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Abstract

Particle transport in both natural and fabricated systems often takes place in confined
geometries under single-file conditions. This means, that particles cannot pass each other,
as, for example, when the particles move through membrane pores or microfluidic channels.
A generic model describing particle dynamics in such systems is the Brownian asymmetric
simple exclusion process (BASEP). It describes the driven Brownian particle motion of
hard spheres through a periodic structure under a constant drag force. This model has
been introduced as Brownian dynamics variant of the asymmetric simple exclusion process
(ASEP), which is a discrete lattice model that has been established to study fundamental
aspects of nonequilibrium physics.

Current-density relations in the BASEP are characterized by three effects: a barrier
reduction effect, a blocking effect and a commensurability effect. These effects dominate
the dynamics for certain range of particle diameters: the barrier reduction effect dominates
when it is likely that a potential well is occupied by more than one particle. The blocking
effect prevails when the particle diameter becomes large such that the multiple occupation
of a potential well becomes unlikely due to steric reasons. The commensurability effect
governs the dynamics when the particle diameter is close to the spatial period of the
external structure.

One part of this thesis is devoted to the investigation to what extent and how these
effects are modified when considering particles with a soft core that can partially penetrate
or even pass each other. We develop an effective size method by which the system of soft
particles is mapped to that of the BASEP. This effective size method is well suitable to
describe the dynamics of partially penetrating particles.

In the main part of the thesis, particle transport in the BASEP is studied with a focus
on crowding effects appearing at high densities. The investigation involves both analytical
derivations and extensive Brownian dynamics simulations, including the development of
novel algorithms.

One intriguing crowding effect is the of solitary cluster waves that propagate without
dispersion. At low temperatures, these solitons generate measurable particle currents
for certain particle diameters even if potential barriers are hundred times larger than



the thermal energy. In effectively frustrated systems, where the blocking effect typically
inhibits particle motion, solitons can result in high particle currents. The presence of
these theoretically predicted solitons has been experimentally verified recently in colloidal
particle transport.



Zusammenfassung

Häufig findet Teilchentransport in natürlichen und künstlich hergestellten Systemen in
begrenzten Geometrien unter Single-File-Bedingungen statt. Unter solchen Bedingungen
können sich überholen, d.h. sie behalten ihre Reihenfolge wenn sie sich z. B. durch Mem-
branporen oder mikrofluidische Kanäle bewegen. Ein generelles Modell, das die Teilchen-
dynamik in solchen Systemen beschreibt, ist der “Brownian Asymmetric Simple Exclu-
sion Process” (BASEP). Er beschreibt die getriebene Brownsche Teilchenbewegung harter
Kugeln durch eine periodische Struktur unter einer konstanten Triebkraft. Dieses Mod-
ell wurde als Brownsche-Dynamik-Variante des “Asymmetric Simple Exclusion Process”
(ASEP) eingeführt, wobei der ASEP ein diskretes Gittermodell ist, das zur Untersuchung
grundlegender Aspekte der Nichtgleichgewichtsphysik entwickelt wurde.

Strom-Dichte-Relationen im BASEP werden durch drei Effekte charakterisiert: einem
Barriererenreduktionseffekt, einem Blockierseffekt und einem Kommensurabilitätseffekt.
Diese Effekte dominieren das dynamische Verhalten in bestimmten Bereichen von Teilchen-
durchmessern. Der Barriererenreduktionseffekt ist vorherrschend, wenn es wahrscheinlich
ist, dass ein Potentialtopf von mehr als einem Teilchen besetzt ist, der Blockierseffekt do-
miniert, wenn der Teilchendurchmesser die Mehrfachbesetzung eines Potentialtopfes aus
sterischen Gründen behindert, und der Kommensurabilitätseffekt ist entscheidend, wenn
der Teilchendurchmesser vergleichbar mit der Wellenlänge der periodischen Struktur wird.

Ein Teil dieser Arbeit ist der Untersuchung gewidmet, in welchem Maße diese Effekte
auftreten bzw. modifiziert werden, wenn weiche Teilchen betrachtet werden, die sich teil-
weise durchdringen oder sich sogar überholen können. Durch Entwicklung eines neuen
Verfahren, der Methode effektiver Teilchengröße, lässt sich das System weicher Teilchen
auf den BASEP abbilden. Diese Methode effektiver Teilchengröße ist sehr gut geeignet,
um die Dynamik sich teilweise durchdringender Teilchen zu beschreiben.

Im Hauptteil dieser Arbeit wird der Teilchentransport im BASEP untersucht, wobei der
Schwerpunkt auf Vielteilcheneffekten liegt, die bei sehr hohen Teilchendichten auftreten.
Diese Untersuchungen beinhalten sowohl analytische Herleitungen als auch umfangreiche
Brownsche-Dynamik-Simulationen, einschließlich der Entwicklung neuer Algorithmen.



Ein faszinierender Effekt ist die Bildung von Wellen aus Teilchenclustern, die sich ohne
Dispersion ausbreiten. Bei niedrigen Temperaturen induzieren diese Solitonen messbare
Teilchenströme bei bestimmten Teilchendurchmessern selbst dann, wenn die Potentialbar-
rieren hundert Mal größer sind als die thermische Energie. In frustrierten Systemen, in
denen der Blockierseffekt die Teilchenbewegung im Allgemeinen hemmt, können Solitonen
zu erheblichen Teilchenströmen führen. Das Auftreten von Solitonen wurde vor kurzem
beim Transports kolloidaler Teilchen experimentell nachgewiesen.
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List of frequently used symbols and
abbreviations

Symbol Meaning Important relations
x position
v velocity
j current
t time
f force
µ particle mobility

kBT thermal energy

β inverse thermal energy β = 1
kBT

D diffusion coefficient D = µkBT

λ wavelength
U0 potential barrier

U(x) external potential U(x) = U0
2 cos

(2πx

λ

)
f − U ′(x) external force

v0 velocity of independent particles
jst stationary current in the steady-state
L system length L = mλ, m ∈ N

N particle number N − L

λ
is

system overcrowding
ς particle size
σ normalized particle size σ = ς/λ

ϱ(x) particle density
∫ λ

0
dyϱ(y) = N/L

ϱ̄ mean particle number density ϱ̄ = N/L

ρ(x) normalized particle density ρ(x) = λϱ(x)
ρ̄ filling factor ρ̄ = ϱ̄λ

η(x) η(x) =
∫ x

x−ς
dyϱ(y)
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Symbol Meaning Important relations
ϱ(2)(x, y) two particle density

ρ cluster density
f int(x) mean interaction force at position x

r particles distance
ε dimensionless softness parameter
V0 amplitude of the interaction potential

V (r) interaction potential of soft particles V0

ε[1+erf(ς/
√

2λε)]
erfc

(
r−ς√
2λε

)
f int

i total interaction force acting on particle i

n cluster/soliton size

k
order of transition state for
thermally activated cluster

k = ⌊n/2⌋

Abbreviation Meaning
ASEP Asymmetric Simple Exclusion Process

BASEP Brownian Asymmetric Simple Exclusion Process
AZMIF Approximation of the Zero Mean Interaction Force
DDFT Dynamic Density Functional Theory
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1 Introduction

1.1 Driven transport in narrow channels

Brownian motion, named after Scottish botanist Robert Brown who first described the
phenomenon in 1827, is the random motion of particles suspended in a fluid (a liquid or a
gas). It results from their collision with the fast-moving atoms or molecules in the fluid.
The theory of Brownian motion has substantial practical significance in many areas of
modern physics. In real systems, such motion is often spatially confined, while the nature
of the confining environment, such as the walls of the channel or an external magnetic
field, can be of a different kind. As some of many examples, Brownian motion is used in
describing various aspects of DNA (deoxyribonucleic acid) dynamics [1–3], dynamics of
colloidal suspensions [4, 5], or association of proteins [6, 7]. Brownian motion is also applied
in economics, for describing financial markets [8] or in game theory [9–11], in biology, for
various models of biological aggregation [12, 13], and in many other disciplines.

In this thesis we focus on Brownian motion of particles in narrow channels, where the
channel has a diameter almost equal to the particle size, so that particles cannot pass
each other (single-file diffusion). Describing properties of the Brownian transport inside
such channels is not only a fundamental scientific problem, but also a challenge in various
applications which were particularly motivated by the recent advances in nanotechnology,
like diffusion in zeolites (that is important for catalysis) [14–16], inside nanotubes [17],
and ion diffusion [18]. Other interesting examples of single-file transport include motion
of motor proteins along microtubules or actin tracks [19, 20], and protein synthesis by
ribosomes [21]. Single-file motion has been reported in conjection with bioadsorption
and biocatalysis in mesoporous materials [22, 23], in carbon nanotubes with relevance to
biotechnological and biomedical applications [24], in nanofluidic devices [25], which can
be utilized for water ultrafiltration or osmotic energy conversion. Transport in narrow
channels can be relevant also for industrial problems, like filtration and desalting [26],
pedestrian and car traffic [27, 28].

For the study of collective single-file particle dynamics, there is a prominent reference
lattice model, the asymmetric simple exclusion process (ASEP). In this model, particles
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1 Introduction

Figure 1.1: Illustration of the ASEP. The arrows indicate directions in which the particle
jumps can occur. These jumps occur between nearest-neighbor lattice sites with certain
rates. Jumps to occupied lattice sites are forbidden, i.e. a lattice site can be occupied by
at most one particle. The bias in the system is set by the difference between the jumps
rates to the left and right. Dashed arrows between sites 0 and L correspond to a jump
between these sites in case of periodic boundary condition. They correspond to adding or
removing particles in case of an open system.

with exclusion interaction are considered to jump between neighboring sites of a one-
dimensional lattice with a bias in one direction, see illustration in Fig. 1.1.

Several significant findings have been reported in relation to the ASEP. The model it-
self was first designed to describe protein production by ribosomes [21]. Subsequently,
the field of applications of the ASEP was substantially expanded, including the modeling
of biological traffic [29, 30], studies of molecular motor motion [31–33], and analysis of
multiplex networks [34]. In terms of theoretical advances, exact results for microstate
distributions in nonequilibrium steady states were obtained [35]. Furthermore, investiga-
tions into systems with random hopping rates revealed condensation transitions [36, 37].
The ASEP also exhibited phase transitions in the bulk density for systems with open
boundaries [38, 39]. Additionally, rate functions were found to possess singular points
characterizing large deviations of fluctuations in time-averaged currents [40–42]. Studying
variants of the ASEP in the hydrodynamic limit led to the discovery of new universality
classes of nonlinear hydrodynamics [43]. Moreover, concrete microscopic models were used
to validate predictions of nonlinear fluctuating hydrodynamics [44].

1.2 The Brownian asymmetric simple exclusion process
(BASEP)

Despite the aforementioned successes, the ASEP and its coarse-grained modifications are
not deprived of disadvantages, the most fundamental one being its discreteness when
applied to processes in continuum space. An extension of the ASEP, the Brownian asym-
metric simple exclusion process, or BASEP, was suggested as a reference model to study
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1.2 The Brownian asymmetric simple exclusion process (BASEP)

the properties of the single-file transport in continuum space. In this process, hard spheres
are driven through a periodic potential by a constant drag force. The motivation for pe-
riodicity of potential is that the confining environment in single-file diffusion usually has
a periodic structure, which in a theoretical modeling is most easily accounted for by an
external periodic potential. The periodicity of the confining environment can be of steric
reasons, e.g. due to variation in a pore cross section [45–47], or of energetic nature, e.g.
when associated with the periodic structure of binding sites along a membrane channel
[48–50].

Over the last decade, microfluidics and optical and/or magnetic micromanipulation
techniques, pioneered significantly by Ashkin and his colleagues [51–55], were intensively
developed [56–63]. These techniques are actively used e.g. in rheology [64, 65] to perform
measurements, in neuroscience for studying molecular or neuronian dynamics [66, 67],
or in biology to stretch DNA [68, 69]. The manipulation capabilities include the ability
to trap multiple particles [70] or soft particles at interfaces [71, 72] and to drag them
[73]. These abilities of manipulation techniques make it possible to study the BASEP
[74, 75] and similar setups of collective motion of colloidal particles in spatial confinement
experimentally [76–78].

As for applications, the BASEP is relevant, e.g. for the description of transport through
channels with binding sites in biology [79–81] for transport of colloidal particles [82], and
in thermodynamics of microscopic heat engines [83, 84].

Previously, various key aspects of the BASEP were thoroughly studied in Refs. [85–87].
Many effects that emerge in the BASEP have no counterparts in corresponding discrete
systems. For illustration of these effects the current-density relations, also known as “fun-
damental diagrams” [29], are used. Different current regimes occurring in an open system
that is coupled to particle reservoirs, and in a closed system that is not coupled to particle
reservoirs, have also been discovered and described in detail. While the BASEP focuses
on investigating hardcore interactions, it is important to note that real-world systems en-
compass a broader range of interaction types that extend beyond this limit. Nevertheless,
it is reasonable to anticipate that significant qualitative changes would arise only from the
interaction of soft particles that can partially penetrate or even pass each other, or from
sticky particle interactions that could result in particle clustering. Regarding stickiness,
ongoing studies of Baxter’s model of adhesive particles [88] have yielded promising results,
including the development of algorithm for Brownian dynamics simulations [89], as well
as the formulation of a scaling theory for the time-dependent mean squared displacement
of a tagged particle [90]. The dynamics of soft particles has been investigated in [91], and
it is also highlighted and developed in the present thesis.

7



1 Introduction

This thesis holds its main merit in investigating particle transport in the BASEP, with a
particular emphasis on the impact of crowding effects that arise at high densities. In biol-
ogy, these crowding effects have a significant influence, impacting various aspects such as
protein folding and aggregation [92, 93], protein stability [94–96], enzyme activity [97–99],
DNA and DNA-protein interactions [100, 101], polymer [102] and DNA [103] transloca-
tion. In the discrete ASEP, the phenomenon of crowding is examined by introducing local
inhomogeneities or defects [104, 105], typically arising from specific particle interactions
[106, 107]. However, in the proposed continuous BASEP framework, the crowding setup
is more inherent. Notably, the BASEP has theoretically predicted the existence of Brow-
nian solitons, which have subsequently been confirmed in experiments involving colloidal
particles controlled by optical tweezers [108]. The approaches developed in this work are
applicable to a broad range of problems in theoretical physics, such as Kramers problem
[109] or density functional theory [110].

1.3 Thesis organization

This thesis consists of two parts and is organized as follows. The first part is dedicated
to analyzing theoretical and numerical results. In Chapter 2 we formally introduce the
BASEP and derive its main properties. This chapter is an introductory overview revealing
the basic essence of the fundamental issues discussed in the following chapters. In Chap-
ter 3 we introduce a term Brownian soliton, representing a novel theoretical prediction.
It stands for a collective phenomenon when particles in the BASEP propagate as clusters,
with a propagation velocity much higher than the velocity of independent particles even
in a flat potential. These solitons can occur either due to thermal fluctuations (Sec. 3.2)
or due to system overpopulation (Sec. 3.3). In Chapter 4 we investigate how the ability
of particles to penetrate and pass each other affects the collective transport properties
considered in Chapter 2 for the BASEP. In order to model such system, we modify the
hardcore interaction potential, thereby making mutual penetration and crossing of parti-
cles possible.

The second part of the thesis is devoted to computational methods. In Chapter 5 we
present a review of approaches for Brownian dynamics simulations and describe algorithms
implemented in this thesis. A brief summarizing Chapter 6 concludes the thesis.

The values of quantities presented in the figures of this thesis are expressed in dimen-
sionless units. In the Appendix, we provide the units of the quantities.

The parameters of computer simulations used in a particular chapter/section are set
at its beginning, unless otherwise specified. A brief conclusion for each chapter and a
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1.3 Thesis organization

short discussion of open scientific problems related to the topic of the chapter are given
in summary notes.
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2 Basics of the BASEP

This chapter presents a description of the BASEP and its general results which provides a
theoretical basis for the further developments in the present thesis. The chapter is based
on the first studies of the BASEP [85, 86]. It contains also additional information about
previously unrevealed aspects as well as a detailed description of certain aspects of the
original studies.

2.1 Model

The BASEP is a Brownian motion of N particles with particle diameter ς that interact
via hardcore exclusion. In what follows, we refer to the particle diameter as the particle
size, and to particles interacting via hardcore exclusion interaction as hard rods or hard
particles. In this thesis, we focus on a closed BASEP, where periodic boundary conditions
are applied and the particle number remains the same. The details of open systems, where
particles can be added or removed via particle reservoirs, were investigated in Refs. [85, 86].

The Brownian motion is described by a set of Langevin equations,

dxi

dt
= µ

(
f − U ′(xi)

)
+
√

2Dξi(t), i = 1, . . . , N, (2.1)

where µ is the particle mobility, f is the constant drag force, D = kBTµ is the diffusion
coefficient with kBT the thermal energy, ξi(t) are Gaussian white noise processes with
zero mean and correlations ⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′). The system length L is an integer
multiple of λ and periodic boundary conditions are applied. To address these conditions,
we introduce two mirror particles associated with the last particle (i = N) and the first
particle (i = 1) in the system. These mirror particles are assigned indices 0 and (N +1),
respectively, and have coordinates:

x0 = xN − L, (2.2a)

xN+1 = x1 + L. (2.2b)

11



2 Basics of the BASEP

The particle interactions are taken into account by a hardcore exclusion constraint
between neighboring particles,

|xi+1 − xi| ≥ ς, (2.3)

and

U(x) = U0
2 cos

(2πx

λ

)
(2.4)

is the external periodic potential with potential barriers U0 between neighboring wells
separated by the wavelength λ. In the study [87] it was shown that results obtained for
this specific potential are generic with respect to the current-density characteristics, so
in what follows we focus on considering the external potential (2.4). In Eq. (2.1), U ′(.)
denotes the space derivative of the external potential, so that f − U ′(x) is the external
force that is implied on a particle at the position x. A visual illustration of the introduced
process is given in Fig. 2.1. In the present thesis we focus on the undercritical regime, i.e.
the tilted potential U(x) − fx has extrema points. That implies the condition that the
equation

f − U ′(x) = f − πU0
λ

sin
(2πx

λ

)
= 0, x ∈ R, (2.5)

has a solution, leading to the following requirement for the drag force:

f ≤ πU0
λ

. (2.6)

ς

U(x)−fx
f

0 λ 2λ 3λ 4λ 5λ

λ

x

Figure 2.1: Illustration of the BASEP. Hardcore interacting particles of size ς are driven
by a constant drag force f through a periodic potential U(x) with amplitude U0 ≫ kBT
and periodicity λ. The average slope of the tilted potential U(x)− fx corresponds to the
magnitude of the drag force f .
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2.2 General results

In the following, we always consider the drag force f to be directed from left to right,
in the direction of the coordinate axis x.

2.2 General results

Since the number of particles remains constant, the corresponding conservation law can
be taken into account via the continuity equation [111]

∂ϱ(x, t)
∂t

+ ∂j(x, t)
∂x

= 0, (2.7)

where j(x, t) is the particle current, and

ϱ(x, t) =
〈

N∑
i=1

δ(x− xi(t))
〉

(2.8)

is the local density, ⟨. . .⟩ is the ensemble average, which corresponds to the mean value of
the measured quantity according to the distribution of the system on its microstates in
the ensemble [112]. This average is evaluated at time instant t for a given initial condition.
The ensemble is represented by a density function ϱ(x, t) which evolves in time according
to the Langevin equations (2.1) and the given initial conditions. A practical application
of Eq. (2.8) assuming the ergodic hypothesis, which states that the average of a process
parameter over time is equal to the average over the statistical ensemble [113], is given in
Chapter 5.

