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Abstract: In open-field vegetable production, high quantities of soil mineral nitrogen (Nmin) and
N-rich crop residues often remain in the field at harvest. After the harvest of crops in autumn, this N
can lead to considerable nitrate (NO3

−) losses during the subsequent winter leaching period. In four
field trials, different tillage depths (3–4, 10, 30 cm) and dates (early autumn, late autumn, early spring)
were investigated to reduce N losses after growing spinach in the autumn. In a further treatment,
the nitrification inhibitor 3,4-Dimethylpyrazole phosphate (DMPP) was directly applied to the crop
residues. Potential N losses were calculated by a balance sheet approach based on Nmin concentration
(0–90 cm), measured N mineralization and N uptake by catch crops. By postponing the tillage date
from early to late autumn or spring, resprouting spinach stubbles acted as a catch crop, reducing N
losses by up to 61 kg ha−1. However, if the spinach biomass collapsed, the N losses increased by up
to 33 kg ha−1 even without tillage. The application of DMPP as well as the tillage depth were less
effective. Overall, postponing tillage to spring seems to be the most promising approach for reducing
N losses during the off-season.

Keywords: Spinacia oleracea L.; Nmin residue; balance sheet; nitrate leaching; tillage depth; tillage
date; nitrification inhibitor; 3,4-Dimethylpyrazole phosphate

1. Introduction

In regions with intensive vegetable production, the maximum permissible nitrate
(NO3

−) concentration of 50 mg L−1 groundwater is often exceeded [1–3]. Nitrate leaching
losses occur particularly when vegetables are grown on sandy sites, as is often the case
with crops such as spinach [4–6]. In order to reduce NO3

− leaching, much research has
been conducted to increase the N uptake efficiency of a single crop rather than focusing
on the system as a whole [7,8]. The off-season should specifically be considered in such a
system approach [9].

Spinach (Spinacia oleracea L.), cultivated for the processing industries, is typically
grown in frequent sowings and harvested from April to late October [10]. The crop is
typically grown on sandy soils because this facilitates specific field management and
reduces the impact of variable weather conditions on yield [4,5,11]. Spinach generally
requires a mineral N buffer value of approximately 40 kg ha−1 in the upper 30–40 cm
of the soil to obtain a product that fulfills market-quality requirements [4,12]. However,
calculated N uptake at the time of fertilization is often overestimated because crop yield
depends on weather conditions, diseases, and the requirements of the market [13,14].
Particularly at the end of the growing season, N uptake of spinach can be reduced due
to decreased solar radiation [15,16]. On the other hand, soil N mineralization is still high
in autumn because of relatively high soil temperatures, potentially leading to high soil
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mineral N (Nmin) concentrations at harvest [17]. Therefore, depending on the actual harvest
stage, 50–100 kg NO3

−-N ha−1 (0–30 cm) typically remains in the soil at the harvest of
autumn-grown spinach [10,18].

Vegetable crop residues are usually incorporated into the soil shortly after the harvest
in order to minimize the risk of infection by plant pathogens such as damping-off diseases
and downy mildew in spinach crop rotations [9,19,20]. However, spinach crop residues
are characterized by a low carbon (C) to N ratio which accelerates net mineralization and
nitrification after incorporation into the soil. Consequently, the Nmin concentration sharply
increased after spinach harvest [21–23]. In order to reduce high post-harvest soil NO3

−

concentration, catch crops are usually grown during the winter leaching period. However,
after incorporation of vegetable crop residues in autumn, the combined Nmin residue and
N mineralization often exceed the N uptake capacity of catch crops, depending on the
catch-crop sowing time. As a result, high quantities of NO3

− are susceptible to leaching in
humid climates such as Central Europe [24]. The average Nmin concentrations at the end of
the spinach growing season were reported to be about 120 kg N ha−1 (0–90 cm) [25–31].
During the succeeding winter leaching period, the remaining NO3

− is leached to below
120 cm in sandy soils [17]. Thus, even deep rooting crops may be unable to take up this
NO3

− sufficiently in the following growing season [32,33].
To achieve decreased mineralization after crops are grown in the autumn, strategies

such as a shallower tillage depth [34] or a postponement of the tillage date from autumn to
winter or even to spring may be appropriate [35–38]. During winter and early spring, the
soil temperature is lower compared to the autumn season, which can considerably reduce
the mineralization and nitrification of vegetable crop residues and native soil organic
N [39,40]. Furthermore, spinach is able to re-sprout after harvest and thus continue to
absorb nitrogen [41]. Another approach that has been suggested to reduce NO3

