
Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.)
des Fachbereichs Mathematik/Informatik/Physik der Universität

Osnabrück

Combinatorial Aspects of Horizontal
Visibility Graphs, Symmetric Edge-

and Laplacian Polytopes

vorgelegt von:
Daniel Köhne

Betreuer:
Prof. Dr. Martina Juhnke-Kubitzke

Osnabrück, 2023





iii

Contents

Introduction 1

1 Background on graphs, simplicial complexes and polytopes 9
1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Basic notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Horizontal visibility graphs . . . . . . . . . . . . . . . . . . . . . 10

1.2 Simplicial complexes and Laplacian matrices . . . . . . . . . . . . . . . 13
1.3 Lattice polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Basic notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Ehrhart theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Triangulations and Gröbner bases . . . . . . . . . . . . . . . . . 17

2 Counting horizontal visibility graphs 21
2.1 Horizontal visibility graphs from distinct data . . . . . . . . . . . . . . 22

2.1.1 From horizontal visibility graphs to data sequences . . . . . . . 22
2.1.2 Horizontal visibility graphs and degree sequences . . . . . . . . 23
2.1.3 Counting horizontal visibility graphs in GN,≠ . . . . . . . . . . . 26
2.1.4 Horizontal visibility graphs and parentheses . . . . . . . . . . . 28

2.2 Horizontal visibility graphs from arbitrary data . . . . . . . . . . . . . 29
2.2.1 From horizontal visibility graphs to data sequences . . . . . . . 30
2.2.2 Counting horizontal visibility graphs – Schröder numbers . . . 30

2.3 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 A scalable linear time algorithm for horizontal visibility graphs 35
3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Correctness of the algorithm . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Online version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Multi-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Synthetic time series . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Audio and financial time series . . . . . . . . . . . . . . . . . . . 46
3.3.3 Acceleration time series . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 Multi-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 On the gamma vector of symmetric edge polytopes 51
4.1 Basic properties of symmetric edge polytopes . . . . . . . . . . . . . . . 52
4.2 Non-negativity of γ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 On a conjecture of Lutz and Nevo . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Symmetric edge polytopes for Erdős-Rényi random graphs . . . . . . . 68

4.4.1 Edges and cycles in Erdős-Rényi graphs . . . . . . . . . . . . . . 68
4.4.2 The subcritical regime . . . . . . . . . . . . . . . . . . . . . . . . 69



iv

4.4.3 The supercritical regime . . . . . . . . . . . . . . . . . . . . . . . 70

5 Laplacian polytopes of simplicial complexes 77
5.1 Laplacian matrices of boundaries of simplices . . . . . . . . . . . . . . . 77
5.2 General properties of Laplacian polytopes . . . . . . . . . . . . . . . . . 79
5.3 The facet description and the combinatorial type of P∂(σd+1) . . . . . . 82
5.4 Regular unimodular triangulations and h∗-vectors . . . . . . . . . . . . 84

5.4.1 Triangulations through interior polytopes . . . . . . . . . . . . . 84
5.4.2 Unimodality and real-rootedness . . . . . . . . . . . . . . . . . . 90

5.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 97



v

List of Figures

The figures in this thesis were created using GeoGebra, Canva and Ipe.

1.1 The data sequence D = (4,3,1,2,5) and its associated HVG. . . . . . . 11
1.2 The HVG G = HVG((4,1,1,3)). . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Two different triangulations of the hexagon, and a subdivision into

simplices which is not a triangulation. . . . . . . . . . . . . . . . . . . . 17
1.4 A regular and a non-regular triangulation. . . . . . . . . . . . . . . . . . 18
1.5 Two regular unimodular triangulations of the unit square associated

to Gröbner bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 The HVG of the sequences (4,3,1,2,7,5,6) and (7,4,1,2,6,3,5). . . . 23
2.2 The graph HVG((1,8,4,7,6,5,2,3)). . . . . . . . . . . . . . . . . . . . . 24
2.3 The unique HVG with ordered degree sequence (2,3,2,5,2,2). . . . . 26
2.4 Two HVGs with the same ordered degree sequence (2,2,3,2,3,2,2). . 26
2.5 The graph G = HVG((10,6,2,4,5,8,9,1,3,7)). . . . . . . . . . . . . . . 29
2.6 Applying ψ10 to G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 The graph ξ8(B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Examples of an HVG and a VG. . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Example of visible data points in the list decreasing. . . . . . . . . . . 39
3.3 Illustration of the LT-Algorithm for an example. . . . . . . . . . . . . . 40
3.4 Numbers of non-nested vertices of i.i.d data. . . . . . . . . . . . . . . . 44
3.5 Runtime comparisons for different types of data. . . . . . . . . . . . . . 46
3.6 A box plot of the TIMIT audio data set and the intraday prices of S&P

500 stocks for the different algorithms. . . . . . . . . . . . . . . . . . . . 47
3.7 The acceleration signals of normal and low tire pressure. . . . . . . . . 49
3.8 UMAP embedding of HVG features. . . . . . . . . . . . . . . . . . . . . 49
3.9 Parallizable versions of the DTHVG and LT-algorithm in comparison. 50

4.1 Example of a triangulation of the boundary of PC4 . . . . . . . . . . . . 52
4.2 The double cone of a graph and the bipartite cone of a 6-cycle. . . . . 58
4.3 The construction of the graph H as in the proof of Proposition 4.2.9. 59
4.4 The bad pairs of edges for the graph H in Figure 4.3. . . . . . . . . . . 61
4.5 The graphs G6 and K2,4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 P̃ ∂(σ3) and its interior polytope Q∂(σ3) translated to the origin. . . . . 85
5.2 The triangulation of 3 ⋅∆2 given by esd3(∆2). . . . . . . . . . . . . . . 87





vii

List of Tables

3.1 HVG computation times in seconds for the TIMIT audio data set and
intraday prices of S&P 500 stocks for the different algorithms. . . . . . 47

5.1 The h∗-vectors of P∂σd+1 for d = 1, . . . ,8. . . . . . . . . . . . . . . . . . . 93





ix

List of Symbols

[n] {1, . . . , n}, n ∈ N
[m,n] {m,m + 1 . . . , n}, m,n ∈ N
BN the set of balanced parentheses with N pairs of parentheses
B̃N the set of bracketings of length N

C(N) the N th Catalan number
Cn the n-cycle graph
cy(G) the cyclomatic number of a graph G
γ(∆) the γ-vector of a simplicial sphere ∆
γ(∆; t) the γ-polynomial of ∆
d(u, v) the distance between vertices u and v in a graph
dim(∆) the dimension of ∆
dim(P ) the dimension of the polytope P
δ(v) the degree of v ∈ V (G)
δnest(v) the nesting-degree of v ∈ V (G)
∆ a finite simplicial complex
∆d the d-standard simplex
∆G a regular unimodular triangulation of ∂PG

∆(G) the (ordered) degree sequence of G
∆/F the edge contraction of ∆ at F
∆ ∖ F the face deletion of F from ∆
∆ ⋆ Γ the join of simplicial complexes ∆ and Γ
∂i the i-th boundary map in homology
∂P the boundary of the polytope P
∂∆ the boundary complex of the simplicial complex ∆
ei,j the difference of standard basis vectors ei − ej

E(G) the edge set of G
EP (n) the Ehrhart polynomial of a polytope P
E(X) the expectation of the random variable X
f(∆) the f -vector of ∆
f(∆;x) the f -polynomial of ∆
fk(G) the number of k-faces of ∆G

Fi(∆) the set of i-faces of ∆
F(P ) the set of facets of the polytope P
⟨F1, . . . , Fm⟩ the simplicial complex generated by F1, . . . , Fm

Gn the graph K2,n−2 ∪ {12} with partition [n] = [2] ∪ {3, . . . , n}
G⊕k H the k-clique sum of G and H
G +H the 1-sum of HVGs G and H w.r.t. N ∈ V (G) and 1 ∈ V (H)
G(n, p) an Erdős-Rényi graph on n vertices with probability p
G(P ) the facet-ridge graph of the polytope P
G ∪ e the graph (V (G),E(G) ∪ {e})
G ∖ e the graph (V (G),E(G) ∖ {e})
G ∖ V ′ the graph G ∖ V ′ = (V ∖ V ′,E ∖ {e ∶ e ∩ V ′ ≠ ∅})



x

GW the induced subgraph of G on W
GN the set of HVGs corresponding to sequences of arbitrary data

of length N
GN,≠ the set of HVGs corresponding to sequences of distinct data

of length N
Gs

N,≠ the set of HVGs in GN,≠ with mG(1) = s
h(∆) the h-vector of ∆
h(∆, x) the h-polynomial of ∆
h∗(P ) the h∗-vector of a polytope P
h∗(P ;x) the h∗-polynomial of a polytope P
Hi(∆;Q) the ith homology group of ∆
HVG(D) the horizontal visibility graph corresponding to D ∈ RN

Kn the complete graph on n vertices
Km,n the complete bipartite graph on a partition with m and n vertices
l(B) the length of the bracketing B
lk∆(F ) the link of a face F in ∆
Li(∆) the ith Laplacian matrix of ∆
mG(i) the maximal neighbor of the vertex i ∈ V (G)
M(P ) the matrix whose column vectors are the vertices of the polytope P
nk(G) the number of k-dim. non-faces of ∆G that do not contain antipodal

vertices
nVol(P ) the normalized volume of the polytope P
N(v) the set of neighbors of v
N(G) the set of all non-nested vertices of G
PG the symmetric edge polytope of the graph G
Pn the path on n vertices
P ⊕ P ′ the free sum of the polytopes P and P ′

rN the N th Schröder number
sN the N th little Schröder number
σd the d-simplex on the vertex set [d + 1]
v → w the directed edge from v to w
V (G) the vertex set of the graph G
V (∆) the vertex set of the simplicial complex ∆
VG(S) the visibility graph corresponding to the time series S
Var(X) the variance of the random variable X
V(P ) the set of vertices of the polytope P
XE(G) the random variable which is the number of edges for G ∈ G(n, p)
Xk(G) the random variable which is the number of k-cycles for G ∈ G(n, p)
◆d the d-dimensional cross-polytope
◇d the boundary complex of the (d + 1)-dimensional cross-polytope
≅ unimodular equivalence



1

Introduction

A common approach in mathematics is to associate two mathematical objects with
one another in order to derive properties and invariants of one via properties and
invariants of the other. In discrete mathematics, especially in combinatorics and
discrete geometry, a typical choice for one of these objects is a graph [BM86; HHO18;
HJM19; LP86; OT22]. In the first part, this thesis focuses on graphs associated to
time series; in particular, on horizontal visibility graphs.

Time series analysis plays a significant role in many research areas since physical
and economic state variables are often measured at regular time intervals and then
studied in their temporal context. New methods constructing graphs from time series
have provided a different perspective on time series analysis. They are based, e.g.,
on recurrence [Don+10; Mar+09; Xia+12], dependency [Che+22; Des+09; Lia+11],
visibility [Bal+09; Bal+08] or correlation [YY08]. These methods allow the time se-
ries to be analyzed using approaches from the emerging field of complex networks.
In particular, horizontal visibility graphs (HVGs), introduced by Ballesteros et al.
[Bal+09], have provided strong results in classifying and analyzing time series. For
instance, the degree distribution of an HVG is known to be a good measure for
distinguishing stochastic from chaotic systems [Bal+09]. Moreover, HVGs have been
successfully applied, e.g., in optics [Ara+16], fluid dynamics [MPT15], plasma physics
[ATMP21] (in a directed version), neurosciences [Li+14], chemistry [Das+22], EEG
analysis of epileptics in physiology [DDK13; LWZ14] and sleep-stage classification
via EEG signals [LWZ12], fault diagnosis of rolling bearings [GWY20] and finance
[Hu+22; RS18]. For example, by transforming EEG signals of potentially alcoholic
patients into a graph using the horizontal visibility algorithm and comparing graph
properties of these graphs, alcoholism could be reliably detected [Li+14]. Network-
based algorithms have recently also been applied to time series forecasting. These use
visibility algorithms as preprocessing for their forecasting models [Cao+20; HX22a;
HX22b]. In many of the various aforementioned applications, the time series tend to
be very large. Thus, having efficient algorithms transforming the given series into its
horizontal visibility graph are crucial. Desirable are algorithms that work efficiently
on streamed data, that can be parallelized, and whose runtime is independent of the
type of time series. Several approaches have already been investigated with complexi-
ties ranging from quadratic to linear time [Bal+09; Che+15; Lac+12; LWZ12; Ste21;
Yel+20].

In the second part of this thesis, to a graph and later, more generally, to a simpli-
cial complex, we associate a lattice polytope: more precisely, we consider the symmet-
ric edge polytope of a graph and Laplacian polytopes of simplicial complexes. Lattice
polytopes appear and play a role in various fields of mathematics including algebraic
geometry and commutative algebra [BH98; Sta80; Stu96], optimization [Sch86; Sch03]
and combinatorics [BR15; Sta80; Zie95].

An example for a family of lattice polytopes associated to graphs is the family of
symmetric edge polytopes [Hib+10]. There has been a surge of interest in this topic
in recent years for their intrinsic combinatorial and geometric properties [CDK23;
HKM17; Mat+11; OT21a; OT21b] as well as their relations to metric space theory
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[DH20; GP17; Ver15], optimal transport [Çel+21] and physics, where they appear in
the context of the Kuramoto synchronization model [Che19; CDM18; DDM22]. There
are several pleasant properties that are shared by all symmetric edge polytope. Since
a symmetric edge polytope is reflexive [Hig15] and admits a pulling regular unimod-
ular triangulation [HO14; HJM19], the restriction yields a unimodular triangulation
of its boundary complex as well. In addition, due to reflexivity, the h∗-vector of a
symmetric edge polytope is symmetric [Hib92] and coincides with the h-vector of the
triangulation of the boundary [Sta80, Corollary 2.5], which, in particular, is a sim-
plicial sphere. Therefore, questions concerning simplicial spheres can be investigated
in this case. This provides a link between the study of the γ-vector of symmetric
edge polytopes and the rich world of conjectures on the γ-non-negativity of simpli-
cial spheres. The non-negativity is of special interest since it implies unimodality
of the underlying symmetric h-vector [Pet15, Observation 4.1]. For a non-negative
h-vector, unimodality is also implied by the stronger property of real-rootedness of
the h-polynomial [Brä15, Lemma 1.1], though this is not the case for h-polynomials
of the triangulations of boundaries of symmetric edge polytopes in general; the 5-
cycle is a counterexample. One of the most prominent objects studied in topological
combinatorics is the h-vector of a simplicial sphere. For flag spheres, Gal’s conjec-
ture [Gal05] states that the γ-vectors are non-negative. Several related conjectures
exist, including the Charney–Davis conjecture [CD95], claiming non-negativity only
for the last entry of the γ-vector, and the Nevo–Petersen conjecture [NP11] which
even postulates that the γ-vector of a flag sphere is the f -vector of a balanced simpli-
cial complex. Those conjectures have been a very active area of research in the last
few years. However, even though proofs have been provided in special cases [Ais14;
AV20; Ath12; DO01; Gal05; LN17; NP11; NPT11] and new approaches have been
developed towards their solution [CN20; CN22], they remain wide open in general.
Note that symmetric edge polytopes are not flag in general; nevertheless, the lack
of flagness, in all the cases known so far, the γ-vector of any symmetric edge poly-
tope is non-negative. This led Ohsugi and Tsuchiya to formulate their non-negativity
conjecture for γ-vectors of symmetric edge polytopes [OT21b, Conjecture 5.11]. This
conjecture has been verified for special classes of graphs, mostly by direct computa-
tion. As shown in [OT21b, Section 5.3], these classes encompass cycles, suspensions
of graphs (which includes both complete graphs and wheels), outerplanar bipartite
graphs and complete bipartite graphs. The latter was originally proved in [HJM19]
but was generalized in [OT21b] to a larger class of bipartite graphs.

Another way of associating a lattice polytope to a given simple graph was intro-
duced by Braun and Meyer in 2017 [BM17]. They defined Laplacian simplices as
the convex hull of the columns of the Laplacian matrix of a graph. These polytopes
were further studied from a coding theory perspective [MT18]. Furthermore, the
definition of Laplacian simplices was later extended from simple to directed graphs
[Bal+18]. Since each simple graph can be seen as a 1-dimensional simplicial complex,
and since to each simplicial complex, we can associate Laplacian matrices defined via
their boundary maps in simplicial homology, it is natural to extend the definition of
Laplacian simplices to arbitrary simplicial complexes and their Laplacian matrices.
This yields a new family of lattice polytopes, the study of which is initiated in this
thesis.

The original contributions of this thesis are contained in Chapters 2, 3, 4 and 5,
whose content can be found in the preprints [JKK23; JKKS21] and the publications
[D’A+23; KS23].
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Summary of the thesis

Chapter 1 provides relevant background and notions. We start with graphs in general
and then focus on the main objects of Chapter 2 and Chapter 3, horizontal visibility
graphs, and prove some basic properties of these. Next, we introduce background
on simplicial complexes, a generalization of graphs. Lastly, we turn to lattice poly-
topes. Here, the main focus lies on the theory of lattice point enumeration, known as
Ehrhart theory, and triangulations with their connection to Gröbner bases.

In Chapter 2, we study horizontal visibility graphs. We first focus on HVGs cor-
responding to data sequences with pairwise distinct entries. After providing a specific
data sequence that realizes a given HVG (see Theorem 2.1.1), we prove that HVGs
from data sequences without equal entries are uniquely determined by their ordered
vertex degree sequence (see Theorem 2.0.1). This improves the results from [LL17]
and [O’P19] by weakening the assumptions on the HVG and requiring less information
to guarantee uniqueness, respectively. Moreover, we provide an explicit algorithm to
reconstruct an HVG from its ordered vertex degree sequence (see Remark 2.1.7). We
then take a similar viewpoint as in [GMS11], where HVGs are studied from a purely
combinatorial perspective and connections with several combinatorial statistics are
established. More precisely, we are interested in the number of HVGs on a fixed num-
ber of vertices corresponding to data sequences with and without equal entries, where
we consider two HVGs equal if they are equal as labeled graphs. Surprisingly, Catalan
numbers and large Schröder numbers determine those cardinalities. More precisely,
we show that the number of HVGs on N vertices corresponding to data sequences
without equal entries equals the (N−1)st Catalan number (see Theorem 2.0.2 (i)), and
the cardinality of an HVG on N vertices corresponding to arbitrary data sequences
is given by the (N −2)nd Schröder number (see Theorem 2.0.2 (ii)). For the result on
Catalan numbers, we provide two different proofs: one purely algebraic and one via a
bijection to the set of balanced parentheses of length N −1. To determine the number
of HVGs corresponding to arbitrary data sequences, we first provide a specific data
sequence that realizes a given HVG (see Theorem 2.2.1), analogous to the case of
HVGs corresponding to distinct data. The main step to show Theorem 2.0.2 (ii) is to
construct a bijection between HVGs on N vertices not containing the edge 1N and
bracketings of a string of N − 1 identical letters, which are known to be counted by
the (N − 2)nd little Schröder number (see Theorem 2.2.4).

Chapter 3 focuses on algorithmic aspects of HVGs. We are interested in the com-
putability of HVGs given an arbitrary data sequence of length N . We start with
a short survey about known approaches and algorithms, whose complexities range
from O(N2) to O(N logN) in the average case [Che+15; Yel+20] to a linear run-
time O(N) in best [Bal+09; Lac+12] or even worst case [LWZ12; Ste21] scenarios.
Some of these algorithms show heavy dependence on the structure of the given data
sequence. Although, the approach in [Ste21] already has a desirable complexity, its
drawback is that it uses a complex data structure to achieve this. Our algorithm
builds on the algorithm in [LWZ12]. The latter algorithm has runtime O(N), but a
proof of its correctness is missing. Moreover, the proof of complexity of the algorithm
in [LWZ12] relies on it being correct. Another drawback of this algorithm is that it
does not work on streamed data. Our algorithm constructs an HVG for every possi-
ble time series and works in linear time with only minor fluctuations in runtime for
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different types of time series while in contrast to [Ste21] not requiring a complex data
structure (see Section 3.2). Furthermore, the HVG of every intermediate time series
is generated implicitly if the algorithm is stopped prematurely. We further prove its
correctness (see Theorem 3.2.1) and provide a proof that it is worst-case in O(N) (see
Theorem 3.2.2). Thus its runtime is independent of the structure of the sequence.
Moreover, the algorithm has online functionality (see Subsection 3.2.3), i.e., it works
on streamed data, and can be used for multi-processing (see Subsection 3.2.4). This
allows for the computation of HVGs with millions of vertices within a few minutes
or even seconds, opening up new application areas of HVGs for time series generated
batch-wise or resulting from measurements with a high sampling rate. We verify and
compare our observations to the given algorithms on some numerical experiments on
synthetic and real world data (see Section 3.3).

In Chapter 4, the central objects of interest are symmetric edge polytopes. We
start by providing some basic properties of symmetric edge polytopes and charac-
terizing their edges (see Theorem 4.1.3). Moreover, we classify all graphs having a
simple symmetric edge polytope (see Proposition 4.1.5). We then shift our focus to
γ-vectors associated to the h∗-vectors of symmetric edge polytopes. The main goal
of this chapter is to provide supporting evidence for the γ-non-negativity conjecture
of Oshugi and Tsuchiya [OT21b, Conjecture 5.11], which, in contrast to previously
known results in this direction, is independent of the associated graph.

We take two different approaches: a deterministic and a probabilistic one. In the
deterministic part, we focus on the coefficient γ2 of a symmetric edge polytope PG of a
graph G. Through some delicate combinatorial analysis, we are able to prove that γ2
is always non-negative (see Theorem 4.2.2). Moreover, we provide a characterization
of those graphs for which γ2(PG) = 0 (see Theorem 4.2.12 and Corollary 4.2.13).
We want to point out that the symmetric edge polytopes of the graphs from the
characterization in the case of equality indeed admit a flag triangulation. This justifies
that, as an application, we confirm a conjecture by Lutz and Nevo [LN16, Conjecture
6.1] characterizing flag piecewise linear spheres with γ2 = 0, in the restricted context
of some natural Gröbner-induced triangulations of boundaries of symmetric edge
polytopes (see Theorem 4.3.4). Using a simple but elegant argument, we also show
non-negativity of γ1 (see Corollary 4.2.4), a result that was later confirmed by [KT22,
Theorem 4.1.] in a more complex way using Jaeger trees.

Finally, the last section brings random graphs into the picture. The Erdős-Rényi
model G(n, p(n)) is one of the most popular and well-studied ways to generate a
random graph on the vertex set [n]. We consider the case where p(n) = n−β for a
real number β > 0. We address the following question: for an Erdős-Rényi graph
G ∈ G(n, p(n)), what is the probability that all of the entries of the γ-vector of PG

are non-negative? As an extension, we pose the question of how big those entries are
most likely to be. With our main result, we are able to answer both questions in
two regimes: subcritical (β > 1) and supercritical (0 < β < 1) (see Theorem A). More
precisely, in the subcritical regime, we show that asymptotically almost surely γℓ = 0
for all ℓ ≥ 1 (see Theorem 4.4.5). Furthermore, in the supercritical regime, 0 < β < 1,
we prove that asymptotically almost surely γℓ ∈ Θ(n(2−β)ℓ) for every 0 < ℓ ≤ k and any
fixed integer k (see Theorem 4.4.12). In particular, this shows that γℓ ≥ 0 for 1 ≤ ℓ ≤ k
with high probability, thereby proving that (up to a fixed entry of the γ-vector) Gal’s
conjecture [Gal05] holds with high probability. For the proof, we derive concentration
inequalities for the number of non-faces and faces of the triangulation of PG studied
in [HJM19, Proposition 3.8]. We do not address the critical regime β = 1.
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Extending the approach of [BM17] in Chapter 5, we define Laplacian polytopes
of simplicial complexes (see Definition 5.2.1). We initiate this study by establishing
some general combinatorial and geometric properties of these polytopes and then fo-
cus on the particular case in which the underlying simplicial complex is the boundary
of a simplex. In the general case, we determine the number of vertices (see Proposi-
tion 5.2.4) and provide a criterion for the Laplacian polytope to be a simplex based
on simplicial homology (see Proposition 5.2.5). We then consider the situation in
which the underlying simplicial complex is the boundary of the (d + 1)-simplex re-
stricting exclusively to its highest Laplacian. We determine the dimension of these
particular Laplacian polytopes (see Proposition 5.2.6) and prove simpliciality (see
Theorem 5.2.8). Though Laplacian polytopes are never full-dimensional, we pro-
vide a full-dimensional unimodular equivalent polytope in this special setting (see
Lemma 5.2.10). Through a slight abuse of notation, we will also call this polytope
the Laplacian polytope. This is justified since we are only investigating combinatorial
properties that are preserved under unimodular equivalence. If d is even, it can easily
be seen that the Laplacian polytope is a (d + 1)-simplex (see Corollary 5.2.7), as for
graphs. If d is odd, the situation is more complicated. By deriving a complete facet
description (see Theorem 5.3.3) in this case, we are able to show that the Laplacian
polytope is combinatorially equivalent to a d-dimensional cyclic polytope on d + 2
vertices (see Theorem 5.3.4). The first main theorem guarantees the existence of a
regular unimodular triangulation for every integer d (see Theorem B). As a bypro-
duct of the proof of Theorem B, we can also compute the normalized volume of the
Laplacian polytope (see Corollary 5.4.7). Moreover, Theorem B is one of the key
ingredients for our second main theorem, which states that the h∗-polynomial of the
Laplacian polytope has only real roots for every odd integer d, and that its h∗-vector
is unimodal for all integers d (see Theorem C).
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Chapter 1

Background on graphs,
simplicial complexes and
polytopes

In this chapter, we provide the relevant definitions and notations concerning graph
theory, in particular horizontal visibility graphs, simplicial complexes and polytope
theory. For more background, we refer to [Bal+09; Die17; GMS11] and [Aig06,
Chapter 6 and Chapter 7] for graphs, to [BH98, Section 5.1], [Gol02] and [Sta96,
Chapter 2] for simplicial complexes and to [Zie95], [BG09, Part 1], [BH98, Section
5.2] and [Stu96, Chapter 8] for polytopes and triangulations.

1.1 Graphs

1.1.1 Basic notion

An (undirected) simple graph is a pair G = (V (G),E(G)) where V (G) is a set and
E(G) ⊆ (V2) is a set of two-element subsets of V . We often write V and E instead of
V (G) and E(G), respectively, if it is clear from context which graph we are referring
to. The elements of V are called vertices and the ones of E edges. We set [n] ∶=
{1, . . . , n} and [m,n] ∶= {m,m + 1, . . . , n} for m,n ∈ N. Most of the time, we will set
V = [n]. For an edge {v,w} ∈ E, we use the shorthand notation vw. If vw ∈ E, v and
w are called neighbors and the set of all neighbors of v is denoted by N(v). The degree
of a vertex v ∈ V is the number δG(v) = ∣N(v)∣. Often, we will omit the subscript if
G is clear from context. For V = {v1, . . . , vn}, the sequence ∆(G) = (δ(v1), . . . , δ(vn))
is called the (ordered) degree sequence of G. By abuse of notation, we will also use
∆(G) = (δv1 , . . . , δvn). The adjacency matrix A = (aij)1≤i,j≤n of G is the (n × n)-
matrix indexed by the vertices v1, . . . , vn ∈ V , where aij = 1 if vivj ∈ E and aij = 0,
otherwise. The graph Pn = ([n],{12,23, . . . , (n− 1)n}) on n distinct vertices is called
a path of length n − 1, or n-path. A cycle of length n, or n-cycle, denoted by Cn,
is the graph Cn = ({v1, . . . , vn},{v1v2, . . . , vn−1vn, vnv1}) on n distinct vertices. A
connected graph which has no cycles is a tree. If all components are trees, we call
the graph a forest. We further use Kn and Kn,m to denote the complete graph on
n vertices and the complete bipartite graph on n and m vertices, respectively. A
graph G on vertex set [n] is called non-crossing if there are no vertices i < j < k < ℓ
with {(i, k), (j, ℓ)} ⊆ E(G). Intuitively, this means that one can draw the vertices
1, . . . , n on a horizontal line such that all edges are on or above this line and there is
no pair of edges that cross. Similarly, a vertex i ∈ [n] is called nested if there exist
1 ≤ j < i < k ≤ n such that jk ∈ E(G). Otherwise, i is called non-nested. We use
N(G) to denote the set of all non-nested vertices of G. And for i ∈ [n− 1] we denote
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by mG(i) the maximal neighbor of the vertex i in G, i.e.,

mG(i) =max{1 ≤ ℓ ≤ n ∶ iℓ ∈ E}.

If two graphs G and H both contain a subgraph isomorphic to a k-clique Kk, the
graph G ⊕k H obtained by gluing G and H together along Kk is called the k-clique
sum of G and H. The distance d(u, v) between vertices u and v is given as the length
of a shortest path from u to v. We denote by G ∪ e and G ∖ e the graph obtained
from G by adding and removing an edge e ∈ E(G), respectively. We define deleting
a vertex set V ′ ⊆ V as G ∖ V ′ = (V ∖ V ′,E ∖ {e ∶ e ∩ V ′ ≠ ∅}). Given W ⊆ V , the
subgraph induced by W is the graph GW = (W,{uv ∈ E ∶ u, v ∈W}). The cyclomatic
number of a graph G with c connected components is defined as cy(G) = ∣E∣ − ∣V ∣ + c.
Note, cy(G) ≥ 0 for all G. It is well-known that G is 2-connected if and only if
it has an open ear decomposition, meaning that G is either a cycle (the closed ear)
or can be obtained from a cycle by successively attaching paths (the open ears)
whose internal vertices are disjoint from the previous ears and whose distinct two end
vertices belong to the already constructed graph. It is easy to see that the number of
ears in any such decomposition equals the cyclomatic number of G. Moreover, every
graph decomposes uniquely into its 2-connected components, i.e., inclusion-maximal
2-connected subgraphs, and single edges.

1.1.2 Horizontal visibility graphs

In Chapter 2 and Chapter 3, we will focus on horizontal visibility graphs. They were
introduced in [Bal+09], where it was shown that the degree distribution of these
graphs can be used as a simple tool to discriminate randomness in time series. More-
over, HVGs have found applications in many different areas. Besides physics, where
they are employed in optics [Ara+16], plasma physics [ATMP21] (in a directed ver-
sion), fluid dynamics [MPT15] or the fault diagnosis of rolling bearings [GWY20],
their usage ranges from finance [RS18] to the EEG analysis of epileptics in physiol-
ogy [DDK13], to the identification of alcoholic patients in neuroscience [Li+14]. In
many of those applications, simple metrics such as the vertex degree sequence, the
graph entropy and moments have shown to be particularly helpful indicators for the
classification of the considered data sequences.

Definition 1.1.1. Given D = (d1, . . . , dN) ∈ RN , the horizontal visibility graph (or
HVG for short) of D is the graph HVG(D) = ([N],E), where

E = {ij ∶ di > dk < dj for all 1 ≤ i < k < j ≤ N}.

See Figure 1.1 for an example of a data sequence and its corresponding HVG.
Since an HVG is clearly invariant under translation of the underlying sequence D by
any vector with equal entries, it does not cause any restriction to consider only non-
negative data sequences. This also makes sense from the point of view of applications
since D is usually a data sequence or time series with non-negative entries. Further,
applications motivate the convention that HVGs have to be considered as graphs with
fixed vertex labels 1, . . . ,N . Consequently, two HVGs are considered to be the same if
and only if their edge sets are the same and not just if they are isomorphic as unlabeled
graphs, i.e., with this labeling all HVGs are different. We set GN = {HVG(D) ∶ D ∈
RN
≥0} and GN,≠ = {HVG(D) ∶ D = (d1, . . . , dN) ∈ RN

≥0, di ≠ dj for all 1 ≤ i < j ≤ N}.
We note that those two sets are different for N ≥ 4 (see Example 1.1.4) and that PN

is the (inclusion)-minimal HVG in both GN and GN,≠.
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(a) Arrows between entries of D indicate
edges in the corresponding HVG.

(b) The HVG associated to D = (4, 3, 1, 2, 5).

Figure 1.1: The data sequence D = (4,3,1,2,5) and its associated
HVG.

Remark 1.1.2. Let D = (d1, . . . , dN) ∈ RN . We define ΦN ∶ RN → [N]N by

ΦN(D)i = ∣{j ∶ dj ≤ di}∣ for 1 ≤ i ≤ N.

i.e., Φ(D) reflects the order of the entries of D, and, clearly, HVG(D) = HVG(Φ(D)).
Hence, any HVG is the HVG of a vector of non-negative integers (of size at most N).
Moreover, if all entries of D are distinct, then Φ(D) is a permutation of [N].

We summarize some easy but useful properties of HVGs in the following lemma.
First, we introduce a simple graph operation. Given G ∈ GN and H ∈ GM , we use
G +H to denote the 1-sum of G and H with respect to the vertices N ∈ V (G) and
1 ∈ V (H), i.e., G +H is obtained by taking the union of G and H and identifying
the vertices N ∈ V (G) and 1 ∈ V (H). Abusing notation, we do not use G⊕1 H here,
since we want to stress that the 1-sum is with respect to the vertices 1 and N . To
simplify notation, vertices of V (H)∖ {1} will be numbered with N + 1, . . . ,N +M − 1
in G +H, and the identified vertex will be numbered with N .

Lemma 1.1.3. Let N ∈ N and G ∈ GN . Let N(G) = {i1 < ⋯ < ik} and let ℓ ∈ N(G).
Then

(i) G is non-crossing.

(ii) 1, N and mG(ℓ) are non-nested.

(iii) Let 1 ≤ i < j ≤ N , then (after relabelling the vertices) G[i,j] ∈ Gj−i+1. Moreover,
if G ∈ GN,≠, then G[i,j] ∈ Gj−i+1,≠.

(iv) ijim ∈ E(G) if and only if m = j + 1 or m = j − 1.

(v) There exists D = (d1, . . . , dN) ∈ NN such that HVG(D) = G and d1 = N . More-
over, D can be chosen as a permutation if G ∈ GN,≠.

(vi) G = G[i1,i2] +⋯ +G[ik−1,ik]
.

Proof. (i) was shown in [GMS11, Corollary 5].
For (ii) note that 1 and N are non-nested by definition. Now assume by con-

tradiction that mG(ℓ) ∉ N(G). Together with (i), it follows that there exist i < ℓ <
mG(ℓ) <m with im ∈ E(G). But then ℓ is nested, a contradiction.

For (iii) it suffices to note that after relabelling the vertices of G[i,j] by 1, . . . , j−i+1
increasingly, G[i,j] = HVG((di, di+1, . . . , dj)), where G = HVG((d1, . . . , dN)). The
second statement readily follows.

For (iv), let im ∈ N(G)∖{N}. (ii) implies that mG(im) = ij for some j. Moreover,
we must have j = m + 1 since otherwise im+1 ∉ N(G). This shows imim+1 ∈ E(G).
The same argument also shows that imij ∉ E(G) if j ≥m + 2. The claim follows.
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(v) This is an easy consequence of Theorem 2.1.1 and Theorem 2.2.1.
(vi) follows from (iii) and (iv).

We provide an example to illustrate the difference between GN ∖ GN,≠.

Example 1.1.4. The graph G = HVG((3,1,1,4)), shown in Figure 1.2, is the (inclu-
sion-wise) smallest HVG that cannot be realized by a sequence with pairwise distinct
entries, i.e., G ∈ G4∖G4,≠. The sequence (4,1,1,3) yields the same HVG and satisfies
the first assumption from (v) of the previous lemma.