The Langevin equations (2.1) combined with the continuity equation can be written as
the many-body Smoluchowski equation, which directly describes the time evolution of the
density function [85, 114]:

∂ϱ(x, t)
∂t

= −∂j(x, t)
∂x

,

with
j(x, t) = µ

(
f − U ′(x) + f int(x, t)

)
ϱ(x, t)−D

∂ϱ(x, t)
∂x

, (2.9a)

where f int(x, t) is the mean interaction force due to hardcore interactions at position x at
time t. It can be written via the two-particle density

ϱ(2)(x, y, t) =
〈

N∑
i=1

N∑
j=1

δ(x− xi(t))δ(y − yj(t))
〉

, (2.10)

13



2 Basics of the BASEP

as

f int(x, t) = 1
ϱ(x, t)

∫ L

0
dy f (2)(x, y)ϱ(2)(x, y, t), (2.11)

where f (2)(x, y) is the pair interaction force of particle at position y on particle at position
x. For the system of hard rods, the mean interaction force reads [85]

f int(x, t) = kBT
ϱ(2)(x, x− ς, t)− ϱ(2)(x, x + ς, t)

ϱ(x, t) . (2.12)

Relation (2.12) can be derived from the following heuristic considerations: for hard-
interacting particles, the interaction force is infinite when the distance r between them
approaches ς from below (which effectively means that particles cannot penetrate each
other, so that hardcore exclusion constraint (2.3) is satisfied), and zero otherwise. Thus,
we can present the pair interaction force in the following way:

f (2)(x, y) = lim
r→ς−

(
kBT [δ(y − (x− r))− δ(y − (x + r))]

)
= kBT [δ(y − (x− ς))− δ(y − (x + ς))], (2.13)

with kBT as the only relevant energy scale due to dimensional reasons. By substituting it
into (2.11), we obtain the relation (2.12).

2.2.1 Equilibrium properties

Before describing the nonequilibrium dynamics (f ̸= 0), we first derive the equilibrium
properties (f = 0). For hard rods in one dimension the exact functional of the density
profile was derived by Percus [115],

Ω[ϱ(x)] =
∫ λ

0
dxϱ(x)

{
U(x)− µch − kBT

(
1− ln

[
ϱ(x)

1− η(x)

])}
, (2.14)

where µch is the chemical potential and

η(x) =
∫ x

x−ς
dyϱ(y). (2.15)

Equation (2.14) is given for the grand canonical ensemble which is not the case in the
BASEP, where the ensemble is canonical. However, these two ensembles are equivalent
in the thermodynamic limit, and the differences between their density profiles are usually
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2.2 General results

negligible for N ≳ 100 [116]. The specific conditions when we cannot assume the density
profiles of these ensembles to be equivalent are given in the summary notes in Sec. 2.4 of
this chapter.

To get the equilibrium density profile, we minimize the functional (2.14):

δΩ[ϱ]
δϱ

∣∣∣
ϱ=ϱeq

= 0. (2.16)

To calculate the functional derivative, we use product and chain rules [117]:

δΩ[ϱ(x)]
δϱ(y) = (2.17)

= U(y)− µch − kBT

(
1− ln

[
ϱ(y)

1− η(y)

])
+ kBT

(
1 +

∫ λ

0
dx

δη[ϱ(x)]
δϱ(y)

ϱ(x)
1− η(x)

)
.

Direct calculation gives us

∫ λ

0
dx

δη[ϱ(x)]
δϱ(y)

ϱ(x)
1− η(x) =

∫ λ

0
dx

ϱ(x)
1− η(x)

∫ x

x−ς
dzδ(y − z) (2.18)

=
∫ λ

0
dx

ϱ(x)
1− η(x)Θ ([y − x][ς + x− y]) =

∫ y+ς

y
dx

ϱ(x)
1− η(x) .

Combining (2.16), (2.17), (2.18) and taking y = x, we obtain the relation determining
equation for the equilibrium density profile:

δΩ[ϱ]
δϱ

∣∣∣
ϱ=ϱeq

= U(x)− µch + kBT

(
ln
[

ϱeq(x)
1− ηeq(x)

]
+
∫ x+ς

x
dy

ϱeq(y)
1− ηeq(y)

)
= 0. (2.19)

Here the chemical potential µch is set implicitly by the normalization condition

1
λ

∫ λ

0
ϱ(x)dx = ϱ̄, (2.20)

with the density ϱ̄ defined as the mean particle number density, ϱ̄ = N/L.
For numerical calculation of ϱeq, we use the evolution equation for density profile in

dynamical density functional theory. For one-dimensional system it reads [118, 119]:

∂ϱ(x, t)
∂t

= µ
∂

∂x

(
ϱ(x, t) ∂

∂x

δΩ[ϱ(x, t)]
δϱ(x, t)

)
. (2.21)
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2 Basics of the BASEP

Equation (2.21) can be used for a minimization procedure of the static density functional
(2.14), since its stationary solution satisfies the minimization condition (2.16) in correspon-
dence with the normalization condition (2.20) [120, 121]. Thus, evolving an initial density
profile with Eq. (2.21) until the stationary one is obtained provides us with the equilibrium
density profile. We have taken the Boltzmann distribution ϱ(x) ∝ exp(−U(x)/kBT ) with
a normalization condition (2.20) as the initial profile.

In addition, the evolution equation also allows us to obtain an expression for the two-
particle density at contact. Inserting (2.19) into (2.21) gives

∂ϱ(x, t)
∂t

= µ
∂

∂x

(
ϱ(x, t)

[
U ′(x) + kBT

(∂ϱ(x, t)
∂x

1
ϱ(x, t) −

ϱ(x, t)− ϱ(x− ς, t)
1− η(x, t)

+ ϱ(x + ς, t)
1− η(x + ς, t) −

ϱ(x, t)
1− η(x, t)

)])
= ∂

∂x

[
µ
(
U ′(x) + kBT

ϱ(x, t)
{ ϱ(x + ς, t)

1− η(x + ς, t) −
ϱ(x− ς, t)
1− η(x, t)

})
ϱ(x, t) + D

∂ϱ(x, t)
∂x

]
,

(2.22)

and inserting (2.12) into (2.9a) for the equilibrium case gives

∂ϱ(x, t)
∂t

= (2.23)

= ∂

∂x

[
µ
(
U ′(x) + kBT

ϱ(2)(x, x− ς, t)− ϱ(2)(x, x + ς, t)
ϱ(x, t)

)
ϱ(x, t) + D

∂ϱ(x, t)
∂x

]
.

Comparing Eqs. (2.22) and (2.23), we would get an expression for the two-particle
density at contact:

ϱ(2)(x, x + ς) = ϱ(x)ϱ(x + ς)
1− η(x + ς) . (2.24)

The expression (2.24) has been proven exactly in Ref. [122].

2.2.2 Collective dynamics

Now we consider the case f ̸= 0, so that the system is out of equilibrium. In the stationary
(steady) state, the density profile and the mean interaction force are time-independent,
ϱ(x, t) = ϱ(x), f int(x, t) = f int(x), and the current is both time-independent and homo-
geneous, j(x, t) = jst. Eq. (2.9a) then reads
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2.2 General results

jst = µ(f − U ′(x) + f int(x))ϱ(x)−D
∂ϱ(x)

∂x
. (2.25)

To describe the collective properties of the BASEP, we present a comprehensive analysis
of the current dependence on both particle size and mean density. Since these parameters
are in units of length and inverse length, respectively, for convenience we introduce their
dimensionless analogues:

σ = ς/λ, (2.26a)

ρ̄ = ϱ̄λ, (2.26b)

ρ(x) = ϱ(x)λ. (2.26c)

The parameter ρ̄ = Nλ/L is thus the filling factor, i.e. the mean number of particles
per potential well.

We start the investigation of collective dynamics from the analysis of non-interacting
particles (f int = 0). In such a system, the current does not depend on particle size and
increases linearly with ϱ̄ [111],

jst = v0ϱ̄ = v0ρ̄

λ
. (2.27)

The mean velocity of a single particle v0 can be calculated analytically by analyzing
the stationary equation (2.25) for a single particle without interaction forces in one period
[0; λ],

v0 = µ
(
f − U ′(x)

)
ρ(x)−D

∂ρ(x)
∂x

. (2.28)

Multiplying it by e−β(fx−U(x)), with β = 1/(kBT ),

v0e−β(fx−U(x)) = µρ(x)
(
f − U ′(x)

)
e−β(fx−U(x)) −D

∂ρ(x)
∂x

e−β(fx−U(x))

= −D
∂

∂x

[
ρ(x)e−β(fx−U(x))

]
, (2.29)

and integrating both sides of the equation (2.29) from 0 to y,

v0

y∫
0

e−β(fx−U(x))dx = −Dρ(y)e−β(fy−U(y)) + Dρ(0)eβU(0), (2.30)

we obtain the solution for ρ(x):
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2 Basics of the BASEP

ρ(x) =
[
−v0

D
G(x) + ρ(0)eβU(0)

]
eβ(fx−U(x)), (2.31)

where we have introduced the function G(x) =
x∫
0

e−β(fy−U(y))dy. The term ρ(0) is set by

the normalization condition (2.20), with ρ̄ = 1 for a single particle,

λ = −v0
D

∫ λ

0
G(x)eβ(fx−U(x))dx + ρ(0)eβU(0)

∫ λ

0
eβ(fx−U(x))dx (2.32)

The λ-periodicity of the external force f −U ′(x) implies that the stationary solution of
Eq. (2.25) is λ-periodic as well. By applying this periodic boundary condition to Eq. (2.32),

ρ(0) = ρ(λ) =
[
−v0

D
G(λ) + ρ(0)eβU(0)

]
eβ(fλ−U(λ))

= v0G(λ)eβ(fλ−U(λ))

D
(
eβfλ − 1

) =
λ + v0

D

∫ λ

0
G(x)eβ(fx−U(x))dx

eβU(0)
∫ λ

0
eβ(fx−U(x))dx

, (2.33)

we get an expression for the mean velocity of a single particle:

v0 =
Dλ

(
1− e−βfλ

)
G(λ)

∫ λ

0
eβ(fx−U(x))dx−

(
1− e−βfλ

) ∫ λ

0
G(x)eβ(fx−U(x))dx

. (2.34)

Let us simplify it:

G(λ) − G(x)(1− e−βfλ) (2.35)

=
λ∫

0

e−β(fy−U(y))dy −
x∫

0

e−β(fy−U(y))dy + e−βfλ

x∫
0

e−β(fy−U(y))dy

=
λ∫

x

e−β(fy−U(y))dy +
x∫

0

e−β(f(y+λ)−U(y+λ))dy

=
λ∫

x

e−β(fy−U(y))dy +
x+λ∫
λ

e−β(f(y)−U(y))dy =
x+λ∫
x

e−β(fy−U(y))dy

After substituting (2.35) into (2.34), we obtain the final expression:
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2.2 General results

v0 =
Dλ

(
1− e−βfλ

)
∫ λ

0
dx eβ(fx−U(x))

∫ x+λ

x
dy e−β(fy−U(y))

. (2.36)

In what follows, we use it to normalize the simulation currents. We note that point
particles (σ = 0) can also be treated as independent in the collective dynamics [123].

Since an exact calculation of the current for nonzero particle size is a rather complicated
task, we perform Brownian dynamics simulations in order to investigate the effects occur-
ring in the BASEP. The details of the implemented algorithm are described in Chapter 5.

Current-density relations for the BASEP are presented in Fig. 2.2 for the parameters
U0/kBT = 6, fλ/kBT = 0.2 corresponding to the undercritical regime (see Sec. 2.1). For
small particle size 0 ≲ σ ≲ 0.4, the stationary current jst is monotonically increasing
with ρ̄ and is always larger than the current of independent particles v0ρ̄/λ due to a
barrier reduction effect caused by a high probability of multiple particles to occupy one
potential well. Since such particles are pushing each other to subsequent potential wells,
the effective barrier is reduced. With increasing σ, the multiple occupation probability
becomes smaller for steric reasons, and a blocking effect starts to prevail. This effect is well
known in discrete systems such as the asymmetric simple exclusion process (ASEP) [124]
and is explained by the fact that when particles move from one well to another, there is a
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Figure 2.2: Current-density relation for hard particles at various particle sizes. The
current is normalized to the mean velocity of non-interacting particle v0. The black solid
line with slope one represents the behavior of independent or point particles. The figure
is reproduced from [91] with the permission of AIP Publishing.
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2 Basics of the BASEP

high probability that a neighboring potential well is already occupied by another particle.
For intermediate particle sizes 0.4 ≲ σ ≲ 0.6, these two effects compete with each other.
On one side, this causes a significant reduction in current compared to that of independent
particles for 0 ≲ ρ̄ ≲ 0.8 due to the blocking effect. On the other side, the current sharply
increases at higher filling factors 0.8 ≲ ρ̄ ≲ 1.0, since the probability of double occupation
by particles of the same potential well again increases, so that the barrier reduction effect
starts to prevail. For large particle sizes, 0.6 ≲ σ ≲ 1, the blocking effect dominates
the current behavior, and current-density curves approaches the parabolic ASEP curve
jst = v0ρ̄(1 − ρ̄)/λ [124, 125]. For σ ≥ 1, particle currents and density profiles can be
rescaled to those at 0 ≤ σ < 1 by using the relation [85, 86]:

jst(σ, ρ̄) = (1−mρ̄) jst

(
σ −m,

ρ̄

1−mρ̄

)
, (2.37a)

ρ(x; σ, ρ̄) = (1−mρ̄)ρ

(
x; σ −m,

ρ̄

1−mρ̄

)
, m = int(σ), (2.37b)

or alternatively,

jst(σ + m, ρ̄) = (1 + mρ̄) jst

(
σ,

ρ̄

1 + mρ̄

)
, (2.38a)

ρ(x; σ + m, ρ̄) = (1 + mρ̄)ρ

(
x; σ,

ρ̄

1 + mρ̄

)
, m = 1, 2, . . . . (2.38b)

In what follows, we refer to this scaling behavior of current as the exchange symmetry
effect. This effect in particular means, that the particle current for σ = 1 is equal to the
one for σ = 0, i.e. the current of independent particles described by Eq. (2.27), see also
the violet dashed line in Fig. 2.2 corresponding to this particle size.

The interplay of the barrier reduction, blocking, and exchange-symmetry effect, governs
the dynamics of the BASEP [85]. Understanding the nature of these effects is the key for
interpreting other, more complex features occurring in the BASEP described in Chapter 3.

2.3 Analytical treatment: approximation of the zero mean
interaction force (AZMIF)

As noted in Sec. 2.2, the analytical calculation of the particle current is a challenging
problem. The reason for that is the lack of information about the mean interaction force
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in the nonequilibrium system. In this section, we present a method based on neglecting
the impact of period-averaged mean interaction force.

Taking the exact expression for the steady-state current (2.25), dividing it by ϱ(x), and
integrating from 0 to λ results in:

jst = µ
f + f int

1
λ

∫ λ

0

dx

ϱ(x)

, (2.39a)

f int = 1
λ

∫ λ

0
f int(x)dx. (2.39b)

In the linear response regime for small drag force f , Eq. (2.39a) reads

jst = 1 + α

1
λ

∫ λ

0

dx

ϱeq(x)

µf, (2.40a)

α = ∂f int

∂f

∣∣∣∣∣
f=0

(2.40b)

where ϱeq is the equilibrium density profile (f = 0).
The current is thereby influenced by the mean interaction force. By neglecting the

impact of the period-averaged mean interaction force (α = 0), we obtain an approxima-
tion for the steady-state current. In what follows we refer to this approach as to the
approximation of zero mean interaction force (AZMIF).

Results for Brownian dynamics simulations and the AZMIF are presented in Fig. 2.3
for U0/kBT = 6 and small drag force fλ/kBT = 0.2. We see that the AZMIF captures
the qualitative features of the current-density relations and has a good agreement with
Brownian dynamics simulations for σ = 0.2 (green curve) and σ = 0.8 (violet curve).
However, for σ = 0.5 there is a significant difference due to the fact that the AZMIF
underestimates the contribution of the term f int in Eq. (2.39a). Thus, we can conclude
that the contribution of the mean interaction force to the particle current is negligible if
one of the effects dominates over another, and significant if these effects compete with
each other.

To keep α nonzero, we need to determine the mean interaction force in Eqs. (2.39b),
(2.40b). The direct calculation from Eq. (2.11) requires the explicit expression for the
two-particle density ϱ(2)(x, y). Its determination is a very challenging task which is a core
problem for a successful application of e.g. the DDFT mentioned in Sec. 2.2.1 or other
related approaches that are usually applied in stochastic processes.
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Figure 2.3: Current-density curves for three representative cases: σ = 0.2 (barrier re-
duction effect is dominant, green), σ = 0.5 (barrier reduction and blocking effects are
competing, violet), and σ = 0.8 (blocking effect is dominant, orange). Thin-dashed curves
correspond to the AZMIF, and thick-dashed curves to Brownian dynamics simulations.
The AZMIF is able to capture the qualitative behavior of current-density curves and gives
a good description for cases when one effect dominates the other (σ = 0.2 and σ = 0.8). It
is quantitatively different from the simulation results when effects are competing with each
other (σ = 0.5, where the blocking effect is significantly underestimated by the AZMIF).

2.4 Summary notes

In this chapter, we have introduced the BASEP as a framework for investigating the
crowding effects at high densities. Here we briefly summarize the main features of the
BASEP.

The current in the BASEP for the constant external potential and drag force is influ-
enced by the particle size σ and the filling factor ρ̄. Depending on these parameters, the
BASEP can exhibit the following three effects: barrier reduction, blocking, and exchange-
symmetry effect. A competition between these effects determines the shape of current-
density curves. The curves were obtained both from simulations and by analytical means.

The implemented analytical approach (AZMIF) is based on the reference equilibrium
system, where the main properties are known for the grand canonical ensemble. The
impact of the period-averaged mean interaction force, the analytical determination of
which remains an open and rather complicated problem, is neglected. This approach gives
us a qualitative understanding of transport properties in the BASEP.
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We also briefly discuss other analytical approaches that we have implemented to deter-
mine mean interaction forces. However, these methods do not lead to significant improve-
ments compared to the AZMIF.

2.4.1 Dynamic density functional theory (DDFT)

The dynamic density functional theory, or DDFT, is a powerful tool which is employed in
various fields, including hydrodynamics, materials science, chemistry, biology, and plasma
physics [121]. In our system, we utilize DDFT based on the equilibrium theory (2.21)
[118, 119, 122], which enables us to relate the two-particle density at contact to the single-
particle density via Eq. (2.24). By combining it with Eqs. (2.9a) and (2.12), we can derive
an equation for the evolution of the density profile, which is as follows:

∂ϱ(x, t)
∂t

= − ∂

∂x

{
µ
(
f − U ′(x)

)
ϱ(x, t)

+ Dϱ(x, t)
[

ϱ(x− ς, t)
1− η(x, t) −

ϱ(x + ς, t)
1− η(x + ς, t)

]
−D

∂ϱ(x, t)
∂x

}
. (2.41)

The interaction force in the stationary state then reads:

f int(x) = kBT

[
ϱ(x− ς)
1− η(x) −

ϱ(x + ς)
1− η(x + ς)

]
. (2.42)

However, in the stationary state the resulting interaction force f int(x) is symmetric
with respect to x = 0.5λ, as shown in the example in Fig. 2.4, and therefore also does
not contribute to the current in the Eq. (2.39a). Indeed, as is shown in [86], DDFT and
AZMIF give overall similar results.