− leaching
is the co-incorporation of materials with a high C/N ratio and/or high polyphenol content,
such as immature compost, straw, paper waste, or sawdust, which cause N immobilization
and/or slow down N mineralization [24]. However, such materials have to be applied in
large quantities and their effectiveness depends on soil microbial activity, which is largely
dependent on soil temperature [42]. In contrast, if N immobilization continues after the
winter season, it may have a negative impact on the yield of the following crop [9]. A
further often-stated option to reduce post-harvest N losses is the removal of crop residues
in combination with reapplication in the following season [43]. However, spinach crop
residues often only contain around 30 kg N ha−1 [17], thus limiting the usefulness of this
option in reducing N leaching losses. In addition, the removal of crop residues and the
application of N-immobilizing materials are costly management options and thus, are often
not economically feasible [44]. Another option to reduce the NO3

− concentration at the end
of the growing season is to delay nitrification by applying inhibitors directly to the plant
debris. In an incubation experiment, nitrification after the incorporation of cauliflower
leaves was inhibited by at least 95 days when using 3,4-Dimethylpyrazole phosphate
(DMPP) [45]. This approach also proved successful in field experiments [46]. Compared to
other nitrification as well as urease inhibitors, DMPP is effective at small concentrations
and less prone to leaching [45–48]. Therefore, DMPP seems to be the most promising
method for reducing nitrification in the post-harvest stage. However, the effectiveness of
nitrification inhibitors has not yet been investigated in situ on spinach crop residues.

This study focuses on crop-residues management following autumn-grown spinach.
The aim was to reduce N losses during the subsequent winter leaching period. It was
hypothesized that mineralization and nitrification of spinach crop residues and native soil
organic N can be reduced by (a) reducing the tillage depth, (b) postponing the tillage date
from early to late autumn or early spring, and (c) via the application of DMPP, a nitrification
inhibitor, to crop residues.
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2. Materials and Methods
2.1. Sites and Experimental Set-Up

In total, four field trials were carried out in the winter seasons 2018/19, 2019/20,
and 2020/21 at different sites in Borken, North Rhine-Westphalia, Germany. In Table 1,
the trials are arranged according to the harvest date of the spinach crop (Spinacia oleracea
L.; taxonomy ID: 3562), regardless of the individual year. All trials were established
immediately after spinach harvest in mid-September (trial 1) or October (trials 2–4) and
completed in the following March. Based on the soil samples obtained at spinach harvest,
soils were characterized by a loamy sand texture (DIN 4220:2008 [49]) and 1.1–1.5% organic
C. In trial 4, soil organic C content was 3.6% with a comparably higher C/N ratio of above
25. All four sites are classified as “Plaggenesch” [50]. Experimental sites 1, 2, and 3 were
subject to arable cultivation even before the 20th century. In contrast, site 4 was originally a
forest and has been subject to arable cultivation since the 1950s. Soil pH at spinach harvest
was between 5.2 and 6.0 (0.01 M CaCl2). Summer-grown spinach, carrots, or cereals were
grown before autumn-grown spinach. Within these crop rotations, a total annual fertilizer-
N of 162–296 kg ha−1 was applied. In the case of summer- and autumn-grown spinach,
only the mineral fertilizers urea ammonium nitrate and calcium ammonium nitrate were
applied. When cereals or carrots were grown as a pre-crop, liquid manure (170 kg Ntot ha−1)
was applied in early spring. At every cereal harvest, straw was removed from the fields.
After spinach harvests in autumn, a quantity of 30–64 kg N ha−1 in aboveground crop
residues remained on the field, with a C/N ratio ranging roughly between 6–9. All trials
were performed in a randomized complete block design with three replications. Plot size
varied from 192 to 346 m−2 depending on the working width of the agricultural machinery
used at each site.

Table 1. Trial periods and soil parameters of the experimental sites as well as details on crop rotations
and chemical characteristics of the spinach crop residues.

Trial 1
(10 September

2019–6 March 2020)

Trial 2
(5 October 2020–1

March 2021)

Trial 3
(9 October 2018–13

March 2019)

Trial 4
(10 October 2019–6

March 2020)

Soil
parameters
(0–30 cm)

Sand [% (w/w)] 80.5 82.4 80.2 87.3
Silt [% (w/w)] 12.1 11.3 13.1 06.8

Clay [% (w/w)] 07.5 06.3 06.6 05.8
Organic C [% (w/w)] 01.1 01.5 01.2 03.6

C/N ratio 15.7 12.1 09.2 25.7
Soil pH 06.0 05.6 05.7 05.2

Crop
rotation
details

Crop rotation Spinach/Spinach Triticale/Spinach Barley/Spinach Carrots/Spinach
Liquid manure [kg N ha−1] 0 170 170 170