Figure 1.2: The HVG G = HVG((4,1,1,3)).

Motivated by Lemma 1.1.3 (iii), it is natural to ask if the set of all HVGs (without
fixing the vertex set) is closed under certain graph operations.

Lemma 1.1.5. Let M,N ∈ N, G ∈ GN , H ∈ GM and e ∈ E(G) ∖ {i(i + 1) ∶ 1 ≤ i ≤
N − 1}. Then:

(i) G ∖ e ∈ GN .

(ii) If j, ℓ ∈ N(G) with f = jℓ ∉ E(G), then G ∪ f ∈ GN .

(iii) G +H ∈ GN+M−1. Moreover, if G ∈ GN,≠ and H ∈ GN,≠, then G +H ∈ GN+M−1,≠.

Before providing the proof of this lemma, we remark that (i) and (ii) are not
true if one restricts to GN,≠. For instance, the graph G in Figure 1.2 is obtained from
G∪{13} ∈ G4,≠ and P4 ∈ G4,≠ by removing and adding the edge 13 and 14, respectively.

Proof. Let D = (d1, . . . , dN) ∈ NN such that HVG(D) = G. For (i) assume that e = kℓ
with k < ℓ. Let m = max{di ∶ k < i < ℓ} and let M = {k < i < ℓ ∶ di = m}. Define
D̃ = (d̃1, . . . , d̃N) by

d̃i =
⎧⎪⎪⎨⎪⎪⎩

di, if i ∉M
min(dk, dℓ), if i ∈M.

It is straightforward to show that HVG(D̃) = G ∖ e, which proves the claim.
For (ii) let m =max{di ∶ i ∈ N(G), j ≤ i ≤ ℓ} and set

d̃i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m + 1, if i ∈ {j, ℓ}
m, if i ∈ N(G) and j < i < ℓ
di, otherwise.

It is easy to see that HVG(D̃) ⊃ G ∪ f . If there exists e ∈ E(HVG(D̃)) ∖E(G ∪ f),
then we can apply (i) and delete those edges.

For (iii) we can assume by Lemma 1.1.3 (v) that d1 = N . Further, let F =
(f1, . . . , fM) ∈ NM with HVG(F ) = H and f1 = M . Define K = (k1, . . . , kM+N−1) ∈
NM+N−1 by

ki =
⎧⎪⎪⎨⎪⎪⎩

di +M if 1 ≤ i ≤ N
fi−N+1 if N < i ≤M +N − 1

and set J = HVG(K). We obviously have J[N] = G, and since kN = dN +M > M =
f1 ≥ fi−N+1 for all N < i ≤ M +N − 1 it also holds that J[N,N+M−1] = H. The same
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argument shows that ij ∉ E(J) for any 1 ≤ i < N and N < j ≤ M + N − 1, which,
together with the previous discussion, implies J = G +H. Hence G +H ∈ GN+M−1.
Moreover, if D and F have only distinct entries, so does K, which shows the second
claim.

Remark 1.1.6. Combining Lemma 1.1.3 (iii) and (vi) with Lemma 1.1.5 (i) and
(ii), it is easy to see that if G ∈ GN and 1 ≤ j < ℓ ≤ N such that G∪ jℓ is non-crossing,
then G ∪ jℓ ∈ GN .

1.2 Simplicial complexes and Laplacian matrices
A simplicial complex ∆ on a vertex set V (∆) is any collection of subsets of V (∆)
closed under inclusion. We also use V instead of V (∆) if ∆ is clear from context. A
simplicial complex ∆ is finite if V is. In this thesis, we always assume our simplicial
complexes to be finite. The elements of ∆ are called faces, and a face that is maximal
with respect to inclusion is called a facet. A subset of V (∆) that is not in ∆ is a
non-face. A non-face is called minimal if it is minimal with respect to inclusion. A
simplicial complex is called a flag complex if the minimal non-faces have cardinality
2. We will sometimes write ⟨F1, ..., Fm⟩ to denote the simplicial complex with facets
F1, ..., Fm. The dimension of a face F is defined as dim(F ) ∶= ∣F ∣−1, and the dimension
of ∆ is dim(∆) = max(dim(F ) ∶ F ∈ ∆). We use Fi(∆) to denote the set of
i-dimensional faces of ∆. 0-dimensional and 1-dimensional faces of ∆ are called
vertices and edges, respectively. If all facets of ∆ have the same dimension, ∆ is
said to be pure. The 1-skeleton of ∆ is the simplicial complex consisting of all edges
and vertices of ∆, and thus can be understood as a graph. We also refer to the
1-skeleton as the graph of ∆. We let σd = {F ∶ F ⊆ [d + 1]} be the d-simplex and
we use ∂(σd) to denote its boundary, i.e., ∂(σd) = σd ∖ {[d + 1]}. A d-dimensional
simplicial complex ∆ homeomorphic to a sphere is also called a (simplicial) sphere
or d-sphere for short. Given a (d − 1)-dimensional simplicial complex ∆, its f -vector
f(∆) = (f−1(∆), f0(∆), . . . , fd−1(∆)) is defined by fi(∆) = ∣{f ∈∆ ∶ dim(F ) = i}∣ for
−1 ≤ i ≤ d − 1 and its h-vector h(∆) = (h0(∆), h1(∆), . . . , hd(∆)) by the polynomial
equality

d

∑
k=0

hk(∆) ⋅ td−k =
d

∑
k=0

fk−1(∆) ⋅ (t − 1)d−k,

which yields

hj(∆) =
j

∑
i=0
(−1)j−i(d − i

d − j)fi−1(∆). (1.1)

The polynomial h(∆;x) = ∑d
i=0 hi(∆)xi is called the h-polynomial of ∆. If h(∆) is

symmetric, i.e., hi(∆) = hd−i(∆) for every choice of i, the γ-vector γ(∆) = (γ0(∆),
γ1(∆), . . . , γ⌊ d

2 ⌋
(∆)) of ∆ is defined via the following change of basis:

h(∆;x) =
⌊ d

2 ⌋

∑
i=0
γi(∆)xi(1 + x)d−2i. (1.2)

Thus, γ(∆) stores the same information as h(∆) in a more compact form.
We call the polynomial γ(∆;x) the γ-polynomial of ∆. More generally, in the same

way, one can associate a γ-vector γ(v) and γ-polynomial γ(p;x) with any symmetric
vector v and symmetric polynomial p. The following lemma can easily be seen by
induction.
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Lemma 1.2.1. Let p(x), p1(x), . . . , pk(x) be symmetric polynomials. Then p(x) =
∏k

i=1 pi(x) if and only if γ(p;x) = ∏k
i=1 γ(pi;x).

The γ-vector of simplicial spheres has been studied extensively as described on
page 2 of the Introduction with several open conjectures existing. One of the most
recent once in the context of symmetric edge polytopes was formulated by Ohsugi
and Tsuchiya [OT21b, Conjecture 5.11] stating the non-negativity of the γ-vector of
any symmetric edge polytopes and will be the the starting point of Chapter 4.

One way to study a simplicial complex ∆ locally is to look at the link of a face
F , i.e., the subcomplex of ∆ defined as lk∆(F ) = {H ∈ ∆ ∶ H ∩ F = ∅, F ∪H ∈ ∆}.
For an edge F = {v,w} ∈ ∆, the edge contraction ∆/F of ∆ at F is the simplicial
complex obtained from ∆ by identifying v with w in all faces of ∆, i.e., ∆/F = {H ∈
∆ ∶ v ∉H} ∪ {H ∖ {v} ∪ {w} ∶ v ∈H}. The face deletion ∆∖F of a face F ∈∆ from
∆ is defined as ∆ ∖ F = {H ∈∆ ∶ F /⊆ H}. Given simplicial complexes ∆ and Γ, the
simplicial complex ∆ ⋆ Γ = {F ∪H ∶ F ∈∆, H ∈ Γ} is called the join of ∆ and Γ.

In order to introduce general Laplacian matrices of a simplicial complex ∆, we
need to recall some basic notions from simplicial homology. For this purpose, let ∆
be a (d − 1)-dimensional simplicial complex on vertex set V , and assume that the
vertices are ordered. Without loss of generality, assume V = [n] = {1, . . . , n} endowed
with the natural ordering induced by N. We denote by Ci(∆) the Q-vector space
with basis {eσ ∶ σ ∈ Fi(∆)} and set Ci(∆) = {0} for i ≤ −1 and i > n − 1. The ith
boundary map is the linear map ∂i∶Ci(∆) → Ci−1(∆) defined by

∂i(eσ) ∶=
i+1
∑
k=1
(−1)k−1eσ∖{jk}

, (1.3)

where σ = {j1 < . . . < ji+1} ∈ Fi(∆). By abuse of notation, we will use ∂i to denote
both the map and its corresponding matrix. The ith Laplacian matrix of ∆ is defined
as Li(∆) = ∂i+1∂

⊺
i+1 + ∂⊺i ∂i. Note that Li(∆) provides a linear map from Ci(∆) to

itself which depends on the chosen ordering of the vertices. We recall that Hi(∆;Q) =
ker(∂i)/Im(∂i+1) is the ith (simplicial) homology group of ∆. To provide an explicit
description of Li(∆), we need some further notation. Faces F,G ∈ Fi(∆) are called
lower adjacent if F ∩G ∈ Fi−1(∆). If, additionally, eF∩G appears with the same sign
in ∂i(eF ) and ∂i(eG), we call F ∩G the similar common lower simplex of F and G.
Otherwise, F ∩G is referred to as the dissimilar common lower simplex of F and G.
The upper degree of F ∈ Fi(∆), denoted degU(σ), is the number of (i + 1)-faces of ∆
containing F . We will use the following description of Li(∆) from [Gol02, Theorem
3.3.4].

Theorem 1.2.2. Let ∆ be a simplicial complex on vertex set [n], ordered 1 < ⋯ < n,
and let i ∈ N with 0 ≤ i ≤ dim(∆). For F,G ∈ Fi(∆), let ℓF,G denote the entry of
Li(∆) in row and column corresponding to F and G. Then Li(∆) is symmetric.
Moreover:

(i) If i = 0, then ℓF,G = degU(F ) if F = G, ℓF,G = −1 if F ∪ G ∈ Fi+1(∆), and
ℓF,G = 0, otherwise.

(ii) If i > 0, then

ℓF,G =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

degU(F ) + i + 1, if F = G,
1, if F ≠ G, F ∪G ∉ Fi+1(∆), F ∩G ∈ Fi−1(∆) similar
−1, if F ≠ G, F ∪G ∉ Fi+1(∆), F ∩G ∈ Fi−1(∆) dissimilar
0, otherwise.
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Note that L0(∆) is the Laplacian matrix of the graph of ∆, i.e., Li(∆) is the
degree matrix minus the adjacency matrix of ∆. In this case, the upper degree of a
vertex in ∆ coincides with the usual definition of the degree of a vertex in a graph.

1.3 Lattice polytopes

1.3.1 Basic notion

A polytope P is the convex hull of finitely many points in Rd. Equivalently, P is
the bounded intersection of finitely many closed half-spaces in Rd. The dimension
of P is the dimension of its affine hull. If dimP = k, we call P a k-polytope and if
dimP = d, P is said to be full-dimensional. A linear inequality a⊺x ≤ b for a ∈ Rd

and b ∈ R is called a valid inequality for P if a⊺y ≤ b for all y ∈ P . A (proper) face of
P is a (non-empty) set of the form P ∩ {x ∈ Rd ∶ a⊺x = b} for some valid inequality
a⊺x ≤ b with a ≠ 0. Each face is itself a polytope and we call the faces of dimension
0, 1, dimP − 2 and dimP − 1 vertices, edges, ridges and facets, respectively. We use
V(P ) and F(P ) to denote the set of vertices and facets of P , respectively. A valid
inequality a⊺x ≤ b is facet-defining if F = P ∩ {x ∈ Rd ∶ a⊺x = b} for some F ∈ F(P ).
A description of P in terms of half-spaces is given, e.g., by taking the system of all
facet-defining inequalities. If V(P ) ⊆ Zd, P is called a lattice polytope. For a matrix
M , we define convM to be the polytope given by the convex hull of the columns of
M . Moreover, we set M(P ) to be the matrix whose columns are the vertices of P .
Then by [Grü03, p.4],

dimP = rank (M(P )1⋯1 ) − 1.

The facet-ridge graph G(P ) of P is the graph on vertex set F(P ) where {F,G} is
an edge if and only if F and G intersect in a ridge. For simplicity, we refer to the
adjacency matrix of G(P ) as the adjacency matrix of P . Two polytopes P , Q ⊆ Rd

are unimodularly equivalent, denoted as P ≅ Q, if there exist a unimodular matrix
U ∈ Zd×d and a vector b ∈ Zd such that U ⋅ P + b = Q. A simplex of dimension k,
k-simplex for short, is the convex hull of k + 1 many affinely independent points. We
denote by 1d and 0d the all-ones and all-zero vector of dimension d, respectively. If
the dimension is clear from context, we omit the subscript. We use ∆d to denote
the standard d-simplex, i.e., ∆d = conv{{0} ∪ {ei ∈ Rd ∶ i ∈ [d]}}, where ei is
the ith standard basis vector. A polytope P is simplicial if all of its facets are
simplices. A d-polytope P is simple if all of its vertices are adjacent to exactly d
edges. The normalized volume of a d-dimensional lattice polytope P ⊆ Rd is given
by nVol(P ) = d! ⋅ Vol(P ), where Vol(P ) denotes the usual Euclidean volume. A
lattice d-simplex ∆ with normalized volume 1 is called unimodular. In this case,
∆ ≅ ∆d. A lattice polytope P is reflexive if P = {x ∈ Rd ∶ Ax ≤ 1} for an integral
matrix A. In this case, 0 is the unique interior lattice point of P . There exist only
a finite number of equivalence classes of reflexiv polytopes in any given dimension
[LZ91]. Reflexive polytopes of dimension d were classified for d ≤ 4 by Kreuzer and
Skarke [KS98; KS00]. Additionally, the simplicial reflexive polytopes of dimension
d with 3d − 1 vertices are classified [AJP13; Øbr08]. For a positive integer n the
polytope nP = {nx ∈ Rd ∶ x ∈ P} is the nth dilation or the nth dilate of P . For two
polytopes P and P ′ of dimension d and d′, respectively, we denote the free sum, i.e.,
conv((P ×0d′)∪ (0d ×P ′)) by P ⊕P ′. We denote the boundary of the polytope P by
∂P .
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1.3.2 Ehrhart theory

One question concerning polytopes that frequently arises is the following: Given a
lattice polytope, how many lattice points does it contain? A basic motivating example
where this question naturally emerges can be found in [BR15, p.ix – p.x] and focuses
on the more general study of discrete and continuous volume of a given geometric
body P ∈ Rd. In fact, counting lattice points can be seen as a discrete analogue of
the continuous volume.

If P is a lattice d-polytope, Eugène Ehrhart [Ehr62] proved that the number of
lattice points in the nth dilation of P , i.e., ∣nP ∩Zd∣, is given by a polynomial EP (n)
of degree d in n for all integers n ≥ 0, the so called Ehrhart polynomial. The Ehrhart
series of P is the generating series

∑
n≥0

EP (n)tn =
h∗(P ; t)
(1 − t)d+1 =

h∗0(P ) + h∗1(P )t +⋯ + h∗s(P )ts
(1 − t)d+1 ,

where h∗(P ; t) ∈ Z[t] is a polynomial of degree at most d, called h∗-polynomial of P .
The vector h∗(P ) = (h∗0(P ), . . . , h∗s(P )) is called h∗-vector of P . We will often omit
P from the notation and just write h∗ = (h∗0 , . . . , h∗s) if P is clear from context. The
h∗-polynomial can be obtained by applying a particular change of basis to EP (n),
where (ab) =

a(a−1)⋯(a−b+1)
b! ; namely,

EP (n) = h∗0(P )(
n + d
d
) + h∗1(P )(

n + d − 1
d

) +⋯ + h∗d(P )(
n

d
). (1.4)

Some coefficients of EP (n) are known in general. For example, the constant term is
always 1 and the leading coefficient equals Vol(P ) [Bec+04; Sta74]. Moreover, the
second highest coefficient of EP (n) equals half the surface area of P [BR15, Theorem
5.6]. Another natural question to ask is whether the vectors appearing as coefficient
vectors of Ehrhart polynomials can be characterized. This was done for 2-polytopes in
[Bec+04, p.4–5] but remains wide open in higher dimensions. Concerning the entries
of the h∗-vector of a lattice polytope, Stanley provided his well-known and famous
non-negativity theorem.

Theorem 1.3.1. [Sta80, Theorem 2.1] For every lattice polytope P , the h∗-vector
of P has only non-negative entries.

Since all entries of h∗ are non-negative, it is natural to ask whether they might
count something. A few entries have known combinatorial interpretations. For ex-
ample, h∗0 = 1 and h∗1 = EP (1)−d−1, which directly follows from Equation (1.4) with
n = 0 and n = 1. Additionally, the Ehrhart-Mcdonald reciprocity [Mcd71, Theorem
4.6] (i.e., EP (−n) = (−1)dEP∖∂P (n)) implies that EP (−1) = h∗d(

−1
d
) = (−1)dh∗d and

thus h∗d = ∣(P ∖ ∂P ) ∩Zd∣. There are several known inequalities that are satisfied by
the entries of the h∗-vector [Hib90; Hib94; Hib95; Hib+19; Sta91; Sta09], but a gen-
eral combinatorial interpretation for every entry remains wide open. Other interesting
properties of the h∗-vector and the h∗-polynomial, which are heavily studied and an
active field of research, are unimodality, log-concavity and real-rootedness (see, e.g.,
[BJ21; Joc18; OT20]). We call a sequence a = (a0, . . . , an) unimodal if there exists
an index 0 ≤ i ≤ n such that a0 ≤ a1 ≤ ⋯ ≤ ai ≥ ⋯ ≥ an. A sequence is log-concave
if ak−1ak+1 ≤ a2

k for all 1 < k < n. A polynomial is real-rooted if it is constant or if
all of its roots are real. If a polynomial p(x) = anx

n + ⋯ + a1x + a0 is real-rooted
and has only non-negative coefficients, then a is log-concave. The log-concavity and
non-negativity together imply unimodality as shown in [Brä15, Lemma 1.1]. In the
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realm of symmetric sequences, unimodality of a follows if γ(a) is non-negative [Pet15,
Observation 4.1]. Moreover, if p(x) has a symmetric coefficient vector, then p(x) is
real-rooted if and only if γ(p;x) is real-rooted [Pet15, Observation 4.2]. Addition-
ally, if the coefficients of p(x) are also non-negative, then the coefficients of γ(p;x)
are non-negative [Pet15, Observation 4.2]. A connection between unimodality of the
h∗-vector of a reflexive polytope P and P having the integer decomposition property
(IDP for short) was long conjectured. A lattice polytope P ⊆ Rd has the IDP if,
for every integer k and for all α ∈ P ∩ Zd, there exist α1, . . . , αk ∈ kP ∩ Zd such that
α = α1 + ⋯ + αk. Note that it is well-known that if a lattice polytope P admits a
unimodular triangulation, then P has the IDP [Haa+14, Section 1.2.5]. Thus, until
October 2022, a result of Bruns and Römer from 2007 was the state of the art where
they proved that if P is reflexive and admits a regular unimodular triangulation, then
P has a unimodal h∗-vector [BR07, Theorem 1]. In a recent breakthrough, Adiprasito
et al. were able to confirm that every reflexive lattice polytope having the IDP has a
unimodal h∗-vector [Adi+22, Corollary 2.2].

By work of Hibi, if P is reflexive then h∗(P ; t) is symmetric, i.e., h∗(P,x) =
xdh∗ (P, 1

x
). Moreover, this property together with the existence of an interior lattice

point characterizes reflexive polytopes, as given in the following theorem.

Theorem 1.3.2. [Hib92] A lattice polytope P ⊆ Rd is reflexive (up to unimodular
equivalence) if and only if P is d-dimensional, P contains an interior lattice point,
and h∗(P ) satisfies h∗i (P ) = h∗d−i(P ).

1.3.3 Triangulations and Gröbner bases

Definition 1.3.3. A triangulation of a lattice d-polytope P is a finite collection T
of lattice d-simplices such that

(i) P = ⋃∆∈T ∆

(ii) For all ∆1,∆2 ∈ T the intersection ∆1 ∩∆2 is a face of both ∆1 and ∆2.

Note, triangulations can be defined more generally for arbitrary polytopes, but
since we only study lattice polytopes here, we restrict the definition to this case. The
set V(T ) = {v ∶ v ∈ V(∆) for ∆ ∈ T } is the set of vertices of T . For every polytope
there exists a triangulation without using new vertices, i.e., vertices which are not
vertices of P [BR15, Theorem 3.1].

Example 1.3.4. The illustration in Figure 1.3 on the left is a triangulation of the
hexagon without using new vertices. The one in the middle is a triangulation of the
hexagon using one new vertex. The rightmost illustration is not a triangulation since
Definition 1.3.3 (ii) is violated.

Figure 1.3: Two different triangulations of the hexagon (left and
middle), and a subdivision into simplices which is not a triangulation

(right).

Instead of focusing on triangulations of the whole polytope, it can be useful to
focus on triangulations of ∂P . A triangulation of the boundary is a collection of
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triangulations of each facet which are consistent in terms of Definition 1.3.3 (ii). We
note that every triangulation is, in particular, a simplicial complex. In fact, a trian-
gulation of the boundary of a polytope is a simplicial sphere. Thus, questions about
its γ-vector and corresponding conjectures can be investigated. Given a reflexive
polytope P , we can extend a triangulation ∆ of ∂P to a triangulation T of P by
coning over the unique interior lattice point. Then h(∆;x) = h(∆∗0;x) = h(T ;x). T
is called unimodular, if all simplices in T are. Unimodular triangulations are in fact
rare and do not always exist for d ≥ 3. A famous example of a polytope not having a
unimodular triangulation is Reeve’s tetrahedron [Ree57].

Example 1.3.5. Given a number q ∈ Z with q > 1, Reeve’s tetrahedron is defined as

Rq = conv ((0,0,0), (1,0,0), (0,1,0), (1,1, q)) ⊆ R3.

Since there are no lattice points in Rq other than its vertices, the unique triangulation
of Rq is the simplicial complex with Rq as its only facet. Since

nVol(Rq) = det
⎛
⎜
⎝

1 0 1
0 1 1
0 0 q

⎞
⎟
⎠
= q,

the volume of Rq can be arbitrarily large. Therefore, Rq is not a unimodular simplex.

In the event that P admits a unimodular triangulation T , the normalized volume
of P is given by the number of d simplices in T , i.e., nVol(P ) = ∣T ∣. More importantly,
in this case, the h∗-vector of P coincides with the h-vector of T .

Theorem 1.3.6. [Sta80, Corollary 2.5] If P is lattice polytope and T is any uni-
modular triangulation of P , then h∗(P ) = h(T ).

T is called regular if there exists a lifting function ω ∶ V(T ) → R such that T is
the projection of the lower envelope of conv ({(v,ω(v) ∶ v ∈ V(T )}) ⊆ Rd+1 to the
first d coordinates. To emphasize that ω is the lifting function of a certain polytope
P , we will also write ωP .

Example 1.3.7. A regular triangulation is shown in Figure 1.4 on the left. Here the
lifting function is given by ω(1) = 3, ω(2) = 1, ω(3) = 2 and ω(4) = ω(5) = ω(6) = 0.
The most common example of a non-regular triangulation is illustrated in Figure 1.4
on the right. A detailed discussion of the example can be found in [Stu96, Example
8.2]. To show it is indeed non-regular, assume ω(4) = ω(5) = ω(6) = 0. Then we
must have ω(3) > ω(2) to get the edge 26. Also, ω(1) > ω(3) to get the edge 34 and
ω(2) > ω(1) to get the edge 15. All in all, the contradiction ω(1) > ω(3) > ω(2) > ω(1)
follows.

1

2 3

4

6
5

1

2 3

4

6
5

Figure 1.4: A regular (left) and a non-regular (right) triangulation.
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If a lattice polytope P admits a regular unimodular triangulation, Athanasiadis
proved that the second half of its h∗-vector is decreasing.

Theorem 1.3.8. [Ath04, Theorem 1.3] Let P be a d-dimensional lattice polytope
with h∗-vector (h∗0 , h∗1 , ..., h∗d). If P has a regular unimodular triangulation, then
h∗i ≥ h∗d−i+1 for 1 ≤ i ≤ ⌊(d + 1)/2⌋,

h∗⌊(d+1)/2⌋ ≥ ⋯ ≥ h
∗
d−1 ≥ h∗d

and h∗i ≤ (
h∗1+i−1

i
) for 0 ≤ i ≤ d. In particular, if h∗(P ) is symmetric and P has a

regular unimodular triangulation, then h∗(P ) is unimodal.

From the previous theorem, we can directly deduce that a reflexive polytope
admitting a regular unimodular triangulation has a unimodal h∗-vector.

A famous and important tool to calculate triangulations are Gröbner bases. Let
K be a field and K[u±1 , . . . , u±d , t] denote a subring of the ring of Laurent polynomials
in d + 1 variables. Let P ⊆ Rd be a lattice polytope. For every lattice point α =
(α1, . . . , αd) ∈ P ∩ Zd, let uα be the Laurent monomial given by uα1

1 ⋯u
αd

d . The toric
ring of P is given as K[P ] = K[uαt ∶ α ∈ P ∩ Zd] ⊆ K[u±1 , . . . , u±d , t]. Moreover, let
S = K[xα ∶ α ∈ P ∩Zd] be a polynomial ring with ∣P ∩Zd∣ variables and deg(xα) = 1
for all α ∈ P ∩ Zd. Then the map π ∶ S → K[P ], xα ↦ uα ⋅ t, is a surjective ring
homomorphism and we call IP ∶= ker(π) the toric ideal of P . Note that K[P ] is
isomorphic to S/IP . A total order < on the monomials of a polynomial ring is called
a monomial order if for all monomials xα, xβ, xγ one has xα ⋅ xγ < xβ ⋅ xγ whenever
xα < xβ and 1 < xα for all non-constant monomials. Common monomial orders
are, for example, the degree lexicographic order (deglex for short) or the degree
reverse lexicographic order <degrevlex (degrevlex for short). Given the total order
x1 < x2 < x3 < . . . < xn and two monomials xα and xβ, then xα <degrevlex x

β if and
only if ∑n

i=1 αi < ∑n
i=1 βi or ∑n

i=1 αi = ∑n
i=1 βi and αℓ > βℓ for ℓ =min(j ∶ αj ≠ βj). If we

fix a monomial order <, then the initial term in<(f) of a polynomial f is the largest
monomial appearing in f . Given an ideal I ⊆ K[x1, . . . , xn], we denote by in<(I) the
ideal generated by all the initial terms of all polynomials in I and call it the initial ideal
of I. A system of generators {g1, . . . , gk} of I is called a Gröbner basis if the initial
terms of g1, . . . , gk already generate in<(I), i.e., if in<(I) = ⟨in<(g1), . . . , in<(gk)⟩. Let√
I = {f ∶ fm ∈ I for some m ∈ N>0} be the radical of I. We set

∆in<(IP ) = {A ⊆ P ∩Zd ∶ ∏
α∈A

xα ∉
√

in<(IP )} .

By definition, ∆in<(IP ) is the simplicial complex whose Stanley-Reisner ideal is√
in<(IP ). We call a monomial xα squarefree if every coordinate of α is 0 or 1. The

following famous result was shown on [Stu96, Theorem 8.3, Corollary 8.4, Corollary
8.9].

Theorem 1.3.9. Let P ⊆ Rd be a lattice polytope and < a monomial order on
K[xα ∶ α ∈ P ∩Zd]. Then

Tin<(IP )
= {conv(A) ∶ A ∈∆in<(IP )}

is a triangulation of P . Moreover, Tin<(IP )
is unimodular if and only if in<(IP ) is

squarefree.

Thus, a triangulation TP of P can be calculated by finding a Gröbner basis B of
IP . Then the minimal non-faces of TP are in 1-to-1-correspondence to the initial terms
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in B. Moreover, regular triangulations are in 1-to-1-correspondence to triangulations
coming from a Gröbner basis. Any monomial order ≺ can be represented by a vector
ω such that xα ≺ xβ if and only if ⟨α,ω⟩ < ⟨β,ω⟩. It can be shown that the ω
representing the monomial order in Theorem 1.3.9 is a lifting function of the regular
triangulation Tin<(IP )

. Thus, we could rephrase Theorem 1.3.9 as follows: P has
a regular (unimodular) triangulation if and only if IP has a (squarefree) Gröbner
basis, where a Gröbner basis {g1, . . . , gk} is said to be squarefree if all its initial terms
in<(g1), . . . , in<(gk) are squarefree.

Example 1.3.10. Let P = conv ((0,0), (1,0), (0,1), (1,1)). The toric ring is given
by K[P ] = K[t, u1t, u2t, u1u2t] and S = K[x(0,0), x(1,0), x(0,1), x(1,1)]. Then ker(π) =
⟨x(0,0)x(1,1) − x(1,0)x(0,1)⟩. If we choose the degrevlex monomial order with respect
to x(1,0) < x(0,1) < x(1,1) < x(0,0), then in<(IP ) = ⟨x(0,0)x(1,1)⟩ and the triangulation
of P is shown on the left-hand side of Figure 1.5. On the other hand, if we choose
the degrevlex order with respect to x(0,0) < x(1,1) < x(1,0) < x(0,1), then in<(IP ) =
⟨x(1,0)x(0,1)⟩ and the triangulation of P is shown on the right-hand side of Figure 1.5.
Since both triangulations come from a squarefree Gröbner basis, both triangulations
are unimodular.

(0, 1) (1, 1)

(1, 0)(0, 0)

(0, 1) (1, 1)

(0, 0) (1, 0)

Figure 1.5: Two regular unimodular triangulations of the unit square
associated to Gröbner bases.
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Chapter 2

Counting horizontal visibility
graphs

In many applications using horizontal visibility graphs, simple metrics such as the ver-
tex degree sequence, the graph entropy and moments have shown to be particularly
helpful indicators for the classification of the considered data sequences [ATMP21;
Ara+16; Bal+09; DDK13; Li+14; MPT15; RS18]. It is therefore natural to ask
whether such properties already determine an HVG. In the case of vertex degree se-
quences, this question is known to have partial answers. Luque and Lacasa [LL17]
provided an affirmative answer for the class of canonical HVGs by providing an ex-
plicit bijection to the set of possible ordered degree sequences. Here, an HVG is called
canonical if the underlying time series has pairwise distinct entries, and the first and
last value are the largest ones. Whereas the first condition is met by most (even dis-
crete) real-world time series with a sufficiently high resolution, the second condition
is a huge restriction as it is very unlikely to be satisfied in applications. Another
positive result in this direction was given by O’Pella [O’P19] showing that any HVG
(without additional requirements) can be recovered from its directed vertex degree
sequence through an explicit algorithm. It is essential that the degree sequence is
directed since for arbitrary degree sequences, it is easy to construct examples where
the statement does not hold (see Figure 2.4). However, in all those examples, it turns
out that the underlying data sequences have some equal entries. Indeed, we prove
the following statement:

Theorem 2.0.1. Let N ∈ N. If G and H are different HVGs on N vertices corre-
sponding to data sequences with pairwise distinct entries, then their ordered vertex
degree sequences ∆(G) and ∆(H) are different. In particular, HVGs from data se-
quences without equal entries are uniquely determined by their ordered vertex degree
sequence.

In the second part of this chapter, we take a similar viewpoint as in [GMS11] where
HVGs are studied from a purely combinatorial perspective and connections with sev-
eral combinatorial statistics are established. More precisely, we are interested in the
number of HVGs on a fixed number of vertices corresponding to data sequences with
and without equal entries, where we consider two HVGs equal if they are equal as la-
beled graphs. Miraculously, Catalan numbers and large Schröder numbers determine
those cardinalities. More precisely, we show the following:

Theorem 2.0.2. Let N ∈ N and let GN,≠ and GN be the set of HVGs on N vertices
corresponding to data sequences without and with equal entries, respectively. Then:

(i) ∣GN,≠∣ = C(N − 1), where C(N − 1) = 1
N
(2N−2

N−1 ) denotes the (N − 1)st Catalan
number.
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(ii) For N ≥ 2, one has ∣GN ∣ = rN−2, where rN denotes the N th large Schröder
number.

2.1 Horizontal visibility graphs from distinct data
In this section, we focus on HVGs in GN,≠, i.e., HVGs corresponding to data sequences
with pairwise distinct entries. We have seen in Remark 1.1.2 that such an HVG is the
HVG of some permutation of [N]. Our first goal is to construct such a permutation,
solely from knowledge of the graph, without knowing a realizing data sequence. In the
second part of this section, we prove Theorem 2.0.1, i.e., we show that HVGs in GN,≠

are uniquely determined by their ordered degree sequence. Our proof also yields an
algorithm for constructing such a data sequence. This extends corresponding results
for directed ordered degree sequences (see [O’P19, Proposition 5]) as well as for HVGs
in canonical form, i.e., HVGs such that the first and last entry of the corresponding
data sequence are the maximal ones [LL17, Theorem 1]. In the last two subsections,
we consider the enumerative question of how many HVGs in GN,≠ exist. In particular,
we provide two proofs of Theorem 2.0.2 (i), a purely algebraic one and a bijective
one.

2.1.1 From horizontal visibility graphs to data sequences

In the following, we let N ∈ N, G = ([N],E) ∈ GN,≠ and we are seeking D ∈ NN such
that HVG(D) = G. To this end, we first need some further notation. A vertex v ∈ [N]
is called m-nested if

δnest(v) ∶= ∣{ij ∶ i < v < j, ij ∈ E}∣ =m.

The value δnest(v) is also called the nesting degree of v and an edge ij ∈ E with
i < v < j is referred to as nesting edge of v.

Theorem 2.1.1. Let N ∈ N and G ∈ GN,≠. Let σ ∶ [N] → [N] be the unique permu-
tation of the vertices of G such that:

(i) δnest(σ−1(1)) ≥ δnest(σ−1(2)) ≥ ⋯ ≥ δnest(σ−1(N − 1)) ≥ δnest(σ−1(N)), and,

(ii) if δnest(σ−1(i)) = δnest(σ−1(j)), then i < j iff σ−1(i) > σ−1(j).

Let di = σ(i) and D = (d1, . . . , dN). Then D realizes G, i.e., HVG(D) = G. In
particular, d1 = N .

Intuitively, the permutation σ corresponds to the ordering σ−1(1), . . . , σ−1(N) of
the vertices of G, that first orders the vertices by decreasing nesting degree and then
from right to left among vertices with the same nesting degree. In particular, the
vertex 1 is always the vertex at the last position, i.e., d1 = σ(1) = N . In the following,
we refer to the sequence D in Theorem 2.1.1 as the standard sequence of a given HVG.

Proof. Let D̃ = (d̃1, . . . , d̃N) ∈ NN with HVG(D̃) = G and let H = HVG(D). We
need to show that H = G. For this aim let ij ∈ E(G) with 2 ≤ i + 1 < j ≤ N . Since
we must have d̃i > d̃k < d̃j for i < k < j, there is no edge in E(G) of the form uv
with u < i < v < j or i < u < j < v. In particular, if uv is a nesting edge of i, then
u < i < j ≤ v and thus uv is a nesting edge for any i < k < j. As ij is also a nesting
edge for any i < k < j, we conclude that δnest(k) > δnest(i), i.e., dk = σ(k) < σ(i) = di

for any i < k < j. The analogous reasoning shows dk < dj for i < k < j. This implies
ij ∈ E(H).



