compositionality [260] which seem to im-
portant for many cognitive tasks [190]. As not all cognitive operations
reduce to pattern learning, connectionism can therefore not account for
all cognitive phenomena. Moreover, artificial neural networks tend to
require large amounts of training data [179, Chapter 2] and typically
result in black box solutions, which are hard to interpret [260].

The symbolic approach interprets the human mind as a symbol system
and the process of cognition as symbol manipulation [190]. A symbol
system is based on a set of arbitrary atomic tokens (called symbols)
which can be combined with each other based on certain rules in order to
construct composite symbol strings. These rules are exclusively based on
the syntactical structure of these symbol strings. All of these entities (i.e.,
atomic symbols, composite symbol strings, and rules) are semantically
interpretable in the sense that one can systematically assign a meaning
to them based on the underlying syntax. More generally speaking,
symbolic representations tend to be based on logical formalisms [260]
and are typically processed through recursion, the application of rules,
tree traversal, and search algorithms [179, Chapter 7].

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

Symbolic models have the full computational power of Turing ma-
chines [190] and are well-suited for complex reasoning tasks [260], e.g.,
the computation of logical consequences [179, Chapter 2]. Moreover,
they are able to model compositionality [260], which is for example
required when processing language. Symbolic Al systems such as
SOAR [239], but also ontologies from the semantic web [171] can be
seen as practical implementations of this approach [260]. Overall, the
symbolic approach has strong ties to the classical view on concepts due
to their common dependence on formal logics.

However, symbolic models also come with severe limitations. For
instance, they are often ad-hoc in the sense that the rules and symbols
need to be handcrafted for the specific task [190]. Furthermore, they
cannot account for typicality effects (such as roBiN being a more typical
example of the BIRD category than PENGUIN) [260]. Moreover, the indi-
vidual symbols are mostly specified a priori and cannot be changed
[179, Chapter 2], which limits their flexibility. Finally, the symbols used
in symbolic models do not have any connection to the real world and
are thus subject to the symbol grounding problem [190].

Inspired by Searle’s Chinese room argument [356], Harnad [190]
describes the symbol grounding problem as the task of learning Chinese
by only using a Chinese-Chinese dictionary. This dictionary contains
a definition for each Chinese word in terms of other Chinese words.
However, it is arguably impossible to learn the underlying meaning of
the Chinese words only based on this dictionary. Harnad argues that
purely symbolic systems face a similar problem since their symbols are
only defined in terms of each other without a reference to the external
world. The symbol grounding problem can thus be formulated as the
following question:

How is symbol meaning to be grounded in something other
than just more meaningless symbols? [190, Section 2.2]

One may note that most symbolic systems can still be interpreted
by humans in practice. However, this is usually only possible be-
cause the symbols have been chosen in such a way the human inter-
preter can easily connect them to their own perceptual experience.
If the symbols in the system are for example named ReD, swWEET, and
APPLE, then an interpretation of this system inadvertently triggers
the sensory experiences associated with this specific color, taste, and
object, respectively. This enables humans to interpret rules such as
APPLE(z) A RED(x) = swEET(x) and to judge their meaningfulness. How-
ever, if the symbols in such a system were consistently replaced with
meaningless tokens (such that for example rep would be replaced
everywhere in the system with 42xu8qw), then the corresponding rule
42xu8Qw(z) A 4c89(x) = 29F4Quz(z) would be completely opaque to
a human interpreter. Even with access to all rules in the system, one
would not be able to understand the meaning of atomic symbols such
as 42xH8Qw, let alone complex symbol strings.

23

Strengths of symbolic
models

Weaknesses of
symbolic models

The symbol
grounding problem

Interpretability of
symbolic models
depends on the
symbol names

Continued relevance

Towards a hybrid
approach

Harnad'’s solution to
the symbol
grounding problem

Iconic and
categorical
representations

Support from
psychology

24

| INTRODUCTION

Although there have been several concrete proposals for solving
the symbol grounding problem, it still remains highly relevant today
and cannot yet be considered to be solved in its entirety (see e.g.,
[85, 109, 249, 404]).

As one can see from this brief discussion, both classical approaches
have complementary advantages and disadvantages. Both from the
perspective of cognitive science in general (which aims for a holistic
understanding of the human mind) and of artificial intelligence in
specific (where one aims for good and robust performance in a variety
of tasks), it is thus desirable to combine of both approaches with the
aim to conserve their strengths and to eliminate their weaknesses.

Harnad [190] does not only note and describe the symbol grounding
problem, but he also sketches a possible solution. This solution is
based on the two fundamental cognitive processes of discrimination
and identification. Discrimination corresponds to judging whether two
stimuli are the same or different and to determine how much they differ
from each other. Harnad argues that this essentially requires a way of
judging the similarity of two stimuli. Identification on the other hand
corresponds to assigning a unique response (i.e., a name or a symbol)
to a class of inputs, treating them as equivalent in the current context.
Essentially, this corresponds to classification.

Based on these two cognitive processes, Harnad argues for two types
of representations. Iconic representations (or icons) are simple analog
transformations of the raw sensory information. They are sufficient
for determining similarity between stimuli by simply superimposing
them and determining their degree of disparity. Iconic representations
can thus in principle support discrimination. As the sensory appara-
tus of humans is fixed, iconic representations can be assumed to be
mostly innate. Icons are, however, in general not sufficient for identifi-
cation as there are too many of them which can blend into each other
continuously. Also Murphy [298, Chapter 2] has argued that a clear
separation of objects into different categories would only be possible if
the world consisted "distinct clumps of objects", i.e., if no continuous
blending between stimuli could occur. Therefore, Harnad [190] pos-
tulates categorical representations as a second representational type.
Categorical representations are the output of category-specific feature
detectors which compress the iconic representations in such a way that
the invariant features of the respective category are emphasized while
irrelevant variations are filtered out. Using these invariant features,
categorical representations thus provide a way to distinguish category
members from non-members. As the categories which may be relevant
in a given environment cannot be anticipated by evolution, categorical
representations can be assumed to be mostly learned.

The distinction into iconic and categorical representations can also
be supported from a psychological point of view: Native speakers of
a language with only two color terms (distinguishing light from dark
colors) have a similar perception and memory of colors as native speak-
ers of languages with a larger inventory of color terms [298, Chapter

25

[Symbollc Layer Vx appl x)=red(x)}

\

Conceptual Layer

[Subsymbolic Layer /[0.42; -1.337,]\]
(a) (b)

Figure 1.3: (a) Conceptual spaces as an intermediate layer for translating
between symbolic and subsymbolic representations. (b) Mental
image of three people sitting at a small round table and a modified
TO THE RIGHT OF relation.

11]. It thus seems that the overall perception of color is shared among
different cultures (i.e., same iconic representation) while different color
categories have been learned (i.e., different categorical representations).

Harnad [190] now argues that the categorical representation can
be used to ground atomic symbols of a symbol system such as HORsE
and striPED. The meaning of these symbols then corresponds to the
category selected by the corresponding categorical representation, i.e.,
to the set of stimuli which are members of the given category. Thus,
atomic symbols are linked to categories of perceived objects. The symbol
system can then operate on top of these atomic symbols by using rules
to express more complex symbols for which no perceptual grounding
is available. For instance, one could define the symbol zesra as follows:
ZEBRA () :<> HORSE(x) A sTRIPED(). The symbol zeBra is then indirectly
grounded in perception through the categorical representations of
HORsE and sTrIPED. Thus, a person who had never seen a zebra could
nevertheless identify one based on this definition and the prior sensory
experiences of horses and striped things.

Harnad proposes to use connectionist approaches for learning the
categorical representations by pattern matching. His overall proposal
thus provides a principled way of using both symbolic systems and con-
nectionism while combining their advantages and largely eliminating
their individual weaknesses.

1.2.4 Using the Conceptual Layer to Solve the Symbol Grounding
Problem

The general solution to the symbol grounding problem sketched by
Harnad [190] is still quite abstract, since it does for instance not specify
how categorical representations look like. A more concrete proposal has

Symbol grounding
with categorical
representations

Summary

Conceptual spaces as
an intermediate layer
of representation

Conceptual spaces
and Harnad’s
proposal

Advantages of
conceptual spaces

Advantages over
purely connectionist
models

26

| INTRODUCTION

been made by Gardenfors [179] who proposes to use conceptual spaces
as an intermediate layer of representation, the so-called conceptual
layer (see Figure 1.3a). Individual observations, which correspond
to high-dimensional activation vectors in the subsymbolic layer, are
represented by points in the lower-dimensional conceptual space and
can be mapped onto constants and variables from the symbolic layer.
Predicates from the symbolic layer (such as appLE and RED) can be
mapped onto concepts and properties in the conceptual layer. Each
predicate is thus mapped onto one or more convex regions in the
conceptual space which describe sets of observations that are similar to
each other and dissimilar from other observations. One can therefore
easily see that the symbols from the symbolic layer can be indirectly
grounded in subsymbolic perception through the conceptual layer.

According to Gardenfors [179, Chapter 2], this overall architecture
can be roughly aligned with Harnad’s proposal [190] by mapping
the iconic representation to the subsymbolic layer and the categorical
representation to the conceptual layer. We would, however, like to
point out that this is only a rough alignment since the underlying
mechanisms are of different nature. Harnad’s iconic representation
mainly targets similarity judgments between pairs of stimuli. As simi-
larity is measured as inverse distance in Gardenfors” framework, the
iconic representation can also be mapped onto points in the conceptual
layer. Harnad’s categorical representation on the other hand focuses
on concept membership and is thus closely related to regions in the
conceptual space. Even though the two proposals do not align perfectly,
they clearly have a strong relationship to each other.

It has been argued that this intermediate layer with geometric repre-
sentations has several advantages over both symbolic and subsymbolic
approaches [179, 181, 260]. In addition to providing a connection be-
tween the two classical layers, the conceptual spaces approach thus has
its own merit in modeling and explaining certain aspects of cognition.

When comparing the conceptual layer to the subsymbolic layer,
one can note that the number of dimensions in the conceptual space
is considerably lower than the dimensionality of a neural network’s
activation vector. When learning classification boundaries for concepts,
one therefore needs to estimate a considerably smaller amount of free
parameters, which can lead to faster learning and better generalization
[179, Chapter 7]. Moreover, the artificial neural networks used in
the subsymbolic layer often tend to be black box models which are
hard to interpret by humans. In many domains (e.g., medicine), it
is, however, not only desirable to make correct predictions, but also
to give an explanation for this prediction. This is the focus of the
growing body of research in explainable Al [113, 133, 274]. By lifting
information from the subsymbolic to the conceptual layer, where we
have interpretable dimensions and a meaningful domain structure, Al
systems can become more interpretable. Lieto et al. [260] argue that in
principle, one can interpret the individual layers of an artificial neural
network as a conceptual space, where the activation of each individual

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

node determines the coordinate with respect to one of the coordinate
axes. This way, conceptual spaces can be used as a way to analyze
and interpret the inner workings of artificial neural networks such as
self-organizing maps or RBF networks.

Most advantages of the conceptual layer become apparent when
comparing it to the symbolic layer [181, Chapter 14]: As we have seen
in Section 1.2.1, a conceptual hierarchy does not need to be explicitly
coded in conceptual spaces, but it emerges based on the subsethood
relation between regions. Also the identity of two concepts or objects
emerges naturally based on the identity of the underlying regions
or points. Moreover, also property characteristics (such as "GREEN is
a coLor" or "nothing is both completely Rep and completely GREeN")
emerge directly from the structure of the underlying conceptual space
(namely, the region describing GrReeN being defined only on the coLor
domain, and rep and GREEN being represented by disjoint regions). All
three of these effects need to be explicitly modeled in symbolic systems
which considerably increases the modeling effort associated with these
approaches. Furthermore, Gardenfors argues that in the conceptual
layer no symbolic inference engine is needed since all relevant pieces
of information are encoded geometrically and can thus be accessed by
straightforward geometric computations. Another key advantage of
conceptual spaces over symbolic systems is the inherent representation
of semantic similarity which allows for approximate reasoning.

Lieto et al. [260] note that conceptual spaces provide also a unifying
framework for many diagrammatic and analogical representations.
These types of representations typically involve mental images or
mental models of specific contexts and can be more intuitive than
symbolic approaches especially in spatial domains. For example, the
relation To THE RIGHT OF is usually assumed to be transitive. However,
one can easily imagine three people sitting at a small round table, where
the To THE RIGHT OF relation is reinterpreted based on a counterclockwise
order. By visualizing the scene as a mental model (see Figure 1.3b),
this violation of transitivity can be easily predicted, while formal logics
require additional complex assertions to capture this case. Lieto et al.
argue that the geometric nature of the conceptual spaces approach
provides a way to easily embed these mental images.

Since the conceptual layer offers advantages over both the symbolic
and the subsymbolic layer and is capable of integrating diagrammatic
approaches, Lieto et al. [260] have argued that it should be seen as a
"Lingua Franca" for cognitive architectures. As Gardenfors [181, Chap-
ter 14], however, points out, the main limitation of the conceptual
spaces framework is that one needs to correctly identify and describe
its underlying domains and dimensions.

One of the first applications of conceptual spaces in artificial intel-
ligence was the work by Chella et al. [95, 96, 97, 98] on perceptual
anchoring in robotics. Perceptual anchoring is the problem of linking
symbols for individual objects to the corresponding sensory data and
maintaining this connection over time [95]. As such, perceptual anchor-

27

Advantages over
purely symbolic
models

Diagrammatic and
alaogical models

Conceptual spaces as
“Lingua Franca”

Conceptual spaces
for perceptual
anchoring in robotics

Perceptual space:

static information

Situation space:

dynamic information

Action space:

changes in movement

| INTRODUCTION

I"___ 5

| 7
I}

\—

Figure 1.4: Different superquadrics based on varying form factors ¢; (rows,
ranging from 0.2 to 1.5) and e, (columns, ranging from 0.2 to 1.5).
Figure taken from [97], reprinted with permission.

ing can be seen as a special case of the symbol grounding problem.
For example, if the symbol cur-22 is used by a symbolic planner in the
context of preparing a breakfast table, this symbol needs to be connected
to the sensory input in order to identify the cup’s location and in order
to generate appropriate motor commands for manipulating it. Chella et
al. used handcrafted conceptual spaces as a way for translating between
sensory input and symbolic descriptions. They distinguish three types
of different conceptual spaces [96]:

The perceptual space represents static information about the scene,
where each object is represented by one point. Its dimensions are based
on coLor information (using the HSV coLor space), position information
in the spaTiaL domain, and sHAPE information [95]. The dimensions of
the suaPE domain are based on the parameters of so-called superquadrics
[97], which describe three-dimensional shapes based on their width,
height, and depth, as well as two form factors (see Figure 1.4). Objects
with multiple parts are represented as sets of points in the perceptual
space with one point per part. The perceptual space is connected to the
sensory system through specialized feature extractors which extract the
coordinates (e.g., the shape parameters) from the raw perceptual input.

The situation space captures dynamic information and is built on top
of the perceptual space. In the situation space, each point represents
a simple motion, i.e., a continuous ongoing movement of one simple
object. Again, a complex movement involving multiple parts can be
represented by a set of points in the situation space [98]. The situation
space can be connected to situation calculus [283], which is a symbolic
formalism for describing the state of a given scene.

Finally, the action space represents changes in movement. Each point
in the action space corresponds to a pair of points in the situation space,
describing the situation immediately before and immediately after
the change. For instance, if the movement slows down, accelerates,

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

or changes its direction, the corresponding point in the situation
space moves instantaneously to a different location. This "scattering"
is captured in the action space. Processes such as moving a finger can
then be represented by two actions [98], one for the beginning of the
movement and a second one for the end of the movement.

Chella et al. [95] have devised various anchoring functions in this
setting, which includes establishing an anchor both in a top-down and a
bottom-up manner (based on a symbol that needs to be grounded, and
a perception that needs to be classified, respectively). Their work also
covers functions for updating the anchors over time and reacquiring
them if necessary (e.g., because the object was occluded in the camera
image for a short amount of time). In these anchoring functions, they
use a mapping of properties from the symbolic layer (where cup-22 is for
example annotated with the property rep) to a region in the conceptual
space (in this case to the coLor domain of the perceptual space) in order
to constrain the set of candidate observations that can be matched to the
given symbol. They do, however, not explicitly require these conceptual
regions to be convex. Chella et al. have also applied their approach to
imitation learning [96], where they use k-means clustering to discover
prototypes for different concepts. In this case, they follow Gardenfors’
proposal of representing conceptual regions by a single prototypical
point.

The work by Chella et al. has given a first proof of concept for the
usefulness of the conceptual spaces framework in artificial intelligence,
especially with respect to the symbol grounding problem. We will revisit
their work in Chapters 2 and 10, where we discuss their proposals for
representing part-whole relations and the shape domain in more detail.

1.2.5 Relation to Machine Learning

Classification problems in machine learning are often interpreted as the
search for good classification boundaries between two or more classes
in a feature space. In such a setting, each observation is annotated with
its values for a fixed set of features and its correct class assignment. If
one interprets each feature as a dimension, each observation can be
interpreted as a point in a high-dimensional space spanned by these
features. Any decision rule for separating the observations belonging
to different classes can then be visualized as a decision boundary in
this feature space. Solving the classification problem is thus equivalent
to partitioning the feature space into different regions corresponding
to the different classes. Some machine learning algorithms such as &
nearest neighbor compute the distance between points in this feature
space to make their classifications [295, Chapter 8], other algorithms
such as linear support vector machines attempt to separate the classes
with a hyperplane [73, 110].

29

Anchoring with
conceptual spaces

Relevance

Geometric
interpretation of
classification
problems

Conceptual spaces as
a special kind of
feature space

Conceptual spaces
and feature spaces
have different
objectives

Conceptual spaces
and feature spaces
use different levels of
abstraction

Conceptual spaces
have a domain
structure, feature
spaces typically don’t

A first example
application

30

| INTRODUCTION

One can easily see that a conceptual space can thus be interpreted
as a special kind of feature space, which is spanned by semantically
meaningful features and where conceptual regions are required to
be convex. The process of obtaining the dimensions of a conceptual
space for a particular application can therefore be linked to feature
engineering procedures in machine learning, while concept learning
is just a constrained version of learning classification boundaries in a
feature space. This strong link between conceptual spaces and feature
spaces gives further motivation to our research which tries to make
conceptual spaces usable for artificial intelligence applications.

One should, however, note that despite their similarities, there are a
number of differences between conceptual spaces and feature spaces.
Chella et al. [97] have argued that the objective of feature spaces is
to enable the classification of objects into a set of given categories,
whereas conceptual spaces aim to give a cognitive grounding of sym-
bolic representations on perceptual data. Therefore, the dimensions
of a feature space serve the main function of allowing for good dis-
crimination, whereas the dimensions of a conceptual space also allow
for the generation of a rich symbolic description. Also Sileno et al.
[370] argue that the discriminatory power of a given quality dimension
with respect to a given concept should be reflected by its respective
salience weight rather than being inherent in the conceptual space itself.
Banaee et al. [26, 27], however, have put a stronger emphasis on the
discriminative power of the quality dimensions by considering only
highly discriminative features as candidates for quality dimensions.

Chella et al. [97] furthermore observe that feature spaces are often
based on low level features which are closely related to sensory input.
Conceptual spaces on the other hand are based on cognitively salient
dimensions which might be more abstract. Moreover, feature spaces
typically treat objects as wholes without being able to represent their
individual parts. Conceptual spaces by themselves are also limited to
whole objects, but there have been extensions to the framework making
it possible to represent part-whole relations [97, 158].

Another important difference in our opinion is the structure of the
spaces. Feature spaces from machine learning are typically assumed
to form one big, unstructured Euclidean space, where distance is com-
puted with the Euclidean metric. Conceptual spaces, on the other hand,
group their dimensions into domains. In order to compute the distance
between two points in the conceptual space, one first computes their
Euclidean distance within each domain before combining these intra-
domain distances with the Manhattan distance (i.e., by simply summing
them up). These different notions of distance may result in different
notions of similarity and thus in different classification behavior.

A first example application of conceptual spaces in machine learning
is given by Banaee et al. [26, 277], who consider the bottom-up process of
creating linguistic descriptions of numerical data. Their work consists
of two important contributions, namely the extraction of conceptual
spaces from machine learning datasets, and the generation of linguistic

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

descriptions based on conceptual spaces. We will now give a brief
high-level summary of their work, which will be discussed in more
detail in later chapters of this dissertation

In order to extract a conceptual space from a machine learning dataset,
Banaee et al. assume that not all features from the dataset are necessary
and only a subset is needed for generating meaningful descriptions. In
order to identify this subset of features, they measure the predictive
power of each feature for each of the different classes. A domain is then
defined as a set of features which have a high predictive power for a
set of classes. Banaee et al. iteratively select such sets of features until
at least one such domain has been identified for each class. Now, the
domain structure of the conceptual space has been identified and all
remaining features can be discarded. Banaee et al. have shown on two
example datasets (leaves and time series) that the resulting domains
tend to group together features with a common underlying meaning
(e.g., various features describing the convexity of a leaf). The examples
from the dataset are then mapped onto points in the conceptual space
by removing the unused features. Banaee et al. then construct for each
class a convex hull of its example data points.

In order to extract a linguistic description of a given observation,
Banaee et al. first project this observation into the conceptual space and
then analyze it with respect to the different domains. In each domain,
they first check whether the point is contained in any conceptual region.
If this is the case, they annotate the observation with the respective class
label. Otherwise, they use annotations with respect to the individual
dimensions (such as ELONGATED referring to the upper end of the aspect
raTIO feature of the leaves dataset). After having collected a list of such
annotations, Banaee et al. use handcrafted templates to generate an
overall linguistic description. For both of their datasets, Banaee et al.
found that human subjects were successful in identifying the correct
observation based on the generated description. Moreover, for most of
the incorrect responses the incorrectly selected observation was quite
close to the target observation in the conceptual space which provides
an intuitive explanation for the observed human behavior.

The work by Banaee et al. provides bottom-up procedures for con-
necting the subsymbolic to the conceptual layer through the creation
of conceptual domains and for connecting the conceptual layer to the
symbolic layer through the generation of linguistic descriptions. More-
over, it highlights the strong relation between conceptual spaces and
machine learning. We will revisit their work in Chapters 3 and 6, in the
context of concept combination and machine learning, respectively.

Another important research contribution in the context of machine
learning has been made by Derrac and Schockaert [122, 123], who use
the conceptual spaces framework as a way to implement commonsense
reasoning strategies. Commonsense reasoning is here seen in contrast
to classical deductive reasoning, which often fails in contexts where
only insufficient knowledge is available. Commonsense reasoning aims
to draw plausible conclusions which may be unsound from a strictly

31

Obtaining a
conceptual space
from a machine
learning dataset

Creating linguistic
descriptions with
conceptual spaces

Outlook

Commonsense
reasoning with
conceptual spaces

Extracting
conceptual spaces
from textual data

Identifying
interpretable
directions

Defining different
commonsense
reasoning strategies

Implementing
commonsense
reasoning as
classifiers

32

logical perspective, but which nevertheless are useful in practice. In
their work, Derrac and Schockaert extract conceptual spaces from text
corpora, identify interpretable directions in these spaces, define several
commonsense reasoning strategies based on geometric relationships,
and empirically evaluate classifiers based on these strategies.

Derrac and Schockaert base their conceptual spaces on textual data,
which is generally available in large quantities. They consider three
domains, namely, MOVIE, PLACE TYPE, and wiNE. For a set of candidate
entities in each domain (i.e., individual movies, place types, and wine
variants), they collected bag of words representations (i.e., a list of
all words associated with the respective entity) based on review texts
(for movies and wines) and image tags (for place types). These bag
of words representations are then transformed into coordinates in a
similarity space, using among others the technique of multidimensional
scaling, which will be described in more detail in Chapter 8. Essentially,
multidimensional scaling represents each entity as a point in a low-
dimensional space and arranges these points in such a way that their
Euclidean distances accurately reflect the pairwise dissimilarities (which
are in this case based on the bag of words representation). As a result,
Derrac and Schockaert obtain one conceptual space for each of the three
domains under consideration.

These conceptual spaces reflect the pairwise similarities of the under-
lying entities, but the coordinate axes of their coordinate system are not
necessarily interpretable. In order to identify interpretable directions
in these conceptual spaces, Derrac and Schockaert identify a set of
candidate terms (e.g., adjectives such as "funny" in the movie domain)
and try to find directions in the similarity space which separate all
entities associated with the given candidate term from all other entities.

After having extracted these conceptual spaces, Derrac and Schock-
aert provide geometric definitions for several commonsense reasoning
strategies: Similarity-based reasoning (which generalizes properties
from similar observations) can directly be based on distances in the
conceptual space — the smaller the distance between two entities, the
more similar they can considered to be. In addition to this, Derrac and
Schockaert also formalize a degree of betweenness for triples of points
(e.g., quantifying to which extent wiNE sHOP is conceptually between
GOURMET SHOP and LIQUOR sTORE) in order to allow for interpolative
reasoning (such as concluding that if both a courmET sHOP and a LiQUOR
sTORE have to pay a certain tax, a wiNe sHoP will have to do so as well). In
order to support analogy-based reasoning of the type "MEDICAL scHOOL
iS t0 SANATORIUM as MILITARY SCHOOL is t0 MILITARY BARRACKS', they also
propose different ways of measuring the parallelism of directions.

All of these definitions are put to use in classifiers targeting com-
monsense reasoning. Derrac and Schockaert identify similarity-based
reasoning with a k nearest neighbor classifier. Moreover, they devise
a betweenness-based classifier which is based on the assumption that
conceptual regions are convex. If the betweenness-based classifier is
asked to classify a point b, it tries to find two points a and ¢ which have
an identical class label and for which b has a high degree of betweenness.

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

Also the analogy-based reasoning can be used for a classifier as follows:
Given a query point q, find three points b, ¢, d such that ab has a high

degree of parallelism with cd. By analyzing the class labels assigned
to b, ¢, and d, one can infer a class label for a (e.g., if both b and d are
classified as actioNn movies and c is labeled as comEeDY, then by analogy
also a should be classified as comepy). Finally, Derrac and Schockaert
propose to implement a fortiori reasoning of the type "if is more scary
than THE sHINING, then x is a HORROR movie" by extracting such rules
based on the ranking of the entities with respect to the interpretable
directions they had identified before.

In several experiments, Derrac and Schockaert found that for the
conceptual spaces of pLace TYPE and wINE, where only a limited amount
of observations is available, betweenness-based and analogy-based
classifiers seem to perform best, defeating similarity-based and a fortiori
reasoning as well as standard machine learning techniques. On the
other hand, on the conceptual space of the movie domain, where many
observations are available, the betweenness-based and analogy-based
classifiers cannot be efficiently used due to a combinatorial explosion of
candidate tuples to consider. Here, a standard support vector machine
outperformed the a fortiori classifier.

The work by Derrac and Schockaert makes several valuable contri-
butions to the research area of conceptual spaces and will resurface
in later chapters of this dissertation. Their definition of conceptual
betweenness as a meaningful relation for commonsense reasoning will
be incorporated into our formalization of conceptual spaces in Chapter
4. Moreover, we will discuss their approach towards extracting a concep-
tual space from textual data and for identifying interpretable directions
in this space in Chapter 8 in the general context of multidimensional
scaling. Finally, their experiments with respect to machine learning in
conceptual spaces will be reviewed in more detail in Chapter 7.

1.2.6 Neural Grounding

The idea that neurons in the human brain encode spatial structures has
been proposed by various authors [25, 144, 191]. In the following, we
summarize three recent proposals, which may provide some neural
grounding of the conceptual spaces framework.

Balkenius and Gérdenfors [25] claim that psychological similarity
spaces naturally emerge from neural activity spaces through the process
of dimensionality reduction. In order to illustrate their hypothesis, they
note that individual neurons in the motor cortex seem to be tuned
to particular movement directions. The activity of such a neuron is
strongly correlated to the degree to which the movement matches this
neuron’s preferred direction. This preferred direction can be interpreted
as a prototype. If one considers a whole population of such neurons, and
if the activation of each of these neurons is represented as a real number,
then the overall activation of the neural population can be interpreted

33

Experimental results

Relevance

Neural populations
can encode
psychological
similarity spaces

More examples:
physical space,
emotions, and colors

Important
mathematical
properties

Making the learning
problem feasible

34

as a vector of individual activation values. This activation vector lies
in a space which one could call the neuron space or the activation space.
Based on the activation vector and the preferred directions of the
individual neurons, it is possible to reconstruct the original movement
direction (which can be represented as a vector in three-dimensional
physical space): One simply needs to compute a weighted sum over
the neurons’ preferred directions, using their activation as a weight.
Balkenius and Gérdenfors therefore argue that the population coding
in the brain is just a high-dimensional, redundant representation of
a low-dimensional space. The large amount of redundancy within a
neural population makes it more robust against both noise and the
deletion of individual neurons. Balkenius and Gérdenfors note that
population coding implicitly ensures that similar activation vectors
correspond to similar low-dimensional psychological vectors. This
means that similarity relations are preserved — which is quite important
for the framework of conceptual spaces.

Balkenius and Gardenfors make several other examples that illustrate
how psychological spaces can be mapped onto brain activities: External
physical space seems to be represented by the activity of so-called place
cells and grid cells, a three-dimensional emotion space can be grounded
in the neurotransmitters serotonin, dopamine, and noradrenaline, and
the psychological color space is based on so-called opponent channels
(black-white, red-green, and blue-yellow) which can be grounded in
the three types of color cones in the human retina.

Balkenius and Gardenfors also argue that a spatial representation of
perceptions and actions is useful from a cognitive point of view. If one
views cognition as a mapping function from perception to action, then
this mapping function should according to Balkenius and Gardenfors
fulfill the following three properties:

Monotonicity: An increase in the perceptual variable always leads
to an increase in the action variable.

Continuity: Small changes in the perceptual variable only lead to
small changes in the action variable.

Convexity: Closed regions in perceptual space are mapped onto
closed regions in action space.

According to Balkenius and Gardenfors, these restrictions on the
mapping function constrain it in such a way that learning such a
mapping becomes feasible. The three restrictions especially help to
generalize to unseen perceptions by extrapolation (monotonicity), sim-
ilarity (continuity), and interpolation (convexity). This relates to the
different commonsense reasoning strategies discussed by Derrac and
Schockaert [123] (cf. Section 1.2.5). Moreover, Balkenius and Gardenfors
argue that if both perceptions and actions are spatially represented, then
continuity implies both monotonicity and convexity. Taken together,
their work provides an argument that the conceptual spaces framework
is not only psychologically and cognitively useful, but that it also can

1.2 THE CONCEPTUAL SPACES FRAMEWORK |

be connected to activity in the human brain.

Also the semantic pointer architecture (SPA), a cognitive architecture
by Eliasmith [144], is based on the hypothesis that populations of
neurons encode a single cognitive dimension. Also Eliasmith makes a
distinction between the state space (which describes the mathematical
object that is being represented) and the neuron space (which describes
the activity of the neural population representing this object). The
central notion of the SPA is the notion of a semantic pointer: A semantic
pointer is a high-dimensional vector in state space which is represented
by a neural population in neuron space. Eliasmith assumes that these
semantic pointers are a compressed version of the full representation of
a given observation or concept. For example, one could use the activation
of the highest level of a deep artificial neural network as a semantic
pointer which in some sense "summarizes" the original visual input.
The key idea here is that the semantic pointer can be "dereferenced"
or "decoded" into lower-level information, e.g., by reconstructing the
lower-level input that led to the observed high-level activation.

Eliasmith assumes that all semantic pointers have unit length, and
that each concept is associated with a prototypical vector as well as a
certain attractor region: All vectors that fall within this attractor region
are classified as belonging to the corresponding concept. Eliasmith
visualizes this as a conceptual golf ball: The surface of this golf ball
corresponds to a conceptual similarity space, the dimples represent
the concepts, and points on the surface of the ball correspond to
individual observations. While this conceptual space also allows us to
compute similarities between observations and between concepts, it
uses the angular distance between the vectors instead of an Euclidean
or Manhattan distance of the points.

In order to combine information from multiple domains and modali-
ties, Eliasmith introduces a binding operation * which can be used to
combine multiple semantic pointers in the same space. He shows that
if circular convolution is used as binding operation, then one can also
reconstruct the individual constituents from a composite. Eliasmith
proposes that one can then encode concepts as follows:

DOG = PERCEPTUAL * (VISUAL * DOGVISUAL
+ AUDITORY * DOGAUDITORY
+TACTILE % DOGTACTILE + . ..)

+ ISA * MAMMAL + ...

Here, * denotes the binding operation and + denotes the vector
addition. One can think of the resulting composite concept as a frame-
like structure, where the vectors PERCEPTUAL, VISUAL, etc. are the slot
names, which are then connected with the semantic pointer which fills
this slot (e.g., pogVisuaL). While this is in some degree reminiscent of
the domain structure of conceptual spaces, it is important to note that
all computations here take place in the same space: All the semantic
pointers involved in the poc concept lie in the same space as the pog

35

The semantic pointer
architecture

The conceptual golf
ball

Combining multiple
domains

Relation to frames
and conceptual
spaces

Relevance

Tensor product
binding

Unbinding

Recent usage

Relation to SPA and
conceptual spaces

36

concept itself. In the conceptual spaces framework, however, properties
are defined in individual domains whereas concepts span multiple
domains and thus inhabit a different space.

Although the semantic pointer architecture is not a direct imple-
mentation of the conceptual spaces theory, it makes use of spatial
representations and connects them to neural activity. As Eliasmith has
demonstrated, the SPA is capable of reproducing various psychological
and neuroscientific results, offering thus a way to bridge those two
disciplines. It adds support to the general idea that cognition can be
expressed through similarity spaces and it provides concrete ideas
about how such similarity spaces can arise from neural computations.

The SPA is heavily inspired by the earlier work of Smolensky [380],
who also considered the variable binding problem. More specifically,
he raised the question, how symbolic data structures such as lists and
trees can be mapped into a vector space. His proposed solution is the
so-called tensor product binding. Smolensky defines a symbolic structure
as a set of roles with possible fillers, and an object as a conjunction of
concrete filler /role bindings. He points out, that conjunction can be
represented in connectionist systems by simple vector addition, which
is both associative and commutative. He then proposes to represent
both roles and fillers as vectors in a given vector space, and to represent
the variable binding of a given role vector 7 € R™ and a given filler
vector f € R with the tensor product A;; = 7; - fj.

Smolensky also introduces an unbinding mechansim for reconstruct-
ing 7, given i and A: He assumes, that the set of role vectors k) spans
a subspace of the overall vector space R", and that one can find a

dual basis consisting of vectors ﬁ(k), such that #® . g®) = 1, while
7 . g0 =0 for k = 1. Then, the filler value f(k) associated with the

role 7¥) can be obtained as f(k) = 57" witha scaling factor s. Smolen-
sky argues, that by using #*) instead of @*) for the unbinding, one
obtains a superimposition of all fillers based on the respective cosine
similarity between 7*) and #". This allows for graceful degradation,
where a potentially infinite number of roles can be represented in
a finite-dimensional vector space. Both the binding and unbinding
mechansim can be implemented with so-called sigma-pi units, which
are specialized artificial neurons. Unfortunately, the number of these
units quickly becomes prohibitively large with increasing problem size.

Recently, Jiang et al. [210] have applied Smolensky’s ideas to modern
deep learning approaches. Considering the use case of abstractive
summarization, they modified the transformer architecture [417] (which
is the basis of modern large language models such as GPT-3 [83]) based
on Smolensky’s proposal. They report better results with respect to
both abstractive summarization and other related tasks such as named
entity recognition and part of speech tagging.

Overall, the tensor product binding approach by Smolensky can
be seen as a precursor to the semantic pointer architecture discussed
above. Its main strength lies in the representation of part-whole struc-

tures. While Smolensky’s approach combines fillers and roles into more
complex product spaces (and can do so recursively), the SPA confines
itself to a single space, which considerably reduces representational
complexity. This is achieved by using circular convolution rather than
the tensor product for filler /role bindings, coming at the disadvantage
of a higher potential for noise in the unbinding process. In compar-
ison to Smolensky s proposal, conceptual spaces offer interpretable
dimensions, intuitive notions of conceptual betweenness and semantic
similarity, and a clear cognitive grounding.

Recently, Hawkins et al. [191] have made an argument for spatial
representations in the human brain based on grid cells. They start
their discussion by noting that grid cells have been associated with the
representation of an animal’s location in the environment. In difference
to other neurons, which typically exhibit their maximal activation only
for one specific prototypical input, grid cells seem to have a grid of
such prototypical inputs which are roughly equally spaced. A grid
cell fires if the input is close to any of these prototypical points. When
representing physical space, these prototypical points correspond to
specific locations of the animal in a given environment. The output of a
single grid cell does by itself not identify the exact location of the animal.
However, if one combines the output of multiple grid cells, one can
identify the animal’s position — there is usually only a single location in
physical space that excites a given set of grid cells simultaneously.

Hawkins et al. suggest that such grid cells exist everywhere the
neocortex and that they are used to represent also other properties in
the form of locations in a semantic space. Since neuroscientific research
has indicated that there is a unique representation for each different
environment (e.g., each room in a building), Hawkins et al. postulate
that also each object has its own representation. Instead of moving in
the environment, we move our sensors (e.g., our eyes) over the object
of interest (e.g., a pen) where we can again identify different locations
(e.g., the cap). Thus, also the properties of objects can be represented in
a spatial way, for instance through grid cells.

According to their proposal, part-whole relations can be described
with displacement vectors. For instance, if a logo is somewhere on a
coffee cup, then a particular location can be represented either with
respect to the cup or with respect to the logo. As the difference between
these two locations is always constant, their difference vector can be
used to describe the spatial arrangement of parts. This hypothesis of
representing part-whole relations through displacement information
on parts can be related to extensions of the conceptual spaces framework
that use a similar approach for representing the configuration of parts
[158] (see also Chapter 2 for a discussion of part-whole relations in
conceptual spaces). Hawkins et al. hypothesize that this displacement
vector can be learned with so-called displacement cells which are
usually employed to compute the difference between two locations in the
same space (namely three-dimensional physical space) for navigation,
but which can also be used to compute the difference between two

37

Grid cells for
representing physical
space

Grid cells for
representing
semantic spaces

Part-whole relations
as displacement
vectors

Relation to the
exemplar view

Comparison to the
SPA

Existing applications
of conceptual spaces

The three core
problems

38

| INTRODUCTION

non-physical location in two different spaces. Also recent ideas by
Goldowsky [168] in the context of place cells go in a similar direction
by considering the encoding of landmarks in two different brain areas
(which are linked with a so-called Laplace transformation) and the
computation of differences in order to model trajectories.

Hawkins et al. furthermore argue that there is no single central
model of a concept (such as cup), but that there exist hundreds of
decentralized models for each concept, each one based on slightly
different perceptions. A new observation is then classified as belonging
to a given concept, if all or most models agree on the classification. This
can be related to the exemplar view on concepts which also emphasizes
that there is no central abstract representation for concepts.

The work by Hawkins et al. differs from the work by Eliasmith in
several ways: While Eliasmith represents a concept by a single semantic
pointer, Hawkins et al. propose the usage of hundreds of distributed
models. Moreover, they use grid cells as basis of their analysis, whereas
Eliasmith focuses on population coding. Finally, Hawkins et al. do not
explicitly differentiate between domains, which Eliasmith does when
using the binding operator to construct composite representations.
While the proposal by Hawkins et al. is at the current point in time quite
speculative, it nevertheless adds independent support to the claims by
Balkenius and Gérdenfors by proposing an alternative mechanism by
which psychological spaces could be represented in the human brain.

1.3 CONTRIBUTIONS OF THIS DISSERTATION

The framework of conceptual spaces has already been applied in a wide
variety of contexts, ranging from linguistics [70, 69] over the semantic
web [4, 129, 180] and psychology [238] to cognitive science in general
[124, 128, 136, 369, 370] (cf. also [218, 454]). As we have seen in Section
1.2, the conceptual spaces framework has also been successfully used
in various areas of artificial intelligence. Table 1.3 summarizes the four
main applications discussed in Section 1.2. As one can see, despite using
the same underlying framework, these approaches differ with respect
to their concrete interpretation of conceptual spaces, e.g., concerning
the grounding of the domains and dimensions. Moreover, each of these
applications tends to have some idiosyncratic assumptions, preventing
it from being easily extended to other use cases. Our research attempts
to fill this gap by providing general tools for applying conceptual
spaces in artificial intelligence. In Section 1.3.1, we describe our overall
envisioned Al system, which serves as a motivation for the concrete
research contributions presented in this dissertation. While our overall
motivation is strongly tied to the symbol grounding problem, we do
not confine ourselves to any specific subtopic.

We can divide the overall problem of using conceptual spaces for
artificial intelligence into three subproblems: Firstly, we need a proper
mathematical formalization of the framework which lends itself to-

1.3 CONTRIBUTIONS OF THIS DISSERTATION

A Chella et al. Banaee et al. LR ECELT
[258, 264, Schockaert
[95, 96, 97, [26, 27]
265, 266] ; ; [122, 123]
. 98] (Section (Section .
(Section o) o) (Section
1.2.2) >4 25 1.2.5)
o Common-
Application | Classification Perceptgal Descrip tion sense
Anchoring | Generation .
Reasoning
Structured Sensor Machine Textual Data
Data Source | Linguistic y Learning (Tags and
Data .
Resources Datasets Reviews)
Grounding Handcrafted | Handcrafted Multi-
of Feature . .
Feature Feature . dimensional
Conceptual Selection .
Extractors Extractors Scaling
Space
Repre- Prototype, Arbitrary | Convex Hull
sentation of = Exemplars, Region / of Exemplars
Concepts Definition Prototype Exemplars

Table 1.3: Overview of four applications of conceptual spaces in the area of
artificial intelligence.

wards an actual implementation in software. This first requirement
is motivated in more detail in Section 1.3.2. Secondly, one needs to
determine the dimensions spanning the conceptual space and relate
them to sensory input in order to map individual perceptual observa-
tions into the conceptual space. We will give a brief overview over this
research problem in Section 1.3.3. Thirdly, we need to specify how these
individual observations can give rise to conceptual regions. A short
introduction into cognitively plausible ways of learning concepts is
given in Section 1.3.4. These three central requirements for a successful
application of the conceptual spaces framework in artificial intelligence
will then resurface in the three parts of this dissertation:

In Part I of this dissertation, we provide a thorough mathematical
formalization of the conceptual layer along with a publicly available
implementation of this formalization. Since many applications of con-
ceptual spaces use an ad-hoc implementation of the framework, our
work can be used as a common basis for future applications, making it
possible to integrate them with each other. In Chapter 2, we develop
a formal description of conceptual regions, before providing several
operations for creating new concepts based on existing ones (Chapter
3) and for quantifying relations between concepts (Chapter 4).

Part II of this dissertation then provides a thorough overview of
several approaches in machine learning and optimization which are
relevant to the two learning processes identified by Géardenfors [182]
(cf. Section 1.2.1). This includes a general introduction to important
concepts in machine learning in Chapter 5 and a more detailed dis-
cussion of artificial neural networks for representation learning in
Chapter 6. Moreover, we describe how dissimilarity ratings elicited in
psychological studies can give rise to psychological similarity spaces

39

Formalizing the
conceptual layer

Machine learning
and optimization
background

Experimental studies
on domain
grounding

Motivation

Scope of this research

40

in Chapter 8, where we introduce the technique of multidimensional
scaling. Finally, we comment on several research strands aiming for a
more human-like way of learning concepts in Chapter 7.

In Part III of this dissertation, we then report the results of two
experimental studies aimed at automatically extracting the dimensions
of a conceptual space from a given dataset of observations. More specif-
ically, we explore a hybrid approach which combines the psychological
grounding provided through multidimensional scaling with the gen-
eralization capabilities of artificial neural networks. In Chapter 9, we
describe a first feasibility study for this hybrid approach, which was
conducted on a dataset of novel and unknown objects. We then put
our focus on the domain of shapes, whose internal structure is still
poorly understood: In Chapter 10, we provide a brief overview of ways
for modeling the shape domain in different scientific disciplines. We
furthermore introduce a psychological dataset on shape perception
and provide a first analysis of the raw data. In Chapter 11, we then
apply multidimensional scaling on this dataset to extract psychological
similarity spaces, which are then thoroughly analyzed with respect
to three core predictions of the conceptual spaces framework. Finally,
in Chapter 12, we apply artificial neural networks to learn a mapping
from raw images into the extracted shape similarity spaces, considering
both transfer learning and multi-task learning settings based on both a
classification and a reconstruction task.

1.3.1 The Envisioned Al System

In this section, we sketch an envisioned Al system which motivates the
research presented in this dissertation. Please note that in the course of
this dissertation, we will not be able to build such a complete system.
However, we lay important groundwork for the practical implementa-
tion of such an approach. The individual contributions made by this
dissertation can then be combined with each other as well as with other
existing tools and approaches to implement a system similar to the one
sketched in this section.

Before we describe the overall envisioned architecture, we need to
comment on its intended scope. Our research is intended to focus pri-
marily on physical objects. This means that we will not consider abstract
concepts like FRIENDsHIP or ILLEGAL which do not directly correspond
to observable objects in the real world. Moreover, we will not take
into account temporal concepts including actions and events. Finally,
while we understand our work in the context of cognitive Al, neither
our envisioned system nor the foundational research presented in this
dissertation attempt to make any claims about the inner workings of the
human mind.” They should therefore not be interpreted as a faithful
psychological model of human cognition, but rather as a cognitively
inspired approach for machine intelligence.

2 Thanks to Igor Douven for urging me to explicitly clarify this.

1.3 CONTRIBUTIONS OF THIS DISSERTATION |

Subsymbolic Layer Conceptual Layer : Symbolic Layer

A
SH

APPLE

COLOR Domain \

BANANA

NNV

>

SHAPE Domain |

Figure 1.5: Illustration of the envisioned Al system.

Figure 1.5 illustrates our envisioned overall system. It is compromised
of the three layers introduced in Section 1.2 as well as concrete ways of
translating between them. Overall, we target a bottom-up process, but
top-down connections can be established as well.

For the sake of simplicity, we show only two domains, namely coLor
and sHAPE. COLOR can be represented by the HSL space from Figure
1.1 using the three dimensions HUE, sATURATION and LIGHTNESs. This
information can be extracted from an input image by using a specialized
hard-coded procedure. The structure of the suaPE domain on the other
hand is less well understood. We therefore assume that it needs to
be learned, for example by using an artificial neural network. The
activation of the output layer of this network can be used as dimensions
of the shape domain.

Both example concepts appLE and BANANA are available as symbols in
the symbolic layer, but can also be described by their respective regions
in the coLor and sHAPE domain. Intuitively, APpLE covers red, yellow,
and green tones in the color domain, while BanANA includes shades of
green, yellow, and brown. This is illustrated in Figure 1.5 by overlapping
regions in the coLor domain. In the suape domain, however, we expect
little overlap between aprLE (Which tends to be round) and BaNaNA
(which is typically elongated and curved).

After having described the overall structure of our envisioned system,
let us now consider some of its potential dynamics. More specifically,
we will now sketch how classification, incremental concept learning,
nonmonotonic reasoning, and top-down processes can be implemented.

If the system makes a new observation (e.g., an apple as depicted in
Figure 1.5), it can convert this observation into a point in the conceptual
space by applying the translation mechanisms outlined above. For the

41

The envisioned
system in a nutshell

Two example
domains

Two example
domains

System dynamics

Classification

Incremental learning

Nonmonotonic
reasoning

Top-down processes

42

coLor domain, this is done by a hard-coded conversion to the HSL
COLOR space. Moreover, the observation is fed into the neural network,
which predicts the coordinates for the suape domain. In order to classify
this observation, the system then needs to check whether the resulting
data point is contained in any of the conceptual regions. In our example,
the data point belongs to the appLE region in both the corLor and the
sHAPE domain and is thus classified as an apple.

Each new observation can potentially also lead to an update of the
respective conceptual regions. If the observation was classified as APPLE,
but it is not close to the center of the AppLE region in one of the domains,
this region might be enlarged or moved by a small amount, such that
the observation is better matched by the concept description. If the
observation does not match any of the given concepts at all, a new
concept might be created. Please note that the updates considered above
only concern the connections between the conceptual and the symbolic
layer. The connections between the subsymbolic and the conceptual
layer are expected to remain fixed in our architecture. The neural
network thus only serves as a preprocessing step in our approach: It
is trained before the overall system is used and remains unchanged
afterwards. Simultaneous updates of both the neural network and the
concept description might be desirable, but would probably introduce
a great amount of additional complexity.

As already mentioned at various points in Section 1.2, the conceptual
layer lends itself towards different types of nonmonotonic reasoning,
including similarity and typicality judgments as well as concept com-
binations and commonsense reasoning. All of these processes can be
included in our envisioned architecture as well: The classification of
an observation with respect to the classes from the symbolic layer can
be annotated with typicality information based on distances in the
conceptual layer. The concepts from the symbolic layer can be combined
with each other by combining their respective regions in an appropriate
way. In simple cases such as RED APPLE, this corresponds to restricting
the conceptual region of AppLE in the color domain to red colors, which
can be geometrically implemented by an intersection of regions. Finally,
approximate reasoning can be implemented based on the relations
between conceptual regions: If we have the symbolic annotation that
Alice likes to eat apples, and if the conceptual regions representing
APPLE and PEAR are quite close to each other in all domains, then is may
be plausible to assume that Alice will also enjoy eating a pear. This
conclusion cannot be drawn from symbolic knowledge alone, but is
based on the spatial representation in the conceptual layer.

So far, we have only considered bottom-up processes and processes
involving only the conceptual layer. We would, however, like to point out
that also top-down processes can be incorporated into our envisioned
Al system. For instance, imagination can be seen as a translation from the
symbolic to the subsymbolic layer: One starts for instance with the AppLE
concept in the symbolic layer, activates its spatial representation in the
conceptual layer, picks a point representative of the respective regions

1.3 CONTRIBUTIONS OF THIS DISSERTATION |

(e.g, the centroid) and feeds it through the reverted conversion pro-
cesses to arrive at a subsymbolic representation. Depending on the type
of neural network used, such a reconstruction of raw input based on a
compressed representation can be easily obtained. Another important
top-down process is zero shot learning, where a new concept together
with its grounding can be learned without any observations but only
based on a logical description in the symbolic layer. This corresponds
to the zebra example from Harnad [190] discussed in Section 1.2.3. In
our case, information from the symbolic layer is used to construct a
representation in the conceptual layer from existing conceptual regions.

One can see that our overall envisioned system is basically an im-
plementation of the three layer architecture introduced by Géardenfors
[179]. It is capable to include many different types of learning and
reasoning processes and can thus potentially unify the individual ex-
isting applications of conceptual spaces to artificial intelligence in a
single system. However, building such a system in practice is quite
challenging as many different parts and their interactions need to be
properly specified. Especially the concrete setup of the conceptual layer
and its relations to the subsymbolic and the symbolic layer is of crucial
importance. Only if this overall setup is sound, a successful integration
of the different learning and reasoning mechanisms is possible. This
dissertation focuses on providing a comprehensive formalization of
the conceptual layer as well as principled ways of connecting it to the
subsymbolic and the symbolic layer. It therefore lays the groundwork
for practical applications of the conceptual spaces framework which
can then use this overall setup to implement the different cognitive
processes described above.

1.3.2 A Comprehensive Formalization of the Framework

In order to implement the conceptual spaces framework for practical
Al applications, one needs to specify how concepts are represented.
Gardenfors argues that concepts should be modeled as convex regions,
but this restriction still leaves many degrees of freedom. For an actual
implementation, we need a parametric description of conceptual regions
such that each conceptual region can be represented by a small number
of parameters. Moreover, developing a thorough mathematical formal-
ization and a practical implementation forces one to be explicit about
many details of the framework. This can provide further insight into
theoretical relationships between different aspects of the framework.

There have already been several proposals for a mathematical for-
malization of conceptual spaces [3, 10, 11, 253, 327, 329], all of which,
however, have certain limitations and shortcomings. In our opinion,
a thorough formalization of the conceptual spaces framework should
fulfill the following criteria:

o Concepts and properties should be described in a parametric way
in order to allow for a straightforward implementation.

43

Outlook

Motivation

Criteria for a good
formalization

The need for a new
formalization

Concepts as
star-shaped regions

Operations for
concept creation

Relations between
concepts

44

| INTRODUCTION

o Concepts and properties should be represented with the same
formalism. This makes it easier to devise mechanisms for learning
and reasoning that are applicable to both properties and concepts
without major modifications.

o The formalization should provide a concrete way for representing
cross-domain correlations, because these correlations contain
important information about the concept.

o Conceptual boundaries should be imprecise in order to reflect
borderline cases.

o The formalization should come with a publicly available imple-
mentation such that other researchers can use it right away for
their own research projects.

o There should be a large set of operations that can be applied
within this formalization in order to support both learning and
reasoning processes.

Unfortunately, none of the existing formalizations satisfies all of these
requirements and combining different formalizations with different
strengths and weaknesses is not easily possible. This justifies the de-
velopment of a new formalization aiming to fulfill all of the above
mentioned desiderata.

Starting from the desire to represent correlations between domains
in a geometric way, we notice a problem with Gardenfors” convexity
requirement in combination with the usage of the Manhattan metric for
combining domains in Chapter 2. In order to resolve this problem, we
loosen the convexity requirement by replacing it with star-shapedness.
This leads us to a definition of concepts as star-shaped fuzzy sets based
on axis-parallel cuboids.

In Chapter 3, we enrich our formalization with several operations
that can be used to create new concepts based on existing ones. More
specifically, we discuss the intersection, union, negation, and projection
of concepts, as well as an operation for splitting a concept into two parts.
Each of these concept creation operations is expected to return a valid
concept according to our parametric definition. However, the naive set
intersection of two star-shaped sets is for example not necessarily star-
shaped. We therefore propose to employ a repair mechanism reflecting
the psychological effect of overextensions (cf. Section 1.1.2).

In Chapter 4, we then put our focus on different measures for speci-
fying various relations between concepts. This includes concept size,
subsethood, implication, similarity, and betweenness. Many of the
remaining measures are directly or indirectly based on the size of a con-
cept, which can be defined quite easily by equating it with the integral
over the concept’s membership function. However, as we are interested
in a practical implementation of the framework, this level of abstraction
is not satisfactory: We need a concrete procedure for computing this
integral. We therefore derive a closed formula for the size of a concept

which can be evaluated significantly faster than approximating the
integral with numerical optimization algorithms.