The contribution of the mean interaction force that cannot be described by adiabatic
assumptions that are based on equilibrium system properties, is called beyond-adiabatic
[126], or superadiabatic contribution to the system dynamics [127]. To account for these
corrections, a modification of the DDFT is necessary. Recent methods include the force-
DDFT, which proposes an evolution equation for the particle density by making an adi-
abatic approximation to the two-particle density [128], and the superadiabatic-DDFT,
which involves treating the dynamics of inhomogeneous two-particle correlation functions
[129]. The potential power of these methods has been demonstrated through investiga-
tions of density profiles for a model of three-dimensional spheres subjected to an external
time-dependent potential in Refs. [130] and [131], respectively.
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Figure 2.4: Comparison of simulated interaction force f int (red line) with the result of
DDFT given by Eq. (2.42) (green line) for parameters σ = 0.5, ρ̄ = 0.9. Both results lead
to similar force profiles. However, while DDFT being symmetric with respect to x = 0.5λ,
in simulation the left wing for x < 0.5λ has bigger amplitude than that for the right wing,
x > 0.5λ. This results in a negative period-averaged mean interaction force in simulations.
Peak amplitudes are represented by the dashed lines.

The superadiabatic contribution resulting from the asymmetry of the mean interaction
force profile can be understood from another perspective: on average, collisions occurring
on the right (drag force) side, which decelerate the particle, exhibit greater effect compared
to collisions on the left side, which contribute to its acceleration. This phenomenon can be
attributed to a violation of the action-reaction principle, induced by the nonequilibrium
nature of the considered system [132–134]. To account for this violation, we introduce a
perturbation function in Eq. (2.13):

f (2)(x, y) = kBT {δ(y − (x− ς))[1 + ϑ(x)]− δ(y − (x + ς))[1− ϑ(x)]} , (2.43)

where ϑ(.) is a perturbation function. The interaction force is then modified in the fol-
lowing way:

f int(x) = kBT

[
ϱ(x− ς)[1− ϑ(x)]

1− η(x) − ϱ(x + ς)[1 + ϑ(x)]
1− η(x + ς)

]
, (2.44)

where the perturbation function can be expressed as
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ϑ(x) =

ϱ(x− ς)
1− η(x) −

ϱ(x + ς)
1− η(x + ς) − f int(x)

1
1− η(x) −

1
1− η(x + ς)

(2.45)

= ϱ(x− ς)[1− η(x + ς)]− ϱ(x + ς)[1− η(x)]− f int(x)[1− η(x + ς)][1− η(x)]
η(x)− η(x + ς) .

By substituting the simulation results for f int(x) and ϱ(x) into Eq. (2.45), we can observe
the behavior of the perturbation function, as shown in Fig. 2.5. As is evident from this
figure, the shape of the perturbation function is strongly dependent on the particle size,
indicating the nontrivial nature of particle collisions in the nonequilibrium state.

2.4.2 Potential of mean force

The idea of this approach is to calculate the current of independent particles in the external
potential of mean force w(x), set through particle distribution in the equilibrium steady-
state:

ϱeq(x) ∝ e−βw(x). (2.46)
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Figure 2.5: Perturbation function ϑ(x) for ρ̄ = 0.5 and particle sizes σ = 0.3 (cyan),
σ = 0.5 (violet), σ = 0.8 (orange).
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Equation (2.9a) then reads:

∂ϱ(x, t)
∂t

= − ∂

∂x

[
µ
(
f − w′(x)

)
ϱ(x, t)−D

∂ϱ(x, t)
∂x

]
. (2.47)

From Eq. (2.19), we obtain the potential of mean force w(x):

w(x) = C − ln ϱeq(x) = U(x)− kBT

ln[1− ηeq(x)] +
x+ς∫
x

dy
ϱeq(y)

1− ηeq(y)

+ C. (2.48)

Substituting Eq. (2.48) into Eq. (2.47) gives us the following evolution equation:

∂ϱ(x, t)
∂t

= − ∂

∂x

{
µ
(
f − U ′(x)

)
ϱ(x, t)

+ Dϱ(x, t)
[

ϱeq(x− ς)
1− ηeq(x) −

ϱeq(x + ς)
1− ηeq(x + ς)

]
−D

∂ϱ(x, t)
∂x

}
, (2.49)

which is structurally identical to DDFT evolution equation given by Eq. (2.41).
The formula for the current of independent particles in the potential of mean force can

be derived by combining Eqs. (2.27) and (2.36):

jst =
Dρ̄

(
1− e−βfλ

)
∫ λ

0
dx eβfxϱeq(x)

∫ x+λ

x
dy e−βfyϱ−1

eq (y)
. (2.50)

The obtained result is depicted in Fig. 2.6. Similar to the conceptually analogous DDFT,
this method yields outcomes comparable to the AZMIF.

2.4.3 Fick-Jacobs approximation

The problem of determining the mean interaction force is challenging even for the case of
two particles in a system. To illustrate this point, we employ the Fick-Jacobs equation
[135, 136]:

∂ϱ(x, t)
∂t

= − ∂

∂x

[
µ

(
f − U ′(x) + A′(x)

A(x)

)
ϱ(x, t)−D

∂ϱ(x, t)
∂x

]
, (2.51)

where the function A(x) would be determined by the ansatz that the conditional proba-
bility ϱ(y|x) = ϱ(2)(x, y)/ϱ(x) has the equilibrium distribution in the domain of y. This
domain is set between x + ς and x + L − ς due to the hardcore constraint and periodic
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Figure 2.6: Comparison of current-density relations obtained from Eq. (2.50) with
current-density relations presented in Fig. 2.3. The results obtained by using the po-
tential of mean force are shown by triangles and are identical to the AZMIF indicated by
thin dashed lines, and are different from results of Brownian dynamics simulations indi-
cated by thick dashed lines.

boundary condition. We choose this ansatz based on the similarity with the assumption
made in DDFT, where we assume that the interaction processes in the system have an
equilibrium nature.

For a single particle, the conditional probability ϱ(y|x) follows the Boltzmann distribu-
tion:

ϱ(y|x) = e−βU(y)

A(x) , (2.52a)

where A(x) is the normalization function given by:

A(x) =
∫ x+L−ς

x+ς
e−βU(y)dy. (2.52b)

The two-particle density takes the form:

ϱ(2)(x, y) = e−βU(y)ϱ(x)
A(x) , (2.53)

and integrating it over the y-domain gives the one-particle density:
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2 Basics of the BASEP

ϱ(x) =
∫ x+L−ς

x+ς
ϱ(2)(x, y)dy. (2.54)

The corresponding Smoluchowski equation for the two-particle density is:

∂ϱ(2)(x, y, t)
∂t

= − ∂

∂x

[
µ(f − U ′(x))ϱ(2)(x, y, t)−D

∂ϱ(2)(x, y, t)
∂x

]

− ∂

∂y

[
µ(f − U ′(y))ϱ(2)(x, y, t)−D

∂ϱ(2)(x, y, t)
∂y

]
, (2.55)

By integrating it over the y-domain from x + ς to x + L − ς, and taking into account
the non-crossing boundary conditions for the current [123],

0 = [jy(x, y)− jx(x, y)]
∣∣∣∣∣
y=x+L−ς

y=x+ς

(2.56a)

where

jx(x, y) = µ(f − U ′(x))ϱ(2)(x, y, t)−D
∂ϱ(2)(x, y, t)

∂x
,

jy(x, y) = µ(f − U ′(x))ϱ(2)(x, y, t)−D
∂ϱ(2)(x, y, t)

∂y
, (2.56b)

we obtain the Fick-Jacobs equation (2.51) with A(x) given by the Eq. (2.52b). Another
way to interpret this equation is that it describes the diffusion of particles in a narrow
two-dimensional channel with a width A(x) [136, 137].

For the Equation (2.51), the steady-state current has the form

jst = µ

(
f − U ′(x) + A′(x)

A(x)

)
ϱ(x)−D

∂ϱ(x)
∂x

. (2.57)

Equation (2.57) can be solved analogously to the means we have implemented for the
Eq. (2.28), with the adjusted potential U(x)→ (U(x)− log A(x)). The modified solution
reads:

jst =
Dρ̄

(
1− e−βfλ

)
∫ λ

0
dx eβ(fx−U(x)+log A(x))

∫ x+λ

x
dy e−β(fy−U(y)+log A(y))

. (2.58)
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Figure 2.7: The current of two particles in a system of length L = 3λ represented by
the Fick-Jacobs equation (dashed red) and by numerical simulations (solid green), as a
function of σ.

The results for the current of two particles in a system of length L = 3λ are presented in
Fig. 2.7. As with the AZMIF in a many-body system, the approximate solution provided
by the Fick-Jacobs equation shows good agreement with simulation results for small and
large particle sizes, but there is a significant difference for intermediate particle sizes.
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3 Brownian solitons

3.1 Introduction

As we have revealed in Chapter 2, the blocking effect dominates in the BASEP with
high volume fraction. Thus, the current in such systems should tend to zero for ρ̄ → 1,
and its value could be qualitatively predicted by the AZMIF for systems close to the
thermodynamic limit. However, the situation for systems with finite length is different, as
can be seen in Fig. 3.1(a). In this figure, we present simulated results for particle currents
for the filling factor ρ̄ = 1, i.e. when the number of particles is equal to the number of

10−5
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0. 0. 4 0. 8 0.72

j s
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/v
0

σ

(a) (b)

f

L = 20λ
L = 100λ
L → ∞, AZMIF

Figure 3.1: (a) Simulated steady-state currents for the filling factor ρ̄ = 1 as a function
of particle size σ for system length L = 20λ (magenta triangles) and L = 100λ (green
triangles), compared to the steady-state current in the thermodynamic limit (L → ∞)
predicted by the AZMIF (solid line). (b) An experimental realization of the model for
L = 20λ: a ring of 20 optical Gaussian traps filled with the same number of hard spheres
of size σ = 0.6 in a fluid environment [108]. Color map represents optical traps, with
green areas corresponding to potential minima and red areas corresponding to potential
maxima. The drag force f drives hard spheres in the clockwise direction.
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3 Brownian solitons

potential wells, see also the sketch of possible experimental realization in Fig. 3.1(b). We
compare the currents simulated for system length L = 20λ and L = 100λ with currents in
the thermodynamic limit predicted by the AZMIF. This comparison allows us to analyze
the impact of system length on transport behavior. In this chapter, we consider the
same potential amplitude and drag force values used in the Chapter 2 (U0/kBT = 6,
fλ/kBT = 0.2, respectively), unless specified otherwise.

Two questions now arise from observations of Fig. 3.1(a): (i) why does the predicted
limit strongly deviate from the simulated data by many orders of magnitude, and (ii) why is
the particle current present for large (σ ≳ 0.6) particle sizes, despite the highly improbable
occurrence of double occupancies of potential wells and the consequent dominance of the
blocking effect within this range due to steric reasons?

The answer to the first question is that the considered systems are out of the thermo-
dynamic limit. As a result, the current behavior is strongly affected by the finite system
size. In fact, the current decrease with increasing particle size is much stronger for finite
systems (L = 20λ and L = 100λ) than for the system in the thermodynamic limit, see
Fig. 3.1(a). In addition, the current amplitude at the same particle size is several orders
of magnitude smaller for finite-size systems compared to that in the thermodynamic limit.
However, for the larger system length L = 100λ, the simulation results are significantly
closer to the ones by the AZMIF than those for L = 20λ. While increasing the system
length leads to a better agreement between the simulation data and the AZMIF, it also re-
quires a significant increase in computational time due to the higher frequency of collisions
between hard particles [138].

The reason why there is a particle current present for large particle sizes is attributed
to the possibility of particle motion becoming feasible when multiple particles escape a

−1 0 1 2 3 4 5 −1 0 1 2 3 4 5

x0 x 
x2

x3
x4 x5

x0
x 

x2

x3

x4 x5

x, λ x, λ

(a) (b)

Figure 3.2: (a) An example of steady-state crystalline-like structure, with all particles
located in the vicinity of the position of stable mechanical equilibria. (b) After some time,
a collective excitation of particles at positions x1 and x2 leads to the cluster generation.
The particle size in both figures is σ = 0.65.
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3.2 Thermally activated clusters

potential well within a short period of time, as illustrated in Fig. 3.2. We refer to such
events as collective excitations [139], which, albeit rarely, must occur in any crowded
system due to entropic reasons. In corresponding discrete systems, e.g. in the ASEP,
these collective excitations are not observed, since for σ > 0.5 all particles need to escape
from their lattice sites at the same moment in order for the particle current to take place.
This is practically impossible to occur in a large system.

When particles have escaped from their potential minima, they are in contact or almost
in contact with each other, forming clusters. An n-cluster, consisting of n particles, occu-
pies n− 1 potential wells. Such a cluster could be stable only in crowded (ρ̄ = 1) systems,
as it would recombine if there is a free potential well where one of cluster’s particles might
escape to locally equilibrate the system, i.e. when each of the n particles would be local-
ized in the vicinity of a potential minimum. Clusters can also occur in a “natural” way
when number of particles exceeds the number of potential wells. The system behavior
in crowded systems with large particle sizes (ρ̄ = 1, σ ≳ 0.6) and overcrowded (ρ̄ > 1)
systems is governed by the dynamics of these clusters.

This chapter is devoted to the analysis of such clusters, and organized as follows. In
Sec. 3.2, we consider thermally activated clusters and derive their main properties. We also
show that these clusters have the same origin as crowding-induced ones that take place in
overcrowded systems. These crowding-induced clusters are investigated in Sec. 3.3.

3.2 Thermally activated clusters

3.2.1 Generation rate

In a fully occupied system with the filling factor ρ̄ = 1 energetically preferable structure
is the crystalline-like one, see Fig. 3.2(a): particles are localized near the position of
stable mechanical equilibria of the tilted potential U(x)− fx. The equilibria positions are
determined by the zero external force f − U ′(x):

f + πU0
λ

sin
(2πx

λ

)
= 0 (3.1)

Accordingly, the equilibria positions are as follows:

xmin
m = (m− 1/2 + χ)λ, m = 1, 2, . . . , N, (3.2a)

xmax
m = (m− χ)λ, m = 1, 2, . . . , N, (3.2b)

χ = 1
2π

arcsin
(

fλ

πU0

)
, (3.2c)
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Figure 3.3: Simulated particle trajectories for σ = 0.65. In both panels, the particle
whose trajectory is marked green passes the potential barrier. In (a) no cluster is formed
since this particle returns back shortly after the passage of barrier. In (b), there is a cluster
formation at the moment when the transition state is reached (marked with a vertical line
at Dt×/λ2 ≈ 0.28).

where xmin correspond to stable equlibria positions (potential minima), and xmax corre-
spond to unstable equilibria positions (potential maxima, i.e. tops of potential barrier).
For the given parameters U0/kBT = 6 and fλ/kBT = 0.2, χ ∼= 0.017.

The generation of a cluster is accompanied by the formation of an empty potential well
behind it, see Fig. 3.2(b). This cluster can then disappear after a short time, if the particle
that has escaped from the potential well, leaving it empty, returns back, see the particle
trajectory marked in green in Fig. 3.3(a). Alternatively, it can start to propagate in the
drag force direction, see Fig. 3.3(b). The empty potential well in this case slowly moves in
the opposite direction with the mean velocity v0, as particles leak across the barrier due
to thermal noise, occupying the previously vacated potential well.

Since the collective excitation has two different types of behavior, it is obvious that there
is a transition state between these two regimes, which corresponds to an equal probability
of a cluster to recombine and propagate. If we consider a single particle as a 1-cluster, then
for smooth potentials the transition state is in the position of unstable equilibrium. Let
us specify the transition state for an n-cluster with the cluster particles numbered from 1
to n in ascending order in the drag force direction, as follows: if n-cluster’s particles
1,2,. . . ,k, with
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3.2 Thermally activated clusters

k = ⌊n/2⌋, (3.3)

have passed one potential barrier (one top of potential barrier) in the drag
force direction, and the (k+1)-th particle is in the potential maximum next to
the k-th particle, then this particle configuration is in transition state. Thus,
depending on the direction in which the (k+1)-th particle moves from the top of potential
barrier, we have either more than half of the cluster’s particles that have passed the
potential barrier or less than half, which shifts the balance toward cluster propagation
or recombination, respectively. If more than half of the cluster’s particles have passed
the potential barriers, they push the subsequent particles through, thus contributing to
their propagation toward the next potential well. Otherwise, particles remaining in their
potentials oppose this pushing, preventing particles that have crossed the potential barrier
from propagating forward and eventually forcing them back to their initial potential wells.

The illustration of transition state is given in Fig. 3.2(b): a 3-cluster consisting of par-
ticles at positions x1, x2 and x3 has k = ⌊3/2⌋ = 1 particle that has passed one potential
barrier (at position x1), and the next particle (at position x2) is in the subsequent potential
maximum.

Obviously, the transition state strictly defined until the clear definition of a cluster is
given. However, the number of particles in contact with each other may vary over time due
to thermal fluctuations in the system, see e.g. particles at position x0 and x1 in Fig. 3.2(a),
which come close to each other in spite of the fact that they are in different potential wells
in the steady-state system and thereby do not form a cluster. Thus, it is more practical
to calculate the number of particles k that are required to pass one potential barrier to
generate a cluster. In order to do this, we calculate k based on energetic reasons. To
calculate the free energy F ‡

k (σ) of the transition state and the free energy F 0
k (σ) of a

corresponding reference (standard) state, we fix two boundary particles at positions of
stable mechanical equilibrium, with the left boundary particle at position x−

b = xmin
1 and

the right boundary particle at position x+
b = xmin

2k+2. This means that we place these
boundary particles at a distance of (2k + 1) wavelengths, which allows 2k particles to
occupy 2k different potential wells in the reference state and form clusters of size (2k + 1)
in the transition state, including one of the boundary particles. Thus, this choice of
distance between two boundary particles allows the formation of clusters that satisfy the
condition (3.3).
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3 Brownian solitons

The particle k is then fixed at the position x†
k = xmax

k in the transition state. Therefore,
it should be also fixed in the reference state, but at the position of stable mechanical
equilibrium at x0

k = xmin
k . The partition sum of the reference state reads

Z0
k = exp[−β(U(x0

k)− fx0
k)]

x+
b −kς∫

x0
k

+ς

dxk+1

x+
b −(k−1)ς∫
xk+1+ς

dxk+2 . . .

x+
b −ς∫

x2k−1+ς

dx2k (3.4)

×
x0

k−ς∫
x−

b +(k−1)ς

dxk−1

xk−1−ς∫
x−

b +(k−2)ς

dxk−2 . . .

x3−ς∫
x−

b +2ς

dx2

x2−ς∫
x−

b +ς

dx1 exp
{
−

2k∑
j=1,j ̸=k

β[U(xj)− fxj ]
}

.

