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English Summary 

 The field of large-scale human population modelling has emerged as a response to 

the increasing demands for actionable, consistent and comparable population data needed 

to support a large number of sustainable development applications. Nowadays, Earth 

Observation-derived, top-down large-scale gridded population datasets that describe the 

extent and spatial distribution of the human population as continuous surfaces (rasters), 

are openly accepted by many governments and institutions around the world, who use 

them as an alternative source of information to complement/supplement conventional 

census/estimate-based population data. 

Given the wide range of applications where gridded population products are being 

employed, research performed to improve the accuracy and spatial resolution of large-

scale population models has become of utmost importance. For the last decade, the 

scientific community has constantly leveraged the increasing availability of Earth 

Observation data, the improvements made on Remote Sensing techniques and the 

developments made on the field of Machine Learning, to produce large-scale gridded 

population datasets with higher usability and reliability. For example, some of the most 

accurate and spatially explicit products available at a global scale are produced mainly by 

harnessing the inclusion of remotely-sensed derived proxy layers with improved thematic 

and spatial resolution, especially those describing the characteristics of the built-up 

environment such as built-area layers and building footprint datasets, respectively.  

However, notwithstanding these advancements, a systematic literature review 

undertaken within this PhD research has revealed that existing top-down large-scale 

population models still suffer from a number of limitations that affect the final accuracy 

and usability of their corresponding derived population datasets. In particular, it has been 

identified that existing models used to produce large-scale gridded population maps are 

still affected by a) the quality and recency (currentness or age of the data) of the underlying 

census/estimate-based population data on the one hand; and by b) the still low spatial 

resolution of the geospatial proxies used for disaggregation, c) the persistent inaccuracy 

in identifying populated areas from remotely-sensed data, and d) the lack of information 

on the functional use and 3D characteristics of the built-up environment, on the other 

hand. Overall, it has been concluded that if some of these limitations still exist in the field, 

it is because data and methods that can help overcome these issues at very local–scales 

(e.g. national models) are yet not available or transferable to large-scale applications (e.g. 

continental or global models). 

In this context, this PhD thesis explores the capabilities and effectiveness of the new 

World Settlement Footprint (WSF) suite in the production of a large-scale gridded 

population model that allows improving the accuracy and spatial resolution of end-user 

population datasets. In detail, it presents a methodological framework that explores how 

and if each of the WSF-layers, namely the WSF2015, the WSF2019 and the WSF3D can 

overcome the limitations listed above, in particular limitations b), c) and d).  Thereinafter, 

each WSF-layer was evaluated in terms of  1) their ability to improve population estimates 

compared to binary-dasymetric models, 2) their ability to produce consistent and 

comparable accuracies across large territorial extents, 3) their ability to produce accurate 

population estimates acting as single proxies for population modelling, 4) their ability to 
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reduce the technical complexities of multi-layer weighed-dasymetric models, 5) their 

ability to discriminate large industrial areas using a simple and spatially transferable 

machine learning approach, and finally 6) their ability to improve population estimates 

through the integration of volume and settlement use information.  

Within this methodological framework, a comprehensive set of spatial and statistical 

analyses were designed to evaluate the uncertainties of large a number of population 

distribution maps at local, national and continental scale. For a robust assessment, 

population models were produced at varying currencies, qualities and spatial scales of the 

input census-based population data, with the purpose of analysing how the differences in 

the level of spatial granularity of the available administrative boundaries and the 

variability in the morphology of built-up landscapes influence the accuracy of each WSF 

layer.  

Overall, the main findings of this PhD thesis demonstrate that the WSF-layers are 

capable of tackling some of the main limitations identified in the field of large-scale 

population modelling. First, the independent weighting framework provided by the non-

binary WSF-layers allowed outperforming the mapping accuracies of widely employed 

binary-dasymetric models and reduce the technical complexities of (multi-layer) weighted 

dasymetric models. Second, as single proxy layers used for dasymetric disaggregation, 

each WSF-layer was also capable of delivering consistent and systematic accuracies across 

large territorial extents (e.g. continent and region-wide); where the robustness of each 

layer was consistent under varying qualities and spatial resolutions of the input 

population data.  Finally, spatial metrics derived solely from the WSF3D dataset showed 

to be extremely effective at classifying the built-up environment into industrial and non-

industrial land-uses, which ultimately, allowed  incorporating for the first time ever, 

settlement use and settlement volume information into large-scale models of population 

disaggregation.   

In view of these promising results, the main contributions of this PhD research can 

be summarised as follows:  

1. Quantitative and qualitative demonstration of how employing the WSF-suite for 

population modelling overcomes some of the most prominent limitations  in the 

field.  

2. First in-depth quality assessment aimed at evaluating the effectiveness and 

suitability of each WSF-dataset as proxy layer for large-scale population 

modelling. 

3. Design and implementation of the Settlement Size Complexity (SSC) index as a 

robust metric to evaluate the uncertainty of population models based on built-

up area layers. 

4. Improving understanding on the “fitness for use” of large-scale gridded 

population datasets. 

5. The development of a highly accurate, semi-automatic and globally transferable 

method for the identification of industrial and non-industrial areas using only 

the WSF3D dataset in combination with a Machine Learning approach.   
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6. First time delivery of large-scale population datasets produced on the basis of 

the WSF-layers, to serve as actionable data for a large number of ongoing-

projects.  
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Deutsche Kurzfassung 

Der Forschungsbereich der großflächigen Bevölkerungsmodellierung hat sich als 

Folge des zunehmenden Bedarfs an verwertbaren, konsistenten und vergleichbaren 

Bevölkerungsdaten entwickelt, die für eine Vielzahl von Anwendungen im Kontext der 

nachhaltigen Entwicklung benötigt werden. Heutzutage werden aus 

Erdbeobachtungsdaten abgeleitete, großflächige Bevölkerungsdaten im Rasterformat, die 

das Ausmaß und die räumliche Verteilung der menschlichen Bevölkerung als 

kontinuierliche Flächen beschreiben, von vielen Regierungen und Institutionen auf der 

ganzen Welt offen akzeptiert. Diese nutzen die Bevölkerungsdaten als zusätzliche 

Informationsquelle, da sie die konventionellen, auf Volkszählungen sowie Schätzungen 

basierenden Daten auf wertvolle Weise ergänzen. 

In diesem Zusammenhang und angesichts des breiten Spektrums von 

Anwendungen, bei denen gerasterte Bevölkerungsprodukte zum Einsatz kommen, sind 

Forschungsarbeiten zur Verbesserung der Genauigkeit und räumlichen Auflösung 

großflächiger Bevölkerungsmodelle von größter Bedeutung. In den letzten zehn Jahren 

haben Wissenschaftler zunehmende Verfügbarkeit von Erdbeobachtungsdaten, die 

Verbesserungen der Fernerkundungsmethoden und - in jüngerer Zeit - die Entwicklungen 

bei den Algorithmen des maschinellen Lernens genutzt, um großflächige 

Bevölkerungsdatensätze mit einer höheren Nutzbarkeit und Zuverlässigkeit als je zuvor 

zu erstellen. Heute werden einige der genauesten und räumlich explizitesten Produkte, 

die auf globaler Ebene verfügbar sind, durch die Einbeziehung von aus der 

Fernerkundung abgeleiteter Indikatoren mit verbesserter thematischer und räumlicher 

Auflösung erstellt. Diese umfassen insbesondere solche, die urbane Strukturen 

beschreiben, wie z. B. Datensätze zu bebauten Flächen oder Gebäudeumrisse.  

Eine im Rahmen dieser Doktorarbeit durchgeführte systematische 

Literaturrecherche hat jedoch ergeben, dass die bestehenden großflächigen 

Bevölkerungsmodelle nach wie vor einige Einschränkungen aufweisen, die die 

Genauigkeit und Verwendbarkeit der entsprechend abgeleiteten Bevölkerungsdatensätze 

stark beeinträchtigen. Insbesondere wurde festgestellt, dass bestehende Techniken zur 

Erstellung großflächiger Bevölkerungsschätzungen nach wie vor durch die Qualität und 

Aktualität der zugrundeliegenden, auf Volkszählungen sowie Schätzungen basierenden 

Bevölkerungsdaten beeinträchtigt werden. Andererseits haben die nach wie vor geringe 

räumliche Auflösung der für die Disaggregation verwendeten räumlichen Indikatoren, 

die  resultierenden Ungenauigkeiten bei der Klassifikation von besiedelten Gebieten 

anhand von Fernerkundungsdaten, der Mangel an Informationen über die funktionale 

Nutzung sowie die fehlende vertikale Information der bebauten Umgebung negative 

Auswirkungen auf die modellierten Bevölkerungsdaten . Insgesamt wurde der Schluss 

gezogen, dass einige dieser Einschränkungen weiterhin bestehen  und dies darauf 

zurückzuführen ist, dass Daten oder Methoden, die dazu beitragen können, diese 

Probleme auf sehr lokaler oder feiner Ebene zu überwinden oder auf das Fehlen, noch 

nicht verfügbar oder in großem Maßstab übertragbar sind (z. B. kontinentale oder globale 

Ebene). 
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Um diese Herausforderungen zu bewältigen, untersucht diese Doktorarbeit die 

Möglichkeiten und die Effektivität der neuen World Settlement Footprint (WSF) Produkte 

bei der Erstellung eines großflächigen und rasterbasierten Bevölkerungsmodells, das die 

Verbesserung der Genauigkeit und der räumlichen Auflösung bestehender 

Bevölkerungsdatensätze ermöglicht. Im Detail wird ein methodisches Framework 

vorgestellt, das die Effektivität jeder WSF-Layer, nämlich des WSF2015, des WSF2019 und 

des WSF3D, in Bezug auf ihre Fähigkeit, 1) Bevölkerungsschätzungen im Vergleich zu 

binär-dasymetrischen Modellen zu verbessern, 2) konsistente und vergleichbare 

Genauigkeiten über große territoriale Ausdehnungen zu erzeugen 3) genaue 

Bevölkerungsschätzungen zu erstellen, die als einzelne Näherungswerte für die 

Bevölkerungsmodellierung dienen, 4) die technische Komplexität von gewichteten-

dasymetrischen Modellen zu verringern, 5) große Industriegebiete mit Hilfe eines 

einfachen und räumlich übertragbaren maschinellen Lernansatzes zu unterscheiden, und 

schließlich 6)  Bevölkerungsschätzungen durch die Integration von Informationen über 

Volumen und Siedlungsnutzung zu verbessern.  

Innerhalb dieses methodischen Frameworks wurden umfassende räumliche und 

statistische Analysen durchgeführt, um die Unsicherheiten einer großen Anzahl von 

Bevölkerungsverteilungskarten auf lokaler, nationaler und kontinentaler Ebene zu 

bewerten. Für eine robuste Bewertung wurden Bevölkerungsmodelle mit 

unterschiedlicher Aktualität, Qualitäten und räumlichen Maßstäben der eingegebenen 

Bevölkerungsdaten erstellt, um zu analysieren, wie die Unterschiede in der räumlichen 

Auflösung der verfügbaren Verwaltungsgrenzen sowie die Variabilität in der 

Morphologie bebauter Landschaften die Genauigkeit der einzelnen WSF-Layer 

beeinflussen. 

Die wichtigsten Erkenntnisse dieser Doktorarbeit zeigen, dass die WSF-Layer in der 

Lage sind, die aufgezeigten Beschränkungen im Bereich der großflächigen 

Bevölkerungsmodellierung zu überwinden. Erstens konnte durch die unabhängige 

Gewichtung, die durch die nicht-binären WSF-Layer ermöglicht wird, einerseits die 

Zuordnungsgenauigkeit der häufig verwendeten binär-dasymetrischen Modelle 

übertroffen und andererseits die technische Komplexität der (mehrschichtigen) 

gewichteten dasymetrischen Modelle verringert werden. Zweitens war jeder WSF-Layer 

als einzelner Proxy, der für die dasymetrische Disaggregation verwendet wird, auch in 

der Lage, konsistente und systematische Genauigkeiten über den gesamten Raum hinweg 

zu liefern, wobei die Robustheit jedes Layers konsistent war. Diese wurde unter 

verschiedenen Qualitäten und räumlichen Auflösungen der eingegebenen 

Bevölkerungsdaten getestet.  Schließlich erwiesen sich räumliche Metriken, die 

ausschließlich aus den WSF3D-Datensätzen abgeleitet wurden, als äußerst effektiv bei der 

Klassifizierung von Informationen über die Siedlungsnutzung im gesamten Raum, was 

letztlich die Einbeziehung von Informationen über die Siedlungsnutzung und das 

Siedlungsvolumen - zum ersten Mal überhaupt - in groß angelegte Modelle der 

Bevölkerungsdisaggregation ermöglichte.   

In Anbetracht dieser vielversprechenden Ergebnisse können die wichtigsten 

Beiträge dieser Doktorarbeit wie folgt zusammengefasst werden: 
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1. Quantitative und qualitative Demonstration, wie der Einsatz der WSF-Produkte 

für die Bevölkerungsmodellierung die bestehenden Beschränkungen auf diesem 

Gebiet überwindet.  

2. Erste eingehende interne Qualitätsbewertung, die darauf abzielt, die Effektivität 

und Eignung jedes WSF-Datensatzes als Proxy-Layer für die großflächige 

Bevölkerungsmodellierung zu evaluieren. 

3. Entwurf und Implementierung des Siedlungsgrößenkomplexitätsindex (SSC) 

als robuste Metrik zur Bewertung der Unsicherheit von Bevölkerungsmodellen. 

4. Verbesserung des Verständnisses der „fitness for use“ von groß angelegten 

gerasterten Bevölkerungsdatensätzen. 

5. Die Entwicklung einer hochpräzisen, halbautomatischen und weltweit 

übertragbaren Methode zur Identifizierung von Industrie- und Nicht-

Industriegebieten unter ausschließlicher Verwendung des WSF3D-Datensatzes 

in Kombination mit Algorithmen aus dem Bereich des Maschinellen Lernens.    

6. Erstmalige Lieferung von Bevölkerungsdatensätzen auf der Basis der WSF-

Layer, die als verwertbare Daten für eine Vielzahl von laufenden Projekten 

dienen. 
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Chapter 1 

 

1. Introduction  

1.1 The importance of improving large-scale gridded population 

models 

When the main objective of this PhD research was conceptualised at the end of the 

year 2017, the world population was reaching the 7.6 billion mark. Four years later, this 

number has reached the 8.0 billion mark, which indicates that on average, 100 million 

people were added to the global population per year. According to the United Nations 

(UN) (UN, 2019; UNFPA, 2021), if the world population should continue to grow at its 

present rate, the number of humans on Earth could reach the 9.8 billion mark by the year 

2050, and increase up to 11.2 billion by end of the century.  

Naturally, while population growth and other population dynamics such as 

urbanisation, migration and population aging can pose challenges as well as opportunities 

for a given country, over the past decade, abrupt changes in these population processes 

have mainly acted as a break on social, economic and environmental development. This 

effect has been more pronounced in the world’s least developed countries, where the 

current policies and economies are not well established to deal with the rapid population 

changes (Twinoburyo et al., 2019; UN, 2018). For example, owing to the increasing 

unplanned urbanisation, severe climate change and land degradation has led nearly 39% 

of the Asia and Pacific region exposed desertification, which in return, has increased food 

insecurity and hunger. Today, about 351 million people residing in these regions are 

estimated to be undernourished, which is about 51% of the total amount at a global scale 

(FAO et al., 2021). Comparably, in most Sub-Saharan African countries, services such as 

education, health care, electricity, water and decent network infrastructures are severely 

over stretched as a result of the rapid population and urbanisation growth rates reported 

every year (~2.4% and ~3.4%, respectively) (Tuholske et al., 2019). Here, approximately 

60% of the Sub-African youth between ages fifteen and seventeen are not in school 

(UNESCO, 2021), 76% of the population do not have access to safe drinking water 

(UNESCO, 2019) and around 490 million people in live in extreme poverty (UNCTAD, 

2021)  

Under these circumstances, in an era when we are trying to achieve a global 

sustainable and  inclusive future, the human population has to be considered as one the 

most important numbers in the sustainability equation (Rosling et al., 2018). The reason 

for this is that the varying patterns of population growth, composition (e.g. size, density, 

age, gender, ethnicity, race, income) and distribution of population, influence the patterns 

of consumption, production, employment and income at global, regional, national and 

local scales (Aguirre, 2002; National Research Council, 1994). This means, that efforts that 

remain disassociated from the knowledge and policy options linked to population 

processes are, and will be destined to fail, as all measures aiming at eliminating poverty, 
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hunger, land degradation, water pollution, climate change, etc., can  only be successfully 

implemented if they take into account the size, composition and distribution of the 

populations they target (Herrmann et al., 2012). 

In this context, to promote more sustainable pathways of global development and 

to implement policies that integrate population dynamics into development plans; 

governments, organisations, policy-makers, and researchers alike, need to have access to 

timely and reliable population data. Existing international frameworks for development, 

including the Sustainable Development Goals (SDGs) (UN, 2022b), the Sendai Framework 

for Disaster and Risk Reduction (Sendai FDRR) (UNDRR, 2015), the Paris Agreement (UN-

Climate Change, 2022) and the UN-New Urban Agenda (UN-Habitat, 2022), for example, 

rely greatly on the availability of population data which are used 1) as denominator in 

calculating different metrics and indices, 2) as a primary resource to support decision-

making, and 3) as main input to design, implement and fine-tune policies aiming at global 

sustainability (Qiu et al., 2022; Sankoh, 2017; UN, 2021).  

For most countries, the traditional form of collecting population data is through 

national population or housing censuses where information on the number of people and 

their main characteristics are collected approximately every 10 years. According to the 

UN, to this day censuses are the most accurate and rich source of population data, as they 

gather information using  the lowest geographical divisions (e.g. household or building 

level), covering small areas up to the national and international scales (UN-Statistics 

Division, 2022). In this framework, however, when population totals are made openly 

available to the public, they are typically aggregated to large administrative units (e.g. 

census blocks, neighbourhoods, municipalities, etc.) to protect the privacy of the citizens. 

While this aggregation process is quite standard, it limits the usability of the data, 

especially in the context of different analytical purposes. For example, census-based 

population data are collected at different time intervals and are made available using 

different administrative units among and within countries which makes it difficult to 

compare population distributions in a consistent and methodological way (Wardrop et al., 

2018). At the same time, the administrative units used to aggregate population totals do 

not correlate with any other geographical phenomena, restricting the integration of 

census-based population data with other geospatial datasets. Finally, as population counts 

are aggregated from building level to coarser units, there is  a loss of spatial detail which 

affects the overall accuracy of any subsequent analyses where the data is used.  

On this basis, to be of value population data has to be spatially explicit and 

comparable within and across countries (UN, 2021). Standardised and precise information 

on where and in what density humans live is essential not only to implement location-

based policies, but also to develop local-to-global initiatives that consider populations 

located in rural and urban settings across the world (POPGRID, 2021). Here, spatially 

explicit and globally-standardised population data provide the foundation for 

investigating geographic variations in policy-performance, thus allowing answering 

questions such as: Where are sustainable policies over- or underperforming? or Does performance 

vary across space (e.g. between and within countries or regions)?   

To produce more spatially explicit and globally comparable population data, the 

scientific community has increasingly invested in two main overarching efforts: 1) the 

development of initiatives to collect, harmonise, and temporally-adjust census-based 
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population counts (e.g. production of estimates and projections) and cartographic 

administrative boundaries at a global scale (Doxsey-Whitfield et al., 2015; Freire et al., 

2018) and 2) the development of methods to create alternative, global-scale population 

datasets that provide more precise spatial representations of the population distribution 

at moderate-to-high-spatial resolutions (Balk et al., 2006). For the last thirty years, these 

two efforts have been combined with the increasing advances in Remote Sensing (RS), 

Geographical Information Systems (GIS) and Artificial Intelligence (AI) techniques, 

allowing the creation and proliferation of georeferenced data products known as “top-

down large-scale gridded population datasets”. 

Concisely, large-scale gridded population datasets provide estimates of the total 

population as a continue surface or raster at near-global to global scale (Leyk et al., 2019). 

They are produced using different top-down disaggregation techniques and auxiliary 

data, in which global census-based population counts, estimates or projections are 

redistributed from vector-format administrative boundaries to raster pixels of a given 

spatial resolution. Population allocation is commonly based on a weighting layer that 

restricts or calculates how many people are allocated per pixel, where the pixel-weights 

are extracted through simple or complex statistical approaches that investigate the 

relationships between population densities and different geophysical variables or 

geospatial proxies (e.g. built-up areas, distance to main roads, services or amenities, 

elevation, climate, etc.). 

As such, top-down gridded population datasets do no replace census/estimate-

based population data but rather supplement or complement the information by 

improving its spatial resolution and interpretation capabilities (Anderson et al., 2017). In 

its raster format, population data can be more easily integrated with other global gridded 

datasets such as environmental, economic, or agricultural geodatasets, allowing a deeper 

understanding of human-environment interrelationships from an increased spatial 

perspective. At the same time, the data can be aggregated to arbitrary spatial units such 

as hazard zones, climate zones, risk areas, etc., thus facilitating spatial and statistical 

analyses. Furthermore, gridded population data provide consistent and comparable 

information across space, allowing implementing cross-comparison analyses within and 

across regions (Wardrop et al., 2018). 

Due to their remarkable advantages, nowadays large-scale gridded population 

datasets are greatly accepted by researchers, governments and institutions all over world, 

who consider them as invaluable sources of population data (Allen et al., 2021). State-of-

the-art products, including the Global Rural-Urban Mapping Project (GRUPM) (CIESIN, 

2011), the Gridded Population of the World (GPWv4.11) (Doxsey-Whitfield et al., 2015), 

the LandScan dataset (Bhaduri et al., 2007; Dobson et al., 2000) , the Global Human 

Settlement Population layers (GHS-POP) (Freire et al., 2016), the WorldPop datasets 

(Stevens et al., 2015b) and the High-Resolution Settlement Layer (HRSL) (Tiecke et al., 

2017) are widely used to support a large variety of research areas, including public health 

applications (España et al., 2018; Fries et al., 2021; Hay et al., 2005a), public security 

(Galway et al., 2012), urban planning and characterisation (Amoah et al., 2018; 

Dhewantara et al., 2018; Serrano Giné et al., 2016; Tuholske et al., 2019), accessibility 

analyses (Ajisegiri et al., 2019; Linard et al., 2012; Sorichetta et al., 2016), poverty mapping 

(Barbier & Hochard, 2018; Elvidge et al., 2009; Noor et al., 2008), hazard and environmental 
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risk assessments (Brown et al., 2018; Calka et al., 2017; Maas et al., 2019; Maroko et al., 

2019; Mohanty & Simonovic, 2021; Smith et al., 2019; Tellman et al., 2021), and 

humanitarian relief applications (Kellenberger et al., 2021). They also support the 

monitoring and implementation of the SDGs (Kavvada et al., 2020; Kuffer et al., 2020; Qiu 

et al., 2022; Tuholske et al., 2021), and most recently, with the emergence of the Corona-

Virus (COVID-19) pandemic, these datasets have further demonstrated their utility by 

providing estimates of people exposed or at risk of transmission due to crowding (Rader 

et al., 2020), as well as to measure assess to vaccines (Rader et al., 2021). 

With that being said, the sensitivity of these applications highlights how important 

it is for large-scale gridded population datasets to be as accurate as possible. These 

datasets serve not only as empirical evidence, but also as a critical component to better 

target and allocate financial resources towards vulnerable populations (Aubrecht et al., 

2013), where inaccuracies in the estimates can prevent governments and organisations to 

reach those in more need. Under the UN-motto of “Leave No One Behind” (UN, 2022a), 

accurate gridded population datasets ensure including populations located even in most 

remote and reclusive areas of the world. 

In this regard, among the many advances done in the field of large-scale top-down 

gridded population modelling, one of the most notable sources of improvement has been 

the use of Earth Observation (EO) satellite-based geospatial layers, which through the 

years, have become increasingly more precise and accurate (Leyk et al., 2019). Here, the 

development of highly accurate datasets describing the extent and spatial distribution of 

human settlements and building footprints has played a crucial role, as these proxy layers 

in particular, have proven to be “the single most highly predictive indicators of human 

habitation” (Nieves et al., 2017; Reed et al., 2018; Stevens et al., 2020). State-of-the-art built-

area layers such as the Global Urban Footprint (GUF) (Esch et al., 2017), the Global Human 

Settlement Layer (GHSL) (Pesaresi et al., 2016), the WorldPop growth built-up models 

(Nieves et al., 2020b) and building patterns (Nieves et al., 2020a), the Ecopia/Maxar (Maxar 

Technologies, 2020), Microsoft (Heris et al., 2020) and Google building footprints (Sirko et 

al., 2021) have help refined large-scale top-down gridded population models, by 

improving the identification of human settlements, particularly in rural areas.  

Regrettably, even though major qualitative and quantitative improvements have 

been reported through the years, contemporary research aimed at assessing the accuracy 

of state-of-the-art large-scale top-down gridded population datasets has revealed that a 

series of limitations still affect the usability and accuracy of all existing  products. These 

limitations are not unique to any particular existing product, but rather limitations that 

affect the underlying population models that are used/employed to produce them. 

Overall, the main challenges that need to be addressed to produce datasets with higher 

accuracy and usability can be summarised as follows: 

1. Improved spatial resolution: Most of the currently available large-scale top-down 

gridded population datasets are produced at spatial resolutions of 100m, 250m and 

1km at the Equator adhering the original or modified spatial scale of the proxies used 

for disaggregation (Lloyd et al., 2019). Different studies deem this as sub-optimal, first 

because the data cannot be directly integrated with other geospatial layer of higher 

spatial granularity leading to analytical challenges (Calka & Bielecka, 2020; Smith et 

al., 2019), second, because population counts extracted for very local areas result in 
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highly inaccurate counts (Thomson et al., 2021a), and third, because the coarse spatial 

resolution affect the identification of all potential populated areas (Marconcini et al., 

2020). As such, to refine the spatial granularity of future datasets, there is a need to 

develop population models that can leverage and handle the inclusion of global-scale 

proxies with higher spatial resolutions (e.g. 10m, 12m or 30m at the Equator).  

 

2. Improved comparability and replicability: In general, population models that 

employ multiple proxies for population disaggregation have shown to have higher 

qualitative and quantitative accuracies than those models that employ no ancillary 

data, or just one proxy (Stevens et al., 2015b; Su et al., 2010). In the context of large-

scale top-down population modelling, however, these models can show local quality 

variations, which are difficult to account for in the framework of cross-comparison 

analyses (Schug et al., 2021). Furthermore, due to the employment of a large number 

of proxy layers, multi-layer models suffer from endogeneity issues as well as 

transferability restrictions in space and time (Balk et al., 2006). Therefore, future 

research should focus on the development of population models capable of delivering 

systematic patterns of quality across space, leveraging global proxies with comparable 

spatio-temporal quality. Optimally, these models should also allow for replicability 

and transferability, and rely on proxies that provide a direct physical relationship with 

population densities without statistical modelling (e.g. built-up densities). 

 

3. Integration of use and 3D information of the built-up environment: State-of-the-art 

large-scale top-down gridded population datasets are produced with population 

models that do not integrate the functional (residential vs non-residential) and three-

dimensional (3D) information (e.g. volume or floor-space) on the built-up 

environment. This limitation has led to large error of underestimations in highly dense 

urban areas with high-rise buildings (Thomson et al., 2021a) , and large errors of 

overestimation in non-residential areas (e.g. industrial and commercial centres) 

(Palacios-Lopez et al., 2019; Palacios-Lopez et al., 2021) which affects the accuracy of 

sub-sequent analyses. While meaningful evidence exists on the advantages of 

integrating such information into population models (Biljecki et al., 2016; Grippa et al., 

2018; Huang et al., 2021b; Schug et al., 2021; Shang et al., 2021; Ural et al., 2011), current 

research mainly focuses on local to regional-scale analyses due to the lack of geospatial 

datasets with global-scale coverage. Therefore, future research should focus on the 

development of global-scale proxies that describe the functional and 3D-characteristics 

of the built-up environment, as well as on exploring how these datasets can be 

efficiently used to refine large-scale population estimates. 

 

4. Improved quality, recency and scale of the input census-based population data 

counts and boundaries:  National population and housing censuses are considered by 

far the most reliable source of population data. However, in countries which are 

mainly located in low-income regions or in areas of conflict, censuses have not been 

collected some times for more than 40 years (Wardrop et al., 2018). This means that for 

a given number of countries, top-down population datasets are being modelled with 

outdated or incomplete data; shortcomings that propagate to derived population grids 

and the applications  where they are used (Kuffer et al., 2022) . In this context, while 
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reinforcing the economic, political and statistical capacities of countries should remain 

a major priority to collect up-to-date population counts and boundaries, future 

research should also focus on exploring and reinforcing alternative methods of 

producing population estimates. In particular, investigating “bottom-up” population 

modelling approaches should be of interest, which are methods being developed to 

bridge this gap at local and national scales (Darin et al., 2021a; Schug et al., 2021; Weber 

et al., 2018).  

1.2 Research Motivation and Focus 

Based on this theoretical background, the main motivation of the present thesis is to 

respond to the identified challenges in the field through the development of population 

models capable of generating large-scale datasets with improved accuracy and spatial 

resolution. Here, we specifically focus on providing large-scale solutions for the first three 

limitations mentioned in the previous section, presenting a methodology based strictly on 

“top-down” methods of population disaggregation. For completeness, however, we also 

present a discussion on how the methods and data developed here could potentially 

contribute to address the fourth limitation, although the latter is out of the scope of the 

main research.  

Concisely, this thesis focuses on developing and evaluating the effectiveness of top-

down population models that rely solely on the novel World Settlement Footprint (WSF) 

suite––a set of global layers that describe the extent, location, characteristics and spatial 

distribution of human settlements at with unprecedented accuracies and spatial 

resolutions. The main hypothesis is that each layer that compose the WSF-suite, namely 

the WSF2015 (binary and density layers), the WSF2019 (binary and imperviousness layers) 

and the WSF3D, respectively, has the potential to address one or multiple limitations 

affecting large-scale top-down gridded population models today; thus, allowing 

generating population distribution maps with higher accuracy than existing models.  

This hypothesis is built upon four premises: First, that compared with any other 

built-area dataset available today, the new WSF-suite presents great accuracy in terms of 

settlement identification, both in urban and rural areas. Second, that compared with any 

other built-area dataset available today, the WSF-suite is produced at unprecedented high 

spatial resolutions of 10m and 12m at the Equator. Third, that compared with any other 

built-area dataset available today, the WSF-suite is one of the first datasets to offer 3D-

information on the built-up environment, with accuracies comparable to very high-

resolution products (e.g. Light Detection and Ranging (LiDAR) data). And fourth, that 

compared with highly accurate building footprint datasets which are only available for a 

limited number of countries, the WSF-suite offers global coverage.  

In this framework, to test the proposed hypothesis, the design, theoretical and 

practical approach of this PhD research follows a series of evolving and systematic 

analyses that are inheritably linked to the chronological release of each layer. Accordingly, 

different research questions and objectives are addressed, covered in the three stand-alone 

peer-review publications that form the cumulative part of this thesis. These are 

summarised as follows: 
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1.3 Research Objectives and Research Questions  

• Research Article 1: Palacios-Lopez, D., Bachofer, F., Esch, T., Heldens, W., Hirner, A., 

Marconcini, M., Sorichetta, A., Zeidler, J., Kuenzer, C., & Dech, S. (2019). New 

perspectives for mapping global population distribution using world settlement 

footprint products. Sustainability, 11(21). https://doi.org/10.3390/su11216056 

The first release within the WSF-suite included the WSF2015 and the WSF2015-

Density layers. Both layers describe the extent, location and distribution of human 

settlements at a global scale for the year 2015; the first as a binary layer, and the second as 

a continuous layer depicting the PIS within built-up pixels. Following the premise that 

binary built-area datasets are by far the most informative proxy layers used for predicting 

population densities and distributions, and extending on previous local-scale research that 

have demonstrated that impervious surfaces are highly correlated to population counts, 

the first objective of this PhD research is to demonstrate if quality and accuracy 

improvements in population disaggregation can be achieved with the WSF2015-Density 

layer compared to the already established binary-dasymetric approach employed by other 

population dataset and the baseline built-area layers. The main research question is 

formulated as follows: 

How effective is the WSF2015-Density layer in improving the accuracy of large-

scale population models compared to the WSF2015 layer? 

From this main research question, the following sub-questions are kept in focus: 

1. What are the reported accuracies of population distribution maps produced on the 

basis of the WSF2015-Density compared to those produced on the basis of the 

WSF2015 layer? 

2. How does changes in the spatial granularity of the available administrative units 

affect the accuracy of population models produced on the basis of the WSF2015-

Density and the WSF2015 layers? 

3. What is the quantitative relationship among the number of identified settlement 

pixels, the amount of population that needs to be distributed and the accuracy of 

the final population models produced with the WSF2015 layers?   

4. What are the characteristics of the built-environment in which population models 

produced on the basis of the WSF2015-Density layer outperform those produced 

on the basis of the WSF2015 layer? 

5. What advantages does the WSF2015-Density layer offer in support of large-scale 

population modelling in comparison to existing population models? 

6. What are some of the remaining limitations affecting the qualitative and 

quantitative accuracy of population models produced on the basis of the WSF2015-

Density layer? 

To answer these questions the WSF2015 and WSF2015-Density layer are 

incorporated with sub-national census/estimate-based population data, to produce and 

validate high-resolution population datasets for nine low, middle and highly urbanised 

countries located across the four macro-regions of the world.  

• Research Article 2: Palacios-Lopez, D., Bachofer, F., Esch, T., Marconcini, M., 

MacManus, K., Sorichetta, A., Zeidler, J., Dech, S., Tatem, A. J., & Reinartz, P. (2021). 

https://doi.org/10.3390/su11216056
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High-Resolution Gridded Population Datasets: Exploring the Capabilities of the 

World Settlement Footprint 2019 Imperviousness Layer for the African Continent. 

Remote Sensing, 13(6), 1142. https://doi.org/10.3390/rs13061142  

The second release within the WSF-suite included the WSF2019 and the WSF2019-

Imperviousness layer (WSF2019-Imp, previously referred to as “Density”). These layers 

represent an improvement over the 2015 products in relation to their production 

framework, which has led to a more accurate detection of settlement pixels and PIS 

calculation. Hence, building upon the limitations the WSF2015 layers and following the 

premise that the WSF2015-Density outperformed the qualitative and quantitative 

performance of population models produced with the binary WSF2015, the second main 

objectives of this PhD research are to demonstrate if the WSF2019-Imp is capable of 

producing systematically comparable population estimates under extremely varying 

spatial resolutions of the input population data, and to determine whether or not the layer 

can be used as single proxy for large-scale population models, reducing the complexities 

of multi-layer models (e.g. WorldPop and LandScan). The main research question is 

formulated as follows:  

How effective is the WSF2019-Imp layer as a single proxy for population 

modelling in a continental-scale framework? 

From this main research question, the following sub-questions are kept in focus: 

1. Is the performance of the WSF2019-Imp as a single proxy layer for population 

modelling consistent within and across countries at a continental scale?  

2. What are the spatial patterns of accuracy and how are these linked to the 

characteristics of the built-up environment and the population density?  

3. What improvements can be reported over population maps produced on the basis 

of the WSF2015-Density layer? 

4. What advantages does the WSF2019-Imp layer offer in support of large-scale 

population modelling in comparison to existing population models? 

5. What current limitations are persistent in the final population models produced 

on the basis of the WSF2019-Imp layer? 

To answer these questions the WSF2019-Imp is incorporated with an open archive 

of sub-national census/estimated-based population data to produce and validate high-

resolution population maps for the entire African continent. 

• Research Article 3:  Palacios-Lopez, D., Esch, T., MacManus, K., Marconcini, M., 

Sorichetta, A., Yetman, G., Zeidler, J., Dech, S., Tatem, A. J., & Reinartz, P. (2022). 

Towards an Improved Large-Scale Gridded Population Dataset: A Pan-European 

Study on the Integration of 3D Settlement Data into Population Modelling. Remote 

Sensing, 14(2), 325. https://doi.org/doi.org/10.3390/rs14020325  

The final release within WSF-suite pertaining to this PhD research included the 

WSF3D dataset. This dataset is integrated by a set of layers depicting the area, height, 

volume and fraction of the built-up environment at a global scale. Following the premise 

that volume and land-use information improve the qualitative and quantitative accuracy 

of population models, the third and fourth main objectives of this PhD research are to 

develop a novel and fully automatic framework for settlement-use classification solely 
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based on the WSF3D layer, and to demonstrate how the inclusion of our derived 

settlement-use layers and volume information improve the accuracy of population models 

compared with -so far- 2D population models (e.g. all existing large-scale gridded 

population datasets). The main research questions are  formulated as follows: 

How effective is the WSF3D for the classification of industrial and non-

industrial settlements in the framework of population modelling? 

