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Spike-based statistical learning
explains human performance in
non-adjacent dependency
learning tasks

Sophie Lehfeldt1*, Jutta L. Mueller2† and Gordon Pipa1†

1Neuroinformatics, Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany,
2Psycholinguistics Lab Babelfisch, Institute of Linguistics, University of Vienna, Vienna, Austria

Grammar acquisition is of significant importance for mastering human

language. As the language signal is sequential in its nature, it poses the

challenging task to extract its structure during online processing. Thismodeling

study shows how spike-timing dependent plasticity (STDP) successfully

enables sequence learning of artificial grammars that include non-adjacent

dependencies (NADs) and nested NADs. Spike-based statistical learning leads

to synaptic representations that comply with human acquisition performances

under various distributional stimulus conditions. STDP, therefore, represents a

practicable neural mechanism underlying human statistical grammar learning.

These findings highlight that initial stages of the language acquisition

process are possibly based on associative learning strategies. Moreover, the

applicability of STDP demonstrates that the non-human brain possesses

potential precursor abilities that support the acquisition of linguistic structure.

KEYWORDS

language acquisition, statistical learning, spike-timing dependent plasticity, recurrent

neural network, nested non-adjacent dependencies

Introduction

The understanding of the neural mechanisms underlying our ability to learn the

grammatical structure from sequential input is of core interest to cognitive science.

While language remains a human-specific capacity, the last few years have brought forth

enormous advancements in the understanding of its putative precursor abilities in early

infancy and non-human animals (Mueller et al., 2018). Here, we focus on the important

ability to compute dependencies between non-adjacent elements in sequential input, a

capacity that develops early in human infants (Mueller et al., 2012; Kabdebon et al.,

2015; Winkler et al., 2018) and is shared with other animals, including primates and

songbirds (Abe and Watanabe, 2011; Watson et al., 2020). The computation of non-

adjacent dependencies (NADs) is important for understanding sentences, such as, “The

scientists who revealed the brain’s secrets won theNobel Prize.” where the verb “won” has

to be linked to “the scientists” and not to “secrets” although the latter word is adjacent.

An important tool to assess the acquisition of NADs is artificial grammar. While they do

not scale up to the full complexity of human language (Beckers et al., 2012; Chen et al.,

2021; Rawski et al., 2021) artificial grammars can, nonetheless, be used to test important
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aspects of human grammar in isolation. Studies using artificial

grammar have yielded a large body of impressive findings on

humans’ and animals’ skills when faced with the task to extract

NADs from auditory (Abe and Watanabe, 2011; Mueller et al.,

2012; Kabdebon et al., 2015; Winkler et al., 2018; Watson et al.,

2020) or visual (Bahlmann et al., 2009) sequences. Nonetheless,

learning such complex patterns is by no means a simple task

and is influenced by many different input factors relating to

both statistical (distributional and conditional) and perceptual

stimulus properties (Gómez, 2002; Peña et al., 2002; Newport

and Aslin, 2004; Gómez and Maye, 2005; Onnis et al., 2005;

Lany and Gómez, 2008; Pacton and Perruchet, 2008; Mueller

et al., 2010; de Diego-Balaguer et al., 2016; Grama et al.,

2016). Despite this rich body of evidence, our knowledge of

potential underlying learning mechanisms at the neural level

remains limited.

The present study aims at revealing to which degree

statistical learning, as instantiated by spike-timing dependent

plasticity (STDP) (Markram et al., 1997; Bi and Poo, 1998; Dan

and Poo, 2006; Morrison et al., 2008), has the power to explain

various findings from human experiments on the learning of

artificial NADs. Specifically, we focus on grammar properties

that are known to facilitate their acquisition (Wilson et al.,

2018). These include a large variability of intervening material

(Gómez, 2002; Gómez and Maye, 2005), short intervening

chunks (Lany and Gómez, 2008), pauses between grammar

samples (Peña et al., 2002; Mueller et al., 2010), and additional

cues that emphasize the grammar such as perceptual similarities

(Newport and Aslin, 2004), phonological (Onnis et al., 2005),

and prosodic cues (Mueller et al., 2010; Grama et al., 2016),

Abbreviations: NAD, Non-adjacent dependency; AXB, NAD with

grammatical A and B elements separated by a non-grammatical

X element; NL, Nesting level; NX , Number of available X elements; nX ,

Number of X elements per grammar sample; ∪1, Pause duration between

grammar samples; FR, Poisson stimulus firing rate; 3, Grammatical

assemblies; A, Grammatical A element assemblies; B, Grammatical B

element assemblies; λ : A→ B, Grammatical A to B transition assemblies;