Mineral fertilization [kg N ha−1] 162 126 101 122
Marketable yield autumn-grown

spinach [t ha−1] 17.8 20.2 7.3 17.8

Aboveground
crop residues

Total N [kg ha−1] 64 30 44 45
N content [% (w/w)] 5.0 4.0 3.7 5.5

C/N ratio 6.6 9.0 9.0 5.9

2.2. Treatments

Within the four field trials conducted, different tillage depths and dates were inves-
tigated with the aim of reducing N losses after growing spinach in the autumn (Table 2).
Harrowing (10 cm) and/or plowing (30 cm) immediately after spinach harvest and the
subsequent drilling of a catch or cash crop are the standard procedures used for spinach
crop residue management in the Borken region (treatments 1 and 3). A few days after tillage,
the winter catch crop was sown by drilling into the upper 3–4 cm of soil. In treatment 4,
direct drilling was conducted and the soil surface remained untreated for 11–17 days after
spinach harvest. In treatments 5 and 6, tillage and subsequent drilling were postponed
until the soil temperature dropped below 5 ◦C at a 5 cm depth. In treatment 7, no tillage or
drilling was performed until the trials were completed in March.
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Table 2. Tillage and nitrification inhibitor treatments (trt.) as well as subsequent catch crops sowing
(drilling) dates after growing spinach in the autumn.

Trt.
Tillage Depth [cm]

(Tillage
Implement)

Tillage
Season

Nitrification
Inhibitor

Catch Crop Sowing Dates

Trial 1
(Harvest:

10 September 2019)

Trial 2
(Harvest:

5 October 2020)

Trial 3 (Harvest:
9 October 2018)

Trial 4 (Harvest:
10 October 2019)

1. 10 (Harrow) Early autumn n.a. 16 September 2019 16 October 2020 13 October 2018 19 October 2019
2. 10 (Harrow) Early autumn DMPP 1 16 September 2019 16 October 2020 n.a. 19 October 2019
3. 30 (Plow + harrow) Early autumn n.a. n.a. n.a. 13 October 2018 n.a.
4. 3–4 (Direct drilling) Early autumn n.a. n.a. 16 October 2020 26 October 2018 n.a.

5. 10 (Harrow) Late autumn n.a. 2 December 2019 n.a. 23 November
2018

16 November
2019

6. 10 (Harrow) Late autumn DMPP 1 n.a. n.a. n.a. 16 November
2019

7. n.a. 2 Early spring 2 n.a. n.a. n.a. n.a. n.a.

1 3,4-Dimethylpyrazole phosphate (3.0 L ha−1 VIZURA®); 2 Tillage after the trials have been completed in March;
n.a. = not applicable.

In order to inhibit nitrification, 3,4-Dimethylpyrazole phosphate (DMPP) was applied
before harrowing in early or late autumn in treatments 2 and 6, respectively. A total of
3.0 L ha−1 VIZURA® (SE BASF, Ludwigshafen, Germany) mixed with 0.1 L ha−1 nonionic
organosilicon spray-adjuvant Break-Thru® S 240 (AlzChem Group AG, Trostberg, Germany)
and diluted in 500 L ha−1 water was sprayed directly onto the crop residues. The inhibitor
was applied in cloudy weather or before sunrise, no more than 3 h before harrowing.

Different catch crops were sown by drilling in treatments 1–6. In trial 1, a mixture
of oil radish (Raphanus sativus; taxonomy ID: 3726), mustard (Sinapis alba; taxonomy ID:
3728), and rye (Secale cereale; taxonomy ID: 4550) was sown in mid-September (treatments
1–4). After the later tillage date, triticale (×Triticosecale; taxonomy ID: 49317) was sown
(treatment 5). However, triticale seeds failed to germinate in late autumn, resulting in a
bare soil during winter. In trials 2 and 3, after both the early and late tillage date, a mixture
of 70% (w/w) rye and 30% (w/w) grass (Lolium perenne; taxonomy ID: 4522) was sown. In
trial 4, triticale was sown after both tillage dates in October and November. No drilling
was performed in treatment 7, i.e., the spinach crop residues were left intact and thus, were
able to re-sprout.

2.3. Data Collection and Measurements

Soil and air temperatures were recorded by a nearby weather station (Borken West-
phalia, Deutscher Wetterdienst, Germany). Precipitation was measured at the experimental
sites using Hellmann gauges similar to those described by Hoffmann et al. [51]. The soil
Nmin concentration [ammonium (NH4

+) + NO3
−; 0.0125 M CaCl2] in the soil layers 0–30,

30–60, and 60–90 cm was determined with the obtained soil samples, using a Pürckhauer
auger. The soil-sampling procedure and laboratory analyses of soil Nmin, soil total C, soil
pH as well as the soil texture were based on the guidelines of the Association of German
Agricultural Analytic and Research Institutes [49]. Soil total N content was analyzed
according to DIN EN 16168:2012 [52].