Overall, we provide a fairly comprehensive formalization of the
conceptual spaces framework, taking into account not only representa-
tional desiderata, but also providing a plethora of useful operations and
measures. Our publicly accessible implementation of this formalization
not only serves as a proof of concept, but provides other researchers
with the opportunity to use our formalization off the shelf for their
own experiments. Throughout Part I of this dissertation, we compare
our definitions to prior formalizations of the framework. Moreover, we
sketch how the different operations can support a variety of learning
an reasoning mechanisms.

1.3.3 Obtaining the Dimensions of a Conceptual Space

One general issue that arises when defining a conceptual space concerns
the number of its dimensions. A low-dimensional space corresponds to
a very compact representation which is efficient with respect to both
storage and computation. Constraining the space to a small number of
dimensions can furthermore help to filter out irrelevant noise through
information compression. A high-dimensional space on the other hand
is usually capable of representing finer nuances of cognitive similarity.
Following Occam’s razor, one therefore generally aims to optimize
this trade off by selecting as many dimensions as necessary but as few
as possible. Determining the optimal number of dimensions is often
based on analyzing the interpretability of the space and its capability
of accurately representing similarities in a spatial manner.

From a machine learning perspective, this is related to feature engi-
neering: If the feature space contains not enough features, a classifier
might not be able to make important distinctions between classes. If
the feature space is, however, too large and only sparsely populated,
the classifier might be led astray by irrelevant features, confusing noise
for valuable information. We will revisit this issue in Chapter 5, when
talking about the "curse of dimensionality" and various dimensionality
reduction techniques.

In order to define the dimensions of a conceptual space, one needs,
however, not only to define how many dimensions there should be, but
also how these dimensions should be interpreted and how their values
can be extracted from raw sensory data.

Overall, our research focuses on obtaining a conceptual space for
the suaPE domain. It is well known that the shape of objects contains
important information for their classification [298, Chapter 10] and
that children exhibit a strong shape bias when making generalization
[212,242]. Hence, shape information can be expected to be crucial for any
artificial agent with visual input. However, despite its importance, the
internal structure of the sHAPE domain is still not understood very well
[146]. Using the sHAPE domain as an example, we investigate different

45

Summary

How many
dimensions do we
need?

The machine
learning perspective

Grounding
dimensions in
perception

The domain of shapes

Three principled
approaches

Handcrafting a
conceptual space

Advantages of
handcrafting

Disadvantages of
handcrafting

46

| INTRODUCTION

ways of learning a shape space in this dissertation. Our proposed
procedures are formulated in a general way which is expected to
generalize to other domains as well, hence providing general tools for
obtaining conceptual spaces for poorly understood domains.
Inhisbook [179, Sections 1.7 and 6.5], Gardenfors identifies three basic
ways for constructing a conceptual space: Handcrafting, machine learn-
ing, and multidimensional scaling. We will summarize them shortly in
the following, discussing also their individual strengths and limitations.

Handcrafting a conceptual space usually consists in manually defining
the dimensions of the conceptual space based on the available sensors.
Moreover, it entails specifying a mapping function from sensory input
to values on these dimensions [179, Section 1.7]. This approach was
for example taken in the anchoring system by Chella et al. [96] (cf.
Section 1.2.4). Similar proposals have been made in the area of cognitive
robotics by Thosar et al. [407] and Jager et al. [214] who investigate
perceptually grounded knowledge bases for robots, using both physical
and functional features. Although their work is not directly linked to
the conceptual spaces approach by the authors, it would be relatively
straightforward to transform the contents of their data bases into a
conceptual space. Both Lieto et al. [266] and Banaee et al. [27] made use
of such pre-existing data bases for defining their conceptual spaces (cf.
Sections 1.2.2 and 1.2.5).

A clear advantage of the handcrafting approach is that the resulting
dimensions are interpretable, since they have been manually defined
by domain experts. Moreover, by manually defining the mapping
function, one can ensure a high quality, for instance by using smoothing
techniques to reduce sensor noise. Another advantage relevant in the
field of Al is the ability to generalize to unseen inputs: If the sensors
produce previously unseen values (e.g., a camera image that has not
been seen before), then the mapping function can easily convert this
novel observation into a point in the conceptual space. The system
using this conceptual space is therefore not limited to a fixed set of
inputs and is potentially able to generalize to new situations.

The handcrafting approach does, however, also come with some draw-
backs: First of all, it can be quite time consuming to manually define the
mapping function for complex input, for instance when working with
camera images as input modality. The mapping function might in this
case involve different computer vision algorithms, requiring a certain
expertise in this domain. Scaling this approach up to multiple complex
domains might thus not be possible due to the prohibitive amount
of work involved. Furthermore, the dimensions defined by a domain
expert might be useful to solve the problem at hand, but by themselves
they cannot claim any psychological validity. Moreover, this approach
is only applicable to domains with a well understood internal structure
such as the coLor domain. However, handcrafting becomes quite diffi-
cult for more complex domains such as sHAPE that are based on complex
sensors such as cameras. As we focus our research on the suare domain,

>93uajioq
uonANJISUOIAI

Figure 1.6: Structure of an autoencoder.

we will therefore not consider the handcrafting approach in more detail.

The second approach for obtaining the dimensions of a conceptual
space uses machine learning techniques for dimensionality reduction. Gar-
denfors [179, Section 6.5] argues that raw perceptual input is too rich
and too unstructured for direct processing. It is thus necessary to lift
the input to a more economic form of representation, which typically
involves a drastic reduction in the number of dimensions. There exists
a large variety of dimensionality reduction algorithms in the machine
learning field. Our focus in this dissertation lies on artificial neural
networks (ANNSs) which are capable of conducting a multi-layered and
non-linear dimensionality reduction.

One example for such a neural network is the structure of an autoen-
coder [172, Chapter 14] illustrated in Figure 1.6. The high-dimensional
input of the network (e.g., the raw pixel values of an image) is com-
pressed in multiple steps by the encoder network until it reaches the
bottleneck layer which consists of a very small number of neurons.
This compressed representation from the bottleneck layer is then sub-
sequently decompressed by the decoder network until it reaches the
output layer which has the same size as the input layer. Based on a large
dataset of observations, the parameters of the individual compression
and decompression steps in this network are adjusted in such a way
that the activation of the output layer is a faithful reconstruction of the
original input. If the network succeeds in this reconstruction task, then it
has learned a low-dimensional representation of the high-dimensional
input. One can then interpret this bottleneck layer as a conceptual space
by interpreting each of the neurons as one dimension and its activation
for a given stimulus as the value of this stimulus on this dimension.

Training such a neural network for extracting a low-dimensional
representation usually requires only little prior knowledge about the
domain. It is thus applicable if handcrafting specific features is not
feasible due to a lack of domain knowledge. Moreover, once they are
trained, neural networks are able to generalize to unseen inputs, which
is an important requirement for practical Al applications. Since neural
networks are in principle agnostic about the type of input data, they
can furthermore be applied to a wide variety of domains.

47

Machine learning
techniques for
dimensionality
reduction

Autoencoders

Advantages of
dimensionality
reduction

Disadvantages of
dimensionality
reduction

Multidimensional
scaling on
psychological
dissimilarity ratings

Advantages of
multidimensional
scaling

Disadvantages of
multidimensional
scaling

A hybrid approach
combining MDS and
ANN s

48

However, a certain expertise in defining the exact structure of the
network and the appropriate training scheme is crucial for success.
Moreover, adjusting the parameters of the neural network typically
requires large amounts of data and computation time. The most serious
drawback of neural network models in the context of conceptual spaces
is, however, their lack of interpretability and psychological grounding.

In Chapter 5, we provide a more thorough introduction to machine
learning and dimensionality reduction, and in Chapter 6, we survey
research in artificial neural networks for the purpose of representa-
tion learning. In this context, we especially pay attention to recently
proposed network structures such as InfoGAN [101] and 5-VAE [196]
which claim to learn interpretable features from unlabeled data.

A third way of obtaining a conceptual similarity space is based on
psychological dissimilarity ratings [179, Section 1.7]. These dissimilarity
ratings are collected for a fixed set of stimuli in a psychological experi-
ment. They are then fed into an algorithm called multidimensional scaling
(MDS) which computes an n-dimensional geometric representation of
the stimulus set, where geometric distances between pairs of stimuli
reflect their psychological dissimilarity [71]. While typically used in
the area of psychophysics to understand and visualize the similarity
of perceptual stimuli, the research by Derrac and Schockaert [123] (cf.
Section 1.2.5) has shown that MDS can also be applied to other data
sources such as text corpora.

The similarity spaces obtained through MDS have the advantage of
being psychologically grounded since distances in the spaces relate to
the findings from psychological experiments. Multidimensional scaling
is especially useful for exploratory studies in domains which are poorly
understood since the resulting arrangement of points in the similarity
space can provide valuable insight about potentially relevant features.

Multidimensional scaling has, however, two considerable drawbacks:
On the one hand, the data collection process through psychological
studies is quite time-consuming as it requires carefully designed ex-
periments with a sufficiently large number of participants. Moreover,
the similarity spaces obtained through MDS are limited to the given
stimulus set. This means that novel stimuli cannot be easily mapped
into the similarity space unless additional dissimilarity ratings are
collected. Finally, the individual coordinate axes of an MDS solution
are not necessarily interpretable.

In Chapter 8, we explain in more detail how conceptual spaces
can be obtained through multidimensional scaling, considering the
collection of psychological data, different MDS algorithms, and ways of
evaluating the quality of the resulting similarity spaces. Moreover, since
both neural networks and multidimensional scaling allow us to obtain
similarity spaces for poorly understood domains, we propose a hybrid
procedure which combines these two approaches with each other.
Essentially, we propose to initialize the similarity space by applying
MDS to psychological dissimilarity ratings and to train a neural network
afterwards on the task of mapping raw stimuli into this psychological

1.3 CONTRIBUTIONS OF THIS DISSERTATION |

similarity space. This way, we combine the psychological grounding of
MDS with the generalization capabilities of artificial neural networks.
We report results of a first feasibility study in Chapter 9, where we apply
our proposed approach to a dataset of novel objects. Afterwards, we
conduct a psychological study on the domain of shapes in Chapter 10,
and analyze the resulting shape spaces with respect to their alignment
with the conceptual spaces theory in Chapter 11. Finally, we train
different neural networks on the mapping task in Chapter 12.

1.3.4 Learning Conceptual Regions

Once the domains and dimensions of a conceptual space have been
defined, learning regions in this space is very similar to classical ma-
chine learning problems. These can be broadly divided into two classes:
Supervised approaches make use of labeled datasets where each training
example is annotated with its correct classification. Their main target is
to maximize classification accuracy which can be achieved by partition-
ing the feature space into multiple regions, each one belonging to one of
the given classes. Unsupervised approaches on the other hand can also
be applied to unlabeled datasets, where no classification information is
given for the individual observations. Clustering algorithms typically
sort the observations into multiple clusters by maximizing the similarity
within clusters while minimizing the similarity between clusters.? Just
like in conceptual spaces, similarity is assumed to be inversely related
to distance in the feature space. As each cluster of observations is just a
set of points in the feature space, one can easily generalize from this set
of points to a region (e.g., by computing their convex hull).

In both cases, the parameters of the respective model are usually
estimated based on a large dataset of observations which is processed
at once in a batch-like manner. Moreover, the parameters are optimized
in such a way that they implicitly or explicitly optimize a given target
function (e.g., minimizing the number of misclassifications).

While the task of learning concepts in a conceptual space is quite
related to these machine learning problems, it has an additional con-
straint. Namely, the regions being learned should be convex (if one
follows Gérdenfors’ original approach) or star-shaped (following our
own formalization of conceptual spaces). Moreover, as our research
is seen in the context of cognitive Al, we are interested in cognitively
plausible learning processes. One the one hand, we therefore favor
incremental processes over batch-learning. On the other hand, we are
interested in scenarios where only scarce or indirect feedback about the
correct classification is available.

Again, we would like to point out the strong connection to the basic level of categoriza-
tion [298, Chapter 7] (cf. Section 1.1.2) and the well-formedness criterion proposed by
Douven and Gardenfors [137] (cf. Section 1.2.1)

49

Concept learning as
a machine learning
problem

Properties of typical
machine learning
approaches

Constraints on the
learning procedure

Making machine
learning more
cognitively plausible

Learning with
knowledge-based
constraints

Learning in an
incremental and
unsupervised way

Learning through
communication

Outlook

50

| INTRODUCTION

In Chapter 7, we focus on several problems and approaches especially
relevant to our envisioned application of conceptual spaces in artifi-
cial intelligence. These include knowledge-based constraints, concept
formation, and language games.

Standard machine learning techniques learn their class boundaries
from a blank slate, i.e., in a purely inductive manner. The incorporation
of additional knowledge-based constraints, e.g., in the form of background
knowledge from the symbolic layer, can be interesting in the context of
conceptual spaces, since it provides a way to account for the knowledge
view on concepts. We focus our discussion of this idea on the framework
of logic tensor networks (LTNs) [21, 358] which combines supervised
machine learning with logical constraints in the form of rules. We
sketch a path towards conceptual logic tensor networks, i.e., a fruitful
combination of LTNs and conceptual spaces.

While most approaches in machine learning (including LTNs) rely
on a batch-processing of labeled datasets, concept formation [164] aims at
incrementally creating a meaningful hierarchical categorization based
on unlabeled observations. Concept formation implicitly solves the
symbol grounding problem through a bottom-up process, since the
emerging categories (symbols) are generalizations of actual observa-
tions. We will introduce COBWEB [159], ART [90], and SUSTAIN [270]
as an important examples of concept formation algorithms.

Finally, since concepts need to be shared among a population of
agents in order to enable efficient communication, we will furthermore
discuss language games [389] as an interesting avenue of research: In this
approach, a group of artificial agents is simulated which repeatedly
interact with each other in a given common environment. Each agent
has its own conceptualization of the world as well as a dictionary
mapping its concepts to words. Both the conceptualization and the
dictionary are updated based on the communicative success in the
simulated interactions, where typically one agent "describes" a target
object in a jointly observed scene, while the other agent needs to cor-
rectly identify this target object based on the utterance. Through the
indirect feedback from these interactions, the population of agents can
converge to a common conceptualization of the world. While this is
certainly interesting from the viewpoint of language evolution, it can
also be interpreted as an incremental machine learning process which
uses only indirect feedback.

Although this dissertation does not provide any crucial new insights
into cognitively plausible concept learning (neither in a theoretical nor
in an experimental way), it gives a good overview of several relevant
topics. This overview can then serve as a useful starting point for future
research endeavors.

Part |

FORMALIZING CONCEPTUAL SPACES

In the first part of this dissertation, we present our thorough
mathematical formalization of the conceptual spaces frame-
work, which is able to encode correlations between domains
in a geometric way. In Chapter 2, we define concepts as
fuzzy star-shaped regions, before introducing various oper-
ations for creating novel concepts based on existing ones in
Chapter 3. Finally, in Chapter 4, we provide several ways
for quantifying relations between concepts.

2 DEFINING CONCEPTUAL

REGIONS
2.1 The Original Conceptual Spaces Framework 54
2.1.1 The Structure of a Conceptual Space 54
2.1.2 Conceptual Regions 56
2.2 An Argument Against Convexity 60
2.2.1 Convex Sets Cannot Encode Cross-Domain Cor-
relations Lo L 60
2.2.2 Potential Solutions 62
2.3 A Parametric Definition of Concepts 65
2.3.1 Formalizing Conceptual Similarity Spaces 66
2.3.2 Crisp Conceptual Regions 67
2.3.3 Fuzzy Conceptual Regions. 69
2.3.4 Implementation and Example: Fruit Space ... 74
2.4 RelatedWork 79
2.4.1 Related Generalldeas 79
2.4.2 Prior Formalizations of Conceptual Spaces . .. 82
2.4.3 Composite Concepts 86
2.5 Detailed Comparison to Other Formalizations 88
2.5.1 Comparison to Adams and Raubal 91
2.5.2 ComparisontoRickard 93
2.5.3 Comparison to Lewis and Lawry 95
26 Summary 98

In this chapter, we lay the groundwork for our mathematical for-
malization of the conceptual spaces framework and its open source
implementation. The research presented in this chapter has been previ-
ously published in [41, 42, 46].

We begin by presenting more details about the representational
aspects of the conceptual spaces fraemwork in Section 2.1. In Section
2.2, we then argue that Gardenfors’ convexity requirement prohibits a
geometric representation of correlations between domains. We present
different solution approaches and argue that a relaxation of the con-
vexity criterion is the most promising choice. Based on this insight, we
provide a parametric definition of concepts as fuzzy star-shaped regions
in Section 2.3. This forms the basis of our mathematical formalization
of the overall framework. In Section 2.4, we provide an overview of
relevant literature and show how it relates to our work. We then give
a more thorough comparison of our proposed formalization to three
prior formalization proposals in Section 2.5. Finally, in Section 2.6, we
summarize the contributions of our work and sketch possible directions
for future research.

53

Querview

Quality dimensions

Integral dimensions
and separable
dimensions

Domains

The weighted
Minkowski metric

54

| DEFINING CONCEPTUAL REGIONS

2.1 THE ORIGINAL CONCEPTUAL SPACES FRAME-
WORK

This section is largely based on the book "Conceptual Spaces: The
Geometry of Thought" by Peter Gardenfors [179], where the cognitive
framework of conceptual spaces is described in great detail. We provide
here only a short summary of the formal representational aspects. We
first consider the overall structure of the similarity space in Section 2.1.1
before discussing conceptual regions in Section 2.1.2.

2.1.1 The Structure of a Conceptual Space

Please recall from Section 1.2.1 that a conceptual space is a similarity
space spanned by so-called quality dimensions. Each of these dimensions
represents an interpretable and cognitively meaningful way of judging
the similarity of two given observations. Examples for quality dimen-
sions include TEMPERATURE, WEIGHT, TIME, PITCH, and HUE. We assume
that each of these dimensions is equipped with a distance measure
such that we can compute the semantic difference of two stimuli with
respect to this dimension. In machine learning terms, each of the di-
mensions represents an interpretable feature, and together they span a
meaningful feature space.

A pair of dimensions can be either called integral or separable.
Integral dimensions are dimensions that inherently belong together: If
one assigns a value to one of the dimensions, one also has to assign a
value to the other dimension as well — they are perceived holistically.
This also means that focusing on only one of the dimensions while
ignoring the other is difficult. If a pair of dimensions is not integral, it
is called separable. In this case, one can selectively attend to one of the
dimensions — the two dimensions are perceived as being independent
from each other. For instance, the dimensions of pircH and vOLUME
are integral, because they cannot be perceived separately from each
other. On the other hand, the dimensions of pitcH and BRIGHTNESS are
separable, as one can perceive pircH without perceiving BRIGHTNESS (e.g.,
when hearing a bell ringing while having one’s eyes closed).

This distinction between integral and separable dimensions is used
to introduce the notion of a domain: A domain is a set of integral
dimensions that are separable from all other dimensions. Each percep-
tual modality (like cOLOR, SHAPE, SOUND, Or TASTE) is represented by
such a domain. In other words, the dimensions of one domain jointly
describe one meaningful aspect of the world. The coLor domain for in-
stance consists of the three dimensions HUE, SATURATION, and BRIGHTNESS.
Grouping dimensions into domains also provides a logical structure
for the overall conceptual space — something that is typically absent
from the feature spaces used in machine learning (cf. Section 1.2.5).

When measuring the overall distance between two points within the
conceptual space, one needs to aggregate the dimension-wise distances.

2.1 THE ORIGINAL CONCEPTUAL SPACES FRAMEWORK |

Gérdenfors advocates the use of the weighted Minkowski metric (with
r > 0) for this purpose:

Definition 2.1 (Weighted Minkowski Metric)
Let z,y € CS. Their distance according to the weighted Minkowski metric of
order r > 0 with weights w; is defined as follows:

o= ()

The fixed positive weights w; represent the importance of the respec-
tive dimensions in the current context. A large w; corresponds to an
important dimension whereas a small w; indicates a less important
dimension. Both the Euclidean metric dg and the Manhattan metric ds
are special cases of d, (for r = 2 and r = 1, respectively).

dE(x7y) :dQ(xuy> = sz yz

dy(z,y) = di(z,y) = sz — il

Gérdenfors argues based on psychological evidence [19, 211, 367,
368] that integral dimensions should be combined with the weighted
Euclidean metric, whereas separable dimensions should be combined
with the Manhattan metric. Intuitively, the (weighted) Manhattan metric
is just a (weighted) sum of the individual distances and is thus well
suited for combining separable dimensions which can be perceived
separately. The (weighted) Euclidean metric on the other hand cannot
be conceptualized as a (weighted) sum of distances and thus can be
thought of as computing a more holistic distance. This seems to be a
better fit for integral dimensions which are perceived holistically.

Please note that the usage of » = 2 for integral dimensions and of
r = 1 for separable dimensions is of course a simplification of the actual
results obtained in psychological studies. Usually a value of € (1, 2)
is found to best reflect the similarity judgments made by humans [367].
However, one typically observes that the optimal value of r for separable
dimensions is much smaller than the optimal value of r for integral
dimensions. In order to get a more faithful approximation of the psycho-
logical results, one could also allow arbitrary values of r for combining
dimensions. However, then one would need to specify this value r
for each possible combination of dimensions in the conceptual space,
increasing the number of parameters in the overall model dramatically.
We therefore follow Gédrdenfors’ broad distinction by using r = 2 for all
sets of integral dimensions and r = 1 for all sets of separable dimensions.

A central aspect of the conceptual spaces framework is the notion of
semantic similarity. The similarity of two points in a conceptual space
is inversely related to their distance within this space: The smaller
the distance between two points in the conceptual space, the larger

55

Euclidean metric and
Manhattan metric

Euclidean distance
within domains,
Manhattan distance
between domains

Reality may be more
complex

Semantic similarity

Sensitivity parameter
and psychological
evidence

Relation to artificial
intelligence

Geometrical
betweenness

Betweenness under
the Euclidean
distance

56

| DEFINING CONCEPTUAL REGIONS

% ® OO0

Z

: 500 @ @

% © e @
HUE HUE g
() (b)

Figure 2.1: (a) Euclidean betweenness for stimuli on integral dimensions. (b)
Manhattan betweenness for stimuli on separable dimensions.

the semantic similarity of the observations they represent. In order to
formalize the connection between distance and similarity, Gardenfors
proposes to use an exponentially decaying function:

Sim(z,y) = e cd@y)

The parameter ¢ > 0 is a general sensitivity parameter and controls
the rate of the exponential decay. Shepard [368] has argued that this
exponential relation between similarity and distance can be found for a
wide variety of stimulus sets and that it is not only confined to human
perception but also applies to other species such as pigeons.

This geometrical and intuitive definition of semantic similarity is a
key feature of the conceptual spaces framework that makes it an inter-
esting complement for traditional logic-based Al approaches which are
incapable of representing such similarities. The definition of similarity
as inverse distance is also in line with the feature spaces in machine
learning, where this assumption is used for instance in clustering
algorithms (see Chapter 7).

2.1.2 Conceptual Regions

Gaérdenfors bases the definition of conceptual regions on the notion
of geometrical betweenness. Betweenness is a logical predicate B(z,y, z)
that is true if and only if y is geometrically between x and z. It can be
defined based on a given metric d:

Definition 2.2 (Betweenness)
Let x,y,z € CS and d be a metric on C'S. The point y is said to lie between x
and z (denoted as By(x,y, z)) if and only if d(z,y) + d(y, z) = d(z, 2).

A point y is considered to be between two other points x and z, if the
path from z through y to z is not longer than the direct path from x
to z. The Euclidean metric measures the distance of two points as the
length of the straight line segment connecting them. One can easily

2.1 THE ORIGINAL CONCEPTUAL SPACES FRAMEWORK |

/r=l.0

r=1.00001
r=1.0001
r=1.001

r=1.01

Figure 2.2: Betweenness under the Minkowski metric for different values of r.

see that By, (x,y,2) is true if and only if y lies on the straight line
segment connecting x and z. Figure 2.1a shows stimuli which differ on
the integral dimensions of HUE and BriIGHTNESs. The stimulus labeled y
can therefore not be considered to lie between x and z.

The Manhattan metric on the other hand measures the distance
of two points by simply adding up the distances with respect to the
individual dimensions. This also means that all points in the bounding
box spanned by x and z can be considered to lie between = and z. Figure
2.1b shows stimuli that differ with respect to two separable dimensions,
namely size and HUE. As size and HUE are separable dimensions (i.e.,
they belong to different domains), they should be combined with the
Manhattan distance. In this example, the stimulus y can therefore be
treated as an intermediate case between x and z.

As we can see in Figure 2.1, betweenness corresponds to a linear
interpolation between the two endpoints in both cases. In the Euclidean
case, this interpolation takes place in the overall space, i.e., considering
all dimension jointly. In the Manhattan case, the interpolation takes
place for each dimension individually. This corresponds to the intuitive
notion that one can attend to separable dimensions individually while
integral dimensions are always processed jointly.

As one can see in Figure 2.2, intermediate values of r € (1, 2) result
in intermediate versions of betweenness that lie between the Euclidean
(r = 2) and Manhattan (r = 1) cases. Interestingly, although r» = 1.01 is
quite close to r = 1, the betweenness relation for » = 1.01 is much more
similar to the one for » = 2 than to the one for » = 1. We can also see in
Figure 2.2 that there exists a certain subset relation for the betweenness
relations for different values of r: If a point y is between points x and
z for a Minkoswki metric with r € [1, 2], then y is also between = and
z for any ' € [1,r). In the following, we focus our discussion on the
cases of r = 1 and r = 2, which are much easier to model thanr € (1,2).

57

Betweenness under
the Manhattan
distance

Betweenness as
interpolation

Intermediate notions
of betweenness

Convexity and
star-shapedness

Interpretation of the
definitions

Convexity and
star-shapedness
depend on the
distance metric

58

Convex

Star-shaped,

does not exist
but not convex

Euclidean betweenness

Not star-shaped does not exist does not exist

Star-shaped,

but not convex Not star-shaped

Convex

Manhattan betweenness

Figure 2.3: Illustration of convexity and star-shapedness as based on the
Euclidean vs. the Manhattan metric.

Based on the betweenness relation, we can now define two criteria
that can be used to constrain conceptual regions in a meaningful way;,
namely convexity and star-shapedness.

Definition 2.3 (Convexity)
A set C C CS in a conceptual space C'S is convex under a metric d <
VeeC,ze C,ye CS: (By(x,y,z) >y eC)

Definition 2.4 (Star-Shapedness)
Aset S € CS in a conceptual space C'S is star-shaped under a metric d with
respect toa set P C S <

Vpe P,ze S,y € CS: (Ba(p,y,z) >y €S9)

If we require a conceptual region C' to be convex, we require that
all interpolations between two members z, z € C of the concept also
belong to this concept. If we only require a conceptual region .S to be star-
shaped, then we only require interpolations between any prototypical
example p € P and any other concept member z € S to also belong
to this concept. As one can easily see, convexity is a special case of
star-shapedness (where P = S) and is thus a stronger constraint on the
conceptual region.

As both the notions of convexity and star-shapedness are based on
the notion of betweenness (which is in turn based on the metric being
used), we can also distinguish Euclidean versions of convexity and
star-shapedness from their Manhattan-based counterparts. Figure 2.3
illustrates the differences between these notions with some examples.
We would like to point out that only axis-parallel cuboids are convex
under the Manhattan metric. Moreover, since Euclidean betweenness
is a special case of Manhattan betweenness (cf. Figure 2.2), all sets
that are convex (star-shaped) in the Manhattan sense are also convex
(star-shaped) in the Euclidean sense: Consider any two points z, z € C.

2.1 THE ORIGINAL CONCEPTUAL SPACES FRAMEWORK |

If C'is convex under dyy, then all points y with By, (z,y, z) must also
belong to C. As we have seen in Figure 2.2, By, (z,y, 2) = Bqg,,(x,y, 2)
for r € [1,2]. If we include all y with By, (x,y, z) in C, then we also
include all points for which the special case By, (x,y, z) holds true.

It is a traditional assumption in cognitive science that any observation
or concept can be described by a combination of different properties
(e.g., Minsky’s frames [294] or the schema-based variant of prototype
theory, cf. Section 1.1.2). For instance, an appLE could be described as
being RED, ROUND, and sweeT. Gdrdenfors” hypothesis is that most of
these properties can be described as geometric regions within a single
conceptual domain. In our example, the property rRep can be described
as a region in the coLor domain, whereas RounD and sweet belong to
the domains of sHAPE and TAsTE, respectively. Gardenfors furthermore
argues that these regions are expected to be convex — if two points in
the coLor space are classified as Rep, then any other point between
them should also be classified as Rep. As domains consist of integral
dimensions, we apply the Euclidean sense of convexity. This leads to
Gardenfors’ definition of a property:

Definition 2.5 (Criterion P)
A natural property is a convex region of a domain in a conceptual space.

As stated above, concepts can be expressed as a combination of
properties from different domains. However, not all of these properties
might be of equal importance to a given concept. For instance, the
sMELL of an apple is less prominent than its coLor and sHaPE. This can
be reflected by so-called salience weights: Every domain that is part
of the respective concept has an associated weight. Larger weights
indicate important domains, whereas smaller weights indicate less
crucial domains. These salience weights can of course be influenced
by the current context. For instance, when eating an apple, the TasTe
domain becomes much more prominent than the suare domain.

Moreover, the different properties of a concept are not completely
independent of each other: A rRep aPPLE tends to be sweet, while a GREEN
APPLE tends to be sour. These correlations between different domains
are an important aspect of concepts [288]. Recall from Section 1.1.2 that
systems of such correlations can significantly aid learning processes [66]
and play an important role in reasoning [298, Chapter 8]. For instance,
if we know that a given BANANA is GREEN, we can use the correlation
between the coLor and the Taste domain to infer that it is probably not
swekT. From a linguistic perspective, these cross-domain correlations
can be indicated by natural language patterns such as "The dish was
excellent but not expensive": They involve properties from different
domains and state that a certain expected correlation between these
domains (in this example between the quality and the price of a dish)
have been violated [455].

Gérdenfors uses these three components (properties, weights, and
correlations) to define a concept as follows:

59

Properties as convex
sets under the
Euclidean metric

Concepts and
salience weights

Correlations between
domains

Definition of
concepts

Quverview

Concepts as regions
in the overall
conceptual space

Representing
correlations in a
geometric way

A representation
with convex regions

60

| DEFINING CONCEPTUAL REGIONS

Definition 2.6 (Criterion C)

A natural concept is represented as a set of convex regions in a number of
domains together with an assignment of salience weights to the domains and
information about how the regions in different domains are correlated.

2.2 AN ARGUMENT AGAINST CONVEXITY

Based on the notion of convexity under the Manhattan distance, we
encounter a problem when trying to encode cross-domain correlations
through the form of the conceptual region. We introduce this problem
in Section 2.2.1, before discussing several potential approaches towards
solving it in Section 2.2.2.

2.2.1 Convex Sets Cannot Encode Cross-Domain Correlations

In the following, we will assume that concepts can be represented
as regions in the overall conceptual space. This assumption is never
mentioned in the original work by Gardenfors. However, we think that
it is quite intuitive from the perspective of knowledge representation
and machine learning: Properties are regions within particular domains.
If concepts are represented by regions in the overall space, then they
can be represented with the same formalism as properties. This in turn
enables us to use the same learning and reasoning mechanisms for
both properties and concepts. The only difference between concepts
and properties is then the space on which they are defined (i.e., the
overall space or a single domain).’

Gardenfors [179] argues for the importance of cross-domain corre-
lations, but he does not propose any concrete way for representing
them. If we assume that concepts are represented as regions in the
overall space, it is natural to represent the correlations between different
domains in a geometric way. Consider the sketch in Figure 2.4a. In
this example, we consider two dimensions, AGE and HEIGHT, in order to
define the concepts of cHiLD and apuLr. We expect a strong correlation
between ace and HEiGHT for children, but no such correlation for adults.
An intuitive sketch of these concepts results in the two elliptical regions
shown in Figure 2.4a.> As one can see, the values of AGE and HEIGHT
constrain each other: For instance, if the value on the AGe dimension is
low and the point lies in the cHiLD region, then also the value on the
HEIGHT dimension must be low.

Please note that AGe and HEIGHT are separable dimensions: They
can be perceived independently of each other, unlike e.g., HUE and
sATURATION. We should therefore combine them by using the Manhattan
metric. As argued in Section 2.1.2, convex regions under the Manhattan
metric are axis-parallel cuboids. If we assume conceptual regions to

1 Thanks to Peter Brossel for challenging me to explain this (previously tacit) assumption.
2 Please note that this is a very simplified, artificial example to illustrate our main point.

2.2 AN ARGUMENT AGAINST CONVEXITY | 61

ADULT
> CHILD

CHILD

HEIGHT
HEIGHT
HEIGHT

AGE

@

AGE

(b)

AGE

(©

Figure 2.4: (a) Intuitive way to define regions for the concepts of apurr and
cHILD in a conceptual space spanned by the dimensions AGe and
HEIGHT. (b) Representation of these concepts as convex regions. (c)
Representation of these concepts as star-shaped regions.

be convex (as proposed by Géardenfors), we have to represent the two
concepts by axis-parallel cuboids. This is illustrated in Figure 2.4b.

In our point of view, this representation is, however, highly prob-
lematic: All information about the correlation of AGe and HEIGHT in
the cHILD concept is lost in this representation — the values of ace and
HEIGHT do not constrain each other at all. According to the convex set
representation, a cHILD of age 2 with a height of 1.80 m would be totally
conceivable — which does not make any intuitive sense. This example
illustrates that we cannot geometrically represent correlations between
domains if we assume that concepts are convex and that the Manhattan
metric is used. We think that our example is not a pathological one
and that similar problems will occur quite frequently when represent-
ing concepts For instance, there is an obvious correlation between a
BANANA’S COLOR and its Taste. If one replaces the aGe dimension with
HUE and the HEIGHT dimension with sweeTNEss in Figure 2.4, one can
observe similar encoding problems for the BANANA concept as for the
CHILD concept.

Also Hernandez-Conde has argued against the convexity constraint
in conceptual spaces, although from a different point of view [195]. His
arguments are mainly of a theoretical and indirect nature, essentially
criticizing that there is currently no sufficient support for the claim
that conceptual regions are convex. Moreover, his criticism is at least
partially based on misunderstandings of the conceptual spaces theory.?
In contrast to that, our example highlights a representational deficit of
the original theory from the perspective of artificial intelligence and
machine learning: The most natural way of representing cross-domain
correlations in a geometric setting is not possible when using convex
sets under the Manhattan distance.

For example, he argues that some objects (such as apples) have a non-convex shape,
hence the region of the appLE concept in the sHAPE domain cannot be convex. This
argument, however, misses the main point of the quality dimensions used to span
the sHAPE space: They do not correspond to physical dimensions, but to meaningful
shape-related features of an observation, such as its aspect ratio or degree of curvature
(see Chapter 10 for more information on how the sHAPE domain can be represented).

Manhattan convexity
cannot express
correlations

Other criticisms of
convexity

First option:
replacing convexity
with star-shapedness

Connected regions
are too unconstrained

Second option: using
only the Euclidean
distance

62

| DEFINING CONCEPTUAL REGIONS

2.2.2 Potential Solutions

One potential remedy for our problem is the notion of star-shapedness:
If we require conceptual regions only to be star-shaped instead of
convex, we can represent the correlation of AGe and HEIGHT for the cHILD
concept in a geometric way. Figure 2.4c illustrates this approach: The
sketched sets are star-shaped under the Manhattan metric with respect
to a central point, illustrated as a cross in the center of the conceptual
region.* Although this representation does not exactly correspond to
our intuitive sketch in Figure 2.4a, it is a clear improvement over the
convexity-based representation from Figure 2.4b. The weaker require-
ment of star-shapedness allows us to "cut out" some corners from the
rectangular region. This enables us to geometrically represent correla-
tions through the form of the conceptual region. Therefore, by relaxing
the convexity requirement, a geometric representation of cross-domain
correlations becomes feasible.

One could argue at this point that instead of shar-shapedness, we
should consider an even weaker constraint, for instance connectedness.
A set C is connected if for all points z, z € C, we can find an arbitrarily
shaped path from z to z such that all points on this path also lie in
C5 If the regions representing concepts only have to be connected,
then we can define the concepts of apurr and cHiLD as in Figure 2.4a -
which would be even closer to our intuition. However, the notion of
connectedness is relatively weak and permits e.g., also ring-shaped
sets that have a "hole" in the middle. This, however, does not seem
convincing for representing concepts. Star-shapedness prevents such
"holes". Star-shaped regions furthermore have a well defined central
point or region that can be interpreted as a prototype. Thus, the connec-
tion that Gardenfors [179] established between the prototype theory of
concepts and the framework of conceptual spaces (cf. Section 1.2.2) is
preserved. Replacing convexity with star-shapedness is therefore only
a minimal departure from the original framework while enabling us to
geometrically represent correlations between domains.

The problem illustrated in Figure 2.4 could also be resolved by
replacing the Manhattan metric with a different distance function for
combining domains. A natural choice would be to use the Euclidean
distance everywhere.® We think, however, that this would be a major
departure from the original framework.

Please note that although the sketched sets are still convex under the Euclidean metric,
they are star-shaped but not convex under the Manhattan metric. Please also note that
the region for the apurr concept in Figure 2.4a is star-shaped under the Manhattan
distance. Thanks to Luciano Serafini for pointing out the latter observation.

Please note that all convex sets are connected (in this case the path between x and z
needs to be a shortest path) and that also all star-shaped sets are connected (here, we
fix an intermediate point p € P, which must lie on the path from x to z and require
the subpaths from z to p and from p to z to be shortest paths).

One could of course also replace the Manhattan metric with some non-Euclidean
metric (e.g., the Mahalanobis distance). However, there is currently no strong evidence
supporting the usage of any particular other metric.

2.2 AN ARGUMENT AGAINST CONVEXITY |

In conceptual spaces, the distance between two points in the overall
space does not only depend on their coordinates with respect to the
individual dimensions, but also on the way that these dimensions are
grouped into domains: The overall distance in the space is computed
using the (weighted) Manhattan metric on the (weighted) Euclidean
distances within the respective domains. If we replace the Manhattan
distance with the Euclidean distance, then we get a (weighted) Euclidean
distance based on (weighted) Euclidean distances. This is, however,
equivalent to computing a single weighted Euclidean distance on
the overall space (see Lemma A.1 in Appendix A.1). In this case, the
structure of the conceptual space loses its importance for computing
distances. It is therefore not quite clear whether using domains to
structure the conceptual space would be useful any more — it seems
that the framework would lose one of its central parts.

Moreover, there exists some psychological evidence [19, 211, 367, 368]
which indicates that human dissimilarity ratings are reflected better by
the Manhattan metric than by the Euclidean metric if separable dimen-
sions are involved (e.g., stimuli differing in both size and BRIGHTNESs,
cf. also Figure 2.1). Since a psychologically plausible representation of
similarity is one of the core principles of the conceptual spaces frame-
work, these findings should be taken into account. Furthermore, the
Manhattan metric provides a better relative contrast between close and
distant points in high-dimensional spaces than the Euclidean metric [7].
If we expect a large number of domains (each consisting only of a small
number of dimensions), this also supports the usage of the Manhattan
metric from a computational point of view.

Also multivariate Gaussians might seem to be a good candidate for
representing concepts that could solve our representational problem:
They contain both a prototypical element (the mean ;) and information
about correlations (the positive semi-definite covariance matrix ¥). The
membership function of a multivariate Gaussian can be expressed as a
specific type of similarity to the mean p:

Sim(x, 1) = e 3@ S z—p)

Mathematically speaking, multivariate Gaussians compute an ex-
ponentially decaying similarity to a prototype based on the squared
Mahalanobis distance ds(z,y) = \/(z — y)TX~1(z — y). The Maha-
lanobis distance, however, corresponds to the Euclidean metric in a
transformed space: Since the covariance matrix ¥ is positive semi-
definite, one can write ¥~ = GTG for some matrix G [167, 236]. We
can now make the following transformations:

ds(a,y) = /(@ —)T (@ — y) = /(@ -) T(CTC) (@ — y)
— (G - y)" (Gl —y)) = /(Ga - Gy (G — Gy)

One can easily see that ds(z,y) = dg(Gz, Gy). Overall, we thus get
that Sim(xz, u) = e~ 3°48(G2.GY)* Both the implicit transformation of the

A representational
argument for keeping
the Manhattan
distance

Psychological and
computational
arguments for
keeping the
Manhattan distance

Third option:
representing
conceptual regions as
multivariate
Gaussians

The Mahalanobis
distance and
conceptual spaces

Squared distance in a
transformed space

Fourth option:
considering
intermediate cases of
the Minkowski
metric

Fifth option:
redefining
betweenness

Summary

64

| DEFINING CONCEPTUAL REGIONS

similarity space and the usage of squared distances are in our opinion,
however, not in line with the original conceptual spaces framework.

Our representational problem also disappears if we assume the two
dimensions of age and height are not completely separable.” So in-
stead of using the Manhattan metric (where r = 1), we could use the
Minkowski metric with » > 1. In Section 2.1.1, we have already noted
that values of r € (1, 2) are the usual case in psychological analyses.
As we have seen in Figure 2.2, even a value of r = 1.01 already leads
to a betweenness relation that is much more similar to the Euclidean
case than to the Manhattan case. When replacing » = 1 with r > 1,
we can either use a different r for each pair of separable dimensions
(which adds many free parameters to the framework, cf. Section 2.1.1)
or use a single global value » > 1. The latter option seems to be prefer-
able to the first one as it implies less additional complexity. However,
even using the same r > 1 for all pairs of separable dimensions has
a major disadvantage: While betweenness under both the Euclidean
and the Manhattan metric can be described in a very concise way (as
a straight line segment and as an axis-parallel cuboid, respectively),
this is not easily possible for intermediate cases with » € (1,2). The
subsequent analysis of convexity and star-shapedness as well as the
parametric description of conceptual regions might thus become quite
complex. As we have seen in Figure 2.2, betweenness for r € (1,2] is a
special case of betweenness for » = 1. This means that any set that is
star-shaped/convex for r = 1 is also star-shaped/convex for r € (1,2].
By basing our formalization on the Manhattan metric, we therefore
take into account the limiting case of r = 1.

Finally, there is a potential solution that allows us to keep both the
constraint of convexity and the usage of the Manhattan metric: If we
define betweenness always in the Euclidean sense (i.e., as the straight
line segment connecting two points), then the problem sketched in
Section 2.2.1 does not arise any more, since the regions sketched in
Figure 2.4a would already be considered convex under any distance
metric.® This approach, however, breaks the tight connection of be-
tweenness and distance (and thus similarity) in a conceptual space and
is therefore a quite strong modification of the original framework. By
using Euclidean betweenness also for separable dimensions, we can no
longer say that stimulus y in Figure 2.1b is between stimuli = and z. As
we can see by this example, the redefinition of the betweenness relation
also has direct effects on points in the conceptual space, i.e., on the way
individual stimuli are treated. As mentioned already for several other
candidate solutions, such side-effects are also to be expected when
changing the underlying notion of distance in the space.

Overall, it seems that from a representational point of view, the

7 Thanks to Peter Gardenfors for this helpful comment.
8 Thanks to the audience at the DCLPS colloquium in Diisseldorf for this idea.

2.3 A PARAMETRIC DEFINITION OF CONCEPTS |

relaxation of the convexity criterion is the cleanest solution — it causes
only a small departure from the original framework with no unintended
side effects or major complications.

Please note that the example given above is intended to highlight
representational problems of conceptual spaces in the context of artificial
intelligence, if a geometric representation of correlations is desired.
We do not make any claims that star-shapedness is a psychologically
plausible extension of the original framework and we do not know about
any psychological data that could support such a claim.” Moreover,
our example does not preclude that properties in a conceptual space
are convex sets within a single domain.'® The convexity requirement
only caused problems for concepts which are defined across multiple
domains, not for properties within a single domain. As all convex
sets are also star-shaped, properties may be convex regions without
contradicting our formalization — they would simply constitute a special
case. For the sake of simplicity, we will use the same type of star-shaped
sets for representing both concepts and properties in the remainder of
this dissertation. Investigations about the psychological plausibility of
our formalization would be certainly interesting, but lie outside of the
scope of this dissertation.

Finally, one should mention that one can circumvent the representa-
tional problem described above by representing correlations between
domains in a non-geometric way: Concepts can be represented by a list
of individual properties instead of being represented by a region in the
overall space (cf. frames and schema-based variants of prototype theory,
Sections 1.1.1 and 1.2.1). Then, all regions are defined as convex regions
within individual domains. Correlations between these domains can
then be represented in a different way, e.g., as co-occurrence statistics
of properties [329] (see also Sections 2.4.2 and 2.5.2). However, as al-
ready stated in Section 2.2.1, we think that a geometric representation
of correlations in the overall space is more intuitive. Moreover, this
approach allows us to treat properties and concepts in the same way.
This is especially useful if we aim to learn the conceptual regions with
machine learning algorithms.

2.3 A PARAMETRIC DEFINITION OF CONCEPTS

Based on our insights from Section 2.2, we now provide a formaliza-
tion of conceptual similarity spaces (Section 2.3.1) and star-shaped
conceptual regions both in a crisp and a fuzzy variant (Sections 2.3.2
and 2.3.3). We then introduce our open source implementation of this
formalization in Section 2.3.4.

Thanks to Igor Douven for pointing this out to me.

StroBner [395] has recently argued, that convexity is empirically supported mostly for
single-domain concepts, but not for multi-domain concepts, which may, however, be
more crucial for human cognition.

65

Disclaimer: this is
not about psychology

Non-geometric
representation of
correlations

Quverview

Formalizing
dimensions

Formalizing domains

Dimension weights

Combined metric in
the overall space

Domain weights

66

11

| DEFINING CONCEPTUAL REGIONS

2.3.1 Formalizing Conceptual Similarity Spaces

Before we can derive a mathematical definition of conceptual regions,
we first need to formalize the underlying conceptual space. Let D be the
set of quality dimensions d € D that span the conceptual space. Then,
the overall conceptual space C'S can be defined as the product space of
all these dimensions. We denote the distance between two points « and
y with respect to a dimension d as |z4 — y4| (or, equivalently, |y — x4|).""

These dimensions are now grouped together into domains. Each
domain ¢ is defined as subset of D. Taken together the set of all
domains A is a partition of D (i.e., each dimension d belongs to exactly
one domain §). Distance within a domain 6 C D is measured by the
weighted Euclidean metric d%, (cf. Definition 2.1):

d(SE(x7y7W5) = de' ‘md_ydP
des

The parameter W contains positive weights wy > 0 for all dimensions
d € 0, representing their relative importance within the domain. These
weights are assumed to sum to one, i.e.,) ;.; wq = 1. This normaliza-
tion requirement prevents that the number of dimensions in a given
domain has a great impact on the numeric value of the distances. It is
intended to make distances within small and large domains comparable.

Now let A be the set of all domains ¢ that are part of the conceptual
space. Distance within the overall conceptual space is measured by the
weighted Manhattan metric of the intra-domain distances (henceforth
called the combined metric):

Definition 2.7 (Combined Metric)

Let C'S be a conceptual space based on dimensions d € D, which are partitioned
into domains D D § € A. Let W be the set of positive domain weights ws for
all § € Awith) 5.5 ws = |Al. Let moreover W be the set of positive domain
weights wq for all d € 6 with), swq = 1. Let furthermore x,y € CS.
Their distance according to the combined metric is defined as follows, where
W = (Wa,{Ws}sea):

dé(f]ﬁ,y,W):ngdJE (I‘,y7W5):Z ws - de“xd_yd‘Q
SEA dEA ded

The parameter W = (Wa, {Ws}sca) contains both the dimension
weights as introduced above and a set of domain wights Wa. The
weights in W are not globally constant, but they (and thus also the
notion of distance) depend on the current context. Observations and

For linear dimensions, this distance can be simply computed by taking the absolute
value of the difference between x4 and yq. If the underlying dimension is circular (e.g.,
representing a rotation angle in [0°,360°), the distance computation needs to take
into account this circularity, such that for example the distance between 10° and 350°
equals 20° rather than 340°.

2.3 A PARAMETRIC DEFINITION OF CONCEPTS |

concepts that are defined on a larger number of domains can have a
larger psychological distance from each other than observations and
concepts defined on a small number of domains. For example, points in
the conceptual space can differ from the property Rep only with respect
to their corLor. If we compare them, however, to the AppLE concept,
then also differences with respect to sHAPE, TasTE, and size matter. By
requiring » s A ws = |Al instead of) ;. A ws = 1, we can enforce this
intuition mathematically.

Lemma 2.1 (Metric Properties of d2)
d5 with a fixed parameter W is a metric.

Proof. See Appendix A.2. O

We call this overall metric d5 for the conceptual space the combined
metric, because it is a combination of the Euclidean and the Manhattan
metric. Note that both d); and dg are special cases of dé: If every
domain contains only a single dimension, then d2 is equivalent to d;.
On the other hand, if there is only a single domain which contains all
dimensions, then dé is equivalent to dg.

2.3.2 Crisp Conceptual Regions

Our mathematical formalization of concepts is based on the following
insight, which relates convex regions to star-shaped regions:

Lemma 2.2 (Union of Convex Sets)
Let C4, ..., Cy, be convex sets under some metric d and let P = ([~ C;. If
P #0, then S = J;~, C; is star-shaped under d with respect to P.

Proof. See Appendix A.3. O

Lemma 2.2 states that every union of convex sets with a nonempty
intersection is star-shaped with respect to this intersection. Moreover,
one can also approximate any star-shaped set by a union of convex sets
with a nonempty intersection (cf. [245, 378]):

If the original set S is star-shaped with respect to the region P, each
of the convex sets C; to be constructed will be a superset of P. Define for
each point x on the surface of S a minimal convex set C), that contains
both P and z. As S is star-shaped, all the points in C,, are also contained
in S. The union over all C}, is thus a subset of S. Moreover, this union
of all C;, covers all points in S: Every point y € S is either a surface
point or lies between a surface point x and the central region P. We can
thus for every y € S find a C;, such thaty € C,. Thus, |JC, = S. Please
note that in practical applications, one is limited to a finite number of
convex sets C, hence only enabling an approximation, but not a perfect
representation of S.

If we ensure that our sets C4,...,Cy, from Lemma 2.2 are convex
under the Manhattan distance dj;, we are guaranteed that they are also
convex under d, with r € [1, 2] (cf. Section 2.1.2). Then, the resulting set
S is not only star-shaped under d,, but also under d,. Using convexity

67

Relation to Euclidean
and Manhattan
distance

A union of
intersecting convex
regions is star-shaped

The reverse direction

Approximating
star-shaped regions
as union of convex
regions

Manhattan distance
as limiting case

Axis-parallel cuboids
as building blocks

Interpretation

Cuboids are convex
under do

Conceptual regions
as union of
intersecting cuboids

How many cuboids
per core?

68

| DEFINING CONCEPTUAL REGIONS

under dj thus can be considered a limiting case (cf. Section 2.2.2) —
if in practice the actual value of r for a given conceptual space lies
in the open interval (1,2), a formalization based on convexity and
star-shapedness under d) is still applicable.

Please recall from Sections 2.1.2 and 2.2.1 that convex sets under the
Manhattan distance correpond to axis-parallel cuboids. They can be
formally defined in the following way:"*

Definition 2.8 (Axis-Parallel Cuboid)

We describe an axis-parallel cuboid™ C' as a triple (Ac,p~,p*). C is
defined on the domains Ac C A, i.e., on the dimensions Do = Jsep, 0. We
call p~,p* the support points of C and require that p™,p~ € D¢. This means
that p*™ and p~ have an entry p:lr,p; for each dimension d € Dc¢. For all
d € D\ D¢, we can for convenience assume that p;r = +ooand p; = —oo.
If for any d € D¢ we have p;, > p, then the cuboid C'is empty, i.e., C = 0.

Then, we define the cuboid C'in the following way:

C={zxeCS|VdeD:p; <zq<pl}

Intuitively, the interval [p, p;r] describes the set of admissible values
for a given dimension d. A cuboid C' thus restricts the values on the
dimensions in A into intervals specified by p~ and p™.

Lemma 2.3 (Cuboids are Convex)
A cuboid C'is convex under déc, given a fixed set of weights W.

Proof. See Appendix A.3. O

Since djs and df are special cases of d¢, cuboids are also convex
under both d,; and dg.

By comining Lemma 2.2 with Lemma 2.3, we can see that any union
of intersecting cuboids is star-shaped under d5. We use this insight
to define crisp cores for our conceptual regions (see Figure 2.5 for an
illustrative example):

Definition 2.9 (Core of a Conceptual Region)

We describe a core S as a tuple (Ag, {C1,...,Cp}) where Ag C Ais a set
of domains on which the cuboids {C1, ..., Cy,} (and thus also S) are defined.
Again, we can derive Dg = ¢ Ag J, i.e., the set of all dimensions on which S
is defined. We further require that the central region P = (", C; # 0. Then
the coret S is defined as follows:

We have defined a core S as a union of a (potentially very large) num-
ber of cuboids with nonempty intersection. In an actual implementation,
however, we might need to restrict the number of cuboids m in order to

12 All of our definitions and propositions hold for any number of dimensions.
13 We will drop the modifier "axis-parallel” from now on.

2.3 A PARAMETRIC DEFINITION OF CONCEPTS |

Cs

(@) (b)

Figure 2.5: Illustration of a core. (a) Three cuboids C1, Cz, C3 with nonempty
intersection. (b) Core S based on C, Cs, C's with central region P.

limit both computation time and memory requirements. One could for
instance base this on the number of domains or dimensions on which
S is defined, i.e., m x |Ag| or m |Dg|. As a potential restriction on
the number of cuboids does not influence our mathematical definitions,
we leave this decision to the concrete application. We will, however,
revisit this point in Sections 3.1.3, 4.1.3, and 4.5.3, when considering
the runtime of different operations in dependence on the number of
cuboids used to represent each concept.