¬3, Non-grammatical assemblies; ¬λ : A → B, Non-grammatical A to B

transition assemblies; χ , First set of X element related assemblies; A→ X,

Non-grammatical A to X transition assemblies; X, Non-grammatical

X element assemblies; X → B, Non-grammatical X to B transition

assemblies; χ ′, Second set of X element related assemblies; X → X,

Non-grammatical X to X transition assemblies; B→ X, Non-grammatical

B to X transition assemblies; X → A, Non-grammatical X to A transition

assemblies; B→ A, Non-grammatical B to A transition assemblies; ÂAB̂B,

Set of A to A and B to B transition assemblies; A→ A, Non-grammatical

A to A transition assemblies; B → B, Non-grammatical B to B transition

assemblies; RNN, Recurrent neural network; Inp, Input neurons; E,

Excitatory neurons; I, Inhibitory neurons; LIF, Leaky integrate-and-fire; w,

Synaptic weight; τw , Synaptic weight time constant; STDP, Spike-timing

dependent plasticity; SLMT, Short- to long-term memory transition; IP,

Intrinsic plasticity.

or the triggering of directed attention (Pacton and Perruchet,

2008; de Diego-Balaguer et al., 2016). By doing this, we aim

to explore the possibility of a unitary learning mechanism

for core processes in the domain of grammar acquisition

that plausibly accounts for learning in both human and non-

human animals. A major motivation for testing the applicability

of STDP for NAD acquisition was to find a potential link

between low-level neural mechanisms and high-level cognitive

skills. While STDP is considered a central statistical learning

mechanism of the biological brain (Dan and Poo, 2006;

Markram et al., 2011), statistical learning is also hypothesized to

underlie human language learning especially in early acquisition

phases (Erickson and Thiessen, 2015; Mueller et al., 2018;

Saffran and Kirkham, 2018). This remarkable commonality of

essential learning types in both neurobiology and language

might therefore represent a potential link for bridging the gap

between these fields (Poeppel and Embick, 2005). In detail,

STDP implements sensitivity to distributional cues that are

important for learning structure from sequences such as (i) the

order in which stimulus elements succeed, (ii) the temporal

proximity within which transitions happen, (iii) the overall

occurrence frequency of elements and transitions, and (iv) the

stimulus elements’ strengths. It therefore provides a bandwidth

of sensitivities that we hypothesized to be essential for learning

NADs from the sequential language signal.

Statistical learning models already explain linguistic

operations such as the extraction of meaningful chunks

(Perruchet and Vinter, 1998), the acquisition of phonemic

categories, and also the learning of non-adjacent relations

(Thiessen and Pavlik, 2013). Trained on large language corpora,

statistical machine learning models even produce human-like

text (Floridi and Chiriatti, 2020). While these approaches

advance our understanding of the power of statistical learning,

the question of its neural realization remains, however, largely

unaddressed. Vector-based and machine-learning models rely

on symbolic stimulus representations and global, algebraic-like

learning mechanisms that contrast with both the distributed

stimulus encoding and local online-learning routines of neural

networks. In this context, reservoir computing neural networks

were already applied successfully for modeling the acquisition

of artificial grammars (Duarte et al., 2014) and also NADs

(Fitz, 2011). Overall, distributed, i.e., binary or spiking, neural

network models are ideal candidates for the achievement of a

linkage between neural and cognitive processes that support

sequence learning (Lazar et al., 2009; Klampfl and Maass, 2013;

Tully et al., 2016; Klos et al., 2018) and language acquisition

(Garagnani et al., 2017; Tomasello et al., 2018). In this study,

we introduced a spiking recurrent neural network (RNN) for

fully unsupervised artificial NAD learning (Figure 1). The

network consisted of excitatory (E) and inhibitory (I) leaky

integrate-and-fire (LIF) neurons that emitted so-called “spikes”

whenever their membrane voltages crossed an activation

threshold (i.e., modeling the time point of neuronal action
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potential generation). On the one hand, these time points

of spike emission represented the network activity, but also

triggered local changes of continuously evolving network

variables that were responsible for learning. Statistical learning

by STDP was implemented locally in the excitatory recurrent

connections of neurons, also called “synapses,” and further

combined with a short- to long-term memory transition

(SLMT). Both were grounded in a spike-triggered initialization

and readout of memory traces at synapses, defining the degree

of induced potentiation and depression of synaptic weights (w)

and weight time constants (τw). Grammars were AXB-type

isolated or nested NADs that comprised grammatical A and

B element pairs defined by their nesting level (NL), transition

(i.e., λ : A→ B), and non-grammatical intervening X elements.

While the acquisition of isolated NADs requires learning

grammatical dependencies across the intervening material, the

acquisition of nested NADs additionally requires differentiating

grammatical from non-grammatical A and B pairings of a

sample (i.e., ¬λ : A → B) across even larger temporal gaps.