How accurate are population maps that incorporate settlement use and volume 

information derived solely from the WSF3D? 

From these main research questions, the following sub-questions are kept in focus: 

1. Can the spatial metrics derived solely from the WSF3D layers be used to classify 

the built-up environment into industrial and non-industrial areas using a Random 

Forest (RF) algorithm? 

2. What are the classification accuracies delivered by the WSF3D dataset compared 

to existing methods that rely on Very High Resolution (VHR) data? 

3. Are the RF-models produced on the basis of the WSF3D dataset transferable across 

space? 

4. What are the reported accuracies of population maps that integrate volume and 

settlement use information and how the final accuracy correlates with the quality 

of the classified maps? 

5. How does the WSF3D dataset allow addressing limitations reported in population 

maps produced on the basis of the WSF2019-Imp, and the WSF2015-Density layer? 

6. What advantages does the WSF3D layer offer in support of large-scale population 

modelling in comparison to existing population models? 

7. What current limitations are persistent in the final population models produced 

on the basis of the WSF3D layer? 

To address these questions the WSF3D  dataset is incorporated with 

census/estimate-based national population data to produce high-resolution binary 

classification maps and population maps at the Pan-European scale.  

1.4 Thesis outline 

This is a cumulative dissertation which is organised as follows: 

• Chapter 1 provides a brief introduction into the scientific relevance of human 

population data, explaining how large-scale gridded population datasets have 

emerged as a solution to the increasing demands of spatially explicit, high-resolution 

and comparable population datasets. Moreover, it presents a short summary of the 

current limitations of state-of-the-art large-scale gridded population models, 

describing the key challenges that should be addressed in future research (sub-chapter 

1.1). Subsequently, it outlines the main research motivation and goal (sub-chapter 1.2), 

and finalises with a summary of the research  objectives and questions of this PhD 

thesis (sub-chapter 1.3). 

• Chapter 2 describes important theoretical background regarding the main purpose of 

gridding population data (sub-chapter 2.1). This is followed by a review of the most 

employed top-down population disaggregation techniques used in the context of 
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large-scale population modelling (sub-chapter 2.2), and a brief description of the state-

of-art large-scale gridded population datasets (sub-chapter 2.3). It also focuses on the 

revision of current studies that have employed large-scale gridded population datasets 

with the aim of identifying the main research gaps and challenges that need to be 

addressed in the field (sub-chapter 2.4). Findings from this theoretical background 

were used as the basis for the selection of methods and to outline the objectives of this 

PhD thesis.   

• Chapter 3 provides an introductory review of the fundamental characteristics of the 

WSF suite employed in this PhD thesis. It examines the methods, data and validation 

results reported for each dataset, namely the WSF2015 (binary and density), WSF2019 

(binary and imperviousness) and WSF3D.  

• Chapter 4 to Chapter 6 comprise the core research of the cumulative thesis presented 

in terms of three stand-alone manuscripts that have been published in international, 

peer-review journals.  

• Chapter 7 presents a summary of the technical and practical achievements of this 

thesis and its contributions to the field of large-scale population modelling. 

Furthermore, it provides an outlook into the remaining limitations and opportunities 

for the short and long-term future of large-scale population modelling. 
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Chapter 2 

 

2. Theoretical Background 

The following chapter is an extended version of the theoretical literature review 

introduced in the three peer-review publications in chapters four, five and six. It focuses 

specifically on introducing the concept of “gridding” population data (sub-chapter 2.1), 

presenting specifically the main top-down population disaggregation techniques 

currently employed the field of large-scale top-down gridded population modelling (sub-

chapter 2.2), describing the main characteristics of state-of-the-art top-down large-scale 

gridded population datasets (sub-chapter 2.3) and summarising the remaining limitations 

and challenges found the field (sub-chapter 2.4). In this context, this chapter does not 

address the long history of gridded population modelling which dates back to ca. 1936 

(Wright, 1936), nor introduces/describes “bottom-up” methods of population distribution 

(see sub-section 7.2 for more details). For a thorough literature review on these topics, 

publications by Leyk et al. (2019) , Gregory (2002) and Wardrop et al. (2018) are suggested. 

2.1 The concept of “gridding” population data 

As outlined in Chapter 1.1, for most countries the traditional form of collecting 

population data is through national population or housing censuses, where information 

on the number of people and their main characteristics are collected approximately every 

10 years. According to the UN, to this day censuses are the most accurate and rich source 

of population data, gathering information from the lowest geographical divisions (e.g. 

household or building level), covering small areas up to the national and international 

scales (UN-Statistics Division, 2022). However, even when census-based population data 

provide countries with the most complete demographic information, from an analytical 

point of view there are a series of limitations that affect their usability and effectiveness 

for a large number of applications. For example, census-based population datasets are 

hardly ever released with the same spatio-temporal detail as they were collected. In many 

countries, before being released to the public, population counts collected at the household 

or building level are aggregated and linked to larger administrative boundaries (e.g. 

enumeration areas, blocks, municipalities, districts) to protect the privacy of citizens. This 

aggregation process on its own, comes with a number of disadvantages. First, the recency, 

quality, size and number of administrative units used to report population counts vary 

substantially across and within countries. For example, Figure 2-1 illustrates the number 

of years since the last reported census used (compared to the year 2022) and the number 

of administrative units that were used/collected in the production and modelling of the 

GPWv4.11 (see sub-chapter 2.3 for more details)1. As observed, across countries the 

                                                      
1 The GPWv4.11 is used here simply to exemplify the variability that might exist in terms of the census-

year and number of reported administrative units across countries. The data presented corresponds strictly to 

that collected during the production of the GPWv4.11, which means that for some countries the last conducted 

census and number of administrative might differ from other official sources.  
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number of administrative units can vary from as little as 1 administrative unit up to 

10,535,212, whereas the last reported census year could be as old as 25 years. A lack of 

standardisation of this type affects mainly the implementation of robust comparative 

analyses at local, national and global scales needed for a large number of applications. 

Second, population data aggregated to large administrative units assume a uniform 

distribution of the population across space. Here, the information on the true spatial 

patterns of the population distribution are lost, hiding the real heterogeneity and possible 

disparities that may exist among areas that report the same population characteristics, 

which consequently, affect the accuracy of subsequent analyses. Finally, as large 

administrative boundaries do not normally correlate with other geographical factors (e.g. 

natural hazards), census-based population datasets cannot be easily integrated with other 

datasets, limiting their overall usability for a large variety of studies. 

 

To overcome the limitations of such aggregated and inconsistent data and to better 

characterise the distribution of populations, much research has been done around the 

concept of “gridding” population data. Here, the main objective is to produce alternative 

representations of the population distribution as continuous surfaces, where population 

counts from the administrative units are transferred to grids of a given spatial resolution 

(e.g. pixels) using different techniques (Langford, 1991). This gridding process has several 

advantages: First, in their raster format, gridded population counts can be more easily 

integrated with other gridded data such as environmental geospatial datasets, allowing a 

deeper understanding of human-environment interrelationships. Second, gridded 

population counts can be aggregated to arbitrary spatial units, including hazard zones, 

Figure 2-1. The following maps depict the years since the last reported census and available number of 

administrative units used in the production of the GPWv4.11. 
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climate zones, risk areas, etc., facilitating spatial and statistical analyses. And third, 

gridded population datasets provide consistent and comparable data across space, 

allowing implementing cross-comparison analyses within and across regions. 

2.2 Top-down population disaggregation approaches 

Before the development of the first global gridded population dataset in the mid-

1990s (Tobler et al., 1997) many top-down methods to disaggregate population counts 

from spatially-coarse source units (e.g. polygons of irregular shape) into spatially-fine 

target units (e.g. a regular grid), had already been proposed in the literature, focusing on 

the production of local-level population grids (Goodchild et al., 1993; Langford, 1991; 

Wright, 1936). In the field of large-scale gridded population modelling, however, only two 

main approaches or techniques have largely dominated the field, namely areal-weighting 

and dasymetric modelling. These are presented in Figure 2-2, and described as follows: 

 

 

Figure 2-2. Schematic representation of the different top-down population disaggregation techniques: a) 

example of input census-based population data for the area of New Haven, USA with a 500m grid overlay, b) 

AW: areal-weighting output, c) BD: binary dasymetric output restricted by e.g. built-up areas and d) WD: 
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weighted dasymetric output considering e.g. land-use densities. Figures produced using the open code 

published by  Comber and Zeng (2019). 

2.2.1 Areal-weighting 

Areal weighting is one of the simplest modelling techniques in which population 

counts from the source units (e.g. administrative units) are spatially reallocated into target 

units (e.g. pixels) using as weight the proportion of the area that overlaps between the two 

units (Goodchild & Lam, 1980), as illustrated in Figure 2-2(b). Population models that 

employ areal-weighting techniques produce a volume-preserving, homogeneous or 

proportional reallocation of population counts. This means that all the target units within 

a source unit allocate the same number of people, and the sum of population counts from 

all target units adds-up to the original population total of the source unit.   

According to multiple researches, this disaggregation method reports two main 

advantages. On the one hand, it is easy to operate and has high calculation efficiency. On 

the other hand, as it does not rely on any additional data (e.g. other geospatial datasets), 

the output population datasets do not suffer from endogeneity problems. This means that 

in terms of applicability restrictions, the final population datasets can be integrated with 

any other geospatial datasets, without limitations or complex uncertainties (Balk et al., 

2006). At the same time, as this method is only based on the geometrical properties of the 

source and target units, the accuracy of the output population datasets produced through 

this method is only linked to the accuracy and spatial resolution of the input population 

data (Doxsey-Whitfield et al., 2015; Hallisey et al., 2017; Sadahiro, 2000; Thomson et al., 

2021a).  

However, even when areal weighting is a straightforward method its main 

limitation is the implicit assumption of a homogenous population distribution within each 

source unit, which is rarely true in the real world. The lack of spatial patterns together 

with the strong discontinuities between administrative boundaries, has also shown to 

affect both the qualitative and quantitative accuracy of the final population datasets, 

limiting their usability for subsequent analyses (Fisher & Langford, 1996). Here, efforts to 

smooth transitions between administrative boundaries using a pycnophylatic interpolation 

algorithms (Tobler, 1979), for example, have been employed as a post-processing solution. 

However, these type of methods have not been largely adopted, as they do not draw on 

information about real population distribution (Kim & Yao, 2010). 

2.2.2 Dasymetric modelling   

To respond to the limitations of the areal-weighting technique, dasymetric 

modelling is a disaggregation technique that refines population distributions by 

employing a “restrictive” and/or “probability” layer (hereinafter referred to as weighting 

layer), that defines the amount of population counts that need to be allocated in each grid 

cell within a source unit. This weighting layer is derived from single or multiple ancillary 

datasets (often referred to as geospatial covariates or proxy layers), that are presumably 

related to population presence and densities (Goodchild et al., 1993; Langford, 1991; 

Mennis, 2003). Depending on the method used to derive this weighting layer, dasymetric 

modelling techniques can range from binary-dasymetric, to more complex weighted-

dasymetric techniques.  
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Binary dasymetric techniques employ one or more proxy layers that simply restrict 

the redistribution of population to a limited set of areas inside the source units. The most 

commonly employed proxies include mainly binary datasets representing built-areas, 

building footprints, restricted or protected areas, and water bodies datasets (Langford & 

Unwin, 1994). As exemplified in Figure 2-2c, population models that rely on binary 

dasymetric techniques produce a volume-preserving, homogenous or proportional 

reallocation of population counts, in which all the target units within a source unit allocate 

the same number of people.  

Compared with the areal-weighting techniques, binary-dasymetric techniques are 

also simple to implement but suffer from the quantitative and qualitative restrictions of 

delivering a proportional allocation of population counts. For example, in any given 

population model that relies only on binary built-area layers (e.g. built-up vs non-built-

up) to redistribute populations, it is assumed that urban areas and rural areas allocate the 

same proportion of the population, which is generally inaccurate. This leads to either great 

errors of over— and underestimation in the final population grids, which overall affect 

their usability for subsequent analyses. At the same time, the reallocation accuracy of these 

population models is highly dependent on the spatial resolution and quality of the 

employed built-area layers. Here, the proper identification and classification of 

“populated” areas, in particular, is of paramount importance, as any misclassification 

resulting in predicting no population in a particular area may be quite undesirable for 

many applications (e.g. emergency responses) (Stevens et al., 2020).  

Weighted dasymetric techniques rely on one or more proxy layers to produce a 

probability scheme that determines the amount of population to be allocated in each grid 

cell within a source unit (Su et al., 2010). These weights represent a measurement of the 

presumed relationships that might exist between the amount of population that needs to 

be allocated and the geographical factors represented by each proxy. Depending on the 

simplicity of the relationships, the weights needed to redistribute populations can be 

directly derived from the geospatial covariates (e.g. using the percent of built-up density), 

or can be derived through other more complex methods like empirical sampling (Mennis, 

2003), regression analyses (Mennis & Hultgren, 2006), machine learning or deep learning 

approaches (Stevens et al., 2015b). In case of the latter, weighted-dasymetric techniques 

are commonly referred to as intelligent dasymetric techniques, in which the most commonly 

employed geospatial proxies include a combination of built-up density layers, urban/rural 

extents, topographic layers, climatic factors, environmental datasets, land-use and land-

cover datasets, infrastructure data (e.g. roads, points of interest, transportation network) 

and night-time lights imagery.  

As seen from Figure 2-2d, population models that use a weighted dasymetric 

technique produce a volume-preserving, heterogenous reallocation of population counts, 

in which the target units allocate different amounts of population. From a comparative 

point of view, this can be considered as one of their main advantages, as not only the 

spatial distribution of the population adheres more to the reality, but the accuracy of 

population estimates reported in the final population grids has also shown to be more 

accurate that those produced by areal-weighting and binary dasymetric techniques 

(Mennis & Hultgren, 2006; Palacios-Lopez et al., 2019; Palacios-Lopez et al., 2021; Stevens 

et al., 2015b; Su et al., 2010). In this context, however, it is important to mention that one 
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of the main limitations of weighted dasymetric models is that it is frequently challenging 

to acquire geospatial covariates with the same quality in terms of spatial resolution, and 

temporal—and spatial coverage. Furthermore, it has been found that the use of multiple 

proxy layers can reduce the applicability of the final population grids, due to the increased 

probability of endogeneity issues (Nagle et al., 2014).  

2.3 State-of-art top-down large-scale gridded population datasets 

Today, there are six state-of-the-art, top-down large-scale gridded population 

datasets that are commonly used in academic research, and which have been produced to 

support governments, organisations and institutions around the world (Allen et al., 2021; 

Freire et al., 2018). These datasets include2: 

1. The Gridded Population of the World, version 4 (GPWv4.11)  produced by CIESIN, 

Columbia University (Doxsey-Whitfield et al., 2015).  

2. The Global Rural-Urban Mapping Project (GRUPM) produced by CIESIN (CIESIN, 

2011). 

3. The Global Human Settlement Population layer (GHS-POP; R2015A and R2019A) 

produced by the European Commission Joint Research Centre (EC-JRC) in 

collaboration with CIESIN (Freire et al., 2016). 

4. The High-Resolution Settlement Layer (HRSL) produced by Facebook 

Connectivity Lab, in collaboration with CIESIN (Tiecke et al., 2017).  

5. The LandScan dataset produced by the Oak Ridge National Laboratory (ORNL) 

(Bhaduri et al., 2007; Dobson et al., 2000) . 

6. The WorldPop datasets produced by the WorldPop project; University of 

Southampton (Stevens et al., 2015b).    

The primary characteristics of the latest versions of these datasets, including the 

population model employed to produce them (input data + disaggregation technique), 

their spatio-temporal resolution and population concept are presented in Table 2-1. These 

can be briefly summarised as follows: 

GPW4.11 

The GPW4.11 population datasets are the only grids that are produced using an 

area-weighting technique, relying simply on a water mask to ensure that population 

counts are only assigned to land pixels. The final datasets represent the residential 

population (e.g. people counted at their place of living) either as population counts (people 

per pixel) or population density (people per km2) for the years 2000,2005,2010,2015 and 

2020, respectively. The datasets are available at a global scale and are produced at a spatial 

resolution of 30 arc-seconds, which corresponds to ~1km at the Equator. The datasets are 

published and made available in WGS1984 geographic coordinate system in ASCII, 

GeoTiff and NetCDF formats. 

 

                                                      
2 The large-scale top-down gridded population datasets presented here are constantly evolving and 

different versions have existed through time. The thesis describes those which were available at the time of 

writing. 
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GRUMP 

The GRUMP datasets are based on population data collected from the GPW, version 

3. They are produced using a binary dasymetric technique to allocate population 

according to rural or urban gradients, derived––in part––on night-light imagery. The final 

datasets represent the residential population, either as population counts or population 

densities for the years 1990, 1995 and 2000, respectively.  The datasets are available at a 

global scale and are produced at a spatial resolution of 30 arc-seconds, which corresponds 

to ~1km at the Equator. The datasets are published and made available in WGS1984 

geographic coordinate system in ASCII, BIL and GRID formats. 

GHS-POP (R2015A, R2019A) 

The GHS-POP datasets are produced using a density weighted dasymetric 

technique that relies on the distribution of population counts from administrative units 

into settlement pixels describing built-up density, as defined by  the GHS- BUILT datasets 

(R2015B, R2018B) (Pesaresi et al., 2016; Pesaresi et al., 2013) (see Table 2-2). The population 

data are reallocated in one of three ways: if the administrative area is large enough to 

generate 250 m grids and contains built-up areas, then the population for that 

administrative area is assigned in proportion to the density of the built-up areas. If the 

administrative area is large enough to generate 250 m grids but does not contain any built-

up areas, then the population is allocated using an area-weighting technique. If a cell is 

located on the border of an administrative area, it is assigned to the administrative area its 

centroid falls in. And finally, if the administrative area is smaller than a 250-m grid cell, 

then a centroid is generated for the area and the population of all centroids found within 

a cell is added (Archila Bustos et al., 2020). The final datasets represent the residential 

population, either as population counts or population densities for the years 1975, 1990, 

2000 and 2015, respectively.  The datasets are available at a global scale and are produced 

at a spatial resolution of 250m and 1km at the Equator. The datasets are published and 

made available in a World Mollweide projection in GeoTiff format. 

HRSL 

The HRSL is produced using a binary dasymetric technique that redistributes 

population from administrative units to built-up areas as defined by proprietary 

settlement layer produced using high resolution (0.5m at the Equator) satellite imagery 

from Digital Globe (Tiecke et al., 2017). The final datasets represent the residential 

population, people per pixel, for 2015.  The datasets are currently available for 140 

countries and are produced at a spatial resolution of 1 arc-second, which corresponds to 

~30 at the Equator. The datasets are published and made available in WGS1984 geographic 

coordinate system in GeoTiff format.  

LandScan 

The LandScan population datasets are produced using a weighted intelligent 

dasymetric technique that consists of dynamically adaptable algorithms used to generate 

a weighting layer based on statistically-derived relationships among multiple proxy 

layers. As seen from Table 2-2, some of the most commonly employed geodatasets are 

available from open and free sources, however, it is known that other commercial and 

local data are also employed, especially to manually fine-tune the accuracy of the grids. 
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So far, the methods employed to produce the LandScan datasets are not publicly available, 

and the population grids are only free for researchers and students. The final datasets 

represent the ambient population (e.g. population at the place of work) as population 

people per pixel, for the years 2000-2018. The datasets are available at a global scale and 

are produced at a spatial resolution of 30 arc-seconds, which corresponds to ~1km at the 

Equator. The datasets are made available in WGS1984 geographic coordinate system, in 

GRID and binary raster formats. 

WorldPop 

The WorldPop population datasets are produced using a weighted intelligent 

dasymetric technique that consists of locally modelled RF algorithms used to generate a 

weighting layer based on the relationships between population densities and multiple 

proxy layers (see Table 2-2). Here, redistributions are done in two ways, first where 

population counts are redistributed to all grid cells or pixels (unconstrained), and second, 

where population counts are redistributed only within areas identified as settlements 

(constrained).  In the case of the latter, different built-area layers are employed depending 

on the location. For Africa, for example, satellite-derived building footprint data from 

Maxar/Ecopia (Maxar Technologies, 2020) are used, whereas for the rest of the countries a 

novel built settlement growth model is employed (Nieves et al., 2020a; Nieves et al., 

2020b), derived from other built-area layers such as the GUF (Esch et al., 2018a; Esch et al., 

2017),  the GHSL and the European Space Agency (ESA) CCI land cover 300m (ESA, 2015) 

(see Table 2-2). The final datasets represent the residential population as people per pixel, 

for the years 2000-2020. The datasets are available at a global scale and are produced at a 

spatial resolution of 3 arc-seconds, which corresponds to ~100m at the Equator. The 

datasets are made available in WGS1984 geographic coordinate system in GeoTiff format.  

Input data: population data and geospatial proxies 

According to the information presented in Table 2-2, each gridded population 

dataset is produced using different sources of input population data and proxy layers. For 

example, most datasets employ as input population data, population totals adjusted to the 

UN-Population Division (UNPD) estimates and projections produced by CIESIN. The 

only exception are the Land-Scan datasets, which are produced using United States (USA) 

Census global population estimates, respectively.  

Concisely, CIESIN collected census data at the highest spatial detail available from 

the results of the 2010 round of Population and Housing Censuses, which occurred 

between 2005 and 2014. CIESIN data include two types of population estimates: census-

based and UN-adjusted, both estimated for the years 2000, 2005, 2010, 2015 and 2020. 

Initial population estimates were derived for each administrative unit by means of an 

exponential model fitted on at least two census counts for each country (Doxsey-Whitfield 

et al., 2015). However, to allow for global comparisons, CIESIN adjusted the census counts 

to the target year of 2010, which were then then interpolated and extrapolated to produce 

the UN-adjusted estimates with the objective to correct for over- or under estimations 

(CIESIN, 2018b; Doxsey-Whitfield et al., 2015). For the vector data or boundaries, the 

global administrative areas version 2 (GAMv2) was used to ensure consistent alignment 

between countries. For more details in the production of the CIESIN database, the 

following literature is suggested: Doxsey-Whitfield et al. (2015); (Freire et al., 2018) . 
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Finally, in terms of the most commonly employed openly-available proxies, each 

dataset uses either single proprietary layers (e.g. GHSL by GHS-POP or Digital Global-

based settlement layer by HRSL), or a combination of multiple remotely-sensed datasets, 

including land-cover/land-use layers, topographic data, night-time-imagery and OSM 

data. Table 2-2 presents a list of datasets that are available at large-scales, however, other 

proxy layers which are available at country-by-country basis are also employed, 

especially in the production of the WorldPop and LandScan datasets. As explained in the 

previous paragraphs, each population model used to produce each one the gridded 

population dataset will process these geospatial proxies in different ways, resulting in 

varied outputs, especially at the local level (Archila Bustos et al., 2020; Chen et al., 2020). 

For a visual assessment,  Figure 2-3 compares all of datasets for a small area near Puerto 

Vallarta, Mexico.  

 

 

Figure 2-3. Visual comparison of five large-scale gridded population datasets for an area close to Puerto 

Vallarta, Mexico. Each dataset has been resampled to a 1km by 1km grid. Values represent population per pixel 

for the year 2015. Images have been produced using the PopGRID Viewer available at: 

https://sedac.ciesin.columbia.edu/mapping/popgrid/comparison-view/, from which the GRUMP dataset is not 

available for visualisation. 
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GPWv4.11 CIESIN x       x x AW 1 km 
2000;2005;2010; 

2015;2020 
Global Residential 

GRUMP CIESIN  x    x   x x WD 1 km 1990;1995;2000 Global Residential 

GHS-POP 
EC-JRC and 

CIESIN 
x   x      WD 

250m  

1km  
1975;1990;2000;2015 Global Residential 

HRSL 
Facebook 

Connectivity 

Lab; CIESIN 

x   x      BD 30m 2015;2018 
140 

countries 
Residential 

LandScan ORNL x x x x x x x x x 

WID based on 

statistical 

modelling 

1 km  
annual releases  

2000-2020 
Global Ambient 

WorldPop 

(constrained & 

unconstrained) 

WorldPop; 

University of 

Southampton 

x x x x x x x x x 
WID based on 

RF 
100 m 2000-2020 Global Residential 

 

Table 2-1. Main characteristics of state-of-the-art gridded population datasets. BD: Binary Dasymetric. WD: Weighted Dasymetric, WID: Weighted Intelligent Dasymetric. 
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Proxy layers Used by Proxy layers Used by 

Population Data Nighttime lights 

CIESIN-UN Adjusted 

GPWv4.11; GRUMP; 

GHS-POP; HRSL; 

WorldPop 

Defence Meteorological 

Program-Operational 

Line-Scan System 

(DMSP-OLS) 

WorldPop 

Country's best available LandScan 

Visible Infra-red 

Imaging Radiometer 

Suite (VIIRS) 

WorldPop 

Built-area layers or Building Footprints Land-Cover 

Global Human 

Settlement Layer (GHSL 

R2015B, R2018A) 

GHS-POP 

WorldPop 

National Land Cover 

Database (NLCD) 
LandScan 

Digital Global-based 

settlement layer 
HRSL 

Digital Chart of the 

World (DCW)-

Landcover 

LandScan 

Global l Urban 

Footprint (GUF) 
WorldPop 

500m Moderate 

Resolution Imaging 

Spectroradiometer 

(MODIS) Land Cover 

LandScan 

Built-Settlement Growth 

Model 

WorldPop-2020 

Constrained 

Global Land Cover 

Characterisation 

(GLCC) 

LandScan 

Ecopia-Maxar Building 

Footprints 
WorldPop-2020 Africa 

ESA-Climate Change 

Initiative (CCI-300m) 

Land Cover 

WorldPop 

Elevation OpenStreetMap (OSM) Data 

Viewfinder Panoramas - 

Shuttle Radar 

Topography Mission 

(SRTM) 

WorldPop 
Infrastructure, POI's, 

Transportation Network 
WorldPop; LandScan 

2.4 Current limitations in the field of top-down large-scale 

population modelling  

Over the last decade, the field of large-scale gridded population modelling has seen 

several advances that have allowed producing population datasets with increased spatial 

resolution and improved qualitative and quantitative accuracy. According to the 

information presented in the review of Leyk et al. (2019), the most important  advances 

influencing the field include: 

1. The increased availability of more accurate, updated, and spatially refined 

census-based population data for many countries. 

2. The increased availability of spatially refined remotely sensed satellite imagery 

needed to derive proxy layers for disaggregation. 

Table 2-2: Most commonly employed proxy layers used in the production of state-of-the-art large-scale 

gridded population datasets, available at large-scales. 
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3. The increased computing power which has allowed scaling the production of 

proxies, and thus, population datasets from local to global scales. 

4. The development of more sophisticated methods to a) extract and classify 

populated land (e.g. development of accurate built-area and building 

footprints datasets), and b) estimate population distributions which, 

nowadays, include machine– and deep learning algorithms. 

However, even when the latest versions of existing state-of-the-art products have 

leveraged these recent developments and do report drastic qualitative and quantitative 

improvements , most datasets still report extreme limitations and estimation errors that 

affect the accuracy and precision of subsequent analyses. These limitations are mainly still 

derived from issues in the quality of the input census-based population data (e.g. recency, 

completeness, reliability), but also from the shortcomings of the input proxy layers used 

for disaggregation and the employed modelling methods. In this context, focusing only 

on the limitations that are strictly derived  from the employed modelling frameworks (e.g. 

areal-weighting, binary or weighted-dasymetric techniques), as well as from the 

qualitative and quantitative characteristics of the proxy layers used for disaggregation 

(e.g. scale, accuracy, thematic representation)3, some of the most noticeable challenges 

documented in contemporary studies are presented in the following paragraphs. 

In a general assessment done to evaluate the accuracy of different global built-area 

layers for large-scale population modelling (e.g. GUF, GHSL, 500m MODIS Land Cover 

and ESA CCI land cover 300m), Stevens et al. (2020) and Reed et al. (2018) demonstrated 

that population models that only employ built-area layers for disaggregation (e.g.  based 

on binary techniques) or not at all (e.g. based on areal-weighting), are less accurate than 

those that combine these proxies with other geospatial layers (e.g. based on weighted 

techniques) . The authors argue, that while the integration of these proxy layers is crucial 

to produce accurate population distributions, the use of single binary layers leads to 

qualitatively less detailed population distributions on the one hand, and less 

quantitatively accurate estimates in rural areas, on the other, as most built-area layers used 

today fail to identify small settlements. 

Contrastingly, in the studies presented by Schug et al. (2021) and Balk et al. (2006), 

the authors argue that weighted-approaches that rely on multiple proxy layers (e.g. 

WorldPop and LandScan models) suffer for quality biases that are introduced by 

inconsistencies on the input data and modelling frameworks. Schug et al. (2021) and Nagle 

et al. (2014) add to these conclusions, expressing that the physical relationships between 

population and multiple ancillary datasets are hard to quantify when multiple layers are 

employed, and that weighted layers derived from “intelligent techniques” (e.g. RF-based) 

can be regionally specific leading to differences across space. Balk et al. (2006) additionally 

argue that the use of multiple layers for population modelling can lead endogeneity issues, 

and that overall, the collection of multiple proxy layers with large-extent coverage and 

                                                      
3 Limitation or errors in large-scale gridded population dataset are also linked to the quality of the 

input population data, however, in the framework of their validation the input population data is normally 

considered “accurate” as independent population data to validate their accuracy is normally not available. A 

broader discussion of this is presented in the subsequent sections. 
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spatio-temporal agreement is an exhaustive task that makes producing frequent updates 

infeasible.           

While the aforementioned studies focused more on comparing the underlying 

population models employed to produce large-scale gridded population datasets, the 

conclusions reached by these authors have been reinforced in other more practical or 

applied studies. For example, in the research presented by Doll and Pachauri (2010) , the 

authors show that the equal or proportional distribution of population produced by the 

GPW4.11 and GRUMP datasets is sub-optimal to quantify rural population without access 

to electricity. The author showed that due to the equal distribution (e.g. proportional 

allocation), the density of population that should be found in highly luminous areas was 

greatly underestimated by the datasets.  

 Accordingly, in an assessment carried out to evaluate the accuracy of population 

counts in slums and deprived areas in Kenya (Nairobi) and Nigeria (Lagos and Port 

Harcourt), the authors of Thomson et al. (2021a) reported that different large-scale gridded 

population datasets, including the GPWv4.11, the GHS-POP, the HRSL, the WorldPop 

(constrained & unconstrained) and the LandScan datasets, respectively, vastly 

underestimate the total populations, with the most severe errors reported in the most 

populous and densest slums. As explained by the authors, reasons for this 

underperformance is attributed to the use of binary proxy layers which limits the highest 

population value that can be assigned to a cell (e.g. the homogeneous distributions of 

GPWv4.11, HRSL and GHS-POP), and the poor detection of slum areas (e.g. omission of 

settlements), which coupled with the lack of information on settlement use, building 

heights and building densities, produces underestimations in these highly dense areas.  

De Mattos et al. (2020) add on the same topic, where the authors report that the 

coarse spatial resolution of the LandScan datasets (e.g. 1 km) affected the extraction of 

accurate populations living in slums in a selected area of Brazil. Here, the WorldPop 

datasets with their 100m spatial resolution reported less drastic underestimations; 

however, they still produced some critical errors due to the omission of built structures in 

slums.  

Comparably, in the research presented by Smith et al. (2019), it was demonstrated 

that the homogeneous distribution of the GHS-POP and HRSL datasets was insufficient 

for analyses aimed at extracting populations at risk of flood-hazards. The authors argue 

that the restriction of allocating the same number of people per grid does not only affect 

the quantitative estimations of people at risk, but also produces unrealistic distributions 

of the populations around different river basins. In the same study, the authors also argue 

that the coarse spatial resolution of the WorldPop and LandScan datasets (e.g. 100m and 

1km, respectively) restricts the integration of the population data with other high-

resolution datasets such as flood hazard data available at 90m at the Equator. The authors 

show how coarsening the resolution of the hazard data to match that of the population 

data can lead to critically overestimated population counts, and suggest not to pre-process 

the data but rather to found solutions to improve the spatial resolution of existing gridded 

population datasets.  

The same conclusions were reached in the studies presented by Calka and Bielecka 

(2019) and  Calka and Bielecka (2020), where the authors demonstrated that the coarse 
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spatial resolution of the GHS-POP and LandScan datasets (e.g. 250m and 1 km) produces 

erroneous population counts, that become larger as the size of spatial unit used for 

analysis becomes smaller. Overall, the authors reported that for densely populated regions 

the GHS-POP underestimates the population numbers, while for thinly populated regions 

it overestimates.  

Finally, moving from the limitations derived from the spatial resolution, accuracy of 

the proxy layers (e.g. identification of settlements) and the employed modelling 

framework , another major limitation affecting all existing large-scale population models 

is that none of them integrate proxy layers that provide information on the built-up 

environment in terms of use (e.g. residential or non-residential) and heights of buildings 

(Schug et al., 2021). Inclusion of this type of information has shown to increase the 

accuracy of population models at local-scales, but the methods that are employed at this 

scale are still not transferable to large-scale models. Hence, in current large-scale 

population datasets, the lack of settlement use information has led to large overestimation 

errors in industrial and commercial centres on the one hand, while the lack of height 

information has led to large underestimation errors in high-rise building areas, on the 

other (Huang et al., 2021b; Thomson et al., 2021a; Thomson et al., 2021b). 

To consolidate the aforementioned information, Table 2-3 presents a summary of the 

current limitations affecting large-scale gridded population models. Specific focus is 

placed on models based on dasymetric modelling techniques, to reflect on the limitations 

derived both from the technique as well as from the shortcomings  of the employed proxy 

layers. 

Limitation Affected large-scale population models 

 Binary-Dasymetric Weighted-Dasymetric 

Low spatial resolution X X 

Omission and commission of settlement areas X X* 

Homogeneous representations of population distributions X  

Endogeneity issues  X 

Difficult transferability and replicability  X 

Quality inconsistency across-space  X 

Exclusion of building use and building height information X X 

Bad quality of the input-population data (e.g. recency) X X 

*For multi-layer models that use built-area layers to constrain population distributions. 

 

Table 2-3. Summary of the limitations affecting large-scale gridded population models based on dasymetric 

modelling techniques. 



 

25 

 

 

Chapter 3 

 

3. The World Settlement Footprint suite  

Improving the quality and accuracy of geospatial datasets describing the built-up 

environment at global scales has important scientific applications. One such application is 

estimating where and in what density humans live across the world, information –that on 

its own– is of great value for many research fields (Stevens et al., 2020). As such, over the 

last two decades, mapping the built-up environment with unprecedented spatial detail 

and accuracy has been facilitated by the increasing availability of free and open, high-

resolution remotely sensed imagery and the continuous development of image processing 

methods. Here, the advantages made through time have led to the proliferation of many 

global (to near-global) built-up area datasets which have evolved from low resolution (1 

km -500m at the Equator) to medium resolution (100m at the Equator) to high resolution 

(30m to 10m at the Equator); and from which the most representative ones have been used 

to refine gridded population datasets at near-global extents.  As described in Table 2-2, 

some of the most widely employed built-area datasets, used in field of large-scale 

population modelling include the GUF (Esch et al., 2018a; Esch et al., 2017),  the GHSL 

(Pesaresi et al., 2016; Pesaresi et al., 2013), the Digital Global-based settlement layer (Tiecke 

et al., 2017), the WorldPop growth built-up models (Nieves et al., 2020b) (Nieves et al., 

2020a) and the Ecopia/Maxar (Maxar Technologies, 2020). 