In the transition state, we have an additional requirement that particles x1, . . . , xk−1

have passed one potential barrier which needs to be taken into account in corresponding
integration limits. The partition sum of this transition state then reads as follows:

Z‡
k = exp[−β(U(x‡

k) + fx‡
k)]

x+
b −kς∫

x†
k

+ς

dxk+1

x+
b −(k−1)ς∫
xk+1+ς

dxk+2 . . .

x+
b −ς∫

x2k−1+ς

dx2k (3.5)

×
x†

k
−ς∫

xmax
k−1

dxk−1

xk−1−ς∫
xmax

k−2

dxk−2 . . .

x3−ς∫
xmax

2

dx2

x2−ς∫
xmax

1

dx1 exp
{
−

2k∑
j=1,j ̸=k

β[U(xj)− fxj ]
}

.

The generation rate of a propagating cluster which resulted via k-particle transition
state ϖk(σ) can then be expressed through the free energy barrier between the transition
and reference states. Since F = −kBT log Z, we obtain

ϖk(σ) = ν exp[−β(F ‡
k (σ)− F 0

k (σ))] = ν
Z‡

n(σ)
Z0

n(σ) , (3.6)

where ν is the bare rate constant. For the given parameters U0/kBT = 6, fλ/kBT = 0.2,
and D = µkBT = 1, the bare rate is ν ∼= D/λ2 [138].

The further arising question is how to determine the transition state, i.e. how to find the
k value that is sufficient for a generated cluster to start propagating. In order to do this,
let us appeal to Fig. 3.4, which shows the propagating clusters for different values of σ. We
note that in order for the k-particle transition state to be created, first all 1, 2, . . . , (k−1)-
particle transition states need to take place. On the other hand, while propagating and
before hole refilling, the cluster also passes through (k +1), (k +2), . . . , (N − 1)-particle
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Figure 3.4: Propagating clusters for (a) σ = 0.65 and (b) σ = 0.75. The figure is
adapted from [138], in accordance with the Creative Commons Attribution (CC BY)
license (https://creativecommons.org/licenses/by/4.0/).

transition states. Thus, for the cluster to start propagating, the energy must be sufficient to
pass the transition state with the maximum free energy barrier ∆F ‡

n(σ) = [F ‡
n(σ)−F 0

n(σ)].
The transition state k‡ is thereby defined via the maximization principle,

k‡(σ) = argmax
k
{∆F ‡

k (σ)} , (3.7)

and the generation rate is then ϖgen = ϖk‡ .

The theoretical prediction is in a good agreement with the simulation data, see Fig. 3.5(a).
The staircase-like increase of k‡ with particle size σ is shown in Fig. 3.5(b). This also gives
us insights into different behavior of clusters shown in Fig. 3.3: since k‡ = 2 for the con-
sidered σ = 0.65 according to Fig. 3.5(b), the corresponding transition state is reached
in Fig. 3.3(b) at time t× ≈ 0.28λ2/D, followed by the propagation of a cluster, while in
Fig. 3.3(a) only a 1-particle transition state is reached, and the cluster recombines shortly
after its generation.

It also becomes evident that the strong decrease in current with increasing particle size,
as demonstrated in Fig. 3.1, is associated with a corresponding drastic decrease of ϖgen

shown in Fig. 3.5. To complete the picture of cluster behavior, we also need to understand
the origin of cluster propagation and dependence of its velocity on the particle size.
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3 Brownian solitons

3.2.2 Cluster velocity. The concept of a soliton

In order to calculate the cluster velocity vcl, we are tracking it in the time interval [ta, tb].
To avoid inaccuracies of the velocity calculation associated with the effect of a cluster
generation and recombination on the velocity of its propagation, we exclude from the
consideration the time interval D/λ2 after cluster generation and the same time interval
before its recombination. The position of a cluster is defined as the position of the double
occupied potential well. Taking the cluster positions xa, xb at the beginning and at the
end of the considered time interval, respectively, we obtain the following expression for
the cluster velocity:

vcl =
〈

xi
b − xi

a

ti
b − ti

a

〉
i

, (3.8)

where ⟨. . .⟩i denotes averaging over the series of time intervals [ti
a, ti

b]. Since the cluster
generation is a rare event, especially for large particles sizes, one can consider a cluster
created in a “natural” way (see Sec. 3.1) by inserting an additional particle into the fully
occupied system with the filling factor ρ̄ = 1. Such crowding-induced cluster has the
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Figure 3.5: (a) Cluster generation rate for different particle sizes, theoretically predicted
by Eqs. (3.6), (3.7) (solid line), in comparison with simulation data (circles). (b) Gen-
eration rates for various transition states, given by Eq. (3.6) (left axis). The number of
particles involved in the transition state k‡ (right axis) increases with σ in a staircase-
manner. The corresponding steps are determined by Eq. (3.7) and occur at particle sizes
where lines for different generation rates ϖk intersect (marked by crosses).

38



3.2 Thermally activated clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0. 0. 5 0.7 0.75 0.8

v c
l,
D
/λ

σ

Figure 3.6: Velocity of propagating clusters for different particle sizes, obtained by sim-
ulations (circles) and predicted by Eq. (3.9) with α = 1.35 (solid line).

same structure as the thermally activated one (n particles occupy (n−1) potential wells
and propagate in a crystalline-like structure), and the cluster velocity is identical for both
cluster types [138]. In what follows, we consider crowding-induced clusters to determine
the cluster velocity.

Results for vcl, depending on σ, are presented in Fig. 3.6. On the contrary to cluster
generation rate, the dependence of vcl on particle size is much weaker, increasing by only
a factor of about 1.5 compared to the decrease in ϖgen by more than three orders of
magnitude, as the particle size changes from σ = 0.6 to 0.75. The corresponding increase
in cluster velocity with particle size can also be observed in Fig. 3.4.

Another remarkable feature is that the magnitude of vcl is much larger than the velocity
of independent particles, which is v0 ∼= 8.4 × 10−3D/λ for the given parameters U0 and
f , see Eq. (2.36). Moreover, it is also much larger even than the velocity of independent
particles in flat potential, µf = 0.2D/λ.

To estimate the velocity of n-cluster analytically, we consider a state with the first, i.e.
leftmost particle at the stable mechanical equilibrium as an initial position. When the
second particle reaches a point of stable mechanical equilibrium during the propagation,
we can state that the cluster is shifted by one wavelength, since the second particle is now
taking the role of the first one in the initial position.

As particles in the cluster propagate nearly in contact with each other, see Fig. 3.2(b), its
center follows a Brownian motion in a tilted cosine potential with the same wavelength λ
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3 Brownian solitons

and drag force f , but with the reduced amplitude (U0/n) sin(nπσ)/ sin(πσ) of the external
potential [140]. The mathematical justification for this factor will be provided in Sec. 3.3.1.
For the considered particle sizes, the number of particles in a cluster is n ≥ 3, see Fig. 3.5(b)
and Eq. (3.3), so the amplitude of the reduced potential is an order of kBT . The forces
due to this potential can thus be neglected, since they alternate in sign, and the mean
velocity of a single particle in a cluster is then estimated as αµf , where α is a dimensionless
coefficient of order unity resulting from the neglect of the potential.

While the cluster covers the distance of one wavelength, a particle in the cluster shifts
by only λ − ς. The mean time of a particle to cover this distance is (λ − ς)/(αµf), and
we hence obtain

vcl = λ

(
λ− ς

αµf

)−1
= αµf

1− σ
. (3.9)

This formula with α = 1.35 gives almost perfect agreement with the simulation data,
see Fig. 3.6.

The concept of a soliton

Since the moving clusters are essentially density waves whose propagation occurs without
dispersion, in what follows we refer to propagating clusters as Brownian solitons. The
occurrence of these solitons is a rather unexpected effect. Solitons are commonly known
in systems with inertia as waves that propagate without dispersion due to nonlinear effects,
e.g. in the classical Frenkel-Kontorova model [141]. In the BASEP neither inertia nor non-
linearity are presented.

To avoid further confusion, we want to note separately that Brownian solitons and
clusters in BASEP are two different designations for the same phenomenon, and the ap-
plication of these terms depends on the context. Therefore, when referring to the clustering
of particles, we use the term “cluster”, whereas when discussing its propagation, we apply
the term “soliton”.

3.2.3 Soliton-mediated current

Let us now consider the thermodynamic limit L → ∞, where the thermally activated
clusters are constantly being generated and recombined. Recombination of a cluster occurs
when it encounters an empty potential well on the way of its propagation. The mean
lifetime of a cluster τ is thereby τ = de/vcl, where de is the mean distance between
empty potential wells. It can be defined via number density of empty potential wells ρ as
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3.2 Thermally activated clusters

de = 1/ρ. Taking into account that the number of potential wells is equal to the number
of clusters, we can write a differential equation describing the behavior of ρ over time,

dρ
dt

= ϖgen
λ
− ρ

τ
. (3.10)

Its stationary solution gives ρst = ϖgenτ/λ = ϖgen/λρstvcl, so that ρst =
√
ϖgen/λvcl.

Since during the cluster lifetime each particle located between the positions of cluster
generation and recombination shifts by one wavelength, the stationary current in the
system equals j∞

st = 1/τst, where∞ in the upper index corresponds to the thermodynamic
limit. In terms of ϖgen and vcl, it reads

j∞
st = ρstvcl =

√
ϖgenvcl

λ
. (3.11)

These results for the thermodynamic limit, included in Fig. 3.1(a), are shown in Fig. 3.7.
As we can observe, the shape of current-density curve matches the initial AZMIF predic-
tion. Thus, the decrease of current by several orders of magnitude, observed for L = 20λ

and L = 100λ in Figs. 3.1(a) and 3.7, is indeed a finite size effect.
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Figure 3.7: The data of Fig. 3.1 with the inclusion of theoretical results from Eq. (3.11)
(black circles) with ϖgen and vcl from the simulation results. Even though the initial
prediction of current in the thermodynamic limit by the AZMIF appeared to be not
exactly precise, it nonetheless provides the correct magnitude order and shape of the
current-density curve.
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As was mentioned in the introduction of the present chapter (Sec. 3.1), for large system
length L it is problematic to perform the Brownian dynamics simulations due to large
computational time. To overcome this problem, we introduce a course-grained model
of the cluster dynamics. In this model, we have two types of objects: particles which
correspond to thermally activated clusters in the BASEP, and holes corresponding to
empty potential wells. Either particle or hole can occupy a lattice site, and the double
occupancy is prohibited. A lattice site can also remain unoccupied. Holes are considered to
be stationary since their velocity, equivalent to that of non-interacting particles v0, is much
less than the velocity of clusters vcl. The latter, normalized to the wavelength, denotes
the rate vcl/λ with which a particle can jump (propagate) to a right-neighboring lattice
site. If this lattice site is already occupied by a hole, the particle and hole recombine,
leaving the site unoccupied. Holes and particles are generated in pairs with the rate ϖgen

at nearest-neighbor unoccupied sites. The illustration of all possible processes in this
model is given in Fig. 3.8. Such model can be considered as a version of the two-species
totally asymmetric simple exclusion process [142, 143], with particle-hole generation and
recombination as specific features of the considered model.

To calculate the current in the course-grained model, we count the number of particle
jumps per time. Thus, both length and current are given in wavelength units. These
results are in a good agreement with the corresponding BASEP results for L ≤ 103λ, as is

recombination

propagation

generation

vcl

vcl

ϖgen

Figure 3.8: All possible elementary processes taking place in the considered model.
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Figure 3.9: (a) Dependence of the current jst on the system size L for particle sizes
σ = 0.6, 0.65, 0.7, 0.75. The results of Brownian dynamics simulations (symbols) are in a
good agreement with ones from kinetic Monte Carlo simulations of the introduced coarse-
grained model (solid lines). For large system size current approaches the theoretically
predicted value j∞

st given by Eq. (3.11) (dashed horizontal lines). In panel (b) we scale
both current and system size to demonstrate that the data collapse onto a general master
curve G(.) given by Eq. (3.13) (dashed line).

shown in Fig. 3.9(a)1. Thus, the course-grained model allows us to reveal the dependence of
current on the system length L. For L ≲ 1/ρst, the current is proportional to the system
length, jst ≃ ϖgenL/λ, since the overall cluster generation rate is low. Herewith, the
characteristic length 1/ρst has the following meaning: for a system of this size, the time-
averaged number of clusters in the system is one. For L≫ 1/ρst, the current approaches
the thermodynamic limit value j∞

st , determined in Eq. (3.11).
The scaling behavior of particle currents can be seen in Fig. 3.9(b), with the following

scaling form introduced:

jst(σ, L) =
√

ϖgenvcl
λ

G

(√
ϖgen
vclλ

L

)
, (3.12)

where vclλ/ϖgen = 1/ρst. The scaled curves in Fig. 3.9(b) converge to the master curve
G(x), which must have G(x) → x for x → 0 as the current jst is linear on the system

1The system length limit is chosen due to large computational time already for L = 103λ. For example,
the CPU time to obtain a single value jst for σ = 0.75 is about 3000 hours on a 16-core Intel Xeon
Nehalem 2.66 GHz processor.
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3 Brownian solitons

length for small L, and G(x)→ 1 for x→∞, thereby reaching the thermodynamic limit
value. A simple exponential form of the scaling function

G(x) = 1− e−x, (3.13)

satisfying both these conditions and having a good agreement with the simulation results,
is shown in Fig. 3.9(b) as the dashed line.

3.3 Solitons (clusters) in the overcrowded systems

To study the dynamics of crowding-induced clusters occurring in overcrowded systems,
we use the same setup that we introduced for calculating cluster velocity in Sec. 3.2.2,
namely: N particles occupy N − 1 potential wells, where N should be small enough to
neglect the impact of thermally activated clusters. For calculations, in this section we set
N = 21 and system length L = 20λ.

Crowding-induced clusters have two features that distinguish them from thermally acti-
vated ones. First, since the presence of such cluster is not accompanied by the appearance
of an empty potential well, it has no recombination mechanism, hence its motion in the
system is permanent. Secondly, crowding-induced clusters can also exist at low tempera-
tures, where collective excitations leading to the formation of thermally activated clusters
are practically impossible. For the small drag force fλ/U0 ≪ 1, when a single parti-
cle would rarely traverse a potential barrier, the measurable particle current induced by
crowding-induced clusters is present around particle sizes

σn = n− 1
n

, n = 2, 3, . . . , (3.14)

and has peaks at these values even at low temperature. The temperature can also be
interpreted as the strength of the thermal noise, where low temperatures correspond to
weak noise and high temperatures correspond to strong noise.

Particle currents for the weak noise kBT/U0 = 0.01 and small drag force fλ/U0 = 0.05
are shown in Fig. 3.10(a), and the initial conditions used in the numerical simulations are
shown in Fig. 3.10(b). The particles in this setup are equidistant which is motivated by the
possible experimental realization of the overcrowded system: first, we consider the same
number of particles and potential wells, see Fig. 3.1(b). Then we change the wavelength
of the external potential in order to remove one optical trap from the system, thereby
creating overcrowding.
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Figure 3.10: (a) Stationary current as a function of σ for small drag force fλ/U0 = 0.05
and weak noise strength kBT/U0 = 0.01. Even in the weak noise limit and small drag
force, the soliton-induced current (propagating state) in the system is present in the form
of peaks at values σn = (n − 1)/n, n = 2, 3, . . .. (b) An experimental realization of the
model [74, 108] for N = 21, L = 20λ and σ = 0.6λ: rings of 20 optical traps filled with
21 hard spheres in a fluid environment. Color map is identical to one in Fig. 3.1, and the
drag force f drives hard spheres in the clockwise direction.

Observation of Fig. 3.10(a) leads to the following questions: (i) how does the formation
of clusters and their behavior depend on the particle size and drag force, and (ii) what
is the physical meaning of those σn values. To address these questions, in the following
subsection we consider a reference model of the zero-noise limit (kBT = 0).

3.3.1 Reference model: zero-noise limit

The advantage of such model is the determinacy of particle motion and, consequently, the
possibility of its analytical description. For independent particles, the time evolution (2.1)
takes the form

dxi

dt
= ẋi = u(xi), (3.15a)

where
u(x) = µ

(
f − U ′(x)

)
. (3.15b)

To describe the interaction between hard particles, we operate with the term “cluster” as
is presented in Sec. 3.1, which in the zero-noise limit has also a clear definition: an n-cluster
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3 Brownian solitons

is a set of n particles mutually being in contact and propagating as one entity2. Therefore,
at given time all particles in a cluster should have the same velocity ẋ1 = . . . ẋn = ūn.

The conditions for cluster merging and fragmentation are determined by the hardcore
interactions and rely on Newton’s third law of motion, i.e. action-reaction principle [144],
applied for the pair interaction force f (2)(xi, xi+1) = f

(2)
i,i+1:

f
(2)
i,i+1 = −f

(2)
i+1,i. (3.16)

The presence of interaction between particles is given by the condition of positive pair
interaction force between all particle pairs in n-cluster,

f
(2)
i,i+1 > 0. (3.17a)

with the following equations of motion

ūn = u1 − µf
(2)
12 , (3.17b)

ūn = ui − µf
(2)
i,i+1 + µf

(2)
i−1,i, i = 2, . . . , n− 1, (3.17c)

ūn = un + µf
(2)
n−1,n. (3.17d)

where u(xi) = ui. System of equations (3.17b)-(3.17d) is exactly determined and consistent
(n linear equations for determining (n− 1) pair interaction forces and cluster velocity u),
so it has the unique solution:

f
(2)
i,i+1 = n− i

µn

i∑
j=1

uj −
i

µn

n∑
j=i+1

uj , i = 1, . . . , n− 1, (3.18a)

ūn = 1
n

n∑
i=1

ui. (3.18b)

This solution, together with the condition (3.17a) is necessary and sufficient for n par-
ticles being mutually in contact to form a cluster. If the solution (3.18a) violates the
condition (3.17a), it means that the considered particles propagate further not as one en-
tity, but as independent n1-,. . . , ns-clusters, with

∑s
i=1 ni = n and clusters are numbered

from left to right in ascending index order. The condition of independence implies that
each cluster ni must have a lower velocity than the right-neighboring cluster ni+1, but
higher than the left-neighboring cluster ni−1. For n1-cluster and ns-cluster, there is no

2A single particle is considered as 1-cluster.
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3.3 Solitons (clusters) in the overcrowded systems

condition with respect to a neighboring cluster to the left and right, respectively. The
condition for independent propagation of particles being in contact as n1-, . . ., ns-clusters
can thus be written as

ūn1 < ūn2 < . . . < ūns , (3.19)

with clusters’ velocities ūn1 , . . . , ūns are determined for each cluster independently from
Eq. (3.18b).