Grammatical A and B pairings of nested NADs are therefore

more difficult to learn and are viewed as a critical prerequisite

for mastering linguistic embedding (Winkler et al., 2018). In the

experiments, training sequences of spiking grammar samples

were successively presented to the RNN and incorporated

varying distributional properties. The learning performance

was measured by synaptic weights of the stimulus elements

and transition encoding assemblies reached during training.

Learning was successful when grammatical assemblies (3) were

stronger than non-grammatical assemblies (¬3) as indicated

by separability ratios larger than one. Overall, the grammar

learning experiments mimicked passive listening procedures

as frequently used in infant artificial grammar learning tasks

or tasks in which adults learn by mere exposure. While only

correct exemplars were presented to the RNN, the setup still

allowed the comparison of grammatical and non-grammatical

transitions as the stimulus sequences contained both transitions

that were relevant as well as irrelevant with respect to the

grammatical structure.

Results

Spike-timing dependent plasticity gave rise to distributions

of synaptic weights that complied with performance patterns in

human NAD acquisition (Figure 2). It led to a better acquisition

of isolatedNADs than of nestedNADs (Figure 2A) and benefited

from a high X variability (Figure 2B). Here, only during learning

with one X element, separability measures were below the

critical mark of one. STDP benefited from small X chunk sizes

whereby the “Starting small” condition was optimal (Figure 2C).

Long stimulus pauses were beneficial whereby the learning of

isolated NADs benefited the most (Figure 2D). Finally, emphasis

made a functional difference by pushing the separability from X

elements clearly above the critical mark of one (Figure 2E).

Separability measure dynamics were explained by

underlying synapse assembly weights (Figure 3). The best

acquisition of isolated NADs arose by weakest ¬λ : A → B in

this grammar (Figure 3A). The different strength levels across

grammars were explained by their structural composition.

In isolated NADs, only individual A and B pairs existed per

grammar sample. Thus, ¬λ : A → B could only grow due to

cross-sample interference of potentiation traces. Nested NADs,

however, consisted of several sequentially occurring A and B

pairs so that already within individual samples ¬λ : A → B

existed. They therefore occurred comparably more often, with a

greater temporal proximity and consequently grew comparably

stronger. A high X variability was beneficial because it led to a

decrease of χ while λ : A → B remained constant (Figure 3B).

The strength consistency of λ : A → B was explained by its

independence from the X variability. The decrease of χ was

explained by reduced occurrence frequencies of X elements

under high variabilities. However, during training with one X

element, χ was stronger than λ : A → B. This was explained

by an increased relative occurrence frequency of X vs. A and

B elements. The beneficial effect of short X chunk sizes was

explained by both a decrease of λ : A → B and an increase

of χ (Figure 3C). The decrease of λ : A → B was explained

by increasing within-sample temporal gaps between A and B

elements. With long X chunks, the potentiation traces of A

elements decayed more strongly until the onset of grammatical

B elements by what the growth of λ : A → B was impaired.

Here, the “Starting small” condition represented an optimal

structural composition for the induction of strong potentiation

in λ : A → B given that AB samples had no temporal gap.

The increase of χ was explained by the elevated occurrence

frequency of individual X elements. This frequency effect

additionally contributed to an optimal separability in the

“Starting small” condition. Here, X elements did not occur so

that λ : A → B was compared against χ that remained at the

baseline level. The beneficial effect of long stimulus pauses was

mainly based on a moderate increase of λ : A→ B (Figure 3D).

In isolated NADs, ¬λ : A → B additionally consistently

decreased. These dynamics were explained by a reduced amount

of cross-sample interference as prolonged pauses introduced

extended decay periods of memory traces. While the increase of

λ : A→ B was explained by decreased cross-sample depression,

underlying to the decrease of ¬λ : A → B in isolated NADs

was a reduced amount of cross-sample potentiation. The

effect of pauses on ¬λ : A → B was the strongest in isolated

NADs because here, they could only grow due to cross-

sample potentiation. In nested NADs, however, the growth of

¬λ : A → B was mainly driven by within-sample potentiation

and therefore only marginally affected. The beneficial effect of

emphasis on the separability from X elements was based on

an increase of λ : A → B (Figure 3E). This was explained by
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FIGURE 1

Statistical learning of isolated and nested non-adjacent dependencies in a spiking RNN. (A) AXB-type grammars; NL = nesting level; NL = 1:

isolated NAD, NL = 2 and NL = 3: nested NADs. (B) Stimulus stream with non-grammatical transitions (¬3) next to grammars. (C) Stimulation of

a RNN of excitatory (E) and inhibitory (I) neurons; subgroups in the input population (Inp) successively coded for A, X, and B elements. (D)