Concisely, the particular focus placed on built-area datasets for population 

modelling arises from the fact that this type of datasets have frequently proven to be 

stronger predictors of population inhabitation in comparison with other geospatial layers 

such as land-cover, elevation, slope and nightlight imagery (Linard et al., 2011; Nieves et 

al., 2017; Reed et al., 2018; Stevens et al., 2020; Tatem et al., 2007). Different research has 

demonstrated that when built-area datasets are used to model/restrict the distribution of 

population, the final products deliver better qualitative and quantitative results in 

comparison to those models where the datasets were not included (Reed et al., 2018; 

Rubinyi et al., 2021; WorldPop, 2020). More recently, it has been shown that when a given 

built-area dataset is accurate and coherent enough with population densities, it has the 

potential to be used as a single proxy for population modelling, overcoming some of the 

limitations of simple areal-weighting or multivariate techniques (Stevens et al., 2020) 

However, despite the emergence of more accurate and detailed built-area layers, 

existing state-of-the-art large-scale gridded population models still suffer from qualitative 

and quantitative limitations derived in part from the inaccuracy of the geospatial datasets 

used to distribute population across space (see sub-chapter 2.4). The most prominent 

limitations related to the currently employed built-area layers (in either binary- or 

weighted-dasymetric models) include their inability to map fine-scale population 

distributions from their coarse resolution (e.g. 500m MODIS Land Cover and ESA CCI 

land cover 300m), the poor identification of human settlements in rural settings (or 
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misclassification errors in general), and the lack of integration of settlement use and 

settlement 3D information, respectively (Archila Bustos et al., 2020; Schug et al., 2021) . 

On the one hand, as stated by Marconcini et al. (2020), the consistent low 

classification accuracy reported in existing built-area products is linked to their employed 

processing frameworks which, –so far–, still rely on the exclusive use of either optical (e.g. 

GHLS and HRSL) or radar imagery (e.g. GUF). This has led to errors of commission and 

omission, first because the spectral information in optical images tend to confuse built-

areas with other bare land classes (e.g. in arid and semi-arid regions, second, because 

extreme topologies produce high backscattering comparable with built-areas, and third, 

because the resolution of currently employed optical imagery, is not enough to identify 

small settlement located in cliffs, valleys or complex topographies (e.g. Landsat-8 30m at 

the Equator).  

On the other hand, if information on building use/type has not yet been integrated 

into modern large-scale population models because appropriate data to derive this 

information at/for large extents (e.g., national, continental, global) does not exist. 

Currently, contemporary research that focuses on extracting use and volumetric semantic 

information of built-up structures employ a combination of regionalized building 

footprints, cadastral data, LiDAR data, social media data, aerial imagery and/or 

commercial (and frequently expensive) very high-resolution imagery (e.g. < 5m optical 

data or orthoimage) (Du et al., 2015; Jochem et al., 2021; Lloyd et al., 2020; Ma et al., 2015; 

Stéphane et al., 2020; Zhang et al., 2017a), which restricts the implementation of the 

developed methods to the specific areas where these data are available, reliable, replicable 

and - more importantly - complete. Similarly, efforts to derive building heights at national 

or continental scales are either limited to specific regions (e.g. mainly Europe, North 

America or Asia), or their spatial resolutions are still quite coarse (>100m at the Equator) 

(Falcone, 2016; Frantz et al., 2021; Li et al., 2020). 

To overcome these limitations, the German Aerospace Centre (DLR) in collaboration 

with the ESA and the Google Earth Engine (GEE) team has been working on the 

development and open-release of the WSF suite, which includes a set of high-resolution 

datasets describing the extent, location, PIS and 3D characteristics of the built-up 

environment at global scales. This product represents a follow-on development to DLRs’ 

previous global built-area dataset –the GUF– developed by Esch et al. (2013). Currently, 

the WSF suite is composed of three main layers: the WSF2015, the WSF2019 and the 

WSF3D dataset, respectively. Each of these layers has been developed using novel and 

robust methodologies that jointly exploit, – for the first time ever–, open and free multi-

temporal optical and radar data.  

The following sub-chapters present a brief summary of the characteristics of each 

WSF layer used in this PhD research. The author of this thesis actively contributed to the 

qualitative and quantitative validation of the following layers, as well as to the preparation 

of their respective peer-review papers and delivered reports. 
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3.1 The WSF2015 and WSF2015-Density Layer  

• Main Reference: Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., 

Hanke, W., Bachofer, F., Zeidler, J., Esch, T., Gorelick, N., & Kakarla, A. (2020). 

Outlining where humans live--The World Settlement Footprint 2015. Sci Data, 7(242). 

https://doi.org/10.1038/s41597-020-00580-5  

The WSF2015 is a binary mask that describes the extent and location of human 

settlements at global scale at an unprecedented spatial resolution of 10m at the Equator 

for the year 2015. It was processed using a novel and robust methodology that relied on 

multi-temporal statistics extracted from ~107,000 and ~217,000, 2014-2015 Sentinel-1 (S1) 

and Landsat-8 scenes, to produce a binary classification of settlement and non-settlements 

based on an advanced machine learning approach.  

The main rationale followed in the production of the WSF2015 is rooted in the 

assumption that the temporal dynamics of human settlements, compared with other non-

settlement classes, remain constant over time. This means that over time, the spectral and 

backscatter characteristics that differentiate built-up structures from other features are 

consistent over time, allowing a proper classification of these structures on the ground. 

Following this premise, the processing framework of the WSF2015 can be divided in four 

main steps:  

First, for a selected target region of interest, S1 and Landsat-8 images were acquired 

for a period of ~1 year, from which key temporal statistics were extracted, forming two 

separate feature stacks, respectively. From the S1 images, five temporal statistics were 

extracted, including the minimum, maximum, mean, standard deviation and mean slope 

of the backscattering values. The coefficient of variation (COV) of the temporal mean 

backscattering and the total and the number of available scenes per pixel were also 

calculated, resulting in a 7-feature stack. From the Landsat-8 imagery a set of indices were 

extracted including the Normalised Difference Build-Up Index (NDBI), the Modified 

Normalised Difference Water Index (MNDWI), the Normalised Difference Vegetation 

Index (NDVI), the Normalised Difference Middle Infrared (NDMIR), the Normalised 

Difference Red Blue (NDRB) and the Normalised Difference Green Blue (NDGB). 

Accordingly, for each of the 6 indices, the same 5 temporal statistics used for the S1-

imagery were also extracted, including the COV of each of the derived 6 temporal mean 

indices. This led to a final 37-feature stack. 

Second, training and label data for the settlement and non-settlement classes were 

generated by setting thresholds to 3/44 features based on an extensive empirical analysis 

against Google Earth VHR imagery, carried over more than 450 tiles of 1x1 degree. 

Concisely, a given point sample x, would be classified as either settlement or non-

settlement if it satisfied a number of conditions within these thresholds. To compensate 

for the variations derived from different climate zones, the thresholds for each class were 

fine-tuned in relation to the 30 climate types of the Köppen Geiger scheme (Peel et al., 

2007). 

Third, using the training data, a binary classification based on Support Vector 

Machine (SVM) with Radial Basis Function (RBF) Gaussian Kernel was separately applied 

to the optical and radar-based feature stacks to classify the remaining scenes. Considering 
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that a large number of training points exist, a total of 1000 random points are used per 

every 1x1 degree tile. This operation was repeated 20 times in an ensemble of SVM 

classifiers, from which the majority vote is used to define the final class. 

Fourth, as optical and radar stacks were processed separately, a post-processing 

phase was then applied to properly combine the Landsat 8– and S1-based classification 

maps, and automatically identifying and deleting false alarms. 

The validation of the WSF2015 was performed using a thorough protocol that 

consisted in collecting reference data for ~900,000 sample points using Google Earth VHR 

satellite/areal imagery. This was done through visual assessment and an established 

crowdsourcing collaboration between Google and DLR. The results of this validation 

campaign indicated that in comparison with the GUF, the GHSL (R2015) and the GLC30 

layers, respectively, the WSF2015 exhibited the best percentage average accuracy; reaching 

a value of 86.37%, which represented a mean increase of +6.24%, +15.28% and +18.58% 

over the rest of the layers. Alongside, it resulted in an average Kappa coefficient of 0.68, 

which represented an increase of +0.07, 0.23 and 0.29 over the GUF, GHLS and GLC30, 

respectively.  

The WSF2015-Density is one of the first experimental developments of the WSF suite 

and service portfolio, aiming at enhancing the semantic and thematic scope of the 

WSF2015; in particular, the layer describes the PIS within areas categorised as settlements 

in the WSF2015. Effectively mapping the PIS is of high importance to assess—among 

others—the risk of urban floods, the urban heat island phenomenon as well as the 

reduction of ecological productivity. Furthermore, it is generally considered as an effective 

proxy for the housing density, thus making it particularly suitable for supporting spatial 

population distribution (Azar et al., 2010; Li & Weng, 2005; Lu et al., 2006). The current 

processing methodology follows the approach originally described by Marconcini et al. 

(2015) and is based on the assumption that a strong inverse relation exists between 

vegetation and impervious surfaces (i.e., the higher the presence of vegetation is, the lower 

the corresponding imperviousness is). Accordingly, the core idea is to compute and 

analyse for each pixel the temporal maximum of the Normalised Difference Vegetation 

Index (NDVI), which depicts the status at the peak of the phenological cycle. To this 

purpose, the NDVI available from the TimeScan dataset (Esch et al., 2018a; Esch et al., 

2018b) has been used, which has been derived globally from Landsat-8 scenes acquired 

during 2014–2015. Figure 3-1 shows different subsets of the WSF2015 binary and Density 

layers for the cities of Hai Phong, Vietnam, Abidjan, in Côte d’Ivoire and Berlin, Germany. 

For the WSF2015 layer values are either 0 or 1 for settlement and non-settlement areas, for 

the WSF2015-Density layer values range between 0 and 100, with red and green tones 

highlighting high and low PIS, respectively. 
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3.2 The WSF2019 and the WSF2019-Imperviousness 

• Main Reference: Marconcini, M., Metz-Marconcini, A., Esch, T., & Gorelick, N. (2021). 

Understanding Current Trends in Global Urbanisation-The World Settlement 

Footprint Suite.GI-Forum 2021 (1) https://doi.org/ 10.1553/giscience2021_01_s33 

The WSF2019 and the WSF2019-Imp layers represent follow-on products to the 

WSF2015 and the WSF2015-Density datasets; however, they are produced using different 

input data and a slightly modified processing framework. The WSF2019 settlement layer, 

unlike the WSF2015 layer, is produced by means of a novel methodology that jointly 

exploits multi-temporal ~286,000 S1-radar imagery and ~2,000,000 Sentinel-2 optical (S2) 

images. The processing method is based on the same rationale employed in the production 

of the WSF2015, following a set of processing steps briefly described as follows: 

First, key temporal statistics were extracted from the S1 and S2 dataset, using a 

selected target region during a time period where no significant changes could be expected 

to the settlement environment (e.g. a 1x1 degree tile, in a 1-year period). From the S2-

imagery a total of 455 features were extracted, obtained from calculating approximately 

55 normalised indexes (e.g. water, vegetations, soils/desert, snow, etc), and their 

corresponding mean, media, standard deviation and 5th and 95th percentiles, together with 

the original 10 band that integrate the dataset. From the S1 images, temporal statistics such 

as the mean, median, standard deviation, and the 5th and 95th percentiles were extracted 

from the backscattering, together with additional values corresponding to the sum of the 

total backscattering of all polarisation channels and the intensity difference. This led a total 

of 21 from the sentinel datasets. 

Figure 3-1. Subsets of the WSF2015 and WSF2015-Density layers for the cities of Hai Phong, Vietnam; Abidjan, 

Côte d’ Ivoire and Berlin, Germany produced with a spatial resolution of 10m at the Equator. PIS values are city 

dependent.  
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Second, for the 456-stack of features, a feature selection process was carried out by 

means of a RF algorithm using pre-selected labelled data collected from OpenStreetMap 

(OSM) building footprints. From this process, a total of 31 features (6-S1 and 25-S2) were 

chosen as candidates for the classification task.  

Third, once the 31 temporal features were selected, training samples for the 

settlement and non-settlement classes were extracted by means of an automated process 

that included removing complex topographies, applying a set of thresholds to 16/31 

features and by including previously classified areas in the WSF2015 layer. Similar to the 

process followed by the WSF2015, the thresholding was fine-tuned according to each 

Köppen-Geiger climate type (Peel et al., 2007). 

Fourth, unlike with the WSF2015, the classification process of the WSF2019 layer 

consisted of a binary RF classifier. The selection of the RF classifier over the SVM relied on 

its robustness to deal with unbalanced training data and its easier-to-implement method 

with similar high generalisation characteristics. In the 1x1 degree study area a total of 

10,000 training samples were used, 5,000 for each class, within a RF with 50 trees.  

Fifth, once the RF model was trained this was applied to a collection of temporal 

statistics over ~286K and ~2M S1 and S2 imagery. From here, a post-classification process 

was employed to a) remove misclassified pixels corresponding to roads, railways and 

rivers and b) incorporate potentially missing areas. The first process was done using a 

combination of dedicated ancillary datasets that included OSM roads and railway 

datasets, the most recently released road dataset from Facebook (Basu et al., 2019) and the 

JRC Global Surface Water Mapping Layers (Pekel et al., 2016). The second process was 

done by evaluating OSM and Google Open Building Footprints, in missing areas, and 

merging only potential pixels that share characteristics with the labelled training data.   

The validation of the WSF2019 layers was done through a quantitative exercise that 

used ~700,000 reference labels collected from photointerpretation of 2019 VHR Google and 

Maxar Imagery. This was done through a crowdsourcing collaboration with a team of 

expert operators from Google and the World Bank. Concisely, a set of 220/220 

settlement/non-settlement points were collected from the WSF2019 layer in 200 randomly 

selected areas. These points were used then extended to a 3x3 (440*9*200 =792,000), in 

which each cell was then labelled by the aforementioned photo-interpretation process.  

Accordingly, the same cells were extracted from the following datasets to perform 

comparative analyses: the GHSL2018 layer (Corbane et al., 2021), the Global Annual 

Impervious Area (GAIA) (Gong et al., 2020), the Global Impervious Surface Area (GISA) 

(Huang et al., 2021a), the ESA WorldCover2020 maps (Buchhorn et al., 2020) and the global 

land use/land cover (LU/LC) map released from ESRI (Karra et al., 2021). 

As with the WSF2015, the accuracy of the layers was compared through common 

statistical metrics derived from a confusion matrix. Here, the results suggest that, ––

systematically––, the accuracy of the WSF2019 was superior than those products which 

still rely on Landsat data for their production, including the GAIA and the GISA. The 

average difference, in terms of the kappa coefficient, for example was close to 0.26 and 

0.23 points against these two layers, respectively.  Compared to the rest of the layers, the 

WSF2019 also reported higher accuracies.  
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In the production of the WSF2019-Imp layer, the calculation of the PIS value,––

which was previously derived through a multi-temporal analysis of the maximum 

Normalised Difference Vegetation Index (maxNDVI) extracted from the TimeScan dataset 

(Esch et al., 2018a; Esch et al., 2018b)––, is now derived from the multi-temporal analysis 

of S2 data. Here, just as before, the employment of higher resolution optical imagery has 

resulted in remarkable improvements to the thematic accuracy of the layer, delivering a 

more consistent product compared to the WSF2015-Density layer. The current processing 

is based on the same assumption that was used to produce the WSF2015-Density layer 

(Marconcini et al., 2015). To create the layer, the first step is to compute the maximum 

temporal NDVI (maxNDVI) from all S2 scenes acquired in 2019, considering only Level 

2A bottom of the atmosphere reflectance imagery available globally from December 2017. 

From there, for each of the Köppen–Geiger climate zones, areas associated with 

impervious surfaces are extracted from OSM where these are available, and then 

rasterized and aggregated at S2 ~10m spatial resolution. An ensemble of support vector 

regression (SVR) modules is then employed for properly correlating the resulting training 

information with the maxNDVI to finally derive the PIS of the pixel marked as settlements 

in the WSF2019 layer. 

For a visual comparative analysis Figure 3-2 shows subsets WSF2015, WSF2019 and 

WSF2019-Imp layers for the cities of Dar Es Salaam in Tanzania; Dallas in the United 

States; Lima in Peru; and Kolkata in India. 

 

 

 

Figure 3-2. Subsets of the WSF2015, WSF2019 and WSF2019-Imp layers for the cities of Dar Es Salaam, 

Tanzania; Dallas, USA; Lima, Peru and Kolkata, India, produced with a spatial resolution of 10m at the Equator. 

PIS values are city dependent.  
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3.3 The WSF3D dataset 

•  Main Reference 1: Esch, T., Zeidler, J., Palacios-Lopez, D., Marconcini, M., Roth, A., 

Mönks, M., Leutner, B., Brzoska, E., Metz-Marconcini, A., & Bachofer, F. (2020). 

Towards a Large-Scale 3D Modeling of the Built Environment—Joint Analysis of 

TanDEM-X, Sentinel-2 and Open Street Map Data. Remote Sensing, 12(15), 2391. 

https://doi.org/10.3390/rs12152391  

• Main Reference 2: Esch, T., Brzoska, E., Dech, S., Leutner, B., Palacios-Lopez, D., Metz-

Marconcini, A., Marconcini, M., Roth, A., & Zeidler, J. (2022). World Settlement 

Footprint 3D - A first three-dimensional survey of the global building stock. Remote 

Sensing of environment, 270, 112877. 

https://doi.org/https://doi.org/10.1016/j.rse.2021.112877  

 

The WSF3D is the first global dataset that provides detailed quantification of the 

fraction, total area, average height and total volume of buildings within the built-area at 

an unprecedented spatial resolution of 90m at the Equator. Its original processing 

framework is based on the preliminary methods presented in Esch et al. (2020), which 

were later modified to produce the final version of the WSF3D dataset presented here.  In 

its specification, one global coverage of the WSF3D dataset consists of 18,634 files 

considering all of its layers. It is presented as 1x1 degree tiles with at least one settlement 

pixel. 

The approach to produce the WSF3D dataset consist of three main modules that 

integrate the information of the 10m WSF2019-Imp layer, and the 12m TanDEM-X Digital 

Elevation Model (TDX-DEM) datasets, including its underlying 3m Synthetic Aperture 

Radar (SAR) amplitude images (TDX-AMP). The technical steps performed in each 

module are briefly summarised as follows: 

 First, within the settlement areas identified by the WSF2019-Imp layer, the first 

module measures the height variations in the 12m TDX-DEM, assumed to represent 

building edges (BE). The height differences are then spatially aggregated at a 90m grid 

delivering the average Building Height (BH) layer measured in meters [m], shown in 

Figure 3-3a.  

Second, using the WSF2019-Imp, the TDX-AMP and the 12m BE produced in 

module one, the second module delivers a binary building coverage (BC) layer, which is 

later aggregated to the same 90m grid to calculate the Building Fraction (BF) layer. The 

BF, presented in Figure 3-3b, is measured in percentage [%], and is later used to define the 

total Building Area (BA) layer, which is measured in square meters [m2], and presented 

in Figure 3-3c.  

Third, the final module, module number three, combines the information of the BH 

and the BA to calculate the Building Volume (BV) layer. This layer is measured in cubic 

meters [m3] and presented in Figure 3-3d.  

The validation of the WSF3D datasets was done by comparing each one of its layers 

against 19 regions located in different part of the words, were VHR data in the form of 

building models (e.g. spatial resolution of <50 cm, level of detail 1) was available.  Here, 
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the building models were rasterised to the 90m resolution of the WSF3D to perform fair 

comparisons. Results reveal that in terms of the BF, there is tendency towards 

overestimation. The mean error among all sites was of ~3%, with errors as large as 12% 

and as low as 0.22% across 13/19 sites. In terms of the BH, the tendency was mainly of 

underestimation, with an average error of -2.30m. Here, the main outliers were reported 

in cities with considerable high buildings, where it has been reported that errors of 

underestimation are quite considerable for building >30m.  Comparably, in terms of the 

BV, the general tendency was also of underestimation, following the same trends reported 

for the BH. Across all cities, the average underestimation reached values of -2,080 m3. 

 

 

Figure 3-3. Subset of the WSF3D for the city of Munich, Germany. a) Building Height layers in [m], b) Building 

Fraction in [%], c) Building Area in [m2] and d) Building Volume in [m3]. Each layer is produced at a spatial 

resolution of 90m at the Equator. 
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Chapter 4 

 

4. New Perspectives for Mapping Global Population 

Distribution Using World Settlement Footprint products 

The following section represents a modification of the first peer-reviewed research 

article of this cumulative thesis. Some chapters have been adapted to include only relevant 

information that has not already been presented in the previous chapters (e.g. introduction 

and materials). Where needed, the reader will be referred to the corresponding sub-

chapters. 

• Palacios-Lopez, D., Bachofer, F., Esch, T., Heldens, W., Hirner, A., Marconcini, M., 

Sorichetta, A., Zeidler, J., Kuenzer, C., & Dech, S. (2019). New perspectives for 

mapping global population distribution using world settlement footprint products. 

Sustainability, 11(21). https://doi.org/10.3390/su11216056. 

Abstract 

In the production of gridded population maps, remotely sensed, human settlement 

datasets rank among the most important geographical factors to estimate population 

densities and distributions at regional and global scales. Within this context, the DLR has 

developed a new suite of global layers, which accurately describe the built-up 

environment and its characteristics at high spatial resolution: (i) the WSF2015 layer 

(WSF2015), a binary settlement mask; and (ii) the experimental WSF Density 2015 layer 

(WSF2015-Density), representing the percentage of impervious surface. This research 

systematically compares the effectiveness of both layers for producing population 

distribution maps through a dasymetric mapping approach in nine low-, middle-, and 

highly urbanised countries. Results indicate that the WSF2015-Density layer can produce 

population distribution maps with higher qualitative and quantitative accuracies in 

comparison to the already established binary approach, especially in those countries 

where a good percentage of building structures have been identified within the rural 

areas. Moreover, our results suggest that population distribution accuracies could 

substantially improve through the dynamic preselection of the input layers and the correct 

parameterisation of the Settlement Size Complexity (SSC) index. 

4.1 Introduction: Problem Statement 

In the field large-scale population modelling, the most commonly employed 

geospatial proxies used to redistribute population counts from administrative units to 

pixels of a given spatial resolution include: land cover and land use types, intensity of 

nightlights, climatic factors, human settlements, urban/rural extents, water features, road 

networks and topographic elevation and slope. However, not all these proxies are equally 

important for the process of disaggregation, as some of them present stronger correlations 

with population densities than others.  

https://doi.org/10.3390/su11216056
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According to the research presented by  Nieves et al. (2017), geographical data 

pertaining to the built-up environment and urban extents are the two most important 

proxies for predicting population densities and are significantly more important than 

other proxies at both regional and global scales. In this respect, for example, the GHS-POP 

and HRSL population grids are processed using a binary-dasymetric mapping technique 

(see Table 2-1), restricting the distribution of population only to those grid cells identified 

as human settlements. The GHS-POP uses the GHSL built-up grids (GHSL-BUILT) 

(Pesaresi et al., 2016), while the HRSL uses a binary mask of areas identified as human-

made buildings extracted from very high-resolution satellite imagery (see Table 2-2). 

The PIS, on the other hand, has proven to have an even higher correlation to 

population counts than simple binary-weighting, making it a good predictor of population 

distribution. Some studies, like the ones presented in  (Azar et al., 2010; Lu et al., 2006), 

showed some preliminary results of this premise; nevertheless, they only focused on 

limited areas, thus leading to results and methodologies that are not globally transferable.  

In this framework, the main objective of this research is to examine the suitability of 

the WSF2015 and the––thus far experimental—WSF2015-Density layers as input 

covariates for the development of a new global population distribution dataset. 

Population distribution maps were produced using a dasymetric mapping approach in 

combination with the finest population census/estimate-based data available at global 

scale at the time of writing. Here, we specifically focus on the systematic cross-comparison 

between the performance of the binary and the impervious layer, to investigate if quality 

and accuracy improvements in population disaggregation can be achieved with the 

WSF2015-Density layer, compared to the already established binary approach that has 

been employed by other population datasets and their baseline settlement layers.  

Through a comprehensive quantitative assessment, we evaluated the mapping 

performance of each covariate layer, addressing the influence of: (i) the spatial resolution 

of the input census/estimate-based data; (ii) the quality of the input covariate layers; and 

(iii) the spatial distribution of the built-up environment on the final results. The 

corresponding analyses were conducted for nine representative countries of different size 

and different levels of urbanisation and population aggregation 

4.2 Material and Methods 

4.2.1 Input Geospatial Covariates: WSF2015 and WSF2015-Density Layers 

The WSF2015 and WSF2015-Density layers used for this research have been 

previously described in sub-chapter 3.1.  

4.2.2 Input Census Data  

For this research, population census/estimate-based data for nine low-, middle- and 

highly urbanised countries (Ritchie & Roser, 2019) located in four different macro-regions 

of the world were collected to analyse how the differences in the level of spatial 

granularity of the available administrative boundaries and the variability in the 

morphology of built-up landscapes influence the accuracy of each covariate layer. To 

achieve these objectives, countries were selected on basis of the availability of population 

census/estimate-based data at different spatial aggregation levels. In other words, 
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countries were selected only if the census/estimate-based data allowed for the spatial 

aggregation of the administrative boundaries up to four administrative levels. 

CIESIN provided geographic administrative boundaries and corresponding 

population counts for Cambodia, Côte d’Ivoire, England, France, Germany, Malawi, 

Mexico, and Vietnam. CIESIN population data were selected for this research, as it has 

been used in the production of other population dataset such as GPWv4, GHS-POP, 

WorldPop and the HRSL. The 2015 UN-adjusted estimates were used in this research. The 

collection and standardisation of the CIESIN data has been previously described in 

Chapter 2.3. 

For Myanmar, population data were collected from the Ministry of Immigration and 

Population in reference to the Population and Housing Census of 2014 (Taw, 2015) and 

was joined with publicly available geographic administrative boundaries (GeoNode, 

2019). The population data were released on May 2015 and the original population counts 

were used in this research. 

For each country, administrative boundaries and population counts were 

aggregated at four levels of spatial resolution using attribute information stored within 

the data. Table 4-1 shows the total population for 2015 for each country as well as the 

official administrative unit nomenclature at each spatial aggregation level, the number of 

administrative units, the average area and the average spatial resolution (ASR). The ASR 

is calculated as the square root of each country total area divided by the number of 

administrative units, representing the effective resolution units within each country (Balk 

et al., 2006). 

4.2.3 Population Distribution: Dasymetric Mapping Approach 

Population distribution maps for 2015 were generated for each country at each 

administrative unit level using a dasymetric mapping approach, where population 

census/estimate-based data from administrative boundaries (source zones) are 

disaggregated into smaller areal units of fixed spatial resolution (target zones). The size of 

the target zones is normally defined by the pixel resolution of the different ancillary 

datasets employed to restrict and refine the distribution of the population within each 

administrative unit (Li & Lu, 2016). The estimated population per grid cell is defined in 

Equation 4-1: 

Popt = Pops

At ∗  Wp

∑ (AtWp)t∈s

 

where Popt is the population of the target zone, Pops is the population of the source 

zone, At represents the area of the target zone and Wp is the weight of a grid cell within 

the target zone. With this modelling approach, population counts are maintained 

(volume-preserving property) at each original input source zone. 

In this research, two types of dasymetric mapping techniques were used. The first 

method is the traditional binary approach, which relies on the WSF2015 layer to assign a 

weighting factor of 1 to built-up pixels and a 0 for non-built-up pixels. The second method 

uses the WSF2015-Density layer to assign a weighting factor that ranges from 0 to 100, 

estimating the PIS for the pixels classified as settlement in the WSF2015. 

Eq. 4-1 
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Country 

(ISO)/Census Year 

Total 

Population 

2015 

Official Admin. Unit 

Nomenclature 

No. of 

Units 

Average 

Area of Units 

(km2) 

ASR 

(km) 

CIV 

Côte d’Ivoire 

2014 

22,701,552 

Sub-Prefectures (Adm 3) 517 621.85 24.99 

Departments (Adm 2) 110 2907.6 54.17 

Region (Adm 1) 35 9220.92 96.03 

National (Adm 0) 1 322,744.29 568.11 

DEU 

Germany 

2014 

80,688,539 

Enumeration Area (EA Level) 11,292 31.26 5.59 

Districts (NUTS3) 402 878.25 29.64 

States (NUTS1) 16 22,066.28 148.55 

National (NUTS 0) 1 353,060.51 594.19 

ENG 

England 

2014 

54,376,281 

Enumeration Area (EA Level) 6791 19.2 4.38 

District (Adm 2) 326 400.16 20.00 

Region (Adm 1) 9 14,494.94 120.39 

National (Adm 0) 1 130,454.54 361.18 

FRA 

France  

2009 

64,395,348 

Enumeration Area (EA Level) 36,562 15.09 3.89 

Departments (NUTS3) 96 5749.86 75.83 

Regions (NUTS2) 22 25093.51 158.41 

National (NUTS 0) 1 552,057.38 743.01 

KHM 

Cambodia 

2008 

15,394,276 

Commune (Adm 3) 1633 109.66 10.47 

District (Adm 2) 197 909.06 30.15 

Province (Adm 1) 25 7163.40 84.64 

National (Adm 0) 1 179,084.95 423.18 

MEX 

Mexico 

2010 

129,731,190 

Enumeration Area (EA Level) 65,477 27.7 4.91 

Municipality (Adm 2) 2456 804.65 25.36 

States (Adm 1) 32 59,898.45 222.15 

National (Adm 0) 1 1,579,248.33 1256.68 

MMR 

Myanmar 

2014 

50,279,900 

Township (Adm 3) 330 2032.66 45.09 

District (Adm 2) 74 9064.6 95.21 

Regions (Adm 1) 15 44,718.7 211.47 

National (Adm 0) 1 670,780.63 819.01 

MWI 

Malawi 

2010 

17,215,235 

Enumeration Area (EA Level) 12,550 7.19 2.68 

Trad: Authority (Adm 3) 357 252.92 15.90 

District (Adm 2) 32 2821.69 53.12 

National (Adm 0) 1 90,294.35 300.49 

VNM 

Vietnam 

2009 

93,447,596 

District (Adm 3) 688 477.52 21.85 

Municipality-Province (Adm 

2) 
63 5214.87 72.21 

Region (Adm 1) 6 54,756.19 234.00 

National (Adm 0) 1 328,537.15 573.18 

 

4.2.4 Quantitative Accuracy Assessment 

As stated by Bai et al. (Bai et al., 2018) “quantifying the accuracy of population 

distribution maps has been recognized as a critical and challenging task”. Determining the 

spatial and quantitative uncertainties of population distribution products is fundamental 

yet very difficult due to the lack of independent and compatible reference data (Freire et 

al., 2016). Nevertheless, through well-established accuracy methods, it is possible to assess 

the effectiveness of new models (disaggregation methods and/or covariate layers) and 

investigate if higher population distribution accuracies can be reached in comparison to 

previous approaches. For this research, the accuracy of the two covariate layers was 

Table 4-1.Input census/estimate-based data characteristics.  
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assessed by computing the difference between the estimated population counts extracted 

from maps produced using coarser administrative units (input units) and the actual 

population counts of the finest administrative units (validation units). This accuracy 

method has been widely employed in previous research (Merkens & Vafeidis, 2018; Reed 

et al., 2018; Stevens et al., 2015b; Tatem et al., 2007; Tiecke et al., 2017); however, it still 

presents some limitations, as high-resolution boundaries and population data (e.g., 

enumeration area level) are not publicly available for all countries. 

For this reason, to gain a more comprehensive and detailed understanding of the 

mapping capabilities of each covariate layer, the final population distribution maps were 

evaluated following a series of thorough quantitative analyses performed at the validation 

unit level and the input level of the administrative units. The analysis at the validation 

unit level was divided in two parts. In the first part, an overall accuracy assessment was 

carried out to examine the influence of the spatial resolution of the input census/estimate-

based data on the results. Here, population distribution maps were produced using three 

spatial aggregation levels of the administrative boundaries as input units (Analyses I–III 

in Table 4-2). 

For each analysis, four main descriptive statistics were calculated to measure the 

overall accuracies of each layer. These metrics are briefly described in Table 4-3 and 

include: the Mean Absolute Error (MAE), the normalised Mean Absolute Error (%MAE), 

the Root Mean Square Error (RMSE) and the coefficient of determination (R2). 
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Country 

(ISO) 
Analysis 

Level of Administrative Input 

Units 

Level of Administrative 

Validation Units  

KHM 

CIV 

MMR 

VNM 

I Adm 2 

Adm 3 
II Adm 1 

III Adm 0 

ENG 

I Adm 2 

EA II Adm 1 

III Adm 0 

FRA 

I NUTS 3 

EA II NUTS 2 

III NUTS 0 

DEU 

I NUTS 3 

EA II NUTS 1 

III NUTS 0 

MWI 

I Adm 3 

EA II Adm 2 

III Adm 0 

MEX 

I Adm 2 

EA II Adm 1 

III Adm 0 

 

Metric Description 

MAEi =  
∑ |PEVU − PVU|n

VU=1

n
 Eq. 4-2 

 

MAE is the mean absolute error at each level of 

analysis (i), calculated as the average of the sum of 

the absolute differences between the estimated 

population (PEvu) and the actual population (PVU) at 

each validation unit.  

%MAEi =  
MAEi

Av. Pop
𝑥100% 

 

Eq. 4-3 
 

%MAE is the mean absolute percentage error at each 

level of analysis (i), calculated as the MAEi divided by 

the average population of each country. 

RMSEi = √
∑ (PVU − PEVU)2n

VU=1

n
 Eq. 4-4 

 

RMSE is the root mean square error at each level of 

analysis (i), calculated as the square root of the mean 

of the sum of squares of the differences between the 

estimated population at (PEvu) and the actual 

population (PVU) at each validation unit. 

R2 

Defined as the coefficient of determination at each 

level of analysis, derived from classical linear least 

square modelling with constant intercept at 0. It is 

also defined as the square of the Pearson correlation 

coefficient, to measure the variation between the 

estimated population and the actual population of all 

validation units. Readers can refer to (Anderson-

Sprecher, 1994) for detailed calculations. 

 

The second part of the analysis was carried out only for the population maps 

produced using the finest input units (Analysis I in Table 4-2). Here, similar to the 

Table 4-2. Spatial aggregation levels of the administrative boundaries used as input units and 

validation units for each analysis (finest to coarser spatial detail) (EA, Enumeration Area). 

 

Table 4-3. Descriptive statistics for overall accuracy assessment at the validation unit level for Analyses I-III. 
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methodology and classification presented by Bai et al. (Bai et al., 2018), the Relative 

Estimation Error (REE) metric was used to identify the amount and distribution of error 

produced by each covariate layer. The REE for each validation unit was calculated as: 

            REEVU = ((PEVU − PVU)/PVU) ∗ 100% Eq. 4-5 

where PEVU is the estimated population of the validation unit and PVU is the actual 

population of the validation unit. Using the REEVU, validation units were grouped and 

classified into different REE ranges (Table 4-4). 

 

REE Ranges Description 

[−100%, −50%) Greatly underestimated 

[−50%, −25%) Underestimated 

[−25%, 25%] Accurately estimated 

(25%, 50%] Overestimated 

(50%, ≥100%] Greatly overestimated 

 

From this classification, two sub-analyses were conducted for each country. First, 

for a better understanding of the error distribution associated with each covariate layer, 

we calculated the percentage of each country’s total population that fell within each error 

range. Second, for each country, we calculated the average actual population and average 

number of settlements pixels for the validation units that fell within each error range. This 

last analysis was done to identify if there is any relationship between the amount of 

population that needs to be distributed (PVU) and the number of available settlement 

pixels, and if the ratio between these two parameters can explain the REE values reported 

in the validation units. 

Finally, as the reported accuracy at the validation unit level is only a reflection of the 

capability of each input covariate layer to correctly allocate population counts at the input 

unit level, a series of analyses were carried out at the input unit level, focusing only on 

Analysis I (Table 4-2). First, we used the RMSE metric as a summary of the error within 

each original input unit, following the methodology presented by Mennis and Hultgren 

(2006). RMSE was calculated as the square root of the mean of the sum of squares of the 

difference between the actual population counts and estimated population counts of all 

validation units within an input unit: 

RMSEIU = √
∑ (PVU − PEVU)2

VU∈IU

n
 

Eq. 4-6 

 

where PVU is the actual population at validation unit, PEVU is the estimated 

population at validation unit and n is the number of validation units within an input unit. 

To compare the effectiveness of the covariate layers, input units were grouped according 

to the layer that produced the lowest RMSE values and for each group the percentage of 

each country’s total population was calculated. 