Since cores are defined as a union of cuboids, we can interpret them
as consisting of several sub-concepts (the individual cuboids) which
are defined based on ranges of possible feature values. Requiring a
non-empty intersection of the cuboids thus means that these ranges
of admissible values need to overlap for each dimension: There must
be at least one observation that falls into the range of possible values
for all cuboids. A correlation between domains and dimensions is
also expressed through the cuboid structure: The ranges of admissible
feature values may co-vary, such that certain combinations of sub-ranges
exist while others do not.

2.3.3 Fuzzy Conceptual Regions

In practice, it is often not possible to define clear-cut boundaries
for conceptual regions. As Murphy [298, Chapter 2] argues, clear-cut
conceptual boundaries are only usefuly if the world has "distinct clumps
of objects" (cf. Section 1.2.3). However, if the world consists of shadings
and if objects can have a rich mixture of different kind of properties, then
one will encounter borderline cases with no clear concept membership.
Figure 2.6a shows a simple example from the coLor domain for the
property ReD. No matter where the crisp conceptual boundary is put, it
is always possible to find two points = # 2’ that are very close to each
other perceptually, but which lie on different sides of the boundary.
They represent borderline cases that lie close to the decision boundary.
One can then argue that these two specific colors are very similar to

69

Cuboids as
sub-concepts

Crisp set cannot deal
well with borderline
cases

Crisp membership is
not continuous

Fuzzy sets use
continuous degrees of
membership

Relation to crisp sets

70

| DEFINING CONCEPTUAL REGIONS

1

0.8 0.8
2
0.6 S 06
9]
Qo
0.4 5 04
=
0.2 0.2
0 E 0
x X X’ HUE X X’ HUE

(@) (b)

Figure 2.6: (a) Crisp conceptual boundaries lead to abrupt changes in member-
ship. (b) Fuzzy conceptual boundaries allow for smooth changes
in membership.

each other (as déc (x,2', W) is very small) and that the decision to call =
RED and 2’ NOT RED is quite arbitrary. If we decide to solve this problem
by moving the conceptual boundary in such a way that both = and 2’
belong to the conceptual region of rep, then we immediately face a
similar problem with respect to 2’ and 2.

The underlying problem is that the membership to the property rRep
is crisp (i.e., a given point either is a full member of the conceptual
region, or it is not a member at all). At the conceptual boundary, we thus
have a sudden jump from full membership to no membership at all.
The membership function which maps points in the conceptual space
to their membership to the property rep is therefore not continuous: A
small change in the input (i.e., the coordinates of the point) can lead to
a large change in the output (i.e., membership to the property rep).

The theory of fuzzy sets [448] tries to solve this problem by allowing
intermediate degrees of membership: Points are also allowed to be par-
tial members of a region. As we can see in Figure 2.6b, the membership
function can now become continuous — small changes in the input only
lead to small changes in the output. The sudden jump between x and
2" has been replaced with a smoother transition between members and
non-members. As we do no longer have a clear threshold separating
members from non-members, we can say that the conceptual boundary
has become imprecise. Please note that using fuzzy sets to represent
imprecise knowledge about conceptual boundaries has already a long
tradition in cognitive science (cf. [55, 136, 310, 340, 450]).

Definition 2.10 (Fuzzy Set)
A fuzzy set A on CS is defined by its membership function yu 7: 08— [0,1].
Foreach x € CS, juz(x) is interpreted as degree of membership of x in A, with
pz(x) = 1indicating full membership and jiz(x) = 0 indicating complete
non-membership.

Fuzzy sets contain crisp sets as a special case where p 7 : €S — {0, 1}.
In analogy to the crisp power set P(C'S), we denote the set of all fuzzy
sets on C'S as F(CS) and call this the fuzzy power set of C'S.

2.3 A PARAMETRIC DEFINITION OF CONCEPTS |

Definition 2.11 (a-Cut) B
Given a fuzzy set A on C'S, its a-cut A for a € [0, 1] is defined as follows:

A ={z € CS | pz(x) > a}

The special case of A is called the core of A.

Intuitively, an a-cut returns a crisp set of all the points that have a
certain minimal membership to the underlying fuzzy set. Definition
2.11 also gives a hint why the crisp conceptual regions from Section 2.3.2
are called cores: The points inside these regions will be the ones that
receive a full degree of membership in our fuzzy conceptual regions.

The notion of convexity can be generalized from crisp sets to fuzzy
sets as follows, resulting in a property that is commonly called quasi-
concavity [394, 395, 411] (see also [179, Chapter 3.5]):

Definition 2.12 (Quasi-Concavity)
A fuzzy set A on CS is called quasi-concave under a metric d, if for all points
x,y,2 € OS with By(z,y, 2), we have j13(y) > min(u 7(x), p7(2)).

Equivalently, each a-cut of A is either empty or convex under d.

Also the notion of star-shapedness can be generalized from crisp sets
(see Definition 2.4) to fuzzy sets by using a-cuts:

Definition 2.13 (Fuzzy Star-Shapedness)
A fuzzy set A on CS is called star-shaped under a metric d with respect to a
crisp set P &

Va € [0,1] : (ﬁa = () or A“ is star-shaped under d with respect to P).

We can now define concepts as fuzzy sets based on the crisp cores
from Section 2.3.2: The membership of a point z € C'S to a concept Sis
based on the maximal similarity of x to any point y € S in the core S.
Definition 2.14 (Concept as Fuzzy Region)

A concept S is described by a quadruple (S, jug, ¢, W). The components of
this quadruple are the following:

o S =(As,{C1,...,Cp}) isanon-empty core as described in Definition
2.9.

o The parameter py € (0, 1] controls the highest possible membership to
S and is usually set to 1.

o The sensitivity parameter ¢ > 0 controls the rate of the exponential
decay in the similarity function and thus the overall fuzziness of S.

e Finally, W = (Wag,{Ws}seay) contains positive weights for all
domains in Ag and all dimensions within these domains. These weights
are used when computing the combined metric dés and reflect the
relative importance of the respective domains and dimensions. As
argued in Section 2.3.1, we assume that y 5. n ws = |Ag| and that
V6 € Ag : Zd65wd =1

71

a-cuts turn fuzzy
sets into crisp sets
based on a threshold

Quasi-concavity as
fuzzy version of
covexity

Fuzzy
star-shapedness

Concepts as fuzzified
cores

Concepts are fuzzy
star-shaped regions

Example concepts

Controlling the
fuzziness

72

| DEFINING CONCEPTUAL REGIONS

l

Ho T
Ho

() (b)

Figure 2.7: (a) Two concepts S and §' in a one-dimensional conceptual space.

(b) A concept S in a two-dimensional conceptual space along with
two of its a-cuts.

The membership function of S is then defined as follows:

As
~(x) = - max e_CdC (Z‘,y,W))
Ns() Ho o (
One can show that concepts as defined in Definition 2.14 are star-
shaped under dés in the sense of Definition 2.13. This requires the
insight that each a-cut of S is equivalent to an e-neighborhood of S.

Lemma 2.4 (o-Cut is an e-Neighborhood)
Let S = (S, o, c, W) be a concept and let o < pg. Then, the a-cut S is

equivalent to an e-neighborhood of S with e = —1 - In (%)

Proof. See Appendix A.4. O

Proposition 2.1 (Concepts are Fuzzy Star-Shaped)
Any concept S = (S, po, ¢, W) is star-shaped with respect to P = (-, C;
under dés .

Proof. See Appendix A 4. O

Figure 2.7a illustrates the membership functions of two concepts
S and S’ in a one-dimensional conceptual space. Here, S has a large
core S, a high maximal membership value p, and a large sensitivity
parameter ¢, while the respective parameters of 5" (namely, S, 114, and
') are relatively small. Figure 2.7b shows a two-dimensional concept
S that is based on the core S from Figure 2.5. In this illustration, the z
and the y axis belong to different domains, and are thus combined with
the Manhattan metric. Moreover, the x axis has a lower salience weight
than the y axis.

As we can see in Figure 2.7, both the weights W and the sensitivity
parameter ¢ directly influence the fuzziness of S: The sensitivity param-
eter ¢ controls the overall fuzziness of S by determining how fast the
membership drops to zero. Larger values ¢ ¢ cause steeper membership
functions (i.e., "crisper" fuzzy sets). This can be seen in Figure 2.7a. The

14

2.3 A PARAMETRIC DEFINITION OF CONCEPTS |

weights IV on the other hand represent not only the relative importance
of the respective domain or dimension to the represented concept, but
they also influence the relative fuzziness with respect to this domain or
dimension: If the weight of a given dimension'# d is relatively large in
comparison to the weights of another dimension d’, the membership
function with respect to d will be steeper than with respect to d’. In
short: Larger weights cause less fuzziness. We can see this in Figure
2.7b, where the x axis receives a lower salience weight than the y axis
and consequently the membership function drops faster on the y axis
than on the z axis.

How can these salience weights be determined? There are at least
three possible ways:

Due to the effect of the weights on the fuzziness of the resulting
concept, one may want to base the salience weights on the size of
the underlying crisp set S in the respective dimension: If S is already
relatively "large" (i.e., it covers a relatively large part of the space) in
a given dimension d, this means that many different values on d can
lead to a full membership in the corresponding concept S. We would
then also expect many different values on d to lead to high partial
memberships (e.g., membership values of 0.8 and higher). This means
that the respective a-cuts should also be large, i.e., the membership
function should decay relatively slowly with respect to d. This effect
can be achieved by using a small salience weight w, for this dimension
— which also indicates that d is not very important for determining
concept membership. Analogously, we can link a small size of S to a
steep drop in the membership function and a large salience weight.

Alternatively, one can use the diagnosticity of each dimension to
determine its salience weight: If the given concept has a large distance
to other concepts with respect to a given dimension d, then the values
on d are very informative for making a classification. Therefore, the
salience weight w, should be large. Sileno et al. [370] have made a
concrete proposal along these lines: In their work, all concepts of the
same hierarchy level (e.g., APPLE, PEAR, LEMON) are contrasted with their
superordinate concept (e.g., FRuIT) by computing the direction in which
the given concept differs from typical examples of the superordinate.
The dimensions in which this difference is large receive a larger salience
weight than the dimensions with only small differences.

Finally, one can also jointly optimize all parameters of a given concept
in order to achieve an optimal fit to a given data set. This approach
treats the salience weights as yet another model parameter in a ma-
chine learning context and does not make use of a particular intuitive
motivation. However, one may expect that also in this case the weights
are tuned in a way that optimizes classification performance, hence
resembling somewhat the diagnosticity-based approach.

For better readability, we only refer to dimension weights here. The same applies of
course also to domain weights.

73

Basing salience
weights on the size of
the core

Obtaining salience
weights from
diagnosticity

Estimating salience
weights with
machine learning

Properties and
concepts can use the
same formalism

Overview of the
implementation

74

15
16

| DEFINING CONCEPTUAL REGIONS

cs
_domains: dict
_n_dim: int
_dim names: List<String> —I
“concepts: dict concept inspector
le — - — uses_ _] init()
init{n_dim:int,domains:dict,dim_names:List<String=) update()
distance(x:point,y:point,weights:Weights):float
between(first:point,middle:point,second:point):float
add_concept(key:string, concept:Concept)
delete_concept(key:string)
Concept
_mu: float
_cj float _ _ Core
__init_ (core:Core,mu:float,c:float,weights:Weights) - -
membership_of (x:point): float _domains: dict
intersect_with(other:Concept): Concept __init_ (cuboids:List<Cuboid>,domains:dict)
unify _with(other:Concept): Concept % add_cuboid (cuboid: Cuboid)
project_onto(new_domains:dict): Concept 1 unify_with(other:Core): Core
cut_at(dimension:int,value:float): Tuple<Concept> cut_at(dimension:int,value:float): Tuple<Core>
size(): float project _onto(new domains:dict): Core
subset of (other:Concept): float midpoint(): point
implies(other:Concept): float
similarity to(other:Concept): float } cuboids
between(first:Concept, second:Concept): float 1..%
weights Cuboid
1 _p_min: point
A _p_max: point
Weights _domains: dict
_dimension weights: dict __init__ (p_min:point,p_max:point,domains)
_domain weights: dict contains(p:point): boolean
__init_ (domain weights:dict,dimension weights:dict) intersect_with(other:Cuboid): Cuboid
merge with(other:Weights,s:float=0.5,t:float=0.5): Weights project_onto(new_domains:dict): Cuboid
project ontol(new domains:dict): Weights get_clesest points({other:Cuboid): Tuple<point>

Figure 2.8: Class diagram of our implementation.

Note that if [Ag| = 1, then S represents a property (since it is only
defined on a single domain), and if |Ag| > 1, then S represents a concept.
This way, we can represent both properties and concepts with the same
formalism. As we only discovered problems with the convexity criterion
for the combination of multiple domains, we might still want to follow
Gérdenfors’ convexity assumption for regions within a single domain
(i.e., for properties). This, however, forces us to represent properties
with a single cuboid, which might be too coarse-grained for practical
applications. Again, we leave this decision up to the specific application
scenario.

2.3.4 Implementation and Example: Fruit Space

We have implemented our formalization in Python and have made
it publicly available on GitHub'> [41, 51]. Figure 2.8 shows a class
diagram illustrating the overall structure of our implementation. Each
of the components from our definition (i.e., weights, cuboids, cores,
and concepts) is represented by an individual class.’® Moreover, the
cs module contains the overall domain structure of the conceptual
space (represented as a dictionary mapping from domain identifiers to
sets of dimensions) along with some utility functions (e.g., computing
distance and betweenness of points). The concept_inspector package
contains a visualization tool that displays 3D and 2D projections of the
concepts stored in the cs package.

See https://github.com/1bechberger/ConceptualSpaces.
Most of the methods implemented for the Concept class refer to operations from our
formalization which will be introduced in Chapter 3 and 4.

https://github.com/lbechberger/ConceptualSpaces

2.3 A PARAMETRIC DEFINITION OF CONCEPTS | 75

In order to illustrate the definitions made in this chapter, we introduce A three-dimensional
a very simplified conceptual space for fruit. This space consists of only ~ fruit space
three domains, each containing only a single dimension. We restrict
ourselves to three dimensions in total in order to visualize the conceptual
structures sufficiently well. Using only one-dimensional domains might
be a considerable limitation of this example’s expressiveness, but we
hope that it nevertheless helps to complement this chapter’s formal
results with some concrete examples. We will return to this example
fruit space in Chapters 3 and 4, where we will use it to illustrate
operations on concepts.
Our overall conceptual space for fruits can be defined based on the Domains and
following domains and dimensions: dimensions

A= {5color = {dhue}> 5shape = {dround}7 5taste = {dsweet}}
The three dimensions of this space have the following semantics:

o dyuus describes the auk of the observation’s coLor, with focal values
of 0.00 for purple, 0.25 for blue, 0.50 for green, o0.75 for yellow,
and 1.00 for red."”

¢ drounp is computed by calculating the bounding circle of the object
and measuring the percentage of its area that is covered by the
object. Its values range thus from 0.00 (e.g., for a line segment) to
1.00 (for a perfect circle).

o dsweer represents the relative amount of sugar contained in the
fruit. We assume that it is normalized to a range between 0.00 (no
sugar) and 1.00 (highest sugar content).

In our implementation, we can define this conceptual space as follows:

domains = {’color’:[0], ’'shape’:[1], ’taste’:[2]}
dimension_names = [’hue’, ’'round’, ’sweet’]
space.init (3, domains, dimension_names)

Table 2.1 contains definitions for several concepts and properties. Some example fruit
When giving coordinates for points, we assume that the dimensions concepts
are ordered like this: diug, drounn, Tsweer-

Note that we have assigned the domain weights according to the Domain and

prominence of the respective domain to the respective concept. For ~ dimension weights
instance, the TasTE of a LEMON sets it clearly apart from all the other fruit

concepts (it is not sweet at all), while its coLor is not that unique (e.g.,

also a BANANA or an APPLE can be yellow). Therefore, in §LEMON, the TASTE

domain receives a much higher weight than the coLor domain. As all

domains are one-dimensional, the dimension weights w, are always

equal to 1, thus identical for all concepts, and therefore not listed in

Tables 2.1. In the code, we can define concepts as follows:

c_pear = Cuboid([®.5, 0.4, 0.35], [0.7, 0.6, 0.45], domains)
s_pear = Core([c_pear], domains)

17 HUE should actually be viewed as a circular dimension. For the sake of simplicity, we,
however, treat it here as linear dimension.

76 | DEFINING CONCEPTUAL REGIONS

lemon

nonSweet

orange
pear
red

Figure 2.9: Screenshot from the ConceptInspector tool illustrating the fruit
concepts in our example space. The concepts are labeled as follows:
PEAR (1), ORANGE (2), LEMON (3), GRANNY SMITH (4), APPLE (5), BANANA

(6)-

2.3 A PARAMETRIC DEFINITION OF CONCEPTS | 77

Concept As P pt Ho c w
Wécoron ~ Wésuare | Woiasie
PEAR A (0.50,0.40,0.35) | (0.70,0.60,0.45) | 1.0 | 24.0 | 0.50 1.25 1.25
ORANGE A (0.80,0.90,0.60) = (0.90,1.00,0.70) @ 1.0 | 30.0 1.00 1.00 1.00
LEMON A (0.70,0.45,0.00) | (0.80,0.55,0.10) @ 1.0 | 40.0 0.50 0.50 2.00
GRANNY A (0.55,0.70,0.35) | (0.60,0.80,0.45) @ 1.0 | 50.0 1.00 1.00 1.00
SMmiTH
(0.50,0.65,0.35) | (0.80,0.80,0.50)
APPLE A (0.65,0.65,0.40) | (0.85,0.80,0.55) | 1.0 | 20.0 | 0.50 1.50 1.00
(0.70,0.65,0.45) | (1.00,0.80,0.60)
(0.50,0.10,0.35) | (0.75,0.30,0.55)
BANANA A (0.70,0.10,0.50) | (0.80,0.30,0.70) | 1.0 | 20.0 | 0.75 1.50 0.75
(0.75,0.10,0.50) | (0.85,0.30,1.00)
{8coror} | (0.90, —00, —00) | (1.00,+00,+00) | 1.0 | 40.0 1.00 - -
GREEN {0coror} | (0.45,—00, —00) | (0.55,+00,+00) | 1.0 @ 40.0 | 1.00 - -
{dcoror} | (0.20, —00, —00) | (0.30,+00,+00) | 1.0 | 40.0 1.00 - -
NONSWEET | {0msre} | (—00,—00,0.00) (+00,400,0.20) | 1.0 @ 14.0 - - 1.00
Table 2.1: Definitions of several fruit concepts and properties.
w_pear = Weights({’color’:0.50, ’shape’:1.25, ’taste’:1.25},
{’color’:{0:1.0}, ’shape’:{1:1.0},
"taste’:{2:1.0}})
pear = Concept(s_pear, 1.0, 12.0, w_pear)

Because all single-cuboid concepts are not only star-shaped, but also
convex, their central region P is identical to their cuboid C. For the
concepts of apple and banana, however, these central regions need to
be computed:

Central regions

3
Pareie = [) Coereei = (A, Prpere = (0.70,0.65,0.45),
1=1
Pl = (0.80,0.80,0.50))
3
Pisnana = ﬂ CBANANA,’i = (A,p];NANA = (0.75, 0.10, 0.50),
=1

pl;:NANA = (075, 030, 055)>

While this numeric representation is clearly well suited for automated ~ Visualization
processing in a computer, it is intuitively hard to grasp for a human. Fig-
ures 2.9 and 2.10 therefore show screenshots of the ConceptInspector
tool for the concepts and properties from Table 2.1, respectively. Each
figure shows both the crisp cores in a three-dimensional space and
three two-dimensional visualizations of both the cores and the o.5-cuts.
We would finally like to note that NONSwEET is a rather artificial
property — it would be more natural to define sweer as a property on
the TasTe domain. However, for the examples we will make in Chapters
3 and 4, we will need a TastE property which intersects with the LEmon
concept. As we only use the sweeTnEss dimension to define the TasTE
domain, we hence introduced NoNSweeT for illustrative purposes.

78 | DEFINING CONCEPTUAL REGIONS

3D visualization - hue, round, sweet

Figure 2.10: Screenshot from the ConceptInspector toolillustrating the prop-
erties in our example space. The properties are labeled as follows:
RED (1), GREEN (2), BLUE (3), NONSWEET (4).

2.4 RELATED WORK |

2.4 RELATED WORK

Our proposed formalization relates of course to a large body of research
about conceptual spaces. In Section 2.4.1, we first show how our formal-
ization relates to general ideas proposed by other researchers, before
providing a high-level comparison to other formalizations in Section
2.4.2. Finally, we will comment on two proposals for representing com-
posite concepts in Section 2.4.3 and discuss their possible incorporation
into our work.

2.4.1 Related General Ideas

The need for imprecise conceptual boundaries has been articulated and
analyzed by Douven et al. [136]. They propose an extension of the
conceptual spaces framework in order to explicitly consider borderline
cases. In Gardenfors’ original proposal [179], each concept is represented
by a single prototypical point (cf. Section 1.2.2). Conceptual regions are
then created by assigning each point in the space to its closest prototype.
Douven et al. argue that the resulting Voronoi diagram comes with a
poor representation of borderline cases: Only the points that have the
exact same distance to two or more prototypes lie on such a border
line. They then propose to extend Gardenfors” original proposal by
representing prototypes not as single points but as sets of points. They
then aggregate all possible Voronoi diagrams that can be created by
picking one point from each prototypical region. Borderline cases are
now represented as points that belong to different conceptual regions
for different Voronoi diagrams.

Although Douven et al. provide an account of vagueness in con-
ceptual spaces, their approach still makes a sharp distinction between
borderline cases and non-borderline cases. This shortcoming has later
been addressed by Decock et al. [118], who provide a fuzzy degree of
concept membership for points in the borderline area. We will revisit
this approach in more detail in Chapter 7. Moreover, they keep the
assumption that concepts can be interpreted as Voronoi tessellations
of the conceptual space. While this may be true for properties (e.g.,
every point in the coLor space supposedly belongs to a certain coLor
property), it seems more likely that the overall conceptual space is
populated much more sparsely (cf. Section 1.2.2). In our opinion, there
are points in the overall conceptual space that are far away from all
concepts and should not be classified as members of any of those
concepts — they rather represent an unusual or exceptional observation
[395, 453]. Moreover, Voronoi tessellations cannot represent overlapping
conceptual regions, which are needed to encode conceptual hierarchies
such as cHESTNUT being a particular shade of BRowN.

Imprecise concept boundaries can of course also be represented by
fuzzy sets that are not based on Voronoi tessellations. As already men-
tioned in Section 2.3.3, a popular fuzzy generalization of the convexity
constraint is the notion of quasi-concavity, which has for instance been

79

Quverview

Imprecise concept
boundaries

Limitations of
Voronoi-based
approaches

Non-partitional
approaches

Contrast in
conceptual spaces

Concept membership
based on contrast

An egg-yolk model of
conceptual regions

80

| DEFINING CONCEPTUAL REGIONS

proposed by Strofiner [394, 395] and Tull [411]. In his work, Tull [411]
extends the framework by Bolt et al. [69] (which combines conceptual
spaces with category theory) from crisp sets to fuzzy sets, using a
special type of quasi-concave membership functions. Also some prior
formalizations of the conceptual spaces framework (to be discussed in
Sections 2.4.2 and 2.5) explicitly consider fuzzy concept boundaries.

From a somewhat different perspective, also Dessalles [124] has
criticized the usage of a Voronoi tessellations. He argues that such a
categorization rule does not provide a fine-grained judgment of concept
membership: It only allows to refuse membership to a given concept if
the observation is closer to a prototype of a different concept. Moreover,
he argues that justifications for membership or non-membership in a
given category are essential for the categorization process. By looking
at examples like "This is a Book, because it has been properly published"
and "This is not a Book, because it is too thin", Dessalles motivates the
need for a contrast operation for comparing an observation to a prototype.
In a conceptual space, this contrast can be simply represented as the
vector denoting the difference between two points. The direction of
this contrast vector then indicates which domains and dimensions are
relevant. One can use this contrast vector then to select the property used
to describe the observation. For example, a RED FACE can be interpreted
as a Face which differs from a prototypical face mostly by its coLor
(which is redder than usual). In a similar way, one can interpret BiG
FLEA and sMAaLL ELEPHANT. This provides an elegant account of relative
properties and differs from the one proposed originally by Gardenfors
[179], which will be introduced in the context of concept combination
in Chapter 3.

Moreover, Dessalles [124] notes that also concept membership can be
expressed based on contrast vectors: An observation can be defined as
being a member of a concept if the length of the contrast vector is less
than a given threshold. This supports the idea that concepts should be
star-shaped: If a point is a member of a concept with prototype p, then
the contrast vector p# is shorter than some threshold e. This means that
for any point y between z and p, Py is shorter than p# and thus y is also
a member of the concept. If we now allow for a set of prototypical points
and if we use a fuzzy degree of membership (where shorter contrast
vectors yield larger memberships), we arrive at a description of concepts
quite similar to our formalization. In our case, the set of prototypical
points is the core S of a concept, the length of the contrast vector is
determined by the combined metric d, and the degree of membership
is an exponentially decaying function of this length.

As Sileno et al. [370] have argued, the approach based on predication
and contrast vectors has a number of additional advantages: While the
standard approach to conceptual spaces typically requires a distance
computation over all possible dimensions, the predicative approach
does not need such a holistic perspective. It moreover does not need
definite regions to describe concepts — prototypical points and some
rough regional information are sufficient. Sileno et al. [370] have formal-

ized the idea of contrast vectors using the egg-yolk model: A concept
is described by its prototypical point p and two threshold vectors o
and p. If the distance of a given observation o to the prototypical point
p of a concept is less than o; for each dimension 4, then it belongs to
the yolk region and is considered a typical member of the concept. If
the distance between o and p is less than p;, then o belongs to the egg
region and is considered a member of the concept, although not a very
typical one. All observations with a distance of more than p; are not
associated with the given concept at all. This representation makes it
possible to distinguish membership from typicality: All elements in the
egg region are full members of the concept, but only the ones in the
yolk region are considered typical. One can in some sense compare the
yolk to the prototypical region P in our formalization and the egg to
the core S. Our formalization adds the ability to also express imprecise
boundaries by allowing for degrees of membership.

A third issue that relates our formalization to other work from the
literature is the representation of correlations in conceptual spaces. For
instance, Derrac and Schockaert [123] (whose work has been introduced
in Section 1.2.5) do not assume that interpretable directions in the
conceptual spaces they extract from textual data are orthogonal to
each other. Also Jameel et al. [207] use a conceptual space with non-
orthogonal dimensions for illustrating their approach. If the quality
dimensions of a conceptual space are not orthogonal to each other, this
means that changing a value on one of the dimensions also induces
changes to the values on other dimensions. Especially when the dimen-
sions of the conceptual space are not linearly independent (i.e., if we
have n quality dimensions but they only span an n’-dimensional space
with n’ < n), we get such interdependency effects.

Encoding correlations directly in the structure of the conceptual
space asserts that the given correlation exists for all concept in the space
to an equal degree. This makes sense if one considers a certain group
of concepts for which this correlation holds. For example, if we limit
ourselves to FrRUIT concepts, then encoding a correlation between coLor
and TastE at a global level is both meaningful and efficient: The encoded
correlation is expected to hold for all concepts we might ever describe
in this conceptual space and storing it only once is more elegant than
storing it locally for each concept. However, if our conceptual space
does not only include rruit concepts but also other food items (e.g.,
different types of 1cE crREam) or other household objects (such as pLATE
and sowt), then the globally encoded correlation might not hold for all
concepts and might be even misleading in some cases.

Moreover, computing the distance between two points in a concep-
tual space (and thus their similarity) is a very basic operation. If our
conceptual space consists of orthogonal dimensions, then we can simply
use the combined metric d¢ as defined in this chapter. However, if the
dimensions of the conceptual space are not orthogonal to each other
and maybe not even linearly independent, computing distances might
become more complicated.

81

Correlations through
non-orthogonal
dimensions

Representational
advantages and
disadvantages

Potential proglems
with distance
computations

82

Correlations as
co-occurence
statistics

Criteria for a good
formalization

Aisbett and Gibbon:
too abstract for
practical use

| DEFINING CONCEPTUAL REGIONS

There is only one other formal discussion of correlations in conceptual
spaces that we are aware of, namely, the mathematical formalization
of the framework by Rickard [329]. Essentially, he represents correla-
tions between domains through co-occurence statistics about different
properties involved in the concept. We will discuss his non-geometric
appraoch of encoding correlations in Sections 2.4.2 and 2.5.2.

2.4.2 Prior Formalizations of Conceptual Spaces

In order to compare different prior formalizations of the conceptual
spaces framework to our own proposal, we use the following list of
criteria, which has already been briefly mentioned in Section 1.3.2:

o Parametric description of conceptual regions
Concepts and properties should be described in a parametric
way, i.e., through a mathematical formula with a clear set of
parameters. This parametric description of concepts is a crucial
requirement for an actual implementation of the framework.

e Properties are a special case of concepts
Concepts and properties should be represented with the same
formalism. This makes it easier to devise mechanisms for learning
and reasoning that are applicable to both properties and concepts
without major modifications.

e Correlations between domains
The formalization should provide a concrete way for representing
cross-domain correlations, because these correlations contain
important information about the concept.

o Imprecise concept boundaries
Conceptual boundaries should be imprecise in order to reflect
borderline cases and a continuous degree of membership.

o Implementation
The formalization should come with a publicly available imple-
mentation such that other researchers can use it right away for
their own research projects.

In the following, we briefly introduce various formalizations from
the literature and argue to which extent they fulfill our criteria. Table
2.2 gives an overview of our results. The three strongest competitors to
our own work will be reviewed in more detail in Section 2.5.

An early and quite thorough formalization was developed by Aisbett
and Gibbon [11]. They used pointed metric spaces and a generalized
form of betweenness as a basis for their formalization. Like we, they
considered concepts to be regions in the overall conceptual space.
However, they kept Gardenfors” assumption of convexity. Although
their formalization targets the interplay of symbols and geometrically

2.4 RELATED WORK | 83

Formali- Parametric Properties . Imprecise Implemen-
. . . Correlations . .
zation Description are Concepts Boundaries tation
Aisbett and _ v _ _ _
Gibbon [11]
Raubal [327] - - - - -
Ahlqvist [10] - v - v -
Rickard [329] v - v v -
Rickard et al. v _ v v _
[330]
Adams and
Raubal [3] v v - a -
Lewis and v v 3 v 3
Lawry [253]
Our Formal- v v v v v
1zation

Table 2.2: Overview of different formalizations of the conceptual spaces frame-
work based on our list of criteria ("v"" means "fulfilled" and "-" means
"not fulfilled").

represented concepts, it is still relatively abstract. For instance, they
did not define concepts in a parametric way, which prevents a direct
implementation. They also did not comment on the issues of imprecise
concept boundaries and cross-domain correlations. Taken together,
their formalization seems to be quite incomplete with respect to our
list of criteria.

In Raubal’s formalization [327], the normalization of all dimensions Raubal: too

via the z-transformation (i.e., by substracting the mean and dividing incomplet to count as
through the standard deviation) is highlighted as important preprocess- formalization

ing step. Raubal defines a conceptual space as a vector space spanned

by domains and dimensions. For calculating semantic distance, he uses

only the Euclidean metric in contrast to Gardenfors’ original proposal

of combining the Euclidean and the Manhattan metric. Moreover, prop-

erties and concepts, which are very important parts of the conceptual

spaces framework, are not formalized in Raubal’s proposal, which

makes it quite incomplete. Overall, it does not fulfill any of our criteria.

Ahlqvist [10] bases his formalization of conceptual spaces on rough Ahlquist: concepts as

fuzzy sets, which are characterized by two membership functions serving rough fuzzy sets

as a lower and upper bound for concept membership. Concepts are rep-

resented by one rough fuzzy set per domain. Alhqvist’s formalization

does not consider correlations between different domains. Moreover,

the class of rough fuzzy sets is not restricted to a parametrically describ-

able subclass, which limits the direct implementability of his proposal.

However, the usage of rough fuzzy sets provides a powerful way for

describing imprecise conceptual boundaries. Moreover, properties can

be treated as special cases of concepts.

Also Rickard [329] provides a formalization based on the idea of Rickard: concepts as
co-occurence
statistics of
properties

Limitations of
Rickard’s
formalization

Rickard et al.:
combining Rickard
with Aisbett and
Gibbon

Adams and Raubal:
concepts as sets of
convex polytopes

Limitations of their
work

84

fuzziness. In his notation, each concept is represented as a graph: Nodes
in this graph correspond to properties which are represented as convex
regions in their respective domains. Directed edges between these
nodes indicate the co-occurrence of the respective properties. Weights
on these edges represent the strength of the respective co-occurrence.
The overall graph can also be seen as a matrix of edge weights. By
concatenating the rows of this matrix, Rickard obtains a vector that can
be interpreted as a point in a hypercube. This point is then assumed
to represent a fuzzy set which is defined on the universe of ordered
property pairs. The observed co-occurrence of a pair of properties
corresponds to this pair’s membership in the concept.

Rickard’s representation nicely captures the correlations between
different properties, but these correlations are not represented geomet-
rically: Rickard first discretizes the domains (by defining properties)
and then computes co-occurrence statistics between these properties.
Depending on the discretization, this might lead to a relatively coarse-
grained notion of correlation. Moreover, as properties and concepts are
represented in different ways, one has to use different learning and
reasoning mechanisms for them. Furthermore, Rickard does not restrict
properties to a parametrically describable subclass, again limiting the
direct implementability of this proposal. Finally, this formalization has
the disadvantage that it is not easy to work with due to the complex
mathematical transformations involved.

Rickard et al. [330] combine the approaches of Rickard [329] and Ais-
bett and Gibbon [11]. They define properties as fuzzy sets and describe
concepts by a quadratic matrix of property associations. These property
associations correspond to Rickard’s co-occurrence statistics. Again,
there is no parametrically describable subclass of fuzzy sets that is
considered. Moreover, no constraint like convexity or star-shapedness is
enforced on the concepts and properties. In general, the same criticism
that applied to Rickard [329] is also applicable to Rickard et al. [330].

Adams and Raubal [3] provide another important formalization of
conceptual spaces. They define a concept as a set of properties which
are represented as convex regions on their respective domains. These
convex regions are represented by convex polytopes, i.e., sets of linear
inequations which define their confining hyperplanes. This allows for
efficient computations while being potentially more expressive than
our cuboid-based approach. Adams and Raubal use the Manhattan
metric to combine different domains. However, correlations between
different domains are not taken into account as each convex polytope is
only defined on a single domain. Also imprecise conceptual boundaries
are not a part of their formalization.

One could generalize their approach by using polytopes that are
defined on the overall space and that are convex under the Euclidean
and star-shaped under the Manhattan metric. However, as we will
discuss in more detail in Section 2.5.1, we have found that this requires
additional constraints in order to ensure star-shapedness. The number

2.4 RELATED WORK |

of these constraints grows exponentially with the number of dimen-
sions. Each modification of a concept’s description would then involve
a large constraint satisfaction problem, rendering this representation
unsuitable for learning processes.

Lewis and Lawry [253] formalize conceptual spaces using random set
theory. A random set can be characterized by a set of prototypical points
P and a threshold e. Observations that have a distance of at most € to the
prototypical set are considered to be elements of the set. The threshold
e is, however, not exactly determined — only its probability distribution
9 is known. Based on this uncertainty, a membership function x(x) can
be defined that corresponds to the probability Ps(d(z, P) < €). Lewis
and Lawry define properties as random sets within single domains and
concepts as random sets in a boolean space whose dimensions indicate
the presence or absence of properties. In order to define this boolean
space, a single property is taken from each domain. This is in some
respect similar to the approach of Rickard [329] where concepts are
also defined on top of existing properties. However, while Rickard uses
two separate formalisms for properties and concepts, Lewis and Lawry
use random sets for both — only the underlying space differs.

Lewis and Lawry show that under some assumptions concepts can be
described as weighted sums of properties and that concept combination
can also be formalized as weighted sums of concepts. They illustrate
how their mathematical formalization is capable of reproducing some
effects from the psychological concept combination literature. However,
they do not develop a way of representing correlations between domains
(such as "a RED APPLE is typically sweet, while a GREEN APPLE is typically
soUR"). One possible way to do this within their framework would be to
define two separate concepts REDAPPLE and GREENAPPLE and then define
on top of them a disjunctive concept APPLE = REDAPPLE V GREENAPPLE.
This, however, is a quite indirect way of defining correlations. Nev-
ertheless, their approach is similar to ours in using a distance-based
membership function to a set of prototypical points while using the
same representational mechanisms for both properties and concepts.

Many practical applications of conceptual spaces (e.g., [98, 123, 129,
327]) use only partial ad-hoc implementations of the conceptual spaces
framework which usually ignore some important aspects (e.g., the
domain structure). As they do not come close to a formal mathematical
treatment, we do not consider them any further.

Moreover, all formalizations discussed so far come without an imple-
mentation. The only publicly available implementation of the conceptual
spaces framework that we are currently aware of is provided by Lieto
et al. [262, 265] for their Dual-PECCS system discussed in Section 1.2.2.
It is, however, not based on a thorough mathematical formalization. In
Dual-PECCS, each concept is represented in the conceptual space by
a single prototypical point and a number of exemplar points. Corre-
lations between domains can therefore only be encoded through the
selection of appropriate exemplars. In contrast to our work, the current

85

Lewis and Lawry:
concepts as random
sets

Limitations of this
formalization

Many applications
are not based on
formalizations

Implementations of
concetual spaces

Our own
formalization

Why do part-whole
structures matter?

Part-whole
structures and
conceptual spaces

Holistic and
structural processes

Additional spaces for
part-whole relations

86

18
19

| DEFINING CONCEPTUAL REGIONS

implementation of their system'®, however, comes without any publicly
available source code'” due to the dependence on third-party code in
the form of the ACT-R cognitive architecture [13].

Finally, let us comment on our own formalization with respect to
our desiderata: Both concepts and properties are represented through
a parametric description of fuzy conceptual regions with imprecise
borders. By using star-shapedness instead of convexity, we are able to
encode cross-domain correlations. As described in Section 2.3.4, we
also provide a proof-of-concept implementation of our formalization.
Therefore, all criteria outlined above are fulfilled.

2.4.3 Composite Concepts

Many objects encountered in the world can be viewed not only as
wholes, but also as a configuration of parts. For instance, a chair can be
regarded as one overall object, or it can be viewed as an assemblage of
its legs, seat, and back. Without doubt, the ability to focus on individual
parts of an overall object is quite important for both learning and
reasoning. The presence or absence of certain parts might be crucial for
distinguishing different categories (e.g., birds have a beak, but mammals
do not). It is therefore desirable that a formal theory of concepts offers
ways to represent the part-whole structure of composite concepts.

The original framework of conceptual spaces as presented by Garden-
fors [179, 181] (and as formalized in this chapter) does not make any
statements about part-whole structures. Also none of the formalizations
discussed in Section 2.4.2 (including our own) considers composite
concepts in a general way. In this section, we review the proposals by
Fiorini [157, 158] and Chella et al. [97] and discuss how they fit in with
our formalization.

Fiorini [158] argues that psychological findings (e.g., [152]) indicate
the existence of two complementary cognitive processes in object
recognition: a holistic process which focuses on the whole object and a
structural process which focuses on the object’s parts. Moreover, within
the structural process, the shape of parts and their arrangement seem
to be processed separately.

Based on this, Fiorini proposes to extend the conceptual spaces
framework as illustrated in Figure 2.11: The conceptual space that is
used to represent a concept such as AppLE in a holistic way (i.e., based on
its overall SHAPE, SIZE, COLOR, WEIGHT, etc.) is called the holistic space. This
is the conceptual space described in Gardenfors’s original framework.
The concept representation is enriched by another space, called the
structure space. This structure space contains for each part a separate part
space, which encodes the properties of the part, along with a structure

See http://www.dualpeccs.di.unito.it/download.html.
The source code of an earlier and more limited version of their system can be found
here: http://www.di.unito.it/~lieto/cc_classifier.html.

http://www.dualpeccs.di.unito.it/download.html
http://www.di.unito.it/~lieto/cc_classifier.html

2.4 RELATED WORK |

APPLE Space

APPLE APPLE Structure Space
Holistic
Space STEM STEM FLESH FLESH
Part Structure Part Structure
Space Domain Space Domain

A@. TQ. NV, @ (

Figure 2.11: [llustration of Fiorini’s proposal for representing part-whole
relations in conceptual spaces.

domain, which encodes this part’s role within the overall concept (e.g.,
by providing information about the part’s typical location within the
whole object). In Figure 2.11, we only consider two parts of an apple,
namely its stem and its FLEsH. The SHAPE, SIZE, COLOR, etc. of an APPLE’s
sTEM is described as a region in the sTEM part space. The typical location
of an APPLE’s sTEM With respect to the whole appLE is depicted as a region
in the sTEM structure domain.

So in a nutshell, Fiorini proposes to represent concepts by three types
of information: information about the properties of the overall object
(holistic space), information about the properties of the object’s parts
(part spaces), and information about how these parts are arranged
(structure domains).

A problem may arise if the parts themselves are again composite
concepts that consist of smaller parts: For instance, the flesh of an
apple consists of a certain amount of cells arranged in a specific way,
each of these cells consists of molecules, and each molecule consists of
atoms. If all these part-whole structures were imported to the appLE
concept, the number of dimensions involved would grow infeasibly
large and the concept would thus very quickly become unusable. In
order to avoid these problems, Fiorini proposes so-called dimensional
filters. These dimensional filters define which aspects of a part (i.e.,
which domains) are used in the definition of the overall concept. In the
example made above, a dimensional filter applied to the concept of an
APPLE’s FLESH could for instance only keep the Taste and coLor domain
while removing all other domains (including the information about its
parts).

A slightly different, but related approach for representing composite
objects was used by Chella et al. [97] when applying conceptual spaces
to computer vision (cf. Section 1.2.4). They describe each simple object
by a single point in the conceptual space and composite objects by a set
of such points in the conceptual space. Each of the points in this set can
be thought of as representing one part of the overall object. Because their
conceptual space also contains a domain representing DISPLACEMENT
information, Chella et al. implicitly encode the arrangement of the parts

87

Three types of
information

Recursive part-whole
relations and
dimensional filters

Composite objects as
sets of points

Part-whole relations
and our
formalization

Correlations and
part-whole structures

The competitors

A modified fruit
space

88

through their respective coordinates in the pisPLACEMENT domain. In
contrast to Fiorini, they do not explicitly separate the part space from
the structure domain. While Fiorini allows the different part spaces
to differ (e.g., by involving different domains), Chella et al. use the
same conceptual space for all parts. Moreover, their proposal does not
explicitly consider holistic information. Overall, the approach proposed
by Chella et al. therefore seems to be a special case of Fiorini’s proposal
with more limited capabilities.

Fiorini’s proposal [158] can be easily integrated in our formalization:
He simply introduces additional domains in order to represent the
properties and configurations of parts. As our formalization works
with any number of domains, we can use all the definitions made
in this chapter on this extended space as well. One might, however,
need to distinguish the different types of domains in order to interpret
them accordingly. For instance, a structure domain might need to be
interpreted differently than a regular domain when reasoning about
concepts. Fiorini’s dimensional filters can be easily implemented by
removing irrelevant domains from the part concepts before attaching
them to the whole. In Chapter 3, we will define a projection operation
that can be used for this purpose. Therefore, introducing part-whole
structures to our formalism would not require a major rework, but only
some manageable additions.

Fiorini mentions that the domains of different parts might be cor-
related, but he does not fully develop this idea. A formalization of
his proposal in our formalism would provide means to also specify
correlations between wholes, their parts, and the configuration of these
parts: For instance, by using our definition of a concept, we would be
able to encode that cars with scissor doors usually have a powerful
engine (think of expensive sports cars), and that cars with sliding doors
in the rear usually have a large body (think of mini vans).

2.5 DETAILED COMPARISON TO OTHER FORMAL-
IZATIONS

Three of the formalizations presented in Section 2.4.2 deserve a more
detailed discussion: The formalization by Adams and Raubal [3] pro-
poses a parametrized definition of concepts as geometric regions, but
fails to account for correlations between domains. The formalization
by Rickard [329] puts its focus exactly on such correlations, but does
not offer a parametrizable geometric representation of concepts. Finally,
the formalization by Lewis and Lawry [253] uses random set theory
and a set of prototypical points for defining concepts. However, it also
does not consider cross-domain correlations.

In order to contrast these three approaches with our own, we consider
a variant of the fruit space introduced in Section 2.3.4. This modified

2.5 DETAILED COMPARISON TO OTHER FORMALIZATIONS |

Concept Ag p~ pT Mo ¢

RED {0cotor} = (0.70,—00, —00) | (1.00,+00,+00) 1.0 40.0

YELLOW | {0color} | (0.40, —00, —00) | (0.60, 400, +00) | 1.0 @ 40.0

GREEN | {dcoior} | (0.00, —00, —00) (0.30,+00,4+00) 1.0 40.0

SOUR | {Baste} | (—00,0.50,0.00) (+00,1.00,0.40) 1.0 14.0

SWEET {0ste} (—00,0.00,0.50) @ (400,0.40,1.00) 1.0 14.0
(0.10,0.50,0.10) ~ (0.55,0.90, 0.50)

APPLE A | (0.30,0.30,0.40) = (0.70,0.60,0.55) 1.0 20.0
(0.45,0.10,0.45) (0.90, 0.50, 0.90)

Table 2.3: Definitions of conceptual regions of several fruit concepts and
properties for comparing different formalizations.

Concept w
Wicoron | Wonsre | Wdpye | Wdsouw | Wdgyiper

RED 1.00 - 1.00 - -

YELLOW 1.00 - 1.00 - -

GREEN 1.00 - 1.00 - -
SOUR = 1.00 = 0.70 0.30
SWEET - 1.00 - 0.30 0.70
APPLE 0.67 1.33 1.00 1.00 1.00

Table 2.4: Definitions of domain and dimension weights of several fruit con-
cepts and properties for comparing different formalizations.

space consists of two domains, namely coLor and taste. The coLor
domain is modeled by a single dimension (HUE), whereas the TasTE
domain is modeled by two dimensions (sWeeTNEss, measurable as sugar
content, and sourRNEss, measurable as acidity). We again assume that
all dimensions are scaled between o and 1.

We will now consider how the different formalisms represent the
concept of AppPLE. Let us start with our own formalism and let us assume
that the dimensions are ordered as follows: duyg, dsour, dsweer- 1ables
2.3 and 2.4 show the definition of three coLor properties, two TASTE
properties, and the appLE concept. The definition of the AppLE concept
encodes that a ReED APPLE tends to be sweeT, whereas a GREEN APPLE tends
to be sour. Moreover, an ArpLE tend not to be sweer and sour at the same
time. Our encoding thus expresses correlations within and between
domains. Figure 2.12 illustrates this representation.

In the following, we contrast our own representation to the ones used
by Adams and Raubal [3] (Section 2.5.1), Rickard [329] (Section 2.5.2),
and Lewis and Lawry [253] (Section 2.5.3).

89

The APPLE concept

90 | DEFINING CONCEPTUAL REGIONS

3D visualization - sour, sweet, hue

1

02
9%
10# %our

Figure 2.12: Screenshot of the ConceptInspector tool for our proposed en-
coding of the appLE concept. There are correlations within the
TAasTE domain as well as between the taste and the coLor domain.
The intersection of appLE (1) with GREEN (2) has a large overlap
with sour (3), indicating that green apples tend to be sour.

2.5 DETAILED COMPARISON TO OTHER FORMALIZATIONS |

A HUE A SWEET

SOUR

-

Figure 2.13: [llustration of the AppLE concept encoded under the formalization
of Adams and Raubal [3]. There are correlations within the taste
domain, but not between the taste and the color domain.

2.5.1 Comparison to Adams and Raubal

Let us first consider the formalization by Adams and Raubal [3]: In their
formalism, every concept v is defined as a pair (O, P) with a finite set ¢
of convex regions and a prototypical member P. Each convex region
o € ¢ is defined as a convex polytope within a single domain. Convex
polytopes can be expressed by a set of linear inequalities. Let us for our
current example define the polytopes of the apple concept as follows:

Seolor = ZLcolor < 0.9
color =
Zeolor = 0.1
11 Zsour + 14 - Tgyeer = 910

7 Tsour + 0.5 Tgyeet < 795

Otaste =
—Tsour + Tsweet S 65

—Tsour + Tsweet Z —60

Figure 2.13 illustrates this encoding by showing the individual poly-
topes on their respective domains. As one can see by comparing Figure
2.13 to the two-dimensional visualizations of our encoding in Figure
2.12, convex polytopes offer a much more fine-grained way of describ-
ing the regions associated to a concept within a single domain. Our
cuboid-based approach is less elegant in this respect. However, the
formalization of Adams and Raubal is not capable of representing cor-
relations between different domains. It provides no way of expressing
the fact that a GREEN APPLE tends to be sour while a RED APPLE is expected
to be sweeT. The main reason for this is the fact that concepts are not
represented as a single region in the overall conceptual space, but as
a set of regions in the individual domains. If we visualize the overall
conceptual space as the product space of the domains (see Figure 2.14),
the lack of cross-domain correlations becomes apparent immediately.

91

Regions as convex
polytopes

Convex polytopes are
more fine-grained,
but limited to
individual domains

92

| DEFINING CONCEPTUAL REGIONS

Figure 2.14: Visualization of the overall conceptual space as product space of
the domains from Figure 2.13. The intersection of aprLE (1) with
GREEN (2) has only a small overlap with sour (3), highlighting that
this representation cannot encode cross-domain correlations.

HUE HUE

SOUR
OUR SWEET

Figure 2.15: Three-dimensional illustration of the encoding of the appLE con-
cept using a modified version of the formalization by Adams
and Raubal [3]. The overall concept is defined as a polytope
that is star-shaped with resect to a prototypical point under the
combined distance.

A d,

dl

Figure 2.16: A polytope defined by a number of inequalities that is not star-
shaped under the Manhattan metric.

2.5 DETAILED COMPARISON TO OTHER FORMALIZATIONS |

The formalization by Adams and Raubal could be generalized by
defining each concept as a polytope on the overall conceptual space. As
argued in Section 2.2, one should then only require star-shapedness in
order to encode correlations. This is illustrated in Figure 2.15, where the
APPLE concept is encoded as a three-dimensional polytope that is star-
shaped with respect to a central point under the combined metric. This
representation clearly allows to encode cross-domain correlations such
as a GREEN APPLE being sour. However, one needs additional constraints
in order to ensure star-shapedness under the combined metric. Figure
2.16 shows a polytope in a two-dimensional space. One can easily see
that this region is not star-shaped with respect to its central point under
the Manhattan metric — if it were, then the blue rectangle would be
completely contained inside the set. In order to ensure star-shapedness,
one needs to formulate constraints on the inequalities that define the
polytope. Unfortunately, the number of necessary constraints grows
very fast as the number of dimensions increases. Updating not only a
set of inequalities during a learning process but also taking into account
a large number of constraints might quickly become infeasible.

Overall, it thus seems that the approach by Adams and Raubal
is inherently limited in its capabilities of representing cross-domain
correlations. Its definition of conceptual regions as polytopes is more
expressive than our cuboid-based approach, while our formalization
can express cross-domain correlations, also includes imprecise concept
boundaries, and comes with a publicly available implementation.

2.5.2 Comparison to Rickard

Let us now look at the formalization by Rickard [329]. This formalization
requires properties to be crisp convex regions, but does not propose
a parametric description. For the sake of simplicity, we will use the
cores of the properties RED, YELLOW, GREEN, SOUR, and swEeET as we have
defined them above in the context of our own formalization. According
to Rickard, a concept is defined by a matrix of co-occurrence values
of different properties. The co-occurrence value C(S1, S2) indicates for
two properties S and S> how often Sy occurs if S is observed. These
co-occurrence values can be understood as conditional probabilities
IP(S3 | S1). They can be estimated based on observed frequencies in a
given set of observations. If we start from a geometric representation
like ours, one could also define C(S1, S2) as the degree to which Sy is a
subset of S1. We will revisit this thought in Chapter 4, when we define
a degree of subsethood for fuzzy concepts.

Let us assume we have the following co-occurrence values for the
APPLE concept based on the properties defined above:

C(SSOUku SRED) =0.0 C(SRED7 SSOUR) =0.0
C(SSOUR7 SYELLOW) =04 C(SRED7 SSWEET) =1.0
C(Ssouk, SGREEN) =0.6 C(SYELLOW7 SSOUR) =0.5

93

A possible
generalization for
incorporating
correlations

Summary

Co-occurrence
statistics of
properties

Example
representation of the
APPLE concept

Co-occurences may
be asymmetric

Interpreting the
concept matrix

Representation of
correlations

Computing concept
membership

94

20

| DEFINING CONCEPTUAL REGIONS

C(SSWEETa SRED) =0.6 C(SYELLOW7 SSWEET) =0.5
C(SSWEET7 SYELLOW) =0.3 C(SGREEN7 SSOUR) =1.0
C(SSWEET7 SGREEN) =0.1 C(SGREEN7 SSWEET) =0.0

Note that in general C(S1, S2) # C(S2, S1). For example, we have
C(Sgeps Ssweer) = 1 > 0.6 = C(Ssweer, Szep)- This reflects that all red
apples are sweet, but only 60 % of the sweet apples are red. If we
assume that C'(S1,51) = 1 and that different properties within the
same domain cannot co-occur, we can write the ApPLE concept as a
matrix:

1.0 0.0 0.0/0.0 1.0

0.0 1.0 0.0]0.5 0.5
C=100 00 1.0 1.0 0.0
0.0 04 06/]1.0 0.0
06 03 01]0.0 1.0

Each entry Cj; of this concept matrix can be interpreted as C(S;, 5;),
assuming that the properties are ordered as follows: RED, YELLOW, GREEN,
SOUR, swEET. Please note that the first and the fourth quadrant of the
matrix C correspond to identity matrices and express that different
properties within the same domain do not co-occur. Rickard argues
that we can interpret the entries of this matrix as membership values
of the respective property pair to the concept under consideration.
For example, the property pair sweer-yELLow would be assigned a
membership of 0.3 to the aAppLE concept, indicating that a SWEeT APPLE
may be YELLow, but that this is not a very typical expectation.

This representation nicely captures the correlation between different
properties. For instance, if we consider a GREEN APPLE, we can simply
select the row in the matrix corresponding to the property GReeN to
obtain the expected correlation of GrReEeN with sweer and sour in the
context of the APPLE concept.