Statistical learning by spike-timing dependent plasticity (STDP: 1w) and short-to long-term memory transition (SLMT: 1τw);

strengthening/potentiation (P) of forward-transitions, weakening/depression (D) of backward-transitions and ad-hoc stronger changes for

adjacent (++ /−−) over non-adjacent (+/−) transitions. (E) Excitatory-to-excitatory synapses (Ei = source/pre, Ej = target/post) and stimulus

encoding grammatical (3) and non-grammatical (¬3) assemblies. (F) Grammar learning experiments: “X variability” (i.e., varying number of

available X elements), “X chunk size” (i.e., varying number of X elements per grammar sample) and “Starting small” (i.e., AB grammar samples),

“Pause variability” (i.e., varying pause durations between grammar samples) and “Emphasis” (i.e., increased stimulus firing rate of A and B

elements, representatively studying the e�ect of additional cues); compare Figure 3 in Wilson et al. (2018).

the elevated stimulus firing rate assigned to A and B elements

that led to an increased spiking activity and consequently to

more maximization and readout events of potentiation traces in

λ : A→ B. While X elements were independent from emphasis,

the increase of A → X was explained by elevated potentiation

traces of A elements and the increase of X→ B by more readout

events of X element potentiation traces during higher frequent

B element activity.
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FIGURE 2

Statistical learning leads to synaptic representations that comply with human NAD learning performance patterns. Each individual data point (=

n) indicates mean ± standard deviation (SD) of separability measures (synaptic weight w) across the RNNs (N = 10); each panel shows those

separability measures with a main e�ect in response to the experimental stimulus modification. (A) Statistical learning leads to a better

acquisition of isolated NADs (NL = 1) than nested NADs (NL = 2 and NL = 3), as demonstrated by the separability of λ : A→ B from ¬λ : A→ B;

data pooled across the NX parameter range of experiment “X variability” (n = 30). (B) Statistical learning benefited from a high X variability (n =

30), as demonstrated by the separability of λ : A→ B from χ . (C) Statistical learning benefited from small X chunk sizes (n = 30), as demonstrated

by the separability of λ : A→ B from χ . (D) Statistical learning benefited from long stimulus pauses (n = 10), as demonstrated by the separability

of λ : A→ B from ¬λ : A→ B. (E) Emphasis on grammar elements made a functional di�erence, as demonstrated by the separability of λ : A→ B

from χ ; “O�”-data taken from experiment “X variability” in the NX = 1 condition (n = 10).

Discussion

In this study, we showed that a variety of human

performance patterns in artificial NAD learning (Wilson et al.,

2018) was modeled by a cortical, spike-based statistical plasticity

mechanism (Dan and Poo, 2006; Morrison et al., 2008).

The finding that a biologically founded neural algorithm

accounts for non-adjacent dependency acquisition exemplifies

how unsupervised, domain-general learning can account for

complex, high-order cognition that forms a basic prerequisite
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FIGURE 3

Synapse assembly weights encode the accumulated stimulus sequence statistics. Each individual data point (= n) indicates mean ± standard

deviation (SD) of assembly medians (synaptic weight w) across the RNNs (N = 10); columns indicate grammar (NL); each row shows the

selection of assemblies that respectively underlie the separability measures (see Figure 2). (A) Weights underlying to better acquisition of isolated

NADs than nested NADs, i.e., λ : A→ B and ¬λ : A→ B (n = 10). (B) Weights underlying to beneficial e�ect of large X variabilities, i.e., λ : A→ B

and χ : {A→ X, X, X→ B} (n = 10). (C) Weights underlying to beneficial e�ect of short X chunk sizes, i.e., λ : A→ B and χ : {A→ X, X, X→ B} (n =

10). (D) Weights underlying to beneficial e�ect of long stimulus pauses, i.e., λ : A→ B and ¬λ : A→ B (n = 10). (E) Weights underlying to

beneficial e�ect of emphasis on grammatical A and B elements, i.e., λ : A→ B and χ : {A→ X, X, X→ B} (n = 10).

for human language processing. Particularly, STDP comprises

a powerful combination of mechanisms for the unsupervised

online-learning of sequential structure. Recently, the integration

of forgetting gained increased importance as a decisive memory

feature for STDP and other statistical models (Thiessen and

Pavlik, 2013; Panda and Roy, 2017; Panda et al., 2018;

Endress and Johnson, 2021). Here, we presented a new

and fully symmetric implementation of decay adaptivity

into pair-based STDP. While STDP was the mechanism

responsible for synaptic weight changes (1w), i.e., the synaptic

representation and storage of learned stimulus statistics, SLMT

implemented synaptic weight time constant changes (1τw), i.e.,

the conceptual realization of memory on adaptive time scales.

Notably, the time scales of memory traces applied in this model
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(i.e., τP = 700 ms and τD = 100 ms) exceeded those measured

experimentally (Markram et al., 1997; Bi and Poo, 1998). For

the model, the extension of plasticity windows was essential

for a successful acquisition of NADs. The rationale behind this

deviance from the biological evidence was to explore if the core

STDP algorithm was applicable to learning problems taking

place on larger time scales (Testa-Silva et al., 2010). Moreover,

as the evidence of temporal STDP windows in humans is scarce

(Koch et al., 2013), testing parameter spaces “fitted” to the

learning task of interest remained a practicable solution.