Second, on basis of these results, we undertook a series of analyses to identify and 

describe the regions where one layer outperformed the other. For this analysis, we derived 

the SSC index, which classifies each input unit according to (i) the number of small, 

Table 4-4. REE classification (Bai et al., 2018). 
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medium- and large-settlement objects that can be found within each unit; and (ii) the 

proportion of each input unit’s total area that is covered by these settlement objects. To 

calculate the SSC index, settlement objects were created, where each object is composed of 

connected settlement pixels via at least one pixel edge or corner (8-neighbourhood), as 

described by Esch et al. (2014). The SSC index within each given input unit was derived 

as: 

 SSCIU = (
#settlement pixels

# settl. objects
) ∗ (

Sum of the area settl. objects

Total area of input unit
) ∗ (

Area of largest settl. object

Mean area of settl. objects
) Eq. 4-7 

where high SSCIU values indicate dense built-up environments and low SSCIU values 

indicate sparse built-up environments. To allow country cross-comparisons, we 

normalised the SSC index values from 0 to 10 and divided it into three classes, as shown 

in Table 4-5.Thresholds were visually derived and evaluated against all available 

countries. For each SSC class, we calculated the average RMSE produced by each layer. 

 

SSC Index 

Class 
Description 

Low (>0–1) Small size settlements and low coverage of the total area of the input units 

Medium [1–1.8) 
Mix of small and medium size settlements and medium coverage of the total area of the 

input units 

High [1.8–10) 
Mix of medium and large size settlements with high coverage of the total area of the input 

units 

 

4.3 Results 

4.3.1 Visual Assessment of the Population Distribution Maps 

The WSF2015-Density and the WSF2015 layers were used to produce population 

distribution maps for each country at each spatial aggregation level of the administrative 

units, representing the estimated residential population (population counted at place of 

domicile) as the number of people per grid cell for the year 2015. The final spatial 

resolution of the population distribution maps equals the spatial resolution of the input 

covariates (~10m at the equator). 

Because the volume of results (72 population distribution maps) is too large to 

present here in full, we focused on one representative country to visually inspect the 

thematic differences between the maps produced using the WSF2015-Density and the 

WSF2015 layers before turning to the quantitative analyses of all the maps. Figure 4-1 

shows the final population distribution maps produced using the finest administrative 

units for Germany (enumeration areas), depicting the local metropolitan areas of Berlin 

and Munich. Note that, for the finest administrative units, these two areas have been 

modelled using a single administrative unit were local differences between the binary and 

the weighted disaggregation approaches are rather clear. 

In this context, population disaggregation based on the WSF2015 layer produces 

homogeneous population counts within each administrative unit in comparison to the 

Table 4-5. SSC Index classifications scheme. 
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WSF2015-Density layer, which offers more spatial heterogeneity. As a result of the 

proportional allocation produced by the binary layer, it is possible to observe abrupt 

changes from high to low population counts between neighbouring administrative units. 

The transitions are considerably smoother when using the WSF2015-Density layer, due to 

the weight given by the PIS, which rarely changes abruptly at the boundaries of the 

administrative units. 

 

4.3.2 Accuracy Assessment 

4.3.2.1 Analyses at the Validation Unit Level 

A summary of the accuracy assessment results using the WSF2015-Density and 

WSF2015 layers is presented in Table 4-6. Results show that, for each layer and each 

country, the highest R2, the lowest MAE, the lowest %MAE and the lowest RMSE values 

are reached using the finest administrative input units (Analysis I, Table 4-2). 

Furthermore, from one level of spatial aggregation to the next, the values for the R2 

decrease, while the MAE, %MAE and RMSE values increase. 

From the RMSE and MAE metrics, it can be seen that, for Analysis I, for most 

countries, errors remain below the size of the average population using any of the two 

covariate layers. While for all countries the MAE values remain below the average 

population size for Analyses I-III, RMSE exceeds this threshold in Analysis II in Germany 

and France and in Analysis III in Mexico and Myanmar. Additionally, the difference 

between the RMSE and the MAE values tends to increase as the spatial detail of the input 

Figure 4-1. In this example: Estimated population as the number of people per grid cell for Germany in 2015 

produced at the finest aggregation level of the input data (enumeration areas). The population distribution is 

displayed as the result of dasymetric approach using the WSF2015 layer and the WSF2015-Density layer. 

Detailed examples show the metropolitan areas of Berlin and Munich. 
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units decreases, with significant higher differences in countries such as Côte d’Ivoire, 

France, Myanmar and Vietnam. In case of the three latter, the large differences can be 

explained by the large variances between the errors of the validation units within each 

country. 

Comparing the results between the WSF2015-Density and the WSF2015 layers, it can 

be seen that, for Cambodia and Malawi, the best overall accuracies are reported using the 

WSF2015 layer at all levels of aggregation. For the rest of the countries, the WSF2015-

Density layer performs better at all levels of aggregation, except for Mexico and Myanmar 

where there is a transition between layers in Analysis III. 

Focusing only on the population distribution maps produced using the finest input 

units (Analysis I, Table 4-2), further analyses were performed at the validation unit level. 

First, classifying the REE values in different error ranges (Table 4-4), we calculated the 

percentage of each country’s total population that fell within each REE range for each 

covariate layer, as shown in Figure 4-2 and Table 4-7. 

The percentage bar charts in Figure 4-2 show that for each country both covariate 

layers distribute approximately the same amount of population with comparable 

accuracies. From here, it can be seen that for all countries, the largest percentage of the 

population was “accurately estimated” with estimation errors ranging from −25% to 25% 

for both covariate layers. For Côte d’Ivoire, Germany, England and Myanmar, this 

represents more than 50% of the total population; for France, Cambodia and Vietnam, 

between 40% and 50% of the total population, and for Malawi and Mexico between 30% 

and 40% of the total population. Moreover, for the majority of the countries the second 

largest percentage of the population was either “underestimated” or “overestimated” 

(from ±25 to ±50%). For all countries, less than 15% of the total population was 

overestimated, while for most countries, except Germany and Myanmar, from 15% to 25% 

of the total population was underestimated. Finally, the smallest percentage of the 

population for all countries was “greatly underestimated” or “greatly overestimated” 

(≥50% or ≤−50%), with Malawi reporting an average of ~30% of the total population within 

these ranges, followed by Mexico with ~25%, and France and Vietnam with ~17%. 
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     WSF2015-Density WSF2015 

Country ISO Average Population Analysis No. of Input Unit No. of Validation Units MAE %MAE RMSE R2 MAE %MAE  RMSE R2 

CIV 43,910.16 

I 110 

517 

10,029.04 22.84% 40,198.00 0.7803 10,375.16 23.63% 44,814.26 0.7224 

II 35 11,851.45 26.99% 41,343.98 0.7725 11,862.96 27.02% 45,593.19 0.7130 

III 1 15,016.82 34.20% 47,045.80 0.5684 15,118.44 34.43% 50,124.64 0.3891 

DEU 7145.64 

I 402 

11,291 

828.86 11.60% 2261.67 0.9975 984.10 13.77% 2824.88 0.9961 

II 16 1897.35 26.55% 12,580.46 0.9316 2281.22 31.92% 14,409.45 0.9094 

III 1 2481.30 34.72% 23,280.14 0.9170 2999.64 41.98% 26,407.33 0.9010 

ENG  8007.11 

I 326 
6791 

2218.00 27.70% 3309.71 0.1744 2347.93 29.32% 3401.02 0.1415 

II 9 2776.75 34.68% 4310.88 0.1000 3208.51 40.07% 4619.30 0.0474 

III 1  3098.81 38.70% 4666.95 0.0634 3642.90 45.50% 5017.18 0.0167 

FRA 1761.26 

I 96 
36,562 

589.00 33.44% 4605.53 0.8777 685.47 38.92% 5242.17 0.8352 

II 22 702.31 39.88% 9543.18 0.7698 817.24 46.40% 10,950.33 0.6333 

III 1  821.41 46.64% 11435.96 0.5279 954.06 54.17% 12495.90 0.3390 

KHM 9426.99 

I 197 
1633 

3425.38 36.34% 4898.26 0.6174 3241.26 34.38% 4694.16 0.6204 

II 25 4325.54 45.88% 6680.15 0.5244 4078.17 43.26% 6027.73 0.5371 

III 1  4738.49 50.27% 8363.82 0.5333 4343.88 46.08% 6270.24 0.5662 

MEX 2915.00 

I 2456 
65,477 

954.40 32.74% 2424.57 0.3841 1031.51 35.39% 2599.99 0.3672 

II 32 1080.44 37.06% 2440.33 0.3176 1194.89 40.99% 2611.97 0.3162 

III 1  1719,04 58.97% 30507.37 0.2326 1702,60 58.41% 3464.93 0.2604 

MMR 76,263.92 

I 75 
330 

32,257.60 42.30% 47,374.91 0.8214 34,301.82 44.98% 49,602.98 0.7986 

II 15 41,755.91 54.75% 58,807.41 0.7611 44,506.83 58.36% 64,708.38 0.7071 

III 1  83,960.45 110.09% 111,546.15 0.5243 66,606.76 87.34% 88,449.93 0.4051 

MWI 1371.73 

I 357 
12,550 

712.08 51.91% 1038.03 0.3231 687.40 50.11% 1001.41 0.3290 

II 32 795.36 57.98% 1219.17 0.1732 766.46 55.88% 1177.45 0.2050 

III 1  836.53 60.98% 1310.94 0.1924 792.69 57.79% 1182.53 0.2423 

VNM 135,824.99 

I 63 
688 

46,646.67 34.34% 76,804.15 0.6018 47,837.20 35.22% 87,481.13 0.5218 

II 6 57,187.23 42.10% 94,536.29 0.4317 61,288.84 45.12% 99,151.92 0.3578 

III 1  61,323.29 45.15% 95,472.76 0.3617 63,825.03 46.99% 100,829.93 0.2636 

Table 4-6. Accuracy assessment results using the WSF2015 and the WSF2015-Densinty covariate layers. Values of MAE and RMSE represent number of people.  
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 REE Range [−100%, −50%) [−50%, −25%) [−25%, 25%] (25%, 50%] (50%, ≥100%] 

  D W D W D W D W D W 

CIV %Population 1.11% 4.30% 18.22% 13.44% 69.40% 72.84% 6.98% 4.47% 4.29% 4.95% 

DEU %Population 0.34% 0.51% 5.90% 9.63% 85.78% 79.69% 6.05% 7.19% 1.92% 2.97% 

ENG %Population 2.78% 3.94% 21.40% 23.09% 58.22% 53.00% 9.21% 10.30% 8.39% 9.67% 

FRA %Population 10.82% 16.73% 20.42% 17.57% 47.06% 40.70% 10.79% 11.34% 10.92% 13.66% 

KHM %Population 13.35% 12.50% 16.87% 15.48% 45.23% 47.55% 11.73% 13.40% 12.82% 11.07% 

MEX %Population 17.37% 21.42% 24.97% 23.90% 37.50% 33.73% 8.09% 7.76% 12.07% 13.19% 

MMR %Population 3.92% 4.27% 10.14% 13.22% 69.30% 65.06% 11.74% 11.73% 4.92% 5.73% 

MWI %Population 23.44% 22.23% 18.03% 17.80% 31.87% 33.33% 9.25% 9.54% 17.41% 17.11% 

VNM %Population 12.84% 15.04% 15.66% 14.20% 49.78% 47.47% 10.50% 12.43% 11.23% 10.86% 

 

To identify if there is any significant relationship between the actual population to 

distribute in a particular validation unit and the number of available settlement pixels, we 

calculated the average actual population and the average number of settlement pixels for 

the validation units that fell within each REE range. Figure 4-3a shows the ratio between 

these two parameters for each REE range, where the general tendency indicates that, for 

most countries, errors of underestimation are mainly reported in validation units where a 

relatively low number of settlement pixels were identified in comparison to the average 

actual population reported for those validation units. In other words, errors of 

underestimation tend to increase as the ratio between the population and the number of 

settlement pixels increases. On the other hand, for most countries, errors of overestimation 

tend to increase as the ratio between the average actual population and the number of 

settlement pixels decreases, indicating that a large number of settlement pixels have been 

detected in relation to the average actual population reported on those validation units. 

 

Figure 4-2. Percentage of each country’s total population that fell within each REE range. D, using the 

WSF2015-Density layer; W, using the WSF2015 layer. 

Table 4-7. Summary of the percentage of each country’s total population that fell within each REE range. 
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For a better understanding of the error distribution, the percentage of validation 

units that reported similar ratios and fell within each REE was quantified for each country. 

From the percentage bar charts in Figure 4-3b, it is possible to observe that, for countries 

such as Cambodia, Mexico, Malawi and Vietnam, more than 30% of the validation units 

reported errors of underestimation (from −100% to −25%), with Mexico, Malawi and 

Vietnam reporting ~20% of the validation units “greatly underestimated” (from −100% to 

−50%). In the same way, France reported the largest percentage of the validation units 

(~41%) with errors of overestimation (from 25% to ≥100%), followed by Mexico (~30%), 

Malawi and Germany (~25%). Here, Mexico reported the largest percentage of validation 

units “greatly overestimated”, with ~20% of the validation units with REE larger than 

100%. 

4.3.2.2 Analyses at the Input Unit Level 

To evaluate the actual performance of each covariate layer, results at the validation 

unit level were used to calculate the RMSEIU metric of the original input units used for 

population disaggregation according to Eq. 4-6. Input units were grouped according to 

the input covariate layer that produced the lowest RMSEIU values and for each group the 

percentage of each country’s total population was calculated. 

Figure 4-4 illustrates the percentage bar charts for each country. As one can notice, 

for Germany, France and Mexico, the predominance of the WSF2015-Density is clear, 

distributing more than 75% of each country’s total population with overall lower RMSE 

values in comparison to the WSF2015 layer. On the other hand, for Cambodia and Malawi, 

the WSF2015 layer performs better, distributing more than 75% of the population more 

accurately compared to WSF2015-Density layer. In the rest of the countries (i.e., Côte d’ 

Ivoire, England, Myanmar and Vietnam), both layers perform equally, with the WSF2015-

Density layer distributing a slightly larger amount of the population better than the 

WSF2015 layer. 

Figure 4-3. REE distribution: (a) ratio between the average population and the average number of settlement 

pixels for the validation units that fell within each REE range; and (b) percentage of validation units that fell 

within each REE range. 
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To identify the regions where each covariate layer produced higher accuracies, the 

input units of each country were classified according to the SSC index (Eq. 4-7,Table 

4-5).The map in Figure 4-5 illustrates the results of this classification for Côte d’ Ivoire. 

Here, most of the input units fell within the “low” SSC class, which is characterised by 

small size settlement objects that cover a low percentage of each input unit’s total area. A 

few input units fell within the “medium” SSC class, characterised by a mix of medium and 

small size settlements objects, and only two input units fell within the “high” SSC class, 

characterised by large size settlement objects that cover a large extent of each input unit’s 

total area. For Côte d’ Ivoire, some of the most populated cities are located within the 

“high” and “medium” input units, such as Abidjan, Bouake, Korhogo and Divo. 

 

 

 

Figure 4-4. Percentage bar-charts of each country’s total population distributed with higher accuracy by each 

covariate layer. Orange bars, WSF2015-Density layer; Blue bars, WSF2015 layer. 

Figure 4-5. Input units classified according to the SSC-Index for Côte d’Ivoire. 
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Following this classification, the same analysis was carried out for each country. 

Figure 4-6 shows the percentage of each country’s total area (pie charts) and 

corresponding population (boxes) derived from the input units according to the SSC 

index. 

 

For Côte d’ Ivoire, Cambodia, Mexico, Myanmar and Malawi, the largest percentage 

of the total area fell within the “low” SSC class. For all these countries, more than 70% of 

the population is located within these areas, except for Mexico, where the majority of the 

population (54.79%) is located within areas belonging to the “high” SSC class. For 

Germany, England, France and Vietnam, the largest percentage of the total area fell within 

the “high” SSC class, where more than 80% of the population is located. For most 

countries, the second largest percentage of the area fell within the “medium” SSC class. In 

these areas, the second largest percentage of the population is located, which does not 

exceed more than 17% of the total population. 

For each SSC class, we computed the average RMSE error produced by each 

covariate layer and the percentage difference between the two layers (Table 4-8). The 

results indicate that, for all countries, the WSF2015-Density layer performed better in 

regions that fell within the “high” SSC class, with improvements ranging from 1.12% to 

31.20% over the WSF2015 layer. For regions within the “low” or “medium” SSC classes, 

the behaviour of the covariate layers is more variable among the countries. For Germany, 

England, France and Myanmar, the WSF2015-Density layer performed better for regions 

within the “low” SSC class, with improvements ranging from 4.36% to 22.40%, while. for 

Côte d’ Ivoire, Cambodia, Malawi and Vietnam, the WSF2015 layer performed better with 

improvements ranging from 2.12% to 9.82%. For the regions within the “medium” SSC 

class, the WSF2015-Density layer performed better in Germany, England, France, Malawi 

and Vietnam, with improvements ranging from 6.62% to 21.03%, as opposed to Côte d’ 

Figure 4-6. Percentage of each country’s total area (pie charts) and corresponding population (boxes), 

classified according to the SSC index. 
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Ivoire, Cambodia, Mexico and Myanmar, where the WSF2015 layer performed better with 

improvements ranging from 6.69% to 30%. 

 Low SSC Class Medium SSC Class High SSC Class 

 
RMSE 

(D) 

RMSE 

(W) 
%Diff. 

RMSE 

(D) 

RMSE 

(W) 
%Diff. 

RMSE 

(D) 

RMSE 

(W) 
%Diff. 

CIV 6195.88 5824.85 −6.17% 13,385.74 9893.41 −30.00% 121,500.76 138,430.55 +13.03% 

DEU 598.65 701.99 +15.89% 1169.94 1422.94 +19.51% 1715.78 2100.37 +20.16% 

ENG 2449.15 2879.85 +16.16% 2580.89 3013.39 +15.46% 2908.04 2980.60 +2.46% 

FRA 517.12 647.56 +22.40% 975.40 1207.01 +21.03% 4391.66 5124.74 +15.41% 

KHM 4041.02 3785.02 −6.54% 3536.39 3084.83 −13.64% 6372.06 6443.97 +1.12% 

MEX 892.80 874.05 −2.12% 2107.69 2253.53 −6.69% 2376.74 2626.13 +9.97% 

MMR 33,452.74 34,943.76 +4.36% 39,432.66 32,580.79 −19.03% 43,682.69 59,832.04 +31.20% 

MWI 819.79 768.93 −6.40% 778.43 831.73 +6.62% 1150.90 12,20.03 +5.83% 

VNM 47,476.56 43,030.73 −9.82% 32,471.05 27,000.96 +18.40% 63,679.29 65,272.30 +2.47% 

 

4.4 Discussion 

In the above sections, we present a set of comprehensive analyses to compare the 

relative accuracies of population distribution maps produced using the WSF2015 and the 

experimental WSF2015-Density layers. The first analysis consisted of an overall accuracy 

assessment carried at the validation unit level, where metrics such as MAE, %MAE, RMSE 

and R2 (Table 4-3) were used to evaluate maps produced using three spatial aggregation 

levels of the administrative units (Table 4-2). The results presented in Table 4-6 show that, 

for all countries and both covariate layers, the highest accuracy values were reported for 

population maps produced using the finest input units (Analysis I, Table 4-2), with 

accuracies decreasing from one level of spatial aggregation to the next. These results are 

directly in line with previous findings (Hay et al., 2005a; Tatem et al., 2007; Tiecke et al., 

2017),  and confirm the premise that higher accuracies in population mapping can be 

achieved with improvements in the resolution of the input census/estimate-based data. In 

the same way, from a comparative point of view, the overall accuracy results showed that, 

for the majority of the countries, except Cambodia and Malawi, the WSF2015-Density 

layer performed better than the WSF2015. 

When interpreting and comparing the overall accuracy results between countries 

and between covariate layers, there are, however, a set of considerations that need to be 

considered. First, it is important to understand, that regardless of the input covariate layer 

used for population disaggregation, high accuracies can be reached, when the number and 

ASR of the of the administrative units used for validation are similar to those of the 

administrative units used as input data (Table 4-2). This can be seen, for example, by 

examining the results of Analysis I for Côte d’Ivoire, Myanmar and Vietnam (Table 4-6). 

The fact that these countries reported relatively good accuracy results is more likely to be 

due to the small difference between the number of administrative units used as input and 

validation units (407, 225 and 625, respectively) and the small ratio between their ASR 

(2.16, 2.11 and 3.30, respectively). These results are linked to the scale effect of the 

Table 4-8. RMSE (number of people) and percentage difference reported for each covariate layer at each SSC 

index class. D, results of the WSF2015-Density layer; W, results of the WSF2015 layer; positive bold values, 

countries where the WSF2015-Density performed better; negative values, countries where the WSF2015 

performed better. 
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modifiable areal unit problem (MAUP), where the correlation between variables increases 

as the areal unit size becomes similar (Qi & Wu, 1996). 

A second consideration to keep in mind is to avoid the use of the R2 metric as a 

unique statistical indicator to report the accuracy of population distribution models. 

Previous research has demonstrated that the lack of variability in the data influences the 

coefficient of determination (Goodwin & Leech, 2006). For example, for England, where 

significantly low R2 values were obtained in comparison to the MAE, %MAE and RMSE 

metrics, these can be related to the fact that the original census/estimate-based data reports 

similar population counts for a large number of the administrative units used for 

validation. This can be seen in the boxplots of Figure 4-7, where the reported actual 

population counts of the validation units of England are constrained within a small range 

of values. This small variability in the data, according to Goodwin et al. (Goodwin & 

Leech, 2006), results in a poor correlation between the estimated population counts and 

actual population counts as exemplified in the scatter plots of Figure 4-8. Here, it is 

possible to observe an amorphous or non-structured appearance of the data points for 

England in comparison to France, which results in a poor correlation, signalised by the 

almost horizontal trend-line. 

 

 

 

Figure 4-7. Boxplots of the distribution of the actual population counts of the validation units for each country 

with the inter-quartile range demarcated by the purple box. 

Figure 4-8. Scatter plot of estimated population and actual population for England and France at the validation 

unit level. Data show the results of population estimates using the WSF2015-Density layer. 
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The aforementioned findings indicate that the use of single statistics metrics can be 

misleading and that population distribution maps can report high accuracy results 

independently of the quality of the underlying covariate layers used for population 

disaggregation. Therefore, it is important to emphasise, not only that full dissemination of 

the data used for modelling and validation is essential when reporting accuracy results 

(Bai et al., 2018; Balk et al., 2006; Doxsey-Whitfield et al., 2015; Hay et al., 2005a), but also 

that, to evaluate the real effectiveness of the covariate layers, it is necessary to undertake 

more in-depth analyses using complementary metrics. 

In this research, with the use of the REE statistical metric (Eq. 4-5) it was possible to 

evaluate the amount and distribution of error generated by each covariate layer (Figure 

4-2 and Table 4-6), and identify the areas where large errors of underestimation and large 

errors overestimation can be expected (Figure 4-3). Our results show that both layers 

perform similarly, distributing approximately the same percentage of each country’s total 

population with the same REE values. For all countries, the largest percentage of the 

population has been estimated with errors ranging from −25% to 25%, which in previous 

research has been considered as “accurately estimated” (Bai et al., 2018). Nevertheless, 

only in Côte d’ Ivoire, Germany, England and Myanmar this represent more than 50% of 

the total population, which indicates that, for the rest of the countries, a significant 

percentage of the total population was distributed with larger errors of underestimation 

and errors overestimation. 

We attribute these errors to the quality (completeness) of the covariate layers and to 

the fact that they do not consider information on the land or building use. On the one 

hand, our findings indicate that errors of underestimation are reported in validation units 

where not enough settlement pixels have been found for population disaggregation. These 

errors increase as the ratio between the actual population and the number of settlement 

pixels increases (Figure 4-3a). This means, for example, that in countries where a large 

percentage of the population and validation units were “greatly underestimated” (Table 

4-6 and Figure 4-3b) such as France, Cambodia, Mexico and Malawi, this can be explained 

by the large amount of validation units where zero or very few settlement pixels have been 

identified (Figure 4-9). Therefore, despite the fact that the thematic accuracy of the 

WSF2015 layer clearly outperforms any of the currently existing global human settlements 

masks (Marconcini et al., 2020), it is clear the data still show limitations with respect to a 

complete detection of all building structures. This can be explained by the spatial 

resolution of the Sentinel-1 and Landsat imagery used as input data, which restricts the 

identification of building structures, especially in regions where the settlement pattern is 

characterised by wide-spread single houses or very small hamlets. 
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On the other hand, errors of overestimation are reported in validation units where a 

large number of settlement pixels have been reported in comparison to the amount of 

actual population, and that they increase as the ration between these two parameters 

decreases (Figure 4-3a). After a visual analysis of VHR satellite imagery, we found that 

large errors of overestimation are mainly reported in validation units where seaports and 

industrial complexes exist. Figure 4-10 shows an example of the population distribution 

results for an input unit in England with this particular built-up environment. The red line 

represents the geographical boundary of the input unit used for population 

disaggregation and the blue lines represent the geographical boundaries of the validation 

units. Here, it is possible to observe industrial areas in the southern parts of the input unit. 

These areas capture many of the population counts comparable to high-density residential 

areas, reporting large errors of overestimation in the validation units. In the selected 

validation unit, for example the WSF2015-Density layer reported a higher REE (186.56%) 

in comparison to the WSF2015 (154.49%). This does not mean, however, that in every 

validation unit where this built-up environment exists the binary layer will perform better 

than the impervious layer. Depending on the extent and geographical boundaries of the 

input units, industrial or port areas can be mixed with residential areas, influencing the 

performance of each layer. More detailed information on and discussion of this aspect is 

provided at the end of this section in the context of the SSC index. 

Similar accuracy limitations have been reported in the production of the GHS-POP 

and the HRSL population datasets (Freire et al., 2016; Tiecke et al., 2017). Even when 

several local studies have demonstrated that information on the building use has the 

potential to improve population distribution results (Biljecki et al., 2016; Goerlich, 2016), 

this remains a major source of limitation in the production of global population datasets, 

as it is not possible to derive detailed semantic information on the building use through 

RS methodologies. Population datasets such as LandScan and WorldPop integrate land 

use and land cover covariates to improve their results; however, as mentioned above, this 

introduces global transferability limitations and applicability restrictions. 

 

Figure 4-9. Number of settlement pixels identified within the validation units. 
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For this reason, in this study, we began to analyse the relationship between the 

inherent characteristics of the underlying built-up environment and the performance of 

each covariate layer, as an alternative approach that could be used to minimise the errors 

introduced by the quality and lack of functional characterisation of the input covariate 

layers. Here, we introduced the SSC index as a globally transferable metric to categorise 

the input units in terms of the size and coverage of the underlying settlement objects. Our 

results clearly indicate that WSF2015-Density layer distributes population with higher 

accuracies in regions with high SSC index values, reaching improvements up to ~30% over 

the WSF2015 layer (Table 4-8). For regions with low and medium SSC index values, the 

performance of each covariate layer varies from country to country. Figure 4-11 shows the 

distribution of the SSC index values and the mean SSC index value for the “low” and 

“medium” SSC classes for each country. 

Focusing on the distribution of the “low” SSC class, countries where the WSF2015 

reported in average less RMSE values are also the countries where more than half of the 

input units reported SSC index values lower than 0.40. In other words, the SSC index 

values fell below the mean of the “low” SSC class that ranges from >0 to 1. For the 

“medium” SSC class, the distribution of the SSC index values among countries is relatively 

similar. The mixture of medium to highly populated cities and rural areas within these 

input units represent challenging modelling regions where further analyses are required 

to identify the particular circumstances where one layer outperforms the other. 

Nevertheless, it is important to notice that the WSF2015-Density layer performed 

better in all three classes of the SSC index for countries such as Germany, France and 

Figure 4-10. Influence of the building use in the population distribution results. Industrial areas capture large 

population counts resulting in large errors of overestimation within the validation units. 
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England, hence suggesting that the overall performance is largely driven by an accurate 

identification of building structures within the rural areas of each country. In this context, 

it is expected that limitations derived from the current underestimation of smaller 

settlements and isolated buildings can be overcome by the future integration of Sentinel-

2 data in the production of future WSF datasets, due to its increased spatial resolution 

(Esch et al., 2018a). 

 

As a final note, it is important to mention that, even when the population 

distribution maps presented in this research have been produced using the most 

frequently employed population census/estimate-based data, the difficulties in the 

acquisition of the finest census/estimate-based data, the challenges in integrating census 

data with spatial boundaries and the uncertainties of population estimates based on 

statistical projections, are additional sources of errors and uncertainty limiting the 

accuracy of the population distribution models. Therefore, as stated by (Doxsey-Whitfield 

et al., 2015)  acquiring up-to-date global population census data at the highest spatial detail 

possible should remain a priority for improving global population mapping. 

4.5 Summary 

The presented study focused on the cross-comparison of population distribution 

maps produced using the WSF2015 and the experimental WSF2015-Density layers. The 

main objective was to investigate if higher accuracies in population distribution mapping 

can be achieved using additional information on the build-up environment, such as the 

percentage of impervious surface, in comparison to the already established binary 

approach employed by other population datasets and their baseline settlement layers. 

The results of the quantitative assessment showed that the overall accuracies 

between both covariate layers are comparably similar, with the best accuracy results 

reported for population distribution maps produced using the finest input 

census/estimate-based data. Our results indicate that, while both layers distribute the 

largest percentage of each country’s total population with estimation errors ranging from 

−25% to 25%, remaining limitations derived from: (i) the incomplete identification of 

settlement pixels; and (ii) the lack of information on the building use, still introduce large 

Figure 4-11 Boxplots of the distribution of the SSC index values for the “low” (yellow boxplots) and “medium” 

(green boxplots) classes for each country.  
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errors of underestimation and errors overestimation in a considerable percentage of the 

population. 

Notwithstanding these limitations, from a comparative point of view, our results 

have shown that population distribution maps produced on basis of the WSF2015-Density 

layer provide a more realistic representation of the spatial distribution of the population, 

as the heterogeneous allocation of population counts prevents the appearance of artificial 

patterns between neighbouring administrative units. Furthermore, it has been 

demonstrated that the WSF2015-Density layer produces higher accuracies in high-density 

built-up environments and is capable to improve the estimation accuracies of the WSF2015 

layer up to ~30%, especially in those countries where a good percentage of building 

structures have been identified within the rural areas. The fact that the WSF2015-Density 

layer is derived from RS approaches that do not require a priori knowledge of the land 

cover makes it a strong suitable proxy capable to improve global population distribution 

methodologies, and, as it is not based on local relationships, it has no applicability 

restrictions in comparison to other existing products. Moreover, it provides global 

coverage and can be straightforwardly updated allowing time agreement with census 

population data, enabling the production of a consistent global population distribution 

dataset with higher accuracy and spatial resolution than those currently available. 

One of the strengths of our study is the implementation of the SSC index, used to 

investigate the correlation between the built-up environment and the performance of each 

covariate layer. Our results suggest that higher accuracies in population disaggregation 

could be achieved with the correct preselection of the input covariate at the input unit 

level; however, to implement this preselection, additional research is still necessary, as the 

SSC index cannot provide a complete distinction between the covariate layers in areas 

with middle SSC index values. 

However, in the light of these highly promising results, future research will focus 

on the validation and open release of the WSF2015-Density layer, expanding the accuracy 

assessment of population mapping to other regions of the world, with special focus on 

arid and semi-arid areas, and comparing the results against other existing global 

population distribution datasets. Within this outlook, deeper research on the SSC index 

will also be included, to develop a methodology that can help minimise the inherent 

distribution errors derived from the quality and functional characterisation of the input 

covariates, as well as in the production of a new global population dataset. 
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Chapter 5 

 

5. High-Resolution Gridded Population Datasets: 

Exploring the Capabilities of the World Settlement 

Footprint 2019 Imperviousness Layer for the African 

Continent 

The following section represents a modification of the second peer-reviewed 

research article of this cumulative thesis. Some chapters have been adapted to include only 

relevant information that has not already been presented in the previous chapters (e.g. 

introduction and materials). Where needed, the reader will be referred to the 

corresponding sub-chapters. 

• Palacios-Lopez, D., Bachofer, F., Esch, T., Marconcini, M., MacManus, K., Sorichetta, 

A., Zeidler, J., Dech, S., Tatem, A. J., & Reinartz, P. (2021). High-Resolution Gridded 

Population Datasets: Exploring the Capabilities of the World Settlement Footprint 

2019 Imperviousness Layer for the African Continent. Remote Sensing, 13(6), 1142. 

https://doi.org/10.3390/rs13061142. 

Abstract 

The field of human population mapping is constantly evolving, leveraging the 

increasing availability of high-resolution satellite imagery and the advancements in the 

field of machine learning. In recent years, the emergence of global built-area datasets that 

accurately describe the extent, location, and characteristics of human settlements has 

facilitated the production of new population grids, with improved quality, accuracy, and 

spatial resolution. In this research, we explore the capabilities of the novel WSF2019-Imp 

layer, as a single proxy in the production of a new high-resolution population distribution 

dataset for all of Africa—the WSF2019-Population dataset (WSF2019-Pop). Results of a 

comprehensive qualitative and quantitative assessment indicate that the WSF2019-Imp 

layer has the potential to overcome the complexities and limitations of top-down binary 

and multi-layer approaches of large-scale population mapping, by delivering a weighting 

framework which is spatially consistent and free of applicability restrictions. The 

increased thematic detail and spatial resolution (~10m at the Equator) of the WSF2019-Imp 

layer improve the spatial distribution of populations at local scales, where fully built-up 

settlement pixels are clearly differentiated from settlement pixels that share a proportion 

of their area with green spaces, such as parks or gardens. Overall, eighty percent of the 

African countries reported estimation accuracies with percentage mean absolute errors 

between ~15% and ~32%, and 50% of the validation units in more than half of the countries 

reported relative errors below 20%. Here, the remaining lack of information on the vertical 

dimension and the functional characterisation of the built-up environment are still 

remaining limitations affecting the quality and accuracy of the final population datasets. 
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5.1 Introduction:  Problem Statement 

The aim of this research was to explore the capabilities of the novel WSF2019-Imp 

layer in the production of a new high-resolution large-scale gridded population 

distribution dataset—the WSF2019-Population (WSF2019-Pop). Using a simple and semi-

automatic weighted-dasymetric modelling approach, we incorporated the 

imperviousness layer with an open archive of subnational census/estimate-based 

estimates to produce high-resolution population distribution datasets for the African 

continent. Employing a well-established validation method (Leyk et al., 2019) and 

leveraging the variably in quality and spatial granularity of the input population data, the 

main focus of our research was to systematically investigate how accurate and stable the 

WSF2019-Imp layer is as a single proxy for population modelling. Here, we specifically 

explore if the WSF2019-Imp layer delivers consistent patterns of accuracy/uncertainty 

within and among countries, and address the main advantages and limitations of the 

WSF2019-Imp layer and WSF2019-Pop datasets in support of large-scale population 

modelling and future research applications, respectively.  

5.2 Materials and Methods 

Figure 5-1 outlines the general process used for the modelling and validation of the 

WSF2019-Pop dataset for Africa. 

Steps concerning this research include the production of the end-user WSF2019-Pop 

dataset (Step 1) and the accuracy assessment of the population datasets of each country 

(Step 2). Input data, namely, the WSF2019-Imp layer for Africa and the 2019 subnational 

population data were either made available or downloaded ready-to-use. A detailed 

description of the main elements (grey labels) of each step are described in more detail in 

the following sections. 
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5.2.1 WSF2019-Imperviousness layer 

The processing framework to produce the WSF2019-Imp layer was described in 

detailed in sub-chapter 3.2. In this research a previous version of the dataset was 

employed, in which the masking of the roads was still not included. For the specific case 

of this study, Figure 5-2 provides five different examples of the WSF2019-Imp layer. The 

first three images (top–bottom) refer to the city of Niamey (Niger), characterized by a hot 

semi-arid climate; Cairo (Egypt) characterized by a hot desert climate and the city of 

Antananarivo (Madagascar) characterized by a subtropical highland climate according to 

the Köppen Climate classification system, respectively. The last two examples show 

suburban areas and rural areas in South Africa and Nigeria, and are used to exemplify the 

Figure 5-1. General workflow for the modelling and validation of the WSF2019-Pop dataset for Africa.  



Chapter 5: High-Resolution Gridded Population Datasets: Exploring the Capabilities of the World Settlement Footprint 

2019 Imperviousness Layer for the African Continent 

59 

 

local spatial details of the layers in different vegetation cover and urbanised settings. For 

each of these test sites, additional subsets are compared against VHR satellite imagery. 

 

5.2.2 Subnational 2019 Population Data 

The population estimates for the year 2019 and corresponding subnational 

administrative unit boundaries (vector data) for all African countries employed in this 

research were prepared by the CIESIN. The data was produced in the context of a cross-

organizational collaboration with WorldPop and accounts for the period of 2000 to 2020 

(Lloyd et al., 2019). For most countries (except Kenya and Malawi), the data were directly 

downloaded from the open archive of the WorldPop Global Project available at 

https://doi.org/10.5258/SOTON/WP00650. The population data for Kenya and Malawi 

were provided by CIESIN. 