The net mineralization of soil organic N and crop residues in the upper soil layer was
estimated via in situ covered soil columns similar to those described by Heumann and
Böttcher [53]. Columns (polyethylene) with a diameter of 20 cm and a length of 35 cm were
driven vertically into the topsoil to a depth of 30 cm. On the day of drilling, 3–6 columns
per treatment were installed using a random design and thus the amount of crop residue
inside the columns was variable. However, when columns were installed without previous
soil perturbations (treatments 5–7), columns were inserted between the rows, meaning that
there were no plants inside the columns. After installation, in all treatments, the columns
were loosely covered with a sun-reflecting lid, which permits the exchange of gas as well
as the prevention of water logging and NO3

− leaching losses. Soil temperature in a 2 cm
soil depth varied by ±2.5 ◦C from the soil temperature in the adjacent open field. In order



Agronomy 2022, 12, 653 5 of 20

to derive the net N mineralization, the initial Nmin in 0–30 cm of soil after spinach harvest
was subtracted from the final concentration measured in the columns at the end of the field
experiments in March. In treatments 5 and 6, the tillage was postponed from early to late
autumn. Therefore, the columns were installed twice. A first installation took place soon
after spinach harvest in autumn without previous soil preparations and a reinstallation
was carried out after the postponed tillage and drilling in late autumn at another position
in the plot. At this time, the Nmin concentration in the soil columns was also measured and
was taken into account in the calculation of the net mineralization.

The total aboveground crop residues were determined at spinach harvest as well as
at the postponed tillage dates in late autumn (treatments 5 and 6). In early spring, the
total aboveground biomass (including herbs) was determined in all treatments. For this
purpose, a bulk sample of four 0.25 m−2 subsamples was collected in each treatment. Plants
were cut at the soil surface and stored for one day in a fridge at 4 ◦C. In the laboratory,
the plant material was rinsed with tap water, spin-dried and weighed. The material was
then freeze-dried (P22K-E-6, Dieter Piatkowski Forschungsgeräte, Munich, Germany) and
ground in an ultra-centrifugal mill (model ZM 200, RETSCH GmbH, Haan, Germany) to a
particle size of less than 0.5 mm. The dry mass was used to analyze total N by combustion
in an oxygen atmosphere according to Dumas (Leco FP-628, LECO Instrumente GmbH,
Mönchengladbach, Germany) and total C (ELTRA CS 500, ELTRA GmbH, Haan, Germany)
according to DIN EN 15936:2012 [54].

The DMPP content in soil was determined by taking soil samples in the 0–15 and
15–30 cm soil layers (treatments 2 and 6). Treatments 1 and 5 were used as non-treated
controls. The first samples were taken immediately after DMPP application and harrowing.
Subsequently, samples were frozen at −18 ◦C. The extraction procedure and analysis
methods were performed as described by Doran et al. [55]. Deviating from this description,
15 g of soil was extracted and evaporated to a final volume of 200 µL methanol. With
this procedure, a limit of 5 µg DMPP (kg soil)−1 was reached with an extraction efficiency
of 95%.

In order to estimate the risk of plant damages to a succeeding spinach crop due to
disease infection, a pathogenicity test was conducted. For this purpose, in each treatment
a bulk sample of >2 kg soil (0–20 cm) was taken at the end of trials 1, 2, and 4 in March
2019 and 2020. Soil samples were filled into pots (n = 4) and placed into a greenhouse.
Afterwards, 15 spinach seeds were sown on the soil surface. A soil originating from a
virgin field, where spinach had never been grown before, was used as a control. Three
weeks after sowing, the disease severity index was calculated according to Larsson and
Gerhardson [56]. For this purpose, the amount of damaged tissue in the range from 0%,
without symptoms, to 100%, dead plants, was assessed visually for every single plant.

2.4. Nitrogen Balance Sheet Calculations

The potential N losses were estimated by using a balance sheet approach. The supply
side consists of the Nmin concentration (0–90 cm) at spinach harvest and the net N mineral-
ization (0–30 cm) measured within the soil columns. To derive the potential N losses, the N
taken up by the catch crops (treatments 1–6) or the resprouting spinach plants (treatment
7) as well as the final Nmin concentration (0–90 cm) in March were subtracted from N
supply by mineralization and the initial Nmin at spinach harvest. Nitrogen fixation and N
depositions were not taken into account, but the potential N losses between treatments
could still be estimated, given that every trial was analyzed individually. Furthermore,
symbiotic N fixation can be neglected in non-legume crops [57]. The different potential
N losses (types of gaseous and leaching losses) were not measured directly and therefore,
only the lumped N loss was calculated in the balance sheet approach.

To calculate the total N uptake, the aboveground as well as belowground N was
considered. The root-N was derived from the measured aboveground biomass-N and the
root-N/shoot-N ratio based on the literature data. The root N of spinach plants at harvest
was assumed to be 20% of the aboveground plant N [18,58,59]. In order to obtain the root
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N of the spinach crop residues at later tillage dates (late autumn and early spring), a ratio
of 2 between aboveground and belowground N was assumed. The cereal and grass plants
were at the tillering stage in early March, for which an equal distribution of aboveground
and belowground N is described [60–63]. In contrast, the mixture of radish, mustard, and
rye, grown in trial 1, was found to be at an advanced development stage in early March.
For this mixture, a shoot-N to root-N ratio of 2 was assumed [61,63,64].