STDP and SLMT enabled the acquisition of NADs in

the following way. At the start of training, w and τw

were at their baseline levels. Thus, weights were in a naive

state and additionally very volatile, i.e., decaying quickly

to their baseline level when increased. During training

first, the temporal order of stimulus element successions

defined whether synapses were strengthened or weakened.

While forward-transitions, i.e., pre-post activations at synapses,

generally induced potentiation, backward-transitions, i.e., post-

pre activations, induced depression. For instance, during the

processing of an AXB grammar sample, synapses experiencing

the forward-transitions between the A and X element (i.e.,

A → X), the A and B element (i.e., λ : A → B) and the

X and B element (i.e., X → B) were strengthened, while

synapses experiencing the respective backward-transitions (i.e.,

X → A, B → A and B → X) were weakened. Due to the

recurrent connectivity of excitatory synapses, both assemblies

experiencing the forward- and backward-transitions during the

processing of an A → X → B succession existed concurrently.

Second, the temporal proximity of successive stimulus elements

defined the degree of induced potentiation and depression.

The extent of w and τw changes depended on the values of

exponentially decaying memory traces so that changes were

larger for temporally close successions than for temporally

distant transitions. As a consequence, the learning mechanism

promoted an ad-hoc stronger learning of non-grammatical

adjacent dependencies (i.e., A → X and X → B) over

grammatical non-adjacent dependencies (i.e., λ : A → B).

Notably, the learning of adjacent and non-adjacent transitions

happened concurrently, i.e., by the same underlying mechanism.

Third, the overall occurrence frequency of stimulus elements

and transitions defined the final strength of their assemblies.

The more often an element or a transition occurred, the more

often spike-triggered plasticity changes were induced. Due to

combining STDP with SLMT, the growth of w was consistently

impaired by the decay. During the course of training, i.e.,

under a repeated activation by the above described principles,

τw grew and enabled the assemblies’ transition from quickly

fading to temporally more persistent representations. This

subsequently also supported the continuous growth of the

assemblies’ weights. Therefore, consistent distributional cues in

the input (i.e., λ : A → B) were finally encoded by durable

and strong assemblies whereas less consistent distributional cues

(i.e., ¬λ : A → B and χ) had comparably quicker fading

and weaker representations. Fourth, spike-triggered plasticity

changes were positively correlated to the firing rate of excitatory

neurons. High firing rates resulted in an increased amount

of maximization and readout events of memory traces. The

more often memory traces were maximized, the higher their

values were at the onset of any following stimulus element.

Additionally, the more often memory traces were read out, the

more plasticity changes happened. Even though emphasis on

the A and B elements had as well an enhancing effect on non-

grammatical transitions (i.e., A → X and X → B), successful

NAD learning was not negatively affected as only in λ : A → B

both, increased amounts of maximization and readouts, were

combined. As a final learning dynamic, exponentially decaying

memory traces led to cross-sample interference when they did

not fully decay during stimulus pauses. Consequently, cross-

sample learning of non-grammatical transitions additionally

happened. However, given that λ : A → B remained the most

consistent structure in the input, cross-sample interference did

not impair successful NAD learning.

The observation that a statistical algorithm of the non-

human cortex benefited from the same NAD variations

as human learners highlights the importance of low-level

neural mechanisms for high-level cognition. Apparently, the

acquisition of potential precursors to linguistic grammars can

be explained by the learning of pair associations, a fairly low-

level computation. Importantly, its combination with sensitivity

to sequential order, temporal proximity, occurrence frequency

and stimulus strength explained the wide applicability across

distributional stimulus features. Notably, experimental NAD

learning patterns in humans (Wilson et al., 2018) are thought

to be grounded in statistical mechanisms that are comparable

to those implemented by STDP. For example, isolated NADs

are considered less complex than nested NADs and thus,

potentially also easier to learn (Winkler et al., 2018). In the

model, this was demonstrated by an optimal learning of isolated

NADs (Figure 2A) that was explained by a strong contrast of

grammatical A to B transitions (i.e., λ : A → B) from non-

grammatical A to B transitions (i.e., ¬λ : A → B). Further,

a high variability of the intervening material is considered

beneficial for NAD learning as it facilitates a detection of the

statistically more persistent, invariant non-adjacent grammars

(Gómez, 2002; Gómez and Maye, 2005). But also in general,

highly frequent linguistic structures or words seem to be valuable

cues for learning and efficient processing (Mintz, 2003; Brysbaert

et al., 2018). In the model, this effect became visible during

training with high X variabilities (Figure 2B) that allowed for

an increased separability of comparably higher-frequent NADs

(i.e., λ : A → B) from lower-frequent X elements and X

element-related transitions (i.e., χ). Further, training procedures

with an incremental transition from adjacent to non-adjacent

dependencies are considered beneficial (Lany and Gómez,

2008). In this context, learning grammatical dependencies of
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short length is generally thought to be easier because less