All of the population datasets employed here were standardised by CIESIN based 

upon the methodology described in (CIESIN, 2018a). The subnational administrative unit 

boundaries and population counts follow the cartography and official estimates collected 

in the 2010 round of Population and Housing Censuses, which occurred between 2005 and 

2014 (and data from the 2020 round for Kenya and Malawi). From these data, annual 

exponential growth rates were calculated using two census dates (between circa 2000 and 

2010 for most countries) to interpolate and forecast population counts for each subnational 

Figure 5-2. WSF2019-Imp. Top to bottom: areas of Niamey (Niger), Cairo (Egypt), Antananarivo (Madagascar), 

and urban (left) and rural (right) areas in South Africa and Nigeria. PIS legend from >0% to 100% with country-

specific minimum and maximum values. Additional subsets (white boxes) compared against VHR imagery. Black 

areas: pixels outside the WSF2019 settlement mask.  

https://doi.org/10.5258/SOTON/WP00650
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administrative unit for the period 2000 to 2020 (Lloyd et al., 2019). The exception is for 

Kenya, where the cartography (Kenya National Bureau of Statistics, 2020) and official 

estimates are from the 2019 census (Kenya National Bureau of Statistics, 2019), and for 

Malawi, where the cartography (Humanitarian Data Exchange, 2018) and official 

estimates are from the 2018 census (Malawi National Statistical Office, 2018), both of which 

are part of the 2020 round of Population and Housing Census. This was necessary due to 

restrictive licenses and significant administrative realignments between the 2010 and 2020 

rounds in those countries. For each subnational administrative unit, two types of 

population estimates are available—census/estimate-based and UN-adjusted—with the 

latter employed for this research following the criterion of existing population datasets, 

which use UN-adjusted counts as a method of harmonisation (Freire et al., 2018). The 

subnational administrative unit boundaries, referred hereinafter as “L1-units”—according 

to their original description (Lloyd et al., 2019)—represent the highest available 

administrative unit level specific to each country, and are not comparable within and 

among countries, in terms of size and administrative level. 

Table 5-1 shows a summary of the input population data. These include the three 

letter International Organisation for Standardization (ISO) identification code, total 

population for 2019 adjusted to the UN estimates, the base year of either the census or 

derived estimation, the number of subnational administrative units and the average ASR 

of the administrative units for each country. The data are presented divided in the five 

subregions according to the UN geoscheme for Africa (UN-Statistics Division, 2020). 

In this research, the countries of Seychelles and Cape Verde were not included, as 

consistent S2 data for the selected period were not available when the employed version 

of the WSF2019-Imp layer was produced. 
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Eastern Africa 
ISO Year 2019-UNPop L1-U ASR   ISO Year 2019-UNPop L1-U ASR 

BDI 2008 11,530,577 66 13   MWI 2019 18,628,749 73 14 
COM 2013 850,891 93 21   RWA 2012 12,626,938 67 7 
DJI 2009 973,557 77 52   SOM 2005 15,442,906 68 78 
ERI 2012 3,497,117 82 127   SSD 2008 11,062,114 69 83 
ETH 2007 112,078,727 67 35   TZA 2012 58,005,461 67 14 
KEN 2019 52,573,967 68 36   UGA 2014 44,269,587 70 11 
MDG 1993 26,969,306 69 19   ZMB 2010 17,861,034 69 67 
MOZ 2007 30,366,043 65 40   ZWE 2012 14,645,473 80 63 
MUS 2011 1,269,670 55 3             

                      

Central Africa 
ISO Year 2019-UNPop L1-U ASR   ISO Year 2019-UNPop L1-U ASR 

AGO 2014 31,825,299 161 87   GAB 2003 2,172,578 48 73 
CAF 2012 4,745,179 174 58   GNQ 2014 1,920,917 39 29 
CMR 2005 25,876,387 58 89   STP 2012 215,048 7 12 
COD 1984 86,790,568 188 106   TCD 2009 15,946,882 62 142 
COG 2007 5,380,504 12 166             

                      

Northern Africa   Southern Africa 
ISO Year 2019-UNPop L1-U ASR   ISO Year 2019-UNPop L1-U ASR 

DZA 2008 43,053,054 1540 41   BWA 2011 2,303,703 29 141 
EGY 2006 100,388,076 385 49   LSO 2006 2,125,267 80 20 
ESH 2014 582,455 27 103   NAM 2011 2,494,524 5473 12 
LBY 2006 6,777,453 22 280   SWZ 2007 1,148,133 55 17 

MAR 2014 36,471,766 1657 17   ZAF 2011 58,558,267 86814 4 
SDN 2008 42,813,237 130 114             

TUN 2014 11,694,721 270 26             

                      

Western Africa 
ISO Year 2019-UNPop L1-U ASR   ISO Year 2019-UNPop L1-U ASR 

BEN 2013 11,801,151 77 39   MLI 2009 19,658,023 765 38 
BFA 2006 20,321,383 351 28   MRT 2013 4,525,698 218 71 
CIV 2014 25,716,554 519 25   NER 2012 23,310,719 66 127 

GHA 2010 30,417,858 170 37   NGA 2006 200,963,603 774 34 
GIN 2014 12,771,246 340 27   SEN 2013 16,296,362 45 66 
GMB 2010 2,347,696 40 16   SLE 2004 7,813,207 160 21 
GNB 2009 1,920,917 39 29   TGO 2010 8,082,359 40 38 
LBR 2008 4,937,374 136 27             

5.2.3 Dasymetric Modelling Approach 

Gridded population distribution maps for each African country were modelled 

using a weighted dasymetric mapping approach, where the 2019 UN-adjusted population 

counts from the input L1-units were redistributed into pixels classified as settlements in 

the WSF2019-Imp layer (Figure 5-1, Step 1). For each pixel within an L1-unit, the estimated 

population count is defined as follows: 

𝑃𝑜𝑝(𝑝∈I𝑈) = 𝑃𝑜𝑝𝐼𝑈

𝑃𝐼𝑆𝑝

∑ (𝑃𝐼𝑆𝑝)(𝑝∈𝐼𝑈)

 
Eq. 5-1 

 

Table 5-1. Summary of 2019 UN-adjusted subnational population census/estimate-based data (2019-UNPop) 

for each African country: 3 letter ISO code, census or estimation year, number of L1-units (L1-U), and the 

average spatial resolution (ASR). ASR represents the effective resolution of the L1-units in km, calculated as the 

square root of each country’s total area divided by the number of units.  
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According to Eq. 5-1, each pixel within a given input unit  𝑃𝑜𝑝(𝑝∈𝐼𝑈) is given a 

proportion of the input unit’s total population 𝑃𝑜𝑝𝐼𝑈, relative to their percent of 

impervious value 𝑃𝐼𝑆𝑝. This means, for example, that within a single input unit, the 

population count of a pixel with a 50% PIS value is twice as high as in a pixel with a 25% 

PIS value. This modelling technique preserves population input totals, where the sum of 

population counts of all pixels within an input unit matches the input unit’s original total 

population. 

5.2.4 Quantitative Accuracy Assessment 

In this research, we applied as quasi-similar validation method that the one 

presented in sub-chapter 4.2.4 to systematically investigate the relative accuracy and 

mapping capabilities of the WSF2019-Imp layer. The quantitative accuracy assessment 

presented here comprised two main steps, described as follows. 

5.2.4.1 Random Sampling 

To produce the population distribution maps needed for validation, we first 

generated the aggregated version of the L1-units, following a sampling and merging 

methodology similar to that employed by Stevens et al. (2020). For each country, we 

started by randomly selecting one third of the L1-units. For each L1-unit in the sample we 

then selected a spatial neighbour unit that (1) was not already in the random sample, and 

(2) had the closest value in population density (Figure 5-1, Step2-B). This process was 

performed iteratively until approximately two thirds of the original L1-units were 

selected. From here, the one third random sample units and the one third selected spatial 

neighbour units were merged, and their population counts summed to produce coarser 

units for population modelling (Figure 5-1,, Step 2-C). These coarser units were then used 

as input units to produce population distribution maps (Eq. 5-1) (Figure 5-1, Step 2-D), 

while the two thirds of sampled L1-units were used for validation (Figure 5-1, Step2-E). 

All the remaining unsampled/unmerged L1-units were excluded from the analyses, as 

their reported differences would have been zero. 

The implementation of this aggregation method was deemed necessary, because in 

each country, the original L1-units represent a mixture of administrative levels, where no 

attribute is available to identify their administrative levels. Hence, aggregating the L1-

units into a common official level, comparable across all countries, was not possible to 

implement. Consequently, due to the fact that some countries have very large L1-units 

(Table 5-1), we selected a merging criterion based on the similarity of population densities, 

in order to reduce the effect that the size of the input units used for modelling have on the 

estimation error. Here, research has shown that larger input units tend to present larger 

estimation errors simply due to their size (Palacios-Lopez et al., 2019; Sinha et al., 2019). 

Finally, we also excluded all the L1-units that reported zero population counts from the 

sampling process. These units would have generated errors of overestimation of 100%, 

derived solely from the quality of the input population data, and unrelated to the 

capabilities of the modelling framework. 

The aforementioned sampling method was applied to all African countries, except 

Comoros. Comoros’ input population data consisted of only three geographically 

separated polygons representing each of the islands: Grande Comore (Ngazidja), Mohéli 
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(Mwali), and Anjouan (Ndzuani). For the validation of Comoros, the two randomly 

selected L1-units were merged into a “multi-part” polygon, and their populations were 

summed. The two L1-units were further used for validation. 

5.2.4.2 Statistical Analyses 

From the gridded population distribution maps produced using the coarser input 

units, population density estimates were extracted for all the sampled L1-units (also 

referred to as validation units from here on) using the Zonal Statistic tool of ArcGIS (Figure 

5-1, Step 2-E). For each country, the reported differences between the actual population 

densities and the estimated population densities of the sampled L1-units were then used 

to derive aggregated error metrics, such as MAE (Eq. 5-3), the normalised MAE (nMAE or 

%MAE) (Eq. 5-4) and RMSE (Eq. 5-5) and individual error metrics, such as the REE (Eq. 

5-7) and the SSC-Index (Eq. 5-7)  (Figure 5-1, Step2-F). 

For this research, total population densities were used instead of total population 

counts to more easily perform comparisons within and among countries with varying 

population sizes, and with varying numbers and ASR of the sampled L1-units. Statistical 

analyses were carried out in two ways. First, to perform direct comparisons among 

countries, the aggregated error metrics were calculated taking into consideration the 

size/area (km2) of all sampled L1-units that make up each country. This weighting factor 

removes the bias caused by the differences in size and number of the sampled L1-units 

among countries, allowing the evaluation of the relative accuracy and modelling stability 

of the WSF2019-Imp layer at a continental scale. Here, the average population density of 

each country 𝐷𝑖 is then calculated as the conventional population density as follows 

(Ottensmann, 2018) (Eq. 5-2): 

 

𝐷𝑖 =
𝑃𝑖

𝐴𝑖

=
∑ 𝑝𝑗𝑗∈𝑖

∑ 𝑎𝑗𝑗∈𝑖,

=
1

𝐴𝑖

∑ 𝑎𝑗𝑑𝑗

𝑗∈𝑖

 
Eq. 5-2 

where 𝑝𝑗, 𝑎𝑗 and 𝑑𝑗 represent the population, area and density of each individual 

sampled L1-unit within a country j, respectively. Consequently, the MAE is the average of 

the sum of absolute differences between the estimated 𝑑̂𝑗 and actual 𝑑𝑗 weighted 

population densities divided by the total area, and the %MAE is the MAE divided by the 

total population density. Dividing the MAE by the average population density of each 

country 𝐷𝑖 additionally removes the bias caused by the differences in population sizes 

(Vandeput). The %MAE was chosen over the %RMSE metric, due to the fact that the RMSE 

is likely to report higher values influenced solely by a larger sample size (Chai & Draxler, 

2014). Both error metrics measure the average of the absolute errors in the sampled L1-

units; however, while MAE weights each error equally, the RMSE gives more weight to 

larger differences, skewing the errors towards the odd outliers (Chai & Draxler, 2014). This 

quality is useful to check, for example, whether the MAE reported for each country 

originates from extreme errors or not. 

 

𝑀𝐴𝐸𝑖 =
1

𝐴𝑖

∑(|𝑑̂𝑗 − 𝑑𝑖| ∗ 𝑎𝑖)

𝑗∈𝑖

 
Eq. 5-3 
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%𝑀𝐴𝐸𝑖 =
𝑀𝐴𝐸𝑖

𝐷𝑖

 
Eq. 5-4 

 

𝑅𝑀𝑆𝐸𝑖 = √
∑ ((𝑑̂𝑗 − 𝑑𝑗)2 ∗ 𝑎𝑗)𝑖∈𝑖

∑ 𝑎𝑗𝑗∈𝑖

 
Eq. 5-5 

 

In a broad sense, the area-weighted aggregated metrics assume a proportional 

distribution of error within each country, allowing us to derive meaningful comparisons 

among countries. However, as the population density of the individual sampled L1-units 

varies from unit to unit, so do errors, which are unevenly distributed across space. 

Therefore, to properly investigate the error distribution within each country, for the 

second part of the statistical analyses, we calculated the percent REE and the SSC-Index 

for each sample L1-unit as follows: 

 

𝑅𝐸𝐸𝑗 =
|𝑑̂𝑗 − 𝑑𝑗|

𝑑𝑗

∗ 100% 
Eq. 5-6 

 

𝑆𝑆𝐶 − 𝐼𝑛𝑑𝑒𝑥𝑗 = (
#𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 𝑝𝑖𝑥𝑒𝑙𝑠

# 𝑠𝑒𝑡𝑡𝑙. 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
∗

∑  𝑎𝑟𝑒𝑎 𝑠𝑒𝑡𝑡𝑙. 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 j
∗

𝑅𝑆𝑑𝐷 𝑠𝑒𝑡𝑡𝑙. 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝐴𝑣. 𝑎𝑟𝑒𝑎 𝑠𝑒𝑡𝑡. 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
) 

Eq. 5-7 

 

The REE is derived by calculating the absolute error between the actual and 

estimated population density, divided by the actual population density of each unit. Using 

this metric, each validation was categorised into REE ranges of 20%, following the 

thresholding criterion employed by (Da Costa et al., 2017). The Settlement SSC-Index is a 

metric that was first introduced by Palacios-Lopez et al. (Palacios-Lopez et al., 2019) to 

categorise the built-up environment within any given area (polygon boundary) in terms 

of the size, number, distribution (compacted/spread) and coverage of built-up objects 

derived from the WSF2015 layer. On the one hand, high SSC-Index values indicate dense 

built-up environments, where the total area derived from the settlement pixels is almost 

proportional to the total area of the sample L1-units. Low SSC-Index values, on the other 

hand, indicate the presence of small and sparse built-up environments, where the 

coverage of the built-up settlement is proportionally low compared to the total area of the 

input units. For this research, built-up objects are constructed from the WSF2019-Imp 

layer, where every object is composed of an 8-neighbourhood connected settlement pixel. 

Using a 2D density analysis, we integrated the REE, the population density and the 

SSC-Index value of each unit to investigate if the REE of a given range was found in 

validation units with similar characteristics. The 2D density analysis uses contour plots 

that replace the scatter plot distribution, allowing for better visualisations of clustered 

data. Contour lines connect the points (validation units) that have the same response value 

(REE) with regard to two predictors (population density and SSC-Index values) (Minitab 

LLC, 2021). 

5.3  Results 

5.3.1 Africa – WSF2019-Pop Dataset 

The end-user WSF2019-Pop dataset for the African continent depicts the residential 

population for the year 2019 adjusted to the UN national total estimates. The final dataset 
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has a spatial resolution of 0.3 arc-sec (~10m at the Equator), a WGS84 Geographic 

Coordinate System projection, and represents the number of people per pixel. Figure 5-3 

shows the WSF2019-Pop dataset that Africa produced on basis of the L1-units of each 

country. It depicts the areas within the five regions of the continent, using the country 

boundaries for better visualization. As illustrated, the use of the WSF2019-Imp layer as 

proxy for population modelling delivers a heterogenous distribution of population guided 

by the underlying PIS value. The colour scales are country specific. 

 

5.3.2 Quantitative Accuracy Assessment 

5.3.2.1 Random Sampling – Validation Unit description 

For each country, the results of the sampling process described in sub-chapter 5.2.4.1 

are presented in Table 5-2. From an inspection across all African countries, it is possible to 

observe that the final sample size (n) varies greatly among countries, with values ranging 

between two sampled L1-units for Comoros (COM), and up to 56,478 sampled L1-units 

for South Africa (ZAF). Independently of the sample size, results show that for most 

countries, more that 50% of the total population was covered by the sample, with the 

exceptions of Congo (COG, 25.62 %), Sao Tome and Prince (STP,48.08 %) and Liberia (LBR, 

46.35%). Similarly, for most countries, more than 50% of the total area was covered by the 

sampled L1-units, with the exceptions of Djibouti (DJI, 20.14%) and Egypt (EGY, 14.12%). 

Overall, ~70% of Africa’s total population and total area was covered by the random 

sample. 

Figure 5-3 WSF2019 Population dataset for Africa (WSF2019-Pop). Colour ranges and values are country 

specific and represent the estimated population per every ~10m pixel.  
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 For a better visual comparison of each country’s random sample, the distribution 

of the population density (ppl/km2) and the size (km2) of the sampled L1-units are 

displayed in the form of violin plots in Figure 5-4 and Figure 5-5. The shape of the violin 

plots describes the probability density or frequency of the sampled L1-units within each 

value range, and the black dots represent the mean value of each metric. From these plots, 

it is possible to observe, on the one hand, that a large proportion of the sampled L1-units 

in countries such as Burundi (BDI), Mauritius (MUS), Rwanda (RWA), Uganda (UGA), 

Egypt (EGY) and South Africa (ZAF) report population densities higher than 100 ppl/km2. 

A total of 16 countries reported sampled L1-units with population densities higher than 

10,000 ppl/km2, with Egypt (EGY) and South Africa (ZAF) among the most representative. 

Table 5-2. Summary of the sampled L1-units for each country grouped by region. 

 

  

Eastern Africa 
ISO n %Pop %Area  ISO n %Pop %Area 
BDI 86 67.43 64.84  MWI 283 67.46 67.66 

COM 2 92.51 74.32  RWA 277 66.39 61.97 
DJI 3 70.30 20.14  SOM 50 57.57 72.94 
ERI 4 82.12 81.48  SSD 51 66.51 71.01 
ETH 490 68.42 76.15  TZA 2428 64.29 70.85 
KEN 229 63.50 71.34  UGA 918 68.88 74.57 
MDG 828 68.70 67.05  ZMB 99 62.65 66.01 
MOZ 275 62.54 71.95  ZWE 59 72.38 82.04 
MUS 105 68.07 64.78      

         
Central Africa 

ISO n %Pop %Area  ISO n %Pop %Area 
AGO 108 55.79 72.15  GAB 31 76.64 72.99 
CAF 115 71.90 72.34  GNQ 3 57.15 79.77 
CMR 37 56.16 71.30  STP 4 48.01 60.36 
COD 120 60.24 67.35  TCD 41 64.89 69.39 
COG 7 25.62 66.64  

    

         
Northern Africa  Southern Africa 

ISO n %Pop %Area  ISO n %Pop %Area 
DZA 1026 60.40 81.71  BWA 17 77.81 61.66 
EGY 225 70.70 13.14  LSO 53 65.61 76.83 
ESH 16 73.94 62.85  NAM 3645 67.27 72.71 
LBY 13 65.01 58.99  SWZ 35 63.95 67.39 

MAR 1072 64.82 74.57  ZAF 56478 68.16 76.45 
SDN 85 68.41 62.40      
TUN 176 67.13 76.69      

         
Western Africa 

ISO n %Pop %Area  ISO n %Pop %Area 
BEN 51 70.29 86.78  MLI 507 60.98 77.50 
BFA 233 55.40 68.76  MRT 143 62.12 86.23 
CIV 344 65.74 70.21  NER 44 70.28 55.12 

GHA 113 60.45 75.22  NGA 515 65.33 68.31 
GIN 226 67.46 68.79  SEN 29 58.33 78.74 
GMB 25 80.82 70.63  SLE 106 66.34 72.30 
GNB 26 75.88 76.50  TGO 25 70.76 76.84 
LBR 89 46.35 74.22  
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5.3.3 Statistical Analyses 

Table 5-3 summarises the results of the first part of the statistical analyses displaying 

the average population density (Eq. 5-2) the MAE (Eq. 5-3), the %MAE (Eq. 5-4) and the 

RMSE (Eq. 5-5) for each country. A look at the results in terms of the %MAE indicates that 

the performance of the WSF2019-Imp layer has some minor variabilities across countries. 

For 80% of the countries located in the upper 10% and lower 90% percentiles (41 countries), 

Figure 5-4 Violin plots illustrating the distribution of the population density (ppl/km2) of the sample L1-units 

within each country. Black dot: mean value of the distribution, not to be confused with the average population 

density of the country. 

Figure 5-5. Violin plots illustrating the distribution of the sampled L1-units within each country in terms of 

their actual size (km2). Black dot: mean value of distribution. 
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the %MAE values ranged from 13.95% to 32.10% with a standard deviation of ±5.32%. 

Twenty-one of the 41 countries reported %MAE values below or equal to ~20%, ten 

between ~20% and ~25%, and the last ten between ~25% and ~32%. The lower 10% of the 

countries reported %MAE values between 6.64% and 12.16%, and the upper 10% reported 

%MAE values between 35.13% and 72.22%. Within each main region, the lowest and 

highest %MAE values were reported for Mauritius (MUS,15.51%) and Comoros (COM, 

72.22%) in Eastern Africa, Sao Tome and Prince (STP, 12.17%) and Gabon (GAB, 46.57%) 

in Central Africa, Western Saharan (ESH, 6.64%) and Morocco (MAR, 31.07%) in Northern 

Africa, South Africa (ZAF,16.72%) and Botswana (BWA, 38.24%) in Southern Africa, and 

Senegal (SEN, 7.82%) and Mauritania (MRT, 31.66%) in Western Africa, respectively. In 

terms of the MAE and the RMSE metrics, for all countries, the MAE remained below the 

average population density value. This behaviour was not the same for the RMSE metric, 

where for 24 countries, this value exceeded the average population density. According to 

the distribution of these metrics shown in Figure 5-6, the difference or ratio between the 

two metrics is relatively large for countries such as Algeria (DZA), Mauritania (MRT), Mali 

(MLI), Namibia (NAM), and Angola (AGO). These differences indicate that a large 

variability exists between the errors of the sampled L1-units within each country. 

 

 

Figure 5-6. Bar plots of the distribution of the mean absolute error (MAE) (grey) and Root Mean Square Error 

(RMSE) (black) of the population density for each country (ISO) within each region.  
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Table 5-3. Statistical metrics for population density. 

Eastern Africa 
ISO n Pop. D̅̅ ̅̅ ̅̅ ̅̅  %MAE MAE RMSE   ISO n Pop. D̅̅ ̅̅ ̅̅ ̅̅  %MAE MAE RMSE 

BDI 86 549.84 24.95 137.1

8 

480.5

8 

  MWI 283 230.4

3 

15.86 36.54 358.5

3 COM 2 837.55 72.23 604.9

6 

788.3

6 

  RWA 277 672.7

2 

18.47 124.2

3 

237.2

5 DJI 3 208.99 17.36 36.28 77.82   SOM 50 27.31 35.14 9.60 27.68 
ERI 4 36.18 25.50 9.23 10.26   SSD 51 19.05 62.82 11.97 24.79 
ETH 490 114.34 26.12 29.87 155.4

3 

  TZA 2428 71.92 20.55 14.78 95.83 
KEN 229 101.59 20.98 21.32 153.7

6 

  UGA 918 234.3

8 

17.07 40.01 120.3

6 MD

G 

828 64.28 43.49 27.96 226.8

0 

  ZMB 99 25.13 17.98 4.52 28.23 
MOZ 275 39.80 32.10 12.78 80.92   ZWE 59 36.30 18.88 6.85 33.05 
MUS 105 1236.8

1 

15.51 191.7

9 

450.6

1 

              

                          

Central Africa 
ISO n Pop. D̅̅ ̅̅ ̅̅ ̅̅  %MAE MAE RMSE   ISO n Pop. D̅̅ ̅̅ ̅̅ ̅̅  %MAE MAE RMSE 

AGO 108 20.12 16.28 3.28 32.75   GAB 31 8.85 46.57 4.12 24.57 
CAF 115 8.03 21.76 1.75 16.42   GNQ 3 36.39 22.97 8.36 8.96 
CMR 37 44.54 31.03 13.82 154.3

1 

  STP 4 167.9

4 

12.17 20.43 30.39 
COD 120 36.72 24.14 8.86 68.36   TCD 41 11.89 26.19 3.11 6.96 
COG 7 6.29 30.34 1.91 2.49               

                          

Northern Africa   Southern Africa 
ISO n Pop. D̅̅ ̅̅ ̅̅ ̅̅  %MAE MAE RMSE   ISO n Pop. D̅̅ ̅̅ ̅̅ ̅̅  %MAE MAE RMSE 

DZA 102

6 

12.13 15.75 1.91 24.44   BWA 17 5.07 38.24 1.94 16.25 
EGY 225 593.57 13.96 82.86 602.4

5 

  LSO 53 58.78 21.21 12.47 25.41 
ESH 16 2.38 6.64 0.16 0.49   NA

M 

3645 2.72 22.49 0.61 22.51 
LBY 13 2.00 16.49 0.33 1.35   SWZ 35 66.11 18.89 12.49 18.45 

MAR 107

2 

65.41 31.07 20.32 166.3

1 

  ZAF 5647

8 

41.41 16.72 6.92 119.9

0 SDN 85 27.96 27.40 7.66 19.13               

TUN 176 55.43 16.00 8.87 63.06               

                          

Western Africa 
ISO n Pop.D %MAE MAE RMSE   ISO n Pop.D %MAE MAE RMSE 

BEN 51 81.40 14.74 12.00 73.62   MLI 507 13.95 18.45 2.57 59.47 
BFA 233 58.05 19.19 11.14 17.85   MRT 143 2.97 31.66 0.94 26.61 
CIV 344 74.58 11.67 8.70 72.79   NER 44 27.93 24.08 6.73 16.25 

GHA 113 103.44 21.61 22.36 103.1

6 

  NGA 515 210.9

9 

26.74 56.42 182.4

2 GIN 226 51.09 28.53 14.57 150.3

9 

  SEN 29 61.85 7.82 4.84 26.93 
GMB 25 255.63 8.16 20.86 66.46   SLE 106 99.47 15.23 15.15 40.94 
GNB 26 57.22 15.37 8.80 33.80   TGO 25 128.7

1 

13.88 17.86 117.4

1 LBR 89 32.24 24.90 8.03 14.05               

 

For the second part of the analyses, we first compared the actual and estimated 

population density of the validation units of each county. Figure 5-7 shows these 

distributions as scatterplots and marginal histograms, depicting the concentration of 

underestimated (grey) and overestimated (red) validation units. Each plot aggregates the 

information of all countries within one main African region, so that countries with a small 

number of units can also be represented. As observed in the tails of the histograms and 

the scatter of the validation units, there is a tendency of overestimating values below 10 

ppl/km2 and underestimating values >10000 ppl/km2. Within the ranges where a larger 

number of validation units are concentrated, there seems to be a larger tendency towards 

underestimations; however, the distribution between underestimations and 

overestimations is somehow proportional across the different population density ranges. 
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To investigate the general patterns of error distribution within the validation units 

of each country, Figure 5-8 shows the percentage of validation units that fall within REE 

ranges of 20%. From here, it is possible to observe that all countries have at least 20% of 

their validation units within the >0%-20% REE range. For 32 of the 53 countries, this 

proportion increases to at least 50%, and up to 60% for 16 countries. Sao Tome and Principe 

(STP), Côte d’Ivoire (CIV), Senegal (SEN), and Togo (TGO) all have at least 75% of the 

validation within this range, followed by Gambia (GMB) with 100%. For most countries, 

the second largest proportion of validation units fall within the >20%-40% REE range, 

where at least ~10% but not more than ~30% of the validation units fall within this range. 

Some exceptions are Zimbabwe (ZWE), Libya (LBY), and Eritrea (ERI), where ~40%, ~50% 

and ~75% of the validation units fall in this range, respectively. Similarly, the proportion 

of validation units within the >40%-60% range is of at least ~1% for all countries, but no 

more than ~16%. Here, only Gabon (GAB), Eritrea (ERI), Congo (COG), Djibouti (DJI), and 

Equatorial Guinea (GNQ) report that ~20% up to ~30% of the validation units fall within 

this range. From here, 42 of the 53 countries report validation units within REE >60%-80%, 

with 29 of them reporting a proportion of less than 10% of the validation units, from 10% 

to 20% for 11 countries and 50% for Comoros (COM). Similarly, 35 of the 53 countries 

report validation units within REE >80%-100%, with 30 of them reporting a proportion of 

less than 10% of the validation units, from 10% to 20% for four countries, and 50% for 

Comoros (COM). Finally, 38 of the 53 countries report validation units with REE >100%, 

where 30 of them report a proportion of less than 5%; six from 5% to 7%; and ~10% to ~18% 

for Botswana (BWA) and Western Sahara (ESH), respectively. 

 

Figure 5-7. Scatter plots of estimated population density and actual population density for the validation units 

of each country within each region. Marginal histograms depict the concentration of underestimations (grey) 

and overestimations (red). Each panel shows the log population density. 

Figure 5-8. Stacked bar plots showing the percentage of validation units within each 20% Relative Estimation 

Error (REE) range. 
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To explore whether general trends of error distribution are delivered by the 

WSF2019-Imp layer, for the last part of the statistical analyses, we investigated the 

relationships among the REE, the population density and the SSC-Index of the validation 

units. Figure 5-9 shows the 2D-density plots for the validation units grouped according 

the different REE ranges. Here, we only present the results for a set of countries where 

validation units fell within each error range, and where the amount of validation units 

within each range was enough to produce the contour lines. For comparison purposes, the 

population density and the SSC-Index values were log-transformed. 

From these plots, it is possible to observe that the distribution of the different ranges 

of REE can be found in the validation units with similar degrees of population density and 

SSC-Index. There are, however, some general tendencies that can be seen within each error 

range across most countries, which potentially explain the transitions from one REE range 

to another. These trends are summarised as follows: 

1. For all countries, the majority of the validation units with REE between >0% 

and 40% are located in units with moderately high population densities and 

moderately high SSC-Index values (top-right quadrant); 

2. Errors tend to increase as the population density increases and the SSC-Index 

decreases (shift towards the bottom-right quadrant); 

3. Large errors (>100%) tend to be located in validation units with extremely high 

population density and extremely high SSC-Index values; 

4. Most of the validation units with low population densities and low SSC-Index 

generally fall within error ranges of REE >60%. 
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5.4 Discussion 

5.4.1 WSF2019-Pop Dataset: Qualitative Assessment 

In this research, we presented the production of a new large-scale high-resolution 

gridded population distribution dataset for the African continent produced on the basis 

of the WSF2019-Imp layer and openly available subnational census/estimate-based 

population data. From Figure 5-1, it is possible to observe that the WSF2019-Imp layer 

Figure 5-9.Two-dimensional-density plots showing the relationship among the population density, the SSC-

Index, and the REE at different ranges of the REE. 
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depicts a high likelihood between the estimated PIS values and the underlying built-up 

environment. High, medium, and low PIS values are proportionally assigned to every 10 

x 10m pixel depending on the density of built-up and green spaces (e.g., parks and 

gardens) found within them. Here, the specific climate zone of the given region of interest 

does not seem to generate significant discrepancies in the final calculation of the PIS 

values, which indicates that the layer is potentially robust, consistent, and comparable 

across space. 

From a practical point of view, the WSF2019-Imp layer provides a weighting 

framework that is calculated independently of other geospatial layers. This independence 

provides the final WSF2019-Pop dataset with several advantages over existing binary- and 

multi-layer products in the following ways. First, as seen from Figure 5-3, when employed 

as proxy in a dasymetric modelling approach, the WSF2019-Imp layer produces a 

heterogenous allocation of population counts that adheres to the variations of PIS values 

within the L1-units. From a strictly qualitative point of view, this asymmetric distribution 

of population has shown improvement over the homogeneous/uniform distribution 

delivered by the traditional binary dasymetric approach, revealing more detailed spatial 

distribution patterns. Previous comparisons presented in Stevens et al. (2020), Reed et al. 

(2018), and Palacios-Lopez et al. (2019) demonstrated, for example, that binary dasymetric 

modelling techniques tend to produce visible abrupt changes between census 

administrative units, whereas weighted approaches (including multi-layer and intelligent 

dasymetric) smooth these transitions. Second, compared to multi-layer products, another 

main advantage of the WSF2019-Imp layer is that it allows for the final WSF2019-Pop 

dataset to be more easily updated and replicated in other areas, without the extensive 

work that is needed for acquiring multiple geospatial layers of equal quality, extent, 

spatial resolution, and spatio-temporal coverage (Lloyd et al., 2019). Modelled with a 

single layer, the final population datasets are potentially more consistent across space in 

comparison to multi-layer products, in which the quality varies from location to location 

depending on the number and quality of geospatial datasets available for a given area 

(Dobson et al., 2000). In addition to this, as there are no other geospatial datasets involved 

in the production of the final WSF2019-Pop dataset, the dataset does not suffer from 

applicability restrictions derived from endogeneity issues (Leyk et al., 2019). For example, 

when land-cover data are used to model population datasets, these consequently should 

not be used for applications focused on understanding correlations between population 

and land-cover changes. 

Notwithstanding these qualitative and practical advantages, as with any other 

global and regional population distribution dataset, the quality of the final WSF2019-Pop 

dataset is unavoidably affected by errors and anomalies derived from (1) the completeness 

and lack of functional characterization of the WSF2019-Imp layer, and (2) the quality of 

the input population data. Errors derived from the WSF2019-Imp layer include, first of all, 

a mismatch in the total population counts resulting from the absence of settlement pixels 

in some populated units. This type of error was identified in three countries: Mauritius 

(MUS), Morocco (MAR), and South Africa (ZAF). Within each country 8, 49, and 57 

populated L1-units reported zero settlement pixels, with a total population sum of 

43,931(3.4%), 337,647 (0.9%), and 230,829 (0.03%), respectively. Through a visual 

assessment of these countries, we were able to confirm the presence of built-up structures 
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within the reported L1-units. For the most part, the structures were very small and sparse, 

and were located in environments such as deserted areas or deep valleys. While this 

underestimation of built-up settlements was also reported for the population distribution 

datasets produced using the previous WSF2015-Density layer, the amount of validation 

units with no settlement pixels reported here is considerably less in comparison to the 

results presented in Palacios-Lopez et al. (2019). For example, in that research, where the 

African countries of Malawi and Côte d’ Ivoire were also analysed, it was found that ~500 

units were missing building structures. With the current WSF2019-Imp layer, these two 

countries reported full coverage, which indicates that the identification of settlement 

pixels has improved considerably as a result of the integration of S1 and S2 data into the 

underlying classification framework of the WSF2019 layer. 

In the same context, an additional type of error derived from the WSF2019-Imp layer 

is the allocation of population counts to settlement pixels which are of non-residential use, 

such as industries, ports, and stadiums. The lack of functional characterization of existing 

built-up structures is still a persistent limitation that also affects other large-scale gridded 

population distribution products, such as the HRSL and the GHS-POP datasets. This 

qualitative limitation has additional quantitative implications, as non-residential, highly 

impervious surfaces will capture large proportions of the population counts, leading to 

underestimation in the surrounding settlement pixels. To solve this issue, machine 

learning methodologies, which are able to classify the residential status of urban buildings 

from LiDAR data at local scales (Lu et al., 2014; Xie & Zhou, 2017), are now applied to 

large territorial extents using satellite images (Lloyd et al., 2020; Sturrock et al., 2018). For 

example, in the recent work presented by Lloyd et al. (2020), the authors combine satellite 

image-derived building footprint and OSM-label data to classify buildings as residential 

and non-residential in Democratic Republic of Congo and Nigeria. Their results show that 

the method classifies buildings with accuracies from 85% to 93% across both countries. 

Overall, the potential for the large-extent applicability and transferability of this new 

method will more likely influence the field of large-scale population modelling in the near 

future. 