2.5. Statistical Analysis

The potential N losses were statistically analyzed within each individual trial us-
ing a one-way ANOVA followed by Tukey’s post hoc test (alpha < 0.05). Beforehand,
assumptions of normality and homogeneity of variances were tested according to the
Kolmogorov–Smirnov test and the Fmax test, respectively. If needed, data were trans-
formed logarithmically to meet the requirements of the ANOVA. All statistical calculations
were performed using SPSS, version 26 (IBM Deutschland GmbH, Ehningen, Germany).

3. Results
3.1. Soil Temperature and Precipitation

From mid-September to mid-October, the temperature at a depth of 5 cm soil was
between 10–20 ◦C (Figure 1). In November, the temperature dropped below 5 ◦C for the
first time. During winter, soil temperature remained between 0 and 10 ◦C. Only in trial 3
(2018/19) was a temporary drop below 0 ◦C observed. Compared to the 30-year average
mean, the air temperature was about 1.0 ◦C higher during the three trial periods.
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Figure 1. Mean daily temperature at a depth of 5 cm soil from spinach harvest until completion of
the trials in March (weather station Borken-Westphalia, Deutscher Wetterdienst, Germany).

From October until the completion of trials in early or mid-March, the total precipita-
tion was 349–384 L m−2 (Figure 2). Trial 1 was set up a few weeks earlier than the other
trials, resulting in a total precipitation of 502 L m−2. Autumn in 2018 (trial 3) was much
drier than autumn in 2019 and 2020. Based on visual observations during the soil sampling
at the start of each trial, the soil below 30 cm was always drier than the upper soil layer.
As a result of the dry autumn in 2018, it took until December until the soil was moistened
below 30 cm. In the other years, leaching water reached the 30–60 cm layer by October.
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3.2. Effects of the Maximum Tillage Depth and Frequency

Nitrate was the predominant mineral N form during the autumn and winter season.
No NH4

+ was detected in treatments 1, 3–5, and 7. Therefore, in Figures 3–5 only the
NO3

−-N concentration is provided.
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applicable.



Agronomy 2022, 12, 653 9 of 20

Both the harrow (10 cm) and plow (30 cm) plus harrow treatments seemed to be very
similar in Nmin concentrations (trial 3) (Figure 3). Even after direct drilling (3–4 cm) in
trial 2, the peak NO3

− concentration was at the same level as observed after harrowing. In
contrast, in trial 3, the peak Nmin concentration in the direct drilling treatment was lower
compared to the harrow or plow plus harrow treatment. Finally, the Nmin concentration
in the upper 90 cm of soil dropped to a maximum of 15 kg ha−1 by early or mid-March,
irrespective of the tillage depth.

The potential N losses after plowing the crop residues into 30 cm were slightly lower
compared to harrowing into 0–10 cm soil depth (Table 3). According to the N balance sheet,
this difference is due to a higher N uptake of the rye/grass mixture after plowing in autumn
2018 (Figure 3). The direct drilling (treatment 4) also resulted in a significant decrease in
potential N losses. This was the result of a comparably lower mineralization or increased N
uptake in trials 3 and 2, respectively. The higher N uptake after direct drilling was reflected
by irregularly resprouting spinach plants, which increased averaged N uptake per plot.
Furthermore, it should be noted that the first soil perturbation in treatment 4 was delayed
by 9 to 14 days compared to treatments 1 and 3. This delay might also have affected N
losses, as described below (Section 3.3).

Table 3. Potential N losses according to the N balance sheet [Nmin (0–90 cm) at spinach harvest + net
mineralization (0–30 cm) − total N uptake by plants − Nmin (0–90 cm) in March] depending on the
maximum tillage depth and tillage season. Means within the same trial that do not share a letter are
significantly different according to Tukey’s post hoc test (alpha < 0.05, n = 3).

Treatment
Tillage

Implement
Tillage Depth

[cm]
Tillage Season

Potential N Loss [kg ha−1]

Trial 1 Trial 2 Trial 3 Trial 4

1. Harrow 10 Early autumn 141 a 64 b 81 c 70 ab
3. Plow + harrow 30 Early autumn n.a. n.a. 70 b n.a.
4. Direct drilling 3–4 Early autumn n.a. 48 ab 48 a n.a.
5. Harrow 10 Late autumn 170 b n.a. 49 a 55 a
7. Without n.a. Early spring 1 167 b 17 a 20 a 103 b

1 Tillage after the trials have been completed in March; n.a. = not available.

3.3. Effects of the Season of Tillage

Postponing tillage from early to late autumn (Figure 4) or early spring (Figure 5) was
effective in reducing the NO3