2.1. Horizontal visibility graphs from distinct data 23

Let now ij ∈ E(H) with 2 ≤ i + 1 < j ≤ N . In order to show that ij ∈ E(G), we
need to prove that d̃i > d̃k < d̃j for all i < k < j. Assume by the contrary that there
exists i < k < j with d̃k >min(d̃i, d̃j). We distinguish two cases.
Case 1: There exists i < k < j with d̃k > d̃j . Let k be the maximal vertex with this
property. We then have d̃ℓ < d̃j for all k < ℓ < j. If uv is a nesting edge of k (in G),
it follows that u < k < j < v and hence δnest(j) ≥ δnest(k) (in G). Using that k < j we
infer that dj = σ(j) < σ(k) = dk, which contradicts the assumption that ij ∈ E(H).
Thus, ij ∈ E(G).
Case 2: There exists i < k < j with d̃k > d̃i and d̃ℓ < d̃j for all i < ℓ < j. Let k be minimal
with this property. Similar arguments as in Case 1 show that δnest(k) ≥ δnest(j). If
δnest(k) = δnest(j), we conclude that dk = σ(k) > σ(j) = dj (as k < j) which is a
contradiction to ij ∈ E(H). If δnest(k) > δnest(j), there has to exist an edge uv ∈ E(G)
with u < k < v < j. Since d̃k > d̃i and d̃ℓ < d̃i for all i < ℓ < k, we must have u < i.
It follows from the first part of this proof that we also have uv ∈ E(H). But then
the edges uv and ij are crossing in H, contradicting the fact that H is an HVG (see
Lemma 1.1.3 (i)). Hence, ij ∈ E(G).

Since i(i + 1) for 1 ≤ i ≤ N − 1 lies in any HVG, we conclude G =H.

Next, we provide an example for the standard sequence.

Example 2.1.2. The sequences (4,3,1,2,7,5,6) and (7,4,1,2,6,3,5) both realize the
HVG shown in Figure 2.1. The second sequence meets the condition in Lemma 1.1.3
(v) and is constructed using Theorem 2.1.1.

Figure 2.1: The HVG of the sequences (4,3,1,2,7,5,6) and
(7,4,1,2,6,3,5).

2.1.2 Horizontal visibility graphs and degree sequences

We start with some simple lemmas that will be crucial to prove that an HVG in GN,≠

is uniquely determined by its ordered degree sequence.

Lemma 2.1.3. Let N ∈ N, N ≥ 3 and G ∈ GN,≠∖{PN}. Then there exists 2 ≤ i ≤ N −1
such that δi = 2 and (i − 1)(i + 1) ∈ E(G).

Proof. Let D ∈ [N]N be the standard sequence of G (see Theorem 2.1.1). We then
have d1 = N and dN = N − ∣N(G)∣ + 1. Since G ≠ PN , we have ∣N (G)∣ < N and
hence dN ≠ 1. In particular, there exists 1 < i < N with di = 1. As D is the standard
sequence, we have dj > 1 for all j ≠ i which implies that δi = 2 and (i − 1)(i + 1) ∈
E(G).

The drawback of the previous lemma is that we cannot yet tell from a given
degree sequence which inner 2s fulfill the assumption of the corresponding neighboring
vertices being adjacent. The next lemma solves this difficulty.

Lemma 2.1.4. Let N ∈ N, N ≥ 3, G ∈ GN,≠ ∖ {PN} and ∆ = (δ1, . . . , δN) be the
ordered degree sequence of G. Then:

(i) If δ2 = 2 and δ1 ≠ 1, then 13 ∈ E(G).
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(ii) If δ2 ≠ 2 or δ1 = 1 and 3 ≤ i ≤ N − 1 is minimal with δi = 2 and δi−1 ≥ 3, then
(i − 1)(i + 1) ∈ E(G).

Proof. We first note for N = 3, (2,2,2) is the only degree sequence meeting the
conditions in (i). Since the corresponding HVG is ([3],{12,13,23}), the claim follows
in this case.

Let N ≥ 4 and let D = (d1, . . . , dN) ∈ NN be the standard sequence of G. First
assume that we are in situation (i). As D is the standard sequence of G, we have
d1 = N > d2. If, by contradiction, 13 ∉ E(G), it follows that d1 > d2 > d3. Let
3 <m ≤ N be minimal with dm > d2. Note that such m exists since δ1 ≥ 2 implies the
existence of 3 < ℓ ≤ N with 1ℓ ∈ E(G) and hence dℓ > d2. It follows that 2m ∈ E(G),
a contradiction to δ2 = 2.

Now, assume the assumptions of (ii) are satisfied. We first show, there exists
i + 1 ≤ ℓ ≤ N with (i − 1)ℓ ∈ E(G). This is clear if i = 3 since δ2 ≥ 3. So let i > 3. If
there is no such edge, there has to exist an edge j(i−1) with 1 ≤ j ≤ i−3. Lemma 1.1.3
(iii) implies that G[j,i−1] ∈ Gi−j,≠ ∖{Pi−j}. As i− j ≥ 3, we conclude with Lemma 2.1.3
that there exists an inner vertex k of G[i−j] of degree 2. In the following, we choose
k minimal. Lemma 1.1.3 (i) together with the fact that j(i − 1) ∈ E(G) implies that
δk = 2 also in G. By assumption, we further have k ≠ 2 and the minimality of k implies
δk−1 ≥ 3. Since i was the minimal vertex of degree 2 in G, we have hence reached a
contradiction. Hence there exists i + 1 ≤ ℓ ≤ N with (i − 1)ℓ ∈ E(G). If i = N − 1, we
must have ℓ = i+1 and the claim follows. If i ≠ N −1, we must have that di−1 > di. If,
by contradiction, (i − 1)(i + 1) ∉ E(G), we conclude that di−1 > di > di+1. The claim
now follows by the same argument as in (i).

We want to point out that Lemma 2.1.3 guarantees that the degree sequence of
any HVG in GN,≠ either satisfies property (i) or (ii) of the previous lemma or is the
one of the trivial HVG. As a consequence, it follows that for any G ∈ GN,≠∖{PN} there
exists 2 ≤ i ≤ N with δi = 2 and (i−1)(i+1) ∈ E(G). Moreover, the following example
shows it is important to choose i minimally in (ii) since otherwise the statement is
not necessarily true.

Example 2.1.5. The HVG G = HVG(D) with D = (1,8,4,7,6,5,2,3) (see Fig-
ure 2.2) has the ordered degree sequence ∆ = (1,3,2,3,2,3,2,2). Vertex 5 fulfills the
assumptions of (ii) except for being minimal and 46 ∉ E(G). However, the minimal
inner 2 is at position 3 and 24 ∈ E(G).

Figure 2.2: The graph HVG((1,8,4,7,6,5,2,3)).

The next lemma shows the behavior of the set of degree sequences of HVGs in
GN,≠ with respect to the removal of certain inner 2s.

Lemma 2.1.6. Let N ∈ N, N ≥ 3, G ∈ GN,≠ ∖ {PN} and D ∈ NN with HVG(D) = G.
Let 2 ≤ i ≤ N − 1 with δi = 2 and (i − 1)(i + 1) ∈ E(G) and let D[i] ∈ NN−1 denote the
sequence obtained from D by removing the ith entry. Then HVG(D[i]) = G∖{i} (after
relabelling the vertices i+1, . . . ,N of G by i, . . . ,N−1). In particular, G∖{i} ∈ GN−1,≠.

Proof. As G ∈ GN,≠, we may assume that all entries of D are distinct. Since (i −
1)(i + 1) ∈ E(G), we must have di−1 > di < di+1. Let D[i] ∈ NN−1 be the sequence
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obtained from D by removing di and let H = HVG(D[i]). We claim that H equals
G ∖ {i} (up to relabelling the vertices of G ∖ {i} with 1, . . . ,N − 1). Clearly, H[i−1] =
(G ∖ {i})[i−1] and H[i,N−1] = (G ∖ {i})[i+1,N]. Moreover, as (i − 1)(i + 1) ∈ E(G), we
also have H[i−1,i] = (G ∖ {i}){i−1,i+1}. Now assume that 1 ≤ j ≤ i − 1 < ℓ ≤ N − 1 with
{j, ℓ} ≠ {i − 1, i + 1}. Then jℓ ∈ E(G ∖ {i}) if and only if dj > dk < dℓ for all j < k < ℓ.
As di−1 > di < di+1, this is equivalent to dj > dk < dℓ for all j < k < ℓ with k ≠ i, i.e.,
j (ℓ − 1) ∈ E(H). This completes the proof.

We now prove the main result of this subsection, showing that HVGs in GN,≠ are
uniquely determined by their ordered degree sequence.

Proof of Theorem 2.0.1 We show the claim by induction on N . If N ∈ {1,2}, then
GN,≠ = {PN} and the statement is trivially true. Let N ≥ 3, ∆ = (δ1, . . . , δN) ∈
NN . If ∆ = (1,2, . . . ,2,1), we clearly have ∆(PN) = ∆ and as PN ⊊ G for any
G ∈ GN,≠, the claim follows in this case. Let ∆ ≠ (1,2, . . . ,2,1). Assume there exists
G,H ∈ GN,≠ with ∆(G) = δ = ∆(H). Let 2 ≤ i ≤ N − 1 be minimal such that δi = 2
and (i − 1)(i + 1) ∈ E(G) ∩ E(H). Note that such i exists due to Lemma 2.1.4.
Lemma 2.1.6 implies that G ∖ {i},H ∖ {i} ∈ GN,≠ and, as those graphs have the same
degree sequence δ̃ = (δ1, . . . , δi−2, δi−1−1, δi+1−1, δi+2, . . . , δN), the induction hypothesis
yields G ∖ {i} =H ∖ {i}. As i − 1 and i + 1 are the only neighbors of i in both G and
H, we conclude that G =H.

Remark 2.1.7. The proof of Theorem 2.0.1 can easily be turned into an algorithm
to construct the unique HVG G ∈ GN,≠ with a given ordered degree sequence ∆.
More precisely, one successively removes the minimal inner 2 satisfying (i) or (ii)
of Lemma 2.1.4 from ∆ and decreases the two neighboring entries by 1. We note that
for each removal the length of the sequence decreases by 1. If the ith entry is removed,
one protocols the two edges corresponding to the removal (see Lemma 2.1.6). In this
way, one finally reaches a sequence of the form (1,2, . . . ,2,1), where also no inner 2 is
possible. If the 2s have been obtained from the original entries at positions j1, . . . , jk,
one needs to add the edges 1j1, j1j2, . . . , jk−1jk, jkN to the list of edges. We illustrate
this procedure in an example.

Example 2.1.8. We consider the ordered degree sequence ∆ = (2,3,2,5,2,2) and
construct the corresponding HVG G as follows. We use Ei and ∆i to denote the edge
set and the changed degree sequence after the removal of i inner 2s.

• We first remove the 2 at position 3, which yields ∆1 = (2,2,4,2,2) and E1 =
{23,34}.

• We remove the 2 at position 2 and get ∆2 = (1,3,2,2) and the new edges 12 and
24 since what is now vertex 3 was the original vertex 4.

• We remove the 2 at position 3 (which was the original position 5 which yields
∆3 = (1,2,1) and E3 = {23,34,12,24,45,56}.

• In the last step, we add the edges 14 and 46 since the inner 2 in ∆3 was obtained
from the original vertex 4.

The obtained graph is shown in Figure 2.3.

Having Theorem 2.0.1 in mind it is natural to ask if this result can be generalized
to arbitrary HVGs without restricting to data sequences with pairwise distinct entries.
It can be verified computationally that this is possible for N ≤ 6, i.e., any HVG in
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Figure 2.3: The unique HVG with ordered degree sequence
(2,3,2,5,2,2).

GN is uniquely determined by its ordered degree sequence. However, already for
N = 7 this breaks down, since there exist 394 HVGs compared to 391 ordered degree
sequences. An instance of two HVGs with the same ordered degree sequence is shown
in Figure 2.4.

(a) HVG((3, 2, 2, 1, 2, 2, 3)) (b) HVG((2, 1, 2, 2, 2, 1, 2))

Figure 2.4: Two HVGs with the same ordered degree sequence
(2,2,3,2,3,2,2).

We also want to point out that Theorem 2.0.1 cannot be generalized to unordered
degree sequences since it is easy to construct examples of different HVGs with the
same unordered degree sequence. For instance, the sequences (4,1,2,3) and (4,2,1,3)
yield different HVGs having the same (unordered) degree sequence (2,2,3,3) (see also
[GMS11]).

2.1.3 Counting horizontal visibility graphs in GN,≠

The aim of this subsection is to prove Theorem 2.0.2 (i). Namely, to show that HVGs
in GN,≠ are counted by the (N − 1)st Catalan number C(N − 1) (see [Sta15] for the
numerous interpretations of these). We first introduce some notation. For N,s ∈ N
with 2 ≤ s ≤ N , let

Gs
N,≠ = {G ∈ GN,≠ ∶ mG(1) = s} .

Obviously, we have ∣GN,≠∣ = ∑N
s=2 ∣Gs

N,≠∣. We start by providing a relation between
∣Gs

N,≠∣, ∣Gs
s,≠∣ and ∣GN−s+1,≠∣.

Lemma 2.1.9. Let N,s ∈ N with 2 ≤ s ≤ N . Then

∣Gs
N,≠∣ = ∣Gs

s,≠∣ ⋅ ∣GN−s+1,≠∣

Proof. LetG ∈ Gs
N,≠. It follows from Lemma 1.1.3 (iii) and the fact that 1s ∈ E(G) that

G[s] ∈ Gs
s,≠ and G[s,N] ∈ GN−s+1,≠. Since Lemma 1.1.3 (i), combined with 1s ∈ E(G),

implies that G does not have edges between vertices in [s−1] and vertices in [s+1,N],
it holds that G = G[s] +G[s,N], i.e., G is uniquely determined by G[s] and G[s,N] and
hence, ∣Gs

N,≠∣ ≤ ∣Gs
s,≠∣ ⋅ ∣GN−s+1,≠∣.

Conversely, let G ∈ Gs
s,≠, H ∈ GN−s+1,≠. Lemma 1.1.5 (iii), together with 1s ∈ E(G)

implies that G +H ∈ Gs
N,≠. Since G = (G +H)[s] and H = (G +H)[s,N], G and H

are uniquely determined by G +H and it follows that ∣Gs
N,≠∣ ≥ ∣Gs

s,≠∣ ⋅ ∣GN−s+1,≠∣. This
finishes the proof.

The next lemma will be crucial to count the graphs in Gs
s,≠.

Lemma 2.1.10. Let G ∈ Gs
s,≠. Then N(s) = N(G[s−1]).
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Proof. Let D ∈ Ns with HVG(D) = G and pairwise distinct entries. We first show that
N(s) ⊆ N(G[s−1]). To this end, let ℓ ∈ N(s), i.e., ℓs ∈ E(G). Since in this case we
must have dℓ > di < ds for all ℓ < i < s, there is no uv ∈ E(G) with 1 ≤ u < ℓ < v ≤ s− 1.
Hence, ℓ ∈ N(G[s−1]). For the reverse containment, consider ℓ ∈ N(G[s−1]). The
statement is trivially true for ℓ = 1 and ℓ = s− 1. For ℓ ∈ N(G[s−1])∖{1, s− 1} assume
by contradiction that ℓs ∉ E(G). Then there exists ℓ < j < s with dj > dℓ or dj > ds.
As 1s ∈ E(G), the latter case never occurs and therefore we must have dj > dℓ. In
the following, we assume that j is minimal with this property. Similarly, let 1 ≤ k < ℓ
maximal such that dk > dℓ. Note that such k exists since d1 > dℓ. It then follows that
kj ∈ E(G) and hence kj ∈ E(G[s−1]) which implies ℓ ∉ N(G[s−1]), a contradiction.

We want to remark, the same proof as above shows that Lemma 2.1.10 holds
more generally for G ∈ Gs

N,≠. However, we do not need the statement in such gener-
ality. On the other hand, Lemma 2.1.10 does not generalize to arbitrary HVGs (see
Example 1.1.4 for an example).

The next lemma is the last ingredient we need for the proof of Theorem 2.0.2 (i).

Lemma 2.1.11. Let N ∈ N, N ≥ 2. Then

∣GN
N,≠∣ = ∣GN−1,≠∣.

Proof. We show the claim by proving that

Φ ∶ GN
N,≠ → GN−1,≠ ∶ G↦ G[N−1]

is a bijection. By Lemma 1.1.3 (iii) the map Φ is well-defined and it directly follows
from Lemma 2.1.10 that Φ is injective. To show surjectivity, let H ∈ GN−1,≠ and let
D = (d1, . . . , dN−1) ∈ NN−1 be the standard sequence of H. Since all entries of D are
distinct, at most N − 1 and d1 = N − 1 it follows that G = HVG((d1, . . . , dN−1,N)) ∈
GN

N,≠. Since clearly Φ(G) =H, we conclude that Φ is surjective.

Finally, we can provide the proof of Theorem 2.0.2 (i).
Proof of Theorem 2.0.2 (i) We show the claim via induction. For N ∈ {1,2} there
exists exactly one graph in GN,≠ and since C(0) = C(1) = 1, the claim is trivially true
in this case. Let N ≥ 2. We then have

∣GN,≠∣ =
N

∑
s=2
∣Gs

N,≠∣ =
N

∑
s=2
∣Gs

s,≠∣ ⋅ ∣GN−s+1,≠∣

=
N

∑
s=2
∣Gs−1,≠∣ ⋅ ∣GN−s+1,≠∣

=
N

∑
s=2

C(s − 2) ⋅C(N − s) =
N−2
∑
s=0

C(s) ⋅C(N − 2 − s) = C(N − 1),

where the second, third, fourth and sixth equality follow from Lemma 2.1.9,
Lemma 2.1.11, the induction hypothesis and Segner’s recurrence formula for the Cata-
lan numbers [Seg58], respectively.

We end this subsection with an identity for the Catalan numbers, which we stum-
bled over in our study of HVGs but which we were unable to find in the literature.
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Proposition 2.1.12. Let N ∈ N. Then

C(N) = 1 +
N+1
∑
k=3

3
2k − 3

(2k − 3
k
).

Proof. We prove the statement via induction. Since C(0) = C(1) = 1, the statement
is trivially true for N ∈ {0,1}. Now let N ≥ 2. In this case, we have

1 +
N+1
∑
k=3

3
2k − 3

(2k − 3
k
) = 1 +

N

∑
k=3

3
2k − 3

(2k − 3
k
) + 3

2N − 1
(2N − 1
N + 1

)

= C(N − 1) + 3
2N − 1

(2N − 1
N + 1

)

= (2N − 2)!
N(N − 1)!(N − 1)! +

3(2N − 2)!
(N + 1)!(N − 2)!

= 1
N + 1

(2N
N
) = C(N)

where the second equality follows from the induction hypothesis, the fourth from
an easy computation and the last by definition of the Catalan numbers (see, e.g.,
[Sta15]).

2.1.4 Horizontal visibility graphs and parentheses

Since we have seen in Theorem 2.0.2 (i) that HVGs in GN,≠ are counted by the Catalan
number C(N − 1), it is natural to ask for a bijective proof of this statement. This is
the goal of this subsection. More precisely, we provide an explicit bijection between
GN,≠ and the set BN−1 of balanced parantheses of length N , which are known to be
counted by C(N −1) [Kos09, p.134 f.]. We use the definition for balanced parentheses
from [LLM10, p. 155].

Definition 2.1.13. Let ϵ be the empty string. The set B of balanced parentheses is
recursively defined via

(i) ϵ ∈ B.

(ii) If B1,B2 ∈ B, then [B1]B2 ∈ B.

The set of balanced parentheses with N pairs of parentheses is denoted by BN .

It is easily seen from the definition that any balanced parentheses B ∈ BN can
be uniquely written in the form B = [B1] . . . [Bk] with Bj ∈ Bij for ij ∈ N and
∑k

j=1 ij = N − k. We will refer to this representation as normal representation of B
with blocks B1, . . . ,Bk and to i1, . . . , ik as the lengths of the blocks.

We now state the main result of this section.

Theorem 2.1.14. Let N ∈ N, N ≥ 1. Let ψN ∶ GN,≠ → BN−1 be recursively defined by
ψ1(P1) = ϵ and

ψN(G) = [ψi2−i1(G[i1+1,i2])][ψi3−i2(G[i2+1,i3])]⋯[ψik−ik−1(G[ik−1+1,ik]
)]

if N > 1 and G ∈ GN,≠ with N(G) = {i1 < ⋯ < ik}. Then ψN is a bijection.

Proof. Since ∑k
j=2(ij − ij−1) = ik − i1 = N − 1, it is easily seen by induction on N that

the map ψN is well-defined. Moreover, ψN(G) is given in normal representation.
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As it follows from Theorem 2.0.2 (i) and [Kos09, p.134 f.] that ∣GN,≠∣ = ∣BN−1∣ =
CN−1, it suffices to show that ψN is injective for everyN ≥ 1. ForN = 1, this is trivially
true since G1,≠ = {P1}. Let N ≥ 2 and let G,H ∈ GN such that G ≠ H. If N(G) ≠
N(H), then ψN(G) and ψN(H) must have blocks of different lengths, which already
implies ψN(G) ≠ ψN(H). Assume that N(G) = N(H) = {i1 < ⋯ < ik}. As G ≠ H,
there exists 2 ≤ j ≤ k with G[ij−1+1,ij]

≠ H[ij−1,ij]
. The induction hypothesis implies

that ψij−ij−1(G[ij−1+1,ij]
) ≠ ψij−ij−1(H[ij−1+1,ij]

) and hence ψN(G) ≠ ψN(H).

The next example illustrates the bijection ψN .

Example 2.1.15. For the graph G in Figure 2.5, we get

ψ10(G) = [[[ ] [ ] [ ]] [ ]] [[ ] [ ]] ∈ B9.

Figure 2.5: The graph G = HVG((10,6,2,4,5,8,9,1,3,7)).

The process of how ψ works is visualized in Figure 2.6.

Figure 2.6: Applying ψ10 to G.

Remark 2.1.16. It is easily seen that the inverse map ψ−1
N ∶ BN−1 → GN,≠ of ψN is

given by ψ−1
1 (ϵ) = P1 and

ψ−1
N (B) = ψ−1

i1
(B1) +⋯ + ψ−1

ik
(Bk),

if N > 1 and B = [B1]⋯[Bk] ∈ BN−1 with Bj ∈ Bij−1 and ∑k
j=1 ij = N − 1. Here, for an

HVG G, we denote by G the HVG

(({1,2},{12}) +G) ∪ {1(i + 1) ∶ i ∈ N(G)},

i.e., G is obtained from G by adding a “new” vertex 1 that is connected to all non-
nested vertices of G.

2.2 Horizontal visibility graphs from arbitrary data
While in the previous section we were focusing on HVGs corresponding to data se-
quences without equal entries, we will now omit this restriction and allow arbitrary



30 Chapter 2. Counting horizontal visibility graphs

data sequences. As before, it follows from Remark 1.1.2 that we only need to consider
integral data sequences.

Our first goal is to describe an explicit method to construct a data sequence D
that realizes a given G ∈ GN as its HVG. This is very similar to Theorem 2.1.1. In
the second part of this section, we turn to a more combinatorial problem: Namely,
counting HVGs in GN . In particular, we prove Theorem 2.0.2 (ii).

2.2.1 From horizontal visibility graphs to data sequences

In the following, we are asking the analogous question to the one posed in Subsec-
tion 2.1.1. Namely, given N ∈ N, G = ([N],E) ∈ GN , we are searching a data sequence
D ∈ NN realizing G. An answer is provided by the next theorem, which uses the same
notations as in Subsection 2.1.1.

Theorem 2.2.1. Let N ∈ N and G ∈ GN . For 1 ≤ i ≤ N , let

di = N − δnest(i).

Then D = (d1, . . . , dN) realizes G, i.e., HVG(D) = G.

Proof. Let D̃ = (d̃1, . . . , d̃N) ∈ NN with HVG(D̃) = G and let H = HVG(D). Verbatim
the same arguments as in the proof of Theorem 2.1.1 show that E(G) ⊆ E(H).

For the reverse containment, let ij ∈ E(H) with i + 1 < j and assume that there
exists i < k < j with d̃k ≥min(d̃i, d̃j). Since, in contrast to the proof of Theorem 2.1.1,
everything is symmetric with respect to i and j, one can assume that min(d̃i, d̃j) = d̃i.
As in Case 1 of the proof of Theorem 2.1.1, it follows that δnest(i) ≥ δnest(k) which
directly implies di ≤ dk, yielding a contradiction. Since i(i+ 1) for 1 ≤ i ≤ N − 1 lies in
any HVG, we conclude G =H.

The graph in Figure 1.2 can be represented with Theorem 2.2.1 via D = (4,3,3,4).

2.2.2 Counting horizontal visibility graphs – Schröder numbers

The aim of this section is to prove Theorem 2.0.2 (ii). Namely, to show that the
number of HVGs of length N is given by the (N − 2)nd large Schröder number rN−2.
Those are known to count several combinatorial objects including certain types of
lattice paths (see [SS00]). We start by providing relevant definitions.

Definition 2.2.2. A bracketing B of a string of identical letters x is

• either a single letter x, or

• B = (B1, . . . ,Bk), where k ≥ 2, and B1, . . . ,Bk are bracketings and brackets
around a single letter as well as the outer surrounding brackets are omitted.

The bracketing x⋯x without any brackets will be referred to as a trivial bracketing.
The length ℓ(B) of a bracketing B is defined to be the number of enclosed letters,
and we use B̃N to denote the set of bracketings of length N .

It is easy to see from the definition that every bracketing B ∈ B̃N has a unique
representation of the form B = B1⋯Bk, where for 1 ≤ i ≤ k, Bi is either a trivial
bracketing, or, Bi = (B̃i) for a bracketing B̃i and no two trivial bracketings are
adjacent. The last condition means that adjacent trivial bracketings are grouped
together into a trivial bracketing of maximal length. We call this representation the
normal form of a bracketing. sN = ∣B̃N+1∣ is called the N th little Schröder number
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[Sch70]. It is well-known that rN = 2sN . Similar to Subsection 2.1.3, we write Gs
N for

the set of HVGs G in GN with mG(1) = s. The next lemma allows us to reduce the
proof of Theorem 2.0.2 (ii) to counting HVGs without 1N .

Lemma 2.2.3. For N ≥ 3, we have

∣GN
N ∣ = ∣GN ∖ GN

N ∣, i.e., ∣GN ∣ = 2∣GN
N ∣.

Proof. It is easy to see that the map

φ ∶ GN
N → GN ∖ GN

N ∶ G↦ G ∖ {1N}

is a bijection. Indeed, it follows from Lemma 1.1.5 (i) and (ii) that φ is well-defined
and surjective, respectively. Since the injectivity is obvious, the claim follows.

As rN = 2sN , the next statement completes the proof of Theorem 2.0.2 (ii).

Theorem 2.2.4. Let N ∈ N, N ≥ 2. Then

∣GN
N ∣ = sN−2.

Proof. We clearly have ∣G2
2 ∣ = 1 = s0 and hence the claim holds in this case.

For ease of notation, we set G∗N = GN ∖ GN
N . To show the claim, we provide a

bijection between B̃N and G∗N+1 for N ≥ 2. We consider the map ξN ∶ B̃N → G∗N+1
which is defined by ξ2(xx) = P3, ξN(x⋯x) = PN+1 for any N ≥ 2. If N ≥ 3 and
B = B1⋯Bk ∈ B̃N is in normal form with non-trivial blocks Bi1 , . . . ,Bir , where i1 <
i2 < ⋯ < ir, we recursively define

ξN(B) = ξℓ(B1)(B̃1) +⋯ + ξℓ(Bk)
(B̃k) ∪ {(

im−1
∑
j=1

ℓ(Bj) + 1)(
im

∑
j=1

ℓ(Bj) + 1) ∶ 1 ≤m ≤ r},

where Bj = B̃j ∈ Bℓ(Bj)
if Bj is trivial and Bj = (B̃j), otherwise. We also set

ξ1(x) = P2. As ∑k
i=1(ℓ(Bi) + 1) − (k − 1) = ∑k

i=1 ℓ(Bi) + 1 = N + 1 and B̃j ∈ B̃ℓ(Bj)
, it

follows by induction on N and Lemma 1.1.5 (iii) that ξN is well-defined. The map
ξN is obviously injective for N = 2, and for N ≥ 3, using induction, we get injectivity
directly from the definition of ξN . It remains to show that ξN is surjective. For
N = 2, this is clear. Assume N ≥ 3 and let G ∈ G∗N+1∖{PN+1}. Since 1(N +1) ∉ E(G),
there exists a non-nested vertex s of G with 1 < s < N + 1. Choosing s maximal, it
follows that s(N +1) ∈ E(G). By Lemma 1.1.3 (iii) and Lemma 1.1.5 (i) it holds that
G[s,N+1] ∖ {s(N + 1)} ∈ G∗N+2−s. We now distinguish two cases. If 1s ∉ E(G), then
again by Lemma 1.1.3 (iii), we have G[1,s] ∈ G∗s . By induction, there exist B1 ∈ B̃s−1
and B2 ∈ B̃N−s+1 such that ξs−1(B1) = G[1,s] and ξN−s+1(B2) = G[s,N+1] ∖ {s(N + 1)}.
As B1(B2) ∈ B̃N , we further conclude that

ξN(B1(B2)) = ξs−1(B1) + ξN−s+1(B2) ∪ {s(N + 1)}
= G[1,s] +G[s,N+1] ∖ {s(N + 1)} ∪ {s(N + 1)} = G.

If 1s ∈ E(G), then G[1,s]∖{1s} ∈ G∗s and there exists B1 ∈ B̃s−1 with ξs−1(B1) = G[1,s]∖
{1s}. A similar computation as in the previous case shows that ξN((B1)(B2)) = G.
Hence, the map ξN is surjective. Lemma 2.2.3 finishes the proof.

We provide an example to illustrate the bijection ξN .
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Example 2.2.5. Applying ξ8 to

B = (xx)((xxx)x(xx))

results in

ξ8(B) = ξ2(xx) + ξ6((xxx)x(xx)) ∪ {13,39}
= ξ2(xx) + (ξ3(xxx) + ξ1(x) + ξ2(xx) ∪ {14,57}) ∪ {13,39}
= ξ2(xx) + ξ3(xxx) + ξ1(x) + ξ2(xx) ∪ {36,79} ∪ {13,39},

and the graph obtained is shown in Figure 2.7.

Figure 2.7: The graph ξ8(B).

The little Schröder number sN−2 is known to count a variety of combinatorial
objects, including dissections of a convex polygon ΠN on N vertices, labeled 1, . . . ,N .
Here, a dissection of ΠN is defined as a subdivision of ΠN into polygonal regions via
non-crossing diagonals between vertices of ΠN (see [FN99, Section 3]). In other words,
a dissection is a non-crossing graph containing the cycle 1, . . . ,N,1. In particular, any
HVG in GN with 1N ∈ E(G) can naturally be viewed as a dissection. Theorem 2.2.4
even implies that every dissection can be obtained this way.

Corollary 2.2.6. For N ≥ 3, the sets GN
N and ΠN are in natural bijective correspon-

dence, where the map is given by the identity.

2.3 Open problems
The main goals of this chapter lay on the reconstruction of HVGs in GN from a given
ordered degree sequence and in counting HVGs in GN and GN,≠ which led us to objects
that are counted by the large Schröder and Catalan numbers, respectively. From our
results several open questions arose that we now briefly discuss.

As an extension of HVGs, it is natural to consider the more general class of
visibility graphs (VGs for short) [Bal+08], defined as follows. Given a data sequence
(t1, d1), . . . , (tN , dN), where the ti are time points, the visibility graph of this sequence
is the graph on vertex set [N], where ij is an edge if and only if dk < dj +(di−dj) tj−tk

tj−ti

for all tk with ti < tk < tj . It is immediately seen that this graph always contains the
HVG of the data sequence (d1, . . . , dN) as a subgraph. In line with Theorem 2.0.2,
it is natural to ask for the cardinality of VGs on a fixed number of vertices. To this
end, in a first step, we successively constructed VGs from random data-sequences of
length up to 7 until no new VGs were found. Though there is no guarantee to have
exhausted the whole set of VGs on up to 7 nodes in this way, we suspect that the
number of those VGs are the ones displayed in the next table:
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N number of VGs on N nodes
1 1
2 1
3 2
4 6
5 25
6 138
7 972
8 8477

.

This sequence seems to be sequence A007815 in OEIS [The], which counts so-called
persistent graphs on N nodes. On the one hand, every VG is a persistent graph.
On the other hand, there exist persistent graphs which are not VGs [Ame+20]. In
particular, sequence A007815 is just an upper bound for the cardinality in question.
So, we do not even have a conjectured answer to the following question.

Question 2.3.1. What is the number of VGs on N nodes?

Since the set of HVGs on N nodes is contained in the set of VGs on N nodes, one
possible way to answer Question 2.3.1 is by means of the following question:

Question 2.3.2. Can one characterize (graph-theoretically) the VGs that are not
HVGs?

Moreover, one could asked under what constrains on a given data-sequence the
associated VG is actually an HVG. More precisely, it would be interesting to consider
the following problem:

Question 2.3.3. Can one characterize data sequences such that the corresponding
VG is an HVG? If so, is it possible to construct a data sequence having the considered
VG as its HVG? Does the same data sequence work?

Motivated by what is happening for HVGs, our last question arises.

Question 2.3.4. Is there a difference between VG associated to sequences with pair-
wise distinct entries (when restricting to the second coordinate) in contrast to VGs
associated to arbitrary sequences where equal entries in the second coordinate are
allowed?
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Chapter 3

A scalable linear time algorithm
for horizontal visibility graphs

An HVG is formed from a time series by associating each data point with a vertex in
the HVG. Two vertices share an edge if the corresponding data points can see each
other, i.e., if the data points can be connected with a horizontal line, whereby all data
points in between must lie below it. This criterion, also called horizontal visibility,
only allows a straight line with a zero gradient [Bal+08]. The (natural) visibility, on
the other hand, allows straight lines with arbitrary gradients [Bal+09]. The difference
can be seen in Figure 3.1.

Figure 3.1: (a) and (b) show the edges of an HVG and a VG for
an identical time series, respectively. Note that an HVG is always a

subgraph of the VG given the same time series.

In more formal notation, consider a time series S of length N with

S = ((t1, s1), . . . , (tN , sN)).

Two points (ti, si) and (tj , sj), 1 ≤ i < j ≤ N , are called horizontally visible if for every
intermediate point (tk, sk) with i < k < j, it holds that

sk <min(si, sj).

We set HVG(S) = HVG((s1, . . . , sN)) and VG(S) = (V,F ) and call it the horizontal
visibility graph and visibility graph (VG for short) of S, respectively. For VG(S), the
set of nodes V is the same as in the HVG-case and ij ∈ F if and only if (ti, si) and
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(tj , sj), 1 ≤ i < j ≤ N, are (naturally) visible, i.e.,

sk < si + (sj − si)
tk − ti
tj − ti

for every data point (tk, sk) with i < k < j. The HVG is always a subgraph of
the VG since two vertices seeing each other horizontally can also see each other
naturally. Like HVGs, every VG contains PN as a subgraph. Furthermore, they
are also invariant to (strictly positive) horizontal and vertical scaling and horizontal
and vertical translations. A big advantage of the horizontal visibility is that it is
computationally less complex than the natural visibility [Nic+20]. In the following,
we will only consider HVGs; note that since these just depend on the order of their
data points, we will no longer explicitly refer to the time index ti.