From the qualitative errors derived from the input population data, the first kind of 

error is related to the presence of unpopulated units within the population data, where a 

considerable number of settlement pixels were detected, and where actual populated areas 

exist. Freire et al. (Freire et al., 2018) recently addressed this issue, explaining that while 

the CIESIN census database is the most detailed, complete and coherent database available 

at global scales, it still presents some anomalies which are derived from the source 

population statistics (e.g., National Statistic Offices). In this research, ~ 2099 L1-units were 

reported as unpopulated, and while some of these units are actually non-enumerated 

units, some of them still cover large built-up areas according to Freire et al. (Freire et al., 

2018). In terms of the mapping outcomes, for these L1-units,”NoData” values were 

assigned to the final settlement pixels resulting in visual inconsistencies in the final 

population distribution maps. While de-facto no quantitative errors exist in the final 

population maps in relation to the total input population, the missing counts of these areas 

can have relevant impacts on further analyses, highlighting the importance of full 

disclosure on the uncertainties present in the final datasets. To the best of our knowledge, 
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other top-down large-scale gridded population datasets that are based on the CIESIN data 

currently present the same anomalies. 

Finally, the age and spatial detail of the input population data are other factors that 

without a doubt affect the quality of the final population distribution maps. As seen from 

Table 5-1, for many African countries, the last official population data are from more than 

10 years ago, resulting in potentially inaccurate estimates, a low number of administrative 

units, and outdated administrative boundaries. To be sure, significant improvements have 

been made in the frequency of population data collection in Africa. Countries such as 

Burkina Faso, Kenya, Madagascar and Malawi, for example, carried out their last 

population census between 2018 and 2019, while approximately 80% of the African 

countries conducted their last census between 2005 and 2015. However, limited financing 

and poor budgeting strategies for data collection are concurrent issues in many African 

countries, which result in incomplete or outdated demographic statistics (Tuholske et al., 

2019). Under any context, from policy making to scientific research, acquiring up-to-date 

population data at the highest available resolution should remain the main priority (Balk 

et al., 2006). 

5.4.2 WSF2019-Pop Dataset: Quantitative Assessment 

To evaluate the relative accuracy, effectiveness, and stability of the WSF2019-Imp 

layer, for each country, statistical analyses were carried out in two ways: (1) at the country 

level, where aggregated metrics were computed to allow for cross-country comparisons; 

(2) at the validation unit level, where individual metrics were computed to establish 

correlations between the error distribution and the built-up environment. Together, the 

results presented in Table 5-3, Figure 5-8 and Figure 5-9 show that WSF2019-Imp produces 

a systematic distribution of error, where estimation accuracies remain relatively consistent 

among and within countries. At the country level, the population distribution maps of 

80% of the countries reported %MAE values between ~15% and ~32%, with a standard 

deviation of ±~5%. At the validation unit level, for 32 out of 53 countries, at least half of 

the validation units reported REE values between 0% and 20%, followed by errors of 

>20%-40% and >40%-60%. In terms of the error distribution, REE values between >0% and 

40% were concentrated in validation units with medium ranges of population density and 

medium ranges of SSC-Index values, with errors increasing as the SSC-Index decreased 

and the population density increased. Large estimation errors (>100%) were found in 

validation units with extremely high population densities and extremely high SSC-Index 

values. 

On that note, whether the presented accuracies can be considered low or high is still 

a debatable topic (Calka & Bielecka, 2019). Only a few studies have classified the accuracy 

results into levels or degrees, but a single threshold of reliability has not yet been 

established. For example, in the uncertainty quantification of the GRUMP dataset for 

Poland, Da Costa et al. (2017) established that units deviating < 20% from the actual 

population can be considered as “reliable data” and >20% considered as having “medium 

reliability”. In the accuracy assessment of the GRUMP, GPW, and WorldPop datasets for 

China presented by Bai et al. (2018), the authors established that REE errors < ±25% can be 

considered as “accurately estimated”, between ±25% and ±50% as “under or 

overestimated”, and from ±50% to >±100% as “greatly under- or overestimated”. 
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Following these criteria, in this research, 25 to 36 countries would be considered as 

“reliable” or “accurately estimated”, 15 would have “medium reliability”, and two would 

be found to be poorly reliable. Consequently, within each country and for most countries, 

the largest proportion of validation units would be “reliable” or “accurately estimated”, 

while the second largest would have “medium reliability”. 

In general, the analyses presented showed that the accuracy of the WSF2019-Imp 

layer follows the premise established by Stevens et al. (2020), who stated that high 

accuracies in population modelling can be expected when built-up area datasets are 

proportionally coherent with the population density. The lowest estimation errors in all 

countries were, for the most part, located in those validation units where the SSC-Index 

showed a linear correlation with the population density. Notably, as soon as these two 

factors started to decorrelate, the REE (mainly errors of overestimation) started to increase. 

Exceptions to this rule applied only to extremely populated units with extremely dense 

built-up environments, where the largest REE >100% (mainly errors of underestimation) 

corresponded to units delineating small cities within the countries. 

Overall, the general trends found here are derived from limitations that are 

consistent across all existing top-down large-scale gridded population datasets. The 

distribution of error can be explained by four main factors summarised as follows: (1) 

errors of omission in the identification of built-up settlements in rural settings, which 

causes the allocation of large population counts into only a few settlement pixels; (2) the 

potential overestimation of population totals in units with a low number of settlement 

pixels derived directly from the outdated input population data (Tiecke et al., 2017); (3) 

the lack of characterisation of the built-up environment (residential/non-residential), 

which causes the underestimation of population counts in surrounding settlement pixels; 

and (4) the lack of height and volume (3D) information on the building structures, which 

causes underestimations, especially in areas with a mix of low- and high-rise buildings. 

Nevertheless, there are, however, additional factors that affect the estimation 

accuracies which are unrelated to the WSF2019-Imp layer. These uncertainties are mainly 

derived from a) the nature of the input population data and b) the sampling process. First, 

for the majority of countries, there were not enough L1-units to produce significant sample 

sizes (Table 5-2). To be able to meet the requirements of a random sampling process that, 

in parallel, was capable of selecting 2/3 spatially united L1-units as validation units, it was 

necessary (and unavoidable) to produce sample sizes below 100 units for almost half the 

countries. Therefore, countries with an already low number of large sampled L1-units, 

such as Western Sahara (ESH), Senegal (SEN), Gambia (GMB), and Sao Tome and Principe 

(STP), reported some of the lowest %MAE values, simply due to the small differences in 

the sizes between the coarser input units used for modelling and the fine units used for 

validation. This is known as MAUP (Duque et al., 2018), which in the context of this 

research was difficult to avoid without compromising the random sampling process. 

Second, it goes without saying that different samples for each country will produce 

different results. This particular limitation was pointed out by Stevens et al. (2020) and 

Sinha et al. (2019), who demonstrated that the RMSE and MAE metrics are sensitive to the 

generated sample in terms of their size and the spatial autocorrelation of the sampled 

units. Moreover, additional research has also shown that when the sample sizes are very 

small (4-10 samples), aggregated metrics, such as the RMSE and the MAE, cannot produce 
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robust results (Chai & Draxler, 2014), highlighting the importance of using individual 

metrics, such as the REE employed here. 

In this context, it is important to understand that the accuracies reported here are 

constrained to the employed validation method. The final usability and effectiveness of 

the WSF2019-Pop dataset will also be determined by the accuracy of population estimates 

extracted in the context of different application scopes. As an example, Figure 5-10 shows 

the differences that could be obtained from extracting population counts at very local 

scales from the WSF2019-Pop dataset and mock-datasets produced using the WSF2019-

binary layer. Coastal areas in Morocco and Tanzania illustrate the final population 

distribution maps produced by each WSF2019 product in medium-to-high urbanised 

environments. The yellow polygons represent arbitrary areas where population counts 

were extracted.  

 

As seen from Figure 5-10, extracted population estimates can vary greatly from one 

dataset to the other. Low impervious areas, such as Zone A and Zone C, allocate less 

population counts in the WSF2019-Imp layer in comparison to the binary approach. The 

opposite applies for highly impervious areas, such as Zone B and Zone D, where the 

binary approach allocates less people per pixel in comparison to the WSF2019-Imp layer. 

Differences between population datasets range from ~~150 to ~1500 people. Depending on 

the application field where the datasets are employed, the magnitude of these differences 

can have significant implications, especially in studies where accurate population counts 

are necessary, such as emergency response or risk assessments. 

Figure 5-10. Final population distribution maps produced using the WSF2019-Imp layer and WSF2019 layer 

for the coastal areas of Rabat, Morocco, and Dar Es Salaam, Tanzania. From each map, population counts were 

extracted for Zones A, B, C, and D, respectively. Colour ramps depict values in the current extent. 
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The results presented here are simply used to provide complementary qualitative 

and quantitative insights into the capabilities of the WSF2019-Imp layer. A complete 

validation of the results would require real application cases and the availability of 

reference data. Nonetheless, considering the very local nature of many socio-

environmental phenomena (Smith et al., 2019), it could be expected for the WSF2019-Pop 

dataset to potentially produce more accurate population estimates compared to currently 

available binary products (e.g., HRLS and GHS-POP datasets) and coarse spatial 

resolution products (e.g., WorldPop and LandScan datasets). 

On that note, in this research, we did not include quantitative accuracy comparisons 

against other available large-scale population grids, as many of the current products do 

not have datasets representing the year 2019. The closest datasets from the GPWv4, HRSL, 

and GHS-POP products, for example, represent population distributions for the years 2015 

or 2020. Under these conditions, the temporal disagreement among the different datasets 

would have introduced a certain level of uncertainty too complex to account for, especially 

when independent validation data do not exist to verify the results. Here, the lack of 

validation data is also the reason restricting comparisons with other 2019 population grids, 

namely, the 2019-WorlPop and 2019-LandScan datasets. Accordingly, comparisons to 

other built-area datasets (e.g., the 2019-WorldPop building-patterns (Dooley et al., 2020), 

the 2015-HRSL settlement mask (Tiecke et al., 2017), or the 2020 GHSL layer (Pesaresi et 

al., 2016)) and modelling methods (e.g., areal-weighting, binary dasymetric, or multi-layer 

dasymetric) were not included for two main reasons. For the first case, with the validation 

of the WSF2019-Imp layer in terms of settlement identification still pending, the 

differences in population estimations between built-area datasets derived from the 

omission or commission of settlement pixels would not have been possible to address. 

This means that to properly interpret the differences between the outputs of each built-

area dataset, first, we need to know which dataset is more accurate and complete in its 

own framework. For the second case, comparisons to methods such as areal-weighting 

and binary-dasymetric were not included, as previous research has already shown that 

weighted dasymetric mapping is by far more accurate than these two methods (Palacios-

Lopez et al., 2019; Sorichetta et al., 2015; Stevens et al., 2015a). For the case of multi-layer 

approaches, comparisons were not included, as the overall objective focuses on exploring 

the particular advantages or limitations of employing the layer on its own. 

5.5 Summary 

The present study focused on systematically evaluating how accurate and effective 

the novel WSF2019-Imp layer is in the production of a new large-scale gridded population 

dataset—the WSF2019-Population dataset (WSF2019-Pop). Employed as a single proxy in 

a dasymetric mapping approach, the WSF2019-Imp layer was used in combination with 

an open archive of census/estimate-based population data to construct population 

datasets for each African country. 

Results of our qualitative and quantitative assessment indicate that the main 

advantages of the WSF2019-Imp layer as a proxy for large-scale population modelling, are 

derived from its robustness, spatial consistency, independent weighting framework, and 

improved spatial resolution. These characteristics allow the layer to produce spatially 

detailed population datasets that could potentially be more accurate than binary-derived 
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products, on the one hand, and that could potentially overcome the local qualitative 

variations, applicability restrictions, and production complexities of multi-layer-derived 

products, on the other. The results of our statistical analyses additionally confirm that the 

WSF2019-Imp layer is capable of producing a systematic distribution of error that remains 

stable independently of the quality and spatial granularity of the input population data. 

Overall, the WSF2019-Imp layer reported %MAE values between ~15% and ~32% for close 

to 80% and REE below 20% for up to 50% of the validation units of most countries. 

Following the pre-established classification criterion, these error ranges indicate that the 

WSF2019-Imp layer produces, for the most part, “accurately estimated” population 

datasets. Notwithstanding these promising results, there are, however, some limitations 

that still need to be addressed, as high errors of underestimation and overestimation are 

still present in the final WSF2019-Pop dataset. In particular, the omission of settlement 

pixels in rural settings and the lack of information on the use and height of the building 

structures are factors that currently affect the quality and accuracy of the final population 

datasets. In this context, it is expected that with the upcoming validation of the WSF2019 

products, these remaining uncertainties can be assessed, allowing a focus on further 

technical improvements to the WSF2019-Pop dataset. Considering this, future research 

will also include quantitative comparisons with other built-area datasets and population 

grids, and the integration of other geospatial layers into the modelling framework, such 

as the newly developed GUF3D dataset (Esch et al., 2020). Furthermore, as the semi-

automatic methods presented here are completely transferable, future research will also 

focus on expanding the accuracy assessment of the WSF2019-Pop dataset to other 

countries. Within this outlook, the WSF2019-Pop dataset will also be evaluated in the 

framework of different application fields, especially those related to risk assessment and 

emergency response. Here, additional comparisons with other population grids will be 

performed to assess their accuracy, usability, and limitations. 

To conclude, the WSF2019-Population dataset developed in this research represents 

an important contribution to the field of large-scale gridded population mapping, helping 

to improve and enhance the spatial granularity and local detail of census population data 

needed for a wide range of research and governmental applications. In the context of risk 

assessment, the WSF2019-Pop dataset is currently used by the World Bank to identify all 

localities on the African continent with an estimated population of >10,000 inhabitants. 

Additionally, the population at risk with respect to urban hazard zones, such as seismic, 

landslides, flooding, and storm surge, is determined based on a combination of the 

WSF2019-Pop layer and risk data, such as those provided by the Think Hazard! datasets 

(GFDRR, 2007). Open and free provision of the WSF2019-Pop dataset is foreseen through 

the Urban Thematic Exploitation Platform (https://urban-tep.eu) and the EO Center 

Geoservice (https://geoservice.dlr.de). 

https://urban-tep.eu/
https://geoservice.dlr.de/
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Chapter 6 

 

6. Towards an Improved Large-Scale Gridded Population 

Dataset: A Pan-European Study on the Integration of 3D 

Settlement Data into Population Modelling 

The following section represents an adapted version of the third peer-reviewed 

research article of this cumulative thesis. Some chapters have been modified to include 

only relevant information that has not already been presented in the previous chapters 

(e.g. introduction and materials). Where needed, the reader will be referred to the 

corresponding sub-chapters. 

• Palacios-Lopez, D., Esch, T., MacManus, K., Marconcini, M., Sorichetta, A., Yetman, 

G., Zeidler, J., Dech, S., Tatem, A. J., & Reinartz, P. (2022). Towards an Improved Large-

Scale Gridded Population Dataset: A Pan-European Study on the Integration of 3D 

Settlement Data into Population Modelling. Remote Sensing, 14(2), 325. 

https://doi.org/doi.org/10.3390/rs14020325.  

Abstract 

Large-scale gridded population datasets available at the global or continental scale 

have become an important source of information in applications related to sustainable 

development. In recent years, the emergence of new population models has leveraged the 

inclusion of more accurate and spatially detailed proxy layers describing the built-up 

environment (e.g., built-area and building footprint datasets), enhancing the quality, 

accuracy and spatial resolution of existing products. However, due to the consistent lack 

of vertical and functional information on the built-up environment, large-scale gridded 

population datasets that rely on existing built-up land proxies still report large errors of 

under- and overestimation, especially in areas with predominantly high-rise buildings or 

industrial/commercial areas, respectively. This research investigates, for the first time, the 

potential contributions of the new WSF3D dataset in the field of large-scale population 

modelling. First, we combined a RF classifier with spatial metrics derived from the WSF3D 

to predict the industrial versus non-industrial use of settlement pixels at the Pan-European 

scale. We then examined the effects of including volume and settlement use information 

into frameworks of dasymetric population modelling. We found that the proposed 

classification method can predict industrial and non-industrial areas with overall 

accuracies and a kappa-coefficient of ~84% and 0.68, respectively. Additionally, we found 

that both, integrating volume and settlement use information considerably increased the 

accuracy of population estimates between 10% and 30% over commonly employed models 

(e.g., based on a binary settlement mask as input), mainly by eliminating systematic large 

overestimations in industrial/commercial areas. While the proposed method shows strong 

promise for overcoming some of the main limitations in large-scale population modelling, 

future research should focus on improving the quality of the WFS3D dataset and the 

https://doi.org/doi.org/10.3390/rs14020325
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classification method alike, to avoid the false detection of built-up settlements and to 

reduce misclassification errors of industrial and high-rise buildings 

6.1 Introduction:  Problem Statement 

While gridded population datasets produced on the basis of the binary and 

imperviousness WSF layers (2015 and 2019) have already shown some qualitative and 

quantitative advantages over other existing products (Palacios-Lopez et al., 2019; Palacios-

Lopez et al., 2021), to the best of our knowledge, no assessment that reports on the 

suitability of the WSF3D dataset in the framework of large-scale top-down population 

modelling has been undertaken. Therefore, in this research, we examine the utility of the 

WSF3D dataset as a single proxy for top-down, large-scale population modelling. This 

examination was carried out following a two-step approach briefly described as follows: 

1. In the first step, we investigate if the WSF3D dataset can be used to effectively 

identify and eliminate large industrial/commercial areas from the built-up 

environment, which in the past have been reported as major sources of 

under/overestimation errors in population modelling. To this end, we present a 

methodology that combines a RF algorithm with a set of spatial metrics derived 

solely from the WSF3D dataset to predict the “Industrial” versus “Non-Industrial” 

class of built-up settlements across 38 countries located in Europe. Reference 

datasets to collect training data and validate our classification results are produced 

using the Urban Atlas 2018 dataset. Overall, the main objectives of this part of the 

research are to build an automatic classification model for each country, and to 

produce binary classification maps that can be used to refine population 

distribution datasets. 

2. In the second step, we evaluate the accuracy of population distribution maps 

produced on the basis of the new WSF3D data and the integration of information 

on industrial/non-industrial land use from step 1. For this assessment, we 

specifically employ the information of the WSF3D building fraction (BF) and 

building volume (BV) layers, downscaled to 12 m (see sub-chapter 6.2.2), to 

generate population distribution maps using a weighted dasymetric mapping 

approach together with 2020 census-derived population data. We then compared 

the outcomes to the results achieved with a binary settlement mask as input. 

Overall, the main objectives of this part of the research are to investigate if 

improvements can be gained from the inclusion of settlement information related 

to the use and/or volume of building structures, and to assess under which 

circumstances these improvements are more significative, and how they correlate 

with the quality of our classification maps. 

6.2 Material and Methods 

6.2.1 Study Area 

The study area of our analyses covered the 38 countries in the European Union Area 

(EEA), including the member state countries of the European Union (EU), the countries of 

the European Free Trade Association (EFTA), the West Balkans countries, Turkey and the 

United Kingdom, as illustrated in Figure 6-1.The selection of this study area was primarily 

guided by the parallel availability of standardized land-use data from the Urban Atlas 
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dataset (see sub-chapter 6.2.3 for more details) and contemporary high-resolution 

population data needed for model training, population modelling and validation. In 

addition, the unique characteristics of each country in terms of the 3D morphology and 

functional use of the built-up environment, provided with an excellent set up in which to 

test whether the contributions of the WSF3D dataset in the field of large-scale population 

modelling were systematically consistent across variable landscapes. 

On the one hand, binary classification maps differentiating industrial and non-

industrial built-up settlements (see sub-chapter 6.2.6) were produced for the EEA38 

countries using training, tests and validation datasets collected from a number of 

Functional Urban Areas (FUAs) (see sub-chapter 6.2.3) spread across all countries (red 

points). Tasks related to population modelling and comparative analyses in population 

estimates (see sub-chapter 6.2.6 ), on the other hand, were carried out only in 30 countries, 

excluding Austria, Cyprus, Hungary, Latvia, Malta, Netherlands, Portugal and Romania 

(crossed-out polygons) where no open population data were available (see sub-chapter 

6.2.4). 

 

6.2.2 World Settlement Footprint 3D Dataset 

For each of the EEA38 countries, the layers employed for this research were 

provided ready-to-use by DLR. Here, we include a short description of the production 

process of each layer, focusing specifically on the 12 m versions displayed previously 

presented in  Figure 3-3: 

1. Building Height (BH): The 12 m BH layer represents a spatial disaggregation 

of the standard 90 m WSF3D BH layer, which was derived by measuring the 

height variations of vertical edges related to building edges (BE) in the 12 m 

TDX-DEM within the settlement areas defined by the WSF-Imp layer. The 

height is reported in meters (m) in the final product. 

2. Building Fraction (BF): This layer was produced by quantifying the built-up 

coverage at 12 m derived from the joint analysis of the WSF-Imp, TDX-AMP 

Figure 6-1. Study area covering the EEA38 countries (grey-polygons), with Functional Urban Areas (red points) 

and countries excluded from population modelling (8-crossed-out polygons). 
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and BE. The values in the final product range from 0–100, measured in 

percentage. 

3. Building Area (BA): This layer was derived by multiplying the BF times the 

area of each ~12 m grid cell (~144 m2 at the equator). The area is reported in 

square meters (m2) in the final product. 

4. Building Volume (BV): This layer was derived by multiplying the BH with the 

area of the 12 m pixels. The total volume is expressed in cubic meters (m3) in 

the final product. 

5. Building Mask (BM): This layer represents the binary version of the BF layer, 

where all pixels PIS > 0 have been converted to values of 1. 

6.2.3 European Urban Atlas Dataset 

The European Urban Atlas is a dataset produced and supported by the ESA and the 

European Environment Agency (EEA). It provides standardized vector LU/LC data 

covering more than 700 Functional Urban Areas (FUAs) and their immediate rural 

vicinity, with more than 50,000 inhabitants across the EEA38 countries. The cartography 

of the Urban Atlas polygons is based on image interpretation of very high-resolution 

satellite data (2 m or 4 m spatial resolution). The LU/LC nomenclature is composed of 27 

classes distributed in five major groups (Level 1) as described in Figure 6-2. Within each 

FUA, LU/LC polygons have a minimum mapping size of 0.25 ha for classes with class code 

1, and 1 ha for classes with class code 2 to 5, which are spatially distributed in 

heterogenous patterns (Batista e Silva et al., 2013). 

For each country in our study area, the 2018 versions of 13 datasets were 

downloaded from the Copernicus land monitoring services website (Copernicus 

Programme, 2022). Accordingly, for each country, Table 6-1 summarizes the number of 

FUAs employed in this research. 

 

Country 

Name 

ISO No. 

FUAs 

Country 

Name 

ISO No. 

FUAs 

Country 

Name 

ISO No. 

FUAs 

Albania ALB 4 Un. King GBR 40 Norway NOR 6 

Austria AUT 6 Greece GRC 9 Poland POL 58 

Belgium BEL 11 Croatia HRV 7 Portugal PRT 11 

Bulgaria BGR 17 Hungry HUN 19 Romania ROM 35 

Bos. and Her BIH 5 Ireland IRL 5 Serbia SRB 13 

Switzerland CHE 10 Island ISL 1 Slovakia SVK 8 

Cyprus CYP 2 Italy ITA 81 Slovenia SVN 2 

Czechia CZE 15 Lithuania LTU 6 Sweden SWE 9 
Germany DEU 96 Luxembourg LUX 1 Turkey TUR 62 

Denmark DNK

NK

NK

NK 

4 Latvia LVA 4 Kosovo UNK 3 

Spain ESP 69 Macedonia MKD 4  Total 753 

Estonia EST 3 Malta MLT 1    
France FRA 83 Montenegro MNE 1    

Finland FIN 7 Netherlands NLD 35    

 

 

Table 6-1. Number of available FUAs per country. 
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6.2.4 Population Data and Administrative Boundaries for 2020 

CIESIN provided upon request the subnational administrative boundaries and the 

corresponding 2020 census/estimate-based population data for 30 of the EEA38 countries 

in our study area. For each subnational boundary two types of population data estimates 

were provided: (i) census/estimated-based numbers calculated using annual exponential 

growth rates, and (ii) United Nation-adjusted estimates (Freire et al., 2018), which were 

used in this research. The collection and standardisation of the CIESIN data has been 

previously described in Chapter 2.3. 

 

 

 

 

 

 

 

 

 

Figure 6-2. Urban Atlas dataset nomenclature. 
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ISO 

Code 

Census 

Year 

UN2020 

Estimation 

L1-unit 

/Count 

ISO 

Code 

Census 

Year 

UN2020 

Estimation 

L1-Unit 

/Count 

ALB 2011 2,935,145 3/365 IRL 2011 4,874,291 4/18,488 
BEL 2014 11,634,330 4/589 ISL 2010 342,140 2/73 
BGR 2011 6,884,343 2/263 ITA 2011 59,741,323 3/317 
BIH 2013 3,758,147 3/141 LTU 2011 2,794,897 2/60 
CHE 2010 8,654,270 3/2514 LUX 2011 605,110 4/139 
CZE 2011 10,573,292 3/6249 MKD 2010 2,088,374 2/78 

DEU 2011 80,392,210 3/11,185 MNE 2011 625,837 1/21 
DNK 2010 5,775,633 3/2135 NOR 2011 5,490,394 2/429 
ESP 2011 43,931,099 3/7931 POL 2011 38,407,264 4/2500 
EST 2011 1,295,158 3/4587 SRB 2011 6,641,618 5/4616 
FIN 2011 5,554,886 2/320 SVN 2010 2,075,010 3/5969 
FRA 2009 65,720,028 5/36,602 SWE 2010 10,120,395 3/14,605 
GRB 2011 66,700,124 6/232,296 TUR 2010 82,255,778 2/957 
GRC 2011 10,825,409 5/6121 UNK 2011 2,031,895 1/37 
HRV 2011 4,162,498 2/556     

6.2.5 Industrial and Non-Industrial Classification of Built-up Settlements Using 

Random Forest 

In the field of land-use mapping, research has shown that spatial metrics derived from 

remotely sensed data combined with a RF algorithm can be used to effectively to identify 

different land-use/land-cover classes on the ground (Du et al., 2015; Grippa et al., 2018; 

Ruiz Hernandez & Shi, 2018; Zhang et al., 2017b). On the one hand, spatial metrics 

quantitatively describe the configuration of the landscape in terms of the structure (e.g., 

shape, size, number, density) and the arrangement of elements (e.g., buildings) across 

space (Herold et al., 2005). At a specific scale and resolution, differences in these metrics 

are normally an indicator of different land-use classes, thus allowing the production of 

LU/LC classification maps. In the framework of this research, for example, previous 

studies have shown that spatial metrics such as the average, median and standard 

deviation of the density, height and volume of building structures can be used to 

discriminate industrial (and large commercial) buildings from residential and other non-

industrial buildings (Ma et al., 2015). Overall, industrial buildings are generally larger, 

higher and denser in comparison with residential buildings, allowing their identification 

through different RS techniques. 

The RF classifier, on the other hand, is a robust ensemble machine algorithm that 

has proven to be a powerful tool capable to perform accurate supervised classification 

tasks (Rodriguez-Galiano et al., 2012). Essentially, the RF classifier builds multiple 

decision trees, each one constructed using a random subset of the training data. Each 

individual tree delivers a class prediction, and the class with most votes becomes the 

model’s prediction. Compared to other classification algorithms which are also known to 

produce robust classifications in remote sensing problems (e.g., support vector machines 

SVM), the RF performs equally, with the advantage that is easier to implement as it 

requires less parametrization (Pal, 2005). 

Table 6-2. Summary of 2020 UN-adjusted census-based population data for each country, including 3-letter 

ISO-Code, census or estimation year, total population and highest administrative level plus number of units 

(admin. level/count). 



Chapter 6: Towards an Improved Large-Scale Gridded Population Dataset: A Pan-European Study on the Integration 

of 3D Settlement Data into Population Modelling 

86 

 

Following these premises, in this research we combined an RF classifier with a set 

of spatial metrics derived solely from the WSF3D layers to predict the “industrial” versus 

“non-industrial” class of the built-up settlement pixels in each country of our study area. 

The whole workflow for the production and validation of the final binary classification 

maps is shown in Figure 4, followed by a detailed description of the main steps in the 

following sub-chapters. Unless indicated otherwise, all processing steps were carried out 

using GDAL-commands in a Linux environment and Python programming language and 

libraries. 

 

6.2.5.1 Derivation of Spatial Metrics 

In this study, a total of 16 spatial metrics derived from the WSF3D dataset were used 

as variables to train the RF models for each country. These included the four basic 

components of the WSF3D dataset: BA, BH, BF and BV, and 12 additional metrics based 

on distributional statistics calculated over a 25 × 25 window size (300 × 300 m): mean, 

median, and the standard deviation. The window size was chosen to ensure that the 

surroundings of the potentially smallest “non-industrial” areas were evaluated, using as 

reference the minimum size employed in the cartography of the Urban Atlas datasets (1 

ha, 100 × 100 m) (ESA, 2016). For each country, a 16-band raster composite was generated, 

which included the total of all parameters derived. 

Figure 6-3. Workflow for model training, classification and validation of industrial and non-industrial binary 

classification maps using RF. 
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6.2.5.2 Interim Reference Datasets 

Following methodologies similar to the ones presented in (Khryashchev et al., 2018; 

Leinenkugel et al., 2019), interim and reference datasets needed to automatically collect 

training and test data, and to validate the final classified maps, were produced using the 

Urban Atlas datasets. For each country the interim and reference datasets were produced 

by classifying the built-up pixels of the WSF3D building mask (BM) layer according to the 

class of the Urban Atlas polygons their centroid fell into. As seen in Figure 6-4, the final 

interim/reference datasets covered a little more than 50% of the total built-up area for six 

countries, between 40 and 50% for 24 countries, and between 25% and 35% for eight 

countries. 

Using the reclassification scheme presented in Table 6-3 for each FUA, built-up 

pixels were classified as “non-industrial” (Class 1) if their centroids were within those UA 

polygons with Level 2 codes: 111, 112, 113, 121, 122, 131, 141 and Level 1 codes: 2, 3, 4 and 

5, respectively (see Figure 6-2). On the one hand, according to the Urban Atlas-Mapping 

Guide (ESA, 2016), polygons within the classes 111, 112 and 113 encompass built-up 

structures that have a predominant residential component, with the occasional presence 

of mix-use buildings. Polygons within the remaining classes, on the other hand, 

encompass built-up structures that have industrial, commercial, public and military use, 

or small built-up structures with non-residential use located in the proximity of roads and 

train stations, or within construction sites, gardens, zoos, parks or marinas. 

As such, in the particular case of class 121, to exclude polygons representing large 

industrial and commercial units (e.g., energy plants, production sites, retail parks) only 

polygons with areas below 10 km2 were considered as “non-industrial”. This threshold 

was selected after a visual assessment of more than 50% of the Urban Atlas polygons 

across all FUAs, using VHR optical imagery. Consequently, all built-up pixels whose 

centroids were within Urban Atlas polygons with class code 121 and areas >10 km2 were 

classified as “industrial” (Class 2), including those located within class code 122 polygons, 

corresponding to ports and airports. 

Class Major Classes Urban Atlas Codes Sub-Classes  

1 Non-industrial 

111: 11100 1.1 High-dense residential 

112: 11210, 11220, 11230, 

11240 

113: 11300 

121: 12100 (area < 10 km2) 

122: 12210, 12220, 122230 

131: All 

141: All 

Level 1: 2, 3, 4, 5 

1.2 Low-dense residential + Small non-residential 

2 Industrial  
121: 12100 (area >= 10 km2) 

122: 12300, 12400  
 

 

 

 

Table 6-3.Reclassification scheme using for reference and interim datasets. 
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At the same time, for the purpose of training data collection (Section 2.5.3), the built-

up pixels within the “non-industrial” class were further differentiated into two sub-

classes, namely “High-dense residential” (Class 1.1) and “Low-dense residential + Small 

non-residential” (Class 1.2) as noted in Table 6-3 and Figure 6-5a–c. This sub-

categorization was simply carried out to ensure that enough samples were collected 

within areas where built-up structures could potentially present similar metrics to the 

“industrial” class, such as the case of high-rise buildings within the 111 class. 

 

6.2.5.3 Automatic Training Data Collection 

Once the interim reference datasets for each FUA within a country were produced, 

these were used to automatically collect point training data by means of a proportionally 

Figure 6-4. Bar plots depicting the percentage of built-up area covered by the interim/reference datasets per 

country. Countries are ordered according to the total number of available FUAs. 

Figure 6-5. Example of reference dataset for a FUA located in Netherlands, with (a) reclassified Urban Atlas 

(UA) polygons according to Table 3 using three sub-classes, (b) WSF3D building mask overlapping Urban Atlas 

(UA) polygons, (c) interim dataset for training data collection and (d) binary reference dataset. 
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allocated stratified random design. From each class (Figure 6-5c), we collected 1000 

samples (or class labels), which resulted in a total of 3000-point samples per FUA per 

country. The location of these samples was then used to extract the 16 spatial metrics from 

each country’s 16-band composite, to finally construct the input training datasets for 

model training (see sub-chapter 6.2.5.4). In this research, the selected sample size 

represented the maximum size in which the training data for the less represented class, in 

the less represented FUA, was less or equal to 30% of total available pixels. This means 

that for each class in each FUA, 70% or more pixels were left as independent test data for 

model prediction and reference class labels for validation purposes (see sub-chapter 

6.2.5.5). These ratios are inline to the ones employed in Zhang et al. (2017a), for a similar 

assessment. 

6.2.5.4 Model Training 

To produce the final binary classification maps of “industrial” versus “non-

industrial” classes, for each country, a single RF model (hereinafter referred to as Full 

Model (FM-RF) was built using Python’s scikit-learn libraries (Scikit-learn. Machine 

Learning in Python). As described in Figure 4, for each country a single FM-RF was trained 

using the entire set of training data collected from all the FUAs belonging to a particular 

country. Here, it is important to clarify that all of the 16 spatial features derived from the 

WSF3D were used for model training, without the implementation of feature selection, as 

internal results (not included here) showed that removing features did not improved 

model predictions. Accordingly, in order to produce the most robust predictions, during 

the training process, model hyperparameters were independently optimized for each 

country, and the final model was used to predict over (1) the entire test data and (2) entire 

country. Hyperparameter selection was carried out using scikit-learn’s “GridSearchCV” 

functionalities, to select the number of trees, the maximum depth of a tree, the minimum 

number of samples required to split an internal node or the minimum number of samples 

required at a leaf node. 

6.2.5.5 Quantitative Accuracy Assessment 

To evaluate the classification accuracy of the FM-RF models, for each country, the 

predictions made over the test data were compared against the reference data by means 

of a confusion matrix. For this assessment, built-up pixels predicted as classes 1.1. and 1.2 

were first merged into a single class, representing the final “Non-industrial” class to match 

the final binary reference datasets (Figure 6-5d). From here, for a balanced accuracy 

assessment, an equal number of pixels were randomly selected for each class, equal to the 

size of the least represented class (excluding training data points). This sample was then 

used to derive common statistical accuracy metrics including the Overall Accuracy (OA) 

and Cohen’s kappa coefficient (k), and the Producer’s and User’s Accuracy (PA, UA) for 

each class, respectively. 

However, considering that a proper accuracy assessment can only be performed in 

the areas where reference data is available (see Figure 6-4), to provide a general overview 

of the relative accuracy that can be expected in the country-wise classification maps, we 

produced two alternative models to (1) analyse the spatial transferability of our RF-models 

and (2) compare their performance against “optimal” scenarios (Figure 6-3, dashed 

process). First, following recent methodological guidelines (Jin et al., 2018; Orynbaikyzy 
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et al.; Ploton et al., 2020), for each country, k external models (E-RF, k = no. of FUAs) were 

trained and optimized by excluding the training data of one FUA at the time. In each 

iteration, the FUA that was left out was used as a spatially independent test area, and the 

accuracy of its classified map compared against the reference data. Accordingly, for each 

FUA an internal model (I-RF) was trained and optimized using only each FUAs’ training 

data. This model was then applied to the test data of same FUA and the accuracy of the 

classified map compared against the reference data. The results of the I-RF and E-RM were 

then aggregated at the country level and compared against the accuracy of the FM-RF. 

6.2.6 Population Modelling and Comparative Analyses 

Figure 6-6 illustrates the workflow followed for the assessment of population 

models built on the basis of the original building mask (BM), building fraction (BF) and 

building volume (BV) layers of the WSF3D, and a combination of building volume and 

industrial settlement use information (exclusion of industrial settlements BV-

IS).Accordingly, the main steps included the production of gridded population 

distribution datasets using top-down dasymetric modelling techniques, followed by a 

well-established quantitative accuracy assessment. These steps are described in more 

detailed in the following sub-chapters. 