However, this representation of concepts is not geometrical and com-
puting membership values for observations is therefore more complex.
If we would like to judge wheter a given observation (represented as a
point in the overall conceptual space) is a member of the AppLE concept,
we cannot simply check whether it is contained in the overall conceptual
region. We first need to classify it with respect to the given properties
and then somehow compare the resulting vector of classifications to
the matrix given above. In a nutshell, Rickard proposes to compute the
similarity of the given point to all properties involved in the concept®’
and then to aggregate these similarities to individual properties into
similarities to pairs of properties. These can then be used as entries for
an observation matrix. This observation matrix has the same shape as
the concept matrix. Concept membership of the given observation is
then defined as the fuzzy subsethood of the observation matrix and
the concept matrix, i.e., by checking to which extent the entries of

If properties were defined as fuzzy sets, this would correspond to simply computing
the respective membership values.

2.5 DETAILED COMPARISON TO OTHER FORMALIZATIONS |

the observation matrix are smaller than the corresponding entries of
the concept matrix. Overall, this membership computations involves
multiple complicated transformations. Therefore, checking for concept
membership is not as intuitively graspable in Rickard’s formalization
as the geometrical inclusion used by most other works (including our
own). We think that this additional complexity is the main drawback
of Rickard’s formalization.

One can also criticize Rickard’s assumption that different properties
from the same domain cannot co-occur. This assumption may be valid
when using crisp sets for defining properties. However, if we represent
properties with fuzzy sets, we can easily imagine that the fuzzy bor-
derline regions of neighboring properties such as GREeN and YELLOW
overlap. In this case, a point lying in this borderline region would
receive a partial membership to both properties. We think, however,
that this limitation of Rickard’s formalization can be overcome: If we
allow properties from the same domain to co-occur, then the parts of
the matrix C' that used to correspond to identity matrices might also
contain non-zero elements off the diagonal.

Overall, the work by Rickard is the only formalization from the litera-
ture that explicitly represents correlations between domains. However,
the representation used in this formalization makes the simple task
of computing the membership of an observation to a concept quite
complicated. We therefore think that our geometric representation of
correlations is superior, especially since it allows us to treat properties
and concepts in the same way.

2.5.3 Comparison to Lewis and Lawry

Let us now discuss the formalization of Lewis and Lawry [253]. As
stated in Section 2.4.2, they define properties to be random sets within
a given domain. A random set is characterized by a set P of prototypical
points and a probability distribution ¢ of the distance threshold e. Each
point = in the underlying space is assigned a membership value to the
random set based on the probability that it is closer to the prototypical
set P than the threshold e:

1) = P(d(z, P) < ¢) = /d :O , 00 (21)

Lewis and Lawry do not provide any strict constraints on the pro-
totypical region P and the probability distribution J. If we identify P
with a core S from our definition, then we can obtain our definition of a
concept by using 6(e) = ¢- e~ “, which is a probability density function
on the interval [0, c0), since all values are non-negative and its integral
equals one. By inserting this definition into Equation 2.1, we get:

i(z) = P (d(z, 5) <) = / h ate)de = /d T e eeede

d(z,S (z,5)

95

Co-occurrence is
limited to properties
from different
domains

Summary

Random sets

Relation to our
membership function

Our formalization as
a special case

The combination
space

Concepts as random
sets in the
combination space

Interpretation

Concept combination
as weighted sum

Fruit space example

96

| DEFINING CONCEPTUAL REGIONS

= [_efc-e]zzczox 5= 0— (_e—c-d(x,s)> _ o—cd(®,5)

_ e—c~minyes d(z,y) _ max (e—od(x,y))
yes

This is equivalent to the definition of p(z) in Definition 2.14 if we
assume that pg = 1 and that the combined distance d¢ is used. If
we only consider properties, i.e., regions within a single domain, our
formalization is thus a special case of the proposal by Lewis and Lawry.
In the following, we can therefore use the properties from Tables 2.3
and 2.4 for illustrating their definition of concepts.

In order to represent concepts, Lewis and Lawry construct a binary
combination space: From each domain 6, a single property Sj is selected.
This property is used to define a binary dimension z;5 in the combination
space, where a value of 1 indicates that the respective property is
present, whereas a value of o encodes the absence of this property.
Since properties are represented by random sets, any given observation
will match any given property only with a certain probability (which is
expressed by the membership function described above). So in turn,
observations will not map onto points in the combination space, but
to probability distributions in this space. It is important to emphasize
that the only possible values on the dimensions of the combination
space are zero and one. If a given observation x5 has a membership
value of p(xs5) = 0.7 to a given property S;, this is therefore not
translated to a coordinate value of 0.7 on the respective dimension
z5 in the combination space. It is rather reflected by specifying that
IP(Z(; =1 ’ .275) = 0.7 and IP(25 =0 ‘ a:g) =0.3

Lewis and Lawry now define concepts as random sets in this combi-
nation space, i.e., by a prototypical point and a probability distribution
of the concept’s threshold e. In order to compute the membership of a
given observation x in a given concept o, Lewis and Lawry propose to
use the following formula:

pala) =Y <ua(z) TIees | m)

z dEA

For each possible point z in the combination space, we multiply its
membership to the concept o (which can be computed with Equation
2.1) with the probability of observing this point z. This probability is
based on the membership values of the observation z; in the respective
properties zs for the different domains 4.

Lewis and Lawry show that under some assumptions concepts can be
described as weighted sums of properties and that concept combination
can also be formalized as weighted sums of concepts. They illustrate
how their mathematical formalization is capable of reproducing some
effects from the psychological concept combination literature.

In our fruit space example, we have to pick a single property from
each domain in order to define the combination space. Let us choose

2.5 DETAILED COMPARISON TO OTHER FORMALIZATIONS | 97

§RED and §swm- Then, the concept a,ppe can be defined using the
prototype (1,1) in this combination space (i.e., both properties are
required to be present), and a distribution of the concept’s threshold
with é(e) = ¢ - e~ ““. For this example, we pick ¢ = 2 and assume that
both dimensions in the combined space are weighted equally.

If we make an observation z = (0.8,0.2,0.6)"", one can easily see that A red and sweet
pg (z) = pg (x) =1, since this point lies inside the cores Sy and ~ apple fias a high
Ssweer- Therefore, the observation « is translated into a point z = (1,1) membership
in the combination space with a probability of one. As this is equivalent
to the prototype of the AppLE concept, we get that y,,,..(z) = 1. Hence,

x is a perfect example of the aAppLE concept.

However, for 2/ = (0.2,0.6,0.5), which lies in the core Scgeen and A green and sour
between the cores Ssyeer and Ssour, We get ugm(a:/) &~ 2.06 - 107? and apple has a low
1 §SWEET(1:’) & 0.2158. Therefore, the different vectors 2’ in the combina- membership
tion space have the following probabilities:

P ((0,0) | 2/) = (1 = pren(@)) - (1 = psween(a')) ~ 0.7842
P ((0,1) | 2) = (1= piren(®")) - pween(') = 0.2156

P ((1,0) | ') = tuso (@) - (1 — prowsen (&) =~ 162 - 1077
P ((1,1) | 2) = pen(a’) - powen (@) ~ 4.45 - 10710

For the membership of 2’ in a,pp: We now get the following result, Combining the
computing (i, according to Equation 2.1: individual

probabilities
Pt (@) = P ((0,0) | 2') * tceee ((0,0))
+ P ((0,1) [2) - Hays ((0,1))
+ P ((1,0) | 2) - bayms ((1,0))
+ P ((1,1) | 2') - b, ((1,1))
~ 0.7852 - 0.0591 4 0.2156 - 0.1353

+1.62-1077-0.1353 + 4.45 - 10719 1.0000
~ 0.0756

Since we were forced to take only a single property from each domain No encoding of
for defining the appLE concept, we cannot represent that apples are correlations
either rep and sweer (like z) or GreeN and somewhat sour (like z’).

There are two potential remedies for this problem:

On the one hand, we can simply define the combination space based Taking all properties
on all properties from all domains and allow concepts to have multiple ~ from all domains
prototypical points in this combination space. This would, however, be
a relatively strong modification of the work by Lewis and Lawry. It is
especially unclear whether their theoretical results regarding concept
combination would still hold under these conditions.

On the other hand, one could define two separate concepts REDAPPLE Representing
and GrReeNAPPLE and combine them disjunctively. This approach is correlations with
somewhat reminiscent of our own formalization, where the individual sub-concepts
cuboids can be interpreted as sub-concepts, whose union makes up the

21 Please recall that the dimensions are ordered as follows: dyuz, dsour, dsweer-

Summary

Lessons learned:
fuzzified star-shaped
sets ...

...and an
open-source
implementation

Open ends:
part-whole
structures, ...

... salience weights, ...

... and typicality

98

| DEFINING CONCEPTUAL REGIONS

crisp core of the overall concept (cf. Section 2.3.2). Lewis and Lawry
propose to use higher-level combination spaces for combining concepts
(i.e., two-dimensional spaces based on the memberships to the two orig-
inal concepts). However, they again are limited to a single prototypical
point for defining a combined concept. This limits their formalization
to conjunctive concept combinations, since a disjunctive combination
of concepts would require at least two prototypical points, namely
(0,1) and (1,0) (and arguably also (1,1) in some cases). A potential
workaround for this would be to choose (0, 0) as a prototypical point
and to invert the membership function. This, however, would be again
a major departure from their original proposal.

Although their formalization is not capable of representing correla-
tions, Lewis and Lawry are able to reproduce a variety of psychological
findings on conjunctive concept combination. Moreover, their usage of
random sets seems to be a fairly general approach for defining member-
ship functions (including our own membership function as a special
case)— an aspect that will resurface in Chapter 7, where we will discuss
several membership functions from a machine learning perspective.

2.6 SUMMARY

In this chapter, we proposed a new formalization of the conceptual
spaces framework. We aimed to geometrically represent correlations
between domains, which led us to consider the more general notion of
star-shapedness instead of Gardenfors’ favored constraint of convexity.
We defined concepts as fuzzy sets based on intersecting cuboids and a
similarity-based membership function.

Moreover, we introduced the implementation of this formalization,
which is publicly available and can be used by any researcher interested
in conceptual spaces. We think that our implementation can be a good
foundation for practical research on conceptual spaces and that it will
considerably facilitate research in this area.

Although we argued that our formalization is superior to any of
its predecessors, there are certain ways in which it can be further
improved: We have sketched in Section 2.4.3 how part-whole structures
could be included in our formalization, but we have not given a full
mathematical treatment of this topic. Future work could consist in
formalizing Fiorini’s proposal [158] in the context of our approach.

Moreover, we have not specified how conceptual regions and salience
weights can be obtained. We will consider this problem to some extent
in Chapter 7. Future research could compare different ways of deriving
salience weights for existing conceptual regions and their respective
advantages and shortcomings. As mentioned in Section 2.3.3, the work
by Sileno et al. [370] on contrast in conceptual spaces seems to be a
promising avenue of research.

Finally, our formalization currently does not make any difference

2.6 SUMMARY | 99

between concept membership and typicality. However, as for instance
Hampton [188] has argued, a given observation can be a full member
of a concept without being very typical (e.g., a penguin is definitely
a BIRD, but not a very typical one). Another possible extension of our
formalization would thus be the definition of a typicality function,
which could for instance be based on the distance to the concept’s
central area P. This could to some extent be based on the egg-yolk
model proposed by Sileno et al. [370].

So far, we are limited to representing concepts — with the formalization ~ Outlook
laid out in this chapter we are not yet able to manipulate and combine
different concepts, or talk about their relations to each other. This is the
content of Chapters 3 and 4, respectively.

OPERATIONS FOR
3 COMBINING CONCEPTS

3.1 Intersection. oL 102
3.1.1 Intersectionof Cores 103
3.1.2 Intersection of Concepts 107
3.1.3 Implementation and Example 109
3.2 Union 116
3.2.1 Definition 116
3.2.2 Implementation and Example 118
33 Negation 122
3.4 Subspace Projection 124
3.4.1 Definition 125
3.4.2 Implementation and Example 126
3.5 Axis-ParallelCut 127
3.5.1 Definition 131
3.5.2 Implementation and Example 132
3.6 Supported Applications 135
3.6.1 Concept Formation 135
3.6.2 Concept Combination 136
3.7 Comparison to Other Formalizations 142
3.8 Summary 145

Any representation of concepts is only useful if it can be applied in
cognitive tasks. This requires that there are certain operations which can
be applied to these concepts. When giving our definition of concepts as
fuzzy star-shaped sets in Chapter 2, we have already provided a way
of determining the membership of a given observation z in a given
concept S, namely, by evaluating the concept’s membership function
7 §(:c) This is, however, clearly not sufficient, since we also need ways
to modify, create, and combine concepts. In this chapter, we provide
mathematical definitions for several operations aiming at creating new
concepts based on existing ones.

Some conjunctive concept combinations such as GREEN BANANA can be
represented by intersecting the conceptual regions of GREEN and BANANA.
In Section 3.1, we propose a method for ensuring that the intersection
of two star-shaped regions is again star-shaped. This method is then
used in conjunction with numerical optimization methods to define an
intersection operation for concepts.

Just as multiple observations can give rise to a concept such as
ORANGE, a set of concepts from the same abstraction level (e.g., ORANGE,
LEMON, and GRAPEFRUIT) can be used to construct higher-level categories
(e.g., crtrus FRUIT). In Section 3.2, we provide a definition of the union
operation in order to enable concept creation processes of this type.

Motivation

Intersection

Union

101

102

Negation

Projection

Cut

Examples,
application scenarios,
and related work

Intersection as
logical conjunction

| OPERATIONS FOR COMBINING CONCEPTS

Since intersection and union can be related to logical conjunction
and disjunction, it seems worthwhile to also provide a geometric
definition for the logical negation. In Section 3.3, we discuss that the
set complement as most obvious candidate in our geometrical setting
can, however, not result in valid conceptual regions.

When using concepts in a given cognitive task, it may sometimes be
necessary to focus on some specific subset of domains. For instance,
when seeing only the shadow of an object, the information from the
coLor domain is irrelevant and can be ignored. The salience weights
introduced in Section 2.3.3 can be used to reflect this to some extent,
but they cannot be set to zero. In Section 3.4, we therefore introduce an
operation for projecting a given concept onto a subset of its domains.

Finally, we consider the need for splitting a concept into two sub-
concepts. This may be necessary if a given concept is too general for
the given task and needs to be divided into finer-granular subordinate
concepts. In Section 3.5, we consider the most straightforward case
where a concept is split into two parts based on a threshold with respect
to a single dimension. For example, the concept citrus Frurr could be
split based on the sweerNess dimension in order to distinguish the
sub-concept oRANGE from the sub-concept LEMON.

For each of these operations, we provide a formal mathematical
definition, which is accompanied by illustrative examples based on the
fruit space from Section 2.3.4. We furthermore illustrate the usefulness
of these operations by sketching two application scenarios (namely,
concept formation and concept combination) in Section 3.6. In Section
3.7, we compare our approach to other formalizations of the conceptual
spaces framework, before concluding this chapter in Section 3.8.

The research contributions presented in this chapter have previously
been published in [41, 42, 46].

3.1 INTERSECTION

The intersection of two concepts can be interpreted as the geometric
equivalent of the logical conjunction: Intersecting GREEN with BANANA
should result in a concept for GREEN BANANA. If concepts are represented
by convex regions, then the intersection of two concepts is guaranteed
to be convex as well. However, as we will see in Section 3.1.1, the
intersection of two star-shaped regions is not necessarily star-shaped.
We therefore propose a repair mechanism in order to ensure that the
resulting region is a valid core. In Section 3.1.2, we then also specify how
to determine the remaining parameters s, ¢, and W of the intersection
result. Finally, we describe our implementation of the intersection in
Section 3.1.3 and provide an illustrative example using the fruit space
from Section 2.3.4.

3.1 INTERSECTION |

SQ SZ

Sl Sl

@) (b)

Figure 3.1: (a) The intersection of two cores in not necessarily star-shaped or
even connected. (b) P; N P, # () is not a necessary condition for a
star-shaped intersection result.

3.1.1 Intersection of Cores

Let us first attempt to define the intersection of two cores (i.e., crisp sets)
before generalizing this to concepts (i.e., fuzzy sets). One can easily
see that the intersection of two star-shaped sets is not necessarily star-
shaped (see e.g., Figure 3.1a). The intersection of two cores is therefore
not necessarily a valid core. However, we can show the following;:

Lemma 3.1 (Intersection of Cores is Union of Cuboids)

Let S) = <A51, {C{”, . ,aﬁi}}> and Sy — <A52, {CP, . ,C,S%Q}> be
two cores. Then S = S1 N Sy can be written as union of cuboids, namely,
S =Uer Ci

Proof. See Appendix B.1. O

In order for the intersection result to be a valid core, its cuboids also
need to have a nonempty intersection. One can easily show that the
following condition is sufficient:

Lemma 3.2 (Sufficient Condition for Star-Shaped Intersection Result)
Let §) — <A51, {CP, N .,cﬁnlf}> and Sy — <A52, {CP, . ,c}ﬁg}>
be two cores with central regions Py and P», respectively. Let furthermore

S = 51N Sy = ;e Ci, where C; are the cuboids of the intersection result. If
PNPy# 0, then P = ﬂie]ci #@

Proof. See Appendix B.1. O

Corollary 3.1 (Intersection of Orthogonal Cores)

If two cores Sy and Sy are defined on completely different domains (i.e.,
Ag, NAg, = 0 and therefore Ds, N Dg, =), then Py N Ps # (and Sy N Sy
is a core.

While P, N P, # () is a sufficient condition for S; N Sy being star-
shaped, it is not a necessary condition." Consider for example the two
cores shown in Figure 3.1b: Their intersection consists of a single cuboid,
which means that it is star-shaped by definition. However, the central
regions of the original cores do not intersect.

1 Thanks to Martha Lewis for pointing this out to me.

103

Intersection of cores
is not necessarily
star-shaped

When does the
intersection result in
a valid core?

Sufficiency and
necessity

104

The case of empty
central regions

Two principled repair
mechanisms

Removing cuboids
causes
underextensions

Extending cuboids
causes
overextensions

Returning multiple
cores may be
unintuitive

Using overextension

Minimal extension
by including a
central point

| OPERATIONS FOR COMBINING CONCEPTS

In general, it might happen that S = S; N S> has an empty central
region P and is therefore not star-shaped and consequently not a valid
core. This is for example illustrated in Figure 3.1a. In order to ensure that
the intersection of two cores results in a valid core (i.e., in a star-shaped
set based on cuboids), we thus need to apply some sort of "repair
mechanism" in these cases.

In principle, there are three ways of ensuring star-shapedness, namely,
by removing cuboids, by extending cuboids, and by treating the inter-
section result as multiple independent cores.

If cuboids are removed, the result is still guaranteed to be a proper
subset of both original cores. However, there are points that belong to
both cores and are not included in the intersection result. This effect is
called underextension in the psychological literature [298, Chapter 12] and
reported only infrequently for conjunctive concept combination [187].
Moreover, removing cuboids might involve some arbitrary choices. For
instance, in Figure 3.1a, it is unclear which of the two cuboids should
be removed from the intersection result.

On the other hand, if cuboids are extended, then all points that
belong to both cores also belong to the intersection results. However,
the intersection result also may contain points that did not belong to
one or both of the original cores. This effect is called overextension in
the psychological literature [298, Chapter 12] and much more common
than underextensions in the context of concept combination [187]. In
Section 1.1.2, we gave the example of cHEss not being a sporr, but a
SPORT WHICH IS A GAME. Also the PET FisH example from Section 1.2.2 can
be seen in this context.

Finally, returning multiple cores (each one potentially only based on
a single cuboid) as an intersection result ensures that we only return
star-shaped sets. However, it may be unintuitive to receive multiple
results from a single intersection operation, especially if these results
are geometrically speaking not connected.

For our current purpose, we would like to ensure that a single star-
shaped set is returned as a result. We choose to extend cuboids rather
than removing them in order to be more in line with the psychological
literature. When merging multiple cuboids C1, . .., Cy, (all defined on
Ag or equivalently Dg) into a single core, we furthermore aim for an
extension of the cores that minimizes the size of the resulting core.

It is intuitively clear that requiring the cuboids C; to contain a region
P* leads to a larger resulting core than requiring them to meet in a
single point p* € C'S. We can obtain the extended version C; for every
cuboid C; by defining its new support points like this based on p*:

Yd e D :pz._d, = min (pi_d,p:;) , p;&/ = max (p;fppjl)

The intersection of the resulting C; contains at least p*, i.e., it is not
empty. This means that the resulting set " = | J,; C; is a core.

3.1 INTERSECTION |

[‘C"l—fpr } C"1 []] C"1
§ B
. pC PE
1Cy ‘\ O] rv‘Q’ |

(@) (b) ©

Figure 3.2: Finding the minimal star-shaped hull of two cuboids C; and C5.
(a) A point p4 outside of the bounding cuboid is dominated by
another point pp on the border of the bounding cuboid. (b) Two
optimal solutions p¢ and pp which minimize the resulting volume.
(c) Using pg, the midpoint of the cuboids’ centers.

We will now argue that there exists such a point p* which minimizes
the size of the resulting core. For the sake of simplicity, we confine our
argument to two cuboids C and Cs. For this purpose, let us define a
size function f(p) that returns for each potential midpoint p the size of
the resulting core:

f(p) = f(C1,p) + f(C2,p) — f(C1 N Cy,p)

withf(C,p) = [(max(p;, pa) — min(p,,pa))
deD

The size f(p) of the resulting core is computed based on the inclusion-
exclusion formula |[AU B| = |A| + | B| — |AN Bj, using the sizes f(C,p)
for a cuboid C' that has been extended to include the point p. Figure 3.2a
shows two cuboids Cy and C; and also two candidate points p4 and pp.
As one can easily see, the resulting volume of using p4 is larger than
the resulting volume of using pp, i.e., f(pa) < f(pg). This is a property
that holds true in general: For any point outside of the bounding cuboid
around all given cuboids (i.e., the cuboid with p; = minj*, p,, and
py = max!", p.), we can find a point on the surface of this bounding
cuboid that results in a smaller size of the resulting core. So if there is
a point p* that minimizes the size of the resulting star-shaped set, it
cannot lie outside of the bounding cuboid.

Moreover, f(p) is a continuous function, because all operations used
for computing f(p) (i.e., maximum, minimum, subtraction, multipli-
cation, and addition) are continuous. Therefore, the extreme value
theorem (see e.g., [153]) tells us that there is at least one point p* in the
bounding cuboid (which is a compact set) for which f(p) is minimized.

In general, we do, however, not know whether p* is unique. Figure
3.2b shows two points pc # pp with f(pc) = f(pp) = 36. Both points
are optimal solutions as there is no other point p’ with f(p’) < 36. Since
we would like to return a single core as intersection result, we are
now forced to arbitrarily pick one of the two minima for defining the
intersection result. This arbitrary choice heavily influences the shape of
the resulting core, which is somewhat unsatisfactory.

105

Existence of an
optimal solution

Interpretation of

f(p)

Applying the extreme
value theorem

Uniqueness of the
optimal solution

106

Picking the central
point heuristically

Weights of the
heuristic

Modified intersection
of cores

| OPERATIONS FOR COMBINING CONCEPTS

r T
A LT

(@) (b) (c)

S

S1

Figure 3.3: (a) Two cores S; and Ss. (b) Their standard set intersection S =
S1 NSy and the midpoint p of this intersection’s cuboids. (c)
Extended cuboids €1 and Cj, resulting in S’.

An alternative to this optimization-based approach uses a heuristic
for identifying a central point p. This heuristic will most likely not give
an optimal result, but it returns a unique and well-defined solution
that is easy to compute. We propose to use the weighted average of the
cuboid’s centers as such a heuristic:

If the weights w; are all set to 1, this results in an unweighted average.
This case is illustrated in Figure 3.2¢, where the heuristically chosen
point pg causes the resulting core to have a size of f(pg) = 48. On
the other hand, the weights w; can be defined based on the size of the
respective cuboid C;. If the weights are inversely proportional to the
size of the cuboid, the central point is closer to smaller cuboids than to
larger ones, causing larger cuboids to grow more than smaller cuboids.
Conversely, if larger cuboids receive larger weights, the central point
lies closer to the larger cuboids, causing smaller cuboids to grow more
than larger cuboids.

In our formalization, we use the following definition of the modified
intersection of cores based on the proposed heuristic with identical
weights for all cuboids:

Definition 3.1 (Modified Intersection of Cores)

Let Sy = (Ag, {CY,...,ciVy and Sy = (Ag,, {C\P,....C2Y) be two
cores. Let furthermore be S1 N So = |J;c; Ci a cuboid-based representation
of their set intersection. Their modified intersection 1(Sy,S2) = (Ag, U
As,,{C1,...C! ,}) is based on the cuboids C, which have been obtained from
the corresponding cuboids C; using the heuristic to obtain a central point p:

1 & +p)
m/ 4 2
=1

Vd € D :pz-_d' = min (pi_d,pd)) P;Q/ = max (Pitivpd)

It is trivial to see that I(S1, S2) is a valid core. Figure 3.3 visualizes
the modified intersection.

3.1 INTERSECTION | 107

Please note that the modified intersection operation is no longer Loss of associativity
associative, so in general I(1(S1, S2), S3) # 1(S1, I(S2,.S3)). This loss of
associativity is caused by our proposed repair mechanism. If we want
to intersect more than two cores, we should therefore first intersect all
cuboids from all cores, and apply the repair mechanism only once in
the end in order to arrive at a well-defined result.

We would also like to point out that the repair mechanism of ex- Final notes
tending cuboids is only applied if the standard set intersection does
not result in a valid core. Moreover, both the standard set intersec-
tion and the repair mechanism are always computed on the domains
Ag = Ag, UAg,, i.e., with respect to the dimensions Dgs = Dg, U Dg,.

3.1.2 Intersection of Concepts

Now let us look at the intersection of fuzzy concepts. Every concept S Intersection of
is defined based on a core S and additional parameters that control ~ concepts
its fuzziness, namely, the sensitivity parameter ¢, the domain and
dimension weights W, and the highest possible membership value .

If we want to express the result of intersecting two concepts S, S5 as

another concept % , we thus need to both construct a new core S’ and

to infer new parameter settings s, ¢’, W’. We propose the following

definition for the intersection of concepts:

Definition 3.2 (Modified Intersection of Concepts)

Let S, = (Sl,,u((]l),c(l), WY and Sy = <82,u82),c(2), W®) be two con-

cepts. We define their modified intersection as S =1(S, 52) = (5", d,, W)

with the following components:

o a’:max{ae [0,1] :§f‘ﬂ§§‘#®}
oS =1 <§f‘§§“>
e ¢ =min (c(l),c@))

o W' with weights wj, w!, defined as follows (using interpolation factors
s,t €[0,1]):

Vo € Ag, NAg, : ((wg = s.w((sl) +(1—s) -w(g?))
AN VYdeid: (wg:t-wél)—i—(l—t)‘wglm))
v € As \As, : ((wh=u) A vdes: (w)=ud))
(

Vo € Ag, \ Ag, - ((wg = w§2)) AVdes: (w[i = wd2)))

Let us take a look at the individual components of Definition 3.2. We Interpretation of the
first identify the largest value of o for which the a-cuts of S; and S definition
have a nonempty intersection. Since the membership values are always

positive, we know that such an o/ must exist. Moreover, both a-cuts

108

Obtaining a new core

The sensitivity
parameter

Merging the weights

Our modified
intersection and the
standard intersection

of fuzzy sets

| OPERATIONS FOR COMBINING CONCEPTS

1 =t 1 —
Syio St
0.8 i — 0.8 ; —
P S P S
0.6 : v 0.6 !

@) (b)

Figure 3.4: (a) The intersection ug g, (¥) = min(ug (), ,uSQ(x)) of two con-
cepts 51 and Sg (b) Our modified intersection I (Sl, Sg)

g{“/ and §§/ are guaranteed to be star-shaped sets (cf. Lemma 2.4 and
Proposition 2.1 from Section 2.3.3).

We then use the modified intersection from Definition 3.1 in order
to obtain a new core S’ for the result of our fuzzy intersection. Both
the repair mechanism and the final representation of this modified
intersection of cores require cuboids as building blocks, but neither 5S¢
nor 5S¢ nor their intersection can necessarily be represented as a union
of cuboids. Therefore, the result of their standard set intersection needs
to be approximated with bounding boxes. We will introduce the details
of obtaining both «’ and S’ in Section 3.1.3.

When combining two somewhat imprecise concepts, the result
should not be more precise than any of the original concepts. As
the sensitivity parameter c is inversely related to fuzziness, we define
¢ = min (0(1), 0(2)).

Finally, we combine the domain and dimensions weights of the two
original concepts. If a weight is defined for both sets, we take a convex
combination, and if it is only defined for one set, we simply copy it. The
importance of each domain and dimension to the new concept thus
lies somewhere between its importance with respect to the two original
concepts. In some cases, the normalization constraint of the resulting
domain weights (i.e., > 5cn , w5 = [Ag/|and V6 € Agr 1 3 jc5wa = 1,
cf. Definition 2.7) might be violated after computing the convex combi-
nation. We therfore manually normalize the weights in order to enforce
these constraints.

Please note that in the standard fuzzy set theory, the intersection of
two fuzzy sets A and B is defined by using the minimum over their
membership functions:

Definition 3.3 (Fuzzy Intersection)
Let A, B be two fuzzy sets on C'S. Then, the membership function of their
fuzzy intersection is defined as follows:

Vo € CS: pyp(e) =min (u (), pg(x))

Figure 3.4 illustrates with two one-dimensional concepts that S; N S
yields slightly different results than our modified intersection I(Sy, Sy).

3.1 INTERSECTION |

CiNCy #0

(a) (b) (c) (d) (e)

Figure 3.5: Possible results of intersecting two fuzzy cuboids.

This difference is caused by the repair mechanism as well as the aggre-
gation of the sensitivity parameter c and the weights .

The maximally attainable membership to the resulting concept is set
to the highest value of o for which the a-cuts of both sets intersect. This
is the maximal degree of membership that any point in the conceptual
space can have to both original concepts. Of course, one can manually
reset /i, to 1 after the intersection. This way, one can model overextension
effects also for fuzzy conceptual region (e.g., a GUPPY is neither a typical
PET nor a typical risH, but a typical peT FisH — cf. [187, 309, 310, 450] and
Sections 1.1.2, 1.2.2, and 3.1.1).

3.1.3 Implementation and Example

The key challenge with respect to the intersection of two concepts S
and §2 as presented in Definition 3.2 is to find the highest value o for
which the a-cuts of §1 and §2 intersect. In an actual implementation, we
therefore need a concrete way of obtaining . We simplify this problem
by iterating over all combinations of cuboids C € Si,Cs € S; and by
looking at each pair of cuboids individually. This requires the notion of
a fuzzified cuboid which can be defined based on Definition 2.14:
Definition 3.4 (Fuzzified Cuboid)

Let S = (S, o, c, W) be a concept and C' € S be a cuboid from its core. Then,
the membership to the fuzzified cuboid C is defined as follows:

Ac
~(r) = . ma e*C-dc (w7y7W)>
Nc() = Ko yEC}'((

It is obvious that pz(7) = maxces) (cf. Definition 2.14). Algo-

rithm 3.1 shows how the intersection of two fuzzified cuboids C; and
Cy can be computed based on a distinction into the following cases,
which are illustrated in Figure 3.5:

In the most straightforward case, the underlying crisp cuboids C
and C; have a nonempty intersection and both concepts have the same
maximal membership ,u((]l) = ,u((f) (lines 1 and 2, Figure 3.5a). In this
case, we simply compute their intersection as defined in Section 3.1.1.

The a-value of this intersection is equal to u(()l) and u((f).

109

Fuzzy overextension

Fuzzified cuboids

Computing the
intersection

First case: crisp
intersection

110

Algorithm 3.1: Finding the highest non-empty a-cut of two
fuzzified cuboids.

Input: Fuzzified cuboid 51, fuzzified cgboid @
Output: Highest value of o for which C and Cj intersect, crisp
cuboid approximation C of C¢ N Cg
L if Y = pl? A CL N Cy # 0 then
2 ‘ o= min(uél),uéz)), C=C1NCy
else

3

4 Find closest points a € C1,b € C»

5 if Mél (b) > ,U,(()Q) then

~,,(2)
6 o= ugf), C' = cuboid approximation of C}° N Cy
7 else if /15 (a) > uél) then
~ (1)

8 o= uél), C' = cuboid approximation of C5° N C}

9 else

10 Find 2* = arg max,ccs (g, (2)) with pz (2) = pg, ()
11 o = M51 (1'*)

12 if

Jt € R :Vd with aq # by : w&()i) . \/w((il) =t- wé?zl) . w[(iz)
then
13 fori=1to|{d:aq #bs}| —1do
14 Find all z on the i-faces of the bounding box
spanned by a and b with pz (2) = pg, () = o

15 if found at least one = then

16 C = cuboid-approximation of the set of all =
17 break

18 end

19 end

20 else

21 ‘ C = trivial cuboid consisting of =*

22 end
23 end
24 Extrude C in all dimensions d where a4 and b4 can vary
25 end

26 return o, C

3.1 INTERSECTION | 111

If this is not the case, we compute the pair a € C,b € C5 of closest Obtaining closest
points from the two cuboids (line 4), i.e.,, Vo € Ci,y € C3 : d(a,b) < points
d(z,y). If there are multiple possible choices for a and b (like in Figure
3.5e), we pick a single pair of closest points and store the dimensions in
which a and b may vary.

If the 119 parameters of the two concepts are different and the uéi)

of C; intersects with C; (lines 5 to 8, Figure 3.5b), we need to intersect intersects with crisp

-cut Second case: a-cut

O] cuboid
C’]H ° with C; and approximate the result with a cuboid. The a-value of
this intersection is equal to ,u(()i).
In all other cases, the intersection does not involve any of the crisp Finding one point in
cuboids. We therefore use a numerical optimization algorithm? to find the a-cut
intersection

a point z* between a and b with equal maximal membership to both 61
and C; (line 10). The a-value of the resulting intersection is then just
the membership of z* to any of the fuzzified cuboids (line 11). We now
need to distinguish two remaining cases:

On the one hand, the intersection of the two fuzzified cuboids may Third case:
consist of a set of points (Figure 3.5¢). This can only happen if the infersection yields a
a-cut boundaries of both fuzzified cuboids are parallel to each other, set of points
which requires multiple domains to be involved and the weights of
both concepts to be linearly dependent.? This condition is checked in
line 12. If this is the case, we look for additional points x on the surface
of the bounding box spanned by the points a and b, such that z € C¢
and z € 520‘ In Figure 3.5¢, this would be the points z; and z,. In
Algorithm 3.1, we iteratively look at the edges (¢ = 1), faces (i = 2), etc.
of the bounding box until we find such points (lines 13-19)* and then
approximate the overall set of points with a cuboid.

In the final remaining case, the intersection of the two fuzzified Fourth case:
cuboids consists of a single point z* lying between a and b (line 21, infersection yields a
Figure 3.5d). Here, we define the intersection to be a trivial cuboid with single point
p-=pT =a"

Finally, in line 24 we extrude the identified cuboid in all dimensions Final step: extrusion
d where both a4 and b, can vary (cf. Figure 3.5e).

Algorithm 3.1 provides us with a way of computing the intersection The intersection of
of a pair of fuzzified cuboids. We can now apply this algorithm to all two fuzzy concepts
pairs of cuboids C; € S;,C> € Sa. Next, we remove all intersection
results with non-maximal a. If the remaining set of cuboids has an
empty intersection, we perform the repair mechanism as defined in

2 Our implementation uses the scipy.optimize package.

3 As we will discuss in Section 4.1.1, the shape of a fuzzified cuboid’s a-cut depends
on the metric for the underlying space: If the Euclidean metric is used, its borders
have the form of an ellipse, while the Manhattan metric causes diamond-shaped
corners. Parallel boundaries can thus only happen under the Manhattan metric, i.e.,
in the presence of multiple domains. Since the salience weights control how much
the a-cut grows in each direction (and thus also how stretched the diamonds are), we
furthermore need linearly dependent weights.

4 Again, we use numerical optimization algorithms from the scipy.optimize package.

112

Runtine experiments

Runtime and the
number of
dimensions

| OPERATIONS FOR COMBINING CONCEPTS

Number n of Runtime in
Dimensions Milliseconds
1 1.1169
2 3.7356
4 11.4794
8 47.9072
16 263.3106
32 1737.8090

Table 3.1: Average runtime of the intersection operation (averaged across 1,000
pairs of randomly created single-cuboid concepts).

Section 3.1.1 in order to obtain a valid core S’. Based on Definition 3.2,
we can then compute the remaining parameters ¢’ and W’ in order to
arrive at the overall intersection result 5. In our implementation, we
use s =t = 0.5 when computing the convex combination of the original
weights from W; and Ws.

In order to evaluate the runtime of the fuzzy intersection as defined
in Definition 3.2 (which involves Algorithm 3.1 for finding both o’ and
S’), we have tested it with 1,000 pairs of randomly created concepts. We
have ensured that the set of weights is always identical for both concepts
as this is likely to trigger the case of Figure 3.5c, which involves the
largest amount of computations. This way, the numbers obtained in our
runtime experiments are skewed more towards the worst case. Runtime
was analyzed for different numbers of dimensions n in the conceptual
space and for different numbers of cuboids m per concept. For each pair
of concepts, a new conceptual space with a random grouping of the
dimensions into domains was created (using maximally 5 dimensions
per domain). Runtime was measured on a laptop with an Intel Core
i5-6440HQ CPU (2.60GHz quad-core) processor and 8 GB main memory.

Let us firstlook at runtime as a function of the number n of dimensions.
We can see in Table 3.1 and Figure 3.6 that runtime seems to grow
in a superlinear way: Doubling the number of dimensions leads to
a runtime which is more than twice as long. Moreover, this growth
seems to accelerate: For example, doubling the number of dimensions
from two to four leads to a runtime increase by a factor of three,
while an increase from four to eight dimensions increases runtime
by a factor of four. This hints at an exponential trend, which can be
explained by the numerical optimization algorithms used at various
points in our implementation. Increasing the number of dimensions
leads to an increase in the number of free variables to optimize when
attempting to find a point 2* with identical maximal membership to
both concepts. This in turn can be expected to lead to an increase
in the runtime of the optimization algorithm and hence our overall
intersection operation. Already for a 32-dimensional space, the average
runtime of an intersection is approximately 1.7 seconds. This highlights

3.1 INTERSECTION |

Runtime of the Modified Intersection (1 Cuboid per Concept)

10000
)
2 1000
[=]
[&]
['F]
0
s 100
=
1§}
E 10
e
3
*]

l ——

1 2 4 8 16 32

Numer of Dimensions in Conceptual Space

Figure 3.6: Average runtime of the intersection operation for single-cuboid
concepts as a function of the number of dimensions in the concep-

tual space.
Number m of Runtime in
Cuboids Milliseconds
1 11.4794
2 45.5935
4 179.6660
8 708.3379

Table 3.2: Average runtime of the intersection operation (averaged across
1,000 pairs of randomly created concepts in a four-dimensional
conceptual space).

that more efficient implementations or approximations are needed in
order to make our formalization usable for practical applications.

Let us now investigate how the number m of cuboids per concept
influences the runtime of the intersection operation. In Table 3.2 and
Figure 3.7, we observe that also increasing the number of cuboids
per concept considerably increases the runtime of the algorithm: Dou-
bling the number of cuboids per concept while keeping the number of
dimensions constant increases the runtime of the intersection opera-
tion by a factor of four. Interestingly, this factor seems to be relatively
constant, while we observed an accelerating growth when increasing
the number of dimensions. From an intuitive point of view, one may
have expected an exponential trend, since we need to consider all
possible pairs of cuboids when computing the intersection. Increasing
the number of cuboids thus should lead to a combinatorial explosion.
Such an accelerating growth of runtime may be observed in practice for
even larger number of cuboids and/or higher-dimensional conceptual
spaces. Since a larger number of cuboids allows for a more fine-granular
representation of conceptual regions, one may need to find a reasonable
trade-off between representational power and runtime considerations

113

Runtime and the
number of cuboids

1

14

Runtime of the Modified Intersection (4 Dimensions in the Conceptual Space)

Runtime in Milliseconds

10

1

00

00

| OPERATIONS FOR COMBINING CONCEPTS

10 . I
1
1 2

MNumber of Cuboids per Concept

4 8

Figure 3.7: Average runtime of the intersection operation as a function of the
number of cuboids per concept in a four-dimensional conceptual

space.
Concept Ags p- pT Mo w
Wécoror | Wogupre = Wonpere
PEAR A | (0.50,0.40,0.35) | (0.70,0.60,0.45) | 1.0 | 24.0 | 0.50 1.25 1.25
(0.50,0.65,0.35) | (0.80,0.80,0.50)
APPLE A | (0.65,0.65,0.40) @ (0.85,0.80,0.55) | 1.0 20.0 | 0.50 1.50 1.00
(0.70,0.65,0.45) | (1.00,0.80,0.60)

Fruit space example

Obtaining the new
core

Table 3.3: Definition of the concepts appLE and PEAR for the intersection exam-
ple.

in practical applications (cf. also Sections 2.3.2, 4.1.3, and 4.5.3). Again,
these observations urge for a more efficient implementation or approxi-
mation of the intersection operation in future versions of our code.

In order to illustrate the intersection of concepts, let us intersect the
concepts of AppLE and PEAR from the fruit space defined in Section 2.3.4.
Their definition is re-printed in Table 3.3. The intersection result can be
interpreted as the set of objects that fit both concepts to some degree

and might be called APPLE-PEAR.

Because S,ppir N Sppar = 0 and ,u(()APPLE) = = 1, we look for

an z* € C'S with maximal equal membership in both concepts (line
10 in Algorithm 3.1). Using numerical optimization, we find z* =
(0.500,0.625,0.350) with o = pg (2*) = pg_ (2%) ~ 0.4724. As the
weights of the two concepts are not linearly dependent, we are not in
the case depicted in Figure 3.5c. However, we deal with a case like
in Figure 3.5e: Because the two concepts overlap with respect to the
HUE and sweeTNEss dimensions, we need to extrude our point z* in
these dimensions (line 24 of Algorithm 3.1). One can easily see that this
results in S = (A, {C'}) with C’ being defined as follows:

(PEAR)
0

C' = (A,p~ = (0.500,0.625,0.350), p* = (0.700,0.625, 0.450))

First dimension

® hue
© round
© sweet

Second dimension

© hue
& round
O sweet

Third dimension

© hue
© round
® sweet

Concepts

Granny Smith
apple
apple-pear
banana
blue

green
lermon
nonsweet
orange
pear

red

Sweet

CEEEEE L E R]

=g

Conceptinspector

3D visualization - hue, round, sweet

2D visualization - hue, sweet

round

3.1 INTERSECTION |

2D visualization - hue, round

10

0.8

0.0

0.2 0.4 0.6 0.8 10
hue

2D visualization - round, sweet

10

08

06

04

02

0.0

sweet

08

06

o4

02

0.0

hue

0.2 0.4 0.6 08 10

0.0 02 0.4 0.6 0.8 1.0
round

Figure 3.8: Screenshot of the ConceptInspector tool, illustrating the intersec-
tion of APpLE (1) and PEAR (2) in the three-dimensional fruit space,
resulting in the APPLE-PEAR (3) concept.

Finally, we need to compute ¢’ as well as the new weights W’. Because
both concepts are defined on A (i.e., the whole conceptual space),
we need to interpolate between the weights. In this case, we choose
s =t = 0.5 and obtain the following results:

¢ = min(cAP®) FEAR)Y = min(20.00, 24.00) = 20.00
W' = {ws.,.. = 0.50,ws,,,.. = 1.375,ws,,... = 1.125}, Wain)

The overall result of this intersection is then §" = (.S”,0.4724, 20.00, W’).

In our implementation, this whole computation happens behind the
scenes and one can obtain this result by a simple function call, whose
result is illustrated in Figure 3.8:

>>> print(apple.intersect_with(pear))

core: {[0.5, 0.625, 0.35]-[0.7, 0.625, 0.45]}

mu: 0.4723665527

c: 20.0

weights: <{’color’: 0.5, ’taste’: 1.125, ’shape’: 1.375},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

115

Sensitivity parameter
and salience weights

The intersection
result

116

Union as logical
disjunction

Union of cores

The need for a repair
mechanism

Loss of associativity

| OPERATIONS FOR COMBINING CONCEPTS

3.2 UNION

A union of two or more concepts is the geometric equivalent of the logical
disjunction and can be used to construct higher-level concepts. For
instance, the concept of ciTrus FrUIT can be obtained by computing the
union of LEMON, ORANGE, ORANGE, and GRAPEFRUIT. Generally speaking,
the union of any pair of conceptual regions is not necessarily connected.
If conceptual regions are convex, a valid output concept can be obtained
by using a convex hull of the standard set union. In our formalization,
we use the repair mechanism from Section 3.1.1 in order to obtain
a star-shaped hull of the given cores. We first give a mathematical
definition of the union of two concepts in Section 3.2.1, before using
two examples from our fruit space to illustrate the union operator in
Section 3.2.2.

3.2.1 Definition

Let §; = (Ag,{CY,....c)}) and S = (Ag,,{C?,....CiI}) be
two cores. We can write the union of S7 and S; as follows (where S is
defined on Ag = Ag, UAg,):

mi m2

S=5US8= (U C}P) U (U c§f>>
i1=1 io=1

Obviously, we can represent S as a union of cuboids. This new set

S is star-shaped if and only if the regions P; and P» have a nonempty

intersection (i.e., there are some points that are contained in all C’i(ll)

and all Ci(j)). In general, this is, however, not necessarily the case.
Therefore, we again need to apply a repair mechanism in order to
restore star-shapedness. In order to maintain consistency, we propose
to use the same repair mechanism that has also been introduced for
the intersection in Section 3.1.1. We denote the modified union of two
cores as S = U(S1,52).
Definition 3.5 (Modified Union of Cores)
Let Sy = (Ag, {CY, ... ,ciVy and Sy = (Ag,, {C\P,CY) be two
cores. Their modified union U(S1, S2) = (As, UAg,,{C1,...C! ,}) is based
on the cuboids C!, which have been obtained from the corresponding cuboids
C; from Sy and S, using the heuristic from Section 3.1.1 to obtain a central
point p:
mo— .+
p:i,.z(pz ;Lpz)
i=1
vde D: p;d/ = min (p;d,pd)) ngl/ = max (p;;,pd)

Just as the modified intersection, the modified union is not expected
to be associative. If we would like to combine three or more cores
with the union operator, we should therefore first collect all cuboids
from all cores and then apply the repair mechanism only once in the end.

3.2 UNION |

Figure 3.9: (a) The union y3 5, (z) = max(ug (), ug, () of two concepts

S1 and S,. (b) Our modified union U (S, S5).

Now let us look at the union of concepts. The most straightforward
approach to define the union S’ = U (S}, S2) of two concepts S; and S,

uses the maximum over ,ugl) and ,u(()2), the modified union of the cores

S1 and Sy, and the same computations for ¢ and W' as the intersection
operation (cf. Definition 3.2):

Definition 3.6 (Modified Union of Concepts)

Let S = <Sl,,u(()1),c(1), W) and S5 = (Sg,,uéf),c@), W@ be two con-
cepts. We define their modified union as ' = U(Sy, S2) = (S', by, ¢/, W')
with the following components:

e /iy = max (,u(()l), ,u((32)>

o 8" =U(S1,5)

o ¢ = min (e,)

o W' with weights w§, w'; defined as follows (using interpolation factors

s,t €[0,1]):
Vo € Ag, N Ag, : ((wg —s-)+ (1-s) .w§2))
Aovdes: (wy=t-wl) +(1-1)-ul))

Vo € Ag, \ Asg, : ((wg - ng) AVdeES: (wg, - wfl”))
¥o € Ag, \ A, : ((wg - wff)) AVdeES: (wg - wc(f)))

Figure 3.9 shows a visualization of this modified union for two
one-dimensional concepts, comparing it to the standard union from
fuzzy set theory, whis is based on the maximum across the two original
membership functions:

Definition 3.7 (Fuzzy Union)
Let A, B be two fuzzy sets on C'S. Then, the membership function of their
fuzzy union is defined as follows:

Ve e CS : g (@) = max (pz(x), pz(x))

117

Union of concepts

Our modified union
and the standard
union of fuzzy sets

118 | OPERATIONS FOR COMBINING CONCEPTS

Concept As p- pt Ko c w
Wscoror Wégipe Wérpsm
PEAR A | (0.50,0.40,0.35) = (0.70,0.60,0.45) 1.0 24.0 | 0.50 1.25 1.25
(0.50,0.65,0.35) | (0.80,0.80,0.50)
APPLE A | (0.65,0.65,0.40) | (0.85,0.80,0.55) | 1.0 | 20.0 | 0.50 1.50 1.00
(0.70,0.65,0.45) | (1.00,0.80,0.60)

Table 3.4: Definition of the concepts AppLE and PEAR for the union example.

Modified union as One can see in Figure 3.9a that the standard union does in general
superset of standard not result in a valid concept. However, under certain circumstances, it

fuzzy union is a fuzzy subset of U(gl, 52), ie,Vx e CS: 13,03, (x) < Hir (3, 52)(:r):
Proposition 3.1 (Modified Union as Superset of Standard Union)
Let S; = <S1,,u((]1), W, WY and Sy = (S,, ,u(2) 2 W®)Y be two con-

cepts Ifwe assume that Ag, = Ag, and WO = W@ then §1 U 5'2 -
U(S1,9) =95, ie, Vo e CS: g5, (@) < '”U(Sl,sz)(:r)'
Proof. See Appendix B.2. O

3.2.2 Implementation and Example

Implementation The union operation is quite straightforward to implement: One simply
needs to collect all cuboids from S; and Sy, apply the repair mechanism
to this overall set of cuboids to obtain S’, and compute all remaining
parameters as defined in Definition 3.6. We again use s = t = 0.5 for
computing the new weights. Since this does not involve any complex
computations (such as for example numerical optimization), the run-
time of the union operation has not been analyzed.

Fruit space example: In order to illustrate the union operation, let us again make use of
union of APPLE and the concepts of AppLE and PEAR (re-printed in Table 3.4 and illustrated
PEAR

in Figure 3.10). In order to find the new core S’, we first take the
union of all cuboids from the original cores and then apply the repair
mechanism from Section 3.1.1 to ensure star-shapedness. We define
p* to be the arithmetic mean of the midpoints of all cuboids, yielding
= (0.7125,0.66875,0.45625). Extending each cuboid such that it
includes at least p* results in the following extended cuboids:

Cl = (A, pi~ = (0.50,0.40,0.35),
= (0.71250,0.66875, 0.45625))
Ch = (A, ply = (0.50,0.65,0.35), pyt = (0.80,0.80,0.50))
Ch = (A, pl = (0.65,0.65,0.40), pl = (0.85,0.80, 0.55))

C4 = (A, pl = (0.70,0.65,0.45), pi = (1.00,0.80,0.60))
<A {017 027 CS? C4}>

Considering the new As one can see, the three cuboids that originally belonged to the appLE
core concept are not modified at all because p* € P,pp:. Only the cuboid

3.2 UNION | 119

Conceptinspector

3D visualization - hue, round, sweet

Granny Smith
apple

banana

blue

green

lemon
nonSweet
orange

pear

red

union

Figure 3.10: Screenshot of the ConceptInspector tool, illustrating the con-
cepts of apPLE (1) and PEAR (2) in the three-dimensional fruit
space.

Conceptinspector

3D visualization - hue, round, sweet

Granny Smith
apple
banana

blue
green
lemon
nonSweet
orange
pear

red

union

Figure 3.11: Screenshot of the ConceptInspector tool, illustrating the union
of appLE and PEAR in the three-dimensional fruit space.

120

Sensitivity parameter
and salience weights

Highest possible
membership

Visualization

Fruit space example:
union of ORANGE and
LEMON

Interpretation

| OPERATIONS FOR COMBINING CONCEPTS

from the pEARr concept has been extended in order to include p*. The
central region of the new core S’ can be described as P’ = (A,p'~ =
(0.70,0.65, 0.45), p'+ = (0.7125, 0.66875, 0.45625)).

Both ¢ and W’ are computed in exactly the same way as for the
intersection. Therefore, we get the same values as in Section 3.1.3:

¢ = min (c(APPLE), C(PEAR)) = min (20.00, 24.00) = 20.00
W' = ({ws,,,, =0.50,ws = 1.375, ws,,,,,. = 1.125} , Waim)

shape

Finally, the highest possible membership is computed as follows:
4 = max (Mgﬂmxugmw) — max (1.00,1.00) = 1.00

The modified union S" = (S’, u(, ¢/, W’) of appLE and PEAR is illus-
trated in Figure 3.11. In our implementation, the union operation can
be executed as follows:
>>> print(apple.union_with(pear))
core: {[0.5, 0.65, 0.35]-[0.8, 0.8, 0.5],

[6.65, 0.65, 0.4]-[0.85, 0.8, 0.55],
[6.7, ©.65, 0.45]-[1.0, 0.8, 0.6],
[0.5, 0.4, 0.35]-[0.7125, 0.6687500000000001,
0.456250000000000047]}
mu: 1.0
c: 20.0
weights: <{’color’: 0.5, ’taste’: 1.125, ’shape’: 1.375},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

For an additional demonstration, let us consider the union of ORANGE
and LEMON (corresponding to the more abstract concept of cITrus FruIT).
In this case, the result looks as follows:
>>> print(lemon.union_with(orange))
core: {[0.7, 0.45, 0.0]-[0.8, 0.725, 0.35],
[0.8, 0.725, 0.35]-[0.9, 1.0, 0.7]}
mu: 1.0
c: 30.0
weights: <{’color’: 0.75, ’'taste’: 1.5, ’'shape’: 0.75},
{’color’: {0: 1.0}, ’'taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

In this example, the two extended cuboids C] and C) meet exactly
in one point, namely p* = (0.80,0.725,0.35)). Therefore, P’ = {p*}.
Figures 3.12 and 3.13 illustrate this procedure. Because the concepts
of orRANGE and LEMON are quite far apart in the given fruit space, their
union is considerably larger than the original concepts. Moreover, one
can see that their union intersects other concepts such as appLE. Note
that this is, however, not a weakness of our union operation — the
observed effect is merely a limitation of the given fruit space. If the fruit
space contained additional dimensions (e.g., indicating the latitude of
the region where a particular fruit was grown), the concepts of LEMoN
and oraNGE would presumably much closer to each other and their
union would not intersect any of the other concepts. This highlights
that in practical applications an accurate definition of the similarity
space with its domains and dimensions is of critical importance.