For the particular cosine potential (2.4), pair interaction forces have the following form:

f
(2)
i,i+1 = n− i

n

i∑
j=1

(
f + πU0

λ
sin[2πxj/λ]

)
− i

n

n∑
j=i+1

(
f + πU0

λ
sin[2πxj/λ]

)

= πU0
nλ

(n− i)
i−1∑
j=0

sin[2π(x1 + jς)/λ]− i
n−1∑
j=i

sin[2π(x1 + jς)/λ]

. (3.20)

Thus, we have the following condition for an n-cluster to be stable:

inf
i=1,...,n−1

[
(n− i)

i−1∑
j=0

sin[2π(x + jς)/λ]− i
n−1∑
j=i

sin[2π(x + jς)/λ]
]

> 0, (3.21a)

where x is the position of leftmost particle in the cluster. According to Eqs. (3.18b) and
(3.15b), the cluster has the velocity

ūn(x) = µ

[
f + πU0

λ

sin(πnσ)
n sin (πσ) sin

(2πx

λ
+ π(n− 1)σ

)]
. (3.21b)

Presence of the reduction factor (U0/n) sin(nπσ)/ sin(πσ) in the sinusoidal term, which
we have already specified in Sec. 3.2.2, allows particles in the cluster to propagate even
in the zero-noise limit, while individual particles cannot surmount the potential barrier3.
For particle sizes σn given by Eq. (3.14), the potential barrier vanishes, which explains the
presence of peaks observed in Fig. 3.10(a).

Since we have fully described the principles of system evolution, we can analytically
evaluate its main parameters in the propagating state. In order to do this, we introduce
an event-driven scheme, in which we describe state of the system only at the moment of
cluster merging or fragmentation. Here we use the fact that for an independent cluster,
i.e. for a cluster that does not merge with others and does not undergo fragmentation at

3In fact, the derivation of this formula is nothing else but a mathematical justification for the barrier
reduction effect described in Chapter 2.
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the considered period of time [ta; tb], its position xb at time tb depends only on its position
xa at time ta. By integrating the equation of motion (3.15a) with the cluster velocity
given by Eq. (3.21b), we thus obtain:

tb − ta =
xb∫

xa

dx

ūn(x) (3.22a)

=



λAn

µπ

{
arctan

[
An

(
πU0 sin(πnσ)

λn sin(πσ) +f tan
[

πx

λ
+ π(n− 1)σ

2

])]} ∣∣∣∣∣
xb

xa

,

f2λ2n2 sin2(πσ)>π2U2
0 sin2(πnσ);

−λAn

µπ

{
artanh

[
An

(
πU0 sin(πnσ)

λn sin(πσ) +f tan
[

πx

λ
+ π(n− 1)σ

2

])]} ∣∣∣∣∣
xb

xa

,

f2λ2n2 sin2(πσ)<π2U2
0 sin2(πnσ);

λ

fπµ
[
1 + cot(πx

λ + π(n−1)σ
2 )

]∣∣∣∣∣
xb

xa

, f2λ2n2 sin2(πσ)=π2U2
0 sin2(πnσ),

where An is

An =
√

λ2n2 sin2(πσ)∣∣f2λ2n2 sin2(πσ)− π2U2
0 sin2(πnσ)

∣∣ . (3.22b)

For the considered undercritical regime, if there is no further cluster fragmentation or
merging, the system is in a jammed state, i.e. it does not imply any motion.

In the initial system setup, all potential wells but one are occupied by single particles,
and the remaining one is occupied by two particles. This setup is natural for description
of real systems [108], and satisfies the cluster overcrowding condition that an n-cluster
occupies (n−1) potential wells. All single particles quickly relax near the stable equilibria
positions, hence the presence of dynamics in the system depends on fact whether the two
particles in the same potential well can initiate the soliton propagation in the system.

In case of propagating state, after a short transient time the system establishes a periodic
sequence of solitons. The phase diagram of these propagating sequences in (f, σ) plane
is shown in Fig. 3.11. As it can be seen, only two types of solitons are possible: type
(n+1)-n, where the size of a propagating cluster periodically changes from (n+1) to n,
and type (n + 1)-n-(n+1)-(n+2) where the propagating cluster has size changes (n+1)→
n→ (n+1)→ (n+2) within one period. The soliton periodicity is the same as that for the
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Figure 3.11: Phase diagram of possible soliton types in the plane (f, σ). Drag force is
normalized, so that fλ/U0 = π corresponds to the critical tilting force. The soliton type
0 (black) corresponds to the jammed state without any dynamics in the system.

external potential, and n ≥ 1 is defined as a soliton core size [108, 145]. In what follows
we refer to them as solitons of type A and B, respectively.

For both types of solitons, only two kinds of events occur: (i) collision between soliton
and a single particle, and (ii) detachment of the leftmost particle from the soliton. Knowing
these events and their sequence within a period, we can solve the event-driven dynamics
analytically. In what follows, we denote these events with the coordinate xk

α of the leftmost
particle in a soliton. Subscript α = {A; B} denotes a soliton type, and superscript k

denotes an event number in the period, where k = {1; 2} for solitons of type A, and
k = {1; 2; 3; 4} for solitons of type B).

As a first event we consider detachment of the leftmost particle from the (n+1)-soliton,
which is the case for both types of solitons. At the detachment moment, particles of a the
soliton have coordinates x1

α, x1
α + ς, . . . , x1

α + nς. Condition f12 = 0 for the detachment of
the leftmost particle in Eq. (3.20) then reads:

f + πU0
λ

sin
(

2πx1
α

λ

)
= f + πU0

λn

n∑
k=1

sin
(

2π(x1
α + kς)
λ

)

= f + πU0 sin(πnσ)
λn sin(πσ) sin

[
2πx1

α

λ
+ π(n + 1)σ

]
. (3.23)
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Solution of this equation yields:

x1
α = −λ

2 + λ

2π
arccot

[
n sin (πσ)

sin (πnσ) sin (π(n + 1)σ) − cot (π(n + 1)σ)
]

+ mλ, (3.24)

m = 1, . . . , N,

where arccot(z)∈ ]0, π/2] for z ≥ 0 and arccot(z)∈ ]−π/2, 0[ for z < 0.
Without limiting generality we take the coordinate origin so that m = 1:

x1
A = x1

B = λ

2 + λ

2π
arccot

[
n sin (πσ)

sin (πnσ) sin (π(n + 1)σ) − cot (π(n + 1)σ)
]

. (3.25)

The second event is also identical for both types of solitons: the n-soliton attaches to
the next particle at position in the direction of the soliton propagation. We consider this
particle as resting in the position of stable equilibrium xmin

p , but in fact in overdamped
dynamics a particle is never exactly at this position, but only relaxes towards it at an
exponential rate [10]. The proposed assumption of our analytical approach is valid for
situations where the characteristic relaxation time towards the stable equilibrium position
is much shorter than the time L/vsol of the soliton propagation through the system. This
condition is satisfied when the drag force is small (f ≪ πU0/λ) and/or when the system
size is much larger than the cluster size (L≫ nλ).

The choice of p of the stable equilibrium position xmin
p is conditioned by the requirement

that the resting particle must be the leftmost one, satisfying the condition of not belonging
to an n-soliton at the moment of the first event:

p = argmin
p′

{
xmin

p′ > x1
A + (n + 1)ς

}
= n + 1. (3.26)

with p′ = (n+1) as the only solution satisfying the cluster overcrowding condition that an
n-cluster occupies (n−1) potential wells. In case p′ > (n+1), an n-cluster could not reach
the next particle, because its particles are localized near the positions xmin

1 , xmin
2 , . . . , xmin

n .
In case p′ ≤ n, we would locally violate the cluster overcrowding condition, since in such
case we have (n+1) particles in (p′−1) ≤ (n−1) potential wells.

By utilizing condition (3.26) and using the fact that n uniquely depends on the param-
eters f and σ, we obtain the condition determining soliton core size:

n = argmin
p′

{
xmin

p′+1 > x1
A(p′) + (p′ + 1)ς

}
. (3.27)
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3.3 Solitons (clusters) in the overcrowded systems

Accordingly, in the second event we have the leftmost particle at position

x2
A = x2

B = xmin
n+1 − nς. (3.28)

Further, the soliton behavior for each type starts to be different. The reason for this
difference is as follows: the position of the first event x1

A is located on the left to the stable
mechanical equilibrium xmin

1 within the same potential well. Consequently, a particle that
becomes separated after the first event continues to move. As the n-soliton slows down its
motion after contact with a resting particle (second event), this may allow the previously
separated particle to reunite with the main soliton. Depending on the occurrence of this
event, we obtain either type A soliton (the particle does not reunite with the main soliton)
or type B soliton (the particle reunites with the main soliton). In type A soliton, following
the second event, the (n + 1)-soliton initiates its motion until the subsequent event, which
involves the detachment of the leftmost particle positioned at x1

A + λ. This detachment
event completes the main sequence of soliton type A propagation. Times of motion as n-
and (n+1)-solitons for type A then are

τA
n =

x2
A∫

x1
A+ς

dx

ūn(x) , (3.29a)

τA
n+1 =

x1
A+λ∫

x2
A

dx

ūn+1(x) . (3.29b)

In Equations (3.29a) and (3.29b) we have taken into account, that when a particle is
detached (joined) from the left, the position of the leftmost particle in the soliton increases
(decreases) by ς.

For type B, the third event involves the catchup of the (n + 1)-soliton by the previously
detached particle. This event is determined by a condition that the detached particle and
the main soliton cover an equal distance during the time span between the first and third
events:

x2
B∫

x1
B+ς

dx

ūn(x) +
x3

B∫
x2

B

dx

ūn+1(x) =
x3

B−ς∫
x1

B

dx

ū1(x) . (3.30)

Since this event does not occur for soliton type A, the existence of a solution in Eq. (3.30)
thus specifies the type of soliton.
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Figure 3.12: Illustration of events for soliton types, with (a) for soliton type A, and (b) for
soliton type B. Red arrows in the soliton sequence (shown as a circle) represent particle
attachment, and blue arrows represent particle detachment. In the frame, particles in
soliton are circled in black, and the resting particle is highlighted in green.

Shortly after creation of (n + 2)-soliton, the leftmost particle detaches again, this time
for good. Condition for this event is analogous to Eq. (3.25) with the adjusted soliton size:

x4
B = λ

2 + λ

2π
arccot

[ (n + 1) sin (πσ)
sin (π(n + 1)σ) sin (π(n + 2)σ) − cot (π(n + 2)σ)

]
. (3.31)

Times of motion as n-, (n + 1)- and (n + 2)-solitons for type B then are given by the
formulas:

τB
n =

x2
B∫

x1
B+ς

dx

ūn(x) , (3.32a)

τB
n+1 =

x3
B∫

x2
B

dx

ūn+1(x) +
x1

B+λ∫
x4

B+ς

dx

ūn+1(x) , (3.32b)

τB
n+2 =

x4
B∫

x3
B−ς

dx

ūn+2(x) . (3.32c)

A visual representation of the sequence of all events for both soliton types is presented in
Fig. 3.12. Knowing the time intervals between these events, we can calculate the mean
velocity of solitons:
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Figure 3.13: Soliton velocity in the zero-noise limit in dependence of σ for (a) fλ/U0 =
0.05 and (b) fλ/U0 = 2.1 (green solid lines). The approximation (dashed-red lines) is
given by Eq. (3.9) with α = 1 for (a) and α = 1.08 for (b).

vA
sol = λ

τA
n + τA

n+1
, (3.33a)

vB
sol = λ

τB
n + τB

n+1 + τB
n+2

. (3.33b)

Corresponding results for small drag force, fλ/U0 = 0.05 and big drag force, fλ/U0 =
2.1 are shown in Fig. 3.13. Remarkably, in the case of strong drag force, the soliton
velocity can be approximated by Eq. (3.9) intuitively derived in the Sec. 3.2.2, while for
the weak driving force this approximation works for the velocity peaks.

Since each soliton passage of the system corresponds to a shift of all particles by one
potential well in the direction of the drag force, the particle current reads:

jst = vsol
L

. (3.34)

In the next section, we use these analytical results for the zero-noise limit when consid-
ering the system in the presence of noise.
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Figure 3.14: Current jst as a function of particle size σ and drag force f in a color-coded
representation for different noise strengths: (a) kBT = 0 (zero noise), (b) kBT = 0.01U0
(weak noise) and (c) kBT = 0.1U0 (strong noise). Current values in colorbox are given
in units of µU0/λ2, and dashed lines in panel (c) are isolines of constant currents for
jst = 0.1λ2/µU0 and jst = 0.2λ2/µU0.

3.3.2 Systems with thermal noise

Current diagrams as function of (f, σ) for three representative cases, kBT = 0 (zero noise),
kBT = 0.01U0 (weak noise) and kBT = 0.1U0 (strong noise) are shown in Fig. 3.14. These
diagrams show how the system changes between jammed (dark-grey) and running (color)
states in dependence of particle size and drag force.

The key point for the explanation of current diagrams is the effective potential for
propagating clusters, (U0/n) sin(nπσ)/ sin(πσ). For the zero-noise limit and small drag
force, particle currents can occur only near sizes σn given by Eq. (3.14), which is the
reason for current peaks in Fig. 3.13(a) and for running states in Fig. 3.14(a). As the noise
and drag force increases, these peaks and running states become broader, since thermal
activation is sufficient for the cluster to start moving even when the potential does not
vanish but is only reduced by the cluster motion and the drag force. The corresponding
broadening of peaks and running zones is shown in Figs. 3.10(a) and 3.14(b), respectively.
The width of these zones expands as a result of the reduced effective external potential
(U0/n) sin(nπσ)/ sin(πσ), and/or the further reduction of this potential by the drag force
f . This reduction enables particle flow even in the presence of weak noise, where the
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occurrence of a Kramers escape of a single particle over the potential barrier would still
be an extremely rare event.

At large values of the external force or noise, these peaks are smeared out in Figs. 3.6,
3.13(b) and 3.14(c) with the soliton velocity governed by Eq. (3.9). Together with Eq. (3.34),
it reads

jst = αµf

L(1− σ) . (3.35)

The isolines of constant currents in Fig. 3.14(c) follow closely this equation, which in
the (f, σ)-plane corresponds to the line set f/(1− σ) = const.

3.4 Summary notes

In this chapter, we have considered the crowded BASEP systems with equal number
of particles and potential wells, N = L/λ, and overcrowded BASEP systems with one
particle more than the number of potential wells, N = L/λ + 1. We have shown that
the dynamics in such systems is governed by the solitons that manifest themselves as
sequences of different particles which propagate even in the limit where the transport of
single particles is irrelevant. We have developed the theory to describe generation and
propagation of the solitons. We can expect that solitons play an important role in similar
setups in colloidal and microfluidic transport, or in biological systems, like transport by
kinesin molecular motors [146, 147]. Since a common experimental setup involves systems
without inertia, i.e. underdamped dynamics, where polymers and colloids can exhibit a
nature of interaction other than hardcore, as well as varying orders of size ranging from
nano- to micrometers, it is also intriguing to investigate whether solitons can exist in
underdamped dynamics beyond hardcore interaction potentials. It is also of practical
interest to determine whether solitons would occur in higher dimensions, such as 2D or
3D. This inquiry is particularly relevant as experimental particles cannot be confined to
exact one-dimensional spatial arrangements.

Another interesting question for the model under consideration is whether more than
one soliton can occur in the system. In [108] it is shown that the number of solitons
is equal to the number of overcrowding. Interestingly, these solitons have an effective
repulsive interaction. Here we briefly provide the quantitative explanation of this effect.
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Figure 3.15: Normalized soliton velocity vsol as a function of system length L in the zero-
noise limit for the drag force fλ/U0 = 3.14 and particle sizes σ = 0.63 (panel (a), green
solid line) and σ = 0.75 (panel (b), magenta solid line). As a normalization factor, we
use soliton velocity in the infinite length limit determined by Eq. (3.33a). In both figures,
the soliton velocity in the infinite length is represented as a dashed lined of corresponding
color.

3.4.1 Soliton repulsive interaction

As we have mentioned earlier, single particles are never exactly in positions of stable
equilibrium but only relax toward them at an exponential rate. For a single soliton we
have considered the limit where the characteristic relaxation time is much shorter than
the time period of the soliton passage of the system. This is the limit of fast relaxation.
Now we consider the limit of slow relaxation where the relaxation time is longer than the
time period of the soliton passage, which is the case either for short systems or at big drag
force, see the discussion in Sec. 3.3.1.

When the soliton attaches to a particle before it has relaxed to the position of stable
equilibrium, its velocity is reduced, as can been seen in Fig. 3.15. The reason for this
effect is that each collision with a single particle slows the soliton down, and for the case
of slow relaxation, this slowing down starts earlier than in the fast relaxation limit, see
Fig. 3.16. We refer to this effect as the slowing-down mechanism. While this effect may
seem negligible within a single period in Fig. 3.16, it gradually accumulates throughout the
propagation process of the soliton, leading to a notable impact on the resulting dynamics.
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Figure 3.16: An example of soliton propagation in the zero-noise limit for parameters
fλ/U0 = 3.14 and σ = 0.75 for L = 10λ (green particles, slow relaxation limit) and
L = 50λ (violet particles, fast relaxation limit). Vertical grid lines correspond to the
minima of the tilted potential U(x) − fx and are guides for the eye. In the initial time
instant t = 0 (left part of the figure), the first two particles have identical positions
in both systems. In the system with fast relaxation, particles from third to sixth have
already reached their relaxed positions, while in the system with slow relaxation, those
particles are still in the process of relaxing. As a result, apart from the first two particles,
the green particles are slightly shifted to the left compared to the corresponding relaxed
violet particles. This can be observed by comparing the glare on the third particles in the
zoomed-in view. Additionally, in the system with slow relaxation, the first two particles
have already attached to the third particle, whereas in the system with fast relaxation, the
second particle has not yet reached the third particle. At time instant t = 0.684λ2/µU0
(right part of the figure), the soliton has passed one wavelength for a system length of
L = 10λ and is slightly behind the soliton for L = 50λ. This is particularly noticeable
when considering the position of the third particle with respect to the dotted line in the
zoomed-in view.
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Figure 3.17: Distance between two solitons (N = L/λ + 2) as a function of time in the
zero-noise limit for the system length L = 20λ and drag force fλ/U0 = 3.14. Initially,
the solitons are placed at a close distance, but due to the slowing down mechanism, the
second soliton slowly moves away to a distance corresponding to half of the system length.
The jump-like changes in the distance between solitons correspond to the detachment of
particles, see the discussion in Sec. 3.3.1.

The slowing-down mechanism is also the reason for the repulsive interaction between
solitons, since if we put solitons next to each other in the zero-noise limit, the second soliton
in the drag force direction would be effectively slowed down by non-relaxed particles from
the first soliton, see Fig. 3.17. In the presence of noise, solitons can experience changes
in their relative distance due to thermal fluctuations affecting their velocities. However,
similar to the zero-noise limit, solitons tend to avoid approaching each other. This behav-
ior also arises from the slowing-down mechanism, which becomes more prominent when
solitons are in close proximity. When solitons are near each other, the particles belonging
to one soliton do not have sufficient time to relax, thus slowing down the propagation of
the subsequent soliton.

In real systems, soliton interactions may also be affected by weak attractive forces, such
as the van der Waals interaction. In barrier-free soliton motion, even these small forces
may be sufficient to alter the core size of the soliton. Consequently, this may result in
adhesion of solitons when they overcome the force of mutual repulsion.
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3.4.2 Exchange symmetry effect: application to solitons

The exchange symmetry effect described in Chapter 2 can also justify that solitons occur
for σ > 1. Let us demonstrate this for a system in the zero-noise limit.