There exist several approaches to compute the HVG of a given series. A naive
implementation is in the complexity class O(N2) which has led to several publications
with optimized algorithms [Bal+09; Che+15; Lac+12; LWZ12; Ste21; Yel+20]. For
stochastic time series, Lacasa has developed an algorithm that, in the average case,
claims to work in linear time [Bal+09; Lac+12]. Since this approach is an offline
algorithm, the whole time series data must be available at the calculation time. If
new data is added, the graph has to be recalculated entirely, which is particularly
problematic with streamed data. Using an approach based on binary search trees,
Fano Yela et al. have implemented an algorithm calculating HVGs and VGs in the
average case in O(N logN), which also works efficiently on batch-wise incoming data
[Yel+20]. When applied to real-life time series, however, it becomes apparent that
this algorithm increases its runtime significantly towards O(N2). A recently pub-
lished algorithm by Stephen that computes HVGs using a dual tree representation of
the time series is worst-case in O(N) [Ste21]. Additionally, the runtime of this ap-
proach is not affected by the type of time series, it works efficiently on streamed data,
and it is scalable; thus, it is suitable for multi-processing. The drawback of this algo-
rithm is that it uses a complex data structure. Our algorithm builds on the approach
in [LWZ12], which we extend such that it also works efficiently on streamed data and
becomes scalable. Moreover, we do not use a complex tree-like data structure and
still achieve a state-of-the-art runtime. We introduce an algorithm that constructs
an HVG for every possible time series in linear time with only minor fluctuations in
runtime for different types of time series and that works on streamed data without
additional computational costs. Furthermore, the HVG of every intermediate time
series is generated implicitly if the algorithm is stopped prematurely.

3.1 Related work
The simplest method to implement an HVG algorithm is based on the idea of checking
for each of the N data points of the time series whether it can see the remaining N −1
data points. Since the visibility property is symmetric, the number of checks could be
halved. But with N(N − 1)/2 checks, it still remains in O(N2). A better complexity
class can be achieved using a "divide and conquer" approach, as described by Lan et
al. [Che+15]. Suppose the maximum value M of the time series is known. In that
case, it is also clear that no data point to the left of M can see a data point to the
right of M . This approach is then applied recursively to the left and right halves and
new maxima are determined for which it is known that they have an edge with the
previous maximum. Overall, it can be proven that this algorithm lies on average in
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O(N logN). This approach can also be applied to natural visibility graphs and lies
within the same complexity class there.

An algorithm developed by Lacasa enables an even faster calculation [Bal+09;
Lac+12]. The approach works as follows: Given a time series S = (s1, . . . , sN) of
length N , for each of these N data points it is determined which set of data points it
can see that lie to its right, i.e., have a larger time index. Then an edge between the
current index and each index of data points in the set of visible ones is added. Note,
with such a procedure all edges in an HVG are found. Let us assume that the current
index is 1 ≤ idx ≤ N − 1. All data points si with index idx < i ≤ N are ascendingly
checked for visibility between them and sidx until one data point sj is larger than
or equal to sidx. From this specific data point sj on, sidx cannot see any data point
sk with k > j. Therefore, the check for visibility is stopped here. This procedure is
performed for all data points sidx with 1 ≤ idx ≤ N − 1. For noisy (stochastic and
chaotic) time series, it is shown empirically that this algorithm has a time complexity
of O(N). While the approach can be very fast for some types of time series, it has
two significant drawbacks. First, as it traverses the data points, the algorithm does
not remember which data points are larger than others. Pictorially, this can be seen
as if a person would run to the right and stop at a certain point, then would run
back and forget what it already saw and therefore did not use shortcuts. Second,
the algorithm does not work efficiently on streamed data in its implemented form.
Meaning, if the HVG has already been determined for a time series and new data
comes in, the algorithm must run again over the entire data of the extended time
series. But, the latter issue can be fixed via a minor extension of the implementation.

Fano Yela’s approach is based on binary search trees (BST), and achieves an
average runtime in O(N logN) for both HVGs and VGs. At the same time, efficient
calculation on streamed data is possible [Yel+20]. Additionally, the algorithm is
parallelizable where the merging of the computed parts is in O(logN). Clearly, this
is an improvement compared to Lan et al., since Fano Yela’s algorithm is in the
identical complexity class but also has the so-called online functionality, which the
divide and conquer approach does not have. The algorithm consists of an encoding
and a decoding part. In the encoding part, the time series’ values are sorted in
descending order and entered in a maximum BST based on their index. Since the
BST encodes the size relationships of the data points, each edge can be reconstructed
from the HVG through cleverly chosen lookup operations in the search tree. For a
special class of BSTs, so called balanced BSTs, a lookup operation can be executed
in time O(logN) and because this has to be done for all N data points of the time
series, the average runtime is O(N logN). When new data in batch form comes in, a
BST is also created for this new data. With the help of a merge operation, both BSTs
are then combined, and an average runtime of O(N logN) can be achieved even for
streamed data. A disadvantage of the approach is that the lookup operations in the
search tree become computationally more costly if the search tree is not balanced. A
solution to this problem is provided by Stephen’s dual tree horizontal visibility graph
(DTHVG) algorithm, which relates HVGs to time series merge trees [Ste21]. A time
series merge tree contains the HVG in its dual. Using this new data structure, merging
two HVGs in O(N) is possible. The main reason for this is that only leading and
trailing branches of two merge trees are needed to merge the corresponding HVGs,
which makes the methodology particularly efficient. Overall, this approach allows
the computation of HVGs in worst-case O(N), has online functionality, and efficient
scalability. However, we show that our proposed method also satisfies these properties
while not requiring a complex data structure and achieve state-of-the-art runtime. For
this purpose, we build on the fast horizontal visibility algorithm (FHVG) algorithm
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of Zhu et al. to work efficient with streamed data and develop a version for multi-
processing and distributed computing [LWZ12]. Moreover, we provide a proof that
our algorithm is correct, which is missing for both algorithms in [Ste21] and [LWZ12]
although crucial for their observations.

3.2 Proposed method
We call our proposed algorithm the Linear Time algorithm, and it is described in the
following pseudo-code (LT-algorithm).

LT-algorithm: Returns the set of edges E of HVG(s).
Input : series = (s1, . . . , sn), edges, decreasing
Output: edges

1 if edges and decreasing are None then
2 edges = list();
3 decreasing = list((1, series[1]));
4 else
5 s∗1 = last element decreasing;
6 series = (s∗1 , s∗2 , . . . , s∗n+1) where s∗i+1 = si for 1 ≤ i ≤ n;
7 for idx = 2 to len(series) do
8 counter = 0;
9 if series[idx − 1] > series[idx] then

10 edges.append(edge from idx − 1 to idx));
11 else
12 for element ∈ reversed(decreasing) do
13 edges.append(
14 edge from element[0] to idx
15 );
16 if series[idx] > element[1] then
17 counter = counter + 1;
18 if series[idx] == element[1] then
19 counter = counter + 1;
20 break;
21 else
22 break;

23 delete last counter elements of decreasing;
24 decreasing.append((idx, series[idx]));
25 return edges

The algorithm loops through the time series once, chronologically, and determines
for each data point which previous data points it can see. Since the visibility to pre-
vious data points can already be blocked by others, the main idea of the algorithm is
to use a reduced list containing only all potentially visible data points for the current
one. This list is then traversed backwards and checked against which data points of
the list are visible for the current data point until the visibility gets blocked for the
first time or the list ends (see Figure 3.2). The algorithm’s procedure is shown visu-
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Figure 3.2: From the list of potentially visible data points, the list of
actual ones is determined by traversing the list backward until a data

point is at least as large as the current one.

ally in Figure 3.3 for a whole time series. The intermediate results of the algorithm
are presented step by step.

In the following, we describe the LT-algorithm in detail:
Consider the time series S = (s1, . . . , sN), which will be the input of the LT-

algorithm, and the vertices of HVG(S) named 1, . . . ,N . The steps are:
First, if edges and decreasing have not been passed as input, a list edges is

initialized for storing the edges of the HVG. The list decreasing, which will be central
to the algorithm’s efficiency and in which the potentially visible previous points will
be stored, is created and s1, the first value of the time series, is added to it. In
the other case, if edges and decreasing of a previously calculated HVG is passed as
input, we are dealing with streamed data explained in Subsection 3.2.3. Thus, in the
following, we deal with the case that edges = decreasing = ∅.

Chronologically, the algorithm loops through S starting at idx = 2. First, the last
added entry of decreasing, equal to series[idx − 1], is compared with the current
element series[idx]. Suppose series[idx − 1] > series[idx]. In that case, {i, idx}
cannot be an edge for 1 ≤ i < idx−1 and only the edge {idx−1, idx} will be appended
to the list edges. Otherwise, the else-case is executed: We loop through a reversed
version of decreasing and append the edge between the current element and idx. We
continue this as long as series[idx] is greater than the current element and increment
the value of counter every time by 1. This variable stores the number of elements
in decreasing, which are smaller than or equal to series[idx]. If we come to an ele-
ment in reversed(decreasing) that is greater than or equal to series[idx], the break
statement stops the inner for-loop. Since the last counter elements in decreasing
are smaller than or equal to series[idx] and are therefore not visible for series[j]
with j > idx, they get deleted from decreasing. Finally, series[idx] is appended to
decreasing. Note, decreasing now contains every series[i] with i ≤ idx that could
be visible for the next element series[idx + 1] and nothing more. From a computa-
tional perspective, it is very advantageous that all elements series[i] ∈ decreasing,
which series[idx] can see, are also those that are deleted from decreasing except the
last one if it is strictly greater than series[idx]. Thus, decreasing is simultaneously
updated such that it contains all elements that series[idx+1] could theoretically see
omitting redundant data. This will be the main reason that the algorithm will run
in linear time for any type of time series. Finally, when the outer for-loop is finished,
edges is returned.

3.2.1 Correctness of the algorithm

In the following, we prove the correctness of the LT-algorithm. The algorithm is
equivalent to the FHVG algorithm [LWZ12] when applied to a single time series (no
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Figure 3.3: Illustration of the LT-algorithm for the time series S =
(5,2,3,1,4). If the algorithm is stopped at idx = i,2 ≤ i ≤ 5, the
current set edges matches the set of edges of the HVG((s1, . . . , si)).

streamed data or multi-processing). However, in [LWZ12], no formal proof was given
that shows the correctness of this algorithm. Thus, we close this gap in the chain of
reasoning for the FHVG algorithm. We refer to a specific line x in the LT-algorithm
by (l.x).

Theorem 3.2.1. If the input of the LT-algorithm is the time series S = (s1, ..., sN),
then the output equals E(HVG(S)).

Proof. Let G = HVG(S), H = ({1, . . . ,N}, edges), where edges is the output of the
LT-algorithm and Dk be the list decreasing in LT-algorithm at the time when idx = k.
Note that, in this case, sk−1 is the last element of decreasing (l.7). We first show



3.2. Proposed method 41

that G ⊆H. Let ij ∈ E(G). Then we must have

si > sk < sj ∀k ∶ i < k < j. (3.1)

First, we show si ∈ Dj . Since i < j, the element si must have been added to the list
decreasing after completing the for-loop (l.7) with idx = i. The element si only gets
deleted from the list decreasing if there is an element sk with k > i such that sk ≥ si.
But due to (3.1), this can only be sj at earliest. Thus, si ∈Dj .

Now, assume ij ∉ E(H). Then i < j−1 since otherwise ij must be in E(H) because
edges between neighbors are always included. Thus, there must exist an i < l < j such
that sj ≤ sl. Otherwise, we do not get to a break command in the algorithm and the
edge ij would be included. Thus, we have a contradiction to equation (3.1) and every
edge of G is also in H.

We now show that H ⊆ G. Let ij ∈ E(H) and assume ij ∉ E(G). This implies
that i and j are not neighbors, since these are in E(G). Then there exists an i < l < j
such that either si ≤ sl or sj ≤ sl. In the first case, si ∉ Dj and the edge ij is not
generated. In the second case, the inner for-loop for idx = j stops at element sl which
is reached before si. Thus, ij is not generated. This is a contradiction to the initial
assumption that ij ∈ E(H).

3.2.2 Time complexity

The time complexity of algorithms is of special interest in many use cases. For the
LT-algorithm, we can prove in our second main theorem that it runs worst-case in
linear time. For other algorithms like FHVG or DTHVG the authors used the fact
that the maximum number of edges in an HVG with N vertices is less than or equal
to 2N − 3 to determine the time complexity class [GMS11]. We do not need this in
our approach.

Theorem 3.2.2. The LT-algorithm has worst-case time complexity O(N).

Proof. To determine the complexity class of the LT-algorithm, the runtimes of the
individual parts are analyzed . The expressions in lines 1 to 6 are executed in O(1)
and are not relevant for calculating the complexity class, as they do not depend on
the input length N of the time series. The key is to analyze the outer for-loop.
We will calculate how often which parts that run in O(1) are executed in this for-
loop. The initialization of counter (l.8) and the appending of the current element
to the list decreasing (l.24) are carried out in constant time and can be neglected
since the if -else case (l.9 and 11) is also executed in O(1). It is necessary to examine
this if -else case in more detail: If the if -case (l.9) occurs, this block is also finished
in constant time. However, when the else-case (l.11) occurs, a for-loop is executed
that passes through the elements from the decreasing list, whose length may vary.
Several statements (l.13 – 22) are processed in O(1), but possibly not for all elements
in decreasing since it can also stop early. However, using the value of counter, we can
count how many loop passes were executed. Also, the sum of all counter values can be
used to determine how many times these O(1) blocks were carried out in total. The
same sum can also be taken to calculate the total number of delete operations from
the decreasing list (l.23), for which a single one is also in O(1). Because both parts
depend on the sum of the counter values and are executed one after the other, i.e.,
their runtimes are only added, the complexity class does not change. So it follows that
the growth behavior of the sum of the counter values alone determines the complexity
class.
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Now, we explain in greater detail how the value of counter can be used to estimate
the runtime for the if -else case (l.9 and 11). If the if -case occurs, the inner statement
is executed exactly ones, which is equal to counter + 1, where we consider the value
of counter after one loop pass of the outer for-loop. For the else-case, we distinguish
two cases. If the inner for-loop runs through the entire list decreasing or stops due
to the if -case in line 18, then the value of counter after the loop corresponds to
the number of loop passes. Otherwise, the else-case with break is executed so that
counter is not incremented for the last iteration of the loop, resulting in counter + 1
iterations. Note that the inner for-loop is executed at most counter + 1 many times
for 2 ≤ idx ≤ N . Hence, we get the time complexity by calculating ∑N

i=2(ci +1), where
ci,2 ≤ i ≤ n, is the value of counter after the loop pass with idx = i. Let Dj be the
list decreasing in LT-algorithm after the loop pass with idx = j. Then for 2 ≤ j ≤ N ,
∣Dj ∣ can be computed recursively via

∣Dj ∣ = ∣Dj−1∣ − (cj − 1). (3.2)

The expression (3.2) is equivalent to cj = ∣Dj−1∣ − ∣Dj ∣ +1 and summing over 2 ≤ j ≤ N
gives

N

∑
j=2
(cj + 1) =

N

∑
j=2
(∣Dj−1∣ − ∣Dj ∣ + 2)

= ∣D1∣ − ∣DN ∣ + 2(N − 1) = 2N − 1 − ∣DN ∣, (3.3)

where ∣D1∣ is the length of list decreasing at the start of the LT-algorithm, which is
1. Noteworthy is the fact that this applies to the best, average, and worst-case, as can
be seen directly from the equation (3.3), where we have not made any prerequisites
for the time series. We can minimize 2N − 1− ∣DN ∣ by choosing ∣DN ∣ to be maximal,
that is, equal to N , which occurs only when the time series S is strictly monotone
decreasing. Thus, in the minimal case, ∑N

j=2(cj + 1) = n − 1. The sum is maximized
if ∣DN ∣ = 1, for which there are different possibilities, e.g., if S is strictly monotone
decreasing for s1, . . . , sN−1 and sN = s1. Then ∑N

j=2(cj+1) = 2(N−1). This shows that
there is only a factor of 2 between the upper bound for the number of times constant
blocks are executed in the best and worst-cases. This proves that the LT-algorithm
is in O(N) and this visualizes how close even the worst and best cases are.

3.2.3 Online version

Suppose we want to analyze a time series over a longer period of time and calculate
an HVG from it at regular intervals. In that case, it is very important that we do
not have to recalculate the HVG on all data, but reuse the results of the previous
calculations to reduce the runtime. This is called the online functionality of an HVG
algorithm [Yel+20]. The proposed method enables exactly that. If we want to apply
the LT-algorithm on streamed data, we proceed as follows: Consider a time series
S with the values (s1, . . . , sM) as input for the LT-algorithm, then the output edges
and decreasing must be saved. If new values of the time series come in, whereby
S = (s1, . . . , sM , . . . , sN) with N > M , the LT-algorithm can be used again, with
series = (sM+1, . . . , sN), edges and decreasing as inputs. In this case, the index of
every entry in series is shifted by 1 and the last element of decreasing (which is sM )
is added as the first element to this list (l.5–6).

Note, with this procedure we carry out the same steps as if we had given (s1, . . . , sN)
directly as input and stopped after idx =M and started the algorithm again. Since
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we have already proven that the algorithm returns the correct set of edges, we
know that this is also the case here since we are performing the same steps as for
HVG(s1, . . . , sN).

This shows further advantages of our algorithm, which are exemplarily shown in
Figure 3.3. If the LT-algorithm receives S = (s1, . . . , sN) as input, then the algorithm
can be stopped after idx = i, 2 ≤ i ≤ N and the current list edges exactly contains the
edges of HVG(s1, . . . , si). The LT-algorithm thus not only generates HVG(S), but
also implicitly HVG(s1, . . . , si) for every time series that starts at s1 and ends at si,
2 ≤ i ≤ N and that without additional effort.

3.2.4 Multi-processing

In general, given a very long time series, it is desirable to be able to parallelize the
proposed algorithm such that we can benefit from multi-processing to potentially
speed up the runtime. For this purpose, we suggest dividing the time series into
shorter sections to calculate the corresponding HVGs in parallel and combine these
at the end to a single HVG. The BST [Yel+20] and DTHVG [Ste21] approaches
make it possible to divide the time series at any point, where the merge operation
for a constant number of HVGs is in O(N logN) or O(N), respectively. We follow
a different approach, which also admits a complexity in O(N) and works with a
constant-time merge on specifically chosen points of the time series. To ensure that
the HVG created by merging the individual HVGs also contains all the desired edges,
we need to split the time series at points corresponding to non-nested vertices. The
approach is based on Lemma 1.1.3 (vi), which states that we can derive HVG(S) as
1-sums of the HVGs induced on non-nested-vertices N = {i1 < . . . < ik}. Note that,
computationally, the 1-sum operation of two HVGs is performed in constant time
since we only identify two vertices. Moreover, the set of non-nested vertices can be
determined in linear time. This can, e.g., be done by first traversing the time series
S of length N from left to right and creating a list increasing. This list is initialized
by setting increasing = (s1). A data point si is added to increasing if for the last
to increasing added element sj holds si ≥ sj . After completely traversing S, the last
element sm in increasing is the global maximum of S. Then we reverse S, add sN to
inceasing and continue with this procedure up to sm. Then increasing contains all
non-nested vertices and the complexity is bounded by 2N . So, in total, the parallel
computation is also in O(N) as in Stephen’s approach.

However, in general, it is unclear how many non-nested vertices there are and in
how many parts the time series can therefore be divided into. This question is hard
to answer. But in the case of identically independent distributed (i.i.d.) data points,
we give evidence that there is a sufficient number of non-nested vertices by computing
its expectation.

Proposition 3.2.3. Let S = (s1, . . . , sN) be a time series with si i.i.d. for 1 ≤ i ≤ N ,
2 ≤ N , G = HVG(S) and N(G) the set of non-nested vertices of G. Then

E[∣N(G)∣] = 2 ⋅
N−1
∑
i=1

1
i
− N − 2

N
.

Proof. Given a time series S = (s1, . . . , sN), a vertex i of G = HVG(S) is non-nested
if and only if s1, . . . , si−1 ≤ si or si+1, . . . sN ≤ si. Since the data points of S are i.i.d.,
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direct computation yields

E[∣N(G)∣] = E [
N

∑
i=1
1(i is non-nested)]

= 2 +E [
N−1
∑
i=2

1(i is non-nested)] = 2 +
N−1
∑
i=2

P(i is non-nested)

= 2 +
N−1
∑
i=2
(P(s1, . . . , si−1 ≤ si) +P(si+1, . . . , sN ≤ si)

−P(s1, . . . , si−1 ≤ si ≥ si+1, . . . , sN))

= 2 +
N−1
∑
i=2
(1
i
+ 1
N − i + 1

− 1
N
)

= 2 +
N−1
∑
i=1

1
i
− 1 +

N−1
∑
i=1

1
N − i − 1 − N − 2

N

= 2 ⋅
N−1
∑
i=1

1
i
− N − 2

N
.

We can bound E[∣N(G)∣] from below by

E[∣N(G)∣] = 2 ⋅
N−1
∑
i=1

1
i
− N − 2

N
≥ 2 ⋅

N−1
∑
i=1

1
i
− 1 ≥ 2∫

N−1

0

1
x + 1

dx − 1 = 2 ⋅ ln(N) − 1.

Since the expectation is not guaranteed to be met, theoretically, this is not enough
to conclude anything about the values of ∣N (G)∣. But numerical experiments have
shown for large N , although ∣N (G)∣ can range from 2 to N , that it seems to be
distributed closely around 2 ⋅ ln(N) in most cases (see Figure 3.4). Thus, for a time

Figure 3.4: For each N = 10,101, . . . ,106, we generated 100 time
series of length N by uniformly and independently choosing N points
out of [0,1]. The number of the non-nested vertices of the correspond-

ing HVGs is displayed on the y-axis.

series with i.i.d data, we conjecture that in the average case, the number of non-nested
vertices is close to ln(N). This would confirm that we can divide a long time series
into sufficient sections for parallelization.
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But in fact, it is not always useful to divide at every non-nested vertex but to
choose a fixed number r such that we divide the time series into r sections of roughly
the same size. Note, the number r also depends on how the multi-processing is
executed, i.e., e.g., how many kernels one can use for parallel computations. The
prime example for not choosing all non-nested vertices is PN which would result in
N − 1 many P1 where nothing is gained. But, unfortunately, deciding which non-
nested vertices to choose can increase the runtime. There are different approaches
which can be executed fast but cannot guarantee that the r parts are almost of the
same size. Thus, it should be investigated what the right choice is, in practice. We
leave this as an open problem.

In Subsection 3.3.4, we compare the run times of the LT-algorithm with the
parallelized version of the DTHVG algorithm. There, we try to divide the given i.i.d.
time series S into r ≤ ∣N(HVG(S))∣ − 1 parts of roughly similar size. We achieve
this by iteratively removing from N(HVG(S)) the nodes ij for 2 ≤ j ≤ N − 1 for
which ij+1 − ij is minimal until only r + 1 nodes are left. Then we split the time
series into r parts, calculate the HVGs in parallel and join them to one HVG. It
turns out, although in theory, the process of finding these non-nested vertices is in
O(∣N(HVG(S))∣ ⋅ (∣N(HVG(S))∣ − r − 1)), there seems to be no large disadvantage
concerning the runtime. Moreover, experiments have shown that it is still more
efficient than the parallelized version of the DTHVG algorithm (see Figure 3.9).

3.3 Numerical experiments
In this section, we show empirical results of our algorithm compared to the current
state-of-the-art. The experiments were carried out on an OpenStack virtual machine
with 8 VCPUs and 32 GB of RAM. The source code was implemented in Python 3.7
and can be freely accessed online [Sch22a].

3.3.1 Synthetic time series

In the same way as [Yel+20], we test our algorithm on synthetic time series and
measure the time to calculate HVGs with increasing number of vertices. We con-
sider three different types of synthetic time series, where we analyze how the time
series’ structure influences the HVG algorithms’ runtime. The results can be seen in
Figure 3.5. We define a time series S = (s1, . . . , sN) with uniformly random noise of
length N via st = u, t ∈ [N], where u is a uniformly distributed random variable on
the interval [0,1] and is independently drawn for every t. For a normally distributed
time series X of length N , we define analogously xt = y, t ∈ [N], where y is normally
distributed with mean 0 and variance 1. The third type of time series W is based
on a random walk. Unlike the other time series, the current value wt depends on its
previous values, i.e., wt = wt−1 + ϵ, t ∈ [N], where the start value w0 is 0 and ϵ is a
Bernoulli distributed random variable with P (ϵ = 1) = P (ϵ = 0) = 1

2 .
Figure 3.5 shows the runtime of the Python implementation of the proposed

method (the LT-algorithm called LT), Lacasa’s approach, Stephen’s dual tree HVG
algorithm (DTHVG) and the binary search tree (BST) approach from Fano Yela in
comparison. A naive implementation with a running time of O(N2) is not shown
because it is too slow in comparison. Otherwise the difference between the proposed
method and all other methods would no longer be recognizable in a single figure. The
runtime for the HVGs was calculated up to a number of 105 vertices starting at 104 at
intervals of 5 ⋅103. For each number, the computation time shows the minimum of 100
calculations since the minimum always contains the slightest temporal measurement
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error.

It is, first of all, apparent that the LT and DTHVG approaches can calculate the
HVGs much faster, which confirms the theoretical runtime analysis ofO(N) compared
to O(N logN) for BST. With the proposed method, it is possible to calculate HVGs
with more than 107 vertices without much computing power. When looking at the
time scales, it is noticeable that for all algorithms, the runtimes are very similar for
uniform random noise and for the normally distributed time series. Note that with
the random walk, the time scale deviates very strongly from the other two and the
BST and Lacasa’s algorithm take significantly longer to calculate the HVGs. The
impact on the proposed method and the DTHVG algorithm is minimal. However,
behavior like that of the random walks is rather comparable with an empirical time
series pattern. This is a further argument in favor for the LT approach. Also note
that a new stack frame in Python is allocated for a recursive call, which worsens
the runtime of recursive functions like BST. On the other hand, the LT and BST
approaches remain in different time complexity classes, which also explains the large
discrepancy.

Figure 3.5: The first row shows examples of (a) random uniform
noise, (b) random normal noise, and (c) a random walk. The second
row illustrates the computation time for the HVGs for these types of
synthetic time series with an increasing number of vertices. Each time
value shown is the minimum of 100 runs with this number of vertices.

3.3.2 Audio and financial time series

To test the behavior of the HVG algorithms on empirical data, we calculate the
computation time for an audio and a financial data set. The results are shown in
Figure 3.6. The runtime is determined for each sample and the distribution for the
different data sets is shown as a box plot. For each time series, the minimum runtime
of 20 runs is chosen for calculating the boxplot because the minimal runtime for one
sample is the one with the smallest error rate. The yellow line in the box plot is the
median of the runtimes. The lower and upper edges of the box represent the 1st and
3rd quartiles, respectively. The upper and lower whiskers are the 5% and 95% quan-
tiles, respectively. All 160 samples of speech files from the TIMIT acoustic-phonetic
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continuous speech corpus were used, in which several English speakers pronounce
phonetically different sentences [Gar+93]. The data was recorded at 16 kHz and the
first 20.000 data points were used to build the HVGs. This corresponds to 1.25 sec-
onds per audio file. The financial data set are intraday share prices of 46 shares of
the S&P 500 in the period from May to August 2021. The time interval between two
share prices is 5 minutes to also receive 20.000 points for this time series.

Figure 3.6: Representation of the HVG computation time as a box
plot of the TIMIT audio data set in (a) and the intraday prices of S&P

500 stocks in (b) for the different algorithms.

An analysis of the box plots shows that the BST algorithm has significant runtime
differences for the audio and financial data. In the median, it takes twice and a half
as long on the financial data set (see Table 3.1).

Audio Data Set Financial Data Set
Algorithm Q5% Q50% Q95% Q5% Q50% Q95%

BST 0.205 0.238 0.290 0.472 0.631 0.972
Lacasa 0.114 0.147 0.194 0.183 0.353 0.825
DTHVG 0.0178 0.0181 0.0271 0.0162 0.0170 0.0176
LT 0.0114 0.0118 0.0143 0.0113 0.0114 0.0117

Table 3.1: HVG computation times in seconds for the TIMIT audio
data set and intraday prices of S&P 500 stocks for the different algo-

rithms.

It is also noticeable that the running time is more scattered here because the
whiskers are more distant. In this case, the binary search tree seems more unbalanced,
increasing the computation time. For Lacasa’s approach it can also be observed that
the median runtime on the financial data set is more than twice as large as on the
audio data set. There are also stronger outliers in terms of runtime. Both approaches
are heavily dependent on the structure of the time series.

The LT approach has similar runtimes for the audio and financial data sets. Here,
the different structure of the audio and financial data records seems not to influence
the runtime. The LT-algorithm runs about 50% faster on the audio and financial
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data set than the DTHVG algorithm. Recalling that the given 20.000 data points
were generated by only 1.25 seconds of audio data, the runtime improvement makes a
significant difference when analyzing longer audio data with a high sampling rate. In
contrast to the BST approach and Lacasa’s, both are slightly faster on the financial
data set. However, their running time is almost unaffected by the type of time series.
The DTHVG algorithm stores additional information during the construction of the
HVG, which is only needed if the HVG is subsequently merged with another HVG,
e.g., in the case of multi-processing. This worsens its runtime compared to the LT
algorithm, which only stores the necessary information about the time series in the
decreasing list to calculate the HVG correctly.

From the determination of the complexity class of the LT-algorithm, we know
that we can specify an upper bound for the number of executions of iterations of the
for-loop using 2N − 1− ∣DN ∣, where N is the number of data points in the time series
and ∣DN ∣ describes the number of elements at the end of the loop iteration from the
list decreasing. Our runtime experiments confirm the theoretical justification that
the runtimes for the LT approach cannot vary widely since there is an upper limit for
the LT approach that is only twice that of the best case. Especially the application
to empirical data shows the strength of the proposed method, that it runs in the best,
average, and worst-case in O(N). Of course, the measured computation time may
differ more than a factor of two, because the runtime measurements are always noisy
and delays occur due to other tasks being carried out by the system.

3.3.3 Acceleration time series

New efficient HVG algorithms open up fields of applications for HVGs that previously
would only have been feasible with a great amount of computing capacity. This
includes the analysis of structure-borne sound data. Besides classical airborne sound
data, very high sampling rates in the kilohertz range are often used for structure-borne
sound analysis. We analyze a data set provided by ZF Friedrichshafen AG, in which
test drives with low and normal tire pressure were carried out. During the drive,
tri-axial acceleration sensors were attached to the upper right control arm recording
the accelerations with 50 kHz in a range of ±50g. We use a version of the data set
downsampled to 8 kHz, analog to [Sch22b]. The drives with low and normal tire
pressure lasted approximately 1000 seconds and were carried out on the same route
with various road conditions. For further analysis, we only use the acceleration in the
Z-direction. Examining the time signal shows no significant differences in the observed
amplitudes (see Figure 3.7). Therefore, we test whether there are differences between
the data sets when we convert them into HVGs. First, we divide both data sets into
windows of length 2000. Then we calculate for each window its HVG. We compare
the runtime of the LT-algorithm and the DTHVG for the transformation into HVGs
for one test drive. The proposed algorithm takes 5.8 seconds and the DTHVG 8.8
seconds. From the HVGs, we extract several statistical properties. These include the
average node degree, the standard deviation of the node degree, the diameter of the
HVG, and other graph-specific properties that describe the local and global topology
of the graph. A detailed description of the 15 properties and their definitions are
given in [Sch22b]. In order to visualize these features, they are projected into a two-
dimensional space using the UMAP algorithm [HMM18]. UMAP is an unsupervised
dimensionality reduction technique. Figure 3.8 shows the result.

It can be seen that the data sets of normal and low tire pressure form clusters.
Both data sets are nearly separable. There is only a small area where the projections
of the features of both classes overlap. How an XGBoost classifier can be trained
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Figure 3.7: In the time domain, the amplitudes of the acceleration
signal of normal and low tire pressure are very similar.

to classify the HVG features into normal or low tire pressure is shown in [Sch22b].
Analyzing the acceleration data using HVGs as preprocessing shows that they are a
powerful tool for classifying time series and that efficient algorithms are beneficial for
sound data measured at high sampling rates.

Figure 3.8: The projection of the HVG features shows a clustering
that allows a distinction between the two classes.

3.3.4 Multi-processing

The DTHVG algorithm is faster than the BST in computing HVGs whose time series
has been previously split to compute the smaller HVGs in parallel and then merge
them into one HVG [Ste21]. This is because the DTHVG, in particular, allows merg-
ing in O(N) compared to O(N logN) from the BST approach. Therefore, we only
compare the proposed method with the DTHVG algorithm for multi-processing appli-
cations. Figure 3.9 shows the computation times for the HVGs with 210 to 226 vertices
of the different algorithms in a parallelizable version for random uniform noise. For
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this purpose, each time series was split into eight shorter time series. For the curves
with the LT and DTHVG NN labels, the non-nested vertices were calculated and
the eight partial time series were determined according to the described strategy in
Subsection 3.2.4. Afterwards, the HVG is calculated for each shorter time series and
the HVGs are merged at the end. To exclude an additional source of error in the
runtime determination, the calculation was performed sequentially since the paral-
lelization process may also lead to runtime differences. However, since the DTHVG
allows splitting the time series at arbitrary points, we also compare this variant. In
this case, corresponding to the curve labeled DTHVG, the time series is divided into
eight partial time series of equal size. The runtime for a given number of vertices
is the minimum of 100 executions. With the scalable variant of the LT-algorithm,
we achieve a runtime of about 69 seconds for 226 vertices compared to 128 for the
DTHVG NN and 148 for the DTHVG approach. The DTHVG algorithm does allow
the time series to be split at arbitrary points, but more complicated merge operations
must then be performed. The proposed method always splits the time series so that
individual HVGs are created, which only have to be concatenated. The comparison
shows that the computation of the non-nested vertices in advance is computationally
more favorable than separating the time series at arbitrary points and to carry out
more expensive merge operations for it.

Figure 3.9: Parallizable versions of the DTHVG and LT-algorithm
in comparison. For DTHVG the time series were splitted equally in 8
parts. DTHVG NN and LT werde splitted into 8 parts at non-nested

vertices.
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Chapter 4

On the gamma vector of
symmetric edge polytopes

Symmetric edge polytopes are a family of lattice polytopes associated to simple
graphs. They were first introduced in [Hib+10] and are defined as follows.

Definition 4.0.1. Given a simple graph G = ([n],E), the associated symmetric edge
polytope PG is defined as

PG = conv(±(ei − ej) ∶ ij ∈ E) ⊆ R∣V ∣.