− concentration that was exposed to leaching, but the N
balance sheet was affected differently depending on the individual site and year (Table 3).
In trials 3 and 4, the calculated N losses were reduced by 15–32 kg ha−1 when tillage was
postponed from early to late autumn. This was mostly due to a lower net mineralization as
well as a higher Nmin concentration in March. However, biomass growth was diminished
after late sowings, leading to a minor N uptake during winter. This was reflected by
reduced soil cover in early spring compared to sowing soon after spinach harvest (Figure 6).
Triticale, sown on 2 December 2019 (trial 1), completely failed to germinate, leading to a
bare soil surface during winter. Weeds took up only 5 kg N ha−1 in this treatment and N
mineralization was rather high. Consequently, potential N losses increased by 29 kg ha−1

compared to early tillage in mid-September.
By postponing tillage from early autumn to early spring, spinach stubbles were able

to continue to grow (Figure 7). Nitrogen uptake by spinach and a low net mineralization
reduced the potential N losses by 47 or 61 kg ha−1 in trials 2 and 3, respectively (Table 3).
In contrast, in 2019/20 (trials 1 and 4) N losses were increased by up to 33 kg ha−1 due to
postponing tillage from autumn to spring. In these trials, spinach biomass decomposed
partially or fully during autumn and winter, resulting in lower biomass N in spring
compared to autumn. This is shown by the negative N uptake in trials 1 and 4 (Figure 5).
This means that the amount of N in the spinach plants decreased from spinach harvest in
autumn until the trials were completed in early spring.
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Besides the growth of the catch crops and resprouting spinach crop residues, the
disease severity index of spinach based on soil samples taken at the end of experiments 1,
2, and 4 was also calculated (Table 4). However, based on visual evaluations, no differences
between the treatments was observed. Spinach seemed to be more affected by the individual
site than by the previous tillage treatment.
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Table 4. Disease severity index of spinach seedlings at the end of the trials (n = 4; Mean ± SD).

Treatment
Tillage

Implement
Tillage Depth

[cm]
Tillage
Season

Disease Severity Index [%]

Trial 1 Trial 2 Trial 4

1. Harrow 10 Early autumn 88 ± 8 57 ± 14 72 ± 10
3. Plow + harrow 30 Early autumn n.a. n.a. n.a.
4. Direct drilling 3–4 Early autumn n.a. 50 ± 6 n.a.
5. Harrow 10 Late autumn 72 ± 13 n.a. 64 ± 4
7. Without n.a. Early spring 1 74 ± 6 40 ± 3 67 ± 9

1 Tillage after the trials were completed in March; n.a. = not available.

3.4. Effects of the Nitrification Inhibitor DMPP

Ammonium was detectable for a maximum of 4 weeks after DMPP application in
treatments 2 and 6 irrespective of the season of application (Tables S1 and S2). In contrast,
no NH4

+ was detectable in the other treatments without DMPP application. However, in
treatments 2 and 6, the NH4

+ concentration was consistently below 7 kg N ha−1 (0–30 cm).
This means that there was still a high NO3

−/NH4
+ ratio after DMPP application. Conse-

quently, no delay in NO3
− leaching below 30 cm of soil was observed compared to the

corresponding treatments 1 and 5 (Figure 4; Tables S1 and S2).
After DMPP application to crop residues and its subsequent incorporation into a layer

of 10 cm soil, a DMPP content of 400 µg (kg soil)−1 was assumed. Based on the sampling
depth of 15 cm, this concentration was 260 µg DMPP (kg soil)−1. In trials 1 and 2 and at the
later tillage date in trial 4, less than half of the applied quantity was detectable immediately
after application and harrowing (Figure 8 and Figure S1). By contrast, in trial 4, more than
300 µg DMPP (kg soil)−1 was detected when applied immediately after spinach harvest.
Within the first month after the DMPP application, a small quantity of the active ingredient
leached into the 15–30 cm soil layer in trial 1, but no such leaching was observed in the
other trials. Within the following weeks, the DMPP content decreased in all trials. By
March, the content dropped below the detection limit of 5 µg (kg soil)−1 DMPP.
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harrowing into the soil in (a) trial 1 and (b) trial 4 (n = 1). Trt = Treatment.
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4. Discussion

At spinach harvest, 5 to 30 kg N ha−1 remained in the upper 30 cm of soil (Figures 3–5).
D’Haene et al. [59] measured comparable Nmin residues at spinach harvest as long as total
N fertilization corresponded to actual plant demand. The authors derived a minimum
Nmin residue of 7 kg ha−1 (0–30 cm) at a marketable yield of 25 t ha−1. However, when
spinach is harvested at an earlier stage, this leads to higher Nmin residues even if total N
supply corresponds to plant demand [10].