We assume that a soliton is present for some drag force f , system length L, particles
number N = L/λ + 1 and particle size ς < λ. By increasing the particle size by an integer
number of wavelengths,

ς → ς + mλ, m = 1, 2, . . . , (3.36)

we do not change the interaction forces between neighboring particles defined by Eq. (3.18a)
due to the λ-periodicity of the external forces. The increase the space between each pair
of neighboring particles by mλ. As a consequence, the system length changes as

L→ (L+Nmλ) = L(m + 1) + mλ, (3.37)

and for the filling factor ρ̄ = Nλ/L = 1 + λ/L the mapping is:

ρ̄→ Nλ

L(m + 1) + mλ
= ρ̄L

L(m + 1) + mλ
= ρ̄

m + 1 + (ρ̄− 1)m = ρ̄

1 + mρ̄
. (3.38)

In the mapped system, the soliton velocity is (m + 1) times faster compared to the
original system. This relationship arises from the fact that one complete soliton cycle,
encompassing the passage of one wavelength in the original system, corresponds to the
passage of (m + 1) wavelengths in the mapped system. However, for a single particle
to traverse once the entire system, the soliton must propagate through the entire system
(m + 1) times. This is due to the fact that a single propagation through the system shifts
the particle just by one wavelength, while the distance between neighboring particles is
(m + 1) wavelengths. As a result, the mapping of the current in the original system can
be described as follows:

jst →
(m + 1)vsol

(m + 1)(L(m + 1) + mλ) = jstL

L(m + 1) + mλ
= jst

1 + mρ̄
. (3.39)

Equations (3.38) and (3.39) represent the previously introduced relation (2.38a). This
commensurability effect plays a vital role in the experimental study of the BASEP, as
it offers the opportunity to investigate the dynamics of the same system using different
parameter sets, allowing for a comprehensive understanding of its behavior.
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3.4.3 Barrier free motion in other periodic potentials

Here we consider a possibility of a barrier-free motion in the zero-noise limit for an arbitrary
chosen λ-periodic potential for single particles. The external force F (x) acting on particles
is also λ-periodic:

F (x) = F (x + λ). (3.40)

The Fourier series expansion of the periodic force is expressed as

F (x) =
∞∑

k=−∞
cke2πikx/λ = c0 + 2Re

[ ∞∑
k=1

cke2πikx/λ

]
, (3.41)

where the Fourier coefficients ck are

ck = 1
λ

∫ λ

0
dx F (x) e−2πikx/λ. (3.42)

We note that c0 = 0 as a consequence of the periodicity of both F (x) and its indefinite
integral, which represents the external potential. Inserting Eq. (3.41) into Eqs. (3.21b)
and (3.15b), we obtain the Fourier series representation of the n-cluster velocity un(x):

un(x) = µf + 2µRe

 ∞∑
k=1

cke2πikx/λ
n∑

j=1
e2πikjσ


= µf + 2µRe

[ ∞∑
k=1

1− e2πiknσ

1− e2πikσ
cke2πikx/λ

]
. (3.43)

The periodic term becomes constant when the factor (1 − e2πiknσ)/(1 − e2πikσ) is zero
for all k. This can only occur if nσ is an integer. For σ < 1, un(x) can thus be constant
only for particle sizes σ that are rational numbers:

σm,n = m

n
, m = 1, . . . , n−1, (3.44)

However, for the factor (1−e2πiknσ)/(1−e2πikσ) to be zero, kσ must not be an integer, as
otherwise (1−e2πiknσ)/(1−e2πikσ)→ n ̸= 0 according to L’Hospital’s rule. This additional
requirement of kσ not being an integer number cannot be satisfied for all k if σ = σm,n.
This implies that Fourier coefficients ck must be zero for those k where kσk,n = km/n is
an integer. Hence, for un(x) to be constant, σ must be one of the rational numbers σm,n,
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3.4 Summary notes

and all Fourier coefficients ck, for which km/n is an integer number, must be equal to
zero.

To determine the appropriate values of k for a given σm,n (where m and n are given),
we express m and n in terms of their greatest common divisor d(m, n), such that m =
d(m, n)m′ and n = d(m, n)n′, where m′ and n′ are mutually prime. In order for km/n to
be an integer, k must be a multiple of n′ = n/d(m, n). This leads to the requirement that

ck = 0 for k = j
n

d(m, n) , j = 1, 2, . . . . (3.45)

For non-zero drag force f > 0, the barrier-free motion is possible even for particle sizes
given by irrational σ, as the presence of this force extends the region of barrier-free motion
to some neighborhood near particle sizes σm,n, see the discussion in Sec. 3.3.1. Since for
any finite neighborhood of an irrational number, we can find some rational number that
is within this neighborhood, e.g. using the Farey series [148], barrier-free motion is also
possible for particle sizes given by irrational σ. Thus, barrier-free motion in the presence
of drag force is possible for any periodic potential and particle size.
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4 Driven transport of soft Brownian particles

In this chapter, we investigate how the violation of a single-file motion, when particles have
a finite probability of penetrating and passing each other thereby changing their order,
impacts the collective transport properties. This chapter is mainly based on work [91].

The finite penetration probability can be of different origin. For example, one can
consider the motion of interpenetrating macromolecules like polymers in a channel with
diameter of about the radius of gyration [149]. It also applies to the motion of colloidal
hard-sphere particles in a channel with diameter slightly larger than the particle size [150].
If the penetration depth lD is larger than the difference between channel diameter d and
doubled particle size ς,

lD > d− 2ς, (4.1)

particles are able to pass each other, see also the illustration in Fig. 4.1.

Figure 4.1: The illustration of the prerequisite condition for the penetration depth for
particles in a narrow channel to pass each other, corresponding to Eq. (4.1).
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4 Driven transport of soft Brownian particles

To analyze penetration and passing effects, we introduce the concept of the particle
softness, which would allow us to tune the passing rate. Specifically, the particles interact
via the interaction potential

V (r) = V0

ε[1 + erf(ς/
√

2λε)]
erfc

(
r − ς√

2λε

)
, (4.2)

where r is the distance between center positions of two particles, ς is the (effective) particle
size, and ε > 0 is dimensionless softness parameter; erf(.) and erfc(.) are error function
and complementary error function, respectively, defined as:

erf(z) = 2√
π

∫ z

0
e−t2dt, (4.3a)

erfc(z) = 1− erf(z). (4.3b)

Potential set by Eq. 4.2 resembles a smoothened rectangular potential barrier with
amplitude V0/ε. With decreasing ε, this barrier edges become sharper and also steeper,
which is illustrated in Fig. 4.2. In the limit ε→ 0, the hard-sphere potential for particles
with diameter ς is recovered. Also, unlike other interaction potentials when particle can
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Figure 4.2: Potential of soft interacting particles for σ = 0.8. The thin solid line cor-
responds to potential for high passing rate set by softness parameter ε = 0.25, and thick
solid line − to low passing rate set by softness parameter ε = 0.1. The dashed line repre-
sents the hardcore potential (limit ε→ 0).
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Figure 4.3: Trajectories of the driven Brownian motion for various values of the softness
parameter. Panel (a) is for hard particles (BASEP, ε → 0), (b) is for soft particles with
ε = 0.1 (low passing rate), and (c) is for soft particles with ε = 0.25 (high passing rate).
The circle in panel (b) marks a crossing of two particles.

penetrate each other, e.g. Lennard-Jones or Coloumb potentials, the suggested potential
does not possess a long-range tail, which can play a significant role in collective phenomena.
Its presence would have made the comparison with hardcore case less transparent.

Langevin equations describing the driven Brownian motion of particles with interacting
potential V (.) are of form

dxi

dt
= µ

(
f − U ′(xi) + f int

i

)
+
√

2D ξi(t), i = 1, . . . , N, (4.4a)

where the total interaction force f int
i acting on particle i can be written explicitly, as the

potential V (x) is given by the continuously differentiable function:

f int
i = −

∑
j ̸=i

∂V (|xi − xj |)
∂xi

. (4.4b)

Our main focus in this chapter are fundamental diagrams and their comparison with
corresponding results for the case of hard particles. In this chapter, we use the potential
amplitude and drag force as in Chapters 2-3, i.e. U0/kBT = 6, fλ/kBT = 0.2, and the
amplitude of the interaction potential is V0/kBT = 1.
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4 Driven transport of soft Brownian particles

4.1 General results

In Figs. 4.3(a)-(c) we show typical particle trajectories for hard particles and soft particles
with low and high passing rates, respectively. In all trajectories, we see hopping transitions
between neighboring potential wells, since the potential barrier is much larger than the
thermal energy. In Fig. 4.3(a), which refers to the BASEP, particles keep their order,
while in a slightly softer potential set by ε = 0.1, one crossing between particles can be
seen in a probe period of time 1000λ2/D in Fig. 4.3(b). For even softer potential given by
ε = 0.25, many more crossings between particles and even particle overlaps are observed
in a ten times smaller time period 100λ2/D in Fig. 4.3(c). These specified features of the
trajectories motivate our choice of ε = 0.1 and ε = 0.25 as representative potentials with
small and large degrees of softness, respectively.

In Fig. 4.4 we show fundamental diagrams (current-density relations) for these param-
eters ε = 0.1 and ε = 0.25. The previously used Fig. 2.2 for hard particles, i.e. ε → 0, is
shown here in Fig. 4.4(a) for visual comparison.

4.1.1 Soft particles: low passing rate

As it can be seen from Fig. 4.4(b), the current-density relations for small and intermediate
particle sizes are very similar to the BASEP ones in Fig. 4.4(a) if particle size ς is shifted
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Figure 4.4: Simulated current-density relations for various particle sizes. Panel (a) is for
hard particles (ε→ 0) and is identical to Fig. 2.2; panels (b) and (c) are for soft particles
with ε = 0.1 and ε = 0.25, respectively. The legend in (a) applies to all panels. The
current is normalized to the mean velocity v0 of a single particle given by Eq. (2.36) and
the thin solid line with slope one represents the behavior of independent or point particles
in all panels.
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by 0.1λ, i.e. lines in Fig. 4.4(b) for σ = 0.1-0.8 correspond to lines in Fig. 4.4(a) for
σ = 0.2-0.9, respectively. This gives rise to the idea that the currents of soft particles can
be described by that of hard particles with an effective particle size. This idea is developed
and elaborated in Sec. 4.2.

4.1.2 Soft particles: high passing rate

The current-density relations in case of high passing rate in Fig. 4.4(c) still resemble
features analogous to those in Fig. 4.4(a) and (b), but the sensitivity to particle size
is much weaker, since the higher passing probability leads to reduction of both barrier
enhancement and blocking effect. As a result, the particle current does not have large
deviations from the current of independent particles. In particular, parabolic ASEP-like
curves do not appear at large particle sizes due to weakening of the blocking effect. The
curve shapes themselves for large particle sizes, shown as dashed lines in Fig. 4.4(c), are
unique and have no counterparts in Fig. 4.4(a) and (b).

4.2 Theoretical approaches

4.2.1 AZMIF

The AZMIF described in Sec. 2.3 for hard particles can be also implemented in the case
of soft ones. Equation (2.40b) remains unchanged for the soft particles; however, a non-
trivial point in this case is the derivation of equilibrium density profile, since the exact
density functional for soft particles is unknown in this case. Here we calculate it in
the grand canonical ensemble by applying the density functional theory [110], see also
the corresponding discussion for hard particles in Sec. 2.2.1. Following this theory, we
minimize the corresponding functional of the density profile:

Ω[ϱ] = Fid[ϱ] + Fexc[ϱ] +
∫

dxϱ(x)[U(x)− µch], (4.5)

where Fid[ϱ] = kBT

∫
dxϱ(x)[ln[Λϱ(x)]−1] and Fexc[ϱ] are the ideal and excess part of the

free energy functional, Λ is the de Broglie wavelength, and µch is the chemical potential.
The minimization condition (2.16) for Ω[ϱ] to be minimal at the equilibrium density yields
the equation

ϱeq(x) = eβµch

Λ exp
[
−βU(x) + c(1)(x; [ϱeq])

]
(4.6)

for calculating ϱeq(x). Here
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4 Driven transport of soft Brownian particles

−kBTc(1)(x; [ϱeq]) = δFexc[ϱ]
δϱ(x)

∣∣∣
ϱ=ϱeq

(4.7)

is the potential of the mean interaction force in equilibrium. It can be calculated from the
direct correlation function c(2)(r; [ϱ]), which is given by the second functional derivative
of Fexc[ϱ]:

−kBTc(2)(|x− x′|; [ϱeq]) = δ2Fexc[ϱ]
δϱ(x)δϱ(x′) . (4.8)

By Taylor expansion of Fexc[ϱ] around ϱ̄ up to first order, we obtain the approximation:

c(1)(x; [ϱ]) =
∫

dx′c(2)(|x− x′|; ϱ̄) (ϱ(x)− ϱ̄) . (4.9)

The direct correlation function c(2)(r; [ϱ]) is related to the pair correlation function
g(r) = 1 + h(r) in the homogeneous system (U0 = 0) with density ϱ̄ via the Ornstein-
Zernike relation:

h(|x|) = c(2)(|x|; ϱ̄) + ϱ̄

∫
dx′c(2)(|x− x′|; ϱ̄)h(|x′|). (4.10)

For determining c(2)(|x − x′|; ϱ̄) and thus c(1)(x; [ϱ]) from Eq. (4.9), a further equation
between c(2)(r, ϱ̄) and g(r) is needed. As we deal with short-range interactions, we use the
approximate Percus-Yevick closure relation there [151],

c(2)(r, ϱ̄) = g(r)
[
1− exp

(
V (r)
kBT

)]
. (4.11)

Using Eqs. (4.6)-(4.11), we can determine ϱeq(x) numerically for a given σ and ϱ̄. To this
end, we first solve Eqs. (4.10) and (4.11) for c(2)(r, ϱ̄). Equation (4.9) then gives c(1)(x; [ϱ])
for any profile ϱ(x). The equilibrium profile must satisfy Eq. (4.6). By inserting c(1)(x; [ϱ])
into Eq. (4.6), we thus can calculate ϱeq(x) by iterative procedure. Specifically, we fix the
value of σ and determine ρeq(x) = λϱeq(x) in a series of calculations for increasing values
of 0 < ρ̄1 < ρ̄2 < . . . < ρ̄n, where ρ̄ = ϱ̄λ. As starting profile for determining the profile for
ρ̄n+1, we used the profile already calculated for ρ̄n. For the smallest ρ̄1, the equilibrium
density for independent particles given by Boltzmann distribution is used as the starting
profile.

Figure 4.5 shows various representative density profiles for the equilibrium state and
nonequilibrium steady state. As for the equilibrium profiles, we determined the profiles
both from the procedure described above and from Brownian dynamics simulations. For
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Figure 4.5: Comparison of density profiles: equilibrium profiles obtained from Brown-
ian dynamics simulations (down-pointing triangles) and from numerical calculations using
Eqs. (4.6)-(4.11) (solid lines), and nonequilibrium steady state profiles for f = 0.2λ/kBT
obtained from Brownian dynamics simulations (up-pointing triangles). Densities are plot-
ted on a logarithmic scale to be sensitive to relative deviations. Noticeable deviations can
be seen only between simulated and calculated equilibrium profiles for large ρ̄ and low
passing rate, and deviations between equilibrium and nonequlibrium simulated profiles
are negligible.

the case of high passing rate ε = 0.25, we always find excellent agreement. In the case of
low passing rate ε = 0.1, the agreement is still good for small and intermediate densities,
but becomes less satisfying at higher density. This can be seen from the rightmost graph
in the lower row of the figure. The main cause of the deviation is explained by the fact
that the Percus-Yevick closure relation (4.11) is no longer a good approximation. Since it
is beyond the scope of the present thesis to address this issue, we provide possible ways
to improve this procedure in the Summary notes.

The nonequilibrium steady state profiles are almost indistinguishable from the equilib-
rium ones for the weak drag force f = 0.2λ/kBT . This suggests that, similarly to the
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4 Driven transport of soft Brownian particles

case of hard particles, the AZMIF provides a good description of the transport behavior
as long as the mean interaction force f int is negligible.

4.2.2 Effective size method

The main idea of the effective size method is to use the BASEP as a reference model, so
that the current of soft particles is set by the BASEP with the same particle density and
effective particle size σ′. The idea itself is not novel and is most frequently mentioned in
the context of the method proposed by Weeks, Chandler, and Anderson [152]. However,
the new approach for determining the effective particle size, which we propose in this
chapter, is significantly different from the previously proposed ones. Its essence is that we
match equilibrium profiles for soft and hard particles as closely as possible.

To find the best match, we substitute the equilibrium profile ϱeq(x) of soft particles into
the exact functional of the density profile for hard rods,

ΩHC(σHC, ρ̄) =
λ∫

0

dxϱ(x)
(

U(x)− µch − kBT

[
1− ln

(
ϱ(x)

1− η(x, σHC)

)])
(4.12)

and vary the effective size σHC until the measure δΩHC(σHC, [ϱeq])/δϱeq has the smallest
deviation from zero within 0 ≤ x ≤ λ at σHC = σ′. This procedure reads as follows:

σ′(ρ̄, σ) = argmin
σHC

{
sup

0≤x≤λ

∣∣∣∣∣δΩHC(σHC; [ϱeq])
δϱeq(x)

∣∣∣∣∣
}

, (4.13)

and the current is determined by the relation

jst(ρ̄, σ) = jBASEP
st (ρ̄, σ′), (4.14)

with jBASEP
st the stationary current for the BASEP.

4.3 Application of theoretical approaches

Let us now compare the introduced theoretical approaches for cases of both low and high
passing rates with corresponding simulation results.
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4.3.1 Low passing rate

In Fig. 4.6(a), we present fundamental diagrams, obtained by Brownian dynamics simu-
lations (symbols), in comparison with those obtained by AZMIF (thin dashed lines) and
effective size method (thick dashed lines) for the low passing rate ε = 0.1. It can be
noted at once that the newly introduced effective size method provides good description
for all particles sizes, while the application of AZMIF shows pronounced deviations at
σ = 0.5 similarly as in the BASEP, see the discussion in Sec. 2.3. In addition to more
accurate description, the effective particle size σ′ plotted in Fig. 4.6(b) also provides a
clear explanation for various physical effects observed in current-density curves.

For σ ≲ 0.8, as one could expect from the discussion in Sec. 4.1.1, the effective particle
size is about 0.1 wavelength larger than the real size of a soft particle. Interestingly, the
dependence of σ′(σ, ρ̄) on ρ̄ is weak, except for ρ̄ = 1 at large σ. Due to the fact that ρ̄

takes on discrete values, the significant change of σ′ in the inset of Fig. 4.6(b) appears as a
step from ρ̄ = 0.99 to 1. This change indicates the special behavior of the BASEP at ρ̄ = 1
for large particle sizes 0.6 ≲ σ ≲ 1. In this case of special behavior, transport dynamics
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Figure 4.6: (a) Comparison of current-density relations given by the AZMIF (thin dashed
lines) and the effective size method (thick dashed line) with the simulated data (symbols)
for low passing rate (ε = 0.1) and 4 representative particle sizes. The solid line with slope
one indicates the behavior for independent or point particles. (b) Effective particle sizes
σ′ calculated from Eq. (4.13) for the data shown in (a) [same symbols and line colors, see
legend in part (a)]. The inset shows a zoom-in of the curve for σ = 0.9 and ρ̄ close to one.
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is governed by the thermally activated Brownian solitons that do not have analogues in
non-crowded systems.