On the one hand, the dependence on a graph allows for graph-theoretical charac-
terizations of some polytopal properties: for instance, for a connected graph, dimPG

only depends on the number of vertices and equals n − 1 [Hib+10, Proposition 3.1].
Moreover, Higashitani proved in [Hig15, Corollary 2.3] that a symmetric edge poly-
tope PG arising from a connected graph G is simplicial if and only if G contains
no even cycles. This is equivalent to PG being smooth. While this result gives the
existence of infinitely many simplicial symmetric edge polytopes, only a finite list of
graphs yield symmetric edge polytopes that are simple (see Proposition 4.1.5). On the
other hand, there are several pleasant properties that are shared by any symmetric
edge polytope, independent of the underlying graph: all of these polytopes are known
to admit a regular unimodular triangulation [HO14; HJM19] and to be centrally sym-
metric, terminal and reflexive [Hig15]. In particular, by this latter property, it follows
from work of Hibi [Hib92] that their h∗-vectors are palindromic. Thus, given the h∗-
vector h∗(PG) = (h∗0 , . . . , h∗d) of a symmetric edge polytope, we can apply (1.2) to get
the γ-vector γ(PG) = (γ0, . . . , γ⌊ d

2 ⌋
) of PG. Since PG is reflexive and admits a regular

unimodular triangulation ∆, the restriction of ∆ yields a unimodular triangulation
of ∂PG and the h∗-vector of PG equals the h-vector of the restriction, which, in par-
ticular, is a simplicial sphere. This provides a link between the study of the γ-vector
of PG and the rich world of conjectures on the γ-non-negativity of simplicial spheres;
however, note that the objects we are interested in will not be flag in general. Despite
the lack of flagness, in all currently known cases, the γ-vector of PG is non-negative.
This lead Ohsugi and Tsuchiya to formulate the following conjecture, which is the
starting point of this chapter:

Non-negativity conjecture for γ-vectors of symmetric edge polytopes.
[OT21b, Conjecture 5.11] Let G be a graph. Then γi(PG) ≥ 0 for every i ≥ 0.

Moreover, it is already known and follows, e.g., from [BR07], that a weaker prop-
erty, namely, unimodality of the h∗-vector holds. On the other hand, though it is
tempting to hope that even the stronger property of the h∗-polynomial being real-
rooted is true, this is not the case in general; the 5-cycle is a counterexample.
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The main goal of this chapter is to provide some supporting evidence to the γ-
non-negativity conjecture, independent of the graph.

4.1 Basic properties of symmetric edge polytopes
Though, a priori, all graphs in this chapter and especially in Definition 4.0.1 are
undirected, we often consider different orientations of the edges. We then write v → w
and w → v for the directed edges going from v to w and w to v, respectively. For
ij ∈ E, we will call the vertices ei − ej and ej − ei of PG an antipodal pair. In the
following, we will always identify a vertex ei−ej of PG with the directed edge i→ j and
use the short-hand notation ei,j ∶= ei − ej . Though G is undirected, we can naturally
direct each cycle of G by directing its edges either clockwise or counter-clockwise. By
abuse of notation, we refer to those cycles as the oriented cycles of G.

Turning to triangulations of symmetric edge polytopes, we recall that it was shown
in [HO14] that PG admits a regular unimodular triangulation. It is well known
(see, e.g., [Stu96, Corollary 8.9]) that such a triangulation can be obtained from the
Gröbner basis of the toric ideal of PG (with respect to the degrevlex order), provided
in [HJM19, Proposition 3.8], as follows:
Lemma 4.1.1. Let < be a total order on the edges E of G. Then there exists a regular
unimodular triangulation ∆< of ∂PG such that F is a non-face of ∆< if and only if
it contains at least one subset of the following form:

(i) an antipodal pair;

(ii) an ℓ-element subset of a directed (2ℓ − 1)-cycle of G;

(iii) an ℓ-element subset of a directed 2ℓ-cycle of G not containing its <-minimal
edge.

Example 4.1.2. Given the graph C4 = ([4],{12,23,34,14}), the symmetric edge
polytope is a cube (see Figure 4.1 (left)). Moreover, fixing the order 12 < 23 < 34 < 14
on the edges, via Lemma 4.1.1, the minimal non-faces of ∆< are the convex hulls
of all antipodal pairs and of the pairs e1,4e3,2, e1,4e4,3, e4,1e3,4, e4,1e2,3, e3,2e4,3 and
e2,3e3,4. Thus, a triangulation of the boundary is given as visualized in Figure 4.1 on
the right-hand side.

e4,3

e2,3 e2,1

e4,1

e3,2e1,2

e1,4 e3,4

e4,3

e2,3 e2,1

e4,1

e3,2e1,2

e1,4 e3,4

Figure 4.1: PC4 (left) and a triangulation of its boundary (right)
constructed via Lemma 4.1.1.

We remark that the triangulation ∆< extends to a regular unimodular triangula-
tion of PG by coning over the origin. In (iii), a directed edge i→ j of a directed cycle
C is called <-minimal if ij is minimal with respect to < among {kℓ ∶ k → ℓ ∈ E(C)}.
It is apparent that the triangulation of Lemma 4.1.1 depends on the chosen ordering
<. However, any edge of PG is necessarily a face of any such triangulation.

Complementing [HJM19, Theorem 3.1], which characterizes facets of symmetric
edge polytopes, we provide the following characterization of their edges:
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Theorem 4.1.3. Let G = ([n],E) be a graph. Two directed edges of G form an
edge of PG if and only if they are not antipodal and not contained in a directed 3- or
4-cycle of G.

Proof. The “only if”-part directly follows from Lemma 4.1.1 and the paragraph pre-
ceding this theorem. For the reverse statement, note that the origin can be written as
a convex combination of any antipodal pair and thus an antipodal pair can’t form an
edge. Let i→ j, k → ℓ be directed non-antipodal edges of G lying neither in a directed
3- nor in a directed 4-cycle of G. The aim is to construct a supporting hyperplane
of PG only containing the vertices ei,j and ek,ℓ. More precisely, we construct a ∈ Rn

such that aT ei,j = aT ek,ℓ > aT y for every vertex y of PG different from ei,j and ek,ℓ.
We distinguish different cases.

Case 1: {i, j} ∩ {k, ℓ} = ∅. Since i → j and k → ℓ do not lie in a directed 4-cycle,
we have ∣{iℓ, jk} ∩ E∣ ≤ 1. If ∣{iℓ, jk} ∩ E∣ = 0 then it is easy to verify that setting
ai = ak = 1, aj = aℓ = −1 and am = 0, otherwise, works. If ∣{iℓ, jk} ∩ E∣ = 1, then
without loss of generality assume iℓ ∈ E. In this case setting ai = 1, aj = −2, ak = 2,
aℓ = −1 and am = 0, otherwise, has the required properties.

Case 2: {i, j} ∩ {k, ℓ} ≠ ∅. First assume i = k. In this case, we set ai = 1,
aj = aℓ = −1 and am = 0, otherwise. Similarly, if j = ℓ, setting aj = −1, ai = ak = 1 and
am = 0, otherwise, works. Finally assume that i = ℓ or j = k. By symmetry, we only
need to consider the case i = ℓ. Since i→ j and k → i do not lie in a directed 3-cycle,
it follows that jk ∉ E. Similarly, as i → j and k → i do not lie in a directed 4-cycle,
the vertices j and k do not have common neighbors other than i. We can then set
aj = −2, ak = 2, ai = 0, ap = −1 if jp ∈ E, aq = 1 if kq ∈ E and am = 0, otherwise and
this is well-defined by the previous arguments. It is again easy to see that this choice
of a works.

Proposition 4.1.4. Let G = G1 ⊕1 ⋯⊕1 Gk be a graph which is given as 1-sums of
the graphs G1, . . . ,Gk. Then

PG ≅ PG1 ⊕⋯⊕PGk
.

Proof. Let G = ([n],E) = G1 ⊕1 ⋯⊕1 Gk. We prove the claim via induction on k. If
k = 2, we have G = G1 ⊕1 G2. Let m ∈ N, G1 = ([m],E1) and G2 = ([m + 1, n + 1],E2)
such that the 1-sum is taken along m and m+ 1. We set Q1 and Q2 as the projection
of PG1 and PG2 onto the m − 1 and n −m last coordinates, respectively. Since every
symmetric edge polytope lies in the hyperplane where all coordinates sum up to 0,
PG1 ≅ Q1 and PG2 ≅ Q2. Moreover, let φ be the linear map given by the matrix

(U)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if i = j, or
if i = 1, or
if i =m and j >m,

0, otherwise

∈ Zn×n.

Since U is unimodular, PG ≅ φ(PG). From an easy computation follows φ(PG) =
{0} × {Q1 ⊕Q2}. Thus, PG ≅ PG1 ⊕PG2 .

Now, let k ≥ 3, and we assume that the claim holds for a particular k − 1. Let
G = G1 ⊕1 ⋯⊕1 Gk and H = G1 ⊕1 ⋯⊕1 Gk−1. Then G = H ⊕1 Gk, and by applying
the induction hypothesis twice, the claim follows.
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Theorem 4.1.3 allows us to characterize simple symmetric edge polytopes in terms
of their graphs.

Proposition 4.1.5. Let G = ([n],E) be a graph with E ≠ ∅. Then PG is simple if
and only if, after removing isolated vertices, G ∈ {P2,2P2, P3,C3,C4}.

Proof. It follows by direct computation that PG is a 1-simplex, a 4-gon, a 4-gon, a
6-gon, or a 3-cube if G is equal to P2, 2P2, P3, C3 or C4, respectively.
Assume that G is connected and fix a directed edge i→ j. Observe that if there exists
an edge kℓ such that both k → ℓ and ℓ → k lie in a directed 3- or 4-cycle together
with i → j, then the subgraph of G induced by the vertices i, j, k, ℓ (which must be
all distinct) is isomorphic to K4. Then consider the connected subgraph H of G
obtained by removing all edges st such that the induced subgraph of G on the vertex
set {i, j, s, t} is isomorphic to K4. By construction, for every edge kℓ of H different
from ij, at least one of the directed edges k → ℓ and ℓ → k does not lie in a 3- or
4-cycle with i → j. By Theorem 4.1.3, this implies that at least one of the vertices
ek,ℓ or eℓ,k is adjacent to ei,j both in PH and in PG. As all edges of PH containing
the vertex ei,j are also edges of PG (and vice versa), we conclude that the number of
edges containing ei,j in PG is greater than or equal to ∣E(H)∣ − 1. Hence, PG cannot
be simple if ∣E(H)∣ > dim(PG) + 1 = n. In order for PG to be simple, we must hence
have ∣E(H)∣ ∈ {n− 1, n}. If ∣E(H)∣ = n− 1, then H is a tree, while if ∣E(H)∣ = n, then
H can be built starting from a cycle and taking successive 1-clique sums with single
edges. Both cases can only happen if G = H, since otherwise H would contain at
least two distinct 3-cycles. Using Proposition 4.1.4, it follows that if G is connected
and PG is simple, then PG is unimodular equivalent to the free sum of the symmetric
edge polytope of a cycle and some segments (since the symmetric edge polytope of
P1 is a segment). Since the free sum of two polytopes of dimension greater than zero
is simple if and only if the polytopes are segments, we are left with the following
possibilities: either G ∈ {P2, P3} or G ≅ Ck, for some k ≥ 3. For analogous reasons,
if G is not connected and PG is simple, PG must be the free sum of two segments,
i.e., G ≅ 2P2, the disjoint union of two edges. Finally, assume that G ≅ Ck, for some
k ≥ 5. Applying again Theorem 4.1.3, we conclude that the number of edges of PG

containing ei,j equals 2(k − 1) > k − 1 = dim(PG) and hence PG is not simple.

4.2 Non-negativity of γ2

The aim of this section is to prove that γ2(PG) is non-negative for any graph G, and
to characterize which graphs attain the equality γ2(PG) = 0. In [HO14, Corollary 3.1],
the authors prove that, when G is connected, PG has a unimodular triangulation, and
this was made more explicit in [HJM19] by providing a Gröbner basis. This triangu-
lation depends on an order < on the set of edges E, and, in particular, different orders
might yield non-isomorphic simplicial complexes. However, all of them are cones over
the corresponding triangulation ∆< of the boundary of PG (see Lemma 4.1.1). As the
h∗-vector of a lattice polytope which admits a unimodular triangulation is equal to
the h-vector of such a triangulation, we can write γ2(PG) in terms of the number of
vertices and edges of ∆<, and these numbers do not depend on the order <. Our first
goal is to write the number γ2(PG) as a function of certain invariants of the graph.
For this aim, given a graph G = ([n],E) and a fixed total order < on E, let

n1(G) ∶= (
2∣E∣

2
) − ∣E∣ − f1(∆<).
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Let◆∣E∣ be the ∣E∣-dimensional cross-polytope with vertex labeled by the vertices
of PG such that antipodal vertices in ◆∣E∣ correspond to antipodal pairs of PG. Then
in other words, n1(G) equals the number of edges of ◆∣E∣ that are non-edges of
∆<. By Lemma 4.1.1, n1(G) is equal to the number of pairs of directed edges of G
where the two undirected edges are different and the pair satisfies at least one of the
following:

(i) the pair is contained in a directed 3-cycle;

(ii) the pair is contained in a directed 4-cycle, and none of its edges is the <-minimal
edge of such a cycle.

We call a pair of directed edges satisfying at least one of these two conditions a bad
pair and say that it is supported on the corresponding pair of undirected edges. We
use n1(G) to express γ2(PG) explicitly, as follows.

Lemma 4.2.1. Let G be a connected graph. Then

γ1(PG) = 2 cy(G),

and
γ2(PG) = 2 cy(G)(cy(G) + 2) − n1(G). (4.1)

Proof. Let G = ([n],E). The next computation shows the first statement:

γ1(PG) = h∗1(PG) − (n − 1) = h1(∆<) − (n − 1)
= f0(∆<) − 2(n − 1) = 2(∣E∣ − n + 1) = 2 cy(G),

where the first equality follows from Equation (1.2), the fact that PG is (n − 1)-
dimensional and by comparing coefficients. The second equality holds since PG admits
a unimodular triangulation and the third follows from (1.1). Using the first statement
and analogue arguments, we can further show (4.1):

γ2(PG) = h∗2(PG) − (
n − 1

2
) − (n − 3)γ1(PG)

= h2(∆<) − (
n − 1

2
) − 2(n − 3) cy(G)

= f1(∆<) − (n − 2)f0(∆<) + (
n − 1

2
) − (n − 1

2
) − 2(n − 3) cy(G)

= (2∣E∣
2
) − ∣E∣ − n1(G) − 2(n − 2)∣E∣ − 2(n − 3) cy(G)

= 2∣E∣(∣E∣ − n + 1) − n1(G) − 2(n − 3) cy(G)
= 2 cy(G)(∣E∣ − n + 3) − n1(G) = 2 cy(G)(cy(G) + 2) − n1(G).

Next, we present the main result of this section.

Theorem 4.2.2. Let G be a graph. Then γ2(PG) ≥ 0.

The proof of this theorem will require several lemmas and propositions. The
strategy is to prove that there exists an edge e ∈ E such that γ2(PG) ≥ γ2(PG∖e),
from which the claim follows inductively. We note that, if e is not a bridge of G, then
cy(G ∖ e) = cy(G) − 1, and Lemma 4.2.1 directly yields

γ2(PG) − γ2(PG∖e) = 4 cy(G) + 2 − (n1(G) − n1(G ∖ e)). (4.2)
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By the following lemma, we can reduce to the case when G is 2-connected.

Lemma 4.2.3. Let G be a graph, and let G1, . . . ,Gk be its 2-connected components.
Then γ1(PG) = ∑k

i=1 γ1(PGi), and

γ2(PG) =
k

∑
i=1
γ2(PGi) + 4 ∑

1≤i<j≤k
cy(Gi) cy(Gj) ≥

k

∑
i=1
γ2(PGi).

Proof. By [OT21b, Proposition 5.2], the h∗-polynomial of PG is the product of the
h∗-polynomials of the polytopes PGi . Then due to Lemma 1.2.1, the same holds for
their γ-polynomials, and hence we obtain that

γ1(PG) =
k

∑
i=1
(∏

j≠i

γ0(PGj))γ1(PGi)

and

γ2(PG) =
k

∑
i=1
(∏

j≠i

γ0(PGj))γ2(PGi) + ∑
1≤i<j≤k

(∏
ℓ≠i,j

γ0(PGℓ
))γ1(PGi)γ1(PGj).

We conclude using γ0(PGi) = 1, from Lemma 4.2.1 that γ1(PGi) = 2 cy(Gi) hold for
every i and the fact that the cyclomatic number is non-negative.

Combining Lemma 4.2.1 and Lemma 4.2.3 with the non-negativity of the cyclo-
matic number, we get the following corollary.

Corollary 4.2.4. Let G be a graph. Then γ1(PG) ≥ 0.

In particular, proving non-negativity of γ2(PG) for every 2-connected graph G is
sufficient to prove the statement for every graph. Our study is divided into cases,
which we deal with in Propositions 4.2.5, 4.2.6 and 4.2.9. We start with the simplest
case.

Proposition 4.2.5. Let G = ([n],E) be a 2-connected graph. Assume that there
exists e ∈ E which is not contained in any 3- or 4-cycle. Then

γ2(PG) = γ2(PG∖e) + 4 cy(G) + 2 > γ2(PG∖e).

Proof. Since e ∈ E is not contained in any 3- or 4-cycle of G, its deletion from G does
not change the set of 3- and 4-cycles of G and, therefore, n1(G) = n1(G ∖ e). The
claim now follows from (4.2).

Next, we assume the existence of a vertex of degree 2. The reason why this case is
taken care of separately is that it forces restrictions on which edges can be removed
(see Remark 4.2.10).

Proposition 4.2.6. Let G = ([n],E) be a 2-connected graph. Assume that there
exists e = ij ∈ E such that δG(i) = 2. Then

γ2(PG) ≥ γ2(PG∖e).

Moreover, equality holds if and only if every edge of G lies in a 3- or 4-cycle together
with e.



4.2. Non-negativity of γ2 57

Proof. If e does not lie in any 3- or 4-cycle of G, the statement follows from Propo-
sition 4.2.5.

Assume that e is contained in at least one 3- or 4-cycle. Let f = ik be the unique
edge adjacent to i other than e. As δG(i) = 2, each 3- or 4-cycle containing e needs
to contain f as well. Hence, if e is contained in some 3-cycle, then the one on the
vertices i, j and k is the unique one. Let s ∈ {0,1} and r ∈ N be the number of 3- and
4-cycles containing e (and hence f), respectively. Let < be any order on E for which
e > f > h for every h ∈ E ∖ {e, f}. By the way < is defined, the minimal element of
each 4-cycle containing e and f is distinct from these.
We now list the bad pairs of G which are not bad pairs of G ∖ e. Their number is
equal to n1(G) − n1(G ∖ e), since every bad pair of G ∖ e is a bad pair of G.

- As e is contained in some 3- or 4-cycle, and e > f > h for every h ∈ E ∖ {e, f},
the pairs {j → i, i→ k} and {k → i, i→ j} are bad pairs.

- If s = 1, there are 4 additional bad pairs, which are contained in a directed
3-cycle of G, but which are not bad pairs for G ∖ e. Namely, the four pairs of
directed edges {i → j, j → k}, {k → j, j → i}, {i → k, k → j} and {j → k, k → i}.
Note that the latter two are not bad pairs of G ∖ e since they neither lie in a
3-cycle nor in a 4-cycle of G ∖ e as δG(i) = 2.

- For each 4-cycle containing e, there are 4 additional pairs. To see this, let
{ij, jℓ, ℓk, ki} be the edge set of such a 4-cycle. If the minimal element is jℓ,
then we get {i → j, ℓ → k}, {j → i, k → ℓ}, {ℓ → k, k → i} and {k → ℓ, i → k}.
If instead the minimal element is ℓk, then we get {i → j, j → ℓ}, {j → i, ℓ → j},
{j → ℓ, k → i} and {ℓ → j, i → k}. It follows from δG(i) = 2, that all of these
pairs are not bad pairs of G ∖ e.

We deduce that n1(G) − n1(G ∖ e) = 4r + 4s + 2 and hence (4.2) implies

γ2(PG) − γ2(PG∖e) = 4(cy(G) − s − r). (4.3)

To conclude, let H be the subgraph of G consisting of all edges of G which are
contained in a 3- or 4-cycle together with e. By definition H is 2-connected and
s + r = cy(H). Moreover, since H is a 2-connected subgraph of the 2-connected
graph G, we have that cy(G) ≥ cy(H). This inequality holds since the cyclomatic
number counts the number of ears in any ear decomposition of a graph, and any
ear decomposition of H can be completed to one of G. Using (4.3) this implies
γ2(PG) − γ2(PG∖e) ≥ 0.

It remains to characterize the case when γ2(PG) = γ2(PG∖e). By the previous
argument γ2(PG) − γ2(PG∖e) = 0 if and only if cy(G) = cy(H). As the cyclomatic
number of a proper 2-connected subgraph ofG needs to be strictly smaller than cy(G),
it follows that cy(G) = cy(H) if and only if G =H, which proves the claim.

Before proving the last and main proposition, we need a technical lemma.

Lemma 4.2.7. Let G = ([n],E) be a 2-connected graph without vertices of degree 2
and let H be a 2-connected subgraph with k vertices of degree 2. Then

cy(G) ≥ cy(H) + k
2
.

Proof. Any ear decomposition of H can be completed to one of G by adding (cy(G)−
cy(H))-many ears. Since G does not have vertices of degree 2, every vertex of degree
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2 in H is adjacent to at least one new ear. Moreover, each new ear is adjacent to at
most two such vertices. The number of new ears must then be at least equal to half
the number of vertices of degree 2 in H.

Before handling the remaining case towards the proof of Theorem 4.2.2, we need
an additional definition.

Definition 4.2.8. Let G = ([n],E) be a graph and let i and j be two new vertices.

(i) The double cone of G with respect to i and j is the graph with vertex set V ∪{i, j}
and with edges

E ∪ ({i, j} × V ) ∪ {ij}.

(ii) If G is bipartite with bipartition given by V = V1 ∪ V2, then the bipartite cone
of G with respect to i and j is the bipartite graph with vertex set V ∪ {i, j} and
with edges

E ∪ ({i} × V1) ∪ ({j} × V2) ∪ {ij}.

See Figure 4.2 for an example of Definition 4.2.8.

i

j

i

j

Figure 4.2: The double cone of a graph (left) and the bipartite cone
of a 6-cycle (right).

Proposition 4.2.9. Let G = ([n],E) be a 2-connected graph. Assume that every edge
of G is contained in some 3- or 4-cycle, and that mini∈[n] δG(i) ≥ 3. Then for every
e ∈ E,

γ2(PG) ≥ γ2(PG∖e).

Moreover, equality holds if and only if G = G1 ⊕2 ⋯ ⊕2 Gm, where m ≥ 1, all the
2-clique sums are taken along e = ij, G1 is the double cone w.r.t. i and j over a
connected graph G′1 with ∣E(G′1)∣ ≥ 1, and for every 2 ≤ ℓ ≤m either:

- Gℓ is the double cone w.r.t. i and j over any connected graph G′ℓ with ∣E(G′ℓ)∣ ≥
1, or

- Gℓ is the bipartite cone w.r.t. i and j over an even cycle.

Proof. Let e = ij be any edge. We define H = (W,F ) to be the subgraph induced by
all edges of G which lie in a 3- or 4-cycle together with e. We now give an iterative
procedure to construct H in a sequence of steps, yielding a partition of F . We use
H ′ = (W ′, F ′) to denote the current graph in the procedure. Set E′ = E.

Step 0: Set H ′ = ({i, j},{ij}), namely H ′ is the graph consisting of the edge e alone.
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Step 1: For every pair of edges f, g ∈ E′ such that {e, f, g} is a 3-cycle, add f, g to
F ′ and delete them from E′. This step adds to H ′ a number r1 of ears of length
2.

Step 2: Add to F ′ every edge kℓ ∈ E′ such that k and ℓ are vertices of H ′, and delete
these edges from E′. This step adds to H ′ a number r2 of ears of length 1;

Step 3: If there is a 4-cycle C in G with E(C) ∩ F ′ = {e}, add the three edges
in E(C) ∖ {e} to F ′, and delete them from E′. Update H ′ and repeat this
procedure as often as possible. In this step, r3 many ears of length 3 are added
to H ′.

Step 4: If there is a 4-cycle C in G with E(C) ∩ F ′ = {e, g} for some edge g, add
E(C) ∖ {e, g} to F ′ and delete these edges from E′. Update H ′ and iterate
this procedure as long as possible. This step adds to H’ a number r4 of ears of
length 2;

Step 5: Add to F ′ the edges f ∈ E′ such that e and f are contained in a 4-cycle C
with E(C) ∖ F ′ = {f}. This step adds to H ′ a number r5 of ears of length 1.

(See Figure 4.3 for an example of how this algorithm works.)

H =

Step 0 Step 1: r1 = 3 Step 2: r2 = 1

Step 3: r3 = 1 Step 4: r4 = 2 Step 5: r5 = 1

e

Figure 4.3: The construction of the graph H as in the proof of
Proposition 4.2.9.

It is obvious that this procedure indeed yields an open ear decomposition of H
(the closed ear being the first cycle that is constructed either in Step 1 or 3). Hence,

cy(H) =
5
∑
i=1
ri. (4.4)

Observe that we make multiple choices in Steps 3 and 4 and hence neither the de-
composition nor the numbers r3, r4 and r5 are uniquely determined. Fix now any
linear order on F such that:
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- g is bigger than f if g has been added to F before f ;

- if f, g, h are edges added in an iteration of Step 3, then the smallest of the three
is the one not incident to e;

- if f, g are edges added in an iteration of Step 4, then the smallest of the two is
the one not incident to e.

Consider an extension < of this linear order to E such that any edge of E ∖ F is
smaller than any edge of F . In particular, e is the <-maximal edge.

We now describe the bad pairs of G which are not bad pairs of G∖ e. We will use
the fact that any pair of disjoint directed edges determines a unique directed 4-cycle.
In the following, let 1C be the indicator function which equals 1 if condition C holds
and 0 otherwise.

- For every edge f lying in a 3-cycle with e, there are 2 bad pairs supported on
{e, f}. As there are 2r1 such edges f , this gives rise to 4r1 bad pairs.

- There are 2 bad pairs supported on the set {f, g}, where {e, f, g} is the last
3-cycle added in Step 1. As these pairs only occur if r1 ≥ 1, their number is
2 ⋅ 1r1≥1.

- Each edge h added in Step 2 lies in a subgraph of H isomorphic to K4 that also
contains e. In particular, there are two 4-cycles containing e and h, and in both
cycles h is the minimal element. For each cycle, only the two edges different
from e and h give rise to 2 new bad pairs. Therefore, for each edge h added in
Step 2 we get 4 new bad pairs, and hence we obtain 4r2 many.

- If f, g and h have been added in the same iteration of Step 3 with min<{e, f, g, h} =
h, then there are 2 bad pairs supported on each of {e, f}, {e, g} and {f, g}. This
yields 6r3 such bad pairs.

- If {e, f, g, h} lie in a 4-cycle such that g and h have been added in the same
iteration of Step 4 and h < g, then there are 2 bad pairs supported on each of
{e, g} and {f, g}. Note that f is incident to e and has been added either in Step
1 or in Step 3. This implies that the two bad pairs supported on {e, f} have
already been counted in the previous discussion. Hence there are 4r4 new bad
pairs.

- If {e, f, g, h} is a 4-cycle such that h has been added in Step 5, then there are
2 bad pairs supported on {f, g}. These are new, since f and g did not lie in a
4-cycle with e before Step 5. There are 2r5 such bad pairs.

Figure 4.4 shows all bad pairs for the graph H in Figure 4.3. For the total number
of bad pairs in G that are not bad pairs of G ∖ e we hence get

n1(G) − n1(G ∖ e) = 4r1 + 2 ⋅ 1r1≥1 + 4r2 + 6r3 + 4r4 + 2r5

= 4 cy(H) + 2(r3 − r5) + 2 ⋅ 1r1≥1,

where the second equality follows from (4.4). Hence, (4.2) implies

γ2(PG) − γ2(PG∖e) = 4(cy(G) − cy(H)) − 2(r3 − r5) + 2(1 − 1r1≥1). (4.5)

As H is 2-connected, we have that cy(G)−cy(H) ≥ 0, and hence the only possibly
negative term in the last equation is −2(r3−r5). In particular, if r3−r5 ≤ 0, it follows
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g < h for every edge h added in Step 1

e
h h h

f f f

g g g

h < f , h < g
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Figure 4.4: The bad pairs of edges as in Proposition 4.2.9 for the
graph H in Figure 4.3.

that γ2(PG) − γ2(PG∖e) ≥ 0. Now assume r3 − r5 ≥ 0. We claim that in this case

cy(G) ≥ cy(H) + (r3 − r5). (4.6)

Note that using (4.5) it then follows that

γ2(PG) − γ2(PG∖e) ≥ 2(r3 − r5) + 2(1 − 1r1≥1), (4.7)

which is even stronger than γ2(PG) − γ2(PG∖e) ≥ 0.
To show (4.6), let J = H ∖ {i, j} (i.e., J is the graph obtained by removing the

vertices i and j from H). The vertex set of J can be partitioned as V (J) = V1∪V3∪V4,
where Vℓ is the set of vertices that have been added to H during Step ℓ of the described
procedure. Since Steps 2 and 5 add ears of length 1, no new vertices are introduced
during these steps. Note that ∣E(J)∣ = r2+r3+r4+r5. For each connected component
Jℓ of J , we let rk,ℓ be the number of edges of Jℓ added to H in Step k, for k = 1, . . . ,5.
We distinguish between two cases:

Case 1: If V (Jℓ) ∩ V1 ≠ ∅, then we consider an auxiliary graph J ′ℓ with vertex set
V (J ′ℓ) = (V (Jℓ) ∖ V1) ∪ {v}, where v is a new vertex. Two vertices a, b ∈ V (J ′ℓ)
form an edge of J ′ℓ if either ab ∈ E(Jℓ) or a = v and wb ∈ E(Jℓ), for some
w ∈ V (Jℓ) ∩ V1. Then J ′ℓ is connected. Hence,

r3,ℓ + r4,ℓ + r5,ℓ ≥ ∣E(J ′ℓ)∣ ≥ ∣V (J ′ℓ)∣ − 1 = 2r3,ℓ + r4,ℓ + 1 − 1, (4.8)
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where the first inequality follows from the fact that the edges in Jℓ between two
vertices in V1 do not appear in J ′ℓ. We obtain that r3,ℓ − r5,ℓ ≤ 0.

Case 2: If V (Jℓ) ∩ V1 = ∅, then

r3,ℓ + r4,ℓ + r5,ℓ = ∣E(Jℓ)∣ ≥ ∣V (Jℓ)∣ − 1 = 2r3,ℓ + r4,ℓ − 1. (4.9)

This implies r3,ℓ−r5,ℓ ≤ 1, with equality attained if and only if ∣E(Jℓ)∣ = ∣V (Jℓ)∣−
1, i.e., if Jℓ is a tree (with at least one edge, since r3,ℓ = r5,ℓ + 1 ≥ 1). In this
case, Jℓ has at least 2 leaves. Since each leaf of Jℓ corresponds to a vertex of
degree 2 in H, one has that

∣{v ∈H ∶ δH(v) = 2}∣ ≥ 2⋅∣{ℓ ∶ Jℓ is a tree with ∣V (Jℓ)∣ ≥ 2 and V (Jℓ)∩V1 = ∅}∣.

Combining the two cases above and using the identities ∑ℓ rk,ℓ = rk, we obtain
that

r3 − r5 ≤ ∣{ℓ ∶ Jℓ is a tree with ∣V (Jℓ)∣ ≥ 2, V (Jℓ) ∩ V1 = ∅}∣ ≤
∣{v ∈H ∶ δH(v) = 2}∣

2
.

(4.10)
Using Lemma 4.2.7, we conclude that

cy(G) ≥ cy(H) + ∣{v ∈H ∶ δH(v) = 2}∣
2

≥ cy(H) + (r3 − r5),

which proves (4.6) and hence the inequality γ2(PG) − γ2(PG∖e) ≥ 0.
We now study the case when γ2(PG) − γ2(PG∖e) = 0. It follows from (4.5), (4.6)

and (4.7) that γ2(PG)−γ2(PG∖e) = 0 if and only if r3 = r5, r1 ≥ 1 and cy(G) = cy(H).
The last equality implies that G = H. In particular, since we assumed that every
vertex in G has degree at least 3, the same holds for H. It follows from (4.10) that
there is no component Jℓ with V (Jℓ)∩V1 = ∅ that is a tree with at least one edge. In
particular, we have that r3,ℓ−r5,ℓ ≤ 0 for any component Jℓ and, as r3 = r5, all of these
inequalities are in fact equalities. The idea now is to analyze what the components
Jℓ can look like.

If V (Jℓ) ∩ V1 ≠ ∅, then it follows from (4.8) that J ′ℓ has to be a tree and that
we have ∣E(J ′ℓ)∣ = r3,ℓ + r4,ℓ + r5,ℓ. It follows from these two conditions that for every
w ∈ V (Jℓ)∩(V3∪V4) there is at most one edge of the form wz for some z ∈ V (Jℓ)∩V1.
This implies that every vertex of degree 1 in J ′ℓ (other than v) corresponds to a
vertex of degree 2 in H. As there are none such vertices, we conclude that J ′ℓ is just
an isolated vertex, namely v. Hence, r3,ℓ = r4,ℓ = r5,ℓ = 0 and Jℓ is an arbitrary graph
on r1,ℓ vertices, where each vertex is connected to both i and j in G. This implies
that the subgraph of G induced on V (Jℓ) ∪ {i, j} is the double cone over Jℓ w.r.t. i
and j.

If V (Jℓ) ∩ V1 = ∅, then by (4.9) we have that r3,ℓ − r5,ℓ = 0 if and only if ∣E(Jℓ)∣ =
∣V (Jℓ)∣. By the same argument as above, Jℓ cannot have vertices of degree 1 and must
hence be a cycle. Since all vertices of Jℓ have been added in an iteration of Step 3 or
4, each vertex of Jℓ is connected to either i or j in G, but not to both. Consider an
edge vw ∈ E(Jℓ) and assume that vi ∈ E(G). As vw lies in a 4-cycle together with e
by assumption and there is a unique such, namely the one with edges {vw, vi, e,wj},
it follows that wj ∈ E. This shows that Jℓ is a bipartite graph with vertex partition
{v ∈ V (Jℓ) ∶ vi ∈ E} ∪ {v ∈ V (Jℓ) ∶ vj ∈ E}. Hence, Jℓ is an even cycle, and the
subgraph of G induced on V (Jℓ) ∪ {i, j} is the bipartite cone of Jℓ w.r.t. i and j.
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We can finally provide the proof of Theorem 4.2.2.

Proof of Theorem 4.2.2. LetG = ([n],E) be a graph. We show the claim by induction
on ∣E∣. If ∣E∣ = 1, the claim is trivially true. Assume that ∣E∣ > 1. Without loss of
generality, we can assume that G is connected since taking 1-sums of its connected
components does not change the symmetric edge polytope [DDM22, Remark 35]
and, in particular, its γ-vector due to [OT21b, Proposition 5.2] and Lemma 1.2.1.
If G is not 2-connected, then let G1, . . . ,Gs be its 2-connected components, where
s ≥ 2. As ∣E(Gi)∣ < ∣E(G)∣, it follows from the induction hypothesis and Lemma 4.2.3
that γ2(PG) ≥ 0. Assume that G is 2-connected. Applying Propositions 4.2.5, 4.2.6
and 4.2.9, it follows that there exists e ∈ E with γ2(PG) ≥ γ2(PG∖e). Since, by the
induction hypothesis, the latter expression is non-negative, this finishes the proof.

Remark 4.2.10. We remark that in the proof of Theorem 4.2.2, we do not claim
that γ2(PG) ≥ γ2(PG∖e) for every edge e ∈ E. This statement is indeed false.
For a small counterexample, let G be the 2-connected graph on 5 vertices with E =
{12,23,34,45,15,35}. Then γ2(PG) = 4 and γ2(PG∖35) = 6, so γ2 increases when
removing the edge 35. However, δG(3) = δG(5) = 3 and δG(1) = δG(2) = δG(4) = 2 in
G, so this is the setting from Proposition 4.2.6. In particular, the proof states that
we should choose e to be adjacent to one of the vertices of degree 2, a condition that
the edge 35 does not satisfy.