intervening material has to be processed (van den Bos and

Poletiek, 2008). In the model, this effect was demonstrated

during training with short X chunks (Figure 2C) that allowed

for an optimal separability of NADs (i.e., λ : A → B) from

X elements and X element related transitions (i.e., χ). Next,

pauses between grammar exemplars are considered beneficial

as they introduce segmental cues that facilitate their detection

(Peña et al., 2002; Mueller et al., 2010; de Diego-Balaguer

et al., 2015). But also in natural language, pauses are valuable

cues for the detection of phrase boundaries (Männel and

Friederici, 2009). In the model, prolonged stimulus pauses

were also beneficial (Figure 2D) as they reduced the amount

of cross-sample interference of memory traces which led to a

better acquisition of the actual grammars (i.e., λ : A → B).

Potentially, such reduced amounts of interference might also

support linguistic segmentation performances. Finally, grammar

learning can be enhanced by emphasis on NADs introduced

via perceptual similarities, phonological or prosodic cues, as

well as directed attention (Newport and Aslin, 2004; Onnis

et al., 2005; Pacton and Perruchet, 2008; Mueller et al., 2010;

de Diego-Balaguer et al., 2016; Grama et al., 2016). In the

model, emphasis was implemented in a simplistic fashion by

increased stimulus firing rates of the grammatical A and B

elements. As learning by STDP is positively correlated to

frequency, emphasis led to increased separabilities of NADs

(i.e., λ : A → B) from X elements that were not emphasized

(Figure 2E). On the one hand, these findings further support

statistical learning as a central language acquisition framework

(Erickson and Thiessen, 2015; Saffran and Kirkham, 2018).

Beyond, STDP is remarkably compatible with the associative

language learning hypothesis (Thompson-Schill et al., 2009;

Mueller et al., 2018). Especially during passive listening,

associative learning is considered an automatic process for

the extraction of statistical structure without the need to

rely on actively controlled reasoning or attention. While a

large body of evidence highlights the importance of statistical

learning (Saffran et al., 1996; Aslin et al., 1998; Pelucchi

et al., 2009; Kidd, 2012; Christiansen and Chater, 2016;

Yang and Piantadosi, 2022), associative mechanisms are still

considered insufficient for explaining the mastery of complex

language hierarchies (Chen et al., 2021; Rawski et al., 2021).

Nonetheless, we argue that despite missing the full complexity

of language structure, it is nothing but parsimonious to assume

that simple statistical processing mechanisms also substantially

contribute to higher level linguistic operations. Here, we

possibly described an early phase in the language acquisition

process where a previously naive neural network acquires initial

knowledge about the structures of a language. Potentially,

low-level representations shape the outcome of subsequent

analyzes with the information representing a biasing signal

for subsequent processing steps. For example, discrimination

processes might rely on the acquired representations of

grammatical standards for differentiating them from deviants.

Future model extensions could therefore test the applicability of

assembly-based knowledge representations for grammaticality

judgments. Given that the low-level synapse representations in

this study already complied with high-level human learning

outcomes, they certainly contain essential information for such

linguistic computations.

Conclusion

Taken together, we argue in favor of views on language

acquisition that assign statistical processes an important

role, either as sole, unitary mechanisms or as important

contributors in concert with other cognitive strategies (Marcus

et al., 1999; Endress and Bonatti, 2007; Thiessen et al.,

2013; Christiansen and Chater, 2016; Yang and Piantadosi,

2022). The availability of these is not necessarily limited to

human infants (Kabdebon et al., 2015). While aspects of

human grammar are explained by general purpose associative

learning as evidenced in non-human animals (Markram et al.,

1997; Bi and Poo, 1998), it becomes increasingly apparent

that humans share potential precursor abilities of language

with other species (Abe and Watanabe, 2011; Watson et al.,

2020).

Materials and methods

Simulation environment

Simulations were conducted in Python using the “Brian 2”

spiking neural network simulator (Stimberg et al., 2014, 2019).