Effective size method also allows to explain the behavior of current-density curve at
σ = 0.9 in Fig. 4.4(b), that does not have analogues in the BASEP for any particle size,
see Fig. 4.4(a). In the inset of Fig. 4.6(b), the effective size decreases from σ′ > 1 to σ′ < 1,
with σ′ = 1 at ρ̄× ≈ 0.91. To understand why this transition causes a dramatic current
change, we turn to Eq. (2.38a). From this relation, we can see that for σ′ > 1, which
corresponds in Fig. 4.6(a) to ρ̄ < ρ̄×, the system is equivalent to one with particles size
(σ′ − 1), where the barrier reduction effect prevails. For σ′ < 1 corresponding to ρ̄ > ρ̄×

in Fig. 4.6(a), the blocking effect is dominant. All of the above mentioned effects occur in
the corresponding current-density curve, and the soft particle current at ρ̄ = 1 does not
approach zero on the contrary to BASEP, since the blocking effect is weaker in the case of
soft particles. This feature is observed in the effective size method via significant change
of σ′ at ρ̄ = 1, but in general, due to above mentioned specific behavior of the current in
the BASEP, effective size method is beyond its applicability at ρ̄ = 1 for large σ′.

4.3.2 High passing rate

One could assume that the effective size method should not describe well the case where
the probability of particles overtaking each other is significant, that can be observed in the
representative example in Fig. 4.3(c)). Indeed, in such case the physical interpretation of
effective size becomes ambiguous and may not provide meaningful insights into the system
behavior. However, as we can see from Fig. 4.7(a), the effective size method is still able to
predict many features of current-density curve behavior. In fact, at σ = 0.1 and σ = 0.9
the method gives a correct description for ρ̄ ≲ 0.7, at σ = 0.5 for ρ̄ ≲ 0.5, and the case
σ = 0.8 is described exactly at any ρ̄ except for the special case of ρ̄ = 1. At the same
time, the AZMIF yields discrepancies for ρ̄ ≳ 0.7 at all considered particle sizes σ.

More detailed analysis of particle trajectories in equilibrium in Fig. 4.8, however, shows
that the current-density curves do not in any way contradict the stated assumption that
the effective size method should exhibit worse results at high passing rates. Indeed, particle
overlappings, marked by rounded rectangles, occur much more frequent for σ = 0.5 where
the effective size method fails, than for σ = 0.8 where the effective size method has en
excellent agreement, in spite of fact that the total overlapping time is longer in the latter
case.

This seemingly paradoxical situation has a fairly simple explanation. For large σ = 0.8
or σ = 0.9, the probability of a potential well to be occupied by two particles becomes
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significant only at high densities ρ̄, therefore the passing rate is relatively low, and the
agreement between the currents predicted by the effective size method with the simulated
ones is thereby sufficiently good. On the contrary, for σ = 0.5 the probability of a potential
well to be doubly occupied is high, which subsequently leads to the high passing rate. The
blocking effect for the effective particle size σ′ given in Fig. 4.7(b) is thus overestimated
compared to the system of soft particles, thereby predicting lower currents than those
from simulations. Finally, for σ = 0.1, σ′ is small as well, see Fig. 4.7(b), so the barrier
reduction effect dominates the current behavior in the corresponding BASEP. Thus, the
high passing rate of soft particles for σ = 0.1 is irrelevant and the effective size method
provides a good description of the current-density relation.

4.4 Summary notes

The goal of this chapter was to investigate how the softness of particle interactions affects
collective transport properties. To facilitate a systematic comparison with hardcore inter-
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Figure 4.7: (a) Comparison of current-density relations given by the AZMIF (thin dashed
lines) and the effective size method (thick dashed line) with the simulated data (symbols)
for high passing rate (ε = 0.25) and 4 representative particle sizes. The solid line with
slope one indicates the behavior for independent or point particles. (b) Effective particle
sizes σ′ calculated from Eq. (4.13) for the data shown in (a) [same symbols and line colors,
see legend in part (a)].

73



4 Driven transport of soft Brownian particles

0

5

10

15

20

0 10 20 30 40 50  0 70 80 90 100 0 10 20 30 40 50  0 70 80 90 100

x
i(
t)
,
λ

Dt/λ2

σ = 0.5, ρ̄ = 0.5

Dt/λ2

σ = 0.8, ρ̄ = 0.5

Figure 4.8: A representative example of trajectories for ρ̄ = 0.5 and two different particle
sizes σ = 0.5 and σ = 0.8 in equilibrium, f = 0. Black rounded rectangles mark particle
overlappings, and dashed lines denote potential minima.

acting particles, we considered a smoothed rectangular barrier potential as the interaction
potential, which can be tuned by a single parameter to control its softness.

The softness of this potential introduces two key features: a smoothed barrier step and a
finite height of the barrier. The smoothed step allows particles to partially penetrate each
other, resulting in a penetration effect, while the finite barrier height allows particles to
pass each other, leading to a passing effect. We focused our analysis on two cases with low
and high passing rates, respectively. In the case of a low passing rate, only the penetration
effect is significantly present.

Interestingly, even when the passing rate is negligible, we observed peculiar current-
density relations that do not have counterparts in a hardcore interacting system. To
explain this phenomenon, we introduced the effective particle size method. This method
maps a system of soft particles with a system of hard particles at the same density, using an
effective particle size that is determined based on the equilibrium density functional of hard
spheres. The effective particle size depends on both the size and density of soft particles,
and this dependence allows for a successful description of the peculiar current-density
relations. Therefore, we concluded that the effective size method accurately accounts
for the impact of the penetration effect on transport behavior, and also provides a way
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to interpret the dynamics based on the knowledge of the hardcore interacting reference
system.

When the potential barrier is low, the passing rate of particles can become significant. In
such cases, there are two distinct regimes: one at low density where the penetration effect
dominates, and another at high density where the passing effect is more prominent. In the
low-density regime, our effective size method is able to accurately describe the current-
density relation. However, in the high-density regime, the effective size method no longer
provides a satisfactory quantitative description. Thus, a different or modified theoretical
approach is required to effectively capture the collective dynamics in this regime.

We have also elaborated the analytical procedure of calculating the equilibrium density
profile for the case of soft particles where the exact functional of the density profile is
unknown. The suggested approach has a good agreement with the simulation results
except for the case of high system coverage, where the implemented Percus-Yevick closure
relation is no longer a valid approximation. A possible way to improve this treatment is
implementing the weighted density functionals, see e.g. [153–155].

The effective size method has been employed here to describe current-density relations.
However, we anticipate that this method could also be applied to other nonequilibrium
properties, and may be particularly valuable in studying soft particles with long-range
attractive interactions [156]. Determining the effective size in such cases could benefit
from advancements in equilibrium density functional theory for corresponding hardcore
interacting systems [157, 158]. Additionally, mixtures of soft particles could be treated
using density functionals for hard sphere mixtures [159, 160]. It is important to conduct
experimental verification of the findings presented here, as the notable impacts observed
in collective transport can be detected not only in currents but also in the local kinetics
of tagged particles [161, 162].
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5.1 Introduction

Since the early stages of computational physics, simulating hard spheres has been a prob-
lem that has garnered attention [163, 164]. The main advantage of applying hardcore
interactions is the ability to perform analytical calculations. For instance, in the one-
dimensional model of hard rods, Percus obtained analytical results that proved pivotal in
the field of equilibrium statistical physics [115, 165]. In the present thesis, we have utilized
these results in Chapters 2-3.

Algorithm development took a major step forward with the introduction of dynamic
simulations, which allowed for the study of nonequilibrium properties in addition to equi-
librium. The first dynamic algorithm was still similar to standard Monte Carlo simulations
and was based on rejecting movements violating the hardcore condition [166]. A modifica-
tion to this approach was made by placing collided particles in contact instead of rejecting
these movements [167]. Nevertheless, these methods exhibit poor performance at high
system coverage. An alternative procedure based on the decomposition of particle mo-
tion into a part in agreement with the hardcore condition and a part violating it yields
good results also for non-zero external potentials, however, the computation time grows
exponentially with the collision frequency/system coverage [168].

In the present thesis, we implement the event-driven dynamics as a solution, which com-
pletely avoids overlapping particles and is consistent with Brownian dynamics governed
by the system of Langevin equations. The concept of this approach is based on the idea of
running pure Newtonian simulations within one time step. When during a time step two
particles collide, their collision may have some degree of elasticity. The results for single
collisions are exact, see e.g. [169], and the overall precision depends on the fineness of
time step interval. In one-dimensional system the choice of elasticity is optional because
collisions conserve the local momentum regardless of the degree of elasticity [144], and
the hardcore constraint set by expression (2.3) is automatically applied for event-driven
collisions. Here, the hardcore constraint has an important role because it implicitly sets
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the evolution equation for the local density (2.9a), (2.9a) through the imposed boundary
conditions on the current [123]:

[ji(x1, . . . , xn, t)− ji+1(x1, . . . , xn, t)]xi+1=xi+ς = 0, i = 1, . . . , N − 1. (5.1)

Here ji are currents of the Smoluchowski equation for joint probability density
ϱ(N)(x1, . . . , xN , t) of finding N particles at positions x1, . . . , xN at time t:

∂ϱ(N)(x1, . . . , xN , t)
∂t

=
N∑

i=1

∂ji

∂xi
, (5.2a)

ji = ji(x1, . . . , xN ) = µ
[
f − U ′(xi) + f int

i (x1, . . . , xN )
]

ϱ(N) −D
∂ϱ(N)

∂xi
. (5.2b)

The numbering of particles follows the same order as for clusters, ascending in the bias
direction, with the N th particle also considered as the 0th (and vice versa) due to periodic
boundary conditions.

Equations (5.1), (5.2a) and (5.2b) were given earlier for dynamics of two particles in
Sec. 2.4, see Eqs. (2.55), (2.56b) and comments to them. Integrating Eq. (5.2a) over
x2, . . . , xN with respect to the hardcore constraint (2.3), boundary conditions (5.1), and
periodic boundary conditions yields the Fokker-Plank equation (2.9a) corresponding to
the described Langevin dynamics. The details of the Fokker-Planck equation derivation
were thoroughly described in [85] in Supplemental Material.

For a small enough time step, the simulation results will be identical regardless of
elasticity, but the choice of such a step is not optimal in terms of computational time.
Thus, the choice of elasticity for a finite time step is due to its characteristic features. For
example, in systems with zero or low thermal noise, clusters of particles in contact with
each other play an important role, making an algorithm with inelastic collisions preferable.
In systems with strong thermal noise, particles are unlikely to be in direct contact, so an
algorithm with elastic collisions is more suitable.

In system with more than one dimension, multiparticle collisions are allowed, which are
difficult to implement in Brownian dynamics simulations. This problem can be resolved
by considering elastic collisions, where the multiparticle collision is nothing else but a
sequence of binary collisions separated by small time intervals [170, 171]. For inelastic
particles, most of approaches to deal with multiparticle collisions also imply that such
collision can be replaced by the sequence of binary collisions [172–174]. However, in many
cases multicontact should be allowed, because it is often found in real systems [175–177].
In such systems, particles can also be grouped into clusters similar to those reported in
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Chapter 3. The presence of these clusters can be justified by kinetic theory, thereby
establishing the limits of applicability of the binary collision approach (inelastic or elastic)
[178]. Aggregation of such clusters in Brownian dynamics simulation, analogous to the
attachment-detachment mechanism introduced in Sec. 3.3.1, was described in [179].

In this final chapter, we first introduce the general mechanism of Langevin dynamics
simulation that is relevant for both soft and hard particle dynamics. After that, we de-
scribe in detail the algorithm for hard particles with totally elastic collisions implemented
in Chapter 2 and Sec. 3.2, and the algorithm for hard particles with totally inelastic colli-
sions implemented in Sec. 3.3. Additionally, we also provide a detailed description of the
procedures, which we implemented in order to measure certain quantities in the performed
simulation.

5.2 Langevin dynamics simulation

We start with Langevin equations for independent particles:

dxi

dt
= µ

(
f − U ′(xi)

)
+
√

2D ξi(t), i = 1, . . . , N. (5.3)

Integrating it from t to t + ∆t yields

xi(t + ∆t)− xi(t) =
∫ t+∆t

t

[
µ
(
f − U ′(xi)

)
+ ξi(τ)

]
dτ. (5.4)

For a small time step ∆t we can set xi = xi(t) and ξi = ξi(t) within the time interval
[t, t + ∆t[. In order to do this for the stochastic term ξi, we also need to perform the time
discretization of the Gaussian white noise correlations,

ξi(t) ∝ Ni, (5.5)

where Ni are Gauss distributed numbers with normal standard distribution (zero mean,
unit variance). By turning Dirac delta into Kronecker delta,

⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′) → δtt′δij

∆t
(5.6)

and given that if the variance is scaled by a constant, the values are scaled by the square
root of that constant, we obtain the proportionality factor in (5.5) as ∆t−1/2. Thus, after
the integration we obtain [114]:
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xi(t + ∆t) = xi(t) + µ
(
f − U ′(xi)

)
∆t +

√
2D∆tNi, i = 1, . . . , N, (5.7)

where the particle (pseudo)velocity ui = ui(xi(t)) is fixed within the time interval [t, t+∆t[:

ui = µ
(
f − U ′(xi)

)
+

√
2D

∆t
Ni, i = 1, . . . , N. (5.8)

Equation (5.7) is nothing else but the evolution equation based on the standard Euler
method expanded with a stochastic term. For an explicitly defined interaction force, such
as for the case of soft particles, this evolution equation is analogous to Eq. (5.7):

xi(t + ∆t) = xi(t) + µ
(
f − U ′(xi) + f int

i

)
∆t +

√
2D∆tNi, i = 1, . . . , N (5.9)

The dynamics simulation in the case of explicitly defined interaction force is straight-
forward: we evolve the system state with a time step ∆t, updating positions of particles
for the subsequent step according to Eq. (5.7) for independent particles and to Eq. (5.9)
for soft particles.

5.3 Totally elastic collisions

Since the explicit analytical calculation of the interaction force is impossible for hard
particles due to δ-singularity at the contact point between interacting particles, we need
to take interaction forces into account via event-driven dynamics from a collision at time
tcoll to a next collision at time t′

coll. For the simulation within time interval [t, t + ∆t[ we
first set tcoll = t and calculate particle velocities as for independent particles via Eq. (5.8).
Knowing these velocities, we can determine whether a collision occurs within the time
interval [tcoll, t + ∆t[. A collision can be possible if velocities of neighboring particles
satisfy

ui(tcoll) > ui+1(tcoll), (5.10)

with time point of the possible collision between i-th and (i+1)-th particles:

ti,i+1 = tcoll + xi+1(tcoll)− xi(tcoll)− ς

ui(tcoll)− ui+1(tcoll)
(5.11)

The next collision that occurs at time t′
coll is the one with the smallest time in the set

{ti,i+1},

80



5.4 Totally inelastic collisions

t′
coll = min

i
{ti,i+1} (5.12)

In case t′
coll ≥ t+∆t, particles can be considered as independent within the time interval

[tcoll, t+∆t[, so that their velocities calculated at time tcoll remain unchanged. Otherwise,
we determine the left particle icoll participating in this collision:

icoll = argmin
i
{ti,i+1} (5.13)

In case of totally elastic collisions in one dimensional space, collided particles exchange
their velocities [180]:

ui(t′
coll) = ui+1(tcoll),

ui+1(t′
coll) = ui(tcoll). (5.14)

Correspondingly, positions of all particles are updated at time t′
coll,

xi(t′
coll) = xi(tcoll) + ui(tcoll)(t′

coll − tcoll). (5.15)

The event-driven procedure given by Eqs. (5.10)-(5.15) is repeated until t′
coll ≥ t + ∆t.

After that, positions of all particles at time t + ∆t are calculated using the expression

xi(t + ∆t) = xi(tcoll) + ui(tcoll)(t + ∆t− tcoll). (5.16)

Afterward, updated velocities ui(t + ∆t) at time t + ∆t are calculated, and the event-
driven procedure is carried out for the next time step. A flow diagram that illustrates the
algorithm is provided in Fig. 5.1.

This algorithm is in fact identical to the approximate Green’s function dynamics intro-
duced in [171, 181].

5.4 Totally inelastic collisions

This section is partially based on [89].
After the totally inelastic collision of two particles takes place, the corresponding veloc-

ities change has the form [180]:
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Calculation of particle velocities [Eq. (5.8)]; tcoll ← t

Calculation of set of times of possible collisions
[Eqs. (5.10)-(5.11)]

Determination of next colli-
sion time t′

coll [Eqs. (5.12), (5.13)]

t′
coll ≥ t + ∆t?

Update of velocities of collided particles [Eq. (5.14)]

Update of rod positions [Eq. (5.15)]

tcoll ← t′
coll

Update of rod positions [Eq. (5.16)]

t ← t + ∆t

yes

no

Figure 5.1: The event-driven algorithm for hard particles based on totally elastic colli-
sions.

ui(t′
coll) = ui+1(t′

coll) = ui(tcoll) + ui+1(tcoll)
2 , (5.17)

and the algorithm for elastic collisions can be thus adapted for the inelastic ones, see
Fig. 5.2. However, in the case of inelastic collisions this algorithm can be substantially
improved with respect to the computational time by using the principles of cluster dy-
namics, described in the Sec. 3.3.1. Here we also generalize these principles for the case of
non-zero noise, with the particle (pseudo)velocity given by Eq. (5.8) as a generalization of
the zero-noise particle velocity given by Eq. (3.15b). In what follows, we use the notation
from Sec. 3.3.1.

To implement the principles of cluster dynamics, we consider all particles in the system
as clusters, as illustrated in Fig. 5.3. Cluster identification can change and therefore needs
to be updated either due to collisions within the time step or due to recalculation of
particle velocities at the beginning of each time step. In other words, during the time
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Calculation of particle velocities [Eq. (5.8)]; tcoll ← t

Calculation of set of times of possible collisions
[Eqs. (5.10)-(5.11)]

Determination of next colli-
sion time t′

coll [Eqs. (5.12), (5.13)]

t′
coll ≥ t + ∆t?

Update of velocities of collided particles [Eq. (5.17)]

Update of rod positions [Eq. (5.15)]

tcoll ← t′
coll

Update of rod positions [Eq. (5.16)]

t ← t + ∆t

yes

no

Figure 5.2: The simplest version of the event-driven algorithm for hard particles based
on totally inelastic collisions.

step, clusters can only collide with each other, while at the beginning of a new time step,
all clusters from the previous time step are guaranteed to be particles in contact, but
not necessarily clusters. Thus, cluster fragmentation can occur only at the beginning of
the time step, and cluster merging can occur only during the rest of the time interval.
However, in the simplest version of the algorithm depicted in Fig. 5.2, this fragmentation
is obviously ineffective in terms of computational time, as it does not utilize information
about particles being in contact from the previous time step and requires recalculating
cluster identification from scratch at each time step.