In the remaining part of this section, we focus on the problem of when γ2(PG) = 0.

Definition 4.2.11. Let n ≥ 3. Let Gn be the graph on n vertices obtained from the
complete bipartite graph K2,n−2, considered with bipartition [n] = [2] ∪ {3, . . . , n}, by
adding the edge 12.

We note thatGn has 2n−3 edges. See Figure 4.5 for an example of Definition 4.2.11
for n = 6.

Figure 4.5: The graphs G6 and K2,4.

Theorem 4.2.12. Let G = ([n],E) be a 2-connected graph. Then γ2(PG) = 0 if and
only if either n < 5, or n ≥ 5 and G ≅ Gn or G ≅K2,n−2.

Proof. By [OT21b, Example 5.9], we have that γi(PKn) = (n−1
2i
)(2i

i
), and in [HJM19]

it is proved that γi(PKm,n) = (m−1
2i
)(n−1

2i
)(2i

i
). Moreover, γi(PGn) = γi(PK2,n−1) for

every i ≥ 0 by [OT21b, Proposition 5.4]. This proves the “if" statement, which can
be also verified directly using Lemma 4.2.1, (4.12) and (4.13).

We prove the claim by double induction on the pairs (n, k), with n = ∣V (G)∣ and
k = ∣E(G)∣. The base case is given by any graph with n < 5, as γ2(PG) = 0 for every
graph G with less than 5 vertices.

Let n ≥ 5. First assume that G has a vertex i of degree 2. Let e = ij be any of
the two edges incident with i. Being 2-connected, G is either a cycle (in which case
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Theorem 4.2.2 and Proposition 4.2.6 imply that n ∈ {3,4}) or can be obtained from a
2-connected graph G′ by adding an open ear P of length ℓ ≥ 2 containing e. Assume
the latter. We then have that

0 = γ2(PG) ≥ γ2(PG∖e) = γ2(PG′) ≥ 0,

where the first inequality follows from Proposition 4.2.6, the last equality from (4.1)
in Lemma 4.2.1, and the last inequality from Theorem 4.2.2.

Hence γ2(PG′) = 0 and, by induction, G′ ∈ {Gn′ ∶ n′ ≥ 3}∪{K2,n′−2 ∶ n′ ≥ 4}∪{K4}.
We claim that the length ℓ of the ear P must be 2. Indeed, consider any edge f in
G′ different from the one (if it exists) connecting the two endpoints of P . Then every
cycle containing both e and f has length at least ℓ + 2, and Proposition 4.2.6 forces
ℓ = 2. Let then e = ij, ik be the edges in P . Note that G′ cannot be a K4, as
otherwise the edge of K4 opposite to jk would not be contained in any 3- or 4-cycle
together with e. Then either G′ ≅ Gn−1 or G′ ≅ K2,n−3, and thus G ≅ Gn (if jk ∈ E)
or G ≅K2,n−2 (otherwise).

If min δG(v) ≥ 3, we choose e to be the unique edge in the last ear of any ear
decomposition of G. We then have that G ∖ e is 2-connected and has n ≥ 5 vertices.
As γ2(PG∖e) = 0, we conclude by induction that G∖e ≅K2,n−2 or G∖e ≅ Gn. In both
cases, G ∖ e has at least 3 vertices of degree 2. Hence G has at least one degree 2
vertex, which contradicts the assumption min δG(v) ≥ 3.

The characterization of the equality case γ2 = 0 can be extended to all graphs as
follows.

Corollary 4.2.13. Let G = ([n],E) be a graph. Then γ2(PG) = 0 if and only if either

(i) G is a forest, or,

(ii) all but one of the 2-connected components of G are edges and the remaining
component is isomorphic to one of K4, Gℓ for some ℓ ≥ 3, and K2,ℓ for some
ℓ ≥ 2.

Proof. Assume γ2(PG) = 0. If G has at least two 2-connected components that are
not edges, then the product of their cyclomatic numbers is positive, as the cyclo-
matic number of any 2-connected graph is strictly positive. By Lemma 4.2.3 and
Theorem 4.2.2, this implies that γ2(PG) > 0. Hence, G has at most one 2-connected
component that is not an edge. Let us denote this component by H, if it exists.
Again using Lemma 4.2.3, we observe that if γ2(PH) > 0, then γ2(PG) > 0. The claim
now follows from Theorem 4.2.12 by noting that the only 2-connected graphs on less
than 5 vertices are K4, C3 = G3, C4 =K2,2 and G4.

We close this section with a conjecture that extends Theorem 4.2.12. To state the
conjecture, for k ≥ 2, let Gn,k be the graph that is obtained from Kk,n−k by adding all
edges between the vertices on the side of the vertex partition with k elements. In other
words, Gn,k can be thought of as the k-fold cone over a set of n−k isolated vertices. In
particular, for k = 2 we have Gn,2 = Gn. The following conjecture naturally generalizes
Theorem 4.2.12 and has been verified computationally for small values of k and n.

Conjecture 4.2.14. Let k ∈ N and let G be a k-connected graph on n vertices. Then
γk(PG) = 0 if and only if n < 2k + 1 or, n ≥ 2k + 1 and Kk,n−k ⊆ G ⊆ Gn,k.
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4.3 On a conjecture of Lutz and Nevo
In this section, our focus lies on a conjecture by Lutz and Nevo [LN16, Conjecture
6.1], which characterizes flag PL-spheres ∆ with γ2(∆) = 0. Our goal is to show
that symmetric edge polytopes with γ2 = 0 admit a triangulation of their boundary
with the properties predicted by [LN16, Conjecture 6.1]. Let us denote by ◇d the
boundary complex of the (d + 1)-dimensional cross-polytope.

Conjecture 4.3.1. [LN16, Conjecture 6.1] Let ∆ be a (d−1)-dimensional flag piece-
wise linear sphere, with d ≥ 4. Then the following are equivalent:

(i) γ2(∆) = 0;

(ii) There exists a sequence of edge contractions

∆ =∆0 →∆1 =∆0/F1 → ⋯→∆k−1/Fk ≅ ◇d−1,

such that each ∆i is a (d−1)-dimensional flag PL-sphere, and lk∆i−1(Fi) ≅ ◇d−3,
for every 1 ≤ i ≤ k.

The implication “(ii)⇒(i)” follows from the fact that γ1 = γ2 = 0 for the bound-
ary of any cross-polytope [LN17, Lemma 2.4] combined with the following relation
between the γ-vectors of ∆ and of an edge contraction ∆/F [LN17, Lemma 2.3 (ii)]:

γ2(∆) = γ2(∆/F ) + γ1(lk∆(F )). (4.11)

The remaining implication has been proven for the subclass of (dual complexes) of flag
nestohedra (see [LN16, Section 6] and [Vol10]) and has been tested computationally
by Lutz and Nevo [LN16, Section 6], but is open in general.

In the following, we show that the boundary complexes of the symmetric edge
polytopes of the graphs K2,n−2 and Gn admit a triangulation satisfying (i) and (ii)
above. We start by fixing labelings on K2,n−2 and Gn. We label the vertices of K2,n−2
and Gn so that E(K2,n−2) = {1,2} × {3, . . . , n} and E(Gn) = E(K2,n−2) ∪ {12}. Let
further < be a total order on the edges of both graphs such that 2n < 2(n−1) < ⋅ ⋅ ⋅ < 23
are the smallest edges and let ∆K2,n−2 and ∆Gn be the corresponding unimodular
triangulations of ∂PK2,n−2 and ∂PGn , respectively, provided by Lemma 4.1.1. The
6n2−28n+34 edges of ∆K2,n−2 and the 6n2−24n+24 edges of ∆Gn can then be listed
as follows:

E(∆K2,n−2) ={±{ei,a, ei,b} ∶ 1 ≤ i ≤ 2,3 ≤ a < b ≤ n}∪
{±{e1,a, eb,2} ∶ 3 ≤ a ≠ b ≤ n}∪
{±{e1,a, e2,a} ∶ 3 ≤ a ≤ n}∪ (4.12)
{±{e2,b, e1,a} ∶ 3 ≤ a < b ≤ n}∪
{±{e2,a, eb,2} ∶ 3 ≤ a < b ≤ n}∪
{±{e1,n, en,2}}.
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E(∆Gn) ={±{ei,a, ei,b} ∶ 1 ≤ i ≤ 2,3 ≤ a < b ≤ n}∪
{±{e1,a, eb,2} ∶ 3 ≤ a ≠ b ≤ n}∪
{±{e1,a, e2,a} ∶ 3 ≤ a ≤ n}∪ (4.13)
{±{e2,b, e1,a} ∶ 3 ≤ a < b ≤ n}∪
{±{e2,a, eb,2} ∶ 3 ≤ a < b ≤ n}∪
{±{e1,2, e1,a},±{e1,2, ea,2} ∶ 3 ≤ a ≤ n}.

In particular, we get that E(∆K2,n−2) ∖E(∆Gn) = {±{e1,n, en,2}}, and the only edges
of ∆Gn that are non-edges of ∆K2,n−2 are those containing e1,2 or e2,1.

Lemma 4.3.2. For every n ≥ 3, we have:

(i) ∆K2,n−2 ≅ ⟨e2,n, en,2⟩ ∗∆Gn−1,

(ii) (∆Gn/{e1,2, e1,n})/{e2,1, en,1} ≅∆K2,n−2.

Observe that {e1,2, e1,n} is an edge of ∆Gn and {e2,1, en,1} is an edge of ∆Gn/{e1,2, e1,n}.
Hence it makes sense to consider the corresponding edge contractions in (ii).

Proof. To prove (i), we first note that, since by Lemma 4.1.1 both complexes involved
in the statement are flag spheres, it suffices to provide an isomorphism between the
1-skeleta of the corresponding complexes. For this aim, let φ ∶∆K2,n−2 → ⟨e2,n, en,2⟩ ∗
∆Gn−1 be the simplicial map induced by φ(±e1,n) = ±e1,2 and φ(e) = e for any other
vertex e ∈ ∆K2,n−2 . By comparing (4.12) and (4.13), it is easily seen that φ is a
simplicial isomorphism between the 1-skeleta of ∆K2,n−2 and ⟨e2,n, en,2⟩ ∗∆Gn−1 .

To show (ii), observe that by Lemma 4.1.1 ∆K2,n−2 and ∆Gn are flag simplicial
complexes. We first show that so is (∆Gn/{e1,2, e1,n})/{e2,1, en,1}. For this it is
enough to show that {e1,2, e1,n} and {e2,1, en,1} are not contained in any induced
subcomplex of ∆Gn and ∆Gn/{e1,2, e1,n}, respectively, that is isomorphic to a 4-cycle
(see [LN17, Lemma 2.1 (ii)]). If, by contradiction, such a subcomplex exists in ∆Gn ,
then it has to contain the vertex e2,n (respectively, en,2) since e2,n (respectively, en,2)
is the only vertex lying in an edge with e1,n but not e1,2 (respectively, vice versa).
As {e2,n, en,2} is not an edge of ∆Gn , such a subcomplex cannot exist. The same
reasoning shows the corresponding statement for ∆Gn/{e1,2, e1,n} and {e2,1, en,1}.
In particular, it follows that (∆Gn/{e1,2, e1,n})/{e2,1, en,1} is flag. We consider the
simplicial map ξ ∶ (∆Gn/{e1,2, e1,n})/{e2,1, en,1} →∆K2,n−2 , defined by ξ(±e1,2) = ±e1,n

and ξ(e) = e for any other vertex of (∆Gn/{e1,2, e1,n})/{e2,1, en,1}. Using (4.12),
(4.13) and the definition of edge contraction it is easy to check that ξ induces a
simplicial isomorphism between the 1-skeleta of (∆Gn/{e1,2, e1,n})/{e2,1, en,1} and
∆K2,n−2 , which shows the claim.

We record here an explicit computation that will come in handy in the proof of
Theorem 4.3.4 below.

Example 4.3.3. Consider the graphs K4 and G4 (with the labeling described previ-
ously) and order their edges so that 34 < 24 < 23 < 14 < 13 < 12. Let ∆K4 and ∆G4

be the respective (flag) unimodular triangulations of ∂PK4 and ∂PG4 induced by this
choice.

Consider the sequence of edge contractions

∆K4 =∶∆0 →∆1 ∶= (∆K4/{e1,4, e3,4}) →∆2 ∶= (∆K4/{e1,4, e3,4})/{e4,1, e4,3}.
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One can check that ∆1 and ∆2 are flag spheres and, since ∆0 is 2-dimensional,
both lk∆0({e1,4, e3,4}) and lk∆1({e4,1, e4,3}) consist of two vertices. We claim that ∆2
is isomorphic to ∆G4: since both complexes are flag, this can be verified by exhibiting
a simplicial map between ∆2 and ∆G4 which is an isomorphism on the 1-skeleta. The
map φ∶∆2 → ∆G4 defined by φ(±e1,2) = ±e1,3, φ(±e1,3) = ±e2,3, φ(±e1,4) = ±e4,2,
φ(±e2,3) = ±e2,1, φ(±e2,4) = ±e4,1 gives the desired result.

We can now state the main result of this section.

Theorem 4.3.4. Let G be a connected graph on n ≥ 5 vertices. Then γ2(PG) = 0 if
and only if there exist a flag unimodular triangulation ∆G of ∂PG and a sequence of
edge contractions ∆G =∶ ∆0 → ∆1 ∶= ∆0/F1 → ∆2 ∶= ∆1/F2 → ⋯ → ∆2k ∶= ∆2k−1/Fk

such that

(i) ∆i is a flag sphere for every 0 ≤ i ≤ 2k;

(ii) ∆2k ≅ ◇n−2;

(iii) lk∆i−1(Fi) ≅ ◇n−4 for every 1 ≤ i ≤ 2k.

Moreover, if the conditions above are met, for every 0 ≤ i ≤ k the complex ∆2i is a
unimodular triangulation of the boundary of some symmetric edge polytope.

Proof. The validity of the “if”-part has already been observed for general flag PL-
spheres at the beginning of this section.

For the other direction assume first that G is 2-connected. By Theorem 4.2.12, we
know that γ2(PG) = 0 if and only if either G ≅K2,n−2 or G ≅ Gn. Iteratively applying
Lemma 4.3.2 and recalling that (∆∗Γ)/F =∆∗ (Γ/F ) whenever F is a face of Γ, we
obtain the following chain of edge contractions and isomorphisms:

∆Gn =∆0 →∆1 = (∆Gn/{e1,2, e1,n}) →∆2 = (∆Gn/{e1,2, e1,n})/{e2,1, en,1}
(ii)
≅ ∆K2,n−2

(i)
≅ ⟨e2,n, en,2⟩ ∗∆Gn−1

→∆3 = ⟨e2,n, en,2⟩ ∗ (∆Gn−1/{e1,2, e1,n−1})
→∆4 = ⟨e2,n, en,2⟩ ∗ (∆Gn−1/{e1,2, e1,n−1})/{e2,1, en−1,1}
(ii)
≅ ⟨e2,n, en,2⟩ ∗∆K2,n−3

(i)
≅ ⟨e2,n, en,2⟩ ∗ ⟨e2,n−1, en−1,2⟩ ∗∆Gn−2

⋮

∆2n

(ii)
≅ ⟨e2,n, en,2⟩ ∗ ⋯ ∗ ⟨e2,4, e4,2⟩ ∗∆K2,1 ≅ ◇n−2,

where the last isomorphism holds as ∆K2,1 ≅ ◇1, and the (n−3)-fold suspension over
◇1 is isomorphic to ◇n−2. It follows from Lemma 4.3.2 that all complexes in this
sequence are flag. Moreover, the proof of Lemma 4.3.2 (ii) shows that the links of the
contracted edges need to satisfy the link condition, implying that all complexes in the
sequence are triangulations of spheres (see [LN16, Section 6] and [Nev07]). Since the
link of a simplex in a flag sphere is again a flag sphere, and γ1 ≥ 0 for all flag spheres
[Gal05; Mes03], a double application of (4.11) together with Theorem 4.2.12 implies
that γ1 = 0 for every link of an edge that is contracted. As the only flag spheres with
γ1 = 0 are the boundaries of cross-polytopes (see [Gal05; Mes03]), (iii) follows.

The “Moreover”-statement follows from the above sequence of contractions and
the fact that adding a leaf to a graph corresponds to taking the suspension of the
corresponding symmetric edge polytope.
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Finally, assume G is not 2-connected. Let G =H1∪⋯∪Hk be its decomposition in
the 2-connected components Hi. Then ∆G =∆H1 ∗⋯∗∆Hk

. Corollary 4.2.13 implies
that there exists at most one i such that Hi is not a single edge. If all Hi are edges,
then PG is a cross-polytope and there is nothing to show in this case. Otherwise,
without loss of generality, we can assume that H1 is not an edge. It follows from the
above proof and Example 4.3.3 that H1 admits edge contractions as required. As all
PHi are line segments for any 2 ≤ i ≤ k and since edge contractions and taking links
commute with taking joins, the claim follows.

4.4 Symmetric edge polytopes for Erdős-Rényi random
graphs

In this section, we consider symmetric edge polytopes for random graphs generated
by the Erdős-Rényi model. The ultimate goal is to prove the following main results:

Theorem A (Theorems 4.4.5 and 4.4.12). Let k be a positive integer. For the Erdős-
Rényi model G(n, p(n)), where p(n) = n−β for some β > 0, β ≠ 1, the following
statements hold:

• (subcritical regime) if β > 1, then asymptotically almost surely γℓ = 0 for all
ℓ ≥ 1;

• (supercritical regime) if 0 < β < 1, then asymptotically almost surely γℓ ∈
Θ(n(2−β)ℓ) for every 0 < ℓ ≤ k.

We try to keep this section self-contained and tailored for a reader without much
knowledge of random graphs. However, we recommend [AS16; Bol01] and [FK16] for
more background on Erdős-Rényi random graphs.

4.4.1 Edges and cycles in Erdős-Rényi graphs

We write G(n, p) for the Erdős-Rényi probability model of random graphs on vertex
set [n], where edges are chosen independently with probability p ∈ [0,1]. Usually,
p ∶ N → [0,1] is a function depending on n that tends to 0 at some rate as n goes to
infinity. For ease of notation, we mostly just write p. We will say that a graph property
A, i.e., a family of graphs closed under isomorphism, holds asymptotically almost
surely (a.a.s. for short) or with high probability if the probability that G ∈ G(n, p) has
property A tends to 1 as n goes to infinity, i.e.,

lim
n→∞

P(G ∈ A) = 1 for G ∈ G(n, p).

In the following, given G ∈ G(n, p), we will consider the symmetric edge polytope PG

of G. It follows from (4.19) and Lemma 4.1.1 that the γ-vector of PG is independent of
the vertex and edge labels of G. Hence, in particular, properties such as γ(PG) being
non-negative or exhibiting a certain growth are graph properties as defined above.
For the study of γk(PG), the key idea is that its growth is governed by the number of
cycles of length at most 2k in G. Therefore, we will take a detour through studying
the number of cycles of length smaller than or equal to 2k in G for G ∈ G(n, p). Most
of the results we need can be found somewhere in the literature (most often in more
general form) and are probably well-known to the stochastics community.

We start by considering the number XE(G) of edges of G ∈ G(n, p). This random
variable is highly concentrated around its expectation.



4.4. Symmetric edge polytopes for Erdős-Rényi random graphs 69

Lemma 4.4.1. (i) E(XE) = (n2)p,

(ii) Var(XE) = (n2)(p − p
2),

(iii) limn→∞ P(∣XE − E(XE)∣ ≤ AE(XE)) = 1 for any A ∈ R>0 and p(n) = n−β with
0 ≤ β ≤ 1.

Proof. (i) and (ii) follow from an easy computation. For (iii) Chebyshev’s inequality
implies

P(∣XE −E(XE)∣ > AE(XE)) ≤
Var(XE)
A2E(XE)2

= p − p2

A2(n2)p2
≤ 1
Bn2−β

,

where B ∈ R is a positive constant. Since β ≤ 1, the above expression tends to 0 as n
goes to infinity, which shows the claim.

For G ∈ G(n, p) and k ∈ N, we denote by Xk(G) and X(G) the number of k-cycles
and cycles of any length in G, respectively. If G is clear from context, we use Xk and
X, respectively. Moreover, based on the following lemma (see e.g. [FK16, Theorem
5.3]) we will divide our study of γℓ(PG), where G ∈ G(n, p), into two cases.

Lemma 4.4.2. Let k ≥ 3 and let G ∈ G(n, p). Then

lim
n→∞

P(Xk > 0) =
⎧⎪⎪⎨⎪⎪⎩

0 if limn→∞ np(n) = 0
1 if limn→∞ np(n) = ∞.

.

In the following sections, we will distinguish between

• the subcritical regime, i.e., limn→∞ np(n) = 0,

• the supercritical regime, i.e., limn→∞ np(n) = ∞.

4.4.2 The subcritical regime

We start by proving a strengthening of Lemma 4.4.2.

Lemma 4.4.3. Let G ∈ G(n, p) and p(n) be such that limn→∞ np(n) = 0. Then

lim
n→∞

P(X > 0) = 0.

Proof. By Markov’s inequality we have

P(X ≥ 1) ≤ E(X). (4.14)

For an ℓ-cycle C in Kn, let XC be the indicator variable on G(n, p) with XC(G) = 1 if
C ⊆ G and XC(G) = 0, otherwise. Then E(XC) = P(XC = 1) = pℓ and since there are
(n

ℓ
) ways to choose ℓ vertices in Kn out of which (ℓ−1)!

2 different cycles can be built,
we conclude

E(Xℓ) = (
n

ℓ
)(ℓ − 1)!

2
pℓ. (4.15)

Using the linearity of expectation and (4.14), we further obtain

P(X > 0) ≤
n

∑
ℓ=3

E(Xℓ) =
n

∑
ℓ=3
(n
ℓ
)(ℓ − 1)!

2
pℓ ≤ 1

2
n

∑
ℓ=3

(pn)ℓ
ℓ
≤ 1

2
∞

∑
ℓ=1

(pn)ℓ
ℓ
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As limn→∞ np(n) = 0, we have 0 < np(n) < 1 for n large enough and hence the above
series is convergent and equals − ln(1 − pn). Taking the limit we obtain

lim
n→∞

P(X > 0) ≤ lim
n→∞
− ln(1 − pn) = − ln(1) = 0.

Remark 4.4.4. We want to point out that Lemma 4.4.3 implies that, in the subcritical
regime, a.a.s. the symmetric edge polytope is a free sum of cross-polytopes, the number
of summands being the number of components of the graph, and as such a cross-
polytope itself.

The next theorem describes the behavior of the γ-vector in the subcritical regime.

Theorem 4.4.5. Let G ∈ G(n, p) and p(n) be such that limn→∞ np(n) = 0. Then

lim
n→∞

P(γk(PG) = 0 for all k ≥ 1) = 1.

Proof. Lemma 4.4.3 implies that a.a.s. G ∈ G(n, p) is a forest. As the γ-vector of the
symmetric edge polytope of a forest equals (1,0, . . . ,0), the claim follows.

4.4.3 The supercritical regime

We now consider the situation where limn→∞ np(n) = ∞. We start by computing the
variance of the number Xk of k-cycles.

Proposition 4.4.6. Let G ∈ G(n, p) and p(n) be such that limn→∞ np(n) = ∞. For
k ∈ N, k ≥ 3 and n large enough we have

Var(Xk) ≤ A ⋅E(Xk)2 ⋅ (np(n))−1,

where A ∈ R is a positive constant.

Proof. We need to compute Var(Xk) = E(X2
k) − E(Xk)2. As in the proof of Lemma

4.4.3, for a k-cycle C ⊆ Kn, we denote by XC the corresponding indicator variable.
Moreover, we useH to denote the set of all k-cycles in Kn. By linearity of expectation,
it follows that

E(X2
k) = ∑

C,C′∈H
E(XC ⋅XC′) = ∑

C,C′∈H
p2k−∣E(C∩C′)∣ ≤ ∑

C,C′∈H
p2k−∣V (C∩C′)∣, (4.16)

where for the last inequality we use that C ∩ C ′ is a subgraph of a cycle and hence
∣E(C ∩C ′)∣ ≤ ∣V (C ∩C ′)∣. For 0 ≤ ℓ ≤ k, we set Hℓ = {(C,C ′) ∈ H2 ∶ ∣V (C ∩C ′)∣ = ℓ}.
If (C,C ′) ∈ H0, the random variables XC and XC′ are independent and we have

∑
(C,C′)∈H0

P(C ∪C ′ ⊆ G) = ∑
(C,C′)∈H0

P(C ⊆ G)P(C ′ ⊆ G)

≤( ∑
C∈H

P(C ⊆ G))( ∑
C∈H

P(C ⊆ G)) = E(Xk)2.

For ℓ ≥ 1 a simple counting argument shows that

∣Hℓ∣ = (
n

k
)(k − 1)!

2
(k
ℓ
)(n − k
k − ℓ)

(k − 1)!
2

.
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This together with (4.16) yields

E(X2
k) ≤ E(Xk)2 +

k

∑
ℓ=1
(n
k
)(k − 1)!

2
(k
ℓ
)(n − k
k − ℓ)

(k − 1)!
2

p2k−ℓ

= E(Xk)2 + (
n

k
)(k − 1)!

2
pk

k

∑
ℓ=1
(k
ℓ
)(n − k
k − ℓ)

(k − 1)!
2

pk−ℓ

≤ E(Xk)2 +E(Xk)
k

∑
ℓ=1
A1,ℓ(

k

ℓ
)nk−ℓ (k − 1)!

2
nℓpk(np)−ℓ

≤ E(Xk)2 +E(Xk)
k

∑
ℓ=1
A2,ℓ(

k

ℓ
)(n
k
)(k − 1)!

2
pk(np)−ℓ

= E(Xk)2 +E(Xk)
k

∑
ℓ=1
A2,ℓ(

k

ℓ
)E(Xk)(np)−ℓ

= E(Xk)2 +E(Xk)2
k

∑
ℓ=1
A2,ℓ(

k

ℓ
)(np)−ℓ,

where A1,ℓ,A2,ℓ ∈ R are positive constants. If limn→∞ np(n) = ∞, then (np)−ℓ ≤ (np)−1

for large n and hence

E(X2
k) ≤ E(Xk)2 +E(Xk)2

k

∑
ℓ=1
A2,ℓ(

k

ℓ
)(np)−1 = E(Xk)2 +E(Xk)2 ⋅A ⋅ (np)−1

for large n, where A = ∑k
ℓ=1A2,ℓ(kℓ). The claim now follows from the definition of the

variance.

Using Chebyshev’s inequality, Proposition 4.4.6 implies the following concentra-
tion inequalities for Xk.

Corollary 4.4.7. Let G ∈ G(n, p) and p(n) be such that limn→∞ np(n) = ∞. For
k ∈ N, k ≥ 3 and A ∈ R>0 we have

lim
n→∞

P(∣Xk −E(Xk)∣ ≤ AE(Xk)) = 1.

In the following, we assume that p(n) = n−β for some 0 < β < 1. Using Corol-
lary 4.4.7, we show different concentration inequalities which are more convenient for
our purposes.

Lemma 4.4.8. Let G ∈ G(n, p), 0 < β < 1, p(n) = n−β, α = min(1
2 ,

β
2−β ) and k ∈ N,

k ≥ 3. Then for A ∈ R>0 large enough, we have

lim
n→∞

P(1
2
E(Xℓ) ≤Xℓ ≤ AE(XE)⌈ℓ/2⌉−α for all 3 ≤ ℓ ≤ k) = 1.

Proof. We note, it suffices to show the existence of some constant A satisfying the
claimed statement, since then every A′ ≥ A satisfies it, as well.

By (4.15) and Lemma 4.4.1, for n large enough, it holds that

E(X2ℓ) ≤A1 ((
n

2
)p)

ℓ

pℓ = A1E(XE)ℓ(n2−β)
−βℓ
2−β

≤A2E(XE)ℓ ((
n

2
)p)

−βℓ
2−β

≤ A2E(XE)ℓ ⋅E(XE)
−β

2−β ≤ A2E(XE)ℓ−α,
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where for the last two inequalities we use that E(XE) ≥ 1 for n large enough and
A1,A2 ∈ R are positive constants. This yields for A ∈ R>0 and n large enough

P(X2ℓ < (1 +A)E(X2ℓ)) ≤ P(X2ℓ < (1 +A)A2E(XE)ℓ−α).

Setting A3 = (1 +A)A2, we infer from Corollary 4.4.7 that

lim
n→∞

P(X2ℓ < A3E(XE)ℓ−α) = 1.

Since, again by Corollary 4.4.7,

lim
n→∞

P(X2ℓ <
1
2
E(X2ℓ)) ≤ lim

n→∞
P(∣X2ℓ −E(X2ℓ)∣ >

1
2
E(X2ℓ)) = 0,

we obtain
lim

n→∞
P(X2ℓ <

1
2
E(X2ℓ) or X2ℓ > A3E(XE)ℓ−α) = 0. (4.17)

For odd cycles, a similar computation as for even cycles shows that for n large enough

E(X2ℓ−1) ≤ A4 ⋅E(XE)ℓ−
1
2 ⋅ n−βℓ+ 1

2 β ≤ A4 ⋅E(XE)ℓ−
1
2 ≤ A4 ⋅E(XE)ℓ−α,

where A4 ∈ R is a positive constant and for the last inequality we use that E(XE) ≥ 1
for n large enough. Almost the same argument as for even cycles implies

lim
n→∞

P(X2ℓ−1 <
1
2
E(X2ℓ−1) or X2ℓ−1 > A4E(XE)ℓ−α) = 0. (4.18)

Combining (4.17) and (4.18), we finally get

lim
n→∞

P(1
2
E(Xℓ) ≤Xℓ ≤ AE(XE)⌈ℓ/2⌉−α for all 3 ≤ ℓ ≤ k)

≥ 1 −
k

∑
ℓ=3

lim
n→∞

P(Xℓ <
1
2
E(Xℓ) or Xℓ > AE(XE)⌈

ℓ
2 ⌉−α) = 1,

where A is taken as the maximal constant appearing in (4.17) and (4.18) for 3 ≤ ℓ ≤
k.

To get information about the γ-vector of the symmetric edge polytope of a random
graph G ∈ G(n, p), we want to use Lemma 4.1.1. The first part of our strategy
consists in turning the concentration inequalities of Lemma 4.4.8 into concentration
inequalities for the number of non-faces and faces of bounded cardinality. In a second
step, we use the latter to infer concentration inequalities for the γ-vector up to a fixed
entry. We now make this idea more precise. Given a graph G on n vertices, we let
∆G be a unimodular triangulation of ∂PG as described in Lemma 4.1.1. Since PG

is reflexive and ∆G is unimodular, we have h∗j (PG) = hj(∆G) for every j. Using the
symmetry of h(∆G) and the definition of the γ-vector, we further know

⌊
dimPG

2 ⌋

∑
i=0

γi(PG)ti(t + 1)dimPG−2i =
dimPG

∑
j=0

h∗j (PG)tdimPG−j .

The usual relation between the f - and h-vector of a simplicial complex together with
the substitution of t by t + 1 implies
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dimPG

∑
j=0

fj−1(∆G)tdimPG−j =
⌊

dimPG
2 ⌋

∑
i=0

γi(PG)(t + 1)i(t + 2)dimPG−2i.

Note, with increasing index i the degree of each summand on the right is decreasing.
Thus, the last summand which contributes to the coefficient of tdimPG−k is when i = k.
For a polynomial p(t), we denote by [ti]p(t) the coefficient of ti in p(t). In particular,
evaluating the coefficient of tdimPG−k yields

γk(PG) = fk−1(∆G) − [tdimPG−k]
k−1
∑
i=0

γi(PG)(t + 1)i(t + 2)dimPG−2i. (4.19)

In order to be able to make sense out of (4.19), we need to know what the dimension
of PG is for “most” Erdős-Rényi graphs G ∈ G(n, p) in the supercritical regime.
Denoting by XdimP the corresponding random variable, we have:

Lemma 4.4.9. Let G ∈ G(n, p), 0 < β < 1 and p(n) = n−β. Then we have

lim
n→∞

P(XdimPG
= n − 1) = 1.

Proof. Since for any graph G on n vertices dimPG = n−1 if and only if G is connected,
the result follows e.g. from [FK16, Theorem 4.1] using the fact that n−β grows faster
than log(n)

n for any 0 < β < 1.

In order to use (4.19) to show concentration inequalities for the γ-vector of PG,
we need to study the random variables fk−1 or equivalently the number of non-faces
of ∆G. For G ∈ G(n, p), we denote by nk−1(G) the number of (k − 1)-dimensional
non-faces of ∆G that do not contain antipodal vertices. Note that n1(G) equals the
number of bad pairs of G as in Section 4.2.

Theorem 4.4.10. Let G ∈ G(n, p), 0 < β < 1, p(n) = n−β, α =min(1
2 ,

β
2−β ) and k ∈ N,

k ≥ 1. Then for B ∈ R>0 large enough, we have

lim
n→∞

P(nℓ−1 ≤ BE(XE)ℓ−α for all 2 ≤ ℓ ≤ k + 1) = 1.

Proof. As in the proof of Lemma 4.4.8, it suffices to show the existence of some
constant B satisfying the claimed statement.

Let G ∈ G(n, p) and let 2 ≤ ℓ ≤ k + 1. On the one hand, any (ℓ− 1)-non-face of ∆G

contains a minimal (not necessarily unique) r-non-face of ∆G for some 1 ≤ r ≤ ℓ − 1.
On the other hand, any such minimal r-non-face of ∆G can be extended to an (ℓ−1)-
non-face of ∆G by adding ℓ − 1 − r non-antipodal vertices to it, for which there are
(XE(G)−(r+1)

ℓ−1−r
) ⋅ 2ℓ−1−r possibilities. Hence, denoting by Nr(G) the number of minimal

r-non-faces of ∆G, we conclude

nℓ−1(G) ≤
ℓ−1
∑
r=1
(XE(G) − (r + 1)

ℓ − 1 − r ) ⋅ 2ℓ−1−r ⋅Nr(G) ≤
ℓ

∑
r=2

Br,ℓXE(G)ℓ−rNr−1(G),

where Br,ℓ ∈ R are positive constants. Let A1 ∈ R such that Lemma 4.4.8 holds. As,
by Lemma 4.1.1, for G ∈ G(n, p) we have Nr−1(G) ≤ 2 ⋅ (2r−1

r
)(X2r(G)+X2r−1(G)), it

follows that

P(Nr−1 ≤ 4 ⋅ (2r − 1
r
) ⋅A1 ⋅E(XE)r−α)

≥ P (X2r ≤ A1E(XE)r−α and X2r−1 ≤ A1E(XE)r−α) .



74 Chapter 4. On the gamma vector of symmetric edge polytopes

By the choice of A1, we have limn→∞ P(Nr−1 ≤ 4 ⋅ (2r−1
r
) ⋅A1 ⋅ E(XE)r−α) = 1. As, by

Lemma 4.4.1 (iii), we also have limn→∞ P(XE ≤ (1+A2)E(XE)) = 1 for any A2 ∈ R>0,
we conclude that a.a.s. it holds that

nℓ−1 ≤
ℓ

∑
r=2

Br,ℓ(1 +A2)ℓ−rE(XE)ℓ−r ⋅ 4 ⋅ (2r − 1
r
) ⋅A1 ⋅E(XE)r−α

=(
ℓ

∑
r=2

Br,ℓ(1 +A2)ℓ−r ⋅ 4 ⋅ (2r − 1
r
) ⋅A1)E(XE)ℓ−α = B ⋅E(XE)ℓ−α

with B = ∑ℓ
r=2Br,ℓ(1 +A2)ℓ−r ⋅ 4 ⋅ (2r−1

r
) ⋅A1. The claim follows.