3.2 UNION | 121

Conceptinspector

3D visualization - hue, round, sweet

Granny Smith
apple

banana

blue

green

lemon
nonsweet
orange

Figure 3.12: Screenshot of the ConceptInspector tool, illustrating the con-
cepts of ORANGE (1), LEMON (2), and aPpLE (3) in the three-
dimensional fruit space.

3D visualization - hue, round, sweet

i

Granny Smith
apple

banana

blue

green

lemon
nonSweet
orange

pear

red

union

Figure 3.13: Screenshot of the ConceptInspector tool, illustrating the cirrus
FRUIT concept (1) (defined as the union of orRaNGE and LEMON) and
the appLE concept (2).

122

Negation as set
complement

The set complement
does not produce
valid conceptual

regions

Repair mechanisms
are not helpful

| OPERATIONS FOR COMBINING CONCEPTS

CS

SC

(@) (b)

Figure 3.14: (a) Set complement of a crisp conceptual region S in a two-
dimensional space. (b) Set complement of a fuzzy conceptual
region S in a one-dimensional space.

3.3 NEGATION

The intersection and union operations defined in the previous sections
can be interpreted as logical conjunction and disjunction. What is
still missing for a complete set of logical operators is the operation of
negating a concept. Since we define concepts as (fuzzy) regions in the
conceptual space, the negation of a concept can be intuitively mapped
to the set complement. In the crisp case, the complement S¢ of a set S
is defined as S¢ = {x € CS | z ¢ S} (see Figure 3.14a). For fuzzy sets
S, the set complement S is typically defined as follows (illustrated in
Figure 3.14b):
Vo € CS: pge(z) =1 — pg()

As we can see in Figure 3.14, the set complement does not result
in a valid concept, since the resulting region is neither convex nor
star-shaped — we are not able to identify a clear prototypical region P.
In both cases, the set complement contains a "hole", namely the original
conceptual region. As we have already argued in Section 2.2.2 in the
context of connectedness®, such holes in the geometric representation
are, however, quite problematic. The set complement yields a valid
conceptual region only if the original concept is empty, contains the
whole conceptual space, or is a half-space (see Figure 3.15). The latter
case might hold for a property like coLp which can be defined as the
lower end of the TEMPERATURE dimension (i.e., a half-open interval) —
here, NoT coLp is also a valid concept. However, already a coLor property
like YELLOw cannot be simply negated by taking the set complement:
As YELLOW is represented as a region in the three-dimensional coLor
space, we face a situation similar to Figure 3.14a. The same problem
also arises for concepts like appLE which involve multiple domains.

One could try to work around this problem by proposing a repair
mechanism as in Sections 3.1.1 and 3.2.1. However, extending the re-
sulting set in order to make it star-shaped (as for intersection and

While S€ in Figure 3.14a is still connected, none of the a-cuts of S€ in Figure 3.14b is
connected.

3.3 NEGATION |

(@) (b)

Figure 3.15: The set complement yields valid conceptual regions for half-
spaces. (a) Convex half-space defined by a hyperplane. (b) Star-
shaped half-space defined by half-open cuboids.

union) would force us to include the original conceptual region in the
negation: The only star-shaped completion of the set complements S
and S¢ from Figure 3.14 is equal to the overall conceptual space C'S.
On the other hand, shrinking the resulting region in order to ensure
star-shapedness requires us to decide which subregion of S¢ and S¢
to exclude, respectively. Any choice seems quite arbitrary, especially
in symmetric scenarios. Therefore, in the case of negation, neither an
overextension nor an underextension seems to be helpful.

Please note that these problems with respect to conceptual negation
are inherent in the conceptual spaces framework in general and not
just our formalization. Other forms of spatial representation such as
word embeddings (to be introduced in Chapter 6) define the similarity
of words based on the angle between the vectors representing them.
This corresponds to using polar rather than Cartesian coordinates.
These approaches are less limited with respect to negation: Negation of
individual vectors can be implemented by considering the subspace
orthogonal to this vector [252] in order to model expressions like "rRock
NOT sanD" (which indicates that the geological concept rock and not
the music genre is being referred to) [434]. Conceptual regions can in
this context be modeled as convex cones, and their negation can be
implemented by using the polar cone (i.e., all points with an angle
of at least 9o degrees to any vector in the concept) [312]. It therefore
seems that the negation problem for conceptual spaces is rooted in one
of its fundamental assumptions, namely, the usage of Euclidean and
Manhattan distances as a measure of semantic dissimilarity.

We would furthermore like to point out that especially for full-fleshed
concepts like APpLE, the semantics of a negation is somewhat unclear.
For instance, the set of things that we would classify as Not apPPLE (such
as BANANA, CHAIR, FRIENDSHIP, MICKEY MOUSE, BLASPHEMY, and p1) do not
necessarily have a shared set of attributes, let alone a prototype. One
needs either to restrict this set of alternatives (e.g., by only including

123

Negation in other
spatial
representations

Semantics of negated
concepts

124

Matching bias:
negation only denies
a statement

Contrast classes:
negation targets
plausible alternatives

Summary

Projection for
ignoring domains

Projection works on
the level of domains

| OPERATIONS FOR COMBINING CONCEPTS

fruits or tangible objects) or to acknowledge that negation does not lead
to valid concepts.

Shaikh et al. [362] distinguish two interpretations of negation in
natural language: The matching bias account states that negation in
natural language conveys denial rather than assertion of a proposition.
If we adopt this view, we may assume that negation is a quite abstract
operation and that it is thus only defined in the symbolic layer, but
has no strict equivalent in the conceptual and the subsymbolic layer.®
Under this view, the phrase "not an apple" does not describe a concept,
but rather a condition that can or cannot be met.

The contrast classes account on the other hand assumes that negation
in natural language targets plausible alternatives. In order to reflect
this set of plausible alternatives, one can augment the literal logical
negation with a so-called "worldly context", for instance by taking into
account the conceptual hierarchy of the negated word [335]. In our
example from above, Not aAppLE would thus refer to other sub-concepts
of FrRuUIT such as PEAR Or BANANA.

Since the negation operation does not seem to be very useful for
the direct creation of novel concepts, it is not implemented in our
formalization. We thus implicitly adopt the matching bias account
of negation. If we need to negate a concept as an intermediate step
for concept combination (e.g., for phrases such as "a bird that is not
yellow"), we can use the set complement as a temporary construct.

3.4 SUBSPACE PROJECTION

Projecting a concept onto a subspace corresponds to focusing on certain
domains while completely ignoring others. For instance, projecting the
concept APPLE onto the coLor domain results in a property which may
include different shades of Rep, GREEN, and YELLow. Also the dimensional
filters proposed by Fiorini [158] (cf. Section 2.4.3), which remove all
irrelevant domains from a part in the context of a composite concept,
can be implemented through such a projection.

Please note that we always assume that the projection takes place
on the level of domains and not on the level of individual dimensions.
This assumption is based on the fact that domains are defined as sets
of integral dimensions that are separable from all other dimensions
(cf. Section 2.1.1). This means that the dimensions within a domain are
either perceived jointly or not at all, but not individually.

In the following, we give a formal definition of the projection opera-
tion for cuboids, cores, and concepts (Section 3.4.1), before illustrating
with an example from our fruit space (Section 3.4.2).

6 Thanks to Achim Stephan for pointing this out to me.

3.4 SUBSPACE PROJECTION |

3.4.1 Definition

Let us begin by considering how to project a cuboid C onto a subspace
given by the domains Acr € Ac. This can be achieved by simply
removing any constraints with respect to the dimensions d € A¢ \ A
from its support points p™ and p~.

Definition 3.8 (Projection of a Cuboid)

Let C = (A¢,p~,p") be a cuboid defined on Ac. The projection P(C, Acv
of this cuboid onto a subspace Acv C Ac is defined as the cuboid C' =
(Acr,p~', pt"), whose support points are defined as follows (using Do =
UJEAC o and DC’ = UéEAC/ 5)

VdEDC/:p; :pdi/\p;r :p;
VdED\DC/:p;/:—OO/\p;/:-FOO

We can now define the projection P(S, Ag) of a core S onto domains
Ag C Ag by simply projecting all of its cuboids individually.
Definition 3.9 (Projection of a Core)

Let S = (Ag,{C1,...,Cn}) be a core. Let C] = P(C;,Ag) be the pro-
jection of C; onto the domains Agr C Ag. Then, 8" = P(S,Ag) =
(Agr, {C1,...,Cl.}) is the projected version of S.

One can easily show that P’ = (", C! # 0 is the projected version of
P = ﬂﬁl C; # (. Moreover, projecting any geometric region onto two
complementary subspaces and then intersecting these projections again
in the original space yields in general a superset of the original region.
We can show that the projection of cores together with our intersection
operation from Section 3.1.1 also respects this general observation:

Proposition 3.2 (Intersection of Projections of Cores)

Let S = (Ag,{C1,...,Cn}) be a core, and let S = P(S, A1) and Sy =
P(S, Ag) be its projections, where Ay U Ag = Ag and Ay N Ay = (. Then,
S C S =1(51,52).

Proof. See Appendix B.3. O]

In order to project a concept S, we also need to decide how to
update the weights W, the sensitivity parameter ¢, and the maximal
membership (9. We propose to apply only minimal changes:

Definition 3.10 (Projection of a Concept)

Let S = (S, po, c, W) be a concept and Ag: C Ag a subset of its domains.

The projection of S on Ag: is defined as P(S,Ag) = (S, po, ¢, W') with

S'=P(S,Ag) and W' = {\AS' : w} AWstseay)
(5EAS/ s

Zé’eAS, Ws!

In Definition 3.10, we obtain the new core by a projection of the
original core, and we leave the maximal membership o, the sensitiv-
ity parameter ¢, and the dimension weights W5 unchanged. Only the
domain weights are updated in such a way that their normalization
constraint is fulfilled.

125

Projecting a single
cuboid

Projecting a core

Intersecting
complementary
projections of cores

Projecting a concept

Interpretation

126

Our projection and
the standard
projection of fuzzy
sets

A subsethood relation

Intersecting
complementary
projections of
concepts

Implementation

Fruit space example

| OPERATIONS FOR COMBINING CONCEPTS

Our definition of the projection operation differs from the usual
approach to projecting a fuzzy set A from a space d; X --- X d, toa
subspace d x - - - x d; (with [< n). In the standard notion of projection,
one takes the minimum over all possible coordinates on the dimensions
to be removed:

Definition 3.11 (Fuzzy Projection)
Let A be a concept defined on a space dy x --- X dy,. Its projection A |
(dy x -+ x dyp) toa subspace dy x --- x dj (with | < n) is defined as follows:

“.&(dlx---xdl)(xl’ ceox) = . maxz : pi(T1, . T Ty, T)
Gdllrll;:i Xndn

Despite this difference, we can show that our definition of projection
always results in a subset of the standard fuzzy set projection.
Proposition 3.3 (Modified Projection as a Subset of Standard Projection)
Let S = (S, po,c, W) be a concept. Let Agr C Ag and let P(S,Ag) =
(S, o, ¢, W') be the projection of S onto Ag. Let furthermore S, be the
standard fuzzy set projection of S onto the domains Ag: as defined above.
Then, P(S, AS’) - Siﬁs/’ i.E., Ve e CS: /LP(EAS/)(.%) < MgiAS/ (1‘)

Proof. See Appendix B.3. O]

Proposition 3.2 states that projecting a core onto two complementary
subspaces and then intersecting these projections in the original space
results in a superset of the original core. We can generalize Proposition
3.2 to concepts under one additional constraint:

Proposition 3.4 (Intersection of Projections of Concepts)

Let S = (S, po,c, W) be a concept, and let S, = P(g, Ay) and Sy =
P(S, Ay) be its projections with Ay U Ay = Ag and Ay N Ay = (). Let
furthermore §' = 1(S), Ss) as defined in Definition 3.2. If > sen, ws = | A1
and Y sep, ws = |Aal, then S € S' = (51, 5,), ie., Vo € CS : pg(z) <
Mf(gl,gz)(x)'

Proof. See Appendix B.3. O]

3.4.2 Implementation and Example

The subspace projection can be easily implemented by projecting the
concept’s cuboids onto the given subspace (see Definition 3.8) and
updating the domain weights according to Definition 3.10. We do not
provide a runtime analysis, since the implementation is computation-
ally straightforward.

Let us use the BanaNA concept from Section 2.3.4 in order to il-
lustrate the projection operation. The Banana concept is defined on
A = {dcorors Osuars, Oraste - We will consider projections onto A; =
{6COLOR7 5TASTE} and Ay = {6SHAPE}'

3.5 AXIS-PARALLEL CUT |

127

Concept Ag p- pt Ko c w
Wocoron | Woganre | Woiaers

(0.50,0.10,0.35) = (0.75,0.30,0.55)

BANANA A | (0.70,0.10,0.50) | (0.80,0.30,0.70) | 1.0 | 20.0 0.75 1.50 0.75
(0.75,0.10,0.50) | (0.85,0.30, 1.00)
(0.50, —00,0.35) | (0.75, 400, 0.55)

P(BaNaNA, A1) | A; | (0.70,—00,0.50) | (0.80,+00,0.70) | 1.0 20.0 | 1.00 - 1.00
(0.75,—00,0.50) | (0.85, 400, 1.00)

P(BANANA, A2) | Az | (—00,0.10,—00) | (400,0.30,+00) | 1.0 20.0 - 1.00 -
(0.50,0.10,0.35) | (0.75,0.30,0.55)

Intersection A (0.70,0.10,0.50) | (0.80,0.30,0.70) | 1.0 | 20.0 1.00 1.00 1.00
(0.75,0.10,0.50) | (0.85,0.30, 1.00)

Table 3.5: Definition of the BANANA concept, its projections onto A; =
{6corors Oraste } and Ag = {deuars as well as the intersection of these
projections.

Table 3.5 shows the definition of the BANANA concept, its projections, Projecting the

and their intersection. Figures 3.16, 3.17 and 3.18 illustrate these concepts BANANA concept

with screenshots of the ConceptInspector tool. As one can see by
looking at the salience weights, the intersection of the projections is not
identical to the original concept, even though their cores are identical.
Moreover, Proposition 3.4 is not applicable because its precondition with
respect to the domain weights is violated. In the code, the projections
and the subsequent intersection can be executed as follows:

>>> projection_1 = "taste’
:[21D

>>> projection_2 = banana.project_onto({’shape’:[1]})

>>> intersection = projection_l.intersect_with(projection_2)

>>> print(intersection)

banana.project_onto({’color’:[0],

core: {[0.5, 0.1, 0.35]-[60.75, 0.3, 0.55],
[6.7, 6.1, 0.5]-[0.8, 0.3, 0.7],
[0.75, 0.1, 0.5]-[0.85, 6.3, 1.0]}
mu: 1.0
c: 20.0
weights: <{’color’: 1.0, ’taste’: 1.0, ’shape’: 1.0},
{’color’: {0: 1.0}, ’"taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

3.5 AXIS-PARALLEL CUT

Axis-parallel cut for
creating sub-concepts

In a concept formation process, it might happen that over-generalized
concepts are learned (e.g., a single concept that represents both dogs
and cats). If it becomes apparent that a finer-granular conceptualization
is needed, the system needs to be able to split its current concepts into
multiple parts. This could be achieved by partitioning the cuboids from
the concept’s core into multiple subsets, because these cuboids can be
thought of as building blocks of the conceptual region (cf. Section 2.3.2).
However, since these cuboids have a non-empty intersection (namely,
the central region P), this approach always results in overlapping

128 | OPERATIONS FOR COMBINING CONCEPTS

Conceptinspector

3D visualization - hue, round, sweet

Granny Smith|
apple
banana

blue

green
intersection
lemon
nonSweet
orange

pear

projection 1

projection 2

red

Figure 3.16: Screenshot of the ConceptInspector tool, illustrating the BANANA
concept in the example fruit space.

3.5 AXIS-PARALLEL CUT | 129

3D visualization - hue, round, sweet

1

Granny Smitl
apple
banana

blue

green
intersection
lemon
nonSweet
orange
pear
projection 1
projection 2

red

Figure 3.17: Screenshot of the ConceptInspector tool, illustrating the pro-
jections of the BANANA concept onto the sets of domains A; =

{5COIDR) 6TASTE} (1) and AQ - 6SHAPE (2)

130 | OPERATIONS FOR COMBINING CONCEPTS

Conceptinspector

3D visualization - hue, round, sweet

Granny Smith|
apple
banana
blue

green
intersection
lemon
nonSweet
orange
pear
prajection 1
projection 2

red

Figure 3.18: Screenshot of the ConceptInspector tool, illustrating the inter-
section of the two projections of the BANANA concept.

3.5 AXIS-PARALLEL CUT |

sub-concepts. In some cases, it may, however, be desirable to obtain
sub-concepts with non-overlapping cores. In order to accommodate this
need, we consider another relatively straightforward way of splitting a
concept, namely, by using a threshold on a single dimension. In Section
3.5.1, we show that this results in two valid concepts and in Section
3.5.2 we provide an illustrative example.

3.5.1 Definition

Let us first assume that we would like to split a given core into two
parts based on a threshold value v on a given dimension d*.

Definition 3.12 (Axis-Parallel Cut of a Core)
Let S = (Ag,{C1,...,Cn}) bea core, d* € Dg be any dimension and v be
any value on this dimension. The axis-parallel cut of S based on a threshold
value v for a dimension d* is given by S~ = {x € S | zg- < v} and
St ={zxeS|xg >0}

We denote this cut operation as S~, ST = C(S, d*,v). One can show
that both S~ and S are valid cores:

Proposition 3.5 (Cut of a Core Results in Cores)
Let S be a core and S~, ST = C(S, d*,v) its cut at a threshold value v on a
dimension d* € Dg. Then, both S~ and S are valid cores.

Proof. See Appendix B.4. O

Please note that the cores S~ and S have a slight overlap: We had
to include x € S with x4+ = v into both S~ and S in order to obtain
valid cuboids, since cuboids are defined based on closed intervals. If
necessary, our definition could also be augmented by a separation
distance ¢ > 0, leading to a re-definition of S~ = {z € S [g« <v — §}
and ST = {z € S | zg- < v+ §}. For a small enough ¢, this does not
influence the validity of our proof. Since we simply cut the core S
into two parts without applying any repair mechanism afterwards, the
union of the two parts is equal to the original set, i.e., S~ U ST = S for
S=,8T =C(S,d*,v).

We can now define the axis-parallel cut St.8~ = C(S,d*,v) of a

concept S with respect to a dimension d* and a threshold v as follows:

Definition 3.13 (Axis-Parallel Cut of a Concept)
Let S = (S, po, c, W) bea concept. The axis-parallel cut §+, S— = C(g, d*,v)
based on a threshold value v for a dimension d* is given by S~ = (S~ g, ¢, W)
and ST = (ST, po, ¢, W), where S=, St = C(S, d*, v).

Please note that most parameters of S remain unchanged, only the
cores are updated. One can therefore easily see that U (§ -, §+) =5.

131

Axis-parallel cut of a
core

Results are valid
cores

The resulting cores
overlap

Axis-parallel cut of a
concept

132

| OPERATIONS FOR COMBINING CONCEPTS

Concept As P pT Mo c w
Wécoror | Woanar: = Wénpere
(0.50,0.65,0.35) | (0.80,0.80,0.50)
APPLE A | (0.65,0.65,0.40) = (0.85,0.80,0.55) 1.0 20.0 | 0.50 1.50 1.00
(0.70,0.65,0.45) | (1.00,0.80,0.60)
(0.50,0.65,0.35) | (0.80,0.80,0.50)
S- A | (0.65,0.65,0.40) | (0.80,0.80,0.55) | 1.0 | 20.0 | 0.50 1.50 1.00
(0.70,0.65,0.45) | (0.80,0.80,0.60)
5+ A | (080,065,040) | (0.85,080,055) | L0
(0.80,0.65,0.45) (1.00,0.80,0.60)

Implementation

Fruit space example

Interpretation

Table 3.6: Definition of the appLE concept as well as its two sub-concepts S~
and ST obtained by applying an axis-parallel cut on dyuye.

3.5.2 Implementation and Example

Again, the implementation is quite straightforward and basically fol-
lows Definition 3.13 and the proof of Proposition 3.5: If applicable,
the cuboids of the concept’s core are split, while all other parameters
remain unchanged. A runtime analysis is therefore again not expected
to result in any interesting insights and was therefore omitted.

In order to illustrate the cut operation, let us assume that the concept
of appLE should be split up because separate concepts GREENAPPLE and
REDAPPLE are more useful in the given application context. Using the
axis-parallel cut, we can split the concept S rrie at @ HUE value of 0.8,
resulting in the two child-concepts S~ and 5, which are defined in
Table 3.6 and illustrated in Figures 3.19 and 3.20.

As one can see, two cuboids of the original concept are split, while
the third one remains intact. The cores of the two concepts S~ and
S+ touch at duue = 0.8. If the concepts are updated in the future (e.g.,
by a clustering algorithm), their cores might, however, start to move
away from each other. In our implementation, the cut operation can be
invoked as follows:

>>> sl, s2 = apple.cut_at(0®, 0.8)
>>> print(sl)
core: {[06.5, 0.65, 0.35]-[6.8, 0.8, 0.5],
[0.65, 0.65, 0.4]-[0.8, 0.8, 0.55],
[0.7, 0.65, 0.45]-[0.8, 0.8, 0.6]}
mu: 1.0
c: 20.0
weights: <{’color’: 0.5, ’taste’: 1.0, ’shape’: 1.5},
{’color’: {0: 1.0}, ’"taste’: {2: 1.0}, ’shape’: {1: 1.0}}>
>>> print(s2)
core: {[0.8, 0.65, 0.4]-[0.85, 0.8, 0.55],
[0.8, 0.65, 0.45]-[1.0, 0.8, 0.6]}
mu: 1.0
c: 20.0
weights: <{’color’: 0.5, ’taste’: 1.0, ’shape’: 1.5},
{’color’: {0: 1.0}, ’taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

3.5 AXIS-PARALLEL cuT | 133

Conceptinspector

3D visualization - hue, round, sweet

Granny Smith|

Figure 3.19: Screenshot of the ConceptInspector tool, illustrating the AppLE
concept in the example fruit space.

134 | OPERATIONS FOR COMBINING CONCEPTS

Conceptinspector

3D visualization - hue, round, sweet

Granny Smith|

Figure 3.20: Screenshot of the ConceptInspector tool, illustrating the two
resulting sub-concepts S~ (1) and S (2) after applying the cut
operation on the HUE dimension.

3.6 SUPPORTED APPLICATIONS |

3.6 SUPPORTED APPLICATIONS

We now sketch how the operations defined in this chapter can be applied
in cognitive tasks. In Section 3.6.1, we consider concept formation (to
be introduced more thoroughly in Chapter 7) as an important learning
process. In Section 3.6.2, we then elaborate on concept combination,
which can be interpreted as a reasoning process.

3.6.1 Concept Formation

Concept formation is an incremental clustering process, which extracts
a conceptual hierarchy from individual observations [164]: The system
is faced with a stream of unlabeled observations and tries to find mean-
ingful concepts by grouping these observations into clusters. These
clusters are usually based on the similarity of the observations they
contain. In our case, each cluster can be represented as a fuzzy concept
according to Definition 2.14. After each observation, the set of clusters
is updated. In the following, we consider different types of incremental
modifications and argue that they are supported by our formalization.

In the initial state of the concept formation algorithm, there are not
yet any clusters. As soon as some observations have been made that are
reasonably similar to each other, they can be replaced by a summary
description, i.e., a cluster. In our case, one would need to create a new
concept S = (S, o, c, W) based on this set of observations. The core
S of this new concept can be initialized with a single cuboid which is
the bounding box of the observations. The maximal membership 1
can be set to 1 and both the sensitivity parameter c and the weights W
can be estimated based on the distribution of the observations in the
conceptual space (cf. Section 2.3.3).

Moreover, the clustering algorithm might erroneously create a cluster
for a group of observations which are only outliers. At some point, it
might become clear that this cluster is irrelevant and should be deleted,
for instance, because it has not played any role for classifying novel
observations for a long period of time. The deletion can be trivially
achieved by removing an existing concept from the list of concepts
under consideration.

Whenever a new observation is made, one or more clusters may be
updated by moving them, resizing them, or by changing their form.
These modifications of existing clusters are performed to ensure that the
clusters reflect the distribution of observations well. In our formalization,
this can be done by moving and resizing a concept’s cuboids C; (more
specifically their support points p; and p;"), and by adding or removing
cuboids. During these modifications, one needs of course to ensure that
the intersection of the cuboids stays non-empty. One can also change a
concept’s sensitivity parameter c in order to control the overall degree of
fuzziness. In addition, a concept’s weights W for the different domains
and dimensions can be modified to control its narrowness with respect

135

Quverview

Concept formation as
incremental
clustering

Creating a new
cluster

Deleting an old
cluster

Adjusting the
location, form, or size
of a cluster

136

Splitting a cluster
into sub-clusters

Merging neighboring
clusters

Outlook

Concept combination
a la Girdenfors

Adjective and noun
are compatible

| OPERATIONS FOR COMBINING CONCEPTS

to different domains and dimensions. While all of these modifications
are easily possible, there is no dedicated operation that specifies which
exact modifications should be applied under which circumstances.

If a cluster grows too large, it might become too general to be
useful. For instance, a single cluster may be used to represent both
LEMON and orANGE. If it becomes apparent that a more fine-granular
distinction is needed (e.g., because predictions made based on the
cluster membership are not accurate or fine-grained enough), the given
cluster may be split into two sub-clusters. One can identify a suitable
dimension and a suitable threshold on that dimension and apply the
axis-parallel cut introduced in Section 3.5.

Also the opposite case might occur in practice: The current clustering
might be too fine-grained, e.g., by distinguishing different subtypes
of appLE even though it suffices for the current application context to
make distinctions on a higher level, e.g., between appLE and PEAR. In this
case, the clustering can be improved by merging neighboring clusters
and obtaining a single, more coarse-grained cluster. Merging neighbor-
ing clusters is supported by the union operation as defined in Section 3.2.

As we can see from this brief discussion, many important update
steps are in principle supported by our formalization. In addition to
direct modifications of a concept’s parameters, especially the cut and
union operations can be useful for controlling the concept inventory’s
overall level of granularity. What is still missing, however, are guidelines
on when to apply which type of modification. We will comment on this
issue in Chapter 4 in the context of formal ways for measuring relations
between concepts. We will furthermore introduce three example con-
cept formation algorithms from the literature in Chapter 7 with their
respective control strategies.

3.6.2 Concept Combination

As already argued in Section 1.1.2, the process of combining different
concepts into novel ones is an important aspect of concept usage [189].
In Sections 2.4.2 and 2.5.3, we have encountered the formalization of
the conceptual spaces framework by Lewis and Lawry [253], which
explicitly targets conjunctive concept combinations. In the following,
we will, however, focus on the original proposals by Gardenfors [179,
Section 4.4] for modeling adjective-noun combinations like GREEN APPLE
Or BLUE BANANA within the conceptual spaces framework. He argues
that they can be expressed by combining properties with concepts. In
the following, we argue that his approach can be easily implemented
with our formalization.

In examples like GREEN BANANA, BROWN APPLE, and YELLOW BOOK,
adjective and noun are compatible, since they do not contain contradictory
information: The cores of GREEN and BROWN have a nonempty intersection
with the projections of the cores of BANANA and aPPLE onto the coLor

3.6 SUPPORTED APPLICATIONS |

domain, respectively, and Book is not defined on the coLor domain
at all. In these cases, GREEN, BROWN, and YELLow narrow down the
coLor information associated with the concepts BaNANA, APPLE, and
BOOK, respectively. Based on the correlations encoded in the concepts
representing the noun, this may result in further updates to other
domains (e.g., a GREEN BANANA is not expected to have a SWEET TASTE).
In our formalization, this "narrowing down" can be implemented by
simply intersecting the property with the concept, using the modified
intersection from Section 3.1.2.

If adjective and noun are incompatible, they contain conflicting in-
formation on at least one domain. This includes examples like BLUE
BANANA: The projection of the core of the BANANA concept onto the
coLor domain does not intersect with the core of the property BLUE.
Moreover, their fuzzy intersection is expected to have a rather low value
for po. In this case, we should replace the coLor region of the BANANA
concept with the sLUE region. In our formalization, we can achieve this
by first removing the coLor domain from the BANana concept (through a
subspace projection onto all domains but the coLor domain, cf. Section
3.4.1) and by then intersecting this intermediate result with BLUE, using
our modified intersection from Section 3.1.2.

In examples like TALL JockEy, the interpretation of the adjective
depends on the context in which it is used: A TALL JockEy is in general
still shorter than a SHORT BASKETBALL PLAYER. The properties TaLL and
sHORT refer to the upper and the lower parts of the HEiIGHT dimension,
but they need to be adapted to their so-called contrast class. In order to
apply TALL to Jockgy, we thus first need to resize the height scale (and
thus also the region of taLL) to the area on which jockey is defined.
Only after this adaption, we can compute the intersection of these two
regions. Please note that this explicit resizing of the nEiGHT dimension
differs from the approach of Dessalles [124], who proposes to compute
the contrast vector between a given observation and the prototype of
the respective concept (cf. Section 2.4.1). If this contrast vector has a
large positive entry for the HEiIGHT dimension, then the property TaLL
is applicable. Since Dessalles” approach considers points rather than
regions, we follow Géardenfors’ original proposal which is more directly
applicable to our region-based formalization.

In examples such as RED WINE oOr RED HAIR, the adjective RED is not
used in an absolute sense: RED WINE is actually PURPLE and RED HAIR is
actually corper. Gardenfors argues that in these cases, Rep should be
interpreted as a relative adjective. This implies that the same resizing
as for TaLL would need to happen — now, however, for the whole corLor
domain. Once it is resized to fit the region occupied by WINE or HAIR,
we can again compute the intersection of these two regions. One may
criticize that it remains somewhat unclear in which cases an adjective
should be interpreted as being relative (e.g., RED HAIR) and in which
cases a literal interpretation is more appropriate (e.g., RED APPLE). The
approach by Dessalles [124] does not face this criticism, since it always
makes use of contrast vectors and thus treats all adjectives as relative.

137

Adjective and noun
are incompatible

The adjective is
inherently relative

The adjective should
be interpreted as
relative in the
current context

138

| OPERATIONS FOR COMBINING CONCEPTS

Concept As p- pT o c w
Wécoron | Wésare | Wéiaere
(0.50,0.10,0.35) | (0.75,0.30,0.55)
BANANA A (0.70,0.10,0.50) | (0.80,0.30,0.70) | 1.0 | 20.0 0.75 1.50 0.75
(0.75,0.10,0.50) | (0.85,0.30,1.00)
GREEN {6coror} | (0.45,—00,—00) | (0.55,+00,+00) @ 1.0 400 | 1.00 - -
BLUE {dcoror} | (0.20, — o0) | (0.30,+00,4+00) | 1.0 | 40.0 1.00 - -

More complex cases

Fruit space example:
GREEN BANANA...

... and BLUE BANANA

Table 3.7: Definitions of the BaNaNA concept and the properties GrReen and
BLUE for the concept combination example.

At this point, we would also like to refer to Murphy [298, Chapter
12] who points out that there are many more cases of modifier-head
constructions such as ATOMIC ENGINEER, CORPORATE LAWYER OI MOVIE
PSYCHIATRIST, Which cannot be easily modeled in an intersection-based
way as discussed above (cf. Section 1.1.2). For the sake of simplicity, we
do not consider these more complex cases for our current discussion
and refer the interested reader to Gardenfors’ comments on such types
of concept combinations in [181, Chapter 13] and [179, Chapter 4].

Instead, we illustrate the first two cases (compatible and incompatible
adjective-noun pairs for non-relative adjectives) by considering the
examples GREEN BANANA and BLUE BANANA in our example fruit space
from Section 2.3.4. Table 3.7 shows the definitions of the BaANANA concept
and the properties GREEN and BLUE. As one can easily see, the intersection
of the cores of Sergpn aNd Sganana iS NOt empty, i.e., the property and the
concept are compatible. We can thus derive §GREEN sanana as follows:

>>> green_banana = banana.intersect_with(green)
>>> print(green_banana)

core: {[0.5, 0.1, 0.35]-[0.55, 0.3, 0.55]}

mu: 1.0

c: 20.0

weights: <{’color’: 0.84, ’'taste’: 0.72, ’shape’: 1.44},
{’color’: {0: 1.0}, ’"taste’: {2: 1.0}, ’shape’: {1: 1.0}}>

On the other hand, the intersection of the cores of §BLUE and §BANANA
is empty;, i.e., the property and the concept are incompatible. We thus
need to first project the BANANA concept onto A" = {Jsuapr; Orasre | before
intersecting it with the property BLUE:

>>> tmp = banana.project_onto({’shape’:[1], ’taste’:[2]}
>>> blue_banana = tmp.intersect_with(blue)
>>> print(blue_banana)
core: {[06.2, 0.1, 0.35]-[60.3, 6.3, 0.55],
[6.2, 0.1, 0.5]-[0.3, 0.3, 1.0]}
mu: 1.0
c: 20.0
weights: <{’taste’: 0.6666666666666666, ’'color’: 1.0,
’shape’: 1.3333333333333333},

{ taste’: {2: 1.0}, ’color’: {0: 1.0}, ’shape’: {1: 1.0}}>

3.6 SUPPORTED APPLICATIONS | 139

3D visualization - hue, round, sweet

Granny Smith|
apple

banana

blue

green

lemon
nonSweet
orange

pear

red

Figure 3.21: Screenshot of the ConceptInspector tool, illustrating the original
concepts BANANA (1), GREEN (2), and BLUE (3) used for the concept
combination example.

140 | OPERATIONS FOR COMBINING CONCEPTS

3D visualization - hue, round, sweet

Granny Smith|
apple
banana

blue

blue banana
green

green banan
lemon
nonsweet
orange

pear

red

Figure 3.22: Screenshot of the ConceptInspector tool, illustrating the original
BANANA cocnept (1) and the combined concepts GREEN BANANA (2)
and BLUE BANANA (3).

3.6 SUPPORTED APPLICATIONS |

Figures 3.21 and 3.22 illustrate the original and the resulting concepts,
respectively. As one can see, in the case of GREEN BANANA, we get a much
narrower area with respect to the sweerness dimension than in the case
of BLUE BANANA. This illustrates that the correlations between different
domains can play an important role (cf. Sections 1.1.2 and 2.2.1: A GREEN
BANANA comes with a clear expectation about its Taste, while we cannot
make such predictions for a BLUE BANANA.

Banaee et al. [26, 27] consider the somewhat inverse problem of
generating descriptions for unknown observations (cf. Section 1.2.5):
Instead of using a verbal description to narrow down the conceptual
region according to the concept combination procedure from above,
they start with a point in the conceptual space and try to find a verbal
description using a combination of existing concepts.

Banaee et al. propose to check for each domain individually whether
the new observation is contained in any conceptual region. If this
is not the case, they compute the distance to the closest conceptual
regions. The membership and distance information is then used to
generate phrases like "The observation is similar to X, but very Y and
a bit Z." where X is a concept (i.e., a region in the conceptual space),
and Y and Z are properties (which in their approach are defined as
intervals on individual dimensions of the conceptual space) in which
the given observation differs from the given concept X.” Banaee et al.
were able to show that the descriptions generated by their system are
sufficient for humans to select the correct stimulus among a given set
of candidates. Moreover, the descriptions of their system involve both
concepts and properties, which was rated as more helpful by users
than the descriptions of two other competitor systems which used only
concepts and only properties, respectively.

In principle, this procedure is also supported by our formalization:
By computing the membership of a given new observation to all the
concepts, one can select the best matching concept (or none, if all
membership values are small). If the match was not perfect (indicated
by a membership value below a certain threshold), one can look at the
domains that contribute most to the mismatch. This can for instance
be done by projecting the concept onto each individual domain and
computing the membership of the given observation to the projected
concepts. Also a contrast vector approach (using the closest point in the
concept’s core) could be implemented to this end. In these domains, the
properties to which the observation has the highest membership can be
used for enriching the description. While we have not conducted any
experiments in this direction, we think that in principle it is possible to
devise a procedure similar to the one proposed by Banaee et al. using
our formalization of conceptual spaces.

This difference-based description is somewhat reminiscent of the contrast vector
approach by Dessalles [124] (see Section 2.4.1).

141

Visualization and
interpretation

Generating a verbal
description as inverse
concept combination

The approach

Description
generation with our
formalization

142

Outlook

Quverview

| OPERATIONS FOR COMBINING CONCEPTS

Axis-
Parallel
Cut

Inter-
section

Subspace
Projection

Formali-

. Union
zation

Negation

Aisbett
and
Gibbon
[11]
Raubal
(3271
Ahlqvist
[10]
Rickard
[329]
Rickard et
al. [330]
Adams

and v =) - -) -)
Raubal [3]
Lewis and
Lawry v - - =) -)
[253]
Our For-
malization

)) -))

v v - v v

Table 3.8: Overview of different formalizations of the conceptual spaces frame-
work based on their supported operations on concepts ("v"" means

"available", "-" means "not available", and "(-)" means "could be

easily added").

Just as for the concept formation scenario, also our discussion of con-
cept combination is necessarily brief and of limited depth. Nevertheless,
we were able to sketch how some of the important mechanisms can
be in principle mapped onto our formalization, using the intersection
and projection operations from Sections 3.1.2 and 3.4.1, respectively.
Needless to say, these sketched proposals need to be implemented and
tested in the future to obtain empirical support.

3.7 COMPARISON TO OTHER FORMALIZATIONS

Table 3.8 summarizes the availability of different concept creation and
concept combination operations in different formalizations of the con-
ceptual spaces framework that we introduced in Section 2.4.2. From all
operations we consider, only the intersection is explicitly implemented
in some of the formalizations from the literature. Union, subspace
projection, and axis-parallel cut are never considered explicitly, but can
be quite easily added to many of the formalizations. The negation oper-
ation is inherently difficult for the general conceptual spaces approach
and can thus not successfully be addressed in any of the formalizations.
Let us now look at the individual formalizations in more detail.

3.7 COMPARISON TO OTHER FORMALIZATIONS |

The formalization by Aisbett and Gibbon [11] describes concepts as
convex regions in pointed metric spaces. It is mostly concerned with
the interplay of symbols and geometrically represented concepts in
a dynamic system and does not explicitly provide any constructive
operations for combining concepts. However, both the intersection
of conceptual regions and the projection of conceptual regions onto
individual domains are used at various points of their work and could
therefore easily be formalized as explicit operations. As properties
in their formalization can consist of either a single region ("natural
property") or a set of regions ("complex property"), a union of multiple
properties or concepts also does not seem to be problematic. Finally,
also an axis-parallel cut which divides a given concept into two parts
based on a threshold on a single dimension can in principle be applied
to their representation, as the resulting regions are still guaranteed to
remain convex. While no explicit operations are provided, they could
thus be easily added.

Since Raubal’s formalization [327] does not give a mathematical
definition for properties and concepts, it also does not contain any
combination operations on concepts. Also adding such operations is
not possible unless concepts and properties are properly formalized.

Ahlqvist’s formalization [10] (which is based on rough fuzzy sets)
does not define any combination operations on concepts. One can,
however, imagine relatively straightforward definitions for intersection
and subspace projection based on the standard definitions for fuzzy
sets (cf. Sections 3.1.2 and 3.4.1) The intersection of two concepts can
be defined as the intersection of the respective rough fuzzy sets, and a
subspace projection can be implemented by removing the respective
domains from the given concept. Since Ahlqvist’s formalization does
not explicitly require concepts to be convex or even connected, the
result of the union operation does not need to fulfill any particular
constraints. Thus, also a union of concepts can be easily added based on
the respective definition for fuzzy sets (cf. Section 3.2.1. Finally, also an
axis-parallel cut could be incorporated by modifying the membership
functions of the rough fuzzy set in an appropriate way. While the
formalization itself does not come with any operations, it can thus be
easily extended based on fuzzy set theory.

The formalization by Rickard [329] represents concepts as co-occurrence
matrices of properties. It does not explicitly define any generative op-
erations on concepts. One could, however, imagine that a subspace
projection can be achieved by simply removing the rows and columns of
the co-occurrence matrix which represent properties from the domain
one wishes to remove. Intersection and union of concepts would need to
operate on the respective co-occurrence matrices. If the original observa-
tions used to estimate the co-occurrence statistics are still available, one
could compute the co-occurrence values for the intersection and union
of the observations, respectively. If, however, only the co-occurrence

143

Aisbett and Gibbon:
operations could be
easily added

Raubal: no
operations at all

Ahlgoist: adding
standard fuzzy set
operations

Rickard:
co-occurrence
matrices are too
inflexible

144

Rickard et al.: same
criticism as for
Rickard

Adams and Raubal:
intersection available,

others can be easily
added

Lewis and Lawry:
only union and
negation difficult to
add

Our own
formalization

| OPERATIONS FOR COMBINING CONCEPTS

matrices are given, a proper transformation reflecting the intersection
or union of the concepts may be more difficult to obtain. Finally, an
axis-parallel cut would correspond to splitting one property into two
parts which in turn would modify the number of properties used in
all co-occurrence matrices. Thus, an axis-parallel cut applied to one
concept S would potentially also influence other concepts 5" # S. It
therefore seems that an axis-parallel cut cannot be easily added to
Rickard’s formalization.

As the formalization by Rickard et al. [330] is quite similar to Rickard’s
proposal [329], the comments made above directly apply to this formal-
ization as well. Although Rickard et al. define an intersection operation
for properties, this operation cannot be easily generalized to concepts,
because concepts and properties are represented in different ways. Both
the formalizations by Rickard [329] and by Rickard et al. [330] are thus
not capable of providing many of the operations under consideration
due to the representation of concepts as co-occurrence matrices.

Adams and Raubal [3] define concepts by using one convex polytope
per domain. Their formalization also provides some constructive opera-
tions on concepts, namely the intersection of convex polytopes and the
conjunctive combination of concepts discussed in Section 3.6.2. While
not being formalized, one can easily imagine definitions for union,
subspace projection, and axis-parallel cut: The union operation can
for instance be implemented by computing the convex hull of the two
original polytopes for each domain. The subspace projection can be
formalized by removing the convex polytopes of the domains to be
eliminated from the given concept. Finally, the axis-parallel cut can be
realized by adding another hyperplane to two copies of the original
polytope. The resulting regions are still guaranteed to be convex poly-
topes. Overall, this formalization provides an explicit definition of the
intersection operation, and could be easily extended to include most of
the other operations as well.

Lewis and Lawry [253] use random sets for representing both proper-
ties and concepts. They focus their formalization on conjunctive concept
combination. An intersection of concepts is just a special case of this
conjunctive concept combination (namely, when both concepts are
defined on the same set of underlying domains) and is thus available
in their formalization. A union of concepts, however, cannot be easily
added to their formalization as it might lead to non-convex results.
Again, a subspace projection is not explicitly formalized, but could
potentially be implemented by removing the respective domains from
a concept’s definition. An axis-parallel cut would mainly change one
of the properties based on which a concept is defined. One would
then need to replace this property in the respective combination space,
which seems to be a feasible extension of their formalization.

Finally, our own formalization includes almost all operations listed in
Table 3.8. Like all other formalizations, we are, however, unable to give a

meaningful definition for conceptual negation. As argued in Section 3.3
this problem is caused by adopting a geometric approach of knowledge
representation based on Minkowski metrics and by requiring concepts
to be star-shaped. It is thus an inherent shortcoming of the overall
conceptual spaces approach. Nevertheless, Table 3.8 illustrates that our
proposed formalization covers a wider variety of generative conceptual
operations than any of the previous formalizations.

3.8 SUMMARY

In this chapter, we have extended our formalization of the conceptual
spaces framework with a comprehensive set of operations for creating
new concepts based on existing ones. Each of these operations has
been included in our implementation, and example usages have been
illustrated. Moreover, we have argued that this set of operations is useful
for carrying out learning tasks like concept formation and reasoning
tasks like concept combination.

The work presented in this chapter leaves open various strands of
future research: With respect to the intersection and union operations,
we have argued to use a simple midpoint heuristic for restoring star-
shapedness. The exact implications of using this heuristic versus a
numerical optimization for finding the optimal solution are unclear
and should be investigated. From an implementational point of view,
also the runtime of the intersection operation urges for further improve-
ments. Furthermore, we observed that the union of LEMoN and ORANGE
yields unintuitive results and explained this by the very simplified
structure of the conceptual fruit space. This of course calls for more
complex conceptual spaces to be used as further test cases for all the
operations defined in this chapter. Moreover, our formalization is so far
lacking a meaningful negation operation. Given that this is an inherent
weakness of the conceptual spaces framework itself, it might also be a
worthwhile avenue of future research that would not only benefit our
formalization, but the conceptual spaces community as a whole. Finally,
although we have argued in Section 3.6 that the operations presented in
this chapter are useful for both learning and reasoning processes, this
has to be supported with empirical evidence from actual applications.

Although the operations defined in this chapter can be applied to any
concepts (e.g., by taking the union of the concepts cHAIrR and jockEey),
there need to be some constraints that indicate whether applying
this operator is actually cognitively plausible and meaningful. These
constraints could for instance be based on the number of shared domains
and on the similarity of the original concepts. In Chapter 4, we will
define several ways of measuring relations between concepts, which
can potentially be used for making such decisions.

145

Lessons learned

Open ends

Outlook

MEASURING RELATIONS
4. BETWEEN CONCEPTS

41 ConceptSize L. 148
4.1.1 The Size of a Fuzzified Cuboid’s a-Cut 149
412 TheSizeofaConcept. 155
4.1.3 Implementation and Example 157
4.2 Subsethood. 161
4.2.1 Definition L. 162
4.2.2 Implementation and Example 166
4.3 Implication 168
4.3.1 Definition L. 168
4.3.2 Implementation and Example 169
4.4 Concept Similarity 171
4.4.1 Similarity as Inverse Distance 172
4.42 Definition0 0L, 177
4.4.3 Implementation and Example 179
4.5 Betweenness 184
4.5.1 Betweenness in the Literature 185
4.5.2 Definition 187
4.5.3 Implementation and Example 190
4.6 Supported Applications 199
4.6.1 Concept Formation 199
4.6.2 Commonsense Reasoning 200
4.7 Comparison to Other Formalizations 203
48 Summary 206

So far, we have developed mathematical definitions for conceptual
spaces and concepts (Chapter 2) as well as operations for creating new
concepts based on existing ones (Chapter 3). In this chapter, we provide
formal ways of measuring the relations between different concepts.
These relations can be used for various types of commonsense reason-
ing, and for deciding whether or not one of the operations from Chapter
3 should be applied to a given concept.

The size of a conceptual region gives an intuition about its position
in the conceptual hierarchy: If the conceptual region is quite small,
then only few observations belong to this concept, hence it is quite
specific (such as GRANNY SmiTH). On the other hand, if the conceptual
region is very large, then it includes many possible observations (such
as rruIT). While the absolute size of a conceptual region may not be
very informative, comparing the size of different conceptual regions to
each other gives an impression of their relative level of generality. In
Section 4.1, we therefore develop an analytical solution for computing
the size of a fuzzy conceptual regions as defined in Chapter 2.

Motivation

Size

147

148

Subsethood

Implication

Similarity

Betweenness

Examples,
application scenarios,
and related work

Size as specificity of a
concept

| MEASURING RELATIONS BETWEEN CONCEPTS

Also the geometric notion of subsethood can be related to conceptual
hierarchies: Since the region representing GRANNY SMITH is a subset of
the region representing AppLE, we know that all observations that belong
to the GRaNNY SmiTH concept also belong to the appLE concept. This
means that GRANNY SMiTH is a subordinate concept (i.e., a specialization)
of appLE. In Section 4.2, we therefore propose a way for measuring the
degree of subsethood between two concepts.

In many symbolic Al systems, rules in the form APPLE A RED = SWEET
play an important role. We have already discussed in Chapter 3 how
the logical conjunction and disjunction operators can be mapped onto
intersection and union, respectively. In Section 4.3, we argue that in the
context of conceptual spaces, the degree of implication between two
concepts can be equated with their degree of subsethood.

As we have stated earlier, conceptual spaces are based on the notion of
semantic similarity: Distance in the conceptual space is inversely related
to similarity. So far, we have only considered the similarity between
points in the conceptual space, i.e., between individual observations.
However, we may not only be interested in the particular similarity
between a specific apple and a specific pear, but in the general similarity
of the underlying concepts appLE and PEAR. In Section 4.4, we propose
two different definitions for conceptual similarity which both fulfill a
set of desirable properties.

In Chapter 2, we have used the ternary relation of geometric be-
tweenness to define both convex and star-shaped sets. In the conceptual
spaces framework, geometric betweenness can be equated with concep-
tual betweenness which can help us to identify "intermediate" cases
between two observations. In Section 4.5, we generalize the notion of
betweenness from points in the conceptual space to concepts in order
to quantify to which degree MASTER STUDENT is conceptually between
BACHELOR STUDENT and PHD stupenT. This can be used for commonsense
reasoning, e.g., by concluding that all rules applying to both master
and PhD students should also apply to master students.

For each of these relations, we provide a mathematical definition
along with an illustrative example based on our fruit space from Section
2.3.4. We then illustrate their usefulness for practical applications in
Section 4.6. In Section 4.7, we compare our work to other existing
formalizations of the conceptual spaces framework before concluding
this chapter in Section 4.8.

The research contributions presented in this chapter have previously
been published in [41, 43, 46, 45].

4.1 CONCEPT SIZE

The size of a conceptual region gives an intuition about the specificity of
this concept: Concepts represented by a large region are more general
than concepts represented by a small region. This is one obvious aspect
in which one can compare two concepts to each other. Moreover, the size

4.1 CONCEPT SIZE |

of a concept indicates the average (or maximal) dissimilarity of any two
observations that belong to this region." It therefore gives an indication
about the "coherence" of the region and hence about the concept’s
overall position in the concept hierarchy: Superordinate concepts tend
to be more heterogeneous than base level and subordinate concepts
[298, Chapter 7] (cf. also Section 1.1.2).

We follow a bottom-up approach for defining the size of a conceptual
region by first considering the size of an individual a-cut of a fuzzified
cuboid in Section 4.1.1. In Section 4.1.2 we then integrate over all a-cuts
to compute the size of a fuzzified cuboid and use this to obtain a
closed formula for computing the size of a conceptual region. Finally,
we present both a runtime analysis of our implementation and an
illustrative example in Section 4.1.3.

4.1.1 The Size of a Fuzzified Cuboid’s o-Cut

In this section, we consider the fuzzified version C of a cuboid C € S,
which can be interpreted as a single-cuboid concept C = (C, po,c, W)
and which has already been defined in Section 3.1.3:

Definition 3.4 (Fuzzified Cuboid)

Let S = (S, o, c, W) be a concept and C' € S be a cuboid from its core. Then,
the membership to the fuzzified cuboid C is defined as follows:

Ac
~(r) = - ma e*C-dc (mvva))
Nc() = Ko yEC)'((

Figure 4.1 illustrates the a-cut of a two-dimensional fuzzified cuboid
C both under the Euclidean metric (a) and under the Manhattan metric
(b). As one can see, the area of these a-cuts can be divided into three
different components (I-III). Let us first consider only the Euclidean
case, i.e., Figure 4.1a, which is relevant if both dimensions belong to
the same domain §.

The first component (I) corresponds to the crisp cuboid, which is
defined based on its support points p* and p~ (cf. Definition 2.8). Its
size can be computed as (p] — py) - (p3 — p5). If we introduce the
shorthand notation b; = p:{ — p, , the size V} of the first component can
be written as follows:

Vi =01 - by (4.1)

The second component (II) corresponds to points that violate the
cuboid inequalities with respect to a single dimension. For instance, the
right part of component II (i.e., the region labeled as 11,) corresponds
to points that are in the interval [p", p{ + ¢] x [p5,p5], i.e. all points
that are at most ¢ to the right of the cuboid. Remember from Lemma
2.4 that each a-cut can be interpreted as an e-neighborhood of the

original cuboid C withe = —1.1In (%) . We thus know that the distance

1 Thanks to Nina Poth for pointing this out to me.

149

Quverview

Fuzzified cuboids

Visualization

Component I: crisp
cuboid

Component II:
differences on a
single dimension

150

Considering only dy

Constraints for ¢

Solving for ¢

The size of
component 11,

Putting together the
pieces for component
1I

| MEASURING RELATIONS BETWEEN CONCEPTS

S I, I 11 I, I

) I 1L, 11 I s

II

11 I 1l 11 I 1l

d d

@) (b)

Figure 4.1: a-cut of a fuzzified cuboid under the Euclidean distance (a) and
the Manhattan distance (b), respectively.

between any point z in the region 11, and its closest point y € C'is
bounded by e:

- 1 «
Vo € [pf,pl +¢] x[py,p3]:JyeC: déc(x,y) < - .In (/m)

Since we can always find a y € C such that y» = x2, we only need
to look at differences with respect to the dimension d;. Therefore, the
distance can be written as follows:

do(z,y) = ws - Vwi - (x1 — y1)?