To perform the fragmentation in a more efficient way, we suggest the following procedure.
Each n-cluster consisting of n particles, where n > 1, is divided into two fragments, n1

and n2, where n1 + n2 = n. From all possible fragmentations, we choose that one which
satisfies the following condition:

n1 = argmax
1≤ñ1≤n−1

{ūñ2 − ūñ1}, (5.18)
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Figure 5.3: An example of cluster identification for 8 particles. The conditions on ve-
locities u1, u2, u3 and u5, u6 of particles being in contact correspond to the conditions
(3.17a), (3.18) of cluster formation. The condition on velocities u7, u8 of particles being in
contact corresponds to the condition (3.19) of fragmentation, or independent propagation.
Single particle with velocity u4 is the 1-cluster. The particles belonging to the same cluster
are marked with the same color.

with ūn1 , ūn2 determined by Eq. (3.18b). If ūn2 − ūn1 > 0, the fragmentation is accepted.
If the choice of maximum in Eq. (5.18) is not unique, we arbitrarily select one of the
possible values for n1. The fragmentation procedure is repeated for the cluster fragments
until no further fragmentation can be achieved. Velocities of clusters and their particles
are calculated directly by Eq. (3.18b).

If the suggested procedure is valid, it should lead to the correct unique cluster identifi-
cation that satisfies conditions (3.17a), (3.18) and (3.19). To prove the procedure validity,
we use mathematical induction. In what follows we consider the fragmentation of a single
n-cluster, as fragmentation of multiple independent clusters is performed in the same way.

Base case of cluster size n = 2. As fragmentation with n1 = 1 is the only possible one,
the fragmentation condition (5.18) is nothing else but Eq. (3.19), so that the fragmentation
is performed correctly.

Induction step: if the introduced procedure gives the correct fragmentation for an
n-cluster, then it gives the correct fragmentation for the (n+1)-cluster.

Let us consider an (n+1)-cluster and divide it into two fragments, n1 and n2, with
n1 + n2 = n + 1. If ūn2 − ūn1 ≤ 0, then there is no fragmentation, which satisfies the
conditions (3.17a), (3.18) and (3.19). Otherwise, both n1 and n2 have size less than or
equal to n, so their further fragmentation is performed correctly due to the assumption
of the induction step. To complete the proof, we need to show that the original split of
the (n+1)-cluster into an n1-cluster and n2-cluster is correct with respect to conditions
(3.17a), (3.18) and (3.19).

Four scenarios are possible:
1. No further fragmentation.

Similar to the base case, the required conditions (3.17a), (3.18) and (3.19) are satisfied.
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2. n1-cluster splits further into n11-, . . ., n1s-clusters; n2-cluster does not split.

From (3.19) we obtain the condition

ūn1s > uL, (5.19)

where uL denotes the weighted velocity of cluster group n11, . . ., n1(s−1):

uL ≡
1

n1 − n1s

s−1∑
j=1

ūn1j . (5.20)

From Eq. (5.18), we have

ūn2 − ūn1 ≥
ūn1sn1s + ūn2n2

n2 + n1s
− uL, (5.21)

where (ūn1sn1s + ūn2n2)/(n2 + n1s) is the weighted velocity of cluster group n1s, n2. The
left part of the inequality corresponds to the partition according to Eq. (5.18), and the
right part corresponds to the choice ñ1 = n1 − n1s in the subargument expression of
Eq. (5.18).

The weighted velocity of cluster group n11, . . . , n1s (former n1-cluster) can be rewritten
analogous to Eq. (5.20):

ūn1 = uL(n1 − n1s) + ūn1sn1s

n1
. (5.22)

By using this relation and relation (5.20), we rewrite Eq. (5.21) as

ūn2 − ūn1s

n2 + n1s
− ūn1s − uL

n1
≥ 0, (5.23)

which, together with (5.19), reads

uL < ūn1s ≤
ūn2n1 + uL(n2 + n1s)

n1 + n2 + n1s
. (5.24)

Using the inequality (5.19),

ūn1s ≤
ūn2n1 + uL(n2 + n1s)

n1 + n2 + n1s
<

ūn2n1 + ūn1s(n2 + n1s)
n1 + n2 + n1s

, (5.25)

0 <
n1(ūn2 − ūn1s)
n1 + n2 + n1s

, (5.26)
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we obtain that condition ūn1s < ūn2 is fulfilled, so the initial split as well as all the following
fragmentations are performed in a correct way.
3. n2-cluster splits further into n21-, . . ., n2t-clusters; n1-cluster does not split.

The proof is analogous to that in the preceding case.
From (3.19) we obtain the condition

ūn21 < uR, (5.27)

where uR denotes the weighted velocity of cluster group n21, . . . , n2t:

uR ≡
1

n2 − n21

t∑
j=2

ūn2j . (5.28)

From Eq. (5.18) we obtain the condition

ūn2 − ūn1 ≥ uR −
ūn1n1 + ūn21n21

n1 + n21
, (5.29)

where (ūn1n1 + ūn21n21)/(n1 + n21) is the weighted velocity of cluster group n1, n21. The
left part of the inequality corresponds to the partition according to Eq. (5.18), and the
right part corresponds to the choice ñ2 = n2 − n21 in the subargument expression of
Eq. (5.18).

The weighted velocity of cluster group n21, n2t (former cluster n2) can be rewritten
analogous to Eq. (5.28):

ūn2 = ūn21n21 + uR(n2 − n21)
n2

. (5.30)

By using this relation and relation (5.28), we rewrite Eq. (5.29) as

ūn21 − uR

n2
− ūn1 − ūn21

n1 + n21
≥ 0, (5.31)

which, together with (5.27), reads

ūn21 ≥
ūn1n2 + uR(n1 + n21)

n1 + n2 + n21
>

ūn1n2 + ūn21(n1 + n21)
n1 + n2 + n21

, (5.32)

0 >
(ūn1 − ūn21)n2
n1 + n2 + n21

. (5.33)

Accordingly, condition ūn1 < ūn21 , is fulfilled and the first split is performed correctly.

4. Both clusters are split further. Here the notation from cases 2-3 is used.
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Inequalities analogous to those in cases 2 and 3 read:

uL < ūn1s , (5.34a)

uR > ūn21 , (5.34b)(
ūn21n21 + uR(n2 − n21)

n2
− ūn1sn1s + uL(n1 − n1s)

n1

)
≥(

ūn21n21 + uR(n2 − n21) + ūn1sn1s

n2 + n1s
− uL

)
. (5.34c)

The inequality (5.34c) can be rewritten as

(uR − ūn21)(n2 − n21)
n2

− ūn21(n21 − n1s − n2) + uR(n2 − n21)
n2 + n1s

+uLn1s

n1
≥ ūn1sn1s(n1 + n2 + n1s)

n1(n2 + n1s) . (5.35)

By applying to it inequalities (5.34a),

(uR − ūn21)(n2 − n21)
n2

− ūn21(n21 − n1s − n2) + uR(n2 − n21)
n2 + n1s

+ ūn1sn1s

n1
>

ūn1sn1s(n2 + n1s + n1)
n1(n2 + n1s) , (5.36)

and (5.34b),
ūn21n1s

n2 + n1s
+ ūn1sn1s

n1
>

ūn1sn1s(n1 + n2 + n1s)
n1(n2 + n1s) , (5.37)

we obtain
ūn21

n2 + n1s
+ ūn1s

n1
>

ūn1s(n2 + n1s + n1)
n1(n2 + n1s) = ūn1s

n2 + n1s
+ ūn1s

n1
, (5.38)

Hence the condition ūn1s < ūn21 is fulfilled and the first split is performed correctly. This
completes the proof by induction.

The flow diagram of algorithm based on this fragmentation procedure is shown in
Fig. 5.4.

In all algorithms presented and implemented in this thesis, we utilize a time step of
D∆t/λ2 = 10−5-10−4 in the Euler scheme. This time step has an optimal balance between
computational efficiency and accuracy since a further decrease does not significantly affect
the results presented.
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Calculation of particle velocities [Eq. (5.8)]; tcoll ← t

Cluster analysis [Eqs. (3.17a), (3.18), (3.19)]
based on Eq. (5.18) applied to

cluster identification in previous time step

Calculation of set of times of possible collisions
[Eqs. (5.10)-(5.11)]

Determination of next colli-
sion time t′

coll [Eqs. (5.12), (5.13)]

t′
coll ≥ t + ∆t?

Update of velocities of collided particles [Eq. (5.17)]

Update of rod positions [Eq. (5.15)]

tcoll ← t′
coll

Update of rod positions [Eq. (5.16)]

t ← t + ∆t

yes

no

Figure 5.4: Cluster dynamics-based event-driven algorithm for hard particles with com-
pletely inelastic collisions.

5.5 Extracting quantities from simulations

Density profile

To calculate the density profile, we implement Eq. (2.8) by discretization of the space
domain and turning Dirac delta into Kronecker delta as has been done in Sec. 5.2:

ϱ(xa) = 1
∆x

〈
N∑

i=1
δX ,xi

〉
τ

, (5.39)

where ∆x is a spatial resolution, xα is a dicretized coordinate,

xa = a∆x, a ∈ N, (5.40)
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and X is a space interval [xa−∆x/2, xa + ∆x/2[. Thus, the Kronecker delta δX ,xi is equal
to 1 in case xi ∈ X , and equal to 0 otherwise. Here, the ensemble average ⟨. . .⟩τ is an
average over all time-discretized states between the initial system state at time 0 and the
final system state at time τ .

Equation (5.39) thus reads:

ϱ(xa, τ) = ∆t

(τ + ∆t)∆x

τ/∆t∑
j=0

N∑
i=1

δX ,xi(j∆t). (5.41)

In the limit of large τ , the system reaches a steady-state density profile. Therefore,
Equation (5.41) enables us to determine the density at position x = xa + ∆x/2 with a
predetermined level of accuracy. In the present thesis, we use ∆x = 10−3λ, τ = 1011∆t,
and average the density profile over all spatial periods, thus exploiting its periodicity in
the steady-state, where ϱ(x) = ϱ(x + λ).

An analogous procedure is also applicable for densities of higher order, like the two
particle density ϱ(2)(x, y, t).

Mean interaction force

The mean interaction force is

f int(x) =
〈

N∑
i=1

δ(x− xi)f int(xi)
〉

τ

(5.42)

Knowing the particle position xi(t) at time t, we can predict the particle position at
time t + ∆t, if no interaction would occur within time interval [t, t + ∆t[:

x̃i(t + ∆t) = xi(t) + ui∆t. (5.43)

Here, ui is given by Eq. (5.8). However, due to the interaction force the real position at
time t + ∆t can be different. By taking the interaction force f int

i = f int
i (t) into account as

it is done in Eq. (5.9), we obtain:

xi(t + ∆t) = xi(t) + ui∆t + µf int
i (t)∆t (5.44)
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Accordingly, we can determine the interaction force at position xi in time interval [t; t+∆t[
from the particle configuration at the end of a time step:

f int
i (t) = xi(t + ∆t)− x̃i(t + ∆t)

µ∆t
. (5.45)

We substitute this expression into Eq. (5.42) for the mean interaction force and perform
the average ⟨. . .⟩τ analogous to the procedure described for the density in Eqs. (5.39)-
(5.41). This yields

f int(xa, τ) = ∆t

(τ + ∆t)∆x

τ/∆t∑
j=0

N∑
i=1

δX ,xi(j∆t)f
int
i (j∆t). (5.46)

Current

To calculate the current j(xa) at the discrete coordinate position xa, we measure the
rate of particle flow. This rate refers to the number of particles passing through the
corresponding position per unit of time. The counting process at each time step is as
follows: for each particle i that was located at position xi(t − ∆t) < xa in the previous
time step and has now moved to a position xi(t) ≥ xa, we increment the particle counter
by one. Conversely, for each particle that was at position xi(t−∆t) ≥ xa in the previous
time step and has now moved to a position xi(t) < xa, we decrement the particle counter
by one. An indication of the establishment of a steady-state regime is the homogeneity of
the current throughout the system.

Soliton velocity

We define soliton position as the position of the leftmost particle in a cluster in the zero-
noise limit, or as the position of the leftmost particle in a doubly occupied potential well
for non-zero noise. Based on this information, we determine the soliton velocity using the
standard method of calculating the ratio of the distance traveled to the time required to
pass this distance.

5.6 Summary notes

This chapter presents various methods for simulating Brownian dynamics of particles in-
teracting through hardcore or softcore potentials in one dimensional space. These methods
can be applied to particles in arbitrary external force fields, including random forces from
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fluid environments. The proposed algorithms for hard particles are based on event-driven
dynamics, which involve either totally elastic or totally inelastic collisions. Limits of ap-
plicability are provided for both algorithms, with the inelastic collision algorithm being
particularly important for studying Brownian solitons based on cluster dynamics. Particle
interactions beyond hardcore can be included if the corresponding interaction forces are
continuous functions of the particle coordinates. However, additional considerations are
required for other types of interactions, such as the Baxter’s sticky hard-sphere interaction
[89], which is important for describing adhesive forces. For such potentials an algorithm
based on inelastic collisions is preferable due to the natural formation of clusters.

5.6.1 Binary collision merging

Further improvement of the suggested algorithm based on totally inelastic collisions can
be achieved by exploiting the fact that collided particles propagate as the whole, i.e. as
a cluster, and by taking into account the momentum conservation during the inelastic
collisions. Here we demonstrate the possibility of such improvement for a case where only
two clusters n1, n2 collide within the time step interval [t, t + ∆t[.

We put these clusters in the initial configuration at time t in contact, i.e. merge them.
The velocity ū of the merged cluster is

ū = ū1n1 + ū2n2
n1 + n2

, (5.47)

and the position x at time t of the merged cluster is

x = x1n1 + x2n2
n1 + n2

, (5.48)

where x1 and x2 are the positions of the clusters at time t. The illustration of this binary
collision merging procedure is shown in Fig. 5.5.

The binary collision merging procedure conserves both the center of mass and mo-
mentum of the merged clusters. As a result, this procedure does not affect the cluster
configuration after the collision time but only alters the history of the cluster before the
collision, see the illustration in Fig. 5.5.

The advantage of this procedure is that it eliminates the necessity to recalculate the
particle configuration after each collision within the time step. This can significantly
reduces the simulation time, particularly in systems with large coverage ρ̄σ and a high rate
of collisions. However, the implementation of the algorithm require a future development
of a generalized version of the binary collision merging procedure. This extended procedure
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t

t+∆t

Cluster collision Binary collision merging

Figure 5.5: Illustration of the real cluster collision and illustration of the binary collision
merging. The trajectories of the left and right cluster borders are marked by arrows in the
time interval between t and t + ∆t. The merging procedure in the right panel is indicated
by shaped arrows at the initial time. In the right panel, particles of the merged cluster
at time t are indicated with pale colors, and the trajectories of the left and right borders
of the merged cluster before the collision are shown by dashed arrows. Both procedures
result in the same particle configuration.

should accommodate scenarios where more than two clusters collide within a single time
step.
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6 Conclusion and outlook

In this thesis, we have investigated crowding effects at high densities within spatial confine-
ment based on Brownian asymmetric simple exclusion process (BASEP), where particles
are modeled as hard spheres. A key finding was that solitons emerge in such systems,
which are thermally activated or persistent for overcrowded systems. These solitons mani-
fest themselves as solitary cluster waves hat propagate wihtout dispersion. When examin-
ing types of particle interactions other than hardcore, it can be expected that qualitative
changes of the overall transport behavior may occur when particles stick to or partially
penetrate each other. Examples of such particle interactions in real systems are interpen-
etrating polymers or protein fragments with attractive forces arising from van der Waals
interactions or hydrogen bonding.

As a first step, we have developed and investigated a model with particles exhibiting
softness, therefore allowing the particles to interpenetrate or even pass each other. We
have demonstrated that the passage of particles reveals new features that do not have
counterparts in the BASEP. To account for stickiness by attractive forces, we have started
studies recently [89, 90] based on Baxter’s model of adhesive hard spheres [88].

An open question is whether Brownian solitons occur in particle systems with inter-
actions other than hardcore. For adhesive hard spheres, one can expect that cluster
formations of Brownian solitons would even be facilitated, thus expanding the range of
conditions under which propagating solitons can emerge compared to that for the hard-
core interaction. The presence of adhesive interactions can also have an impact on the
repulsive interaction between solitons in the BASEP. It is probable that under certain
circumstances, two solitons may overcome the repulsive barrier between them and adhere
to each other. This is overall a compelling and challenging topic for future studies, given
that the interaction between solitons has a complex many-body nature.

Brownian solitons have been experimentally observed when driving colloidal particles
through a vortex of optical traps by a traveling wave [108]. In these systems, it has been
demonstrated that hydrodynamic interactions play a significant role at lower densities [75].
Thus, it is reasonable to expect that these hydrodynamic interactions become less relevant
in crowded systems. It is also of practical interest to determine whether solitons would
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occur in higher dimensions, such as 2D or 3D, when particles experience reduced spatial
confinement. For instance, in the experiment described in Ref. [108], the particle motion is
not strictly one-dimensional, but may exhibit fluctuations in the radial direction. Further
investigations of this question are running and include numerical simulations of particle
dynamics with hydrodynamic interactions in a 2D geometry [182].

The experiment confirming soliton existence in real systems described in Ref. [108]
has also demonstrated the relevance and applicability of the seemingly artificial constant
external drag force, as employed in BASEP, to real-world systems. In this experiment,
the external drag force is generated by the viscous friction exerted on colloidal particles
suspended in highly deionized water and manipulated using optical tweezers. The particles
experience resistance from the surrounding fluid, resulting in the drag force that influences
their motion. Regarding the drag force itself, it would be intriguing to explore the case
where this force is varying. In the experimental realization, such force variation can be
implemented as e.g. an amplitude modulation of the beam used to generate the optical
tweezers.

In summary, we would like to emphasize that the simulation and theoretical approaches
developed and implemented in this thesis, along with the corresponding consistent exper-
imental realizations, constitute a powerful toolbox for investigating dynamics in crowded
systems. These tools have the potential to be applied to a wide range of problems, includ-
ing but not limited to microfluidics, polymer and protein dynamics in confined geometries
such as channels, pores, and nanotubes.
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Appendix

Here we provide scaling factors for basic quantities shown in figures of the present thesis
to be dimensionless.

Length

As unit of length, we use the wavelength λ of the external potential (2.4). This applies to
the parameters x, L, r and ς.

Energy

We use thermal energy kBT as unit of energy. This applies to potential amplitudes U0

and V0.

Time

As is evident from the Langevin equation (5.7), µU0t/λ should be the unit of length.
Since [U0] = [kBT ], time can be measured either in units of λ2/µkBT = λ2/D, or in the
zero-noise limit D = 0 it can be measured in units of λ2/µU0.

Once we establish measurement units for length, energy, and time, we can subsequently
derive measurement units for various other quantities. For example, we obtain U0/λ

or alternatively, kBT/λ as the measurement units for force, and D/λ or µU0/λ as the
measurement units for velocity. As for particle current, if we compare it with that for
independent particles, from Eq. (2.27) we obtain the current measurement unit v0/λ or
v0ρ̄/λ if we study the current for the fixed filling factor ρ̄. If we are not interested in
comparing the particle current with that for independent particles, we obtain µU0/λ2

as the current unit measure. Here, the temperature-independent measurement unit is
preferable since the current is compared between the non-zero and zero-noise limit, i.e. for
various temperature regimes.
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