For G ∈ G(n, p) we denote by fk−1(G) the number of (k − 1)-faces of ∆G. From
Theorem 4.4.10, we can deduce concentration inequalities for these random variables.

Theorem 4.4.11. Let 0 < β < 1, p(n) = n−β, α =min(1
2 ,

β
2−β ) and k ∈ N, k ≥ 1. Then

for G ∈ G(n, p) and ϵ > 0 and B ∈ R>0 large enough, we have

lim
n→∞

P(2ℓ−ϵ(E(XE)
ℓ
) −BE(XE)ℓ−α ≤ fℓ−1 ≤ 2ℓ+ϵ(E(XE)

ℓ
) for all 1 ≤ ℓ ≤ k) = 1.

In particular,
lim

n→∞
P (fℓ−1 ∈ Θ(n(2−β)ℓ) for all 1 ≤ ℓ ≤ k) = 1. (4.20)

Proof. The statement trivially holds for k = 1 since f0 = 2XE . Let k ≥ 2 and 1 ≤ ℓ ≤ k.
For G ∈ G(n, p), we have

fℓ−1(G) = 2ℓ(XE(G)
ℓ
) − nℓ−1(G).

Let 0 < A1 < 1 be such that ((1−A1)E(XE)

ℓ
) = 2−ϵ(E(XE)

ℓ
).

It follows from Theorem 4.4.10 and Lemma 4.4.1 (iii) that for large enough B ∈ R>0

lim
n→∞

P(fℓ−1 ≥ 2ℓ−ϵ(E(XE)
ℓ
) −BE(XE)ℓ−α) = 1. (4.21)

Finally, let A2 > 0 be such that ((1+A2)E(XE)

ℓ
) = 2ϵ(E(XE)

ℓ
). As for G ∈ G(n, p) the

triangulation ∆G is a subcomplex of a cross-polytope of dimension XE(G), we can
bound fℓ−1(G) from above by 2ℓ(XE(G)

ℓ
). Using Lemma 4.4.1 (iii), we conclude that

lim
n→∞

P(fℓ−1 ≤ 2ℓ+ϵ(E(XE)
ℓ
)) = 1. (4.22)

Combining (4.21) and (4.22) for any 1 ≤ ℓ ≤ k finishes the proof of the first statement.
For the “In particular”-part it suffices to note that, since E(XE) ∈ Θ(n2−β), the

upper and lower bounds for fℓ−1 both lie in Θ(n(2−β)ℓ).

We are now ready to state the main result of this subsection.

Theorem 4.4.12. Let 0 < β < 1, p(n) = n−β and k ∈ N. Then for G ∈ G(n, p),

lim
n→∞

P(γℓ(PG) ∈ Θ(n(2−β)ℓ) for all 0 ≤ ℓ ≤ k) = 1.

Proof. We show the statement by induction on k. Since γ0 = 1 is constant, the
statement holds for k = 0.



4.4. Symmetric edge polytopes for Erdős-Rényi random graphs 75

Now assume k ≥ 1. Since by the induction hypothesis we have

lim
n→∞

P(γℓ ≥ 0 for all 0 ≤ ℓ ≤ k − 1) = 1, (4.23)

it follows from (4.19) that

lim
n→∞

P(γℓ ≤ fℓ−1 for all 0 ≤ ℓ ≤ k) = 1. (4.24)

Thus, we have an upper bound for γℓ, which a.a.s. lies in Θ(n(2−β)ℓ) by (4.20). Com-
bining this upper bound with a more detailed analysis of (4.19) will enable us to prove
that γℓ can be bounded asymptotically always surely by a lower bound that also lies
in Θ(n(2−β)ℓ). Lemma 4.4.9 implies that XdimP = n − 1 a.a.s.; hence, by (4.24) and
(4.19) we have a.a.s.

γℓ ≥fℓ−1 − [tn−1−ℓ]
ℓ−1
∑
i=0
fi−1(t + 1)i(t + 2)n−1−2i (4.25)

=fℓ−1 −
ℓ−1
∑
i=0
fi−1
⎛
⎝

n−1−ℓ

∑
j=n−1−ℓ−i

2n−1−2i−j( i

n − 1 − ℓ − j)(
n − 1 − 2i

j
)
⎞
⎠
.

Using Theorem 4.4.11, we conclude that for large enough B ∈ R>0 it holds a.a.s. that

γℓ ≥ 2ℓ−ϵ(E(XE)
ℓ
) −BE(XE)ℓ−α

−
ℓ−1
∑
i=0

2i+ϵ(E(XE)
i
)
⎛
⎝

n−1−ℓ

∑
j=n−1−ℓ−i

2n−1−2i−j( i

n − 1 − ℓ − j)(
n − 1 − 2i

j
)
⎞
⎠
.

Since for n ≥ 2ℓ + 1 one has n − 1 − ℓ − i ≥ n−1−2i
2 , the expression (n−1−2i

j
) in the last

sum is maximal for j = n − 1 − ℓ − i. As also 2n−1−2i−j is maximal in this case and
( i

n−1−ℓ−j
) ≤ ( ℓ−1

⌊(ℓ−1)/2⌋) for 0 ≤ i ≤ ℓ − 1 and any j, it follows that a.a.s. γℓ is greater or
equal to

2ℓ−ϵ(E(XE)
ℓ
) −BE(XE)ℓ−α − ( ℓ − 1

⌊(ℓ − 1)/2⌋)
ℓ−1
∑
i=0

2i+ϵ(E(XE)
i
)(i + 1)2ℓ−i( n − 1 − 2i

n − 1 − ℓ − i)

= 2ℓ−ϵ(E(XE)
ℓ
) −BE(XE)ℓ−α − ( ℓ − 1

⌊(ℓ − 1)/2⌋)
ℓ−1
∑
i=0

2ℓ+ϵ(E(XE)
i
)(i + 1)(n − 1 − 2i

ℓ − i ).

Analysing the expressions in the last equation, we see that

2ℓ−ϵ(E(XE)
ℓ
) −BE(XE)ℓ−α ∈ Θ(n(2−β)ℓ)

and
2ℓ+ϵ(E(XE)

i
)(i + 1)(n − 1 − 2i

ℓ − i ) ∈ Θ(n(2−β)i ⋅ nℓ−i) = Θ(ni+ℓ−iβ).

As (2 − β)ℓ > i + ℓ − iβ for ℓ > i, this implies

2ℓ−ϵ(E(XE)
ℓ
) −BE(XE)ℓ−α −

ℓ−1
∑
i=0

2ℓ+ϵ(E(XE)
i
)(i + 1)(n − 1 − 2i

ℓ − i ) ∈ Θ(n(2−β)ℓ).

As a consequence, we have found that γℓ can a.a.s. be bounded from below by an
expression in Θ(n(2−β)ℓ). Combining this with the previously shown upper bound
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completes the proof.

Remark 4.4.13. It is natural to ask if the results for γk we obtained in the subcritical
and the supercritical regime (Theorems 4.4.5 and 4.4.12) can be extended to the critical
regime, i.e., p(n) = c

n for a constant c > 0. Indeed, using that in this regime Xℓ

converges in distribution to a Poisson distribution with mean and variance cℓ

2ℓ (see
e.g., [AS16, Theorem 10.1.1]), one can show that Xℓ is highly concentrated around
its mean. More precisely,

lim
n→∞

P (∣Xℓ −E(Xℓ)∣ ≤ ω(n)) = 1

for any arbitrarily slowly increasing function ω ∶ N → R. By similar arguments as in
the proof of Theorem 4.4.10, this gives rise to the following concentration inequality
for the non-faces:

lim
n→∞

P(nℓ−1 ≤ nκE(nℓ−1)) = 1. (4.26)

By the same method as in the proof of Theorem 4.4.11, one can show that

lim
n→∞

P(fℓ−1 ∈ Θ(nℓ)) = 1. (4.27)

Unfortunately, the arguments from the proof of Theorem 4.4.12 only allow us to bound
the double sum in the second row of (4.25) by an expression in Θ(nℓ). Hence, in order
to be able to turn (4.27) into concentration inequalities for γℓ, different arguments or
at least a more refined analysis including the leading coefficients would be needed.
It is reasonable to believe that, analogously to the variety of behaviors of the largest
component of an Erdős-Rényi graph (see e.g. [AS16, Chapter 11]), one would also get
different behaviors for γℓ depending on whether c < 1, c = 1 or c > 1. We leave this as
an open problem.
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Chapter 5

Laplacian polytopes of simplicial
complexes

It was shown in [BM17] that Laplacian simplices have unimodal h∗-vectors for certain
classes of graphs, including trees, odd cycles and complete graphs. Inspired by these
results, we study properties of the h∗-vectors of general Laplacian polytopes. This is
further motivated by the general question under which conditions a lattice polytope
has a unimodal h∗-vector. It was conjectured by Hibi and Ohsugi that this is true
for reflexive lattice polytopes that have the integer decomposition property (IDP)
[HO06], and, recently, Adiprasito, Papadakis, Petrotou and Steinmeyer could confirm
this conjecture in the positive [Adi+22]. However, it is still mysterious what happens
if the polytope is not reflexive. We consider this question for the Laplacian polytope
P∂(σd+1) of the boundary of the (d + 1)-simplex. Even in this seemingly most simple
situation, P∂(σd+1) turns out to be not reflexive and hence the mentioned results
towards unimodality do not apply. However, the following result shows that P∂(σd+1)

has at least the integer decomposition property.
Theorem B. P∂(σd+1) has a regular unimodular triangulation for every integer d ≥ 0.

We note that, combined with [Ath04, Theorem 1.3], this result implies that the
h∗-vector of P∂(σd+1) is decreasing in its second half which is obviously implied by
but weaker than unimodality. The main ingredient for Theorem B is the so-called
interior polytope of P∂(σd+1), that is defined as the convex hull of the interior lattice
points of P∂(σd+1). Indeed, this polytope turns out to be reflexive (after translation
to the origin) and miraculously, P∂(σd+1) happens to be the second dilation of it
(after translating both polytopes to the origin). Using edgewise subdivisions, we
provide an explicit construction of a regular unimodular triangulation for the interior
polytope which then extends to such a triangulation of P∂(σd+1) by [Haa+14, Theorem
4.8]. As a byproduct, we can also compute the normalized volume of P∂(σd+1) (see
Corollary 5.4.7). Theorem B combined with the results on the interior polytope
enables us to show the following statement:
Theorem C. (a) h∗ (P∂(σd+1); t) has only real roots if d ∈ N is odd.

(b) h∗ (P∂(σd+1)) is unimodal with peak in the middle for every d ∈ N.
We note that if d is odd, then the statement in (b) is just an easy consequence of

the one in (a). We conjecture (a) to be true also if d is even.

5.1 Laplacian matrices of boundaries of simplices
In this section, we investigate basic properties of the Laplacian matrix of the boundary
of a simplex that will be useful for deriving properties of the corresponding Laplacian
polytope in Section 5.2.
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We start with an easy general statement.

Lemma 5.1.1. Let ∆ be a d-dimensional simplicial complex. Then

rankLd(∆) = fd(∆) − dimQHd(∆;Q).

Proof. We have the following chain of equalities:

rankLd(∆) = rank(∂⊺d∂d) = fd(∆) − dimQ ker(∂⊺d∂d) = fd(∆) − dimQ ker(∂d),

where the last equality follows from the fact that ker(∂d) = ker(∂⊺d∂d). Since dim ∆ =
d, we also have Hd(∆;Q) = ker(∂d), which shows the claim.

Let Fi = [d + 2] ∖ {d + 3 − i} for 1 ≤ i ≤ d + 2 and order the columns and rows of
Ld(∂(σd+1)) according to F1, . . . , Fd+2. We first provide an explicit description of the
dth Laplacian matrix in this case.

Theorem 5.1.2. Let ∆ = ∂(σd+1). Then Ld(∆) ∈ Z(d+2)×(d+2), L0(∆) = (
0 0
0 0 )

and, for d ≥ 1, 1 ≤ i, j ≤ d + 2, we have

Ld(∆)ij =
⎧⎪⎪⎨⎪⎪⎩

d + 1, if i = j,
(−1)i+j−1, otherwise.

Proof. Since fd(∂(σd+1)) = d + 2, we have Ld(∆) ∈ Z(d+2)×(d+2).
Assume d = 0. As ∂0 is the zero map, the statement is immediate.
Now let d ≥ 1. Since dim ∆ = d, it follows that degU(F ) = 0 for any d-face F of ∆.

Using Theorem 1.2.2, this implies that Ld(∆)ii = d + 1 for all 1 ≤ i ≤ d + 2.
Now, let i ≠ j. Since Ld(∆) is symmetric, we can assume that i < j. Fi and

Fj have the common lower simplex Fi ∩ Fj = [d + 2] ∖ {d + 3 − i, d + 3 − j} ≠ ∅. By
Equation (1.3), eFi∩Fj appears with sign (−1)d+2−j in ∂d(e[d+2]∖{d+3−i}) and it appears
with sign (−1)d+1−i in ∂d(e[d+2]∖{d+3−j}). These signs coincide, meaning that Fi ∩ Fj

is a similar common lower simplex of Fi and Fj , if and only if i+ j is odd. The claim
follows from Theorem 1.2.2.

The next two lemmata will be crucial for determining the dimension of the Lapla-
cian polytope of ∂(σd+1) in Proposition 5.2.6.

Lemma 5.1.3. Let ∆ = ∂(σd+1). Then Ld(∆) has rank d+1 and every (d+1)-element
subset of the columns (resp. rows) of Ld(∆) is linearly independent.

Proof. The first statement follows from Lemma 5.1.1 and the fact that Hd(∆;Q) = Q.
Let 1 ≤ i ≤ d+2. Let Ai be the (d+1)×(d+1)-matrix obtained from Ld(∆) by removing
the ith row and column. By definition, Ai = Ld(∆∖{Fi}). Since Hd(∆∖{Fi}),Q) = 0,
by Lemma 5.1.1 again, this matrix has full rank. As adding any extra row or column
to Ai does not change the rank, the claim follows.

Lemma 5.1.4. Let ∆ = ∂(σd+1). Then

rank (Ld(∆)
1⋯1 ) =

⎧⎪⎪⎨⎪⎪⎩

d + 1, if d is even,
d + 2, if d is odd.
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Proof. First assume that d is even. We define λ = (λ1, ..., λd+2)⊺ ∈ Rd+2 by

λj =
⎧⎪⎪⎨⎪⎪⎩

0, if j is odd,
2

d+2 , if j is even.

Using Theorem 5.1.2, it is straight-forward to verify that Ld(∆) ⋅ λ = 1, which, com-
bined with Lemma 5.1.3, shows the claim.

Now, let d be odd and assume by contradiction that rank (Ld(∆)
1⋯1 ) < d + 2.

Lemma 5.1.1 and Lemma 5.1.3 imply that rank (Ld(∆)
1⋯1 ) = rankLd(∆). Hence, there

exists λ = (λ1, . . . , λd+2)⊺ ∈ Rd+2, such that Ld(∆)⋅λ = 1. Let Ld(∆)[d+1] be the matrix
obtained from Ld(∆) by deleting the last row. Then we also have Ld(∆)[d+1] ⋅ λ = 1
and it follows from Lemma 5.1.3 that, up to the choice of the last coordinate λd+2,
the vector λ is unique. Indeed, a direct computation shows that, if λd+2 = µ for some
µ ∈ R, then we must have

λj =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(d+2)⋅µ+1
d+2 , if j is odd,

− (d+2)⋅µ−1
d+2 , if j is even.

(5.1)

However, denoting by rd+2 the last row of Ld(∆), it holds that rd+2 ⋅ λ = 0 ≠ 1, which
yields a contradiction.

5.2 General properties of Laplacian polytopes
The goal of this section is to generalize Laplacian simplices – as introduced and
studied in [BM17; MT18] – that are associated to a graph to arbitrary simplicial
complexes and their Laplacian matrices. After stating some basic general properties
of what we call Laplacian polytopes, we focus on boundaries of simplices and their
highest Laplacians.

In the following, given a matrix M , we use conv(M) to denote the polytope given
by the convex hull of the columns of M .

Definition 5.2.1. Let ∆ be a d-dimensional simplicial complex on [n], ordered 1 <
⋯ < n, and let 0 ≤ k ≤ d. The kth Laplacian polytope of ∆ is defined as the convex
hull of the columns of Lk(∆), i.e.,

P
(k)
∆ ∶= conv(Lk(∆)) ⊆ Rfk(∆).

We want to remark that the 0th Laplacian polytope of a simplicial complex co-
incides with the Laplacian simplex of its 1-skeleton, as defined in [BM17]. The next
example shows that different orderings of the vertex set of ∆ may result in polytopes
of different dimensions.

Example 5.2.2. Let G be the 4-cycle on [4] with E(G) = {12,23,34,14}. If the
vertices of G are ordered 1 < 2 < 3 < 4, then P

(1)
G is a 3-simplex. If the vertices of G

are ordered 1 < 2 < 4 < 3, then P
(1)
G is a 2-dimensional rectangle.
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Example 5.2.3. P (2)
∂(σ3)

is given by the convex hull of the columns of the following
matrix:

L2(∂(σ3)) =
⎛
⎜⎜⎜
⎝

3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3

⎞
⎟⎟⎟
⎠
.

It will follow from Lemma 5.2.10 that P (2)
∂(σ3)

is unimodular equivalent to the square
in R2 with vertices (−1,1), (1,−1), (3,1) and (1,3).

We start by showing that every column of Lk(∆) yields a vertex of P (k)∆ .

Proposition 5.2.4. Let ∆ be a d-dimensional simplicial complex and 0 ≤ k ≤ d an
integer. Then P

(k)
∆ has fk(∆) many vertices.

Proof. Set m ∶= fk(∆) and let v(i) denote the ith column of Lk(∆). We assume by
contradiction that there exists 1 ≤ i ≤m, a set S ⊆ [m]∖{i} and λj ∈ R with λj > 0 and
∑j∈S λj = 1 such that v(i) = ∑j∈S λjv

(j). Setting λj = 0 if j ∉ S ∪ {i} and λi = −1, we
see that λ ∶= (λ1, . . . , λm)⊺ ∈ ker(Lk(∆)) and hence λ ∈ ker(∂k) by [MHJ22, Corollary
1.3.1]. Let w(ℓ) denote the ℓth column of ∂k. If w(i)ℓ = 1, then since w(j)ℓ ∈ {−1,0,1},
λj > 0 and ∑j∈S λj = 1, we must have w(j)ℓ = 1 for all j ∈ S. By the same reasoning,
it follows that w(j)ℓ = −1 for all j ∈ S if w(i)ℓ = −1. As all columns of ∂k have the
same number of non-zero entries, we conclude w(i) = w(ℓ) for all ℓ ∈ S, which is a
contradiction.

The next proposition gives a sufficient criterion for P (dim ∆)
∆ being a simplex.

Proposition 5.2.5. Let ∆ be a d-dimensional simplicial complex. If Hd(∆;Q) = 0,
then P

(dim ∆)
∆ is an (fd(∆) − 1)-simplex.

Proof. Lemma 5.1.1 implies that rankLd(∆) = fd(∆), and thus has full rank. Conse-
quently, the columns of Ld(∆) are linearly independent which shows the claim.

In the following, we focus on the dth Laplacian polytope of ∂(σd+1). To sim-
plify notation, we set P∂(σd+1) = P

(d)
∂(σd+1)

. We use s(i) to denote the ith column of
Ld(∂(σd+1)). Moreover, given a subset S ⊆ [d + 2], we denote by Ld(S) the matrix
obtained from Ld(∂(σd+1)) by deleting the rows with indices in S.

Combining Lemma 5.1.4 and [Grü03, p. 4], the following formula for the dimension
of P∂(σd+1) is immediate.

Proposition 5.2.6. Let ∆ = ∂(σd+1). Then

dimP∆ =
⎧⎪⎪⎨⎪⎪⎩

d, if d is even,
d + 1, if d is odd.

The previous statement together with Proposition 5.2.4 allows us to conclude:

Corollary 5.2.7. Let d ∈ N with d ≥ 1 and ∆ = ∂(σd+1). Then P∆ has d+ 2 vertices.
In particular, P∆ is a (d + 1)-simplex, if d is odd.

Corollary 5.2.7 trivially implies that P∂(σd+1) is a simplicial polytope if d is odd.
The same statement also turns out to be true for d even.
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Theorem 5.2.8. P∂(σd+1) is simplicial for every d ∈ N.

Proof. Let ∆ = ∂(σd+1). If d is odd, then the claim is trivially true by Corollary 5.2.7.
Now, let d be even. If d = 0, then P∆ is just the origin and as such simplicial. Let

d ≥ 2 and let F be the vertices of a facet of P∆. Combining Proposition 5.2.6 and
Corollary 5.2.7, it follows that d ≤ ∣F ∣ ≤ d + 1. If, by contradiction, ∣F ∣ = d + 1, then
Lemma 5.1.3 implies that the convex hull of F is d-dimensional, i.e., F cannot be a
facet. Consequently, F is a simplex, which finishes the proof.

As, by Proposition 5.2.6, the Laplacian polytope of ∂(σd+1) is never full-dimensio-
nal, our next goal is to construct a polytope that is unimodular equivalent to P∂(σd+1)

and full-dimensional with respect to its ambient space. We first need to introduce
some further notation.

We let 1even and 1odd denote the 0−1-vectors in Rd+2 whose even and odd entries
are equal to 1, respectively. Given these definitions, we can easily compute the affine
hull of P∂(σd+1).

Lemma 5.2.9. Let d ∈ N with d ≥ 1 and ∆ = ∂(σd+1).

aff(P∆) =
⎧⎪⎪⎨⎪⎪⎩

{x ∈ Rd+2 ∶ (1odd − 1even)⊺ ⋅ x = 0} , if d is odd,
{x ∈ Rd+2 ∶ 1⊺odd ⋅ x = 1⊺even ⋅ x = d+2

2 } , if d is even.

Proof. By Proposition 5.2.6, it is enough to show that all vertices of P∆ lie in the
specified subspaces of dimension d+1 and d, respectively. This can be seen by a direct
computation.

The next lemma gives the desired unimodular equivalent polytopes.

Lemma 5.2.10. Let d ∈ N. The polytope P∂(σd+1) is unimodular equivalent to
conv(Ld({1})) and conv (Ld({1,2})) if d is odd and even, respectively.

Proof. Define matrices A,B ∈ Z(d+2)×(d+2) as follows:

A =
⎛
⎜⎜⎜
⎝

1⊺odd − 1⊺even
0
⋮ Ed+1
0

⎞
⎟⎟⎟
⎠

and B =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1⊺odd
1⊺even

0 0
⋮ ⋮ Ed

0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where Ed and Ed+1 denote identity matrices. Note that A and B are unimodular. By
Lemma 5.2.9, we conclude that

A ⋅ P∂(σd+1) = {0} × conv(Ld({1})),

if d is odd and

B ⋅ P∂(σd+1) = {((d + 2)/2, (d + 2)/2)} × conv (Ld({1,2})) ,

if d is even. This finishes the proof.

In the following, we use P̃ ∂(σd+1) to denote the unimodular equivalent polytope to
P∂(σd+1) as constructed in Lemma 5.2.10. By abuse of notation, we will also refer to
P̃ ∂(σd+1) as dth Laplacian polytope of ∂(σd+1). We also want to remark that, if d is
odd, we have the following, easy-to-show containment relation: P̃ ∂(σd+1) ⊆ P̃ ∂(σd+2).
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5.3 The facet description and the combinatorial type of
P∂(σd+1)

While, for odd d, we have already seen that P̃ ∂(σd+1) is a simplex, the goal of this
section is to determine the combinatorial type of P∂(σd+1) if d is even. To reach this
goal, we will first provide a complete irredundant facet description of P∂(σd+1).

We fix some notation. Let b(ℓ) denote the vertex of P̃ ∂(σd+1), that is given by the
ℓth column of Ld({1,2}). By Theorem 5.1.2, we have b(ℓ)k = d + 1 if k = ℓ − 2 and
b
(ℓ)
k = (−1)k+ℓ−1, otherwise.

Proposition 5.3.1. Let d ≥ 2 be even. Then the following inequalities are facet-
defining and irredundant for P̃ ∂(σd+1):

(i) 1⊺ ⋅ x ≤ d + 2,

(ii) 1⊺odd ⋅ x − xi ≤ d+2
2 , where i ∈ [d] is even,

(iii) 1⊺even ⋅ x − xj ≤ d+2
2 , where j ∈ [d] is odd,

(iv) xi + xj ≥ 0, where 1 ≤ i < j ≤ d such that i + j is odd.

Moreover, the vertices, which attain equality in (i)–(iv), are given by the sets {b(ℓ) ∶ 3 ≤
ℓ ≤ d + 2}, {b(ℓ) ∶ ℓ ∈ [d + 2] ∖ {1, i + 2}}, {b(ℓ) ∶ ℓ ∈ [d + 2] ∖ {2, j + 2}} and
{b(ℓ) ∶ ℓ ∈ [d + 2] ∖ {i + 2, j + 2}}, respectively.

Proof. We first consider the inequality in (i). If ℓ ∈ {1,2}, then b(ℓ) ∈ {−1,1}d with
alternating entries and hence 1⊺ ⋅ b(ℓ) < d+ 2. Let 3 ≤ ℓ ≤ d+ 2. As d is even, it follows
from above that b(ℓ) has one entry equal to d+1, d

2 entries equal to 1 and d
2 −1 entries

equal to −1. This implies 1⊺ ⋅ b(ℓ) = d + 2. Hence, the inequality in (i) defines a facet,
whose vertices are given by {b(ℓ) ∶ 3 ≤ ℓ ≤ d+ 2}, where we use that the affine hull of
the latter set is (d − 1)-dimensional by Lemma 5.1.3.

Similarly, it is straightforward to verify that the inequalities in (ii)–(iv) are valid
for P̃ ∂(σd+1) and that the given sets of vertices are the ones attaining equality. As
those all differ and their affine hulls all have dimension d − 1, it follows that the
inequalities are irredundant.

For the sake of completeness we add the description of the facets of P̃ ∂(σd+1) for
d odd.

Remark 5.3.2. If d ≥ 3 is odd, using Theorem 5.1.2, it is not hard to see that the
following inequalities are facet-defining for P̃ ∂(σd+1):

(i) 1⊺ ⋅ x ≤ d + 2,

(ii) 2 ⋅ 1⊺odd ⋅ x − xi ≤ d+2
2 , where i ∈ [d + 1] is even,

(iii) 2 ⋅ 1⊺odd ⋅ x + xj ≤ d + 2, where j ∈ [d] is odd.

It is easy to verify that these inequalities are irredundant and as, by Proposition 5.2.6,
P̃ ∂(σd+1) is a simplex, they provide the complete facet description of P̃ ∂(σd+1). We omit
an explicit proof since this description will not be needed.

We state the first main result of this section.
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Theorem 5.3.3. For d even, P̃ ∂(σd+1) is completely described by the inequalities in
Proposition 5.3.1. Moreover, this description is irredundant. In particular, P̃ ∂(σd+1)

has (d+2)2
4 many facets.

Proof. We let F̃ denote the set of facets of P̃ ∂(σd+1) provided by Proposition 5.3.1,
and we write G

F̃
for the subgraph of the facet-ridge graph of P̃ ∂(σd+1) that is induced

on vertex set F̃ . It follows from Theorem 5.2.8, that the facet-ridge graph of P̃ ∂(σd+1)

is d-regular and connected. Since any d-regular subgraph does not have a proper
d-regular subgraph, for the first statement, it suffices to show that G

F̃
is d-regular.

Since G
F̃

is a subgraph of G(P̃ ∂(σd+1)), its maximal degree is at most d. Hence,
to show the claim, it suffices to show that ∣E(G

F̃
)∣ = d⋅∣V (GF̃)∣

2 .
We first count the vertices of G. Using Proposition 5.3.1, we get that

∣V (G
F̃
)∣ = 1 + d

2
+ d

2
+ (d

2
)

2
= (d + 2)2

4
, (5.2)

Here, the last term in the middle comes from the fact that the inequalities in (iv) are
indexed by sets {i, j} where i ∈ {2ℓ ∶ ℓ ∈ [d2]} and j ∈ {2ℓ − 1 ∶ ℓ ∈ [d2]}.

It remains to count the number of edges of G
F̃

. In the following, we identify a
facet in F̃ with its set of vertices. Given this, we use the following short hand notation
for the different types of facets in F̃ .

(i) F = {b(ℓ) ∶ 3 ≤ ℓ ≤ d + 2};

(ii) Ei = {b(ℓ) ∶ ℓ ∈ [d + 2] ∖ {1, i + 2}}, where i ∈ [d] is even;

(iii) Oj = {b(ℓ) ∶ ℓ ∈ [d + 2] ∖ {2, j + 2}}, where j ∈ [d] is odd;

(iv) Fk,m = {b(ℓ) ∶ ℓ ∈ [d + 2] ∖ {k + 2,m + 2}} for 1 ≤ k < m ≤ d such that k +m is
odd.

We immediately get that

(a) ∣F ∩Ei∣ = ∣F ∩Oj ∣ = d − 1 for all even i ∈ [d] and all odd j ∈ [d];

(b) ∣F ∩ Fk,m∣ = d − 2 for all 1 ≤ k <m ≤ d;

(c) ∣Ei ∩Ej ∣ = d − 1 for all odd i, j ∈ [d] with i ≠ j;

(d) ∣Ei ∩Oj ∣ = d − 2 for all even i ∈ [d] and all odd j ∈ [d];

(e) ∣Ei ∩ Fk,m∣ = d − 1 iff i ∈ {k,m}, i even, k +m odd, and ∣Ei ∩ Fk,m∣ = d − 2,
otherwise;

(f) ∣Oi ∩Oj ∣ = d − 1 for all even i, j ∈ [d] with i ≠ j;

(g) ∣Oj ∩ Fk,m∣ = d − 1 iff j ∈ {k,m}, j odd, k +m odd, and ∣Oj ∩ Fk,m∣ = d − 2,
otherwise.

(h) ∣Fi,j ∩ Fk,m∣ = d − 1 iff ∣{i, j, k,m}∣ = 3 and ∣Fi,j ∩ Fk,m∣ = d − 2, otherwise.

Since edges of G
F̃

are given by tuples of facets intersecting in d− 1 vertices, we get d
edges in (a), 0 edges in (b) and (d), (d/22 ) edges in each of (c) and (f), (d

2)
2 edges in

each of (e) and (g) and 2 ⋅ d
2 ⋅ (

d/2
2 ) edges in (h). This yields

∣E(G
F̃
)∣ = d + 2 ⋅ (d/2

2
) + 2 ⋅ (d

2
)

2
+ d ⋅ (d/2

2
) = d(d + 2)2

8
=
d ⋅ ∣V (G

F̃
)∣

2
.
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It follows that G
F̃

is d-regular. The In particular-statement follows from (5.2).

The previous theorem allows us to determine the combinatorial type of P̃ ∂(σd+1)

if d is even. It is well-known (see, e.g., [Grü03, Section 6.1]) that there are only
finitely many combinatorial types of simplicial d-polytopes with d + 2 vertices. More
precisely, any simplicial d-polytope with d + 2 vertices is obtained as the convex hull
of a d-simplex T d and a vertex v that is beyond k facets of T d, where 1 ≤ k ≤ d − 1.
It is easily seen that the combinatorial type of such a polytope only depends on k.
Following Grünbaum, we use T d

k to denote the corresponding combinatorial type.
Given that we know the number of facets of P̃ ∂(σd+1) (see Theorem 5.3.3), we can
immediately determine its combinatorial type.

Theorem 5.3.4. Let d be even. Then P̃ ∂(σd+1) is of combinatorial type T d
d
2
. In

particular, P̃ ∂(σd+1) is combinatorially equivalent to a d-dimensional cyclic polytope
on d + 2 vertices.

Proof. By Theorem 5.3.3, P̃ ∂(σd+1) has (d+2)2
4 facets. Using [Grü03, Section 6.1, The-

orem 2], it follows that this number has to be equal to

(d + 2
2
) − (k + 1

2
) − (d + 1 − k

2
),

where P̃ ∂(σd+1) is of combinatorial type T d
k . Solving for k yields k = d

2 . The second
statement follows from [Grü03, Section 6.1, Theorem 1].

We remark that from the previous theorem, we also get a precise formula for the
f - and h-vector of P̃ ∂(σd+1) (see, e.g., [Grü03]).

Remark 5.3.5. Given the precise description of the facets from the proof of Theo-
rem 5.3.3, it is not hard to write down a shelling order for P̃ ∂(σd+1) (d even). Namely,
one particular shelling is given by

F,E2,E4, . . . ,Ed,O1,O3, . . . ,Od−1, F1,2, F1,4, . . . , F1,d, F2,3, F2,5, . . . , F2,d−1, . . . , Fd−1,d.

5.4 Regular unimodular triangulations and h∗-vectors
This section is divided into two parts. The goal of the first is to prove Theorem B,
namely, that P̃ ∂(σd+1) admits a regular unimodular triangulation . As a byproduct
we will also be able to compute the normalized volume P̃ ∂(σd+1). In the second part,
we provide the proof of Theorem C.

5.4.1 Triangulations through interior polytopes

If d is even, one of our main tools towards the formulated goal is the so-called interior
polytope Q∂(σd+1) of P̃ ∂(σd+1), defined as follows:

Q∂(σd+1) ∶= conv (P̃ ∂(σd+1) ∖ ∂ (P̃ ∂(σd+1)) ∩Z
d) .

Figure 5.1 depicts P̃ ∂(σ3) and its interior polytope Q∂(σ3), both translated to the
origin.

Surprisingly, it turns out that P∂(σd+1) and its interior polytope are combinatorially
equivalent. More precisely, the following stronger statement is true:
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Figure 5.1: P̃ ∂(σ3) and its interior polytope Q∂(σ3) translated to the
origin.

Theorem 5.4.1. Let d ∈ N be even. Then the following statements hold:

(a) The complete and irredundant facet description of Q∂(σd+1) is given by:

(i) 1⊺ ⋅ x ≤ d + 1,
(ii) 1⊺odd ⋅ x − xi ≤ d

2 for even i ∈ [d],
(iii) 1⊺even ⋅ x − xj ≤ d

2 for odd j ∈ [d],
(iv) xi + xj ≥ 1 for 1 ≤ i < j ≤ d such that i + j is odd.

(b) Q∂(σd+1) − 1 is reflexive. In particular, 1 is the unique interior lattice point of
Q∂(σd+1).

(c) 2 ⋅ (Q∂(σd+1) − 1) = P̃ ∂(σd+1) − 1.