Network architecture

The RNN was based on the self-organizing neural network

SORN (Lazar et al., 2009) and the leaky integrate-and-fire

LIF-SORN (Miner and Triesch, 2016). It had an input (NInp

= 500), an excitatory (NE = 500), and an inhibitory (NI =

100) population with input-to-excitatory (InpE), excitatory-

to-excitatory (EE), excitatory-to-inhibitory (EI), inhibitory-to-

excitatory (IE), and inhibitory-to-inhibitory (II) synapses. Inp

projected with a one-to-one connectivity onto E so that

each excitatory neuron had one dedicated input neuron. The

connections of E and I were established randomly (pEE = 0.1,

pEI = 0.1, pIE = 0.1, pII = 0.5). Connections had a transmission

delay (1tEE = 1.5 ms, 1tEI = 0.5 ms, 1tIE = 1.0 ms, 1tII = 1.0

ms), a weight (wInpE = 2.0 mV, wEE = 0.1 mV*, wEI = 1.5 mV,

wIE = –1.5 mV, wII = –1.5 mV), and plastic EE synapses had a

weight time constant (τwEE = 0.1 s*). Throughout, initialization

values are indicated by *.
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Leaky integrate-and-fire neurons with
intrinsic plasticity

E and I were modeled as leaky integrate-and-fire (LIF)

neurons:

dVm

dt
=
−(Vm(t)− V↪)

τVm

, (1a)

with the membrane voltage (Vm), the resting voltage (V↪ = –60

mV), and the membrane voltage time constant (τVm = 20 ms).

The emission of a spike was defined by the time point of spiking

(tθ ) when Vm crossed the threshold voltage (Vθ = –55 mV*):

tθ :Vm(t) > Vθ . (1b)

After tθ ,Vm was set to the reset voltage (V⊥, for E = –70 mV

and I = –60 mV):

t > tθ :Vm(t)← V⊥. (1c)

LIF neurons had an intrinsic plasticity (IP) of Vθ derived

from Stimberg et al. (2014):

dVθ

dt
=
−(Vθ (t)− Vθ↪ )

τVθ

, (2a)

with the threshold resting voltage (Vθ↪ = –56 mV) and the

threshold voltage time constant (τVθ
= 60 s). After tθ , Vθ was

increased by a constant value (Vθ1
= 0.1 mV):

t > tθ :Vθ = Vθ (t)+ Vθ1
. (2b)

Synaptic transmission

The emission of a spike in a presynaptic neuron i caused an

increase of the Vms of all postsynaptic neurons js, defined by the

respective synaptic weights wijs:

t > ti +1tij :Vmj = Vmj (t)+ wij, (3)

with the time point of a presynaptic spike (ti), the synaptic

transmission delay (1tij), and the membrane voltage of a

postsynaptic neuron Vmj .

Spike-timing dependent plasticity with
short- to long-term memory transition

Plasticity changes of w and τw in EE were based on synaptic

memory traces:

dDij

dt
=
−Dij(t)

τD
,

dPij

dt
=
−Pij(t)

τP
,

(4a)

with the depression trace (Dij), its time constant (τD = 100 ms),

the potentiation trace (Pij), and its time constant (τP = 700

ms). After a presynaptic spike (ti) and the synaptic transmission

delay, Pij and wij were updated:

t > ti +1tij : Pij(t) = T⊤,

wij = wij(t)+ D⊥w · Dij(t).
(4b)

Pij was increased to the trace maximum (T⊤ = 1) and wij

was decreased by the scaled w depression maximum (D⊥w = –

0.125 mV). After a postsynaptic spike (tj), Dij and the wij were

updated:

t > tj : Dij(t) = T⊤,

wij = wij(t)+ P⊤w · Pij(t).
(4c)

Dij was increased to the trace maximum and wij was

increased by the scaled w potentiation maximum (P⊤w = 0.25

mV). Throughout, w changes were only allowed within lower

and upper boundaries (w⊥ = 0.1 mV and w⊤ = 5 mV).

Similar to Panda and Roy (2017) and Panda et al. (2018), the

implementation of SLMT included a decay of EE weights:

dwij

dt
=
−(wij(t)− w⊥)

τwij

, (5a)

with the resting weight (w⊥ = 0.1 mV) and the adaptive weight

time constant (τwij = 0.1 s*). The plasticity of τw followed the

same principles as the plasticity of w. After ti and the synaptic

transmission delay, τwij was depressed:

t > ti +1tij : τwij = τwij (t)+ D⊥τw · Dij(t), (5b)

by the scaled τw depression maximum (D⊥τw = –5 s). After tj,

τwij was potentiated:

t > tj : τwij = τwij (t)+ P⊤τw · Pij(t), (5c)

by the scaled τw potentiation maximum (P⊤τw = 10 s).

Throughout, τw changes were only allowed within lower

and upper boundaries (τw⊥ = 0.1 s and τw⊤ = 1,000

s), whereby the upper limit was set to an arbitrarily

high value.