Our ¢ corresponds to the largest distance with respect to the dimen-
sion d; that is allowed for an a-cut. That is, we look for ¢ = |z — y|
such that the following equation holds:

wa../w1.¢2:_1.1n<0‘>

c Ho

Solving for ¢ yields the following result:

=z a)
= —— . In _
C-Ws -+ /W1 Ho
The size of component 11, can now be computed by multiplying its
width and its height:

Vir, = (pf +¢—p1) - (03 —p3)
1 «
= In(—)-(p7 —p;
c-ws - L <M0> (Pz Pz)

1 1 <a> b
:—7.11 PR .
- ws - Jw w)

The size of component I, is identical to V;;,, and analogously we

find that V7, = Vip, = —C_w;\/@ -In (%) - b1. So the overall area that

is covered by all parts of component II can be written as follows:

1 « 2 by 2-by
_ 2. 2.V = —=In [2). .
Vir Vi +2- Vi, c n(> <w5 VAT + ws - \/171> 42)

4.1 CONCEPT SIZE |

The third component (III) consists of four parts that taken together
form an ellipse. The major axis of the ellipse has a radius equal to the
width of component I1,, and the minor axis of the ellipse has a radius
equal to the height of component I1.:

1 ! (a> 1 1 ! <a> 1
rmn=—-——mh{—))—————, TM9=—In|\— | ———
& Ho We -+ /W1 C o W+ /W2

The overall size of this ellipse can be expressed as follows:

2
o 1
V1H:7r-r1-r2:7r-ln<> . (4.3)
po) c?wi - \Jwt - \Jws >
Having computed the size of the individual components in Equations
4.1, 4.2, and 4.3, we can now describe the size of the overall a-cut:

V(C®) = Vi + Vir + Virr
1 « b1 bo >
—byby—2---In[2. n
! 2 Cc (MQ) <w5-‘/w2 wWe - /W1

n ln<a)2 : (4-4)
- — -)
140 2wk Jwr - Jws

If we now look at the Manhattan example (Figure 4.1b), where the
two dimensions belong to different domains §; # J», we see that the
components I and II can be computed analogously to the Euclidean case.
However, under the Manhattan metric, the four parts of component III
do not form an ellipse. Instead, we have four triangles. The width of
each of these triangles corresponds to the radius of the major axis in
the Euclidean case. Correspondingly, their height is analogous to the
radius of the ellipse’s minor axis. We thus get the following formula for
the area enclosed by component III:

1 a\? 1
V111=4--T1-7"2:2~1n<) .
2 Lo 2 - wg, /W1 - Ws, /W2

In the Manhattan case, we thus get the overall formula:

V(éa):VI‘i‘VII-FVIH
1 o by ba >
b by -2~ (L) +
b c <uo) (w52'\/w2 ws, + /W1

« 2 1
+2-In(— . .
(Mo) 2 - ws, - W1 - Way /W2 (4-5)

When comparing Equations 4.4 and 4.5, we see that the most promi-
nent difference between the Manhattan and the Euclidean case concerns
component III. This difference is caused by the different forms of hy-
perballs under both metrics (illustrated in Figure 4.2a). In general, a
hyperball of radius r around a point p can be defined as the set of all
points with a distance of at most r to p:

H={xeCS|d(z,p) <r}

151

Component III:
differences on both
dimensions

The size of the ellipse

Owerall size of the
a-cut

Manhattan example

Owerall size

Main difference:
component 11

152

Hyperballs and
hyperellipses

Components as
extruded ellipses

Notation for
domains...

... and hyperballs

| MEASURING RELATIONS BETWEEN CONCEPTS

() (b)

Figure 4.2: (a) A two-dimensional hyperball (i.e., a disk) under the Euclidean
metric (green, solid) and under the Manhattan metric (blue, dotted).
(b) Stretching the disks along a single dimension results in ellipses.

For different distance metrics the hyperballs resulting from this
definition have a different shape: They are round for the Euclidean
metric and diamond-shaped for the Manhattan metric. By stretching
these hyperballs, one can obtain hyperellipses (see Figure 4.2b). It is
easy to see that component III corresponds to such an ellipse in both
the Euclidean and the Manhattan case. This stretching is based on
the salience weights W. For instance, in Figure 4.1a, we assume that
wq, < wgq, which means that we allow larger differences with respect
to d; than with respect to ds. This causes the hyperball representing
component III to be stretched along d;, thus obtaining the shape of a
horizontal ellipse.

Looking closer at Figure 4.1, we can observe that the other two
components can also be described by ellipses: Component I is a zero-
dimensional ellipse (i.e., a point) that was extruded in two dimensions
with extrusion lengths of b; and b, respectively. Component II consists
of two one-dimensional ellipses (i.e., line segments) that were extruded
in one dimension. Finally, component III consists of a single two-
dimensional ellipse that was not extruded at all.

Letusdenoteby Ay, . 4,) the domain structure obtained by eliminat-
ing from A all dimensions d € D \ {ds, ..., d;}. The following example
illustrates this notation:

A = {{d1,dz,ds},{ds},{ds5,ds}}
A{dth,da} = {{di1,d2,d3}}
A{Ull,dQ,ds} = {{d17 d2}7 {d5}}
Afdy,dsdsy = {{d2}, {da}, {ds}}
Moreover, let V (1, A, W) be the size of a hyperball with radius r in a

space specified by the domain structure A, that was stretched according
to the weights in W (thus potentially taking the form of an ellipse).

4.1 CONCEPT SIZE |

Based on our observations about the three components of C* in the
two-dimensional case, we can now write V (C?) as follows:

V(éa)—v<—1 In <M0> WA@)-bl-bQ

c

1

+v<—c ID(MO) W%Q

v (o () wa) n
c Ho

+v<—1 m() WA> (4.6)
c Ko

One can generalize this formula to higher dimensions:

n

ven=y| X | I w

i=0 \ {d,....d;} de
ED T \D\{d1,ndi}

v(sm(2) duear)) G2
c Ho

The outer sum of Equation 4.7 runs over the number n of dimensions
with respect to which a given point = € C* lies outside of C. We then
sum over all combinations {dy,...,d;} of dimensions for which this
could be the case, compute the volume V (-, -, -) of the i-dimensional
hyperball under these dimensions, and extrude this intermediate result
in all remaining dimensions by multiplying with [[;c p\ (4, .. a,} bd-

Let us illustrate Equation 4.7 for the a-cuts from Figure 4.1: For i = 0,
we can only select the empty set for the inner sum, so we end up with
b1 - by, which is the size of the original cuboid (i.e., component I). For
i = 1, we can either pick {d;} or {d2} in the inner sum. For {d; }, we
compute the size of the left and right part of component II by multi-

plying V' (—f In (—) AVFRE W) (i.e., their combined width) with by
(i.e., their height). For {ds}, we analogously compute the size of the
upper and the lower part of component II. Finally, for ¢ = 2, we can only

pick {d1, d2} in the inner sum, leaving us with V' (—f In () A W)

which is the size of component III. As one can thus see, Equation 4.7
results in Equation 4.6 in the two-dimensional case, which covers both
Equations 4.4 and 4.5 as manually derived earlier.

If all dimensions belong to the same domain (i.e., A = {{dy,...,dn}}
or if all dimensions belong to different domains (which corresponds to
A = {{d1},...,{dn}}), itis quite straightforward to compute V (r, A, W):
One can simply use the size of a stretched Euclidean or Manhattan
hyperball (see, e.g., [426]). However, when we consider cuboids with a
dimensionality of n > 3, we in general need to deal with the combined
metric d¢ from Definition 2.7.

153

a-cut as union of
extruded ellipses

Arbitrary number of
dimensions

Interpretation

Two-dimensional
example

Hyperballs under the
combined metric

154

A three-dimensional
example

Hyperball volume
under d5 without
salience weights

| MEASURING RELATIONS BETWEEN CONCEPTS

II

\ 111

)

III >

s / TV
1
g
—
- 111
@ (b)

Figure 4.3: (a) [llustration of a three-dimensional fuzzified cuboid’s a-cut
in a space consisting of two domains. (b) A hyperball in a three-
dimensional space with two domains has the shape of a double
cone.

Figure 4.3a illustrates parts of a three-dimensional fuzzified cuboid’s
a-cut in a space with a domain structure A = {{d;,dz},{ds}}. As
one can see, this a-cut can be again described as a set of extruded
ellipses: The blue cuboid (labeled as I) is the original cuboid itself
(i.e., a zero-dimensional ellipse extruded in three dimensions) and the
green cuboids (II) are parts of one-dimensional ellipses extruded in
two additional dimensions. The yellow shapes (III) are parts of two-
dimensional ellipses extruded in one additional dimension®, and the
red shape (IV) is a part of a three-dimensional ellipse. It is interesting to
observe that the three-dimensional ellipse under the combined metric
in this case has the shape of a double cone (illustrated in Figure 4.3b).

The following proposition gives us a general way of computing the
size of a hyperball under the combined metric d2, independent of the
underlying domain structure. It makes use of Euler’s gamma function
I'(z) = [,° #* e *dx, which can be interpreted as a generalization of
the factorial to real values, since Vn € N : I'(n) = (n — 1)\
Proposition 4.1 (Volume of a Hyperball without Salience Weights)
The size of a hyperball with radius r in a space with the combined metric d5,
the domain structure A, and without domain and dimension weights can be
computed in the following way, where n is the overall number of dimensions, ns
is the number of dimensions in domain §, and I'(-) is Euler’s gamma function:

ng
rh T2
V(ra)=— 11 <n5!F En 1))

Proof. See Appendix C.1. O

Please note that there are two different types of these extruded 2D ellipses, two based
on Manhattan ellipses and one based on a Euclidean ellipse.

4.1 CONCEPT SIZE |

Proposition 4.1 only considers an unweighted variant of d%, where all
domain and dimension weights are set to one. If we introduce salience
weights as used in our formalization, we obtain the following result:

Proposition 4.2 (Volume of a Hyperball with Salience Weights)

The size of a hyperball with radius r in a space with the weighted combined
metric dc, the domain structure A, and the set of weights W can be computed
in the following way, where n is the overall number of dimensions, ns is the
number of dimensions in domain 6, I'(-) is Euler’s gamma function, and 6(d)
is the unique 6 € A with d € §:

ns
1 Tn T 2
Vr A W) = T (et
8. W) [laep ws@vwa n! <n5 F(@&Jrl))

seA
Proof. See Appendix C.1. O

We can now derive an equation for V(C®), ie., the size of a fuzzy
cuboid’s a-cut by combining Equation 4.7 and Proposition 4.2:
Proposition 4.3 (Size of an a-Cut)

For a given fuzzified cuboid C = (C, ug,c, W) and o € [0, o), we can
describe the size of its a-cut as follows, using aq = ws(q) - \/Wq - (P — Py) ¢

~ 1
V(C*) =
< ¢ [aep ws(a)v/w
n [(=1)m(2)
> 7 (&) 2. [[a
i=0 ' {d1,...,d;} \deD\{dx,...,d;}
C
ng
I1 (név. s >
e\ T
Agay,..,d;}
Proof. See Appendix C.1. O

Proposition 4.3 gives us a closed (albeit quite complex) formula for
computing the size of a fuzzified cuboid’s a-cut. This will serve as our
starting point for computing the size of a fuzzy conceptual region.

4.1.2 The Size of a Concept

So far, we have only considered the size of a single a-cut of a single
fuzzified cuboid. In the following, we will first derive the size of an
overall fuzzified cuboid based on Proposition 4.3, before showing how
to compute the size of an overall concept S.

When working with crisp sets, one can use the set cardinality to
specify the size of a set. In the discrete case, set cardinality corresponds
to the number of elements in the set. For a fuzzy set, one can use a
so-called measure M to describe its size. This measure can in our context
be defined as follows (cf. [74]):

155

Adding salience
weights

The size of an a-cut

Outlook

Quverview

Measure of a fuzzy
set

156

Integral over the
membership function

Using the Lebesgue
integral

The size of a fuzzified
cuboid

The size of a concept

| MEASURING RELATIONS BETWEEN CONCEPTS

Definition 4.1 (Measure)

A measure M on a conceptual space CS is a function M : F(CS) — R
with M(0) = 0 and (A C B) = (M(A) < M(B)), where F(CS) is the
fuzzy power set of C'S.

One common measure for fuzzy sets is the integral over the set’s
membership function, which simply computes the volume below the
membership curve:

M(A) = /Cs,ug(a;) dz

This is equivalent to the Lebesgue integral over the size of the fuzzy
set’s a-cuts, which we denote by V' (A%):

1 ~
M(A) = /0 V(A% da 48)

In order to derive the size of an overall fuzzified cuboid, we can
therefore integrate over its a-cuts:

Proposition 4.4 (Size of a Fuzzified Cuboid)
The size of a fuzzified cuboid C' can be computed as follows:

~N Ho a
MiC) = " [aep ws(ayv/wa Z Z H ‘

i=0 | {d1, i}
CD

Proof. See Appendix C.1. O

de
D\{dxy,...,d:}

It is trivial to see that any concept S can be viewed as a union of
fuzzified cuboids C~'l Moreover, the cuboids C; of S intersect in P and
use the same parameters 19, ¢, and WW. This means that any intersection
of C; and @ can be computed by intersecting the respective crisp
cuboids and keeping all other parameters fixed — the result of this
intersection is then again a fuzzified cuboid. In order to compute the
overall measure for §, one can therefore combine the measure of its
fuzzified cuboids by using the inclusion-exclusion formula (cf. [68]),
which generalizes the observation that |A U B| = |A| + |B| — |AN B|
from two to m sets:

Definition 4.2 (Size of a Concept)
Let S = (S, jug,c, W) bea concept. Its size M (S) can be computed as follows:

ME =X v+ > M N G
=1 {i1,.i} ie{it,... i}
c{1,...,m}

The outer sum in Definition 4.2 iterates over the number of cuboids
under consideration (with m being the total number of cuboids in S) and
the inner sum iterates over all sets of exactly [cuboids. When computing

M (S) according to Definition 4.2, we thus rely on the formula from
Proposition 4.4 for computing the size of various fuzzified cuboids.

Please note that M () is always computed only on Ag, i.e., the set of
domains on which S is defined. This constraint is introduced in order
to ensure that M (§) is always finite: Let us assume that we included an
additional domain ¢’ € A\ Ag. Since all cuboids of S are not defined

on the dimensions d' € ¢’, the coordinates of their support points p~

and p™ will be —oco and +o0, respectively, on all of these dimensions d'.

One can easily see that this causes M (S) to become infinitely large. In
order to avoid this, we restrict the computation of M (S) to Ag.

4.1.3 Implementation and Example

Although the formula for M(C) derived in Proposition 4.4 is quite
complex, it can be implemented via a set of nested loops. Instead of
numerically approximating the integral over the membership function

we can therefore compute it analytically, which is considerably faster.

Also the inclusion-exclusion formula from Definition 4.2 can be easily
implemented via a set of nested loops.

The overall runtime of the size computation grows unfortunately
exponentially with respect to both the number of cuboids and the
number of dimensions in the conceptual space due to the respective
inner sums from Proposition 4.4 and Definition 4.2. In order to obtain
some concrete runtime estimates, we have measured the runtime of the
size operation for 1,000 randomly created concepts. We have investigated
the influence of both the number n of dimensions in the conceptual
space and the number m of cuboids per concept separately. Moreover,
we have also computed a numerical approximation of the integral
over a given concept’s membership function, this time using, however,
only 100 examples in order to limit the overall computation time. All
computations were run on a laptop with an Intel Core i5-6440HQ CPU
(2.60 GHz quad core) processor and 8 GB main memory.

Let us first discuss how the number n of dimensions influences
the runtime of the size operation. As we can see in Table 4.1 and
Figure 4.4, there is a clear exponential trend: Already for a space
with 16 dimensions, computing the size of a concept with a single
cuboid takes on average around 1.6 seconds. This is clearly too slow
for any large-scale computations. Future work should therefore focus
on finding either more efficient exact algorithms or approximations
for computing the size of a concept. Nevertheless, the numbers from
Table 4.1 and Figure 4.4 clearly show that our closed formula for a
concept’s size is a significant improvement over a more naive approach
of approximating the integral over the given concept’s membership
function numerically. We did not report runtime measurements of the

157

Interpretation

Avoiding infinitely
large results

Implementation

Runtime experiments

Runtime and the
number of
dimensions

158 | MEASURING RELATIONS BETWEEN CONCEPTS

Runtime of Size (1 Cuboid per Concept)

1000

100

10

0.01
1 2 4 8 16

Number of Dimensions in Conceptual Space

Runtime in Milliseconds
=

m Closed Formula = Approximation of Integral

Figure 4.4: Average runtime of the size operation for single-cuboid concepts
as a function of the number of dimensions in the conceptual space.

Runtime of Size (4 Dimensions in Conceptual Space)
100

m I
oy NN - .
1 2 4 8

Number of Cuboids per Concept

Runtime in Milliseconds
=

Figure 4.5: Average runtime of the size operation as a function of the number
of cuboids per concept in a four-dimensional conceptual space.

4.1 CONCEPT SIZE |

Number n of Runtime Runtime of numerical
Dimensions in ms approximation in ms
1 0.0343 7.2350
2 0.0525 6755.0964
4 0.1660 =
8 3.4105 -
16 1663.3628 -

Table 4.1: Average runtime of the size operation (averaged across 1,000 ex-
amples) in comparison to runtime of a numerical approximation
(averaged across 100 examples) for randomly generated single-
cuboid concepts.

Number m of Cuboids Runtime in ms
1 0.1660
2 0.4920
4 2.5864
8 48.2449

Table 4.2: Average runtime of the size operation averaged across 1,000 ran-
domly created concepts in a four-dimensional space.

numerical approximation for more than two dimensions in Table 4.1 as
these computations quickly became computationally infeasible.

Let us now consider the influence of the number m of cuboids per
concept in Table 4.2 (illustrated in Figure 4.5). Again, we can observe
a clearly superlinear trend which seems, however, to be weaker than
the one observed for the number of dimensions. If we compute the size
of a concept consisting of eight cuboids in a four-dimensional space,
we need on average 48 milliseconds, which is still reasonably fast. It
thus seems to be more important to use a low-dimensional conceptual
space than to approximate conceptual regions with a small number of
cuboids. This is in line with the effects observed for the intersection
operation in Section 3.1.3, where the number of cuboids also had a
weaker impact on runtime than the number of dimensions.

In order to illustrate the size computation, we will now compute the
sizes of all fruit concepts from Chapter 2 (see Table 4.3). We illustrate
the underlying computations for the examples of LEmon and APPLE.

We first compute M (§LEMON), because the core of this concept only
involves a single cuboid. This allows us to directly use the formula from
Proposition 4.4:

M(SLEMON) = M(CLEMON)

159

Runtime and the
number of cuboids

Fruit space example

The size of the LEMON
concept

1

60

| MEASURING RELATIONS BETWEEN CONCEPTS

Concept As D~ pt Ko c w
Wécoron | Wsiare | Wéinaere

PEAR A | (0.50,0.40,0.35) = (0.70,0.60,0.45) 1.0 24.0 | 0.50 1.25 1.25
ORANGE A | (0.80,0.90,0.60) | (0.90,1.00,0.70) 1.0 | 30.0 1.00 1.00 1.00
LEMON A | (0.70,0.45,0.00) @ (0.80,0.55,0.10) | 1.0 40.0 | 0.50 0.50 2.00
GRANNY A | (0.55,0.70,0.35) | (0.60,0.80,0.45) 1.0 500 100 | 100 | 1.00
SmrtH

(0.50,0.65,0.35) | (0.80,0.80,0.50)
APPLE A | (0.65,0.65,0.40) (0.85,0.80,0.55) 1.0 200 050 | 150 | 1.00

(0.70,0.65,0.45) | (1.00,0.80,0.60)

(0.50,0.10,0.35) | (0.75,0.30,0.55)
BANANA | A | (0.70,0.10,0.50) = (0.80,0.30,0.70) 1.0 200 | 075 | 150 | 0.75

(0.75,0.10,0.50) | (0.85,0.30,1.00)

The size of the APPLE
concept

Table 4.3: Definition of several fruit concepts for the size example.

(LEMON) 3
0
= a’d
(C(LEMON))3 HdeD We(d)/Wd ; {d&;di} ld_e[
gD D\{dl,...,di}
ng
1 (w . W)
: ns
se I(2+ 1)
Ady,...d;}
1.00
= 20005050 -0.50 - 2,00 |\ Crdsonotawier
+2- (aHUEaROUND + Guuelsweer 1 a’ROUNDa'SWEET)
+4 - (aHUE + Qrouno + aSWEET) + 8)
1
= - (2-2-842-(2-242-842-8
32,000 (+ (+ +)
+4-(2+2+8)+8>
160 1
= - (324 T72+48+8) = = —— = 0.0050
32,000 (32+72+48+8) 32,000 200

Without comparing this result to another number, we cannot say
whether this means that LEmon is a rather small or a rather large concept.
Doing analogous computations for each of the appLE concept’s cuboids
(following Proposition 4.4) and combining them with the inclusion-
exclusion formula (according to Definition 4.2), we get the following
results:

S

S

S

S £ 8

(Coaprre,1) ~ 0.0271
(Coaprre2) = 0.0217
(Chprre3) ~ 0.0271
(Caperet N Cappie2) = 0.0152
(Caprrer N Cappies) = 0.0098
(Copprea N 6appze,3) ~ 0.0152

4.2 SUBSETHOOD |

Concept Size
PEAR 0.0163
ORANGE 0.0046
LEMON 0.0050

GRANNY SMITH | 0.0018

APPLE 0.0455

BANANA 0.0690

Table 4.4: Sizes of all fruit concepts.

M(Crprrs,t N Cappie,2 N Cappie3) & 0.0098

M(Supre) = M(Coopre1) + M (Crrpre2) + M (Copore.3)
- M CAPPLE,l N C~'APPLE,2)
- M CAPPLE,l N 5'APPLE,3)
- M CAPPLE,z N éAPPLE,3)

M (Corme1 N Coprrea N Carprs.3)

/\/\/-\/‘\

~ 0.0455

As one would have expected, the aAppLE concept is much larger than
the LEmon concept. This is caused by both the larger size of the crisp
core and by the smaller value of c. We can interpret this as LEmoN
being more narrow (and therefore more specific) than the wider and
more general APPLE concept. In our implementation, these sizes can be
computed as follows:
>>> lemon.size()

0.005000000000000002

>>> apple.size()
0.0455

Table 4.4 shows all fruit concepts from Section 2.3.4 and their corre-
sponding sizes. One can also see that the size of LEMoN and ORANGE
differs although their cores have an identical size. This is caused by the
different weights and the different values of ¢, which causes the a-cuts
of LEMON to be tendentially larger than the a-cuts of orRANGE.

4.2 SUBSETHOOD

In order to represent knowledge about a hierarchy of concepts, one
needs to be able to determine whether one concept is a subset of another
concept. For instance, the fact that SGRANNY Sy © S epee iNdicates that

GRANNY SMITH is a subordinate concept (i.e., a specialization) of AppLE.>

One could also say that the fuzzified cuboids C; are sub-concepts of §, because C; - §,
cf. similar remarks in Section 2.3.2 for cuboids and cores.

161

Interpretation

Sizes of other fruit
concepts

Subsethood for
conceptual
hierarchies

162

Subsethood for crisp
sets

Subsethood for fuzzy
sets

Conditions for
subsethood

Advantages and
limitations

| MEASURING RELATIONS BETWEEN CONCEPTS

In Section 4.2.1, we provide both a binary and a soft definition of
subsethood for concepts. Afterwards, we illustrate these definitions
with our fruit space example in Section 4.2.2.

4.2.1 Definition

Let us first consider the definition of subsethood for crisp sets:

Definition 4.3 (Subsethood for Crisp Sets)
Let Sy and Sy be two crisp sets in a conceptual space CS. We say that S is a
subset of So (S1 C Sa) ifand only if Vo € CS : (x € S1 = x € 7).

As one can see, subsethood is a binary property: Either a set S is
a subset of another set S; or it is not. We can relatively easily check
whether a given core S; is a subset of another core S; by comparing
their underlying cuboids: Every cuboid C’i(l) of S1 must be contained in
Sa, which implies that also its support points p)* and p()~ lie inside So.

Since we represent concepts as fuzzy sets, we now consider the

classical definition of subsethood for fuzzy sets:*

Definition 4.4 (Subsethood for Fuzzy Sets)

Let Sy and Sy be two fuzzy sets in a conceptual space CS. We say that Sy is
a subset of§2 (S; C S5) ifand only if Vo € CS : 13, (x) < 1g, (x). This is
equivalent to requiring subsethood according to Definition 4.3 for all a-cuts
S and S.

Explicitly evaluating the right hand side of this expression is, however,
infeasible in practice, if the conceptual space uses real-valued dimen-
sions, since then there are infinitely many « € C'S. We will now present
a set of necessary and jointly sufficient conditions for subsethood:
Proposition 4.5 (Conditions for Crisp Subsethood)

Let S; = <S1,u((]1),c(1),W(1)> and Sy = <SQ,,[L((]2),C(2), W@ be two con-
cepts. Then, S; C Sy if and only if all of the following conditions are fulfilled:

(1) (2)

1.y <y
~, 1)
2. 8 C 540
3. Ag, C Ag,
1 [2 [(2
4. Vd € Deg, : M -wg(;) . wé) > (2 -wg(zl) . wé)
Proof. See Appendix C.2. O

The conditions of Proposition 4.5 can be easily checked, allowing us to
derive conclusions about conceptual hierarchies. However, this notion
of subsethood is still binary: Either S, C Syor S z Ss. For making
more fine-granular distinctions, we need a soft notion of subsethood.

Please note that this definition has already been used for some of the previous lemmata
and propositions.

4.2 SUBSETHOOD |

Sub(A,B) =0 Sub(A,B) =~ 0.5 Sub(A,B) =
0.8 52_;'
- 06
5 04
0.2
. 0 ——
Sub(Sy,92) ~ 0 Sub(S1,52) ~ 0.5 Sub(Sy,82) = 1

Figure 4.6: Illustrating the degree of subsethood with crisp sets in a two-
dimensional space (a) and fuzzy concepts in a one-dimensional
space (b).

There has already been some considerable amount of work on defin-
ing degrees of subsethood for fuzzy sets (see e.g., [74, 105, 150, 444]).
However, many of the definitions made in the literature require that the
underlying space is discrete. They are not applicable in our case, because
we assume a continuous space. The following definition [226] works
also in a continuous space and is conceptually quite straightforward:
Definition 4.5 (Degree of Subsethood for Fuzzy Sets)

Let Sy and Sy be two fuzzy sets in a conceptual space CS. Their degree of
subsethood Sub(Sy, Sy) can be computed as follows, using a measure M (cf.
Definition 4.1) and the standard fuzzy intersection (cf. Definition 3.3):

M <§1 N §2)

()

One can interpret Definition 4.5 intuitively as the percentage of S,
that is also in Sy. This notion of subsethood is illustrated in Figure 4.6
for both crisp sets and concepts. It has the following properties:

1. Sub(gl,gg) S [O, 1]
2. Sub(gl, §2) =0 §1 N §2 =0
3. Sub(gl,gg) =1 gl ﬂ§2 = 51 & §1 - gg

Sub (51, §2) =

In Section 3.1.2, we have already defined an intersection operation
(Definition 3.2), and in Section 4.1.2, we have defined a measure for
concepts (Definition 4.2). We can use them to adapt Definition 4.5:
Definition 4.6 (Modified Degree of Subsethood for Concepts)

Let §1 and 5'2 be two concepts. Their degree of subsethood Sub(gl, 5'2) is
defined as follows:

Sub(3y, §) = MU L 52))
1

163

Degree of subsethood

Properties of the
degree of subsethood

Degree of subsethood
for concepts

164

Considering only
common domains

Problem based on the
modified intersection

Our proposed
solution

| MEASURING RELATIONS BETWEEN CONCEPTS

So

1(S4,52)

S

(b)

Figure 4.7: Two problematic cases for Definition 4.6. (a) Perfect sub-
sethood with different sensitivity parameters c results in

Sub(Sy, Ss) > 1. (b) Overextension in the modified intersection
causes Sub(Sy, S2) > 1.

Definition 4.6 gives us a more fine-grained way to talk about subset-
hood than Proposition 4.5. If S1 and S, are not defined on the same
domains, then we first project them onto their shared subset of domains
before computing their degree of subsethood. This is done to ensure
that the size of their intersection can be meaningfully compared to the
size of the first concept.

When computing the intersection of two concepts with different
sensitivity parameters c(!), ¢(?) and different weights (1), W (2), one
needs to define new parameters ¢ and W’ for the resulting concept.
Please recall from Definition 3.2 that the new sensitivity parameter ¢/
is set to the minimum of ¢(!) and ¢(?) and that the new set of weights
W' are obtained through a linear interpolation between W) and W (2).
Now if ¢! > ¢, then ¢ = min(c), ¢?) = (2 < ¢ If furthermore
w = w®@), Mél) = ,uéQ), and S1 C S, then it is easy to see that
S = I(51,8;) = (81, ,u[()l), 2, W), Since ¢ = ¢ < M) and all
other parameters are identical, M(S") > M(S;). In this case, we get
Sub(gl, §2) > 1. This is illustrated for two one-dimensional concepts
in Figure 4.7a. However, Sub(Sy, S9) > 1 violates the first property of
a fuzzy degree of subsethood, namely, Sub(gl, §2) € [0,1]. However,
this property is necessary, if we would like to interpret Sub(S1, S5) as a
fuzzy degree of truth.

We propose to prevent this undesired behavior by using the same
values of ¢ and W for computing both M (I (§1, §2)) and M (§1) More
specifically, we propose to use c¢(?) and W(?). One can interpret this
approach as follows: The salience weights W influence the distance
metric by setting a certain context, indicating the relevance of the
different domains and dimensions. Using the weights from W (?) means
that when checking whether §1 is a subset of §2, the context is set by §2.
For instance, when judging whether §TOMAT0 is a subset of §VEGETABLE/ we
focus our attention on the features that are crucial to the definition of the
vEGETABLE concept. Using c(?) can be interpreted as another effect of this

4.2 SUBSETHOOD |

context setting: The sensitivity parameter ¢ determines the fuzziness
of the concept and using ¢(?) translates to assuming that we treat all
concepts in the current context to be as imprecise as Sa.

A drawback of using the same ¢ and W for the computation of

M(I(S,S5)) and M(S), is that now the third property of the fuzzy
degree of subsethood, namely that Sub(Sl, Sp) = 1is equivalent to
S, C Sy, does no longer hold. While Sy C S, still implies Sub(Sl, 52)
1, we can easily find counterexamples for the other direction: Let
S = (S, uo,c, W) be a concept and define S = (S, po, ¢ , W) with d<ec.
One can easily see that with our proposed solution Sub(S’,S) = 1, but
that 5’ ¢ 5. In practical applications, however, this is not necessarily a
problem: Once we have established that Sub(gl, gg) = 1, we can simply
check the conditions from Proposition 4.5 to decide whether S C Ss.

Unfortunately, the fact that our intersection operation uses overexten-
sion as a repair mechanism prevents us from ensuring that .S ub(S1, 5’2) €
0, 1] in all cases, even when using identical values for c and W. A patho-
logical example for this can be seen in Figure 4.7b.There seems to be no
general way of resolving this issue which does not come with serious
drawbacks: One could ensure that I(S,55) C) by using underex-
tension instead of overextension in defining the intersection. However,
as already mentioned in Section 3.1.1, this may force us to make an
arbitrary choice about which cuboids to remove. Moreover, if the raw
intersection result needs to be approximated by a cuboid (see Sections
3.1.2 and 3.1.3), this typically also results in an overextension. If the
intersection operation is expected to return a cuboid-based result, this
approximation step cannot be easily removed. Relaxing the requirement
that the intersection operation must return a single valid concept would
be another way of avoiding overextensions and problematic cases like
in Figure 4.7b. However, this would be a strong modification of our
work so far.

The only way of completely ensuring that the degree of subsethood is
always confined to the interval [0, 1] is to use the standard definition for
the intersection of fuzzy sets from Definition 3.3, namely pz 3, (x) =
min(pg (), pg,(x)), instead of our modified intersection operator. One
can argue that for computing the degree of subsethood, the intersection
is only an intermediate result and does not need to be a valid concept.
However, if the intersection result is not a valid concept, then our closed
formula for computing M is not applicable. Therefore, one would need
to compute the size of the intersection by using numerical optimization
techniques. As we have seen in Section 4.1.3, the runtime of such a
numerical optimization is, however, prohibitively large even for simple
examples. For now, we assume that the example from Figure 4.7b is
pathological and does not occur too often in practice. Nevertheless,
more research is needed in order to find a way for overcoming such
problematic cases.

165

Disadvantage of our
proposed solution

Another problem
based on
overextensions

Using the standard
intersection is not an
option

166

Implementation

Investigating the
overextension-based
problem

Interpreting the
results

Fruit space example

Crisp subsethood of
GRANNY SMITH and
APPLE

| MEASURING RELATIONS BETWEEN CONCEPTS

2 Dimensions | 4 Dimensions 8 Dimensions

2 Cuboids 13 o} 0
4 Cuboids 28 0. -5

Table 4.5: Absolute number of cases with Sub(gl, 52) > 1 for 10,000 randomly
generated pairs of concepts for different numbers of cuboids per
concept and different dimensionalities of the conceptual space.

4.2.2 Implementation and Example

Both the crisp and the fuzzy definition of subsethood can be imple-
mented easily: In order to decide whether Sy C S5, one simply needs
to check the conditions from Proposition 4.5. In order to compute
Sub(gl, §2) according to Definition 4.6, one can make use of the imple-
mentations of (51, S5) and M(S), which were described in Sections
3.1.3 4.1.3, respectively. It is obvious that the runtime for computing
subsethood directly depends on the runtime of these two operations.
We therefore did not conduct dedicated runtime experiments for the
degree of subsethood.

In the Section 4.2.1, we have seen that in some cases, we may get
the unintuitive result of Sub(gl, 52) > 1 (cf. Figure 4.7b). In order to
confirm our suspicion that this happens only in pathological cases, we
have computed the degree of subsethood for 10,000 randomly generated
pairs of concepts, varying both the number of cuboids per concept
and the number of dimensions in the conceptual space. The absolute
number of cases with Sub(S;, Sp) > 1 among these 10,000 examples is
reported in Table 4.5.

As we can see, these cases are indeed quite rare in practice with
relative frequencies of less than 0.3%. Since the concepts we expect to
use in practical applications are not randomly generated but based on
actual observations, one may speculate that they are even unlikelier to
have a structure as depicted in Figure 4.7b. Thus, while Sub(gl, §2) >1
is not satisfactory from a theoretical point of view, it does not seem to
be a serious limitation in practice.

Let us now again look at our fruit space from Section 2.3.4 in order
to illustrate our definition of subsethood. Table 4.6 lists selected fruit
concepts (namely, appLE, GRANNY SMITH, and APPLE-PEAR, Which was
defined as the intersection of ApPLE and PEAR in Section 3.1.3).

One can easily see that §GRANNY Sy © S ,peis, because all conditions
from Proposition 4.5 are fulfilled. Note that §APPLE-PEAR Z §APPLE, because
for drouno We find that:

C(APPLE-PEAR) w (APPLE-PEAR) (APPLE-PEAR)

5SHAPE dROUND

=5-1375-1.0<5-1.5-1.0

Please note that this combination was not included in our experiments due to the
prohibitively large runtime of the subsethood operation in this scenario.

4.2 SUBSETHOOD |

167

Concept

As

Wb coror

w Ssuare

W6 us1e

GRANNY

SMITH

(0.550, 0.700, 0.350)

(0.600,0.800, 0.450)

1.0

50.0

1.00

1.00

1.00

APPLE

A

(0.50, 0.65, 0.35)
(0.65,0.65, 0.40)
(0.70, 0.65, 0.45)

(0.80,0.80, 0.50)
(0.85,0.80, 0.55)
(1.00, 0.80, 0.60)

1.0

20.0

0.50

1.50

1.00

APPLE-PEAR

A

(0.500,0.625, 0.350)

(0.700,0.625, 0.450)

0.4724

20.0

0.500

1.375

1.125

Table 4.6: Three concepts used to illustrate our subsethood computations.

APPLE) _lU(APPLE)) (APPLE)

6SHAPE

dROUND

It is also obvious that there is no crisp subsethood relation between
GRANNY SMITH and APPLE-PEAR. Our implementation confirms this:

apple.crisp_subset_of(granny_smith)

False
apple.crisp_subset_of(apple-pear)

False
granny_smith.crisp_subset_of(apple)

True
granny_smith.crisp_subset_of(apple-pear)

False
apple-pear.crisp_subset_of(apple)

False
apple-pear.crisp_subset_of(granny_smith)

False

Now let us look at the values returned when computing the fuzzy
degree of subsethood:

apple.subset_of(granny_smith)

0.07635041551246535
apple.subset_of(apple-pear)

0.05762893130047096
granny_smith.subset_of(apple)

1.0
granny_smith.subset_of(apple-pear)

0.06859652328421048
apple-pear.subset_of(apple)

1.0
apple-pear.subset_of(granny_smith)

0.12933550211333572

As one can see, Sub(:S’JGIWWY SvrTH > §APPLE) = 1, as we would expect.
Moreover, Sub(g’APPLE-PEAR, §APPLE) = 1 because differences in ¢ and W
are ignored when computing the fuzzy degree of subsethood. All other
degrees of subsethood are rather small, but still positive, since the
intersection between any two concepts is never completely empty.

Crisp subsethood of
GRANNY SMITH and
APPLE-PEAR

Considering soft
subsethood

Interpretation

168

Implication for
grounding rule-based
systems

Relation to Rickard’s
co-occurrence
statistics

Classical definitions
of implication for
fuzzy sets

Shortcomings in our
context

| MEASURING RELATIONS BETWEEN CONCEPTS

4.3 IMPLICATION

Implications play a fundamental role in rule-based systems and all
approaches that use formal logics (i.e., the symbolic layer, cf. Section
1.2.3) for knowledge representation. It is therefore desirable to define
an implication operation on concepts, such that one is able to express
facts like ApPLE = RED within our formalization.

Such an implication operation can also be used to obtain the co-
occurrence statistics used in Rickard’s formalization of conceptual
spaces [329]: Recall from Section 2.5.2 that Rickard represents a concept
like APPLE as a matrix containing the co-occurrence statistics of its
properties (e.g., RED and sweeT). These co-occurrence statistics can be
interpreted as conditional probabilities IP (Sgep | Ssweer) and P (Ssweer | Srep)
and are in Rickard’s account estimated based on frequencies in a given
set of examples. If we assume that AppPLE, RED, and sweET are represented
as fuzzy conceptual regions, then these conditional probabilities can
be grounded in a fuzzy degree of implication: IP(Skep|Ssweer) can be
computed by measuring to which degree the implication APPLE A RED =
SWEET is considered to be true. Thus, the co-occurrence statistics used by
Rickard can be extracted from our representation, making our approach
at least as expressive as his.

In Section 4.3.1, we argue that a soft degree of implication can be
obtained by reusing the degree of subsethood. In Section 4.3.2, we then
illustrate this intuition using our fruit space example.

4.3.1 Definition

In the fuzzy set literature [280], implications are defined by general-
izing the truth table of the crisp implication to fuzzy truth values: A
fuzzy implication is a function I'mpl : [0, 1] x [0,1] — [0, 1] such that
Impl(0,x) = 1 (a false antecedent implies anything), Impl(1,y) =y (a
true antecedent can be ignored), and I'mpl(x,1) = 1 (a true consequent
is implied by anything). Depending on the additional requirements
for this function (e.g., monotonicity or continuity), one can find dif-
ferent fuzzy implications, for instance the Godel implication with
Impl(z,y) = 1for x < yand I'mpl(x,y) = y otherwise.

This notion of implication is, however, defined on pairs of truth values
and not on pairs of fuzzy sets. It is thus similar to fuzzy conjunction
and disjunction operators. When applying a fuzzy implication to a pair
of fuzzy sets, the result is therefore again a fuzzy set, which describes
the local validity of the implication for each point in the underlying
space. However, if we want to check whether being an appLE implies
being rED, and if both appLE and RED are represented as fuzzy sets, we
intuitively expect a single number that indicates the degree to which
the implication between the two sets can be considered to hold. This is
a more coarse-grained view than the one provided by standard fuzzy
logic, but in our opinion better suited for supporting abstract reasoning.

4.3 IMPLICATION |

169

Concept Ag p- pt Ko c w
Wscoror Wégpe Wérpsme
A (0.70,0.45,0.00) | (0.80,0.55,0.10) = 1.0 | 40.0 | 0.50 0.50 2.00
(0.50,0.65,0.35) | (0.80,0.80,0.50)
A (0.65,0.65,0.40) | (0.85,0.80,0.55) | 1.0 | 200 | 050 | 150 | 1.00
(0.70,0.65,0.45) | (1.00,0.80,0.60)
{6coror} | (0.90, — o0) | (1.00,+00,+0) @ 1.0 | 40.0 1.00 - -
{0coror} | (0.45, — oo) | (0.55,400,+00) | 1.0 | 40.0 1.00 - -
NONSWEET | {0ms} | (—00,—00,0.00) & (400,4+00,0.20) 1.0 | 14.0 - - 1.00

Table 4.7: Definitions of several fruit concepts and properties used to illustrate
the implication operation.

In our context, the degree of implication between two geometrically
represented concepts corresponds to their degree of subsethood: If Sl
is a subset of Sg, then for any pomt x € CS, being contained in 51
implies also being contained in Sy. Whether belonging to the appLE
concept also implies belonging to the rRED concept can be quantified
by checking whether the ArpLE region is a subset of the rReD region
within the coLor domain. We therefore propose to simply re-use our
soft notion of subsethood from Definition 4.6 in order to quantify the
degree of implication between two concepts:

Definition 4.7 (Degree of Implications for Concepts)
Let Sy and Sy be two concepts. Their degree of implication I mpl(S1, Sa) is
defined as their degree of subsethood Sub(S), Ss):

Impl(gl, gz) = Sub(gl, §2) = =

4.3.2 Implementation and Example

Implementing the implication operation is trivial as we simply need to
call the method for computing the degree of subsethood. The runtime
of the implication thus equals the runtime of the degree of subsethood,
which is directly based on the runtimes of size and implication (cf.
Section 4.2.2). Please note that of course also the problematic cases of
S ub(g'l, §2) > 1 observed in Section 4.2.1 carry over to our implementa-
tion of the implication operation. However, as we have seen in Section
4.2.2, such pathological cases appear quite infrequently in practice.

Let us now look at the implication relations between several concepts
and properties from our fruit space (see Table 4.7 and Figure 4.8). Let
us first consider the relation between LemoN and NONSwEET, which can
be evaluated in our code as follows:
lemon.implies(non_sweet)

1.0

non_sweet.implies(lemon)
0.6000000000000001

Re-using the degree
of subsethood

Implementation

Fruit space example:
LEMON and
NONSWEET

170

Interpretation

Orthogonal domains:
RED and NONSWEET

Implication works in
a domain-wise way:
APPLE and RED

Interpretation

| MEASURING RELATIONS BETWEEN CONCEPTS

Conceptinspector

First dimension 2D visualization - hue, round
T T

3D visualization - hue, round, sweet

® hue
© round
© sweet

4

Second dimension

© hue
@ round
© sweet

Third dimension

© hue
© round 1
@ sweet

02 o4 g 08 10 0.0 0.0
Concepts hue

0.2
Granny Smith hue
apple 2D visualization - round, sweet

banana

blue
green
lemon
nonsweet
orange
pear

red

0.0 0.2 0.4 0.6 08 10
mund

Figure 4.8: Screenshot of the ConceptInspector tool, illustrating of the con-
cepts and properties for the implication example: LEMON (1), APPLE
(2), RED (3), GREEN (4), NONSWEET (5).

As one can see, Impl(S;gmon, §N0NSWE£T) = 1 which means that all
lemons are not sweet. However, Impl(Syonsweers Stemon) =~ 0.60 which
indicates that not all non-sweet things are lemons.

If the two concepts under consideration do not share any common
domains, they also do not have any implication relation:
red.implies(non_sweet)

0.0

non_sweet.implies(red)
0.0

Let us now highlight some general properties of our implication
operation by considering AppLE and RED:
apple.implies(red)
0.2727272727272726

red.implies(apple)
1.0

The fact that I mpl(gAPPLE, §RED) ~ 0.2727 indicates that there is only
a partial overlap between the regions describing appLE and RED, re-
spectively — in other words, there are some apples which are not red.
Although I mpl(gRED, gAPPLE) = 1, this does not mean that all red things
are apples. For example, also for a TomaTo concept, we might get
I mpl(gRED, §TOMATO) = 1. If appLE and TOMATO are two different concepts
(occupying for example different regions in the Taste domain), then it
clearly does not make any sense to say that all red things are both apples

4.4 CONCEPT SIMILARITY |

and tomatoes. It is important to keep in mind that the implication is
computed as the degree of subsethood only on the coLor domain. As
stated in Section 4.2.1, we do not look at the full AppLE concept when
computing the degree of implication/subsethood, but only at its pro-
jection onto the coLor domain. This projection can be interpreted as a
property describing the typical coLor of apples. Therefore, the correct
interpretation of the implication is that all colors that are classified as
RED are also classified as appLE colors (and similarly, as Tomato colors).
An artificial agent could conclude that all rRep things are apples only if
AppLE is the only concept S for which I mpl (§RED, S) reaches a high value.
Then, apples would be the only rep things known to the agent. However,
if we also have another concept like TomaTo, then this conclusion cannot
be drawn. Overall, a high value of I mpl(gl, §2) where Ag, C Ag, does
not necessarily tell us that the implication x € §1 =1 € §2 must be
true for all x € C'S, but only that it can be true for some z € C'S.

Overall, we can thus say that high values of Impl (§1, 5’2) are by
themselves not very diagnostic if Ag, ; Ag, (e.g., I mpl(gRED, §APPLE)),
because the implication is evaluated on Ag, only, not taking account
variations in other domains in Ag, \ Ag,. High values of I mpl(gl, §2)
are, however, quite informative if Ag, C Ag, (e.g., I mpl(gAPPLE, §RED)),
because the implication is evaluated on all domains of Ag,.

On a related note, we would like to mention that while the fact that
I mpl(gRED, S sepie) = 1 18 by itself not very informative, a combination
of multiple such implications on different domains can be interesting:
If also I mpl(gROUND, §APPLE) = 1 and Impl (gswm, §APPLE) = 1, then we
have information from different domains that are orthogonal to each
other. If there is no other concept S other than appLe which has also
high values for all three implications, then we can be quite confident in
saying that "a thing that is RED, RoUND, and swekT at the same time is
usually an APPLE".

Simﬂaﬂy/ also I mpl(] (§RED7 gROUND? §SWEET)7 gAPPLE) =1is C_[Uite infor-
mative, because the intersection of the three properties is defined on the
full fruit space. Also the value of Impl(I (§ APPLES gNONSWEET)? §GREEN) can
give valuable information when being compared to Impl(APPLE, §GREEN):
(apple.intersect_with(non_sweet)).implies(green)

0.2857142857142858

apple.implies(green)
0.18181818181818182

While an AppPLE is in general not necessarily GReeN, an appLE which is
NONSWEET has a much higher expectation of being GreeN. Essentially, this
captures the correlation between the Taste and the coLor domain in the
APPLE concept and can be linked to our argument about co-occurrence
statistics from above.

4.4 CONCEPT SIMILARITY

The similarity of concepts can be used as a basis for commonsense

171

General
interpretation of
implications

Orthogonal
information from
multiple domains

Implications of
intersections

Relation to
correlations

Similarity for
commonsense
reasoning

172

Similarity of points

Towards similarity of
fuzzy concepts

Criticism of
similarity spaces

Violations of
minimality in
recognition
experiments

| MEASURING RELATIONS BETWEEN CONCEPTS

reasoning in various contexts. Firstly, similarity plays an important role
in recommendation systems: If we know that Alice enjoyed the "Lord
of the Rings" trilogy, then we can expect that she will also like the "The
Hobbit" movies due to the similarity of the respective movie trilogies
[123]. Moreover, the similarity of concepts can give information about
their potential usage: From a perceptual point of view, pencils and
crayons are quite similar to each other. If an autonomous agent now
observes that pencils are used for writing or drawing, it can generalize
this usage to crayons. Finally, conceptual similarity can also be used for
finding appropriate substitutes. Let us assume that a household robot
tries to make an apple pie. However, there are currently no apples in
the kitchen, only pears and oranges. If the robot is able to extract from
its conceptual space that AppLE is more similar to PEAR than to ORANGE,
it can infer that it should use the pears as a substitute, not the oranges.

In Section 2.1.1, we have introduced Géardenfors” definition of simi-
larity between points in a conceptual space:

Sim(z,y) = e cd@y)

This definition can, however, not easily be generalized from points to
fuzzy conceptual regions and has been criticized in the literature. In
Section 4.4.1, we discuss Tversky’s criticism of distance-based accounts
of similarity [412] and how this criticism can be addressed in the
conceptual spaces framework. Afterwards, we propose two definitions
of conceptual similarity in Section 4.4.2, which are then illustrated in
Section 4.4.3 by using our fruit space example.

4.4.1 Similarity as Inverse Distance

Before we formalize the similarity of conceptual regions, we would like
to discuss to what extent psychological similarity between individual
observations can be represented in a spatial way. In his very influential
article [412], Tversky has argued that despite being widely used, simi-
larity spaces are not always adequate for representing psychological
similarity. He especially criticizes that dissimilarity is identified with a
distance metric in the similarity space. A distance metric needs to fulfill
three properties (minimality, symmetry, and the triangle inequality, cf.
the proof of Lemma 2.1) and Tversky argues that all three of them are
not necessarily fulfilled for dissimilarities:

The minimality criterion asserts thatVz,y € C'S : d(z,y) > d(z,z) = 0.
Tversky considers recognition experiments as a counter-example for
this assertion: In recognition experiments, participants are shown
pairs of stimuli for a very short amount of time and are then asked
to report as fast as possible whether the two stimuli are identical
or different. One can represent dissimilarity by the probability of a
stimulus pair to be judged as different. Tversky argues, that in this
setting, we can find two different stimuli = # y for which empirical data
suggests that d(z, z) # d(y, y). However, minimality would require that

4.4 CONCEPT SIMILARITY |

d(z,z) = d(y,y) = 0. Moreover, one can sometimes observe cases with
d(x,y) < d(x,z), which also violates minimality.

Symmetry requires that Vz,y € C'S : d(z,y) = d(y,). Here, Tversky
points out that a stimulus x being similar to a stimulus y essentially
means that "z is like y". This is a directional statement, which might
not be reversible. He argues that in natural language, usually the more
salient stimulus is chosen as y (such as in "an rLipsE is like a CIRCLE"
rather than "a circte is like an eLLIPSE"). Moreover, statements of the
type "z is like y" often involve metaphorical mappings. Tversky uses
the following example to support this point of view: If we say "a MaN is
like a TREE", we imply that a MaN has roots (e.g., in his home region).
However, if we say "a TReE is like a MAN", we imply that a TREE has a life
history. Tversky concludes that symmetry is therefore often violated
for dissimilarity judgments.

The triangle inequality is fulfilled if Vz,y, z € CS : d(z,y) + d(y, z) >
d(z,z). Again, Tversky is able to give a counter-example: Cusa and
Sovier Russia are judged to be similar because of their political system.
Moreover, CuBa and Jamaica are considered to be similar because
of their geographical location. The triangle inequality would imply
that Sovier Russia and Cusa are also relatively similar to each other.
However, they are typically considered to be quite dissimilar, because
they share no common features. Therefore, also the triangle inequality
is easily violated.

In addition to the three properties mentioned above, Tversky intro-
duces the diagnosticity effect as another empirical observation which
cannot be easily explained if dissimilarity is interpreted as spatial
distance. This effect takes place if the similarity judgment between
two stimuli is influenced by other stimuli in the current context. For
instance, Tversky describes the results of a study where participants
were asked to select which country is most similar to Austria. When
presented with the options Swepen, PoLanp, and HuNGary, partici-
pants mostly selected Swepen. However, when presented with SweDEN,
Norway, and HunGaRy, participants picked HunGary. At the time of
the experiment, PoLanp and HunGary were both communist coun-
tries, while SwWepen and Austria were capitalist democracies. In the
first case, it thus seems that the political and economic system was
the most crucial aspect for the similarity judgment. In the second
case, however, geographical information became more pertinent with
SwepeN and Norway being Scandinavian countries, and Austria and
Huncary being located in central Europe. If dissimilarity is represented
by distance in a similarity space, the distances between Austria and
SwepeN and between Austria and HunGary should, however, not be
affected by the context given through PoLanD and Norway, respectively.

Overall, Tversky [412] concludes that spatial representations of sim-
ilarity are often not adequate. In order to solve the problems out-
lined above, he proposes a feature matching technique as an alternative
to spatial representations of similarity. In his proposal, each stim-
ulus x is represented as a set of binary features X (which can be

173

Violations of
symmetry due to
directionality of
similarity

Violations of the
triangle inequality
based on shared
features

The diagnosticity
effect: similarity is
context-dependent

Tverksy’s feature
matching technique

174

Feature matching
and conceptual
spaces

Accounting for
Toersky's criticism
with contrast vectors

Violations of
symmetry based on
distinctive
characteristics

Violations of the
triangle inequality
based on distinctive
characteristics

| MEASURING RELATIONS BETWEEN CONCEPTS

present or absent). The similarity between two stimuli z and y is de-
fined as a function of their common and different features, namely
Sim(z,y) = fF(XNY,X\Y,Y \ X). Tversky showed that this account
of similarity is capable of solving the aforementioned issues.

This proposed representation of a stimulus by a set of features is
easily applicable to concepts. For instance, an AppLE can be described by
being RED, ROUND, and swekT. In our opinion, Tversky’s feature matching
approach can, however, not be used for properties such as RED, ROUND,
and swekT, since they cannot be easily expressed in lower-level terms.
Moreover, the feature matching approach requires the identification
of all relevant features for all stimuli which in itself is not a trivial
process.® One can thus argue that Tversky’s approach suffers from the
symbol grounding problem [190] (cf. Section 1.2.3). In contrast to this,
the conceptual spaces framework explicitly focuses on the grounding of
properties in perception by using a spatial representation of similarities.
Nevertheless, Tversky’s general criticism of similarity spaces needs to
be addressed.

Recently, Sileno et al. [369] have provided an account for Tversky’s
criticism within the theory of conceptual spaces. They do so by using
the contrast vectors introduced by Dessalles [124] (cf. Sections 2.4.1
and 3.6.2). In this approach, metaphors such as "PeTEr is like a LION"
are interpreted as double contrast: Sileno et al. compute the contrast
vector between PeTer and the pErsoN prototype as well as the contrast
vector between Lion and the aNimAL prototype. The metaphor is valid if
both contrast vectors are similar to each other, i.e., point into similar
directions. In the given example, one would assume that both contrast
vectors have large entries with respect to the sTReNGTH dimension, i.e.,
both individuals are identified as stronger than the average individual.
Sileno et al. follow Tversky’s argumentation by furthermore requiring
that the difference to the prototype should be more distinctive for the
second stimulus (i.e., LioN). Please note that this alternative definition
of conceptual similarity is no longer based on distances in the similarity
space, but on the similarity of directions inside this space. Sileno et al.
show how contrast vectors can solve the problems posed by Tversky
for symmetry, the triangle inequality, and the diagnosticity effect:

The similarity judgments based on contrast vectors do not necessarily
fulfill symmetry. For instance, "TEL Aviv is like NEw York" activates the
distinctive characteristics of New York (i.e., the ways in which it differs
from the average city), while "NEw York is like TeL Aviv" activates
the distinctive characteristics of TeEL Aviv, thus leading potentially
to different results. This effect is based on the assumption that the
difference of the second item to its prototype is always more pronounced
that the respective difference of the first item to its prototype.