Proof. We let Q = P̃ ∂(σd+1) − 1. The vertices of Q are given by u(ℓ) ∶= b(ℓ) − 1 for
1 ≤ ℓ ≤ d+2. It is immediate that all coordinates of u(ℓ) are divisible by 2. Hence, 1

2Q
is a lattice polytope. Using Theorem 5.3.3, it follows that the facets of 1

2Q are given
by

• 1⊺ ⋅ x ≤ 1,

• 1⊺odd ⋅ x − xi ≤ 1 for even i ∈ [d],

• 1⊺even ⋅ x − xj ≤ 1 for odd j ∈ [d],

• xi + xj ≥ −1 for 1 ≤ i < j ≤ d such that i + j is odd,

which shows that 1
2Q is reflexive. It remains to show that 1

2Q + 1 = Q∂(σd+1). Since
1
2Q+1 is a lattice polytope, it follows that 1

2Q+1 ⊆ Q∂(σd+1). For the other inclusion
it suffices to note that the facets of 1

2Q + 1 and P̃ ∂(σd+1) are parallel and that they
have distance 1√

d
,
√

2√
d+2

,
√

2√
d+2

and 1√
2 to each other for facets of the form in (i), (ii),

(iii) and (iv), respectively. This implies that there is no lattice point in P̃ ∂(σd+1) ∖
((1

2Q + 1) ∪ ∂P̃ ∂(σd+1)) and hence Q∂(σd+1) ⊆
1
2Q + 1.

We define vectors c(1), . . . , c(d+2) ∈ Rd by c
(ℓ)
k = d+2

2 if k = ℓ − 2 and c
(ℓ)
k =

max(0, (−1)k+ℓ−1), otherwise. Combining Proposition 5.3.1 and Theorem 5.4.1 (c),
we get the following description of the vertices of Q∂(σd+1) and its facets.
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Corollary 5.4.2. The vertices of Q∂(σd+1) are the vectors c(1), . . . , c(d+2). Moreover,
the vertices, which attain equality in Theorem 5.4.1 (i)–(iv), are given by the sets
{c(ℓ) ∶ 3 ≤ ℓ ≤ d + 2}, {c(ℓ) ∶ ℓ ∈ [d + 2] ∖ {1, i + 2}}, {c(ℓ) ∶ ℓ ∈ [d + 2] ∖ {2, j + 2}}
and {c(ℓ) ∶ ℓ ∈ [d + 2] ∖ {i + 2, j + 2}}, respectively.

We now recall several definitions and facts concerning regular unimodular trian-
gulations (see [Haa+14, Subsection 2.3.2.] for more on these topics).

Given full-dimensional polytopes P ⊆ Rd and P ′ ⊆ Rd′ of positive dimension, their
join P ∗ P ′ is the (d + d′ + 1)-dimensional polytope defined by

conv (P × {0d′} × {0} ∪ {0d} × P ′ × {1}) .

The next statement, which is well-known, will be crucial for the construction of a
regular unimodular triangulation of P̃ ∂(σd+1).

Theorem 5.4.3. Let P ⊆ Rd and P ′ ⊆ Rd′ be polytopes of dimension d and d′,
respectively. Let S = {Si ∶ i ∈ [n]} and S′ = {S′j ∶ j ∈ [m]} be triangulations of P
and P ′, respectively, where Si and S′j denote the full-dimensional cells. If both S and
S′ are regular and unimodular, then

T = {Si ∗ S′j ∶ i ∈ [n], j ∈ [m]}

is a regular unimodular triangulation of P ∗ P ′.

We will also make use of the following statement, see [Haa+14, Theorem 4.8].

Theorem 5.4.4. If P has a (regular) unimodular triangulation T , then so has any
dilation cP , where c is a positive integer.

A well-studied subdivision, which is related to the Veronese construction in alge-
bra but also appears in topology [BW09; BR04; EG99; Gra89], is the so-called rth

edgewise subdivision of a simplicial complex. In the following, we review this defi-
nition for the special case that ∆ is the (n − 1)-dimensional simplex on vertex set
V = {e1,e2, . . . ,en} ⊆ Rn. For a positive integer r, let Ωr = {(i1, . . . , in) ∈ Nn ∶ i1 +
i2 +⋯+ in = r} denote the set of lattice points r∆ ∩Zn. For x = (x1, . . . , xn) ∈ Zn, we
define

φ(x) ∶= (x1, x1 + x2, . . . , x1 +⋯ + xn) ∈ Rn.

The rth edgewise subdivision of ∆ is the simplicial complex esdr(∆) on vertex set Ωr,
for which F ⊆ Ωr is a face if for all x, y ∈ F

φ(x) − φ(y) ∈ {0,1}n or φ(y) − φ(x) ∈ {0,1}n.

By definition, the geometric realization of the rth edgewise subdivision of ∆ gives
a lattice triangulation of r∆. It is known that this triangulation is regular [BR04,
Proposition 6.4.], which is also unimodular since all maximal simplices have normal-
ized volume 1. In the following, we will use esdr(∆) to denote both, the triangulation
as a simplicial complex and its geometric realization. Given any (n − 1)-dimensional
unimodular simplex Γ ⊆ Rn, esdr(∆), naturally induces a regular unimodular trian-
gulation of rΓ (by applying the corresponding unimodular transformation). Slightly
abusing notation, we will refer to this triangulation as edgewise subdivision of Γ or
even of rΓ, denoted esdr(Γ). Moreover, the restriction of esdr(Γ) to any face F ∈ Γ
equals esdr(F ) as a simplicial complex and as geometric realization.
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Example 5.4.5. Figure 5.2 depicts the 3rd edgewise subdivision of the 2-dimensional
simplex ∆2 ∶= conv((0,0), (1,0), (0,1)) as triangulation of 3∆2. The vertex labels
correspond to the vertex labels from the original definition and not the lattice points.

Figure 5.2: The triangulation of 3 ⋅∆2 given by esd3(∆2).

We now outline our strategy to show that P̃ ∂(σd+1) has a regular unimodular
triangulation. We first prove that P̃ ∂(σd+1) and the facets of Q∂(σd+1), if d is odd and
even, respectively, are unimodular equivalent to joins of dilated standard simplices. If
d is odd and even, we can hence triangulate P̃ ∂(σd+1) and facets of Q∂(σd+1) as join of
edgewise subdivisions, respectively. If d is odd, the claim follows by Theorem 5.4.3.
If d is even, we next show that these triangulations are consistent on intersections
of facets. By coning with 1, we get a unimodular triangulation of Q∂(σd+1) (see
Theorem 5.4.1 (d)) and hence of P̃ ∂(σd+1) by Theorem 5.4.4. The regularity follows
by using that the triangulation is regular on single facets and that each facet is
triangulated in the same way.

The next statement yields the first step in the outlined strategy.

Proposition 5.4.6. (a) Let d ≥ 2 be even and F ∈ F (Q∂(σd+1)). Then

F ≅ (d + 2
2

∆ d−2
2
− 1 d−2

2
) ∗ (d + 2

2
∆ d−2

2
− 1 d−2

2
) .

(b) Let d ≥ 1 be an odd integer. Then

P̃ ∂(σd+1) ≅ ((d + 2)∆ d+1
2
− 2 ⋅ 1) ∗ ((d + 2)∆ d−1

2
− 2 ⋅ 1).

Proof. The proof of (a) is divided into four cases, according to the four classes of
facets from Theorem 5.4.1 (a).

Let F = {x ∈ Rd ∶ 1⊺ ⋅ x ≤ d + 1}. By Corollary 5.4.2, the vertices of F are
c(3), . . . , c(d+2). We now consider the matrix A, whose ℓth column equals c(2ℓ+1) if
1 ≤ ℓ ≤ d

2 and c(2ℓ+2−d) if d
2 + 1 ≤ ℓ ≤ d. If we reorder the rows of A, by taking first

the rows with odd index and then the ones with even index, increasingly, we obtain
a matrix S, which looks as follows:

S =
⎛
⎝

d+2
2 ⋅E d

2
1 d

2×
d
2

1 d
2×

d
2

d+2
2 ⋅E d

2

⎞
⎠
,
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where 1k×k denotes the (k×k)-matrix with all entries equal to 1. Clearly, F ≅ conv(S).
Let E′k ∈ Z(k−1)×k be the (k × k)-identity matrix with its first row removed and let

U =

⎛
⎜⎜⎜⎜⎜
⎝

E′d
2

0 d−2
2 ×

d
2

0 d−2
2 ×

d
2

E′d
2

0 ⋯ 0 1 ⋯ 1
1 ⋯ 1 1 ⋯ 1

⎞
⎟⎟⎟⎟⎟
⎠

∈ Zd×d.

It is easily seen that U is unimodular and a direct computation shows that

U ⋅ (S − 1d×d) =

⎛
⎜⎜⎜⎜⎜
⎝

M(d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2
) 0 d−2

2 ×
d
2

0 d−2
2 ×

d
2

M(d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2
)

0 ⋯ 0 1 ⋯ 1
1 ⋯ 1 1 ⋯ 1

⎞
⎟⎟⎟⎟⎟
⎠

,

where 0k×k denotes the (k × k)-matrix with all entries equal to 0 and
M(d+2

2 ∆ d−2
2
− 1 d−2

2 ×
d
2
) denotes the matrix whose columns are the vertices of d+2

2 ∆ d−2
2
−

1 d−2
2 ×

d
2

in the obvious order. Since F ≅ conv(U ⋅ (S − 1d×d)), the claim follows after
projection on the first d − 1 coordinates and by the definition of the join. We also
note that the vertices of F corresponding to the vertices of the dilated simplices are
{c(2ℓ+1) ∶ 1 ≤ ℓ ≤ d

2} and {c(2ℓ) ∶ 2 ≤ ℓ ≤ d
2 + 1}.

Similarly, one can show that for the facets defined by

• 1⊺odd ⋅ x − xi ≤ d
2 , where i ∈ [d] is even,

• 1⊺even ⋅ x − xj ≤ d
2 , where j ∈ [d] is odd,

• xi + xj ≥ 1 for 1 ≤ i < j ≤ d such that i + j is odd,

respectively, the vertices

• {c(2ℓ+1) ∶ 1 ≤ ℓ ≤ d
2} and {c(2ℓ) ∶ 1 ≤ ℓ ≤ d

2 + 1, ℓ ≠ i+2
2 },

• {c(2ℓ+1) ∶ 0 ≤ ℓ ≤ d
2 , ℓ ≠

j+1
2 } and {c(2ℓ) ∶ 2 ≤ ℓ ≤ d

2 + 1, ℓ ≠ i+2
2 },

• {c(2ℓ+1) ∶ 0 ≤ ℓ ≤ d
2 , ℓ ≠

j+1
2 } and {c(2ℓ) ∶ 1 ≤ ℓ ≤ d

2 + 1, ℓ ≠ i+2
2 },

respectively, correspond to the vertices of the dilated simplices. The rather technical
proofs can be found in the appendix. Similarly, (b) will be shown in the appendix.

We recall and prove Theorem B.

Theorem B. P∂(σd+1) has a regular unimodular triangulation for every integer d ≥ 0.

Proof. Since P̃ ∂(σd+1) and P∂(σd+1) are unimodular equivalent, it suffices to show the
statement for P̃ ∂(σd+1). First assume that d is odd. By Proposition 5.4.6 (b), we know
that

P̃ ∂(σd+1) ≅ ((d + 2)∆ d+1
2
− 2 ⋅ 1) ∗ ((d + 2)∆ d−1

2
− 2 ⋅ 1).

Since the (d + 2)nd edgewise subdivision is a regular unimodular triangulation of
the (d + 2)nd dilation of any unimodular simplex (as well as of any translation), we
conclude with Theorem 5.4.3 that P̃ ∂(σd+1) has a regular unimodular triangulation.

Next assume that d is even. If d = 0, P̃ ∂(σd+1) is just a point and there is nothing
to show.
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Let d ≥ 2. We construct a regular unimodular triangulation of the interior polytope
Q∂(σd+1). By Proposition 5.4.6, every facet F of Q∂(σd+1) is unimodular equivalent to

(d + 2
2

∆ d−2
2
− 1 d−2

2
) ∗ (d + 2

2
∆ d−2

2
− 1 d−2

2
) . (5.3)

By the same reasoning as for d odd, we can triangulate F as join of edgewise subdi-
visions of unimodular simplices. In this way, we obtain regular unimodular triangu-
lations of each facet of Q∂(σd+1). We now show that the union of these triangulations,
yields a triangulation of the boundary of Q∂(σd+1). For this aim, let F and G be facets
of Q∂(σd+1) and let T (F ) and T (G) be the considered triangulations. Let us further
denote by Fi and Gi, where i ∈ [2], the vertex sets corresponding to the vertex sets
of the dilated (and translated) simplices in (5.3). It follows from the end of the proof
of Proposition 5.4.6 that (after possible renumbering)

(F1 ∪ F2) ∩ (G1 ∪G2) = (F1 ∩ F2) ∪ (G1 ∩G2).

This directly yields that the restrictions of T (F ) and T (G) to F ∩G coincide: Indeed,
they are given as the join of the edgewise subdivisions of the dilated (and translated)
simplices on vertex sets F1 ∩ F2 and G1 ∩ G2. This shows that the union of the
triangulations of the facets is indeed a triangulation of the boundary of Q∂(σd+1),
which is, in particular, unimodular. Since, by Theorem 5.4.1 (b), Q∂(σd+1) − 1 is
reflexive, we can extend this triangulation to a unimodular triangulation of Q∂(σd+1)

by coning over the unique interior lattice point 1. In the following, we call this
triangulation T .

It remains to show that T is a regular triangulation. The previous paragraph im-
plies that the induced triangulations on facets Q∂(σd+1) are all regular and unimodular
equivalent to each other. In particular, there exists a simultaneous lifting function
ω yielding the triangulation of an arbitrary facet. Fix a facet F and let T (F ) be
the induced triangulation on F . Since F is a simplex, we can assume that ω(v) = 1
for any vertex v ∈ F . Moreover, for any lattice point u in F , that is not a vertex,
we have ω(u) < 1, since otherwise u would not be a vertex of T (F ). Hence, there
exists a non-negative function g, whose values are bounded by 1, that vanishes on the
vertices of F such that ω = 1 − g. Moreover, for any ϵ > 0, ωϵ = 1 − ϵg is also a lifting
function for F yielding T (F ). Finally, ignoring 1 and lifting all other lattice points
in Q∂(σd+1) according to the simultaneous lifting function ωϵ, gives a lifting function
such that the projection of the lower envelope yields T on the boundary of Q∂(σd+1)

and potentially additional faces in the interior. Lifting 1 at height 0, gives a lifting
of all lattice points of Q∂(σd+1). If ϵ is sufficiently small, one can guarantee that the
triangulation obtained as the lower envelope is the cone with 1 over the boundary of
the previous triangulation (ignoring 1) since potential interior faces that we had seen
before, do no longer lie in the lower envelope.

The claim follows by Theorem 5.4.1 (c) and Theorem 5.4.4.

Analyzing the proof of Theorem B, we can compute the normalized volume of
P∂(σd+1):

Corollary 5.4.7. The normalized volume of P∂(σd+1) is (d + 2)d.

Proof. We compute the normalized volume of P̃ ∂(σd+1), which equals the one of
P∂(σd+1), by counting the number of maximal simplices in the unimodular triangula-
tion T constructed in the proof of Theorem B.
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First assume that d is odd. We have seen that T is unimodular equivalent to

esdd+2 (∆ d+1
2
) ∗ esdd+2 (∆ d−1

2
) .

Since the rth edgewise subdivision of an m-simplex, has rm maximal simplices, it
follows that the number of maximal simplices in the constructed unimodular trian-
gulation of P̃ ∂(σd+1) equals

(d + 2)
d+1

2 ⋅ (d + 2)
d−1

2 = (d + 2)d.

Let d be even. We first compute the normalized volume of Q∂(σd+1). Combining
Theorem 5.3.3 and Theorem 5.4.1, it follows that Q∂(σd+1) has exactly (d+2)2

4 facets.
By the proof of Theorem B, each of these has a unimodular triangulation that is
unimodular equivalent to

esd d+2
2
(∆ d−2

2
) ∗ esd d+2

2
(∆ d−2

2
) .

As in the case that d is odd, we conclude that each facet is triangulated into (d+2
2 )

d−2
2 ⋅

(d+2
2 )

d−2
2 = (d+2

2 )
d−2 many maximal simplices and hence Q∂(σd+1) has normalized vol-

ume (d+2)d
2d . Since, by Theorem 5.4.1 (c), P̃ ∂(σd+1) + 1 = 2 ⋅ Q∂(σd+1), the claim fol-

lows.

5.4.2 Unimodality and real-rootedness

The goal of this subsection is to prove Theorem C.
If d is even, then by the proof of Theorem B, Q∂(σd+1) has a regular unimodular

triangulation. Since it is also reflexive (after translation) by Theorem 5.4.1 (b), the
next statement is immediate from [BR07, Theorem 1] (see also [Ath04, Theorem 1.3]):

Lemma 5.4.8. Let d be an even positive integer. Then h∗(Q∂(σd+1)) is symmetric
and unimodal.

To show unimodality of h∗(P̃ ∂(σd+1)), if d is even, we need to analyze the change
of the h∗-vector under the second dilation of a polytope (cf., Theorem 5.4.1 (c)).
Given a d-dimensional lattice polytope P , it follows, e.g., from [BW09, Theorem 1.1]
(see also [BS10; Joc18]) that

h∗i (2P ) =
d

∑
j=0
(d + 1
2i − j)h

∗
j (P ). (5.4)

We need the following technical but crucial lemma.

Lemma 5.4.9. Let i ∈ N and rj ∶= ( d+1
2i+2−j

) − (d+1
2i−j
). Then for k ∈ N, we have

−r
⌈2i+2− d+3

2 ⌉−k = r⌊2i+2− d+3
2 ⌋+k.

Proof. We set aj = ( d+1
2i+2−j

) and bj = (d+1
2i−j
). The claim follows if both

a
⌈2i+2− d+3

2 ⌉−k = b⌊2i+2− d+3
2 ⌋+k and b

⌈2i+2− d+3
2 ⌉−k = a⌊2i+2− d+3

2 ⌋+k

hold. Due to the symmetry of the binomial coefficient it suffices to show that
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(i) (2i + 2 − ⌈2i + 2 − d+3
2 ⌉ + k) + (2i − ⌊2i + 2 − d+3

2 ⌋ − k) = d + 1

(ii) (2i − ⌈2i + 2 − d+3
2 ⌉ + k) + (2i + 2 − ⌊2i + 2 − d+3

2 ⌋ − k) = d + 1.

It is obvious that (i) and (ii) are equivalent. The claim follows from direct computa-
tions.

The next statement will be the key ingredient to show that h∗(P̃ ∂(σd+1)) is uni-
modal.

Proposition 5.4.10. Let b = (b0, . . . , bd) be a symmetric and unimodal sequence of
non-negative reals. Let c = (c0, . . . , cd) be defined by

ci =
d

∑
j=0
(d + 1
2i − j)bj .

Then
c0 ≤ c1 ≤ ⋯ ≤ c⌊ d+1

2 ⌋
.

Proof. We define rj as in Lemma 5.4.9. Note that rj ≥ 0 if and only if j ≥ 2i+2− d+3
2 .

For 0 ≤ i < d+1
2 , we have

ci+1 − ci =
d

∑
j=0
[( d + 1

2i + 2 − j) − (
d + 1
2i − j)] bj =

d

∑
j=0

rjbj

=
2(2i+2− d+3

2 )

∑
j=0

rjbj +
d

∑
j=2(2i+2− d+3

2 )+1
rjbj

=
⌈2i+2− d+3

2 ⌉

∑
j=1

r
⌊2i+2− d+3

2 ⌋+j (b⌊2i+2− d+3
2 ⌋+j − b⌈2i+2− d+3

2 ⌉−j)

+ r2i+2− d+3
2
b2i+2− d+3

2
+

d

∑
j=2(2i+2− d+3

2 )+1
rjbj ,

where for the last equality, we use Lemma 5.4.9 and we set r2i+2− d+3
2
b2i+2− d+3

2
= 0 if d is

even. Since bj ≥ 0 and rj ≥ 0 forj ≥ 2i+2− d+3
2 , it follows that the single summand and

the sum in the last line of the above computation are both non-negative. Concerning
the first sum, the coefficients r2i+2− d+3

2 +j are non-negative and therefore, in order to
show non-negativity of ci+1 − ci, it suffices to show that for 1 ≤ j ≤ ⌈2i + 2 − d+3

2 ⌉, we
have

b
⌊2i+2− d+3

2 ⌋+j ≥ b⌈2i+2− d+3
2 ⌉−j .

This directly follows from the unimodality and symmetry of the sequence b if 2i+ 2−
d+3

2 + j ≤
d+1

2 . Assume 2i + 2 − d+3
2 + j >

d+1
2 . Since i ≤ d

2 , we have

d + 1
2
< 2i + 2 − d + 3

2
+ j ≤ d + 2 − d + 3

2
+ j = d + 1

2
+ j ≤ ⌊d + 1

2
⌋ + j.

Using that b is symmetric and unimodal, it follows that

b
⌊2i+2− d+3

2 ⌋+j ≥ b⌊ d+1
2 ⌋+j = bd−⌊ d

2 ⌋−j ≥ b⌈2i+2− d+3
2 ⌉−j .

This shows the claim.



92 Chapter 5. Laplacian polytopes of simplicial complexes

We now recall and prove Theorem C:

Theorem C. (a) h∗ (P∂(σd+1); t) has only real roots if d ∈ N is odd.

(b) h∗ (P∂(σd+1)) is unimodal with peak in the middle for every d ∈ N.

Proof. Since P∂(σd+1) has a regular unimodular triangulation T by Theorem B, we
have h∗(P∂(σd+1)) = h(T ). If d is odd, such a triangulation is given by

esdd+2 (∆ d+1
2
) ∗ esdd+2 (∆ d−1

2
)

and its h-polynomial equals h (esdd+2 (∆ d+1
2
) ; t) ⋅ h (esdd+2 (∆ d−1

2
) ; t). Since both

factors are real-rooted by [Joc18, Corollary 4.4], so is h∗ (P∂(σd+1); t).
Suppose that d is even. Combining Lemma 5.4.8, (5.4) and Proposition 5.4.10,

we get that h∗(P∂(σd+1)) is increasing up to the middle, i.e.,

h∗0(P∂(σd+1)) ≤ h
∗
1(P∂(σd+1)) ≤ ⋯ ≤ h

∗
d
2
(P∂(σd+1)).

Since, by Theorem B, P∂(σd+1) has a regular unimodular triangulation it follows by
[Ath04, Theorem 1.3] that h∗(P∂(σd+1)) is decreasing beyond the middle, i.e.,

h∗d
2
(P∂(σd+1)) ≥ ⋯ ≥ h

∗
d(P∂(σd+1)).

The claim follows.

We would like to remark that even though the interior polytope Q∂(σd+1) has a
symmetric h∗-vector, this is not true for P∂(σd+1).

5.5 Open problems
We end this chapter with some obvious directions for future research.

We have initiated the study of Laplacian polytopes P (i)∆ by studying the special
case that ∆ is the boundary of a (d + 1)-simplex and i = d. It is therefore natural to
consider the following very general problem.

Problem 5.5.1. Study geometric and combinatorial properties of P (i)∆ for (classes of)
simplicial complexes and general 0 ≤ i ≤ dim ∆. In particular: What is the normalized
volume? When do these polytopes have a regular unimodular triangulation? What
properties do the h∗-vector and the h∗-polynomial have?

In view of Proposition 5.2.5, a good starting point might be to study P
(d)
∆ for

simplicial d-balls, since in this case we already know that P (d)∆ is a simplex. As
part of this problem, it might be useful to consider how Laplacian polytopes change
under certain operations on the simplicial complex, e.g., deletion/contraction of ver-
tices, taking links, connected sums, joins. We want to remark that for i = 0, we get
Laplacian simplices as studied in [BM17] and [MT18].

We have shown that P∂(σd+1) has a regular unimodular triangulation by explicitly
constructing one. However, for more general classes of simplicial complexes, a better
approach might be to compute a Gröbner basis of the toric ideal. This gives rise to
the following problem whose solution would also contribute to Problem 5.5.1:
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Problem 5.5.2. Describe a Gröbner basis of the toric ideal of P (i)∆ in terms of the
combinatorics of ∆. When does there exist a squarefree Gröbner basis (giving rise to
a regular unimodular triangulation)?

We want to emphasize that the Laplacian polytope depends on the ordering of
the vertices of ∆ (see Example 5.2.2). It is therefore natural to ask the following
question:

Question 5.5.3. Which orderings yield (up to unimodular or combinatorial equiva-
lence) the same Laplacian polytope? How many equivalence classes are there?

Apart from these more general problems, there are several open questions that are
directly related to our results. In Corollary 5.4.7, we have computed the normalized
volume of P∂(σd+1) explicitly and thereby have obtained a precise formula for the
sum of the h∗-vector entries. Using the explicit regular unimodular triangulation
from Theorem B and inclusion-exclusion, we can also express the h∗-polynomial as
alternating sum, where all summands are products of h∗-polynomials of edgewise
subdivisions of dilated simplices of varying dimension. Note that for d odd, we only
have one summand. However, this does not yield a direct combinatorial interpretation
of the entries of the h∗-vector. We therefore propose the following problem:

Problem 5.5.4. Find a combinatorial interpretation of the entries of the h∗-vector
of P∂(σd+1) (see Table 5.1 for the h∗-vectors if 1 ≤ d ≤ 8).

d h∗ (P∂σd+1)
1 (1,2,0)
2 (1,10,5)
3 (1,22,78,24,0)
4 (1,131,726,419,19)
5 (1,149,4049,8558,3750,300,0)
6 (1,1478,38179,126372,85623,10422,69)
7 (1,926,157566,1135846,2188310,1150800,145600,3920,0)
8 (1,17617,1581403,6864069,43252570,31729319,6314903,239867,251)

Table 5.1: The h∗-vectors of P∂σd+1 for d = 1, . . . ,8.

Finally, in view of Theorem C (a), we have the following conjecture:

Conjecture 5.5.5. Let d be even. Then h∗ (P∂(σd+1);x) is real-rooted.

We have verified this conjecture computationally up to d = 10. For this problem,
we suspect that an approach via interlacing sequences might be helpful, but we have
not been able to carry it out so far.

5.6 Appendix
We provide the missing parts of the proof of Proposition 5.4.6. We recall some
notation. We denote by E′k ∈ Z(k−1)×k the (k × k)-identity matrix with its first row
removed and by 1m×n and 0m×n the (m×n)-matrices whose entries are all equal to 1
and 0, respectively. Moreover, we denote byM(d+2

2 ∆ d−2
2
− 1 d−2

2 ×
d
2
) the matrix whose

columns are the vertices of d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2

in the obvious order.
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Proof of Proposition 5.4.6 (a). Let d ≥ 2 and for a fixed even integer i ∈ [d], consider
the facet F = {x ∈ Rd ∶ 1⊺odd ⋅ x − xi ≤ d

2} of Q∂(σd+1). By Corollary 5.4.2, the vertices
of F are {c(ℓ) ∶ ℓ ∈ [d + 2] ∖ {1, i + 2}}. We now consider the matrix B ∈ Zd×d whose
ℓth column equals c(2ℓ+1) if 1 ≤ ℓ ≤ d

2 and c(2ℓ−d) if d
2 + 1 ≤ ℓ ≤ i+d

2 and c(2ℓ+2−d) if
i+d
2 + 1 ≤ ℓ ≤ d. If we reorder the rows of B, by taking first the rows with odd index,

increasingly, followed by the row with index i and then the remaining rows with even
index, increasingly, we obtain a matrix S, which looks as follows:

S =
⎛
⎜⎜⎜
⎝

E d
2
⋅ d+2

2 1 d
2×

d
2

1 ⋯ 1 0 ⋯ 0
1 d−2

2 ×
d
2

E′d
2
⋅ d+2

2

⎞
⎟⎟⎟
⎠
.

Clearly, F ≅ conv(T ). Let

U =

⎛
⎜⎜⎜⎜⎜
⎝

E′d
2

0 d−2
2 ×

d
2

0 d−2
2 ×

d
2

E′d
2

0 ⋯ 0 −1 0 ⋯ 0
1 ⋯ 1 −1 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

∈ Zd×d.

It is easy to see that U is unimodular and a direct computation shows that

U ⋅ (S − 1d×d) =

⎛
⎜⎜⎜⎜⎜
⎝

M(d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2
) 0 d−2

2 ×
d
2

0 d−2
2 ×

d
2

M(d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2
)

0 ⋯ 0 1 ⋯ 1
1 ⋯ 1 1 ⋯ 1

⎞
⎟⎟⎟⎟⎟
⎠

.

Since F ≅ conv(U ⋅ (S − 1d×d)), the claim follows after projection on the first d − 1
coordinates and by the definition of the join. We also note that the vertices of F
corresponding to the vertices of the dilated simplices are {c(2ℓ+1) ∶ 1 ≤ ℓ ≤ d

2} and
{c(2ℓ) ∶ 2 ≤ ℓ ≤ d

2 + 1, ℓ ≠ i+2
2 }.

For a fixed odd integer j ∈ [d], consider the facet G = {x ∈ Rd ∶ 1⊺even ⋅ x − xj ≤ d
2}

of Q∂(σd+1). By Corollary 5.4.2, the vertices of F are {c(ℓ) ∶ ℓ ∈ [d + 2] ∖ {2, j + 2}}.
We now consider the matrix C ∈ Zd×d whose ℓth column equals c(2ℓ−1) if 1 ≤ ℓ ≤ j+1

2
and c(2ℓ+1) if j+3

2 ≤ ℓ ≤
d
2 and c(2ℓ+2−d) if d

2 + 1 ≤ ℓ ≤ d. If we reorder the rows of C
by taking first the rows with odd index k ∈ [d] ∖ {j}, increasingly, followed by row j
and then the rows with even index, increasingly, we obtain a matrix S, which looks
as follows:

S =
⎛
⎜⎜⎜
⎝

E′d
2
⋅ d+2

2 1 d−2
2 ×

d
2

0 ⋯ 0 1 ⋯ 1
1 d

2×
d
2

E d
2
⋅ d+2

2

⎞
⎟⎟⎟
⎠
.
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Clearly, G ≅ conv(S). Let

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E d
2−1

RRRRRRRRRRR
0 d−2

2 ×
d+2

2

0 d−2
2 ×

d
2

RRRRRRRRRRR
E′d

2

0 ⋯ 0 ∣ 1 ⋯ 1
0⋯ 0 −1∣ 1 ⋯ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Zd×d.

It is easy to see that U is unimodular and a direct computation shows that

U ⋅ (S − 1d×d) =

⎛
⎜⎜⎜⎜⎜
⎝

M(d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2
) 0 d−2

2 ×
d
2

0 d−2
2 ×

d
2

M(d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2
)

0 ⋯ 0 1 ⋯ 1
1 ⋯ 1 1 ⋯ 1

⎞
⎟⎟⎟⎟⎟
⎠

.

Since G ≅ conv(U ⋅ (S − 1d×d)), the claim follows after projection on the first d − 1
coordinates and by the definition of the join. We also note that the vertices of G
corresponding to the vertices of the dilated simplices are {c(2ℓ+1) ∶ 0 ≤ ℓ ≤ d

2 , ℓ ≠
j+1

2 }
and {c(2ℓ) ∶ 2 ≤ ℓ ≤ d

2 + 1, ℓ ≠ i+2
2 }.

For fixed integers 1 ≤ i < j ≤ d of different parity consider the facet H = {x ∈
Rd ∶ xi + xj ≥ 1} of Q∂(σd+1). Without loss of generality assume that i is odd j is
even. By Corollary 5.4.2, the vertices of F are {c(ℓ) ∶ ℓ ∈ [d + 2] ∖ {i + 2, j + 2}}. We
now consider the matrix D ∈ Zd×d whose ℓth column equals c(2ℓ−1) if 1 ≤ ℓ ≤ i+1

2 , c(2ℓ+1)

if i+3
2 ≤ ℓ ≤

d
2 , c(2ℓ−d) if d

2 + 1 ≤ ℓ ≤ j+d
2 and c(2ℓ+2−d) if j+d

2 + 1 ≤ ℓ ≤ d. If we reorder the
rows of D by taking first the rows with odd index k ∈ [d] ∖ {i}, increasingly, followed
by row i, followed by the rows with even index ℓ ∈ [d] ∖ {j}, increasingly, followed by
row j as the last row, we obtain a matrix S, which looks as follows:

S =

⎛
⎜⎜⎜⎜⎜
⎝

d+2
2 ⋅E

′
d
2

1′d
2

0 ⋯ 0 1 ⋯ 1
1′d

2

d+2
2 ⋅E

′
d
2

1 ⋯ 1 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

.

Clearly, H ≅ conv(S). Let

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E d
2−1

RRRRRRRRRRR
0(

d
2−1)×( d

2+1)

0′d
2

RRRRRRRRRRR
E d

2−1

RRRRRRRRRRR
0(

d
2−1)×1

−e⊺d
−(e d

2
+ ed)⊺

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Zd×d.
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It is easy to see that U is unimodular and a direct computation shows that

U ⋅ (S − 1d×d) =

⎛
⎜⎜⎜⎜⎜
⎝

M(d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2
) 0 d−2

2 ×
d
2

0 d−2
2 ×

d
2

M(d+2
2 ∆ d−2

2
− 1 d−2

2 ×
d
2
)

0 ⋯ 0 1 ⋯ 1
1 ⋯ 1 1 ⋯ 1

⎞
⎟⎟⎟⎟⎟
⎠

.

Since H ≅ conv(U ⋅ (S − 1d×d)), the claim follows after projection on the first d − 1
coordinates and by the definition of the join. We also note that the vertices of H
corresponding to the vertices of the dilated simplices are {c(2ℓ+1) ∶ 0 ≤ ℓ ≤ d

2 , ℓ ≠
i+1
2 }

and {c(2ℓ) ∶ 1 ≤ ℓ ≤ d
2 + 1, ℓ ≠ j+2

2 }.

Proof of Proposition 5.4.6 (ii). Let d ≥ 1 be an odd integer. We define vectors u(1), . . . ,
ud+2 ∈ Rd+1 by u(ℓ)k = d+1 if k = ℓ−1 and u(ℓ)k = (−1)k+ℓ−1, otherwise. By Lemma 5.2.10,
u(1), . . . , u(d+2) are the vertices of P̃ ∂(σd+1). We now consider the matrix E ∈ Z(d+1)×(d+2)

whose ℓth column equals u(2ℓ−1) if 1 ≤ ℓ ≤ d+3
2 and u(2ℓ−(d+3)) if d+3

2 + 1 ≤ ℓ ≤ d + 2. If
we reorder the rows of E, by taking first the rows with even index and then the ones
with odd index, increasingly, we obtain a matrix Q = (qk,ℓ) ∈ Z(d+1)×(d+2) with

• qk,k+1 = d + 1 for k ∈ [d + 1],

• qk,ℓ = 1 if k ≤ d+1
2 and ℓ > d+3

2 , or k > d+1
2 and ℓ ≤ d+3

2

• qk,ℓ = −1, otherwise.

Clearly, P̃ ∂(σd+1) ≅ conv(Q). Let

U =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

E d+1
2

0 d+1
2 ×

d+1
2

0
0 d−1

2 ×
d+1

2
⋮ E d−1

2
0

0 ⋯ 0 1 ⋯ 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Z(d+1)×(d+1).

It is easy to see that U is unimodular and a direct computation shows that

U ⋅ (Q − 1(d+1)×(d+2))

=
⎛
⎜⎜⎜
⎝

M((d + 2)∆ d+1
2
− 2 ⋅ 1) 0

0 M((d + 2)∆ d−1
2
− 2 ⋅ 1)

0 ⋯ 0 1 ⋯ 1

⎞
⎟⎟⎟
⎠
.

Since P̃ ∂(σd+1) ≅ conv(U ⋅ (Q − 1(d+1)×(d+2))), the claim follows by definition of the
join.
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