Grammatical stimuli

Training stimuli comprised sequences (S) of grammatical

A and B pairs (λ). For isolated NADs (NL = 1), two λs as in

Mueller et al. (2012) were used, generating two sequences (S:

{a1, X, b1} and {a2, X, b2}). For nested NADs with two nesting

levels (NL = 2), three λs and six sequences were generated (S:

{a2, a1, X, b1, b2}, {a1, a2, X, b2, b1}, {a1, a3, X, b3, b1}, {a3,

a1, X, b1, b3}, {a2, a3, X, b3, b2} and {a3, a2, X, b2, b3}). For
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nested NADs with three nesting levels (NL = 3), four λs and

eight standard sequences existed (S: {a2, a1, a3, X, b3, b1, b2},

{a1, a2, a3, X, b3, b2, b1}, {a1, a2, a4, X, b4, b2, b1}, {a2, a1,

a4, X, b4, b1, b2}, {a3, a4, a2, X, b2, b4, b3}, {a4, a3, a2, X,

b2, b3, b4}, {a4, a3, a1, X, b1, b3, b4}, {a3, a4, a1, X, b1, b4,

b3}). Sets of nested NADs were derived from Winkler et al.

(2018) by changing the identity relation into λs. Throughout,

λs were equally often presented at all NLs and equally often

combined with the other λs. Thus, even though λs of nested

NADs were partly presented at the innermost NL, i.e., like in

isolated NADs, they comparably often also occurred at the outer

NLs and therefore, were separated by larger temporal gaps.

Grammar samples were random combinations of sequences

and intervening X elements. Training sequences were random

concatenations of samples with pauses in between.

Spiking training sequences

Inp encoded the training sequence by its spiking

activity at a Poisson firing rate (FR) of 40 Hz. Subgroups

in Inp were assigned to the stimulus elements and

sequentially activated according to the order defined by

the training sequence. They had a size of 15 neurons

and were individually activated for a stimulus duration of

100 ms.

Grammar learning experiments

Experiments applied variations of the following stimulus

parameters: NX = number of available X elements, nX =

number of X elements per grammar sample, ∪1 = pause

duration between grammar samples and FR = Poisson stimulus

firing rate of grammatical (3) and non-grammatical (¬3)

subgroups. In experiment “X variability,” the number of available

X elements varied (NX range = {1, 5, 15}, ∪1 = 100 ms, nX

= 1, FR3 = FR¬3 = 40 Hz). In experiment “X chunk size”

and “Starting small,” the number of X elements per grammar

sample varied (NX = 15, ∪1 = 100 ms, nX range = {0,

3, 7}, FR3 = FR¬3 = 40 Hz). Individual X elements were

allowed to occur only once per grammar sample. In experiment

“Pause variability,” the duration of pauses varied (NX = 15, ∪1

range = {0 ms, 300 ms, 700 ms}, nX = 1, FR3 = FR¬3 =

40 Hz). In experiment “Emphasis,” the stimulus firing rate of

grammatical subgroups was elevated by 10 Hz (NX = 1, ∪1 =

100 ms, nX = 1, FR3 = 50 Hz, FR¬3 = 40 Hz). In total, 10

RNNs were tested that varied with regard to their randomized

connectivities. For each experiment condition and RNN, a new

training sequence with 300 grammar samples was generated (see

Supplementary Figure S1 for stimulus element counts). After

full presentation of a training sequence and storage of EE

weights, RNNs were reset to their initialization status before

presenting a new training sequence.

Separability measures

The measure of successful learning was defined as the

separability of grammatical (3) from non-grammatical (¬3)

synapse assemblies, calculated as their ratio ( 3
¬3

). Learning was

successful for ratios larger than one (i.e., 3 > ¬3) and not

successful for ratios equal to or below one (i.e., 3 ≤ ¬3).

Grammatical assemblies were defined as the set 3 = {{A,

B}, {λ : A → B}} and non-grammatical assemblies as ¬3 =

{{¬λ : A → B}, {χ : {A → X, X, X → B}}, {χ ′ : {X → X,

B → X, X → A}}, {B → A}, {ÂAB̂B : {A → A, B → B}}.

The analysis was focused on the separability measures λ : A→B
¬λ : A→B

and λ : A→B
χ . Synaptic weights were grouped by assembly types

(i.e., A : {a1, a2, ...}, A → X : {a1 → x1, a2 → x1, ...}, etc.) and

the medians of these collections (see Supplementary Figures S2–

S5 for w of all assembly types) were used to calculate the 3
¬3

ratios. Ratios were pooled across the RNNs and, if applicable,

grouped into the assembly sets. Finally, the mean values and

standard deviations (SD) of these collections were calculated.

Throughout, stimulus element encoding assemblies (i.e., A,

X and B) comprised those synapses with identical pre- and

postsynaptic neuron indices (i.e., Ei = Ej, see assemblies

along the diagonal of the excitatory-to-excitatory synapse matrix

in Figure 1E). Element transition encoding assemblies (i.e.,

λ : A → B, ¬λ : A → B, χ , χ ′, B → A and ÂAB̂B)

comprised those synapses with different pre- and postsynaptic

neuron indices (i.e., Ei 6= Ej, see remaining assemblies in the

excitatory-to-excitatory synapse matrix in Figure 1E).
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