Aboveground crop residues contained 30–64 kg N ha−1 (Table 1), similar to levels
of 25–62 kg N ha−1 reported earlier [31,35,65,66]. The C/N ratio of spinach residues
was in a range of roughly 6–9 (Table 1). This range was also provided by Agneessens
et al. [44] and Whitmore [22]. After incorporating the aboveground autumn-grown spinach
crop residues characterized by a C/N ratio of 9.6, De Neve et al. [23] detected a net
mineralization of approximately 45% of the plant biomass-N within two weeks. In contrast
to the aboveground residues, the root biomass of most vegetable crops was characterized by
a higher C/N ratio as well as a higher lignin content, leading to a reduced net mineralization
or even its immobilization after its incorporation [67,68]. Therefore, by considering the root
mass, the net mineralization of total plant debris during autumn and winter can be expected
to be lower than the reference data that is based on only aboveground crop residues.
Nevertheless, between 85 and 121 kg N ha−1 (0–30 cm) were mineralized following tillage
soon after harvest until early spring (Figures 3 and 4). This is also reflected by the peak
Nmin concentrations of 53–101 kg ha−1 (0–90 cm) within the first two months after harvest.
The presence of high Nmin concentrations after a growing season of spinach are in line
with other studies [25–31]. Based on the N content of the crop residues, post-harvest N
losses can only partially be explained by the residual fertilizer N and mineralization of
plant debris. In addition, the mineralization of native soil organic N must be considered in
this context [9]. The total amount of N mineralization from native soil organic matter with
a similar texture is mainly determined by the combination of organic C content and the
C/N ratio, i.e., the total N content [17]. However, the recalcitrance of the organic matter
also plays a role, in particular in soils with a non-agricultural history. In sandy soils that
were part of forests at least 100 years before the introduction of arable cultivation, the
biochemical resistance against N mineralization is often enhanced compared to historically
arable soils, even though their organic N and C content is high [69,70]. This was probably
also the case in trial 4, which was conducted on a field that was turned from forest into
arable cultivation in the 1950s, and in which the high organic C and N content did not lead
to an excessive N mineralization (Table 1; Figure 4).

4.1. Effects of the Tillage Depth and Frequency on Potential N Losses

In common practice, spinach crop residues are incorporated soon after harvest by
plowing (30 cm) and/or harrowing (10 cm). Here, we observed similar Nmin concentrations
for both tillage depths (Figure 3). In contrast, the potential losses calculated by using the
N balance sheet were reduced following a tillage depth of 30 cm (Table 3). It is possible
that in the dry autumn of 2018 (Figure 2), germination and subsequent N uptake of the
catch crop increased by mixing in more humid layers from a depth of 30 cm into the top
centimeters of soil by plowing. In contrast, after harrowing, the upper soil remained dry
until December, which delayed the germination of the grass/rye mixture. The reduced
mineral N concentration and potential N losses after direct drilling with a shallow tillage
depth of 3–4 cm (Figure 3, Table 3) can be attributed to two factors. Firstly, direct drilling
was performed 9–14 days later than tillage in treatments 1 and 3, which allowed for
the spinach plants to continue growing after harvest. Secondly, after direct drilling, an
irregular resprouting of the spinach plants was observed in trial 2, further increasing the
total N uptake in these plots and thus decreasing the potential N losses. Overall, Nmin
concentrations and potential N losses appeared to be affected by weather conditions and
the date of first tillage rather than by the tillage depth and frequency.
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According to van den Bossche et al. [34] a reduced tillage needs to be continued for
many years to affect annual NO3

− leaching losses. Furthermore, due to the less stable
soil aggregates, mineralization in sandy textured soils is less affected by tillage practices
compared to loamy textured soils [71,72]. After the mixing (rotary-tillage), plowing, or
mulching of cauliflower residues, an almost uniform Nmin concentration increase was
observed in loamy sand. In contrast, in heavier textured soils, mineralization after mulching
was reduced compared to mixing or plowing [73]. This means that NO3

− leaching after
harvest seemed to be independent of post-harvest tillage intensity in sandy soils.

4.2. Effects of the Tillage Season on Potential N Losses

By postponing the tillage date, the Nmin concentration remained at a constant level
or decreased within the first weeks following harvest (Figures 4 and 5). Even after tillage
in late autumn when the soil temperature temporarily dropped below 5 ◦C, the Nmin
concentration remained constant (treatments 5 and 6). In general, at soil temperatures below
10 ◦C mineralization and the nitrification of native soil organic N, vegetable crop residues,
and catch crops were found to be strongly reduced [39,40,74]. However, the temperature-
dependence of N mineralization is affected by the degradability of the plant material.
For easily degradable plant material, 20–40% of the biomass-N can be nitrified within
5–10 weeks after incorporation even at temperatures below 5 ◦C [75,76]. Furthermore,
the N turnover rate can be increased, especially at fluctuating temperatures compared to
constant incubation temperatures [74]. This was confirmed by a high N mineralization and
nitrification after tillage of spinach crop residues in late autumn, (Figure 4). In contrast,
without tillage (treatment 7) N mineralization was much lower (Figure 5). Consequently,
based on the low Nmin concentration after late tillage, high N losses occurred during the
winter season. Therefore, the incorporation of easily decomposable crop residues high in N
should be postponed until spring to minimize the risk of, e.g., NO3

− leaching during the
winter season [37,74,75]. However, this strategy highly depends on the N uptake capacity
and growth performance of the spinach crop residues, as discussed below.