The violation of the triangle inequality can be explained by the type of

This can be related to the frame problem [284] in Al, which describes the difficulty of
limiting the set of beliefs about the environment that need to be changed after executing
an action — in short, how to know which things can be expected to stay the same unless
explicitly defined otherwise.

4.4 CONCEPT SIMILARITY |

contrast vector being used in the similarity judgments. When comparing
the contrast vectors between Cusa and the prototypical country on the
one hand, and between Sovier Russia and the prototypical country on
the other hand, we expect both of these vectors to have large entries
with respect to the dimension representing the POLITICAL AFFILIATION.
Moreover, the respective contrast vectors for Cusa and Jamaica have
large commonalities with respect to the GEoGraPHICAL LOCATION. How-
ever, the contrast vectors for Sovier Russia and Jamaica do not have
considerable commonalities with respect to any of the dimensions.

The diagnosticity effect can be explained by constructing a prototype
of the set of countries under consideration. In the first case (where
Austria is deemed to be more similar to Swepen than to HuNGary in the
context of PoLanD), Austria differs from this prototype mostly in the
direction of POLITICAL AFFILIATION (as does SWEDEN). In the second case
(where PoLaND is replaced by Norway), the prototype changes, and the
difference with respect to the GEOGRAPHICAL LOCATION becomes more
prominent. Thus, by manipulating the set of alternatives, one implicitly
also manipulates the prototype and thus the contrast vectors, leading
potentially to different similarity judgments.

Finally, Sileno et al. argue that violations of minimality can be ex-
plained as follows: If a given stimulus z is close to the prototype p of
the overall group, then also any other stimulus y which is also close
to the group prototype p might be a satisfactory choice in recognition
experiments — in both cases, the contrast vector between z and p, and
between y and p, respectively, is very small and not very expressive. If
stimulus identity is computed by comparing contrast vectors, then very
small contrast vectors may simply lie below the detection threshold for
differences, and may thus be regarded as identical.

Sileno et al. conclude that the criticism by Tversky can be circum-
vented if contrast is used as basis of similarity rather than geometrical
distance. They furthermore point out that Tversky’s feature matching
approach requires to estimate additional model parameters which
determine how the common features and the distinctive features are
weighted against each other. Their contrast-based approach on the other
hand is free of such parameter fitting issues.

Our formalization of conceptual spaces does not use contrast vectors
to define the similarity of points. Since we define the similarity of points
as an exponentially decaying function of their distance (in agreement
with Gérdenfors” original proposal [179] and based on findings by
Shepard [368]), we shall thus also comment on the issues pointed out by
Tversky [412]. In our opinion, three of the four effects can be explained
through the the salience weights which express the relative importance
and prominence of the respective domain or dimension in a given
context (cf. [179, Section 4.3.3]). Please recall that in our formalization
we compute the distance within a conceptual space as follows:

Definition 2.7 (Combined Metric)
Let C'S be a conceptual space based on dimensions d € D, which are partitioned

175

Explaining the
diagnosticity effect
based on contrast to
the group average

Violations of
minimality due to
small contrast
vectors

Contrast vectors as a
solution to Tversky’s
criticism

Accounting for
Toersky’s criticism
without contrast
vectors

176

Salience weights for
representing context

Violations of
symmetry by using
different salience
weights

Violations of the
triangle inequality
based on domain
weights

Explaining also the
diagnosticity effect
with domain weights

| MEASURING RELATIONS BETWEEN CONCEPTS

into domains D D § € A. Let W be the set of positive domain weights ws for
all 6 € Awith) 5.5 ws = |Al. Let moreover Wi be the set of positive domain
weights wq for all d € 6 with), swq = 1. Let furthermore z,y € CS.
Their distance according to the combined metric is defined as follows, where
W = (Wa,{Ws}sea):

dé(xay7W):Zw5d6E (xavalS):Z ws - de"xd—ydP
SEA dEA ded

By manipulating the salience weights ws and wg, we can control
the influence of the dimension-wise distances |z4 — y4| on the overall
distance between x and y. These salience weights thus represent the
current context in which the similarity judgment is made. Manipulating
these salience weights can reproduce the effects observed by Tversky:

When discussing the violation of symmetry, both Tversky [412] and
Sileno et al. [369] assume that the second stimulus in a comparison
(such as "TeL Avrv is like NEw York") sets the context of the comparison.
We can therefore use the salience weights associated with the second
stimulus when computing the similarity of two stimuli. One can easily
see that different salience weights lead to different semantic distances,
and thus to a violation of symmetry. This can also be related to our
arguments from Section 4.2.1 in the context of the subsethood operation,
where we also advocated to use the salience weights and sensitivity
parameter of the second concept.

Also the example with respect to the triangle inequality can be solved
through salience weights. Let us for now assume that our conceptual
space consists only of two domains reflecting the political system and
the geographical location, respectively. Cusa and Sovier Russia have a
small distance within the political domain, but a large distance with
respect to geography. Their similarity becomes large if we put a large
domain weight on the political domain and a relatively small weight
on the geographic domain. Cusa and Jamaica on the other hand have
a large distance in the political domain, but a small distance in the
geographic domain. By shifting the salience weights towards the latter,
we can again achieve a high similarity value. Finally, Sovier Russia and
Jamaica have relatively large distances with respect to both domains.
No matter how we choose the domain weights (assuming that they
have to be normalized), we cannot achieve a small distance and thus
high similarity. Therefore, Sovier Russia and Jamaica are judged to be
not very similar to each other.

Finally, the account of the diagnosticity effect given by Sileno et al.
[369] can be adapted to our proposal: If the context is set by Austria,
SwepeN, Huncary, and Poranp, then the political domain receives a
large salience weight as it is very discriminative in this context. This
results in SWEDEN being the most similar country to Austria based
on their shared political system. On the other hand, if the context
includes Austria, SWeDEN, HunGaRry, and Norway, the geographic
domain becomes more prominent and receives a higher salience weight

4.4 CONCEPT SIMILARITY |

than the political domain. In this case, HunGary will be considered
most similar to Austria based on their geographic proximity.

While we can therefore model the three effects discussed above by
using salience weights, it is still unclear how to exactly determine the
salience weights of the current context and we do not offer any general
way of doing so in our formalization. Here, the approach taken by
Sileno et al. [369, 370] (cf. Section 2.3.3) seems to be a promising avenue
of research: In principle, one could determine the salience weights by
computing the entries of the contrast vector and normalizing them
appropriately.

The violation of the minimality criterion cannot be addressed with
salience weights. In addition to the argumentation by Sileno et al. [369]
we can give another possible explanation: Perception corresponds in the
case of the conceptual spaces framework to mapping objects from the
real world onto points in the similarity space. In general, we can assume
that perception is a noisy process, which means that the coordinates
in the conceptual space are subject to small random translations. If
an object is observed for a longer period of time, the multiple noisy
observations can be aggregated into a stable estimate (e.g., by taking
a moving average of the coordinates). However, in the speeded clas-
sification tasks discussed by Tversky, objects are only presented for a
very brief amount of time. One could thus argue that the noise cannot
be filtered out successfully and that the distances are now computed
between noisy estimates rather than true coordinates, leading some-
times to erroneous results, such as a violation of the minimality property.

We think that the arguments made above show that Tversky’s criticism
can be addressed withing the original conceptual spaces framework
by manipulating the salience weights (see also [179, Section 4.3.3] for a
similar argumentation). Albeit raising important issues, Tversky’s criti-
cism [412] does therefore not prevent our formalization from providing
a meaningful way of measuring similarity. So far, we have confined our
discussion to dissimilarity as a distance between points in the conceptual
space. In the following, we attempt to generalize the notion of similarity
from points to fuzzy conceptual regions.

4.4.2 Definition

In this section, we propose two different definitions for the similarity of
fuzzy concepts. Whenever the two concepts are defined on two different
sets of domains Ay # Ay, we first project them onto their set of common
domains A" = A; N Ay before computing their similarity value. For
example, the conceptual similarity of BasesaLL and appLE should not be
zero, because both have a similar suape and size. However, ApPpLE is also
defined on the Taste domain, but BasesaLL presumably not. Thus, when
judging the similarity of the concepts BaseBaLL and APPLE, we consider
only their set of common domains. Since properties from different
domains such as sweer and RouND do not share any commonalities (i.e.,

177

How to obtain
salience weights

Violations of
minimality due to
noisy observations

Summary

Similarity only
considers common
domains

178

Criteria for
similarity functions

Perfect similarity
implies subsethood

Self-similarity is
maximal

Directionality of
similarity for subsets

Similarity based on
distances of cores
violates the first
criterion

| MEASURING RELATIONS BETWEEN CONCEPTS

0.9
0.8
0.7 _
0.6 S’ '
05 a \
0.4 . ',
0.3 v L8
0.2

0.1 S

Figure 4.9: Two fuzzy sets S and S’ with identical cores, weights, and sensitiv-
ity parameter, for which similarity functions based on the distance
of cores violate the first criterion.

A’ = (), their similarity is defined to be zero.

We expect that any similarity function Sim(S;, S2) € [0,1] fulfills a
number of mathematically formulated semantic constraints:
Definition 4.8 (Similarity Function)

A function Sim(Sy, Sa) € [0,1] is called a similarity function, if it fulfills the
following criteria for all concepts S, Sa:

1. <Sim(§1,§2) = 1) = <Sub(§1,§2) = 1)
2. (51 - §2) = (Sz’m(§1, Sy) = 1)
3. (§1 c §2) = (s¢m(§1, Sp) > Sim(§2,§1))

The first criterion states that if 51 is perfectly similar to 52, then those
two concepts should also stand in a subsethood relation. This requires
a strong semantic relationship to hold between the two concepts. One
could also require that §1 = §2, but this seems to be too strong as it
would prevent a perfect similarity of subordinate concepts (e.g., GRANNY
SmiTh) to their superordinate concept (e.g., APPLE).

The second criterion requires that the similarity of a given concept to
itself is always maximal and can be related to the minimality criterion
discussed in Section 4.4.1.

The third criterion finally prevents supersets from having a higher
similarity to their subsets than the other way around. It ensures, for
instance, that .S im(‘SGRANNY SMITH » SAPPLE) > S im(SAPPLPh SGranny SMITH)‘

If we base the similarity of two concepts §1 and §2 on the distance
between their cores S; and S; (e.g., by computing their minimal dis-
tance dimin (51, 52) = mingeg, minyeg, d(z, y), their Hausdorff distance
dpg(S1,S2) = max(sup,eg, infyes, d(z,y), sup,eg, infzes, d(z,y)), or the
distance of their prototypical points), we always violate the first property
from Definition 4.8: Consider S = (S, po,c, W) and S = (S, up,c, W)
with pfy < o as illustrated in Figure 4.9. Clearly, S’ C S and therefore
Sub(S’,S) = 1. On the other hand, Sub(S, S') < 1. As the cores are

4.4 CONCEPT SIMILARITY |

identical, their distance is zero. If we use Sim(gl, §2) = ¢~ cd(51,52)
then Sim(S, ') = 1, but Sub(S, S') < 1. We therefore exclude these
possible definitions from our consideration.

If we define Sim(gl, gg) = maXges, Mg, (x), we always violate the

second property from Definition 4.8 for S; = Sy with po < 1. We
therefore do not consider this possible definition any further.

We now propose two definitions that fulfill all of the requirements
stated above. Firstly, we can again reuse our definition of subsethood
from Section 4.2.1:

Proposition 4.6 (Simg is a Similarity Function)

Simg(S1, S2) = Sub(S1, S2) is a similarity function according to Definition
4.8.

Proof. See Appendix C.3. O

Secondly, we can use the Jaccard index }fxgg} , which is a common
similarity measure between sets:

Proposition 4.7 (Sim is a Similarity Function)

Sim(S1,S2) = % is a similarity function according to Definition
4.8.

Proof. See Appendix C.3. O

Both proposed definitions are similar to each other in the sense
that they look at the overall fuzzy sets and not just at their cores.
Moreover, they build upon our definitions of intersection, union, and
size. The Jaccard index is symmetric, whereas the degree of subsethood
is asymmetric. Depending on the application scenario, either one of
them can be used. The symmetric nature of the Jaccard index Sim
might be more convincing from a mathematical perspective. On the
other hand, the asymmetric nature of Simg matches psychological
evidence suggesting that similarity judgments by humans tend to be
asymmetric [412] as discussed in Section 4.4.1. In principle, also the
Jaccard index could be made asymmetric by always using the salience
weights of the second concept instead of the interpolated weights
returned by the intersection and union operators (cf. our definition
of subsethood in Section 4.2.1). We do, however, not consider such
a variant, since it seems somewhat counterintuitive to modify the
symmetric Jaccard index in such a way.

4.4.3 Implementation and Example

Both definitions of similarity can be easily implemented based on
existing functionality (namely, concept size, intersection, union, and
subsethood). It is clear that the runtime for computing similarity de-
pends directly on the runtime of these operations. We therefore did not
conduct separate runtime experiments but refer back to the respective

179

Similarity as highest
membership violates
the second criterion

Similarity as
subsethood

Similarity based on
the Jaccard index

Commonalities and
differences between
the two approaches

Implementation

1

80

| MEASURING RELATIONS BETWEEN CONCEPTS

Fruit space example

Symmetry and
self-similarity

Concept As D~ pt Ko c w
Wécoron | Wsiare | Wéinaere
PEAR A | (0.50,0.40,0.35) = (0.70,0.60,0.45) 1.0 24.0 | 0.50 1.25 1.25
ORANGE A | (0.80,0.90,0.60) | (0.90,1.00,0.70) 1.0 | 30.0 1.00 1.00 1.00
LEMON A | (0.70,0.45,0.00) @ (0.80,0.55,0.10) | 1.0 40.0 | 0.50 0.50 2.00
GRANNY A | (0.55,0.70,0.35) | (0.60,0.80,0.45) 1.0 500 100 | 100 | 1.00
SmrtH
(0.50,0.65,0.35) | (0.80,0.80,0.50)
APPLE A | (0.65,0.65,0.40) (0.85,0.80,0.55) 1.0 200 050 | 150 | 1.00
(0.70,0.65,0.45) | (1.00,0.80,0.60)
(0.50,0.10,0.35) | (0.75,0.30,0.55)
BANANA | A | (0.70,0.10,0.50) = (0.80,0.30,0.70) 1.0 200 | 075 | 150 | 0.75
(0.75,0.10,0.50) | (0.85,0.30,1.00)
Table 4.8: Definitions of several fruit concepts for our exemplary similarity
computations.
PEAR ORANGE LEMON GRrANNY APPLE | BANANA
SmiTH
PEAR 1.0000 | 0.0000 | 0.0002 0.0096 0.1181 | 0.0558
ORANGE 0.0001 | 1.0000 | 0.0000 | 0.0004 | 0.0446 | 0.0000
LEMON 0.0011 = 0.0000 | 1.0000 | 0.0000 | 0.0025 | 0.0048
(CLreays 0.0613 | 0.0000 | 0.0000 1.0000 | 1.0000 | 0.0002
SMmITH
APPLE 0.0504 = 0.0053 | 0.0002 | 0.0764 | 1.0000 0.0012
BANANA 0.0136 | 0.0000 | 0.0002 | 0.0000 | 0.0007 | 1.0000

Table 4.9: Similarity values based on the degree of subsethood Simg for all
fruit concepts, rounded to four decimal places.

results from Sections 3.1.3, 4.1.3, and 4.2.2.

Let us again use some examples from our fruit space to illustrate

the results of applying the two proposed definitions. Table 4.8 and
Figure 4.10 show the fruit concepts, and Tables 4.9 and 4.10 contain the
respective similarity values for all pairs of concepts, using Simg and
Sim j, respectively. In the code, the similarity values can be computed
like this:
apple.similarity_to(pear, method="subset")

0.05043467196991022

apple.similarity_to(pear, method="Jaccard")
0.0398322124027715

Table 4.9 shows the asymmetric nature the subsethood-based sim-
ilarity Simg, while Table 4.10 illustrates that the Jaccard index Sim s
is a symmetric similarity function: For instance, consider the pair of
concepts APPLE and GRANNY SMITH:

Sims (§APPLE7 §GRANNY SMITH) ~ 0.0764
SimS(SVGRANNY SMITH §APPLE) = 1.0000

4.4 CONCEPT SIMILARITY | 181

ceptinspector

3D visualization - hue, round, sweet

lemon
nonSweet
orange
pear

red

Figure 4.10: Screenshot of the ConceptInspector tool, showing all concepts
used in our similarity computations. Concepts are labeled as
follows: PEAR (1), ORANGE (2), LEMON (3), GRANNY SMITH (4), APPLE
(5), and BaNaNa (6).

1.0000 = 0.0000 | 0.0002 | 0.0151 | 0.0398 | 0.0107

0.0000 1.0000 0.0000 0.0001 0.0069 0.0000

0.0002 0.0000 1.0000 0.0000 0.0003 0.0003

0.0151 0.0001 0.0000 1.0000 0.1537 0.0000

0.0398 = 0.0069 | 0.0003 & 0.1537 | 1.0000 | 0.0003

0.0107 0.0000 0.0003 0.0000 0.0003 1.0000

Table 4.10: Similarity values based on the Jaccard index Sim ; for all fruit
concepts, rounded to four decimal places.

182

Interpretation

PEAR is more similar
to APPLE than to
GRANNY SMITH

PEAR is more similar
to APPLE than to
BANANA

Is PEAR more similar
to GRANNY SMITH or
to BANANA?

Asymmetry of Sims
for PEAR and APPLE

Low similarities for
LEMON and ORANGE

| MEASURING RELATIONS BETWEEN CONCEPTS

Sim](gAPPLE7 gGRANNY SMITH) ~ 0.1537
Sim](gcRANNY SMITH 5 §APPLE) =~ 0.1537

Under Simg, GRANNY SMITH is perfectly similar to appLE, but ap-
PLE is not very similar to GRanny SmitH. This can be explained by
the s1mple fact that in our representation SGRANNY Sy © SAPPLE, but
- z SGRANNY suira, Which of course strongly affects Simg. For both
variants of the similarity function, we observe perfect self-similarity,
but rather low values for all other similarities. Many similarity val-
ues are below 0.00005 and are thus shown as zeros in Tables 4.10 and 4.9.

Let us take a look at a few selected similarity values returned by
Simg and Simj: For both functions, we observe that PEAR is more
similar to appLE than to GRanNY SmiTH. This makes intuitive sense when
looking at the locations of the respective cores in Figure 4.10 and at their
definitions in Table 4.8 — the cores of PEArR and APPLE are simply closer
to each other than the cores of PEAR and GRANNY SmiTH. Moreover, the
GRANNY SmITH concept is quite narrow due to its higher value for the
sensitivity parameter ¢, which also contributes to the lower similarity
value.

We can also observe that PEAR is more similar to APPLE than to BANANA
for both Simg and Sim;. Again, by looking at the visualization in
Figure 4.10 one can confirm that this seems plausible, because the pEar
core is closer to the core of appLE than to the core of BANANA, while both
APPLE and BANANA have a similar degree of fuzziness.

The two simmilarity functions differ, however, with respect to the or-
dering of the values for S im(SPEAR, SGRANNY Svrr) @and S zm(SPEAR, SBANANA):
The subsethood-based similarity function Simg claims that PEar is more
similar to BANANA than to GrRanNy SmiTH, while the Jaccard index Sim ;
results in the reverse ordering. one can verify with Table 4.8 that the dis-
tance between the cores of PEAR and GRANNY SmiTH equals the distance
between the cores of PEAR and BANANA. In both cases, only differences
with respect to the suaPE domain are relevant. The BaANANA concept has
a lower value of c than the GRANNY SmiTH concept, making it more fuzzy
overall. However, it puts a higher emphasis on the suape domain than
the GRanNY SMITH concept, making its membership function steeper
with respect to dsuape. Based on the given conceptual space, there is no
strong reason to prefer any of the ordering over the other, therefore
both of them seem to be somewhat plausible.

Furthermore, we can observe a difference with respect to symme-
try, namely, that Sim J(SPEAR, SAPPLE) = Sim J(SAPPLE, SPEAR) but that
Simg(ngAR, gAmE) > Szmg(SAPPLE, SPEAR). This observation can be ex-
plained by the fact that PEAR is a subset of AppLE in both the coLor and
the Taste domain (but not on the suaPeE domain), whereas APPLE is not
a subset of PEAR on any of the domains. This naturally influences the
subsethood based similarity function Simg.

We can furthermore note that for both similarity functions the simi-

4.4 CONCEPT SIMILARITY |

1.01

0.8

Simj

Figure 4.11: Scatter plot of similarity values obtained with Simg and Sim s for
1,000 randomly generated pairs of concepts in a four-dimensional
conceptual space.

larity between LEmoN and orRANGE (and vice versa) is quite low, which is
cognitively not very plausible. However, we would like to refer back to
Section 3.2.2 where also the union of LEmoN and orRaNGE was deemed
to be cognitively implausible. There, we argued that this problem is not
caused by the union operation, but rather by the way our fruit space is
constructed. The same line of argument applies here: By the simplistic
construction of our fruit space, LEMON and ORANGE are quite far apart
from each other which of course leads to low similarity values. If the
fruit space was augmented with additional domains and dimensions
that include, for instance, also the rRecion where the given fruit is
typically grown, its TEXTURE and cONSISTENCY, then LEMON and ORANGE
would be closer to each other, leading to higher similarity values.

All other table entries can be interpreted in a similar way. We conclude
our discussion here with the remark that we cannot make a general
recommendation for any of the two similarity functions based on the
results from this toy example, but that a decision for one of the two
similarity functions needs to be made based on the concrete application
and a more thorough evaluation based on real data.

In order to compare the two definitions of conceptual betweenness
more thoroughly, we have generated 1,000 pairs of random concepts
and have computed their similarity values with respect to both Simg

183

Choice of similarity
function depends on
the application

Additional
simulations for
comparing Sims
and Simy

184

Only limited
agreement overall

Distribution of
perfect similarity
scores

Correlation analysis

Betweenness for
commonsense
reasoning

Betweenness is
context-independent

Betweenness for
points

| MEASURING RELATIONS BETWEEN CONCEPTS

and Sim ;. We employed a four-dimensional conceptual space and two
cuboids per concept. Figure 4.11 shows a scatter plot of our results.

As we can see, there tends to be only limited agreement among the
two definitions. We can observe a tendency of Simg producing larger
similarity values than Sim ;. This can be explained by the fact that the
formulas for Simg and Sim ; share the same numerator (namely, the
size of the intersection), while their denominator differs: Sim ; uses
the size of the union, which can be expected to be larger than the size
of the second concept, which is used by Simg. However, there are
also exceptions to this overall tendency, which are likely to be based
on the different types of salience weights used in the computations
of the respective sizes (weights of the second concept for Simg and
interpolated weights for Sim z).

We can furthermore observe a relatively large number of cases with
Sims(gl, §2) = 1, while Sim J(~§1, ;572) never occurs in our simulations.
One can easily see that Sim (51, 52) = 1 can only happen if 51 = S
(i.e., the cores are identical) and ,uél) = ugz) (cf. the proof of Proposition
4.7), which is quite unlikely. Simg(S1,92) = 1 on the other hand
happens whenever §1 - §2, which occurs more frequently. Moreover,
as already discussed in Section 4.2.1, our choice of always using the
salience weights of the second concept when computing the degree of
subsethood causes even more cases with .S img(gl, 52) =1.

When looking at the correlation between Simg and Sim.;, we observe
values of Pearson’s r ~ 0.3220 (which measures linear correlation) and
Spearman’s p ~ 0.2932 (which measures monotone correlation). So
while the similarities produced by the two definitions seems to be
correlated to some degree, they are definitely not interchangeable.
Again, a more thorough analysis might reveal which definition is
preferable for which practical use cases.

4.5 BETWEENNESS

Conceptual betweenness can be a valuable source for commonsense
reasoning [123]: If one concept (e.g., MASTER STUDENT) is conceptually
between two other concepts (e.g., BACHELOR STUDENT and PHD sTUDENT),
then it is expected to share all properties and behaviors that the two
other concepts have in common (e.g., typically being found on campus,
or having to pay an enrollment fee).

As Derrac and Schockaert [123] have argued, betweenness is a quali-
tative rather than a quantitative notion and is invariant under linear
transformations — the actual scaling of the individual dimensions of
the conceptual space has therefore no influence on betweenness-based
reasoning. As we have seen in Section 4.4.1, the salience weights used
for such a rescaling may, however, heavily affect similarity-based ap-
proaches. Thus, betweenness is robust to changes in context.

In Section 2.1.2, we have already introduced a definition of between-
ness based on a given distance metric d:

4.5 BETWEENNESS |

Definition 2.2 (Betweenness)
Let z,y,z € CS and d be a metric on C'S. The point y is said to lie between x
and z (denoted as By(x,y, z)) if and only if d(z,y) + d(y, z) = d(z, 2).
Note that Definition 2.2 is only applicable to points in a conceptual
space. Moreover, it is defined in a crisp way: A point y either is com-
pletely between two other points x and z or it is not. In general, we
would, however, also like to talk about a fuzzy degree of betweenness
for triples of concepts.

In Section 4.5.1, we first review definitions for conceptual betweenness
from the literature. Afterwards, we derive two definitions for the
betweenness of fuzzy concepts in Section 4.5.2, which are then illustrated
in Section 4.5.3 using again our example fruit space from Section 2.3.4.

4.5.1 Betweenness in the Literature

Schockaert and Prade [352, 353] and Derrac and Schockaert [122, 123]
have thoroughly studied conceptual betweenness in conceptual spaces
as a basis for commonsense reasoning, and have provided various
generalizations of Definition 2.2. In [353], Schockaert and Prade propose
to to generalize the betweenness relation from points to regions in the
following way:

bet(X,Y,Z) < (IyeY Iz € X :32 € Z: B(x,y,2))
bet(X, YV, Z)= (VyeY: :qxe X:3z2€ Z: B(z,y,2))
Here, bet(X,Y, Z) requires only a single point of Y to lie between X

and Z, whereas bet(X, Y, Z) requires this for all points in Y. Please note
that these definitions of betweenness are still crisp.

In [122], Derrac and Schockaert propose different soft notions of
betweenness for points:

Btwi (z,y,z) = |||
Btw(z,y,z) if cos(x @ >0
Btws(z,y,2) = Acos(Zt, z) > 0
400 otherwise
d
Btwg(m,y,z) = (x,Z)

d(z,y) + d(y, 2)

Here, Btw; (z,y, z) measures the distance of point y to its projection
p onto the line through = and z (see Figure 4.12a). Perfect betweenness
corresponds to a value of o and greater numbers signify a weaker
betweenness relation. This is somewhat unintuitive from the perspective
of fuzzy logic as adopted in our work, where perfect betweenness can
be mapped to a value of 1 and weaker betweenness relations should be
represented by values from the interval [0, 1). Moreover, Btw; (z,y, z)

185

Generalizing
betweenness

Crisp betweenness of
crisp regions

Interpretation

Soft betweenness of
points

Btw, and Btws are
based on a projection

186

Btu)1 and Btw2
assume the Euclidean
distance

Btws as soft
generalization of
Definition 2.2

Generalizing soft
betweenness to crisp
regions

| MEASURING RELATIONS BETWEEN CONCEPTS

(b)

Figure 4.12: (a) [llustration of Btw, as proposed by Derrac and Schockaert
[122]. (b) Problematic case for Btw; as motivation for Btws.

has the disadvantage that a point y can obtain perfect betweenness
without actually lying between = and z. This case is illustrated in Figure
4.12b. Here, Btw (z,y, z) = 0 (indicating perfect betweenness), because
y already lies on the line through = and z which means that y = p and
|lyp|| = 0. However, y is clearly not between z and z. The definition of
Btwsy(z,y, z) fixes this problem by restricting the betweenness to the
line segment between x and z through checking the cosines between the
respective vectors.

Please note that both Btw; and Btw; assume a Euclidean space and
are thus only applicable within a single domain, but not across domains:
The implicit assumption of a Euclidean space can be understood from
the fact that only points y on the straight line segment between = and
z are considered to be perfectly between = and z. In Section 2.1.2, we
showed that this is the definition of betweenness under the Euclidean
metric, whereas all points in the bounding box between z and z would
be considered to be between x and z under the Manhattan metric.

The third variant Btws(z, y, z) turns the crisp notion of betweenness
from Definition 2.2, which requires that d(z, z) = d(z,y) + d(y, z) into
a soft measure of betweenness by comparing the relative size of the two
terms. Due to the triangle inequality, the denominator cannot be smaller
than the numerator and Btws(z, y, z) is thus limited to the interval (0, 1]
with a value of 1 indicating perfect betweenness. This definition thus
corresponds to our expectations from fuzzy logic and fits in nicely with
our prior definitions of subsethood, implication, and similarity. More-
over, Btwg(:c y, z) can be used with any distance metric (including das
and d2) and can thus be easily applied to the complete conceptual space.

All three of these definitions are again based on points. Derrac and
Schockaert [122] propose to generalize them from points to crisp regions
in the following way:

Btwl(X,Y, Z) \Y\ Z;Iél)r(lgélélBtwl(l‘ Y, 2)

Btwi(X,Y, Z) \Y\ ZIIél)I(ll;IélIlBt’(Ug($ Y, 2)

Btwi(X,Y, Z) |Y\ ZI&@B}((IE?ZXBtwg(x Y, 2)

4.5 BETWEENNESS |

In all three cases, we compute for each point y € Y its optimal
betweenness value across all possible choices over points z € X and
z € Z. We then aggregate this intermediate result across all y € Y
by using an unweighted average. Please note that all three definitions
assume that the conceptual region Y consists only of a finite set of
points. If this is not the case, the summation would have to be replaced
by an integral.

In their experiments, Derrac and Schockaert [122] represent each
concept as a set of exemplar points, which they obtained with a k-means
clustering procedure (to be introduced in Chapter 7). They argue that
one can easily construct a region out of these points by computing
their convex hull. For efficiency reasons, they, however, only use these
exemplars to compute the betweenness relations Btwf, Btwf, and
Btw?{%. Their experimental results indicate that Btw; and Btw; tend to
perform slightly better than Btws in commonsense reasoning tasks.

4.5.2 Definition

Because the concepts in our formalization cannot be described by
a finite set of points, the definitions of Derrac and Schockaert [122]
from Section 4.5.1 are not directly applicable. We will therefore derive
our own definition of betweenness for fuzzy sets. Please not that a
concept Sy can only be located between two other concepts S and
Sy if all of these concepts are defined on the same domains. One
can, for instance, not say that BasesaLL is conceptually between AppLE
and oraNGE, because it does not have a taste. We will start with the
binary notion of betweenness for points, which will be subsequently
generalized in order to derive a soft betweenness measure for fuzzy sets.

As already stated above, we define in our formalization that a point y
is between two other points z and z based on the combined metric d2:

Definition 2.2 (Betweenness)
Let x,y,z € CS and d be a metric on C'S. The point y is said to lie between x
and z (denoted as By(x,y, z)) if and only if d(z,y) + d(y, z) = d(z, 2).

We generalize B,(z,y, z) (henceforth referred toas B(z, y,) for better
readability) from points to crisp regions by using bet from Schockaert
and Prade [353] (cf. Section 4.5.1):

B(Sl,SQ,Sg) =1 (Vy €Sy:dreS;:dze 55 B(x,y, Z))

In order to generalize from crisp to fuzzy sets, we can simply require
that B(S{, 5§, S%) is true for all a-cuts (cf. Definitions 2.12 and 2.13 for
convexity and star-shapedness):

B(S1,55,53) < Va € [0,1] : B(S}, S5, 55)

SVael0,1]:VyeSg:dweSP:3ze SY: Bla,y, 2)

187

Interpretation as
average of optimal
values

Experimental results

We need soft
betweenness for
fuzzy sets

Crisp betweenness
for points

Crisp betweenness
for crisp regions

Crisp betweenness
for fuzzy regions

188 | MEASURING RELATIONS BETWEEN CONCEPTS

Considering empty If S¢ = (), then B (S1 , Sy ,83) is true independent of S and 53 If
accuts Go £ (), but S¢ = § or S§ = 0, then B(S¢, S5, S¢) is false. Since we use
a universal quantification over «, this means that also B(S1,5,,85) is

false in this case.

Soft betweenness for This definition is binary and thus allows only for relatively coarse-
points grained distinctions. In order to derive a degree of betweenness for fuzzy
sets, we adapt the soft notion Btws for points as provided by Derrac

and Schockaert [122] (cf. Section 4.5.1 to our formalization:

d5(z, 2, W)
A& (z,y, W) + da(y, z, W)

Bsoft(xa Y, Z) =

Using the same Please note that we need to use the same set of salience weights W for
salience weights all the three distance computations in order to ensure that By, s (z,y, 2)
gives meaningful results with By, :(x,y, 2) € [0,1]. One can easily see
that B(x,y, z) is true if and only if By, (x, y,2) = 1.
Soft betweenness for We can use B, ft(x Y,z z) together with the extension pr1nc1ple [449]
fuzzy regions to generalize B(Sl, Ss, Sg) to a soft notion Bmf (Sl, Ss, Sg)

Definition 4.9 (Inf1mum -Based Betweenness)
Let Sl, SQ, and 53 be three concepts deﬁned on the same set of domains Ag.
The soft degree to which Sy lies between Sy and Ss can be computed as follows:

dg® (z, 2, W)

B (51,55,895) = inf inf sup sup

soft a€lo, l]yesz :EES"‘ zeSo‘ d (xay7W(2)) +dés (ya Z7W(2))
Formal properties ?f We simply replaced B(x,y,2) with By, (z,y, 2), each existential
Byj quantification with the supremum (i.e., the largest lower bound), and

each universal quantification with the infimum (i.e., the smallest upper
bound).” Moreover, we decided to use the salience weights W(?) of the
second concept for the distance computations. Potential alternatives
include the usage of an unweighted distance or the creation of inter-
polated weights based on W), W), and W®). For now, using W ()
seems, however, to be the most straightforward choice. One can easily

see that B (§1, So, §3) if and only if B;'Z}Ct(gh Ss, 53) = 1. Moreover, if

Sy C S (or Sy C Sg) then Bm (Sl,Sg,Sg) = 1, because we can pick
for each y € 52 alwaysx =y € Sl , resulting in By, (2,y,2) = 1 for

all possible a-cuts.
Context-dependence Since Bizjj:t considers all different a-cuts of the fuzzy concepts, and
of Biof, since the shapes of these a-cuts also depend on the salience weights, our
definition of conceptual betweenness is no longer context-independent
(in contrast to the arguments by Derrac and Schockaert [123]). The
calculation of S¢, 5%, and S¢ involves the parameters i, ¢, and W
of the respective concepts — only the final distance computation of
Bgofi(z,y, 2) uses identical weights and is independent of 11 and c. Pre-
serving the context-independence of the betweenness relation would

7 Since the a-cuts §? always include their border, inf and sup over the points z,y, z
are equivalent to min and max, respectively. However, as we will see in the proof of
Proposition 4.8, Bsof+(, y, z) is minimized for a — 0, but not for o = 0.

4.5 BETWEENNESS |

0.8

0.6

0.4

02"

(@) (b)

Figure 4.13: Two problematic cases for Biﬁ;t(gl, S5, S3) based on y (a), and
cand W (b), respectively.

require us to use the same values of p, ¢, and W for all three concepts,
which would then essentially reduce them to their crisp cores. Since this
is not adequate in the context of our formalization, which emphasizes
the fuzziness of conceptual regions, we have decided to accept the
context-dependence of our betweenness relation.

Under certain circumstances, however, B;Z}c t(§1, §2, §3) yields some
rather unintuitive results: If we consider the three concepts in Figure

113, where V) = ;&) = 0.80 and) = 0.81, then 5081 = 5981 — ¢)
and S9! # (), and thus B;Z}:(Sl, Ss,53) = 0. This seems to indicate
that §2 is not at all between §1 and §3 even though from inspecting

Figure 4.13a, one would expect Bi%(gl, 5’27 53) to be rather large. One
(2)

can easily see that this pathological case always occurs when ;™ is

larger than both uél) and ,ué3).

Moreover, in Figure 4.13b we see a simple example where Mé2) <

min(,u((]l), ,ué3)), and where also B(S1, S2, S3), but where will still get
Bg’;}ct(gl, §2, 5'3) = (. The reason for this is that 13, (x) decays slower
than both pg (z) and pg, (x). We can therefore pick a very small «
for which we can find a point in S§ that is very far away from both
gf‘ and §§‘ and thus has a low value for B, (z,y,). The following
proposition specifies the exact condition under which this happens:

Proposition 4.8 (Problematic Case for BiZ}ct)

Let §1, §2, and §3 be three concepts. Assume we find a dimension d* € §* € Ag
for which the following is true:

@@ [0 < min (megp o), P w;z>)
Then, anf (§1, §2, gg) =0.

oft
Proof. See Appendix C 4. O

The pathological cases from Figure 4.13 arise, because we compute
the infimum over all a-cuts. In order to achieve a more generous
degradation, one may thus want to aggregate over the a-cuts in a
different way. One possible approach is to compute the integral over all

189

Problem based on
maximal membership

1o

Problem based on
weights W and
sensitivity parameter
C

Aggregating over
a-cuts with the
integral

190

Properties of Bin%,

Further desirable
properties

Implementation

| MEASURING RELATIONS BETWEEN CONCEPTS

a-cuts, which is similar in spirit to the summation proposed by Derrac
and Schockaert [122] (cf. Section 4.5.1). Since we integrate over « in the
interval [0, 1] and since the degree of betweenness computed for each
a-cut also lies in the interval [0, 1], the result of this integration will also
be a number between zero and one.
Definition 4.10 (Integral-Based Betweenness)
Let Sy, Sy, and Ss be three concepts defined on the same set of domains Ag.
The integral-based soft degree to which S lies between Sy and Ss can be
computed as follows:
1
sgft(Slﬁ Sy, S5) = min max max Btws(z,y, z)do
0 yGSO‘ acESO‘ zESO‘
When comparing Definition 4.10 to Definition 4.9, one can easily see

that B;"]th is a lower bound of Bg’g}t'

Lemma 4.1 (B;’OL} , is Bounded by B;Z}ct)

Let §1, 52, and Sg be three concepts. Then, the following inequation holds:
;Zj{t(sl’ S, 83) < Bt (51, Sa, Ss)
Proof. See Appendix C 4. O

Moreover, the following desirable properties of a betweenness func-
tion are also fulfilled by B;’;}t (based on Lemma 4.1), while avoiding
the pathological cases from Figure 4.173:

Corollary 4.1 (Properties of Béﬁ}t)
B;ﬁ}t(b}, Sy, S3) preserves the following desirable properties for any three
concepts Sl, Sz, and Sg

B(gl, §2, §3) ~ (B?gj‘t(gh §2, §3) = 1)
2. <§2 - §1> (Bmt (51,5, 85) = 1)

3. (Bl (51,8280 = 1) = (ug? < min(y” "))

4.5.3 Implementation and Example

Both proposed variants of betweenness need to minimize and max-
imize Bg,t(z,y,2) over a given a-cut of §1, 52, and §3. This has
been implemented using numerical optimization algorithms from the
scipy.optimize package. As stated in Section 4.5.2, B;Z}ct and B;Z;t
differ only with respect to the aggregation over «: BSO 1 computes the
infimum over all a-cuts, while ng}t computes the integral. Both types
of aggregation can again be implemented by using numerical optimiza-
tion. For Bmft, the integral can, however, also be approximated by a
Riemann sum (i.e., sampling a relatively small number of equidistant
values for o, and then computing the average across all these a-cuts).

4.5 BETWEENNESS |

Number n of Runtime of Runtime of

Dimensions Bz’;j{t in ms Bg’;}t in ms
1 129.6244 35-3474
2 1454.2154 230.6475
4 10681.6994 638.9526
8 - 2021.6039
16 - 4373.0850

Table 4.11: Average runtime of Bi’;]{t and BZ2%,, averaged across 100 randomly

created triples of single-cuboid concepts, using an average over 20
a-cuts to approximate the integral.

Runtime of Betweenness (1 Cuboid per Concept, 20 a-Cuts)
100000

10000

1000
100
10
1

1 2 4 8 16

Number of Dimensions in Conceptual Space

Runtime in Milliseconds

H Integral ® Infimum

Figure 4.14: Average runtime of the betweenness operation for single-cuboid
concepts as a function of the number of dimensions in the con-
ceptual space.

We can assume that this approximation is considerably faster than
using an additional layer of numerical optimization. Therefore, B;’g}t
has been implemented as a Riemann sum, treating the number of a-cuts
to use as a parameter that can be specified by the user.

Since neither Bi’;j:t nor Bé’g;ﬁt are based on any previously introduced
operations, we have again conducted a small set of runtime experiments.
We have measured the runtime of B?;jft and Bg’;}t for 100 randomly
generated triples of concepts, investigating the number n of dimensions
in the conceptual space, the number m of cuboids per concept, and the
number n,, of a-cuts used for approximating ng}t. All experiments
were executed on a laptop with an Intel Core i5-6440HQ CPU (2.60
GHz quad-core) processor and 8 GB main memory.

Let us first analyze how the number n of dimensions influences the
runtime of B;Z}c , and Bég}t, using a single cuboid per concept and 20

a-cuts for approximating Bég}t. As we can see from Table 4.11 and

191

Runtime experiments

Runtime and the
number of
dimensions

192

Runtime and the
number of cuboids

| MEASURING RELATIONS BETWEEN CONCEPTS

Number m of Runtime of Runtime of
Cuboids B:;ZJ’; inms B/t inms

1 1454.2154 230.6475

2 7595-1761 5745356

4 14055.2697 1363.6137

8 27242.9803 2870.4694

Table 4.12: Average runtime of Bigt and B[}, averaged across 100 randomly
created triples of concepts in a two-dimensional conceptual space,
using an average over 20 a-cuts to approximate the intergal.

Runtime of Betweenness (2 Dimensions in Conceptual Space, 20 a-Cuts)

100000

10000
1000
100
10
1

1 2 4 8

Number of Cuboids per Concept

Runtime in Milliseconds

H Integral ™ Infimum

Figure 4.15: Average runtime of the betweenness operation as a function of
the number of cuboids used to represend a concept in a two-
dimensional space.

Figure 4.14, the runtime of both BZ;J’; and Biﬁ}t shows a superlinear
growth with respect to the number of dimensions: In general, doubling
the number of dimensions in the conceptual space leads to a runtime
more than twice as large. We can also observe that B;’g}t is considerably

faster than BZ; 1 and it seems to scale much better with an increasing
number of dimensions. This illustrates that using an approximation
instead of an additional numerical optimization over o comes with
considerable performance improvements. Please note that we have not
evaluated the runtime of Biz}ct for more than four dimensions due to
the prohibitively large computational effort.

Let us now take a look at the effect of the number m of cuboids per
concept, which is shown in Table 4.12 and Figure 4.15. Again, we can
observe that Bég}t is computed considerably faster than B;Z - For Biﬁ}t,
we again observe a superlinear growth of runtime with an increasing
number of cuboids. For Bi’;]’ft, on the other hand, the growth in runtime
seems to be slightly sublinear (with a factor of about 1.9 when going
from two to four, and from four to eight cuboids, respectively). With a

larger number of cuboids, also the standard deviation of the runtime

4.5 BETWEENNESS |

Number n, of Runtime of Runtime of
a-cuts BZ;}: inms B/t inms

20 1454.2154 230.6475

50 1461.7224 602.4602

100 1461.1522 1238.6765

Table 4.13: Average runtime of Bi’;}ct and BZ2%,, averaged across 100 randomly
created triples of single-cuboid concepts in a two-dimensional
conceptual space.

Runtime of Betweenness
(2 Dimensions in Conceptual Space, 1 Cuboid per Concept)

10000
1000
100

10

Runtime in Milliseconds

20 50 100

Number of a-Cuts
M Integral ™ Infimum

Figure 4.16: Average runtime of the betweenness operation as a function of
the number of a-cuts used in approximating the integral, using
single-cuboid concepts in a two-dimensional space.

tends to increase, especially for Biﬁ};, indicating that extreme cases
with very large runtime have a larger impact on the average.

Finally, let us consider the effects varying the number n,, of a-cuts
used to approximate Bg’g;t. The corresponding results are shown in
Table 4.13 and Figure 4.16. Using more a-cuts leads to an increased
runtime with a slightly superlinear tendency. When using 100 a-cuts,
the average runtime of Biﬁ}: and B?g}t becomes approximately identi-
cal. However, the runtime measurements for Bé’o‘}t have a considerably

smaller standard deviation than the ones for B;Z}’f , (namely, 1194 mil-
liseconds versus 6680 milliseconds), indicating a larger proportion of
computationally costly cases for Biﬁjﬁt than for Bg’;}t. Moreover, we
would like to point out that Table 4.13 contains three different estimates
for the runtime of Biﬁ};, although BiZ}ct is not affected by the number
of a-cuts varied across the three conditions. The fact that these three
reported values only vary slightly highlights that our runtime estimates
for the betweenness operation are reasonably stable for our analyses.
Overall, the runtime performance of both betweens variants is quite
high for any nontrivial conceptual space. This is based on the fact that

we need to employ multiple nested numerical optimizations in order

193

Runtime and the
number of a-cuts

Summary of the
runtime experiments

194

Additional
simulations for
comparing
betweenness values

Comparing B/ e

int

and Bgos,

| MEASURING RELATIONS BETWEEN CONCEPTS

nf
soft
is higher than the one of Bég;t, because our implementation of B;Z]th
involves another optimization by finding the infimum over all a-cuts,
whereas Biﬁ}t simply computes the average across a fixed number of
a-cuts. Similar to our observations for the intersection and size opera-
tions (Sections 3.1.3 and 4.1.3, respectively), the number of dimensions
in the similarity spaces tends to have a stronger impact on runtime
than the number of cuboids per concept. Based on the overall quite
high runtime for both Bmf and Bmft, one might be tempted to use a
simpler definition of betweenness For instance, one could compute
the degree of betweenness of the concepts’ midpoints which would be
computationally much more efficient. This would, however, ignore both
the size of the concepts’ cores and their respective degree of fuzziness,
which is not satisfying from a theoretical perspective. Finding a good
trade-off between theoretical soundness and a fast implementation
should be a goal of future research, based on concrete applications of
the proposed formalization and their respective requirements.

to calculate the respective minima and maxima. The runtime of B

After having compared the runtime of Bizjft and Bt let us now
compare the resulting degrees of betweenness. We have created 1,000
random triples of two-cuboid concepts in a four-dimensional space and
have computed for each of them Bz f as well as Bmtt (using 20 and
100 a-cuts, respectively). By comparmg the numerical results for these
exemplary betweenness relations, we hope to get a better understanding
of our proposed definitions.

Figure 4.17 contains a scatter plot with the betweenness values of
Bizj:t and Biﬁ}t, using 100 a-cuts for the latter. The correlation between
the two betweenness measures reaches only intermediate values with
Pearson’s r ~ 0.5284 (which measures linear correlation) and Spear-
man’s p =~ 0.6304 (which measures monotone correlation), indicating

that B;Z]’; and B;Z}t are not equivalent. We can clearly see in Figure 4.17

that B;’;’th = 0 in most of the cases. It thus seems that the two failure
cases illustrated in Figure 4.13 occur very frequently in our experiment.
Please note that our code only executes the numerical optimization if
neither of these cases applies (which can be detected based on the values

of muy, and the conditions from Proposition 4.8, respectively). Please

recall from Tables 4.11 and 4.12 that B O]J:t was on average quite slow in

our runtime analysis. As the cases with B;Z #+ = 0 can be expected to
have a very small runtime, this means that for all cases where Bizjjft >0,
the actual runtime is much larger than the overall average. This also
explains the large standard deviations observed for the runtime of

Z)L]J:t It is either very fast (if one of the pathological cases applies)

or very slow (if the numerical optimization is needed). It thus seems
that B;Z]’; might not be very useful in practice: In addition to its large
runtime, it equals zero for most triples of concepts, and this does not
convey a very fine-grained sense of conceptual betweenness.

4.5 BETWEENNESS |

10 Py 4 L] (] iw
. ..f.. " . °®
’ e ? °
0.8 .
)
4
o 0.6
[+
o
o
—
L& 04
£3
[2a]
0.2
H
0.0+ ‘ ‘ ‘ ‘ :
0.0 0.2 0.4 0.6 0.8 1.0
min
soft

Figure 4.17: Scatter plot comparing the betweenness values obtained via BiZ}ct
and BZ2%, (using 100 a-cuts) for 1,000 randomly generated triples
of two-cuboid concepts in a four-dimensional conceptual space.

Let us now take a look at the influence of the number of a-cuts
on the numerical values obtained by B;'Z;t. Figure 4.18 compares the
results for 20 and 100 a-cuts. We can immediately see that the numbers
obtained through these two variants are strongly correlated (Pearson’s
r ~ 0.9984, Spearman’s p ~ 0.9976). Although the exact numerical
values differ slightly (which is to be expected), it seems like the number

. . Znt
of a-cuts used for approximating B, is not very crucial in practice.

Since more a-cuts considerably increase the runtime but do not seem
to impact the resulting betweenness numbers that much, one might be
able to find a good trade-off between runtime efficiency and quality of
the results.

Let us now finally return to our fruit space example. Table 4.19 shows
the definition of our fruit concepts and Figure 4.19 illustrates them. In

Table 4.15, we show betweenness values for selected triples of concepts.

In our implementation, one can compute these betweenness values as
follows:

apple.between(pear, orange, method="infimum")
0.0
apple.between(pear, orange, method="integral")
0.8994529846730694
apple.between(pear, orange, method="integral", num_alpha_cuts
= 100)
0.9002036026183976

195

Betweenness values
and the number of
a-cuts

Fruit space example

196 | MEASURING RELATIONS BETWEEN CONCEPTS

1.0

0.8

(100 a-cuts)
o
i

©
»

int
soft

gi

0.2

0.0+ ‘ . ‘ ‘ ;
0.0 0.2 0.4 0.6 0.8 1.0

Bnt. (20 a-cuts)

int

Figure 4.18: Scatter plot comparing the betweenness values obtained via B},
for 1,000 randomly generated triples of two-cuboid concepts in
a four-dimensional conceptual space, using 20 and 100 a-cuts,
respectively.

4.5 BETWEENNESS | 197

3D visualization - hue, round, sweet

lemon
nonsweet
orange
pear

red

Figure 4.19: Screenshot of the ConceptInspector tool illustrating all fruit
concepts used in our betweenness example. Concepts are labeled
as follows: PEAR (1), ORANGE (2), LEMON (3), GRANNY SMITH (4),
APPLE (5), and BANANA (6).

1

98

| MEASURING RELATIONS BETWEEN CONCEPTS

Concept As p- pt Ko c w
Wécoron | Wosuare | Wérasre

PEAR A | (0.50,0.40,0.35) | (0.70,0.60,0.45) | 1.0 | 24.0 | 0.50 1.25 1.25
ORANGE A | (0.80,0.90,0.60) | (0.90,1.00,0.70) | 1.0 | 30.0 1.00 1.00 1.00
LEMON A | (0.70,0.45,0.00) | (0.80,0.55,0.10) 1.0 | 40.0 0.50 0.50 2.00
GRANNY | A | (0.55,0.70,0.35) | (0.60,0.80,0.45) | 1.0 | 500 | 1.00 | 100 | 1.00
SMITH

(0.50,0.65,0.35) | (0.80,0.80,0.50)
APPLE A | (0.65,0.65,0.40) = (0.85,0.80,0.55) 1.0 200 050 | 1.50

(0.70,0.65,0.45) | (1.00,0.80,0.60)

(0.50,0.10,0.35) | (0.75,0.30,0.55)
BANANA A | (0.70,0.10,0.50) = (0.80,0.30,0.70) 1.0 200 075 | 150 | 0.75

(0.75,0.10,0.50) | (0.85,0.30, 1.00)

Examples with
obuvious betweenness
relations

Table 4.14: Definitions of several fruit concepts for our exemplary betweenness

computations.
= = = inf (& & o int (3. o.
S1 Sa Ss Bt (81,82,8s) Bi%,(S1,52,Ss)
GRANNY
APPLE LEMON 1.0000 1.0000
SMITH
APPLE PEAR BANANA 1.0000 1.0000
GRANNY
PEAR BANANA 0.0000 0.9201
SMITH
PEAR APPLE ORANGE 0.0000 0.8995
GRANNY
PEAR ORANGE 1.0000 1.0000
SMITH
GRANNY
APPLE PEAR 0.4676 0.5275
SMITH
GRANNY
ORANGE | BANANA 0.0000 0.3557
SMITH

Table 4.15: Betweenness values for selected triples of fruit concepts, rounded

to four decimal places. For B}, 20 a-cuts were used.

Both BZ;]{ ’

pletely between appLE and LEMON, because gGRANNY N S wprre- We
furthermore observe that PEAR is considered to lie perfectly between ap-
PLE and BANANA by both definitions of conceptual betweenness. As one
can see in Figure 4.19, this is intuitively plausible based on the locations

and Bé’;}t agree on the fact that GRANNY SmITH is com-

of the respective cores. A first difference between B;Z}c .

be observed for the triple (GRANNY SMITH, PEAR, BANANA): Here, B

and B}, can

soft
returns a value of zero, while Bé’g;t shows a more generous degradation
with a value of approximately 0.92. Based on Figure 4.19, the latter value
seems to be more meaningful, since a betweenness degree of zero does
not reflect the geometric arrangment of the concepts’ cores. Still, the fact
that B;’Z;‘t(SAPPLEa Spears SBANANA) > B;gj“t(SGRANNY Swarrs Opears SBANANA) re-
flects that the betweenness relation is not perfect in this example. The
triple (GRANNY SMITH, PEAR, BANANA) fulfills the condition of Proposi-

4.6 SUPPORTED APPLICATIONS |

tion 4.8 (since ¢(GRANNYSWITH) 5, +(PEAR)) and thus corresponds to the
pathological failure case of B?g;ft from Figure 4.13b.