 

 

6.2.6.1 Top-Down Dasymetric Modelling 

A total of four gridded population maps for each country were modelled using a 

dasymetric binary technique or weighted technique, where the 2020 UN-adjusted 

population counts from L0-units were redistributed into the built-up settlement pixels of 

the WSF3D datasets. First, gridded population datasets were produced on the basis of the 

building binary mask (BM) as proxy layer using Eq. 6-1. In this technique, each built-up 

pixel within a given L0-unit 𝑃𝑜𝑝(𝑝∈𝐿0) has a weight of one 𝑊𝑝 = 1, resulting in each pixel 

being allocated an equal number of people. This approach is similar to the one employed 

by the HRSL and the GHS-POP datasets and produces a homogenous distribution of the 

population within each L0 unit, preserving the original population counts of the input 

unit. 

Figure 6-6. Workflow for the population datasets and comparative analyses. 
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𝑃𝑜𝑝
(𝑝∈𝐿0)

= 𝑃𝑜𝑝
𝐿0

𝑊𝑝

∑ (𝑊𝑝)𝑛
𝑝=1

{ 

𝑊𝑝 = 1,                                𝐵𝑀

0 < 𝑊𝑝 ≤ 100,                𝐵𝐹,

0 < 𝑊𝑝 ≤ max(𝑝
𝑣
) ,      𝐵𝑉, 𝐵𝑉 − 𝐼𝑆

 

Eq. 6-1 

 

Second, gridded population datasets were produced on the basis of the different 

continuous layers, including the building fraction (BF), building volume (BV) and building 

volume minus industrial settlements (BV-IS). Here, unlike in the binary technique, each 

built-up pixel is allocated a proportion of the input unit’s total population 𝑃𝑜𝑝𝐿0, relative 

to their density (0 < 𝑊𝑝 ≤ 100) or volume (0 < 𝑊𝑝 ≤ max(𝑝𝑣)) pixel values 𝑝𝑣. This 

approach produces heterogenous population distributions, comparable to the ones 

provided by the WSF-Pop datasets, preserving the original population counts of the input 

unit. 

6.2.6.2 Quantitative Accuracy Assessment 

As shown by previous studies ((Bai et al., 2018; Freire et al., 2016; Palacios-Lopez et 

al., 2021), in the field of large-scale population modelling, a “true-validation” of gridded 

population datasets remains a very challenging task due to the lack of high-resolution 

ground-truth data (e.g., population counts at the pixel level) needed for an independent 

quantitative assessment. Therefore, in order to test the accuracy of population distribution 

datasets, the research community has developed an empirical validation method that 

measures the internal accuracy of population distribution maps in terms of “how well and 

plausibly populations were distributed” (Leyk et al., 2019). 

Overall, in this method a series of statistical analyses are performed using the 

differences between population counts extracted from maps modelled using a coarser 

level of the administrative units (here, L0 units or input units), and the population counts 

of the finest administrative units (here, L1 units or validation units). Here, the main 

assumption is that input population data is accurate, and as such, the resulting empirical 

analyses only measure the relative accuracy, effectiveness and stability of the employed 

disaggregation method and/or proxy layers. 

For this research we applied the same validation method to systematically compare 

the quantitative accuracies of the four different population datasets described in the 

previous section. First, as explained in sub-chapter 6.2.6.1, we have chosen to model the 

final gridded population datasets using the national level administrative units for all 

countries (L0 units). This was carried out to reduce the bias that is normally introduced 

when the input units and validation units have a similar size (Hay et al., 2005b; Palacios-

Lopez et al., 2019), on the one hand, and to be able to evaluate each country with the largest 

number of validation units possible (L1 units), on the other (Palacios-Lopez et al., 2021). 

Second, using the L1 units (validation units), from each population dataset we extracted 

the estimated population counts using the Zonal Statistic tool of ArcGIS. For each country 

and each gridded population dataset, the reported differences between the actual and 

estimated values were then used to derive the following error metrics: 

𝑀𝐴𝐸𝑐 =
∑ |𝑝𝑜𝑝𝑎 − 𝑝𝑜𝑝𝑒|𝑛

𝑖∈𝐿1=1

𝑛
 

Eq. 6-2 
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%𝑀𝐴𝐸𝑐 =
𝑀𝐴𝐸𝑐

𝑝𝑜𝑝𝑐̅̅ ̅̅ ̅̅
 

Eq. 6-3 

 

𝑅𝑀𝑆𝐸𝑐 = √
∑ (|𝑝𝑜𝑝𝑎 − 𝑝𝑜𝑝𝑒|)2𝑛

𝑖∈𝐿1=1

𝑛
 

Eq. 6-4 

 

𝑅𝐸𝐸𝑖∈𝐿1
𝑛 =

𝑝𝑜𝑝𝑎 − 𝑝𝑜𝑝𝑒

𝑝𝑜𝑝𝑎

∗ 100 
Eq. 6-5 

 

On the one hand, for a given country, the Mean Absolute Error (Eq. 6-2) and Root 

Mean Square Error (Eq. 6-4) (𝑀𝐴𝐸𝑐 , 𝑅𝑀𝑆𝐸𝑐) both measure the average of the absolute 

differences between the actual (𝑝𝑜𝑝𝑎) and estimated population (𝑝𝑜𝑝𝑒) counts of the L1 

units. However, unlike the RMSE, which penalizes larger errors by squaring the 

differences, the MAE weights each error equally, allowing the identification of outliers in 

the data. On the other hand, the percentage MAE (Eq. 6-3), which is the MAE divided by 

the average population of each country, allows the comparisons across countries by 

removing the bias of different population totals and number of L1 units. This metric can 

be used to determine if the errors/improvements generated by the different proxy layers 

are similar and systematic, or if different behaviours are observable across countries. 

The Relative Estimation Error (REE, Eq. 6-5) measures the error in each L1 unit in 

proportion to their actual population counts. By reducing the bias caused by differences 

in population counts across L1 units, this metric is useful in comparing the distribution of 

errors within countries and across countries produced by each covariate layer. In this 

research, the REE was used in two ways: 

(i) Firstly, for each country we calculated the proportion of industrial areas found 

within the L1 units according to the final binary classification maps. For all L1 units 

with the same amount of industrial presence, we then calculated the average REE 

produced by each gridded population map. 

(ii) Secondly, similar to (Schug et al., 2021), we grouped the L1 units into REE ranges 

of 25% according to the results produced by each gridded population map. For 

each country, we then calculated the percentage of each countries’ total population 

found in these units. 

6.3 Results 

6.3.1 Industrial and Non-Industrial Binary Classification Maps 

To evaluate the overall performance of our automated FM-RF models for the 

classification of industrial versus non-industrial built-up settlements, Figure 6-7 together 

with Figure 6-8 show the results of comparing the percentage of total area covered by each 

class according to the reference (R) and the predicted (P) classified maps. First, at the 

country scale, as seen from the distribution of the per-class percentage share presented in 

Figure 6-7, the proportion of built-up settlements pixels predicted as industrial (grey bar) 

and non-industrial (red bars) types by the FM-RF models were fairly comparable to those 

reported by the reference maps. As observed, for most countries, there are slight 

overestimations in the predicted industrial share. Overall, according to the Pearson’s 

correlation (r) values, the agreement between the reference and predicted maps at the 
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country level ranged from 0.40 (MLT) to 0.65 (LTU), with an average value of 0.54, a 

median of 0.55 and a standard deviation of ±0.05, reported at the Pan-European scale. 

At the FUA level, a closer look at the distribution of the absolute differences in class 

proportions presented in Figure 6-8, reveals that for most countries (24/38) at least 75% of 

the FUAs’ predicted maps (IQR range box) showed differences in class proportions below 

10% compared to their respective reference maps. For the remaining 25% of the maps, and 

for 9 of the 14 left countries, differences did not exceed 15%. As such, differences in class 

proportions between the predicted and reference maps equal or larger than 20% (but lower 

than 40%) were only found in a small number of outlier-FUAs in BEL, NDL, TUR, ITA 

and FRA. 
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Figure 6-7.Stacked bar plots showing the Persons’ correlation (r), and percentage shared of each class (grey: industrial, red: non-industrial) within the reference (R) and predicted 

(P) classification maps at the country level. Countries order according to the no. of available FUAs. 

Figure 6-8. Box plots of the distribution of absolute difference in class proportions for all FUAs within a country. Middle line of each boxplot showing the position of the median 

difference, asterisk (*) showing the position of the average and yellow boxes showing the 75% inter-quantile range (IQR). Countries ordered according to no. of available FUAs 
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To complement the aforementioned results, Figure 6-9 shows the accuracy metrics 

reported by the confusion matrix analysis, for the FM-RF (black), the I-RF (red) and the E-

RF (blue) models, respectively. Focusing first on the results produced by the FM-RF, 

results show that in terms of the overall accuracy (OA), for most countries, the accuracies 

were higher than 85%. The highest value of 90% was reported in LTU, whereas the lowest 

value of 75% was reported in MLT. Overall, at the Pan-European scale, the OA reported 

by the FM-RF reached an average of 84.32%. 

Accordingly, for most countries (22/38), the Cohen’s kappa coefficient (k) values 

remained higher than 0.7, with the highest value of ~0.82 reported in LTU. Fifteen out of 

the remaining sixteen countries reported k-values higher or close to 0.6, with the lowest 

value of ~0.52 reported in MLT. At the Pan-European scale, the k value reported by the 

FM-RF reached an average of 0.68. 

In terms of the Producer’s Accuracy (PA) for class 1: non-industrial and class 2: 

industrial, results reveal that in 37 of the 38 countries, the PA of class 1 was close or higher 

than 90%, with the lowest metrics of 85% reported in MLT and the highest value of ~95% 

reported in ISL, SVN, NOR, HRV, GRC and HUN, respectively. Conversely, the PA of 

class 2 was higher or equal to 80% for 23 countries and between 70% and 80% for the rest 

of the countries. The highest value of ~87% was reported in LTU and the lowest value of 

~72% was reported in MLT and GBR, respectively. Overall, at the Pan-European scale the 

PA of the non-industrial and industrial classes, reached an average of 92% and 79%, 

respectively. Accordingly, results reveal than in 21 of the 38 countries, the User’s Accuracy 

(UA) of class 1 was higher or equal to 80%, between 70% and 80% for nine countries, and 

below 70% for eight countries. The highest value of ~87% was reported in LTU, and the 

lowest value of ~65% was reported in MLT and GBR, respectively. Conversely, the UA of 

class 2 was higher, equal or close to 90% for 36 of the 38 countries. The highest value of 

95% was reported in HRV, and SVK, and the lowest value of ~82% was reported in MLT, 

respectively. Overall, at the Pan-European scale, the UA of the non-industrial and 

industrial classes, reached averages of 76% and 91%, respectively. 

Finally, from a comparative point of view, the results produced by the different RF-

models reveal that the FM-RF models performed fairly comparable to the I-RF models, 

while marginally improved over the E-RF models across all countries. As observed, in 

terms of the OA, the difference between the FM-RF and the I-RF was only 2%, and between 

the FM-RF and the E-RF only 3% at the Pan-European scale. Accordingly, the kappa 

coefficient dropped 0.04 between the FM-RF and the I-RF, while it improved 0.02 points 

between the FM-RF and the E-RF. In terms of the PA and UA the trends are similar, where 

the largest difference of 4% can be seen between the PA of the I-RF and the FM-RF models. 
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6.3.2 Population Modelling: Output Gridded Population Maps 

Figure 6-10 shows several extracts of the output gridded population maps produced 

using the four proxy layers (BM, BF, BV and BV-IS) and the national level (L0 units) 

administrative units. Each map was produced at a spatial resolution of 12 m, representing 

the estimated amount of people per pixel for the year 2020. To visually inspect the thematic 

differences between maps, we focused on representative areas with a mix of non-

industrial and industrial areas, including ports and commercial centres. As observed, 

gridded population maps produced on the basis of the BM proxy layer delivers 

homogenous distributions of the population, where each pixel holds the same amount a 

people. Gridded population maps produced on the basis of the BF, BV and BV-IS, on the 

other hand, offer more spatial heterogeneity, adhering to the relative changes in the 

density and volume values, respectively. Without the inclusion of settlement use 

information, it is possible to observe that maps produced with the BF and BV layers 

allocate a large proportion of the population in areas identified as Industrial in the BV-IS 

Figure 6-9. Confusion matrix average accuracy metrics reported in each country on the basis of the FM-RF 

(black points), I-RF (blue crosses) and E-RF (red crosses) models. First row: overall accuracy (OA) and kappa 

coefficient (K). Following rows: producers “accuracy (PA) and Users” accuracy (UA) for class 1: Non-Industrial 

(left), class 2: Industrial (right). Pan-European results represented by the average lines and bold numbers. 

Countries ordered according to no. of available FUAs. 
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maps. The BV proxy layer, however, seems to minimize this effect, by allocating a higher 

proportion of the population in the dense non-industrial areas, as opposed to the BF, 

where the allocation of people in dense non-industrial areas and industrial areas appears 

balanced 

 

6.3.3 Population Modelling: Quantitative Comparative Analyses 

The results of the accuracy assessment for each of the gridded population dataset in 

terms of the %MAE are presented in Table 6-4. Overall, results indicate that the integration 

of volume and industrial settlement use information (BV-IS) produced the lowest %MAE 

errors in the majority of the countries (bold numbers), whereas the BM produced the 

highest %MAE (italic numbers), respectively. At the Pan-European scale, 75% of the 

countries reported %MAE equal or below 47.26%, 46.06%, 42.93% and 37.72%, using the 

BM, BF, BV and BV-IS proxy layers, respectively. Here, the lowest %MAE value reported 

by each layer was 16.15%, 14.88%, 11.66% and 8.47%, respectively; while the highest 

%MAE value was 68.37%, 67.25%, 80.13% and 56.92%, respectively. 

To evaluate the correlation between industrial coverage and the %MAE reported by 

each proxy layer at the country scale, we categorized the countries into three industrial 

levels, namely “Low” (0–10%), “Medium” (10–20%) and “High” (>20%) according to the 

share of industrial areas found according to the classified maps. With this, we then 

evaluated %MAE that was reported by each country’s population map transitioning from 

one proxy layer to the next (BM to BF, BF to BV and BV to BV-IS) as described in Figure 

6-11. 

Figure 6-10. Local-area examples of the output population distribution maps produced on the basis of the 

BM, BF, BV and BV-IS layers and the national administrative units. Each map represents the UN-2020 population 

per pixel at a spatial resolution of ~12 m at the equator. Population per pixel is country/area dependent. 
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As observed, results indicate that only two out the 30 evaluated countries fall within 

the “Low” category of industrialized level, whereas 15 and 13 countries fall within the 

“Medium” and “High” category (see Table 6-4), respectively. For countries with “Low” 

industrial coverage, the %MAE remained some-what stable from one proxy layer to the 

next, where improvements of 10% are only reported in SVN by the BV-IS proxy layer. For 

countries with “Medium” and “High” coverage this behaviour is a more variable. First, 

independently of the error range, for most countries (22/28) the %MAE produced by the 

BM proxy layer remained within the same range as %MAE produced by the BF proxy 

layer. Here, five countries reported improvements of 10% (4 “Medium”,1 “High”), while 

one country (GBR) reported 10% worsening. Consequently, for 12/28 countries errors 

remained within the same range between the BF and BV proxy layers. Here, 12/28 reported 

improvements (1 “Low”, 6 “Medium”, 5 “High”), elven countries of 10% and one country 

(GRC) of 20%. Three countries reported worsening of 10% and one country of 20% (GBR). 

When transitioning from the BV to the BV-SI, for 11/28 the %MAE remained within the 

same error range: Here, 14/28 countries reported improvements (1 “Low”,6 “Medium”, 7 

“High”), twelve of 10%, one of 20% (IRL) and one of 30% (GBR). Three countries reported 

10% worsening. Finally, a general evaluation transitioning from the BM to the BV-IS shows 

that 9/30 countries remained within the same %MAE errors range, from which one had 

“Low” industrial coverage, seven “Medium” industrial coverage and 1 “High” industrial 

coverage. Therefore, 21/30 countries show improvements, 15 of 10% (1 “Low”, 4 

“Medium”, an” 10 “High”), 5 of 20% (3 “Medium” and 2 “High”) and one country of 30% 

(“Medium”). 

 

 

  %MAE    %MAE  

ISO Av. Pop BM BF BV BV-IS 
Ind. 

Level 
ISO Av. Pop BM BF BV BV-IS 

Ind. 

Level 

ALB 7869.02 60.70 55.33 46.05 41.69 Medium IRL 263.65 60.11 67.03 78.43 56.92 Medium 

BEL 19,752.68 36.12 33.74 32.54 26.22 Medium ISL 4623.53 37.57 26.31 20.54 15.52 Medium 

BGR 26,077.06 45.39 41.73 31.26 37.49 High ITA 189,654.99 16.15 14.88 11.66 8.47 High 

BIH 26,465.83 28.11 29.17 25.18 25.73 Medium LTU 46,581.63 36.93 28.26 19.54 26.15 High 

CHE 3441.06 40.27 41.39 34.75 27.43 High LUX 4353.32 33.76 30.88 31.64 27.73 High 

CZE 1691.46 40.51 37.58 30.38 28.89 Medium MKD 26,774.03 34.19 33.11 28.21 30.07 Medium 

DEU 7119.40 37.36 36.23 31.83 28.37 High MNE 29,801.81 25.08 26.65 28.77 29.48 High 

DNK 2701.42 48.01 48.48 44.02 30.86 High NOR 12,768.36 33.59 35.39 30.85 26.99 High 

ESP 5541.96 43.52 44.25 34.08 28.03 High POL 15,362.91 46.61 42.87 34.47 38.88 Medium 

EST 282.35 57.59 56.7 54.8 54.00 Low SRB 1438.83 47.41 44.94 38.23 40.78 Low 

FIN 17,359.02 39.55 36.38 28.03 20.06 High SVK 1857.59 37.6 34.04 31.38 33.00 Medium 

FRA 1795.43 46.83 45.49 39.69 30.55 High SVN 347.63 35.14 36.1 36.22 28.86 Low 

GBR 287.13 56.55 67.25 80.13 51.63 Medium SWE 6931.78 43.24 46.25 47.66 37.80 High 

GRC 1768.57 68.37 64.44 47.77 35.11 Medium TUR 7869.02 60.7 55.33 46.05 41.69 Medium 

HRV 7486.51 39.3 39.28 32.76 30.90 Medium UNK 54,918.53 17.45 18.78 22.08 19.55 Medium 

 

Table 6-4. Accuracy assessment results. 
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In terms of the MAE and the RMSE, the results in Figure 6-12 show that for most 

countries and proxy layers, the MAE value remained at least twice as low as the average 

population at the country level. This behaviour was not similar for the RMSE, where for 

most countries this value was higher than the average population with the BM, BF, BV 

and BV-IS proxy layers, respectively. Accordingly, within most countries the distance 

between these two metrics is relatively shorter for models produced with the BV and BV-

IS layers, respectively. This means, that in models produced with the BM and the BF layer, 

a larger variability exists between errors, which also suggest the presence of one or 

multiple outliers. 

 

 

Figure 6-11. Alluvial plot showing the transitions of the %MAE across each proxy layer for all countries. Colours 

represent the industrial level of each country; x-axis elements represent the %MAE aggregated in 10% intervals. 

Figure 6-12. Lollipop plot showing the distribution of the MAE (red-dot) with respect to the RMSE (green-dot) 

for each country, and the average population (dashed line). 
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As described in sub-chapter 6.2.6.2 to compare the general trends of error 

distribution delivered by each proxy layer, we investigated the relationship among the 

Relative Estimation Error (REE), the total population and the share of industrial areas 

found within the validation L1-units of each country. Figure 6-13 presents the results of 

this assessment, where we have included only those countries where the majority of 

industrial ranges were present, with the rest of countries showing similar trends. 

 

First, as seen from these plots, the largest proportion of each countries’ the 

population (bar plots, y-right-axis), is mainly found in units where the calculated 

industrial presence is below 40%. As the share of industrial areas increases, the average 

population decreases, reaching values equal or below 20% for most countries. Second, by 

analysing   the distribution of the REE (line/point y-left-axis), one of the general trends we 

can observe, is that the majority of the proxy layers produced errors of overestimation 

across all ranges of industrial share (points above the “0” horizontal line). Errors of 

underestimations, produced mainly by the BV (light blue) and BV-IS (green) proxy layers, 

can be seen in some countries, especially in validation units with an industrial share lower 

than 20%, and in some few cases in ranges higher than 80%. Accordingly, for the majority 

of the countries, the BV-IS proxy layer produced overall the lowest REE. While for most 

countries, this tendency started from validation units with industrial share larger than 

20%, improvements over the BM (yellow), BF (black) and the BV (light blue) proxy layers 

Figure 6-13. Point-line plots: average REE (left-y axis) produced by each proxy layer in relation to the share of 

industrial share found within the validation units. Bar plots: average percent population (right-y axis) found in 

validation units grouped by share of industrial areas. 
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became more pronounced in units with industrial share >40%. For the BM, BF and BV 

proxy layer, the largest (visible) overestimations are present in units with more than 60% 

of industrial share. In these units, the BV-IS proxy layer reduces the overestimations by as 

much as 700%, reaching either overestimations or underestimation in the range of 25–50%. 

This behaviour, however, is different in units with industrial shares lower than 20%. 

For most of the countries, the BV proxy layer produced the smallest errors 

(underestimation) in the range of 10–15%, followed by BF and BM proxy layers, 

respectively. Finally, while the REE increased with increasing values of the industrial 

share for the BM, BF and BV layer, the errors reported by the BV-IS were consistently more 

stable, remaining systematically between −50% and 100% error ranges, in comparison with 

the other proxy layers, were errors reached overestimation higher than 400%. 

Finally, to evaluate the distribution of error across all countries, Figure 6-14 shows 

the share of total population that fell within different REE ranges according to each proxy 

layer summarized at the Pan-European scale. At this level of evaluation, it is possible to 

observe that the BV-IS proxy layer estimates close to half of the population with errors 

ranging from −25% to 25%, with most errors being of underestimation. Comparably, 

within the same ranges, the BM, BF and BV proxy estimate 37%, 40% and 47% of the 

population, respectively, also with a tendency to underestimate. 

Accordingly, with the BV-IS the second largest proportion of the population (~30%) 

was estimated with errors ranging from ± (25% to 50%), ~11% was estimated with errors 

ranging from ± (50% to 75%), ~3% was estimated with errors ranging from ± (75% to 100%), 

and ~3% with errors >100%. For the BM proxy layer, ~32% of the population was estimated 

with errors ranging from ± (25% to 50%), ~20% was estimated with errors ranging from ± 

(50% to 75%), ~7% was estimated with errors ranging from ± (75% to 100%), and ~5% with 

errors >100%. For the BF proxy layer, ~30% of the population was estimated with errors 

ranging from ± (25% to 50%), ~20% was estimated with errors ranging from ± (50% to 75%), 

~6% was estimated with errors ranging from ± (75% to 100%), and ~5% with errors >100%. 

Finally, for the BV proxy layer, ~32% of the population was estimated with errors ranging 

from ± (25% to 50%), ~13% was estimated with errors ranging from ± (50% to 75%), ~5% 

was estimated with errors ranging from ± (75% to 100%), and ~4% with errors >100%. 

 

Figure 6-14. Percentage of total population aggregated over the 30 countries that fell within each error range. 
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6.4 Discussion 

6.4.1 Industrial and Non-Industrial Classification of Built-Up Settlements Using 

Random Forest  

The results of the classification tasks reveal that spatial metrics derived solely from 

the WSF3D dataset in combination with an RF classifier can be used to effectively identify 

and discriminate industrial versus non-industrial settlement use over large territorial 

extents. First, according to the results presented in Figure 6-7 and Figure 6-8, for most 

countries, the binary maps produced on the basis of the FM-RM models showed good 

agreement with the reference datasets in terms of the share of built-up settlements 

belonging to one or the other class. According to the standard interpretation of the 

Pearson’s’ correlation metric in the context of intraclass correlation (Cicchetti, 1994), the 

agreement between the refence and predicted maps was- between “fair” (0.4–0.59) and 

“good” (0.6–0.74) for all countries, highlighting the overall robustness of the presented 

approach. 

Furthermore, as seen from Figure 6-9, the FM-RF models for most countries 

delivered average Overall Accuracy (OA) and Kappa coefficient (k) metrics that, at the 

Pan-European scale, remained above 84% and 0.68, together with Producer’s Accuracy 

(PA) and User’s Accuracy (UA) metrics that remained above 92–79% and 76–91% for each 

class, respectively. As observed, these metrics were not only fairly comparable to those 

reported by the I-RF models which, in the framework of our analyses, can be as “the best 

case scenario”(Orynbaikyzy et al.), but they also showed high correlation with the metrics 

of the E-RF models demonstrating that (1) the spatial metrics that characterized the 

training data for each class were heterogenous for most FUAs, and (2) that that these 

spatial metrics were similar across FUAs, allowing for the spatial transferability of our 

approach (Meyer & Pebesma, 2021). 

In this context, from a comparative point of view, it is also worth noting that the 

results presented here are in line with those reported in other fine-scale studies that have 

employed an RF classifier in combination with more accurate and VHR remotely sensed 

data. For example, for an assessment of the classification accuracy of residential and 

industrial areas in Yangtze River Delta, China, the authors of (Ma et al., 2015) reported an 

OA of 87% and k of 0.74 from RF-models trained using spatial lacunarity metrics derived 

from VHR-LiDAR data. In the same way, using feature spatial metrics derived from VHR-

LiDAR data, building footprints, VHR ortho-imagery (HRO) and Google Street View 

(GSV) images (GSV), the authors of (Zhang et al., 2017a) obtained and OA of 51.4% for 

commercial and industrial buildings, focusing on two small districts in Brooklyn, New 

York. Comparably, using spatial metrics derived from VHR ortho-imagery (0.5 m) and 

OSM parcel data, the authors of (Grippa et al., 2018) reported average OA of ~81.5% for 

the non-residential class (incl. administrative and commercial services), in Ouagadougou, 

Burkina Faso and Dakar, Senegal. Here, it is important to note that the WSF3D-based 

approach presented in our study is globally applicable—in contrast to methods requiring 

VHR ortho-imagery. Thus, it can be assumed that the approach developed here can easily 

be applied worldwide and, at the same time, accuracies can be achieved that are in the 

range of results obtained on the basis of commercial, high-resolution satellite images and 

building models. 
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With that being said, while the results presented here illustrate the high potential of 

the WSF3D dataset for identifying non-industrial versus industrial areas, there were a set 

of basic components that without a doubt influenced the accuracy of the final binary maps. 

These can be summarized as follows: 

• WSF3D: The quality and accuracy of the WSF3D in terms of settlement detection 

(building mask-BM) and the final derived spatial metrics, played a fundamental role 

in the final accuracies reported in this research. A thorough inspection of the classified 

maps revealed that in areas identified as “industrial” by the reference datasets, many 

pixels representing actual green areas or parking lots were detected as built-up in the 

BM layer. Considering their low spatial metrics, the FM-RF then predicted these pixels 

as “non-industrial” leading to errors of omission in the industrial class, and errors of 

commission in the non-industrial class as summarized in Figure 6-9. In this context, 

from the average 25% errors of omission reported at the Pan-European level for the 

industrial class (100–75%, PA2 = 25%), it was found that approximately 15% of the 

errors came from confusing class 2 for class 1.1, and 10% for class 1.2 during the 

prediction process. While the classification of these pixels as “non-industrial” could be 

in reality “thematically correct”, for the purpose of population modelling the presence 

of these pixels are detrimental, as population counts are allocated within these areas. 

Therefore, to potentially reduce the misclassification caused by the false detection of 

settlement pixels, future research should explore improving the final BM layer by 

integrating thresholds in the BF layer. Similarly, the integration of additional post-

classification steps should also be considered, such as employing a broader number of 

window sizes for the extraction of spatial metrics as carried out in (Jochem et al., 2021), 

or by reclassifying the pixels according to their RF-class probability as carried out in 

(Grippa et al., 2018). 

• Automatic training data collection: Unlike some local-scale research where a manual 

collection of training samples allows for a visual qualitative assessment of the training 

data (Schug et al., 2021), in this research we relied on an automatic procedure that did 

not include performing any sort of quality control over the training datasets. In 

correlation with our previous point, in a few cases, this lack of assessment resulted in 

poorly heterogenous training samples among classes, which without a doubt lead to 

some misclassification errors. For example, by evaluating the training data of a FUA 

in Ireland that shows large differences between classes (see Figure 6-8), it was possible 

to observe that the pixels values for class 1.1 “High-dense residential” and class 2: 

“Industrial” were similar across the bands corresponding to the BA, BF, BH and BV as 

represented in Figure 6-15. Within the selected FUA, this homogeneity led to errors of 

omission in the “non-industrial” class close to 20%, which meant that many pixels 

were erroneously classified as “industrial”. In this framework, while the errors of 

omission in the non-industrial class at the Pan-European scale are considered low (see 

Figure 6-9), these misclassification errors had repercussions on the final population 

datasets, as seen by the results of Figure 6-13. Therefore, while a manual collection of 

training samples within the extent of our study area would have translated into a time-

consuming task, further research should focus on the implementation of automatic 

intra-class separability analyses like the one presented in (Wicaksono & Aryaguna, 

2020), with the objective to produce more significative training datasets. 
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• Equal number of training samples per FUA, per class: With the aim of producing robust 

comparative analyses within a country, in this research, an equal sample size was kept 

among all FUAs so that the I-RF and E-RF models were trained under similar 

conditions. In this framework, while the less represented class for some FUAs would 

reach close to 30% of the total available built-up pixels, in many cases less than 5% of 

the available pixels per class were used for training. This under-representation, 

coupled with the limitation mentioned on our previous point, affected the 

classification accuracy, especially in areas with a high inter-class diversity. In light of 

this, to improve the classification accuracy, future research should consider the 

inclusion of additional re-sampling steps. Here, post-classification approaches such as 

the one presented in (Schug et al., 2021) could become beneficial, where resampling is 

carried out using the RF class probabilities to concentrate in areas with high model-

uncertainty. 

 

While the aforementioned points refer to the components affecting the accuracy of 

the final binary maps, there are also a couple of limitations and restrictions that need to be 

pointed out. On the one hand, while our results suggest that the presented approach has 

good spatial transferability within countries, it should not be assumed that models trained 

in one country can successfully be applied to another country. As demonstrated in Figure 

6-9, the E-RF models did not perform better that the FM-RF model, even when the 

differences were minimal, this indicates that local training data is still preferable to achieve 

good classification results. In this context, future research should focus on evaluating the 

spatial transferability across countries, with analyses carried out outside Europe, to 

include a larger variety of built-up environments. 

With that being said, it is then important to recognise that a common limitation of 

the presented approach, is the impossibility of discriminating small non-residential built-

up types such as schools, hospitals, churches, etc. from the WSF3D alone, that in the end 

affect the final population distributions. This type of function is purely social, and as such, 

impossible to retrieve from the spatial metrics employed here. In this framework, even 

when the overall objective of this research was not to generate a land-use maps, we suggest 

that future work should focus on exploring the synergies between the WSF3D dataset with 

other remotely sensed datasets, where the inclusion of nightlight-imagery, building 

footprints and OSM tags/point of interest (Lloyd et al., 2020), for example, could result 

beneficial in the identification and refinement of a more extensive set of land-use classes. 

Finally, considering that for this research only an RF classifier was employed, to 

fully evaluate the suitability of the WSF3D and derived spatial metrics for settlement 

classification tasks, future research should also explore the implementation of other 

Figure 6-15. Distribution of pixel values in the four basic bands of the 16-band WSF3D composite used from 

training. Sample collected from a FUA in Ireland. 
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commonly employed pixel-based classifiers including, but not limited, to K-nearest 

neighbour and SVM, and compare if higher classification results can be achieved, holding 

the same degree of automation and spatial transferability. 

6.4.2  Population Modelling 

In this research, we produced gridded population datasets across 30 countries 

located in the EEA area to quantify the improvements in population estimates gained from 

the inclusion of volume (BV) and settlement use information (BV-IS) derived from the 

WSF3D dataset. For our assessment, we performed comparisons against other proxy 

layers, to simulate the thematic characteristics of covariate layers that are currently 

employed in the production of large-scale gridded population datasets, including the 

binary approach employed for the GHS-POP and the HRSL datasets (BM), and the density 

approach employed for the WSF-Pop datasets (BF), respectively. 

From many perspectives, the results and conclusions obtained in this research are in 

line with the results found in other research. The main points can be summarizing as 

follows: 

• Weighted approaches perform better than binary approaches: As already demonstrated in 

many other studies (Palacios-Lopez et al., 2019; Palacios-Lopez et al., 2021; Reed et al., 

2018; Stevens et al., 2020), weighted dasymetric approaches produce higher accuracies 

than binary dasymetric approaches. First of all, as observed in Figure 6-10 from a 

qualitative point of view, the output population maps produced with the “density” 

layers (BF, BV and BV-IS) show a higher spatial correlation with the underlying rural-

urban gradient in comparison to those produced with the binary layer (BM). The 

results of the quantitative assessment, further confirm that the spatial representations 

of the population distribution are not only more “realistic”, but also more accurate, as 

all “density” layers consistently reported better aggregated statistics (%MAE, MAE 

and RMSE values) compared with the binary layer. On this note, however, it is worth 

noticing, that at level of validation units (REE), the BM proxy layer is capable to 

outperform the results of the “density” layers, especially in areas with a large share of 

industrial areas (see Figure 6-13). This makes sense if one considers that the “density” 

layers (BF and BV) amplify the errors of overestimation in these areas, by erroneously 

allocating more population due to their weighting value. 

• Building volume and settlement use information improve population estimates: Comparable 

to the conclusions reached in local- and national-scale studies (Biljecki et al., 2016; 

Rubinyi et al., 2021; Schug et al., 2021), the inclusion of volume and settlement use 

information derived from the WSF3D dataset produced by far the best estimation 

accuracies across the majority of the countries. First, according to the results presented 

in Table 6-4 and Figure 6-11, the BV-IS proxy layer produced improvements over the 

BM, BF and BV proxy layers that reached %MAE values up to 30%. These were more 

frequently present in countries with “High” industrial coverage, where large errors 

were remarkably reduced as observed from Figure 6-13. Second, as observed in Figure 

6-12, the BV-IS proxy layer remarkably reduced the differences between the MAE and 

RMSE metrics. This was, once again, correlated to the fact that large errors of 

overestimations were drastically reduced by the proxy layer, especially in areas with 



Chapter 6: Towards an Improved Large-Scale Gridded Population Dataset: A Pan-European Study on the Integration 

of 3D Settlement Data into Population Modelling 

106 

 

a high share of industrial land cover (Figure 6-13). In this context, the inclusion of 

settlement use information played a major role, as it allowed the BV-IS proxy layer to 

produce systematically more stable results across all countries, and across all 

validation units, while REE errors remained between −50% and 100% with the BV-IS 

layer for most countries, the BM, BF and BV proxy layers produced variable results 

that reached overestimations in the rage of 500% or even higher (close to 4500% for 

EST). Accordingly, at the Pan-European scale, the BV-IS proxy layer estimated a larger 

proportion of the total population with errors in ±25% in comparison to BM add BF 

proxy layer, which according to pre-established rankings of accuracy (Bai et al., 2018), 

can be considered as “accurately” estimated. 

• The input and validation units influence accuracy results: It is important to note that the 

maps evaluated in this research have been produced with the coarser administrative 

population units for each country (national scale). In some countries, where the BV-IS 

did not report the same systematic improvements compared to the other proxy layer, 

this characteristic might have influenced the accuracy results. For example, in the case 

of ALB, EST and TUR (Figure 6-13), many validation units that reported high coverage 

in industrial areas still reported large errors of overestimation with the BV-IS layer. 

This is, because even when industrial areas were successfully identified, the very low 

population counts of the validation units (sometimes less than 100) were difficult to 

match from a national-scale disaggregation. In this context, it can be expected for maps 

produced with the highest level of administrative units to be more accurate than the 

maps presented here. This assumption is supported by the large amount of research 

that has already proven that population maps produced with the finest administrative 

units produces the most accurate population maps (Hay et al., 2005a; Palacios-Lopez 

et al., 2019; Schug et al., 2021). However, considering that this only affected a few 

countries, also indicates that BV-IS proxy layer is capable to produce more accurate 

population maps than the rest of the proxy layers, when high-resolution input 

population data is not available. 

• The relative effectiveness of the BV-IS proxy layer is heavily dependent on the quality of the 

classified maps: While the BV-IS produced consistently great improvements over the 

BM and BF proxy layers, in a few cases the performance of the proxy layer was 

improved by the BM and BV proxy layers, respectively. For example, as observed from 

Figure 6-13, in the majority countries the BV proxy layer produced better results than 

the BV-IS layer in validation units with industrial share below 20% (or 80% non-

industrial). In these units, errors were ~50% higher (mostly overestimations) with the 

BV-IS layer, which suggest that a number of non-industrial built-up settlements pixels 

were erroneously removed, causing an allocation of a larger population in the 

remaining pixels. In this context, as expressed in the previous section, these results 

correlate to the difficulties of accurately classifying built-up settlements pixels in 

complex urbans settings, where high-rise buildings are mixed with industrial areas. 

Here, improvements in the classification process should then reflect in improvements 

in the population distribution. 

With that being said, when evaluating the aforementioned points, a consideration to 

keep in mind is to recognize that the results presented here are strictly constrained to the 

employed validation method. The quantitative assessment was conducted following two 
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main assumptions (1) that the population data used for disaggregation were accurate and 

(2) that WSF3D dataset and its derived layers (BM, BF, BH and BV) were also complete 

and accurate. Therefore, while discussing the quality of these two main inputs is out of 

the scope of this research, uncertainties derived from the inherent shortcomings of each 

input dataset will by default affect the overall accuracy of the final population dataset. 

For example, even when the CIESIN census dataset is the most detailed and 

complete database available at the global scale (Freire et al., 2018), we can observe that for 

many countries the last official population data are from more than 10 years ago (Table 

6-2). This means, that potentially, both the population projections and administrative 

boundaries are outdated, which translate into errors in the final population maps. In this 

framework, similar to the points presented in the previous section, future research should 

focus on extending the methods presented here to areas outside Europe. Testing the 

presented approach in countries where fine resolution population data is not available, 

such as many countries in Africa (Palacios-Lopez et al., 2021), would be of great interest, 

especially in relation to local-scale applications where current gridded population dataset 

have presented major limitations (Fries et al., 2021; Thomson et al., 2021a). 

6.5 Summary 

In this research, we explored the contributions that the new WSF3D dataset can 

bring into the field of large-scale top-down population modelling. We performed a series 

of quantitative analyses that investigated the potential of the dataset from two main 

perspectives: (1) its ability to discriminate large industrial areas which in the past have 

been reported as major sources of under- and overestimation in population estimates, and 

(2) its capabilities to improve population estimates by integrating volume and settlement 

use information into population modelling frameworks. 

To this end, we first proposed a method that relied on spatial metrics derived solely 

from the WSF3D dataset in combination with a RF classifier to discriminate industrial and 

non-industrial areas. Here, our results revealed not only that the WSF3D dataset is capable 

of producing accurate binary classification maps, but that its performance is comparable 

to other, more spatially granular, VHR remotely sensed datasets that have been used for 

the same purpose. Foremost, the findings also indicated that the presented method has 

strong spatial transferability, which means that the dataset poses a viable solution to the 

existing gap between local- and large-scale analyses. 

Accordingly, by integrating the resulting classified maps into frameworks of 

population modelling, the results were also promising. The results of our quantitative 

assessment indicate that inclusion of volume and settlement use information (industrial, 

non-industrial) derived from the WSF3D dataset produced, by far, the best population 

estimates in comparison to other commonly employed proxy layers. For the most part, the 

main advantages delivered from the layer include (i) a remarkably, systematic and 

consistent reduction in errors of overestimation in areas with a high share of industrial 

areas, (ii) an improved distribution of population estimates in high-density built-up 

settings and (iii) an increased ability to produce accurate population estimates in the 

presence of less detailed input census-based population data. 
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Notwithstanding these promising results, there is however, room for improvement. 

The results of the classification tasks, for example, can be further enhanced with the 

integration of post-classification methods and a more careful collection of training data. 

These improvements will be directly reflected in final population estimations, where 

misclassification errors proved to be detrimental in highly dense and highly populated 

built-up settings. 

Overall, the results of this study provide a valuable contribution to the field of large-

scale population modelling. The methods presented here show strong promise for helping 

to bridge the gap between fine- and large-scale efforts aimed at improving top-down 

population distribution models. As shown, the synergies between volume and settlement 

use information derived solely from the WSF3D dataset provide the basis to create more 

accurate global population distribution dataset or related updates for arbitrary regions or 

countries worldwide. In this context, future developments of this work will include the 

final production and open release of global gridded population dataset, with 

unprecedented accuracy and spatial resolution. 



 

109 

 

 

Chapter 7 

 

7. Synthesis and Outlook 

This final chapter presents a brief summary on the results of this dissertation. Sub-

chapter 7.1 and sub-chapter 7.2 outline the main technical and practical achievements of 

this PhD research, presenting a discussion on how they make an important contribution 

to the field of top-down large-scale population modelling. Furthermore, sub-chapter 7.3 

presents a brief summary of past–, ongoing–, and future projects and use-case scenarios 

that had, are and will leverage the outcomes of this PhD research. And finally, sub-chapter 

7.4, presents the main conclusions and recommendations on future research. 

7.1 Technical achievements and findings 

Building on the individual discussions presented in each peer-review article, the 

most prominent contributions of this PhD research to the field of top-down large-scale 

population modelling can be summarised as follows.     

1. Enabling the integration of state-of-the-art WSF datasets into population modelling 

frameworks. 

First, through the thorough and comprehensive analyses presented in this 

dissertation, the first direct contribution of this PhD research is the demonstration of how 

the employment of the WSF-suite into top-down population modelling frameworks 

helped to overcome some of the existing limitations in the field. The results presented in 

this thesis provide a deep and transparent measure of the effectiveness of each layer for 

top-down population modelling, highlighting not only their advantages over other 

existing models, but the remaining limitations that will affect any future developments 

produced with the layers.  

2. First in-depth quality assessment of the WSF-dataset as proxy layers for top-down 

large-scale population modelling. 

In this context, building on the previous point, the second contribution of this PhD 

research is a first “in-depth” quality assessment of the effectiveness and suitability of each 

WSF-layer as a proxy for large-scale top-down population modelling. Emphasis in the 

word “in-depth” is made, as the results presented here extend on a series of spatial and 

statistical analyses that, –at the time of writing–, not many of the state-of-the-art datasets 

have been presented with, or at least not at same geographical extent. This statement is 

supported by the research presented by Bai et al. (2018), who reported in the middle of 

2018 that “overall, past research inadequately addresses the accuracy and uncertainties of 

the current gridded population distribution datasets”.  

For example, to-date other than a series of comparative analyses done to understand 

the differences between population grids,  (Archila Bustos et al., 2020; Bai et al., 2018; Calka 

& Bielecka, 2019, 2020; Da Costa et al., 2017) neither of the data producers of the 
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GPWv4.11, GHS-POP and HRSL internally validate the accuracy of the disaggregated 

estimates at a large-scale (Thomson et al., 2021a; Tuholske et al., 2021), mainly due to 

absence of independent or authoritative validation data (POPGRID, 2021). The only 

datasets that frequently (and openly) report validation metrics at the scale of the input 

population data are the WorldPop datasets, but even here, a thorough evaluation like the 

ones conducted in Chapter 4, Chapter 5 and Chapter 6 are not usually performed mainly 

due to the complexities introduced by the employed multi-layer approach. In other words, 

due to the use of a large number of proxy layers it is more complex to assess the 

uncertainty delivered by each layer; thus, leading to results that are not universal (Nagle 

et al., 2014). This is inclusively more difficult in the case of the LandScan datasets, where 

information on the input population data and ancillary datasets used for modelling are 

not completely documented (Archila Bustos et al., 2020).  

On this basis, to ensure a thorough validation of the population models produced in 

this research, within each publication a series of spatial and statistical analyses were 

implemented, gathering the most representative and useful analyses that have been 

employed in other studies of top-down population modelling at smaller-scales. For 

example, to fulfil the objectives of the first research publication (Chapter 4), a multi-scale 

analysis was employed in nine representative countries, in which the size of the input 

units used for modelling were progressively increased from Admin 2 – 3 (Enumeration 

Areas or District level) to Admin 0 (National level). This type of analysis has been 

employed in Hay et al. (2005a) and  Tatem et al. (2007), and is useful to assess the effects 

of the spatial resolution of the input data on the final accuracy results on the one hand, 

but most importantly, to reveal the possible bias in the accuracy results due to the MAUP. 

Similarly, for all of the three research publications, a more thorough set of spatial and 

statistical analyses collected from Bai et al. (2018) were applied to identify the amount of 

error produced by each proxy layer at the validation unit level. These analyses relied on 

the Relative Estimation Error (REE) metric whose utility and advantages lie on 1) allowing 

moving from aggregated results like the RMSE, MAE, %MAE, etc. which are normally 

reported the country scale, to individual results reported at the validation unit-scale, 2) 

investigating whether spatial patterns of error distribution within countries and across-

countries are systematic, 3) allowing establishing correlations between the reported errors 

and the employed proxy layers, and 4) ranking the overall accuracy results. Furthermore, 

these analyses help overcome the limitations of certain metrics like the R2, which is 

sensitive to the number of validation units or the sampling process; or the RMSE and MAE 

which can be greatly affected by outliers. 

3. Novel use of Settlement Size Complexity index for evaluation of uncertainty. 

Accordingly, a major third contribution made by this research has been the design 

and implementation of the SSC index as a robust and globally transferable metric to 

evaluate the uncertainty of population models based on built-up area layers. On the one 

hand, as proposed in Chapter 4, the implementation of the SSC-Index was developed in 

an effort to correlate and quantify the characteristics of the underlying built-up 

environment as derived from the WSF2015 layer at administrative input unit level to the 

error produced at the validation unit level. The main assumption was that the reported 

accuracy at the validation unit level was bound to the characteristics of the built-up 

environment at the input unit level, in terms of settlement size, distribution and 
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compactness. Here, for example, it was found that the WSF-2015-Density layer 

outperforms the modelling capabilities of the WSF-2015 in “high” SSC-class units, due to 

the overall omission of settlements in “low” and “medium” SSC-class units. On the other 

hand, considering the analyses presented in Chapter 5, the SSC-Index was used at the 

validation level to correlate the REE with the properties of the built-up environment 

including population density and settlement properties. Here it was revealed, for 

example, that major errors were delivered by the WSF2019-Imp layer in highly-dense and 

population units with the presence of very high-rise buildings.  

As such, the SSC-Index has two main functions that can be applied in any future 

research. First, it can be used as a tool to pre-identify areas with high probability of error, 

allowing for a quick visual inspection that can help refine the underlying built-up area 

layers. In the validation of the WSF2015-Density (Evolution) layer presented in Blersch 

(2020), for example, the SSC-Index was used to implement a transparent sampling design 

to evaluate the accuracy of the PIS values reported by the layer and propose targeted 

refinements. Second, the SSC-Index can be used to compare how different built-up area 

layers characterize the build-up environment within admirative census units’ level. 

Together with information on the population density, these areas can be then reassessed  

to improve weighting frameworks that allow a better distribution population. 

4. Support for “fitness for use” evaluation.  

In the context of specific applications, it is important for end users to know about 

the magnitude of deviations when using different large-scale top-down gridded 

population datasets. Each dataset delivers a unique population distribution model, guided 

by the methodological approach and input data layers employed for their creation. Leyk 

et al (2019) provided one of the first in-depth evaluations of several global data products 

(e.g. GPWv4.11, GHS-POP, HRSL, WorldPop, etc.) examining the critical elements that 

make each dataset unique and suited for a given purpose. Here, the authors suggest that 

in order to choose the most appropriate population grid, users need to consider aspects 

such as (1) the spatial and temporal resolution, (2) the described population (residential 

or ambient) and (3) the underlying ancillary data that was used for modelling (e.g. avoid 

endogenous results). Based on different criteria, one dataset might be more suitable than 

another with regard to the target application.  

With that being said, at a more overarching scale, the comprehensive assessments 

presented in this PhD research also contributed to existing efforts aiming at evaluating the 

“fitness for use” of large-scale gridded population datasets. Reporting on the actual level 

of qualitative and quantitative accuracy of the derived models produced on the basis of 

the WSF-suite, as well as the full and transparent dissemination of the input data and 

methods that were used to produce the final datasets will allow users to decide if the WSF-

population datasets are suitable for a given application compared to other datasets.  

5. Innovative method to identify and classify industrial and non-industrial areas.  

While population models created on the basis of the WSF2015-Density and the 

WSF2019-Imp layer focused on the improvement of dedicated limitations of large-scale 

population modelling at the given time, the interim development of the WSF3D provided 

the missing piece which then allowed to tackle all existing limitations reported in the field. 
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The layers that form the WSF3D dataset, namely the BF, the BH and the BV, provided the 

framework in which to develop a spatially transferable and semi-automatic method for 

the identification of industrial and non-industrial areas based on a binary-RF classification 

approach. The synergies of volume and settlement use information derived solely from 

the WSF3D then allowed creating large-scale population models with higher accuracy 

than ever before.  

As stated in Chapter 6, the methods to classify and derive settlement use information 

presented in this PhD research represents one of the first efforts helping to bridge the gap 

between fine and large-scale top-down population distribution models. While the process 

itself relies on well-known methods, the novelty and major contribution of the approaches 

presented here, is that the final classification of settlement use relies only on spatial metrics 

derived from the WSF3D, without the need of other geospatial dataset; thus, it can be 

assumed that the approach developed here can easily be applied worldwide. Furthermore, 

the accuracies reported here are in the range of results obtained on the basis of commercial, 

high-resolution satellite images and building models, which demonstrate the robustness 

of the metrics derived from the WSF3D to recognise the desired classes.  

7.2 Practical achievements and findings 

In this thesis it has been hypothesised that the improved characteristics of the new 

WSF-layers could potentially allow addressing some of the main challenges that affect the 

accuracy and usability of state-of-the-art large-scale top-down gridded population 

models. For each dataset, the remaining question was how and in which degree they could 

be used to achieve this, which lead to the establishment of a series of overarching research 

objectives tailored to specifically evaluate the effectiveness and suitability of each WSF-

layer, namely the WSF2015 (binary and density), the WSF2019 (imperviousness) and the 

WSF3D, respectively, for large-scale top-down population modelling.  

For this purpose, the layers were evaluated within a framework that was inherently 

linked to their chronological release. This means that while each layer proved its 

capabilities to improve large-scale populations models, within each optimisation step 

specific challenges arose in return. Therefore, the three approaches or implementations 

presented here are to be understood in the sense of an “evolution over time”, linked to the 

availability of different data baselines. With that being said, this section provides a 

summarized discussion of the most relevant practical achievements of the PhD research, 

which altogether illustrate how the WSF-layers addressed the limitations affecting the 

accuracy of either binary or (multi-layer) weighted approaches presented in Table 2-3.  

Increased spatial resolution of large-scale population models: Overall, the increased 

spatial resolution of the WSF-layers has allowed translating coarse large-scale top-down 

population model simulations to finer spatial scales needed for a range of applications that 

rely on high-resolution datasets (Smith et al., 2019). The spatial resolution of the final 

population models produced during this research are 3x, 10x and 100x times more 

granular compared with global state-of-the-art layers such as the HRSL, GHS-Pop, 

WorldPop, LandScan, GRUMP, and GPWv4.11 datasets. While further application-based 

analyses are needed to fully determine the benefits and trade-offs of this increased spatial 

granularity for different applications, the refined spatial resolution of the initial WSF2015 

and WSF2015-Density population maps have already shown to be beneficial, in particular, 
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within the context of floor-risk assessments. For example, in the framework of the e-Drift 

(Disaster Risk Financing and Transfer) project which started ~2018 (CIMA Foundation, 

2019) , internal evaluations of the WSF2015-Population datasets for flood risk assessment 

proved that the population maps of Myanmar and Cambodia produced within this PhD 

research (see Chapter 4) delivered far more accurate populations estimates (e.g. 

population at risk) compared to maps produced by the GHS-POP and WorldPop datasets 

(250m and 1km at the Equator). Improvements were linked to the increased spatial 

resolution (10m at the Equator) of the models. This resulted in a better integration of the 

datasets with the high spatial resolution (e.g. < 90m at the Equator) of the EO-flood models 

produced within the Southeast Asia Disaster Risk Insurance Facility (SEADRIF) initiative, 

which allowed practitioners to better estimate the number of people affected by floods.  

Unprecedented accuracy of large-scale population maps: As described in Chapter 

3, in the framework of global built-area datasets, the WSF2015 and WSF2019 layers were 

and continue to be the most accurate global settlement extent layers, outperforming all 

other existing similar datasets. This means that errors of omission and commission that 

frequently affect the accuracy of large-scale top-down population models (Stevens et al., 

2020) can be potentially minimized with the integration of the WSF layers into the 

modelling frameworks compared with other commonly employed built-area layers.  

Outside of this PhD research, one of the first experimental results supporting this 

claim were given in the work of Reed et al. (2018). In this study the authors showed that a 

100m resampled version of the WSF2015 layer was capable of outperforming the accuracy 

of binary-dasymetric models produced with the GHSL dataset, while producing 

accuracies similar to those of the only regionally available HRSL layer derived from 

commercial VHR satellite imagery. Overall, the population models produced with the 

WSF2015 layer produced improvements over the GHSL-derived maps of ~14% (reported 

in terms of the MAE) for the six countries where it was tested. Furthermore, when the 

WSF2015 was integrated into “constrained” intelligent dasymetric models, comparable to 

those employed to produced WorldPop datasets, the final datasets showed higher 

accuracy than those produced with the GHSL layer, respectively. 

However, according to the results presented in Chapter 4, errors of omission of small 

settlements or isolated houses in rural and sub-urban areas still affected the accuracy of 

the final population maps produced with the WSF2015-layers (binary and density), which 

were easily identified by the large number of administrative that reported no settlement 

areas (see Figure 4-9) These errors, nevertheless were later-on drastically minimised with 

the integration of the WSF2019 as proxy layer, where the improvements in settlement 

classification accuracy are intrinsically attributed to the integration of  S2 optical imagery 

available at 10m spatial resolution, in the processing framework of the layer. For example, 

making reference to the discussion presented in sub-chapter 5.4.1 , in population models 

produced on the basis of the WSF2019-Imp layer all input administrative units reported 

settlement areas in the countries of  Malawi and Côte d’ Ivoire, as opposed to >500 units 

that were reported as “empty” by the models produced on the basis of the WSF2015 layers. 

These improvements in settlement classification directly lead to increased overall 

accuracies in the derived population models, as errors of underestimation did not longer 

reach the 100% mark. Accordingly, in view of the correlation existing between the 
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WSF2019 and the WSF3D, the same quality can be expected from the population maps 

produced on the basis of the WSF3D layer. 

Increased spatial representations, applicability and replicability: All of the best 

performing WSF-layers (e.g. WSF2015-Density, WSF2019-Imp and BV-IS derived from the 

WSF3D layer, respectively) provide a “non-binary” weighting framework for population 

disaggregation that 1) are derived independently from other geospatial layers, and 2) have 

direct relationships with population densities without the need of additional statistical 

modelling. This has shown to have several qualitative and quantitative advantages, which 

overall tackle the limitations related to homogeneous spatial representations of the 

population distribution, poor transferability and replicability, and endogeneity issues 

reported by binary– and intelligent dasymetric models.  

First, compared with binary-weighted dasymetric models, the non-binary weighted 

frameworks provided by the PIS (>0-100%) and the WSF3D (BV-SI) (>0-∞ m3) showed 

considerably higher spatial correlation with the underlying rural-urban gradient, 

producing population maps that depicted the spatial distribution of the population in a 

more realistic manner. Extreme distribution artefacts between administrative units with 

different population counts were also minimized by the presented models, producing 

more accurate and visually appealing population maps as exemplified in the comparative 

visual assessment presented in  Figure 4-1, Figure 5-10 and Figure 6-10.  

Second, from a quantitative point of view, the PIS & BV-IS population models also 

outperformed the quantitative results over well-established binary-models. For example, 

in their initial version, the WSF2015-Density layer was able to consistently deliver more 

accurate population models than the binary WSF2015 layer, even when models were 

produced at the coarsest spatial resolution of the input population data Table 4-6. 

Accordingly, the results presented in Table 4-8, confirm that the improvements made over 

the WSF2015-models (based on RMSE metrics) ranged from as little as 1.12% to as high as 

31.20%, with average increases of 14.70%, 16.20% and 11.29%, respectively in low, medium 

and highly dense built-up environments. Moving from the 2015 to the 2019 products, the 

results presented in Figure 5-10, show that at local-scales the WSF2019-Imp layer delivered 

population models that were tentatively more accurate than binary models (e.g. WSF2019 

binary), especially in areas with marked transitions between high–and sparsely dense 

built-up environments. So far, with the WSF2015-Density and the WSF2019-Imp layers, 

the only areas where binary-weighted models are potentially more accurate than the PIS-

weighted models, include those where industrial or large commercial centres were present 

(see Figure 4-10). This makes sense, if one considers that the high PIS-values amplify the 

errors of overestimations in these areas. This limitation, however, is resolved with models 

produced on the basis the WSF3D (BV-IS) layer, which allows on the one hand, to remove 

large un-populated areas (e.g. industrial and commercial areas), and increase the 

variability of weights in highly-dense built-up areas, on the other. As shown by the results 

presented in sub-chapter 6.3.3 , improvements in accuracy are not only made over well-

established binary models, but also over the previously PIS-based WSF-models, with 

values as large as ~30% based in terms of the MAE, and as large as >4500% terms of the 

REE metrics, respectively  

Third, from a technical point of view and compared to (multi-layer) intelligent-

dasymetric models, the proposed models have been produced with a single proxy layer, 
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which overall reduces the processing times and the complexities that come with collecting 

and harmonising different geospatial covariates (Archila Bustos et al., 2020; Lloyd et al., 

2017). Furthermore, due to their global coverage, using the WSF-layers as single also 

enables the easy and fast replicability and transferability of the derived population models 

on the one hand; while at the same time, completely eliminates the biases that are 

introduced by using multiple proxies that might report different quality, accuracy and 

temporal coverage, on the other. Comparably, the direct relationship that exists between 

population densities and the weighted-values (e.g. more volume, more people) reduces 

the ambiguities that might arise at the time of interpreting the final accuracy results. In 

other words, for each processed model, a single proxy allows a more 

straightforward/better/more simple understanding of the produced population maps.  

Fourth, compared to intelligent-dasymetric models the WSF-layers additionally 

provide weighting frameworks that are processed independently of other thematic 

geospatial layers (e.g. the PIS values are calculated without the need of land-cover or land-

use layers), from an application point of view, this increases the applicability of the final 

population datasets for many applications fields, as there are no endogeneity issues that 

arise, for example,  when population distributions explain land-cover changes and land-

cover explains population distributions.  

Consistent and comparable data across multiple spatial scales: Another important 

advantage of the proposed models presented in this PhD research is that final datasets 

produced on the basis of all the WSF layers proved to deliver qualitative and quantitate 

accuracies that are consistent across space. For example, even when population models 

were produced and validated at different spatial scales and under varying qualities of the 

input census-based population data across different countries and continents, they all 

produced consistent and systematic patterns of error distribution. Here, the largest 

percentage of the population of each study area was always modelled with estimation 

accuracies ranked as “accurately estimated”. Before the integration of settlement use and 

volume information derived from the WSF3D, for example, the WSF2015-Density and the 

WSF2019-Imp layers consistently and systematically produced population datasets where 

the highest errors of under––and overestimation (>±25%) were reported in areas (or 

validation units) where a poor correlation existed between the amount of population that 

and amount of available settlement pixels (e.g. as described by the SSC-Index) (see Figure 

4-3 and Figure 5-9). First, it was determined that the errors of omission presented in the 

WSF2015- Density layer largely decreased the accuracy of population estimates in areas 

with large populations counts. Results generated with the WSF2019-Imp then confirmed 

this observation by demonstrating that not only the errors of omission on the settlement 

classification were related to these underestimation errors, but that a lack of information 

on height of the building structures negatively affected the quality of the population 

modelling in densely-populated areas. Similarly, for both layers, the largest errors of 

overestimation (>100%) were reported in validation units with high coverage of industrial 

and commercial areas.   

In terms of population models produced with the WSF3D (e.g. models produced 

with the BV-SI), errors were consistently and systematically kept within the -50% to 100% 

range, with the largest improvements being reported in validation units with high 

industrial/commercial coverage. Accordingly, for all the studies sites, the vast majority of 
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underestimations observed were related to units with low industrial coverage (< 20%) and 

high-population density. This effect was resulted from the potential masking of residential 

buildings in the context of the classification of the type of settlement use (residential, 

industrial/commercial).  

In this framework, it is important to understand that this consistent and systematic 

error distribution allows not only to deliver more robust interpretations of the final 

accuracies (e.g. deeper understanding of  the correlation between the final population 

datasets and the quality of the input data), but also allows implementing comparisons 

across space without the biases that arise, for example, from intelligent-dasymetric models 

that rely on datasets that are just available locally (e.g. LandScan datasets). From a user’s 

perspective this property is quite valuable because the uncertainties are more consistent. 

First large-scale integration of information on building use and building volume: 

Finally, all of the aforementioned advantages have to be coupled with the unprecedented 

gains in accuracy that resulted from integrating not only building volume information, 

but also building use information into models of top-down population distribution.  As 

mentioned in the summary section of Chapter 6, the synergies of ML algorithms with 

spatial metrics derived solely from the WSF3D represent one of the first efforts that have 

allowed improving large-scale top-down population models over large territorial extents. 

This has been  done by integrating building use and volume information that is as accurate 

as that derived from VHR imagery or detailed building footprints at very local scales. 

Thereafter, by exploiting the capabilities of the WSF3D from large-scale population 

modelling, three of the four major challenges in the field of top-down large-scale gridded 

population modelling detailed in the introduction, have been successfully addressed.  

New perspectives for “bottom-up” approaches of population modelling: Within 

the scope of the PhD research, addressing the current limitations in the field of large-scale 

gridded population modelling focused specifically in exploring solutions to improve the 

input methods and ancillary spatial data used for modelling. However, as expressed by 

Wardrop et al. (2018),  “the central challenge to the accuracy of top-down disaggregation 

methods is the reliability of the input population data”. In Chapter 5, sub-chapter 5.4.1 the 

implications related to the quality of the input population data in the final population 

models were addressed in detail. From this assessment we know that while the CIESIN 

census database can be considered as the most detailed, complete and comprehensive 

global database available today (Freire et al., 2018); the population counts (incl. 

estimations/projection), as well as the administrative boundaries, can be largely outdated 

and/or incomplete (see  Figure 2-1). This is especially true for regions where economic, 

social or political limitations have not allowed to produce updated national censuses, 

shortcomings that affect the final accuracy of top-down population models (El-Khoury & 

Jaulin, 2012; UNFPA, 2012, 2014).  

In this regard, as gridded population datasets produced using top-down approaches 

are only as good as the input population data on which they are based, in recent years 

novel “bottom-up” methods have emerged to produce up-to-date (and more frequent) 

gridded estimates. In nature, bottom-up approaches rely on micro-census data (e.g. data 

collected for a few and small representative regions) and different statistical models to 

predict population numbers in unsampled locations (see Wardrop et al. (2018) for a list of 

potential methods). At the grid level, the accuracy of these predictions depends largely on 
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the accuracy, completeness and reliability of different spatial proxies that are used to 

establish allocation-relationships. In this framework, similar to the early stages of top-

down gridded population methods, research on the implementation of bottom-up 

approaches has been mainly restricted to small urban settings or high-income countries 

where access to high-quality, reliable and comparable data exists (Biljecki et al., 2016; 

Harvey, 2002; Schug et al., 2021; Sutton et al., 2001) . With a few new exceptions, methods 

have been applied in low-income regions (Darin et al., 2021a; Dooley et al., 2021), but 

overall results have suggested that the lack of information on the use and 3D 

characteristics of the build-up environment produce persistent over- and underestimation 

errors.   

With that being said, while the scope of this research was not focused on exploring 

bottom-up approaches of population modelling, it can be argued that the integration of 

the WSF-layers into these modelling frameworks could potentially improve the accuracy 

of their predictions. The same advantages that the WSF-layers provide within top-down 

methods can be leveraged for bottom-up methods, especially those related to consistency, 

and increased detailed information on settlement use, settlement height and settlement 

volume, both to run predictions or improve sampling processes (Dooley et al., 2021). 

Thereinafter, if in future research the capabilities of the WSF-suite were to produce 

favourable results in bottom-up methods of population disaggregation, significant areas 

of active research would also benefit from these developments.  

 

7.3 Supported projects and use cases 

Finally, the main overarching contribution of the PhD has been the production and 

delivery of a first-round of large-scale gridded population datasets to a series “champion-

users” undertaking a variety of projects in different research areas. Some of the most 

presentative uses that have been given to the WSF-Population datasets produced during 

this PhD thesis are presented in Table 7-1.
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Project/Funding agency WSF-Population datasets Use case or scenario 

eDrift  

 (CIMA Foundation, 2019) 

ESA; SEADRIF; World Bank 

Population maps for Myanmar and Cambodia 

produced on the basis of the WSF2015-Density layer 

The population maps were used to estimate of population at risk of flood, 

for the calculation of financial aid.   

Satellite Monitoring Service of 

Urbanization in Africa 

  

World Bank 

Population maps for entire Africa, produced on the 

basis of the WSF2019-Imp layer 

The population maps were used to identify all localities with an estimated 

population of >10,000 inhabitants. And to estimate populations at risk of 

different hazards, including earthquakes, landslides, flooding and storm 

surge.   

 

TraK - Transport and Climate * 

(DLR-Institute of Transport Reseach, 

2018) 

DLR 

Population maps for 33 cities located in different 

parts of the world produced on the basis of the 

WSF2015-Density and WSF2019-Imp layers. 

The population maps were used for accessibility analyses aimed at 

producing metrics for SDG 11, indicator 11.2.1. In particular, the datasets 

were used to calculate the percentage of population with convenient access 

to public transportation from a walkable distance (500m to 1km).  

e-Shape 

 (Gilardi et al., 2021; H2020, 2022) 

H2020 

Population maps for Munich and Belin in Germany, 

and Milan, Italy, produced on the basis of the 

WSF2019-Imp layer 

The population maps were used to perform an assessment of the increased 

health risks within urban areas in Europe due to exposure of PM2.5. 

Global Development Assistance 

Programme (GDA)- Fragility, Conflict 

and Security * 

(ESA, 2022) 

ESA 

Population maps for countries in conflict, including 

Afghanistan, Tajikistan, Mozambique, produced on 

the basis of the WSF2019-Imp layer and WSF3D.   

Population maps will be used to support international financial institutions 

in better targeting their development assistance activities in countries and 

regions subject to settings of fragility, conflict and violence. Use cases 

include for example, understanding/projection refugee dynamics from 

political and spatial context. 

   

   

Table 7-1. Summary of external projects and applications where the WSF-Population dataset and methods were/are/will be employed. 
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Project/Funding agency WSF-Population datasets Use case or scenario 

GDA-Disaster Risk Analytics * 

(ESA, 2022) 

ESA 

 

Population maps for the entire African continent, 

produced with the WSF2019 and WSF3D layers. 

Population maps will be used to perform vulnerability analyses and to 

compute impacts related to different natural disasters 

United Nations Office for the 

Coordination of Humanitarian Affairs 

(OCHA). 

Population maps produced for Ukraine on the basis 

of the WSF3D + the industrial/non-industrial built-up 

use mask. Integrated within the RF-modelling 

framework of the WorldPop datasets. 

Population maps will be used to support the Ukraine-Russia conflict, 

providing update input data to inform policy makers.  

*  Foreseen projects for 2022, or projects where the new methods based on the WSF3D datasets are yet to be implemented.  
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7.4 Conclusions and Future Research 

The timing of the start of this PhD research was ideal to coincide with the internal 

project of the German Aerospace Centre aiming at improving the accuracy, spatial 

resolution and thematic representation of their previous global built-up layer the GUF. 

The development of the WSF suite, and the envision of the different geospatial layers that 

would comprise this product over time, represented a new window of opportunity in 

which to explore how these new layers could improve the qualitative and quantitative 

accuracy of large-scale gridded population models.  

In this framework, the analyses presented in this PhD research were performed to 

investigate the effectiveness of the WSF-layers from four interconnected perspectives i) 

their ability to improve population estimates compared to binary-dasymetric models 

(Chapter 4), ii) their ability to produce high and comparable accuracies across space acting 

as single proxies for population modelling (Chapter 5, Chapter 6), iii) their ability to 

discriminate large industrial areas that affect population models (Chapter 6) , and iv) their 

ability to improve population estimates through the integration of volume and settlement 

use information (Chapter 6).  

As such, the results produced in this PhD research confirmed that ––at a given  time–

– each WSF-layer was capable of addressing one or more limitations in the field of large-

scale top-down population modelling. The WSF2015-Density layer and the underlying 

weighting framework produced by the PIS values overcame both the qualitative and 

quantitative limitations of binary-dasymetric models. The improved accuracy in terms of 

settlement classification of the WSF2019-Imp layer and the independent framework 

provided by the PIS values allowed producing not only spatially comparable population 

datasets across space, but datasets with easy replicability and improved applicability 

overcoming the limitations of multi-layer intelligent-dasymetric models (on top of the 

binary-dasymetric). And the WSF3D provided the ultimate framework in which to extract 

settlement use information, to finally integrate settlement volume and use into large-scale 

top-down population modelling approaches, overcoming some of the major limitations in 

the field.  Overall, the WSF-layers did not only allow producing large-scale top-down 

population models with unprecedented accuracy and improved spatial resolution 

reaching the main goal of the thesis, but also enabled the development of a settlement use 

classification method with potential transferability and applicability at a global scale.  

With that being said, however, as in any other research there is still room 

improvement. For example, future research should focus on improving the methods used 

to derive settlement use information from the WSF3D layers. It is suggested that more 

accurate labelled data needs to be collected for model training, coupled with the 

integration of post-processing steps that allow increasing the accuracy of the derived 

binary classification. Accordingly, other ML methods should be tested for settlement use 

classification. These can range from other supervised methods like SVM which might 

improve classification accuracies; to unsupervised methods like Gaussian Mixture Models 

which might improve or facilitate spatial transferability. Furthermore, to the extent that is 

possible, comparative analyses should be done against other state-of-the-art large-scale 

gridded population datasets. This could include integrating the final weighting layer (BV-

SI) into the multi-layer models employed by the WorldPop datasets; or preferably, within 
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the framework of tailored applications where independent ground truth data is available 

for validation. 

Furthermore, as mentioned before, the limitations addressed in this thesis focused 

solely on issues that do not take into consideration the effects that the quality and accuracy 

of the input population data can have in the final population models. Under optimal 

circumstances, top-down population models are produced with the most recent (and 

available) census-based population data (incl. estimations/projections), but for many 

countries’ the reality is that censuses are considerably outdated (e.g. 20 years or more). In 

this framework, the CIESIN databased was used due to its availability and coverage, 

however, as any other product, the data is far from perfect showing qualitative and 

quantitative limitations both in the boundaries and population estimations. Thereof, as 

rising number of scientific applications require more accurate and updated information 

on population estimates, as part of the outlook of this thesis, the weighted layer that 

integrates volume and settlement use information should be tested in bottom-up 

population modelling approaches to evaluate its suitability in the production of more 

current population estimates/projections derived from micro-census data. This 

implementation, will therefore, contribute to the efforts of some of the most contemporary 

research on the field aiming at bridging this gap (Darin et al., 2021b; Dooley et al., 2021; 

Qader et al., 2021; Wardrop et al., 2018). 

At the same time, in view of the of the future development and production of a 

multi-temporal WSF-Evolution––a settlement layer describing the extent, location and 

distribution of human settlements at a multi-temporal scale (1985-2015), the methods 

presented here should be integrated in the production of a multi-temporal WSF-

Population dataset that would allow to evaluate patterns of population change in a similar 

matter than current existing multi-temporal layers. This integration, however, is expected 

to add its maximum value to population modelling, when the volume and settlement use 

information can also be added in a temporal scale.  

To summarise, the results of this PhD research provide a valuable contribution to 

the field of large-scale population modelling.  Here it was confirmed not only that the 

WSF-layers have the potential to address some of the major identified challenges in the 

field, but that the methods develop here open a new set of opportunities in which to create 

more accurate population models with improved accuracy, ensuring gains in scalability, 

cost and time -optimisation, adaptability and automation. As such, future development of 

this work, include the production and final released of a first-time WSF-based global 

population dataset with improved accuracy and unprecedented spatial resolution. 
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