Based on Figure 4.19, one could also argue that both appLE and
GRrANNY SMITH lie to some degree between pEar and oraNGE. Here,
Bé’;}t assigns relatively high betweenness values in both cases, whereas

B;Z}C , assigns a value of zero to the triple (PEAR, APPLE, ORANGE). This is
again the failure case from Proposition 4.8 and Figure 4.13b. It seems
plausible to assign a lower degree of betweenness to appLE than to
GRrRANNY SmiTH, because the core of the AppLE concepts is larger and
parts of it are further away from the straight line connecting the cores
of PEAR and oRANGE than the core of GRANNY SMITH.

The final two lines of Table 4.15 illustrate cases where we would
not expect a high degree of betweenness. Both betweenness functions
assign lower, but sill mostly non-zero degrees of betweenness to these
combinations. One may argue that these betweenness values are too
high, given the respective arrangement of cores. However, one needs to
keep in mind that both B?;]J:t and B[}, take into account all a-cuts of
the respective concepts, including for example also the 0.05-cuts, which
may considerably overlap.

4.6 SUPPORTED APPLICATIONS

After having defined various operations for measuring relations be-
tween concepts, we would now like to sketch how these operations can
be used in both learning and reasoning tasks. In Section 4.6.1, we again
consider concept formation as an important type of learning process,
before looking at commonsense reasoning strategies in Section 4.6.2.

4.6.1 Concept Formation

Please recall from Section 3.6.1 that concept formation is an incremental
clustering process [164]. In our case, each cluster can be represented
by a concept. A concept formation algorithm makes one unlabeled
observation at a time, assigns this observation to the best-matching
cluster (or creates a new cluster), and then makes small adjustments
to its inventory of clusters, if necessary. We have already argued in
Section 3.6.1 that our formalization provides all operations necessary
for implementing these updates, such as merging and splitting clusters
with the union and cut operations, respectively. What was still missing
from our discussion in Section 3.6.1 were, however, ways of deciding
when to apply which kind of modification. In the following, we argue
that the additional operations defined in this chapter can be used as
parts of such an overall control strategy.

Both the splitting and the merging of existing clusters needs to be
initiated based on some predefined condition. For instance, we might
want to specify that the clusters created by the concept formation

199

Examples with
debatable
betweenness
relations

Examples without
betweenness
relations

Overview

Concept formation as
incremental
clustering

Controlling for the
size of different
clusters

200

Identifying candidate
clusters for merging

Creating a hierarchy
of clusters

Incorporating
top-down knowledge

Outlook

Symbolic reasoning

| MEASURING RELATIONS BETWEEN CONCEPTS

algorithm should have a roughly equal size. Then, a cluster that grows
too big would need to be split into two parts, and a cluster that becomes
too small would need to be merged with one of its neighbors. The size
operation defined in Section 4.1.2 quantifies the size of a concept and
can thus be used together with some lower and upper thresholds to
initiate the merge and split operations.

Once we have decided that a given cluster needs to be merged
with one of its neighbors, we still need to find the most appropriate
merging partner. In a first step, we can use concept similarity as defined
in Section 4.4.2 in order to identify the closest neighbors of a given
concept. One may then use the respective similarity values, potentially
in combination with the sizes of the respective concepts, to decide
which clusters to merge.

Many concept formation algorithms maintain an explicit hierarchy
of clusters [164] in order to provide a description of the observation
at multiple levels of abstraction: We might thus also be interested in
extracting the emergent conceptual hierarchy(e.g., sky BLUE being a
special shade of BLUE) from our current set of clusters. This can be easily
done using both the crisp and the soft subsethood relations between
concepts as defined in Section 4.2.1.

In Section 1.3.4, we have already argued that the incorporation of
top-down constraints in the concept learning process is desirable from a
cognitive point of view. Given an initial set of concepts (either manually
created or obtained via concept formation), one may thus specify logical
rules such as Vz : AppLE(x) A RED(x) = sWEET(x), whose validity should
be preserved in future modifications of the concept inventory. Using the
implication operation from Section 4.3.1 together with the intersection
and union operators from Sections 3.1.2 and 3.2.1, respectively, we can
evaluate the degree of truth for such logical rules. This can then be used
as an additional constraint in the control strategy of the envisioned con-
cept formation algorithm. Also zero shot learning based on definitions
like GRANNY SMITH <> GREEN A SOUR A ROUND can be implemented in a
similar way.

Our discussion has been necessarily brief, but has hopefully still
illustrated that the operations defined in this chapter can play an
important role in the control strategy of a concept formation algorithm.
We will return to the topic of concept formation in Chapter 7, where we
will introduce three concrete concept formation algorithms from the
literature and relate them to conceptual spaces. In Chapter 7, we will
also the aspect of learning under top-down constraints in more detail.

4.6.2 Commonsense Reasoning

In classical symbolic Al, reasoning is mostly based on logical rules
such as Vz : appLE(z) A RED(2) = swiEeT(z). However, such symbolic
reasoning systems are inherently limited to the rules and symbols they
are provided with. Since it is generally infeasible to express all necessary

4.6 SUPPORTED APPLICATIONS |

pieces of everyday knowledge in a symbolic knowledge base, these
systems often fail to make deductions based on insufficient knowledge.
Humans on the other hand are still able to draw plausible (yet not
deductively provable) conclusions in such situations.

As already briefly introduced in Section 1.2.5, the area of common-
sense reasoning therefore aims to provide appropriate techniques for
drawing plausible conclusions from incomplete knowledge. In contrast
to black box machine learning models, these commonsense reasoning
techniques are usually also able to give a justification for their con-
clusions [123]. As already mentioned in Section 1.2.5, Schockaert and
Prade [352, 353] as well as Derrac and Schockaert [122, 123] have shown
how to implement such commonsense reasoning strategies with the
conceptual spaces framework. In the following, we argue that also our
formalization is capable of supporting these strategies.

Similarity-based reasoning assumes that similar concepts have similar
properties, usages, and behaviors, and that they can be therefore treated
alike. For instance, if we know that Alice liked the "Lord of the Rings"
movies and if the concept Lorp orF THE RiNGs is relatively similar to the
concept THE HosaIT, then we can make the educated guess that Alice
might also like the "The Hobbit" movies [123].

As already described in Section 2.1.1, cognitive similarity of observa-
tions is defined as an exponentially decaying function of their distance
in the similarity space. In Section 4.4.2, we have generalized this to a
notion of similarity for fuzzy conceptual regions. Our formalization
thus provides ways of quantifying the similarity of two observations
(based on their weighted combined distance, see Sections 2.1.1 and
2.3.1), the similarity of an observation to a concept (based on its degree
of membership, see Section 2.3.3), and the similarity of two concepts
(based on subsethood or the Jaccard index, see Section 4.4.2). It is there-
fore quite straightforward to implement similarity-based reasoning on
top of our formalization.

Interpolative Reasoning assumes that any property, usage, or behavior
that is shared by two known examples also applies to any intermediate
case. It can thus be interpreted as implicitly using Gardenfors’ convexity
constraint for conceptual regions (cf. Sections 1.2.1 and 2.1.2). If wiNE
sHOP is conceptually between GOURMET sHOP and LIQUOR sTORE and if we
know that both gourmet shops and liquor stores are subject to some
sort of regulation, then we can assume that also wine shops are affected
by this regulation [123].

In their work on interpolative reasoning in conceptual spaces, Schock-
aert and Prade [352, 353] as well as Derrac and Schockaert [122, 123]
base interpolative reasoning on a geometric notion of betweenness for
points and crisp regions (cf. Section 4.5.1). In Section 4.5.2, we have
generalized their definitions of geometric betweenness to a soft notion
of betweenness for fuzzy conceptual regions. Our formalization can
thus also be used in the context of interpolative reasoning.

201

Commonsense
reasoning

Similarity-based
reasoning

Similarity-based
reasoning and our
formalization

Interpolative
reasoning

Interpolative
reasoning and our
formalization

202

Other commonsense
reasoning strategies

Extracting symbolic
knowledge from
conceptual spaces

Outlook

| MEASURING RELATIONS BETWEEN CONCEPTS

Please note that there are also other types of commonsense reasoning
strategies [123], which are currently not supported by our formalization.
A fortiori reasoning is based on a meaningful ordering of observations
and concepts along a single direction. For example, if one is not allowed
to drink BEER at a certain age, one is probably also not allowed to drink
WHISKEY at that age, because wHiskey has a higher concentration of alco-
hol. Analogy-based reasoning on the other hand uses analogical relations
between two pairs of observations or concept: If puppy relates to pog like
KITTEN relates to cat, then knowledge about the difference or relation
between xiTTEN and cat can be used to plausibly derive additional
knowledge about the difference or relation between puppy and pog.
Derrac and Schockaert [123] have modeled these two strategies based
on interpretable directions and based on the parallelism of difference
vectors, respectively. These notions have not been explicitly included
in our formalization, but would be natural future extensions of our work.

All of the above mentioned commonsense reasoning strategies are
implemented as part of the conceptual layer. At this point, we would
also like to highlight how our formalization supports the extraction of
commonsense knowledge into the symbolic layer. For instance, intra-
domain correlations within a given concept are encoded in a geometric
way in our formalization (cf. Section 2.2) and can be viewed as one
specific type of commonsense knowledge. We have already sketched in
Section 4.3 in the context of Rickard’s co-occurrence values [329] how the
implication operation can be used to provide a symbolic description of
the correlation. For instance, the observation that red apples tend to be
sweet can be formally expressed as Vz : APPLE(x) A RED(z) = SWEET(z).
The degree of truth of this expression can be obtained by considering
the intersection of the conceptual regions appLE and ReD and checking
the subsethood relation between the resulting region and the property
swEET. By systematically testing all relevant properties, one can thus
identify rules with a high degree of truth, i.e., commonsense reasoning
patterns that are expected to hold in most (but not necessarily all) cases.
These rules can then be used in a symbolic system to draw appropriate
conclusions based on cross-domain correlations. In Chapter 7, we will
revisit this knowledge extraction aspect in the context of logic tensor
networks [21, 358].

As argued above, our formalization supports both similarity-based
and interpolative reasoning with the definitions for concept similarity
and conceptual betweenness from Sections 4.4.2 and 4.5.2, respectively.
Other strategies such as a fortiori reasoning or analogy-based reasoning
are currently not supported, but would be interesting future exten-
sions. The exact reasoning strategy (i.e., a specific algorithm that uses
similarity and betweenness values to arrive at a conclusion) has been
left unspecified and would of course be needed for any practical ap-
plications. Nevertheless, our brief discussion has hopefully illustrated
that the definitions from this chapter can be useful in the context of
reasoning processes.

4.7 COMPARISON TO OTHER FORMALIZATIONS |

Formalization | Size @ Subsethood Implication Similarity Betweenness

Aisbett and
_ _ _ v _
Gibbon [11] -) -) - -)

Raubal [327] - - - - -

Ahlgvist [10] @) v))

Rickard [329] = () ()) -

Rickard
et al. [330]

ANEENIEN

Adams
Raubal [3]

Lewis

Lawry [253]

Our

Formalization

Table 4.16: Overview of different formalizations of the conceptual spaces
framework based on the relations between concepts they define

nmonon

("v" means "available", "-" means "not available", and "(-)" means
"could be easily added").

4.7 COMPARISON TO OTHER FORMALIZATIONS

Table 4.16 summarizes the availability of different relations between con-
cepts in the different formalizations of the conceptual spaces framework
that we introduced in Section 2.4.2. Conceptual similarity is covered by
almost all formalizations, since it is a key operation of the conceptual
spaces framework. Moreover, size, subsethood, and implication can
often be easily added by computing the volume of a conceptual region
and by checking for set inclusion, respectively. Also conceptual be-
tweenness can be added to most formalizations based on the definitions
by Derrac and Schockaert [122] for crisp sets and our generalization to
fuzzy sets. Let us now take a closer look at the individual formalizations.

The formalization by Aisbett and Gibbon [11] describes concepts
as crisp convex sets in pointed metric spaces. The only measure on
concepts provided by this formalization is conceptual similarity, which
is based on the Hausdorff distance of their respective regions A and B:
dp (A, B) = max(sup,¢ 4 infrep d(a, b), supye g infoca d(a, b)). One can,
however, argue that size and subsethood can be easily added to their
formalization by resorting to set theory. Also an implication operation
could be added by equating it with subsethood as in our proposal.
Since their formalization starts from a generalized betweenness relation
for points, it would also be conceivable to extend this notion to concepts.

Since Raubal [327] does not mathematically formalize properties
and concepts, he is unable to give definitions for measuring relations
between them. Without such a mathematical definition of conceptual
regions, it is impossible to add any of the operations to his approach.

203

Quverview

Aisbett and Gibbon:
similarity based on
Hausdorff distance

Raubal: no relations
at all

204

Ahlgoist: similarity
and subsethood based
on fuzzy set theory

Rickard: similarity as
fuzzy mutual
subsethood

Relation to the
Jaccard index

Subsethood

| MEASURING RELATIONS BETWEEN CONCEPTS

Ahlqvist’s formalization [10] uses rough fuzzy sets (a generalization
of "regular" fuzzy sets, which uses an upper and a lower membership
function) to represent concepts. It provides an explicit definition for
concept similarity based on the so-called fuzzy dissemblance index
8(A, B) = IM(A°U BY) [1_ (M(A*U B*) — M(A* N B*))da, which
aims to quantify the distance between two fuzzy sets. Conceptual over-
lap is defined in a similar way to our definition of subsethood, namely

as Sub(A, B) = M]\(;z;]f) Please note that in this case, M (B) is used as

denominator while we use M(A). Ahlqvist’s definition of conceptual
overlap should therefore be interpreted as measuring whether Bisa
subset of A. Ahlqvist computes both similarity and concept overlap
on individual properties and aggregates them through a weighted
sum to obtain results for overall concepts. Our formalization on the
other hand does not make such a distinction between properties and
concepts. If one equates implication with subsethood, an implication
measure can easily be added to his formalization based on his defi-
nition of conceptual overlap. Moreover, computing the integral over
the membership functions of a given rough fuzzy set should give a
reasonable measure of concept size. Finally, also our proposed ways of
measuring betweenness can potentially be generalized from fuzzy sets
to rough fuzzy sets and thus added to Ahlqvists’s formalization.

In the formalization by Rickard [329], concepts are represented
as matrices containing co-occurrence statistics of properties. These
matrices are then interpreted as fuzzy sets on the universe of ordered
property pairs. This means that each matrix entry A;; is interpreted as
the membership p (i, j) of the property pair (i, j) in the fuzzy set A,
Concept similarity is then explicitly formalized by using fuzzy mutual
subsethood which is defined as follows:

E(ﬁ E) _ Z(i,j) min(Ajj, Bi;)
T Z(i,j) max(Ajj, Bij)

Since the number of property pairs (i, j) is finite, one can interpret
2,5 Aij as the size of the fuzzy set A. Moreover, using 11 7 ing(®) =
min(pz(7), pz(r)) and py 5(*) = max(MA(r), pz(x)), one can inter-

pret the formula for E(A, B) as Méjmg; which is the definition of the

Jaccard index. Rickard’s definition of similarity for concepts can thus
be related to our own definition of Sim ; from Section 4.4.2.
When judging the similarity of an observation to a concept, Rickard

makes use of fuzzy subsethood (i.e., § ub(A, B) = MA%B)) Although

not explicitly formalized by Rickard, one could imagine to extend
this usage also to measure subsethood between concepts. Again, if we
equate implication with subsethood, also an implication measure can
be easily added. Both fuzzy mutual subsethood and fuzzy subsethood
as employed in Rickard’s formalization implicitly compute the size of
a concept by summing the co-occurrence values of all property pairs.

4.7 COMPARISON TO OTHER FORMALIZATIONS |

One could easily use this procedure to also explicitly provide a way
to measure the size of a concept. However, it is debatable whether
conceptual betweenness could be formalized in the context of Rickard’s
work by simply applying our definitions to his fuzzy sets. One would
need to investigate whether the resulting definition results in intuitively
understandable results.

Rickard et al. [330] build upon the formalization by Rickard [329],
hence essentially the same remarks apply. Rickard et al. define size
and overlap (which is a similar notion as subsethood) for properties.
However, as concepts are not defined as regions in a similarity space,
but based on co-occurrence statistics, these definitions do not directly
carry over to concepts. Rickard et al. furthermore define a subtype
relationship between concepts, which corresponds to specialization,
generalization, or a combination of both, depending on the concepts
being compared: For instance, if a concept A contains the (mutually
exclusive) properties Rep and BLUE on the coLor domain, then a subtype
B that is only associated to Rep on the coLor domain is a specializa-
tion of A. On the other hand, if a concept C is associated with the
properties RED and AriaL on the coLor and FONT domains, then a sub-
type D that only involves rRep (but not AriaL) is a generalization of C.
This subtype relationship is thus not equivalent to a subsethood relation.

Adams and Raubal [3] represent concepts by one convex polytope
per domain. Their formalization contains two proposals for comput-
ing concept similarity, either based on the distance of the concepts’
prototypes, or based on the distance of the convex hulls. Based on set
theory, we can again imagine that size, subsethood, implication, and
betweenness could be added to their formalization, being, however,
somewhat limited by the inherent crispness of their approach.

The formalization by Lewis and Lawry [253] uses random sets to
represent properties and formalizes concepts as random sets in binary
combination spaces, where each dimension codes for the presence
or absence of one property. Their formalization does not include any
explicit measures for conceptual relations, as its focus lies entirely on
conjunctive conceptual combination. One can, however, imagine to
measure the size of a concept by integrating over the membership
functions of its associated properties as well as its membership function
in the combination space. Also a notion of conceptual similarity can be
added by measuring the number of shared properties and the overlap
of the membership functions. Subsethood and implication can again be
based on fuzzy subsethood (cf. the formalizations by Ahlqvist [10] and
Rickard [329]). Finally, Lewis and Lawry define a betweenness relation
for the prototypes of composite concepts that use the same combination
space. This can potentially be generalized to concepts in a similar way
as in our own formalization.

205

Rickard et al.: adding
size and overlap for
properties, as well as
subtype relationship
for concepts

Adams and Raubal:
similarity based on
prototypes or convex
hulls

Lewis and Lawry: no
relations specified,
but many could be
added

206

Our own
formalization

Lessons learned

Open ends: size

Subsethood and
implication

Similarity

Analogy-based
reasoning

| MEASURING RELATIONS BETWEEN CONCEPTS

In this chapter, we have extended our formalization by explicitly
adding five measures for conceptual relations. As one can see, our
formalization is thus more comprehensive than all other competitors in
this regard. We think that especially our fuzzy definitions of subsethood
and betweenness are an important contribution that can potentially be
transferred to other formalizations.

4.8 SUMMARY

In this chapter, we have further extended our formalization of the
conceptual spaces framework by providing mathematical ways of mea-
suring relations between concepts. We have also argued how these
extensions of our framework can be used in both learning and reasoning
tasks. The now overall quite large set of operations, both for creating
new concepts and for measuring relations between concepts, makes our
formalization (to the best of our knowledge) the most thorough and
comprehensive formalization of conceptual spaces developed so far.
Moreover, in contrast to all other formalizations we are aware of, our
work comes with a concrete implementation for all of these operations.

There are still some open issues that warrant further research: The
computation of a concept’s size is quite complex. Even though comput-
ing the closed formula is significantly faster than numerically approxi-
mating the integral over the concept’s membership function, it might
be desirable for high-dimensional spaces to use a faster approximation
of the concept size. This is an especially crucial problem, since we use
the concept size also as a building block for subsethood, implication,
and similarity. Runtime improvements of the concept size will therefore
improve also the runtime of various other operators.

As we have discussed in Section 4.2.1, our proposed degree of subset-
hood is not always confined to the interval [0,1]. Future research should
investigate whether there is a straightforward and computationally
feasible way of overcoming this limitation. Moreover, we have argued
in Section 4.3.1 that the implication relation between two concepts can
be equated with their subsethood relation. This argument could use
some further empirical support by using the subsethood relation as
implication in a reasoning application.

In Section 4.4.2, we have provided two different definitions for
conceptual similarity — it remains an open question which one of them
is preferable in which concrete application contexts. Again, an empirical
study in an application scenario can help to clarify this issue. Moreover,
additional candidate definitions for conceptual similarity (e.g., based
on the maximal Hausdorff distance over all a-cuts, inspired by [11])
could be investigated in future work.

Finally, Derrac and Schockaert [123] have argued that the degree of
parallelism for pairs of difference vectors can be a useful measure for
supporting analogy-based reasoning: If poc relates to puppry like car
relates to kITTEN, then the geometrical direction from the poc concept

4.8 SUMMARY |

to the pupPY concept should be parallel to the corresponding direction
from car to xitTEN. Obviously, a formalization of this intuition in our
framework would be an interesting additional measure that could
support yet another commonsense reasoning strategy.

The formalization provided in this and the previous chapters is the
first significant contribution of this dissertation. Although we were able
to identify several open ends, the current state of both the formalization
and its open source implementation proves a solid foundation for both

theoretical and practical research in the context of conceptual spaces.

In Chapter 7, we will also consider the question to which extent the
machine learning approaches discussed there can be used to learn
conceptual regions as defined in our formalization.

207

Outlook

Part I

MACHINE LEARNING AND OPTIMIZATION
BACKGROUND

In the second part of this dissertation, we introduce the
mathematical background for our subsequent practical
studies in Part III. This mathematical background includes
on the one hand various machine learning algorithms, and
on the other hand an optimization technique for obtaining
similarity spaces from psychological data.

In Chapter 5, we introduce general notions in machine
learning along with various algorithms and dimensionality
reduction techniques. We then consider artificial neural
networks (ANNSs) for representation learning in more detail
in Chapter 6. In Chapter 7, we then discuss various machine
learning approaches for learning conceptual regions in a
cognitively plausible way.

Finally, in Chapter 8, we introduce the technique of multi-
dimensional scaling (MDS), which allows us to transform
dissimilarity ratings from psychological experiments into
a spatial representation. We supplement the discussion of
several MDS algorithms with a hybrid proposal for ground-
ing the dimensions of a conceptual space, which combines
MDS with ANNS.

GENERAL MACHINE

LEARNING
5 BACKGROUND

5.1 General Notions in Machine Learning 212
5.1.1 TaskandModel 213
5.1.2 Experience and Evaluation 215
5.1.3 Fitting the Model’s Parameters 222
5.1.4 Practical Considerations 225
5.2 Machine Learning Algorithms 228
5.2.1 Linear Regression. 229
5.2.2 Logistic Regression 233
5.2.3 Support Vector Machines 238
5.2.4 DecisionTrees 250
5.2.5 k Nearest Neighbors 255
5.3 Dimensionality Reduction 258
5.3.1 FeatureSelection 259
5.3.2 Feature Extraction 265
5.3.3 MetricLearning 271
5.4 SUMMATYo v it 279

Machine learning in general aims to approximate the function map-
ping inputs to outputs based on a given a collection of examples. In other
words, given a set of example input-output pairs (x, y), we try to find
the function f that relates inputs to outputs, i.e., f(z) = y. Although
this description is still relatively abstract, one can already see that this
is a very restricted form of learning. It can be linked to behaviorism
[377] in psychology, which follows a similar simplifying assumption
of input-output mappings, and which has been largely superseded by
more cognitive approaches. Nevertheless, machine learning is widely
applicable in artificial systems, whenever the designers of the system
are not able to hard-code a solution to a given problem and cannot
anticipate all possible situations or changes over time [341, Chapter
18]. This is also the case when applying conceptual spaces in artificial
agents: We may not be able to manually define all the dimensions of the
similarity space, and we may want our agent to autonomously acquire
and update conceptual regions over time.

In Section 5.1, we define machine learning problems more formally
and introduce some general notions relevant to most machine learning
contexts. In Section 5.2, we then give a brief introduction into several
selected machine learning algorithms that will play a role in the re-
mainder of this dissertation. In Section 5.3, we summarize different
dimensionality reduction algorithms, which can be used to find a low-
dimensional, but faithful representation of the input data. This typical

Machine learning in
a nutshell

211

212

Formal definition of
machine learning

Important factors:
component to be
improved

Prior knowledge and
two types of learning

Representation of the
problem and its
solution

Type of feedback

| GENERAL MACHINE LEARNING BACKGROUND

preprocessing step in a machine learning pipeline can be linked to the
task of defining the domains and dimensions of a conceptual space.
Finally, we conclude this chapter in Section 5.4 with a brief summary.

5.1 GENERAL NOTIONS IN MACHINE LEARNING

According to Mitchell [295, Chapter 1], machine learning can be in
broad terms defined as follows:

Definition 5.1 (Machine Learning)

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E. [295, Chapter 1]

Mitchell illustrates this definition by using the example of a program
learning to play checkers. Here, the task T corresponds to playing
checkers, the number of games that have been won by the program can
be used as a performance measure P, and the experience E can consist
of games played by the program against itself.

Russell and Norvig [341, Chapter 18], on the other hand, use four
factors to define a machine learning setup. Firstly, they consider the
component of the artificial agent which shall be improved through
machine learning, distinguishing for example perception from action
selection. This can be related to the task 7" in Definition 5.1.

Their second factor consists of the prior knowledge of the agent, which
allows for a distinction between inductive learning (where a general
rule is learned from specific examples) and deductive learning (wWhere a
specialized rule is logically deduced from a more general one in order to
speed up processing). This distinction is note made in Definition 5.1, but
can be incorporated by assuming that the experience E contains both a
set of input-output examples (for inductive learning) and background
knowledge (for deductive learning) [295, Chapter 12]. We will ignore the
role of background knowledge for now and put our focus exclusively
on inductive learning. We will reconsider background knowledge
and deductive learning in Chapter 7 in the context of learning under
knowledge-based constraints.

Thirdly, Russell and Norvig consider the type of representation being
used for solving the problem (e.g., first order logic) as an important
factor. Also Mitchell does consider the task representation, however,
not as part of the machine learning problem itself, but rather as a part
of the strategy for solving such a problem. We will consider the task
representation in more detail in Section 5.1.1.

Finally, the type of feedback available to the agent is the fourth factor
proposed by Russell and Norvig, and corresponds roughly to Mitchell’s
experience F/, which will be covered in more detail in Section 5.1.2.

In the following, we will take a closer look at the individual compo-
nents of a machine learning problem, referring to the definitions by

5.1 GENERAL NOTIONS IN MACHINE LEARNING |

Mitchell [295, Chapter 1] and by Russell and Norvig [341, Chapter 18] as
introduced above. In Section 5.1.1, we take a closer look at the task itself
and at the representation being used in modeling this task. In Section
5.1.2, we then consider the different types of experiences and ways
to evaluate the performance of a given model. After having covered
the main framework conditions, we then take a general look at how to
estimate a model’s free parameters in Section 5.1.3, before commenting
on practical issues (such as the so-called curse of dimensionality) in
Section 5.1.4.

5.1.1 Task and Model

In its most general form, the task 1" is usually formulated in a relatively
abstract way, e.g., "playing checkers" or "classifying objects in images".
In order to operationalize such a formulation, one usually defines a
particular target function f which needs to be learned by the system [295,
Chapter 1]. In general, this target function specifies how the system
should map inputs to outputs.

The input to the system is usually assumed to be represented by a
so-called feature vector £ € R", where each entry z; represents the value
on one feature describing the example [172, Chapter 5]. A feature is in
this context any measurable property of the object to be processed. For
example, in the context of playing checkers, one feature may measure
the number of black pieces on the board, while for classifying objects
in images, features may relate to the width or color of a detected object.
Feature values can be binary, categorical, natural numbers, or real
numbers. In the following, we assume that all features can be repre-
sented as real values, unless explicitly stated otherwise. If we equate
the individual features with individual dimensions of a conceptual
space, one can see that each feature vector ¥ € R" corresponds to a
point x € C'S in an n-dimensional conceptual space (cf. Section 1.2.5)."

Different types of target functions f give rise to different types of
machine learning tasks, including the following [172, Chapter 5]:

o Classification: The input Z needs to be assigned to one of ¢ classes,
ie, f: R" — {1,...,c}. In an alternative formulation, f can
be also defined as outputting a probability distribution over
the different classes. If only two classes are considered, this is
called binary classification. In the context of conceptual spaces,
classification corresponds to a partitioning of the space into
conceptual regions.

In Part I of this dissertation, we considered an observation as a point x, while in the
machine learning literature, an observation is considered to be a vector Z pointing
from the origin to the point z. We will adopt the latter notation in the machine learning
context. Moreover, we will try to ensure that other notational conventions from Part I
(such as n denoting the number of dimensions) are preserved in order to remain as
consistent as possible.

213

Operationalizing the
task with a target
function

Feature vectors and
feature values

Different types of
machine learning
tasks

214 | GENERAL MACHINE LEARNING BACKGROUND

o Regression: A numerical value needs to be predicted for the input Z,
ie, f: R™ — R.If multiple numerical values need to be predicted,
this can be broken down into multiple simple regression problems.

o Density Estimation: The probability of observing a given input
Z must be predicted, i.e., f : R®™ — R is a probability density
function over the feature space.

Model, parameters, In order to learn a good approximation of the target function f, the
and hypothesis space system needs some way of representing it, i.e., a model. For instance,
in a regression task, one can decide to model f as a polynomial func-

tion of Z with degree ¢, i.e., f(z) = b+ >, @™ - 77, where ©P) =

(p) (p)

(wy”, ..., wy”) is a vector of weights, 7¥ = (2}, ..., z}) is the element-
wise application of the pth power to Z, and @® - 7 = " | wﬁp) it
is the inner product of the vectors @® and 7. Learning the task T
then reduces to estimating the free parameters § = {b, wgl), . ,wT(f)}
of this polynomial function (i.e., the intercept b and all entries of the
different weight vectors 172(1), e ,173(‘1). One fixed set of parameters is

also called a hypothesis h. If a model contains |f| parameters, this can be
visualized as a |#|-dimensional parameter space (or hypothesis space H).
Each hypothesis then corresponds to a single point in this hypothesis
space. Optimizing the free parameters # can then be interpreted as a
search in this hypothesis space for the optimal hypothesis (as measured
by the performance measure P, see Section 5.1.2).

Choosing an Choosing an appropriate model f for representing f involves opti-
appropriate model: mizing a trade-off between expressiveness (which is needed in order
ep ressz:;;.sczs‘ to find a good approximation) and simplicity (which usually makes
Y the learning process easier, since it corresponds to a smaller amount of
parameters) [295, Chapter 1]. Moreover, simpler representations tend
to make the evaluation of the model on novel data faster [341, Chapter
18]. Finally, if the representation is computationally too expressive (e.g.,
using all possible Turing machines), then finding a good solution within
this hypothesis space can be prohibitively complex [341, Chapter 18].
Model capacity and A more formal way of capturing expressiveness vs. simplicity is given
hyperparameters by the capacity of a model, which can be defined as its ability to fit a wide
variety of functions [172, Chapter 5]. Essentially, a model’s capacity
corresponds to the size of its hypothesis space, i.e., the number of free
parameters. The capacity of a model is on the one hand influenced by
the size of the feature space R", i.e., by the number n of features used to
describe an example #. For instance, when considering our polynomial
model from above, each weight vector @) needs to have exactly as
many entries as the feature vector 7. Adding one additional feature
to the representation of Z thus adds another entry to each @), thus
increasing the number of free parameters and hence the capacity of
the model. On the other hand, the capacity of a model can be partially
controlled through its so-called hyperparameters. In our example from
above, the degree g of the polynomial is the main hyperparameter of
our model. It is not being optimized by the system itself, but needs

5.1 GENERAL NOTIONS IN MACHINE LEARNING |

to be specified by the experimenter. This hyperparameter has a direct
influence on the number of weight vectors @®. Hence, increasing
q results in a larger number of free parameters and therefore in an
increased capacity of the model.

Every model comes with an inductive bias, which is the set of (poten-
tially tacit) assumptions that together with the training data deductively
justifies the classifications of novel instances [295, Chapter 3]. One can
distinguish a restriction bias (which puts a hard limit on the hypothesis
space of the model) from a preference bias (which induces a preference
relation over different hypotheses in a given hypothesis space). In the
example of the polynomial function, a restriction bias would put a hard
limit on the degree of the polynomial, e.g., by setting ¢ = 1 and thus
only allowing for linear models. A preference bias on the other hand
would in principle allow arbitrary values for ¢ in the model, while
ensuring during learning that low values of g are preferred. In general,
a preference bias is often the better choice since using a restriction
bias comes with the risk of excluding the correct hypothesis from the
hypothesis space [295, Chapter 3]. We will return to this topic in Section
5.1.3 in the context of regularization.

5.1.2 Experience and Evaluation

Let us now consider the second component of Definition 5.1, namely,
the experience E. Mitchell [295, Chapter 1] distinguishes among different
degrees of control which the learning system has about this experience:
There can be no control (if a fixed set of examples is used), full control
(e.g., when the system plays games against itself), or an intermediate
form (where the system can ask for feedback on self-selected examples).
In the following, we will only consider the first case, namely a fixed
dataset of examples. We will consider a case of intermediate control in
Chapter 7 in the context of language games. A dataset can in general be
either unlabeled or labeled.

Unlabeled datasets consist of a set of examples N Z/) (each represented
as an n-dimensional feature vector). The overall dataset can be described
by a so-called design matrix X € RN*" je., a table where each of
the N rows represents one example 79 and where each of the n
columns represents one feature. Unlabeled datasets are usually used
for unsupervised learning tasks such as density estimation (where a
probability distribution over the feature space needs to be learned,
cf. Section 5.1.1) or clustering (where the overall dataset needs to be
divided into groups of similar examples). A common characteristic of
such unsupervised machine learning task is that they do not require
any explicit output examples for the target function f.

In a labeled dataset, each example #17) is also annotated with a label y(j),
i.e., the expected value of the target function f. The design matrix X is
thus accompanied by a vector of labels 3. Labeled datasets are typically
used for supervised learning tasks, where complete input-output pairs

215

Inductive bias:
restriction bias and
preference bias

Experience and
different degrees of
control

Unlabeled datasets
for unsupervised
learning

Labeled datasets for
supervised learning

216

Representativeness

Performance
measure: comparing

ftof

Binary classification:
confusion matrix and
accuracy

| GENERAL MACHINE LEARNING BACKGROUND

Actual Class
TRUE FALSE
Predicted | True | True Positive (TP) False Positive (FP)
Class FaLsE | False Negative (FN) = True Negative (TN)

Table 5.1: Confusion matrix for a binary classification task

(29, yD) for the target function f are expected. Supervised learning
includes classification and regression tasks, where feature vectors need
to be mapped onto pre-defined classes or pre-defined numerical values,
respectively (cf. Section 5.1.1). In the intermediate case where only
some, but not all data points are labeled, one talks about semi-supervised
learning [341, Chapter 18]. In the following, we will put our focus on
supervised learning with labeled datasets in the form of regression
and binary classification. We will resconsider machine learning with
unlabeled datasets again in Chapters 6 (in the form of autoencoders)
and 7 (in the form of clustering algorithms).

For any type of dataset, it is important to ensure that the examples
contained in the design matrix accurately reflect the underlying data
distribution of the domain of interest [295, Chapter 1]. This means that
the selected examples should be representative of the actual examples
one can expect to encounter in practice. This may for instance concern
the frequency of different classes in a classification setting or more
broadly the distribution of individual feature values and their combi-
nations. If a given dataset is not representative of the actual task or
domain, then the function f learned by the model (through optimizing
its parameters #) may end up being a relatively poor approximation of
the true target function f.

Let us now turn to the performance measure P, which can also be called
an evaluation metric. It measures how well a given model performs a
given task 7. Since the task T is usually formulated mathematically as a
target function f, the performance measure typically (i.e., in supervised
setting with labeled datasets) compares the output of the function f
learned by the model to the output of the actual target function f.
This is usually done based on examples (79, y@)) from the dataset,
comparing F(@9)) to the ground truth label yU) = f (). One should
note that perfect performance is often not feasible in practice, and that
one should therefore determine the desired performance level based
on the underlying application scenario [172, Chapter 11].

Let us first consider binary classification tasks. Overall, there are four
different cases that one needs to distinguish (visualized in Table 5.1 as
a so-called confusion matrix): If the prediction and the actual class are
identical, we speak of a "true positive" (T'P; both the prediction and
the the ground truth label are TrRUE) or a "true negative" (I'N; both the
prediction and the ground truth label are raLsE). In case of a mismatch,
one can distinguish a "false positive" (F'P; prediction is TRUE, but label is
FALSE) from a "false negative" (F'N; prediction is raLsg, but label is TRUE).

5.1 GENERAL NOTIONS IN MACHINE LEARNING |

In order to derive a single performance metric, one can then compute
the accuracy Acc of the model as the proportion of examples for which
[produces the same output as f:

TP+ TN

Acc =
T TPIFP+FN+TN

Equivalently, one can measure the error rate Err, which measures the
proportion of examples on which f and f disagree:

FP+FN

Err —
T TPYFP+FN+TN

Based on their definitions, one can easily see that Acc, Err € [0, 1]
and that Acc + Err = 1. While accuracy can give a first intuition about
the model’s usefulness ("how often is the prediction correct?"), the error
rate is mainly used to analyze improvements over previous models
("how many remaining misclassifications were we able to remove?").

Unfortunately, both accuracy and error rate can be misleading on
imbalanced datasets, where one of the classes occurs much more
frequently than the other: If we assume that 9o% of the examples
are labeled as TrRUE, then also a model that completely disregards its
input and always predicts TRUE obtains an accuracy of 9o%. Despite

this relatively high value, the model is likely to be useless in practice.

Therefore, several other evaluation metrics have been defined (again
based on the confusion matrix), which aim to be informative also on
imbalanced datasets. Here, we will consider Cohen’s x [108], which
can be interpreted as a normalized version of accuracy that takes into
account the probability p. of random agreement between the prediction
and the ground truth:

pe = P(predicted = truUE) - P(actual = TRUE)
+ P(predicted = raLse) - P(actual = FALSE)

Here, the probabilities IP(actual = TRUE) and P (actual = FALSE) can
be derived by simply counting the distribution of the labels in the
dataset. Analogously, IP(predicted = TrUE) and IP(predicted = FALSE)
can be calculated for the outputs of the model on the given dataset. In
the computation of p,, we thus pretend that both the model f and the
target function f completely ignore their inputs and that they make
their predictions solely based on class probabilities. Thus, p. measures
the level of agreement one would expect even in this hypothetical case.
Cohen’s k now adjusts the accuracy Acc based on p,:

_ Acc—pe
1- Pe
One can thus think of Cohen’s x as measuring to what extend the
accuracy of the model is higher than what we would expect by chance.
Cohen’s & is confined to the interval [—1, 1], with 1 representing perfect
agreement between model and ground truth, o only random agreement,

217

Error rate as
counterpart of
accuracy

Cohen’s k for
imbalanced data

Computing the
probability of random
agreement

Interpretation of
Cohen’s x

218

Baseline classifiers

Regression task:
mean squared error

Coefficient of
determination

| GENERAL MACHINE LEARNING BACKGROUND

and -1 perfect disagreement. In the example with an imbalanced dataset
containing 9o% examples from the positive class, the probability p. of
random agreement of an "always TRUE" classifier equals its accuracy
(since it is indeed based only on class probabilities). Hence, Cohen’s s
is zero in this case. We will return to Cohen’s in Chapters 8 and 10,
where we use it to evaluate the quality of interpretable directions in a
conceptual space.

As we have seen in the example with the imbalanced dataset, the
choice of the evaluation metric can be quite important. In our discus-
sion from above, we have considered a model that always returns TRUE.
This is an example of a so-called baseline classifier — a very simplistic
model, that may even disregard its input altogether. The point of using
such baselines is to establish a lower performance bound, to which
the model under consideration can be compared. Simple classification
baselines include models with a fixed output (such as "always TrUE" and
"always raLse"), models with a probabilistic output (such as predicting
both classes with equal probability, or based on their frequency in
the dataset), and simplified versions of the actual model (i.e., with a
very small capacity, either due to limited access to features, or due to
respective hyperparameter settings).

In a regression setting, the desired output is usually a real number.
It is thus quite unlikely that f and f perfectly agree on the output for
any example Z. Therefore, classification-based evaluation metrics are
not directly applicable. In order to quantify the error of a prediction,
one usually measures the numeric difference between f(Z) and f(Z).
This can be done by using the mean squared error (MSE), i.e., the average
value of the squared differences between prediction and ground truth
for all examples from the dataset:

1 & N e a2
MSE = ¥ Z (y(J) _ f(f(])))

Jj=1

Optimal regression performance corresponds to a minimal value of
the MSE, which is zero for a perfect prediction. Since the prediction can
be arbitrarily far away from the ground truth, the MSE is not bounded
from above, hence, M SE € [0, c0). We will use the MSE in Chapters 9
and 12 to measure the quality of a regression from images to points in
a psychological similarity space.

Another popular performance measure in regression tasks is the
coefficient of determination R? [439]. It can be defined as follows [155,
Section 7.2.3], where y denotes the average across all y):

RQ —1_ Sresidual o Stotal — Sresidual
Stotal Stotal
N

with Sresidual = Z(y(]) - }.(f(j)))z

j=1

5.1 GENERAL NOTIONS IN MACHINE LEARNING |

N
and Siora = »_(yY) - 9)°

j=1

Here, Siotqr is the total sum of squares and measures the overall variance
in the ground truth data by quantifying how much the target varies
around its mean. Syesiquar 1S called the residual sum of squares and
measures how far the model’s predictions depart from the ground
truth, essentially using the MSE. The coefficient of determination can
be interpreted as the amount of variance explained by the model
(Stotal — Sresidual, 1-€., the overall variance minus the remaining errors
of the model) by the overall amount of variance found in the data
(Stotar)- Similarly to Cohen’s « (which can be viewed as a normalized
version of classification accuracy), we can interpret the coefficient of
determination R? as a normalized version of the MSE.

The highest possible value of R? is one and can only be achieved if
Sresidual (i-€., the MSE) becomes zero. For a regression error larger than
the variance of the ground truth (i.e., Sresiduar > Stotal) R? becomes
negative. Since the regression error can become arbitrarily large, the
possible values of R? are not bounded from below, hence R? € (—oo, 1].
Please note that R? = 0 only happens if S,esiguat = Siotal, i-€., if the
model’s prediction error is identical to the overall variance in the targets.
We will use the coefficient of determination in Chapter 9 for evaluating
the correlation between psychological dissimilarities and distances in a
similarity space, and in Chapters 9 and 12 for quantifying the quality
of a regression from images to points in this similarity space.

Also for regression tasks, it makes sense to compare the model’s
performance to some simple baselines. These may again follow a fixed
strategy (e.g., always predicting the mean of the targets, or another
fixed value such as zero), a probabilistic strategy (for instance based on
anormal distribution), or may use a simplified model with low capacity.

In machine learning, one is mainly interested in a model which per-
forms well on previously unseen inputs, i.e., which is able to generalize
well. The generalization error (or test error) of a model can be defined as
the expected error on novel, previously unseen inputs. It needs to be
distinguished from the training error, which is measured on the training
set, i.e., the dataset which was used to estimate its free parameters [172,
Chapter 5].* In practice, the generalization error can not be measured,
but only be approximated by evaluating the model’s performance on
a test set, i.e., a separate set of examples which were not used during
training. In order for this approximation to be meaningful, one has to
assume that the examples in the two datasets are independent from each
other, and that both datasets follow an identical probability distribution.
These assumptions are often summarized as i.i.d. assumptions, which
is an abbreviation for "independent and identically distributed” [172,
Chapter 5]. Moreover, most machine learning problems tacitly include

Alternatively, one can also use the terms generalization performance and training perfor-
mance.

219

How R is computed

Values of R?

Baseline regressors

Generalization error
vs. training error

220

Generalization as
difference to
optimization

Underfitting and
overfitting

Model selection for
optimizing
hyperparameter
settings

| GENERAL MACHINE LEARNING BACKGROUND

the stationarity assumption, which states that the probability distribution
of the data does not change over time [341, Chapter 18].

Goodfellow et al. [172, Chapter 8] note that this distinction into gen-
eralization error and training error is what separates machine learning
from pure optimization: In an optimization task, minimizing a given
cost function on a given dataset is the main task, and generalization
to novel inputs is not considered at all. In machine learning, on the
other hand, good generalization capabilities are the main goal, while
optimizing performance on the training set is rather a means to an end.
We will touch upon this distinction again in Chapter 8 in the context of
the optimization technique of multidimensional scaling.

Two factors are very important for performing well on previously
unseen examples [172, Chapter 5]: On the one hand, the model needs to
achieve good performance on the training set. If this is not the case (e.g.,
because the model’s capacity is too low for the given task), one speaks
of underfitting. On the other hand, the difference between training
performance and generalization performance should be small. If this is
not the case, one speaks of overfitting, which corresponds to the model
memorizing the examples from the training set, but being unable to
generalize successfully. One can interpret this as the model picking
up random patterns from the training set, which are not predictive on
new examples from the test set. In general, the training error decreases
with an increase in model capacity, until it asymptotes to the minimal
possible error. The generalization error on the other hand tends to be
a U-shaped function of model capacity [172, Chapter 5], based on un-
derfitting issues for low model capacity and overfitting issues for high
model capacity. As a rule of thumb, overfitting becomes more likely
as the hypothesis space grows, and becomes less likely as the number
of training examples grows [341, Chapter 18]. We will return to this
trade-off in Section 5.1.4 when discussing the curse of dimensionality.

The hyperparameters of a model (as in our example from Section
5.1.1 the degree g of the polynomial function) have a direct influence
on its capacity and hence on its generalization error. One therefore
often follows a so-called wrapper method for model selection [341, Chapter
18] by training the model with various hyperparameter settings and
choosing the variant with the best performance. It is important to note
that the performance of different hyperparameter settings should be
evaluated neither on the training set nor on the test set [172, Chapter
5]: Optimizing hyperparameters on the training set (i.e., by measuring
training performance) usually leads to settings with maximal capacity,
since a model with a higher capacity can fit the training examples better.
Hence, optimizing hyperparameters on the training set increases the
risk of overfitting. On the other hand, if hyperparameters are optimized
on the test set (i.e., by measuring test performance), then the model
can "peek" at the test set [341, Chapter 18]: Examples from the test set
are used to set the model’s hyperparameters, which in turn indirectly
influence the parameters of the model. Performance on the test set is
then no longer be an accurate estimate of the model’s generalization

5.1 GENERAL NOTIONS IN MACHINE LEARNING |

performance, since the examples from the test set have influenced the
estimation of the model’s parameters and can thus not be considered
to be novel to the overall system.

Therefore, a third dataset called the validation set is used to compare
different hyperparameter settings. It should again be disjoint from
both the training set and the test set and follow the same underlying
distribution. The typical machine learning workflow is then to train
multiple variants of the same model (by using different hyperparameter
settings) on the training set, and to estimate their generalization error
on the validation set. This validation set performance is then used
to select the optimal hyperparameter configuration. Only when the
overall training process is done, the test set is used to estimate the
generalization error of the resulting model. In the example of the
polynomial model from Section 5.1.1, we would use the training set
to find optimal parameters b and @®). This can be done for different
values of g, i.e., different variants of the polynomial model. We can
then compare their performance on the validation set in order to
decide which value of ¢ we should use. The expected performance on
previously unseen examples can then be computed on the test set. One
should note that the validation set error is typically lower than the test
set error since it is explicitly being minimized during hyperparameter
optimization [172, Chapter 5].

The search for optimal hyperparameters should be conducted in a
structured way in order to make the results reproducible. There are
several approaches that can be taken [57, 154]: When conducting a grid
search, one defines several possible values for each hyperparameter and
evaluates the system for each possible combination of these values.
This can be used to create an equally spaced grid of hyperparame-
ter configurations which is easy to evaluate and to interpret. When
choosing candidate values for real-valued hyperparameters, it is a
common practice to pick them on an approximately logarithmic scale
with the scale ends being chosen conservatively [172, Chapter 11]. A
random search on the other hand randomly samples hyperparameter
configurations based on predefined marginal distributions for the in-
dividual hyperparameters. A random search can give better results if
some hyperparameters are much more important than others, but since
the hyperparameter configurations are sampled in a less systematic
way, it can be harder to interpret. Both grid search and random search
can be used in an iterative way in order to focus on regions of the
hyperparameter space, which have yielded promising results in prior
iterations [172, Chapter 11]. Finally, there are more advanced methods
such as genetic algorithms or Bayesian optimization, which are more
powerful optimizers, but come at increased computational cost.

As argued above, in a typical machine learning setting, we need to
split the overall dataset into two or three parts in order to estimate the
generalization error and (if necessary) to optimize hyperparameters.
There exist different evaluation schemata for making such a split:

221

Validation set for
model selection

Model selection
approaches: grid
search and random
search

How to split the
dataset

222

Holdout
cross-validation: a
single fixed split

k-fold
cross-validation:
rotating through the
data

Leave-one-out: only a
single data point for
testing

Finding optimal
parameters §*

Loss: performance
measutre and
regularizers

| GENERAL MACHINE LEARNING BACKGROUND

The most straightforward procedure is called holdout cross-validation
[341, Chapter 18], where the overall dataset is randomly split into two
or three disjoint parts, before any model is trained. This partitioning
is then kept fixed for the whole machine learning process. A so-called
stratified split ensures that the distribution of class labels or regression
targets is approximately the same in all parts. Typical splits are 80-20 or
70-30 (if only considering training and test set) and 60-20-20, 70-15-15, or
80-10-10 (if considering training, validation, and test set). As one can see,
there is no ideal split that has been agreed upon in the literature. This
is based on the trade off between a good estimation of validation and
test error (requiring relatively large validation and test sets, but leading
to a relatively small training set), and reducing the risk of overfitting
(requiring a large training set for models with higher capacity, and
leading thus to smaller validation and test sets) [341, Chapter 18].

Using a holdout cross-validation to split the overall dataset into three
parts may, however, not be feasible if the overall number of training
examples is very small. In such cases, one can use a technique called
k-fold cross-validation [172, Chapter 5]. In this scheme, the overall dataset
is partitioned into £ non-overlapping subsets. In practice, often five or
ten of these so-called folds are used [341, Chapter 18]. In the ith trial,
the ith subset is used for testing while all other subsets are used for
training the model. The overall generalization error is then estimated
by averaging over the test set error of all trials. While allowing to make
a reasonably confident estimate of the generalization error on small
datasets, this cross-validation scheme comes at increased computational
cost, since the model parameters need to be estimated k times instead
of only once.

In the extreme case, if the number of folds equals the number of data
points, this is called a leave-one-out evaluation, which is applicable even to
very small datasets, but computationally very costly. The leave-one-out
error is furthermore known to be a high variance estimator of the
true generalization error, which also tends to give overly optimistic
results [178]. The results of a leave-one-out evaluation should thus be
interpreted with caution.

5.1.3 Fitting the Model’s Parameters

So far, we have only described how the different ingredients for describ-
ing a machine learning problem can be defined, and how one can model
the target function. Let us now discuss how the optimal parameters
0* of the model can be found based on the training examples and the
performance measure.

In general, the best fit of the model to the data is found by minimizing
an appropriate error function (also called cost function or loss) [295,
Chapter 1]. This loss J is closely related to the performance measure
P, but often not identical to it. Typically, the loss consists of different
additive terms where at least one term refers to the performance
measure P (e.g., the MSE in a regression task), while other terms

5.1 GENERAL NOTIONS IN MACHINE LEARNING |

introduce additional constraints. These constraints often aim to improve
generalization and are called reqularizers, since they incite the selection
of a "more regular" or less complex model [341, Chapter 18]. Using
regularization can thus be seen as a preference bias (cf. Section 5.1.1),
which tries to choose the simplest hypothesis consistent with the data
[341, Chapter 18]. This can be linked to the philosophical principle of
Occam’s razor, which postulates that the solution or explanation with the
fewest underlying assumptions is preferable [295, Chapter 3]. In general,
regularization can be defined as constraining the learning algorithm in
such a way that the difference between training and test error is reduced,
while the training error is basically left unchanged [172, Chapter 5].
Regularization thus tries to constrain the model’s capacity in a soft
way in order to avoid overfitting problems (cf. Section 5.1.2). Since one
needs to find an appropriate trade-off between the different terms in
the loss function, they are typically weighted against each other. These
weights can be interpreted as additional hyperparameters of the model.

When considering our polynomial regression model from Section
5.1.1, we can for example add a so-called weight decay regularizer, which
puts a penalty on large weights. When optimizing the weights of the
model, we thus do not only maximize the performance measure P (i.e.,
the mean squared error), but we also try to minimize the magnitude
of the model’s weights. In other words, the regularizer we introduced
gives a preference to some solutions from the hypothesis space (namely,
the ones with small weights) over others (namely, the ones with large
weights). The strength of this preference can be controlled with the
aforementioned weights of the two terms in the loss function.

Instead of using a regularizer, one can also limit the model’s capacity
by performing dimensionality reduction, i.e., compressing the original
feature vectors into a more compact format [341, Chapter 18]. We will
introduce different dimensionality reduction techniques in Section 5.3.
If the model’s capacity can be directly controlled through a hyper-
parameter (as in the example of the polynomial regression with the
degree ¢ of the polynomial), constraining the possible values of this
hyperparameter can offer another way of preferring simpler hypotheses.
Capacity restrictions enforced through dimensionality reduction or by
constraining hyperparameter values are often restriction biases, while
regularization is a preference bias (cf. Section 5.1.1).

In general, the optimal parameters §* of a model can be found by
minimizing the loss function J. For some models (such as a linear
regression), this minimization can be solved analytically. For more com-
plex models (such as artificial neural networks), finding an analytical
solution is, however, not easily possible. In many cases, one thus resorts
to iterative optimization methods, which improve their solution step by
step. For neural networks, typically a variant of gradient descent is used
(which will be introduced in Section 5.2.2). Other machine learning
algorithms (such as for example decision trees), however, come with
special-case optimizers, since general optimization strategies are not
easily applicable [172, Chapter 5]. Please recall that the model param-

223

Example: polynomial
regression

Reducing model
capacity through
dimensionality
reduction and
hyperparameters

Minimizing the loss
function

224

Maximum likelihood
for selecting model
parameters

Expected value of
empirical
distribution

Cross-entropy and
KL divergence

Maximizing the
posterior probability

| GENERAL MACHINE LEARNING BACKGROUND

eters are always optimized on the training set, i.e., they are chosen
in