In order to compare the overall N losses, the N balance sheet was calculated. Ac-
cording to the N balance sheet, postponing the tillage date to late autumn or early spring
resulted in either reduced (trials 2 and 3) or increased (trials 1 and 4) potential N losses
(Table 3). These contrasting results were due to the Nmin residue at spinach harvest, the net
mineralization during autumn and winter, and the growth performance of the resprouting
spinach plants (Figures 4 and 5). Resprouting crop residues can reduce NO3

− losses con-
siderably, especially at high precipitation in autumn by conserving N in the plant biomass,
and thus effectively acting as a catch crop [8,77,78]. In trials 2 and 3, spinach crop residues
successfully acted as a catch crop, resulting in low potential N losses (Figure 7; Table 3).
By contrast, in trial 1, the wet and cold weather led to a complete dying off by December,
resulting in considerable N losses even without tillage. In field trials of Myrbeck et al. [79]
the degradation of the plant biomass by the application of herbicides affected the Nmin
concentration in a similar way to tillage. However, even without frost kill, catch crops
can lose N during the winter season [80–82]. Therefore, the removal of the aboveground
crop residues before its decomposition begins is considered an effective measure to reduce
winter N losses [83]. However, removing crop residues in the winter season may lead to soil
compaction. In addition, collecting and processing these residues, e.g., by composting or
digestion, is laborious and costly, thus limiting the practical potential of these options [24].

Besides leaching, N can also be lost from the soil–plant system via the gaseous emis-
sion of nitrous oxide (N2O) and dinitrogen (N2) and it can also be volatilized as ammonia
(NH3). For example, up to 15% of the biomass N of Brassica species, sugar beet, or leek crop
residues was lost by N2O and N2 during winter after incorporation into sandy soils [84,85].
However, Whitmore [22] calculated that after the incorporation of spinach leaves in August
or September, N2O losses due to denitrification were negligible compared to losses from
Brassica or leek crop residues, despite their equally low C/N ratio. In general, gaseous
N emissions are subject to considerable variability. Even after the cultivation of similar
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crops (cauliflower, broccoli) at the same site, with a similar crop residues management,
the emission factor for N2O varied between 1.3% and 7.7% of the applied crop residues
N [86,87]. Most of this variation is due to the actual soil moisture content, as well as the
N and C fractions in the soil [88–90]. However, differences due to tillage practice seemed
to be insignificant following the incorporation of cauliflower or lettuce crop residues into
sandy soils [73,91]. In contrast, the NH3 volatilization of crop residues is often considerably
reduced by their incorporation into the soil before their decomposition begins [5,73,92].
However, if plant biomass decays on the soil surface, up to 5–16% of plant-N can be
volatilized during winter [92]. Based on these observations, in the no-till treatment (treat-
ment 7) the comparable high N losses in trials 1 and 4 might be partially explained by NH3
volatilization during the decay of the spinach crop residues (Table 3).

By using the soil columns, the net mineralization of the crop residues as well as soil
organic N was determined. However, in treatment 7, the columns were inserted between
the rows. Thus, no crop residues were inside the columns and the mineralization resulting
from their decay in trials 1 and 4 was not detectable using this approach. Therefore, the
calculated negative N uptake (Figure 5) was assumed to be lost from the upper 90 cm of
soil. However, a certain part of this N was probably still bound in the soil in different
organic N fractions. For a better assessment of the actual N losses, soil N turnover in arable
soils should be measured over several years [93].

The total N uptake of the catch crops depended highly on the sowing date
(Figures 3–5). At sowing dates in early autumn, N uptake until March ranged between 15
and 53 kg ha−1. Sowing in late autumn reduced the catch crop N uptake to 5–15 kg ha−1.
However, both sowing dates were insufficient to compensate for the high soil NO3

− con-
centration (Figure 4). The negligibly small N uptake of late-sown catch crops as compared
to a fallow control has been reported a number of times [63,78,94,95]. Beside the sowing
date, the variability of N uptake was also due to varying growth conditions within the
first weeks after sowing. For example, emergence in trial 3 was delayed due to dry soil
conditions caused by minor precipitation during autumn (Figure 2), whereas the cloudy
and very wet weather conditions in autumn 2019 may explain the reduced N uptake in
trial 1. Generally, high precipitation rates and subsequent NO3

− leaching within the first
weeks after sowing reduce the effectiveness of catch crops in sandy soils [77]. This is true
for even the deep rooting Brassica species [95]. Despite low N uptake, catch crops mixtures
including winter hard species are recommended after late harvest dates to ensure a soil
cover during winter [8], thus reducing the risk of erosion, weed growth, and the survival
of obligate diseases [24,96]. Agneessens et al. [44] recommended the completion of the
catch crop sowing by the end of August to ensure a sufficient N uptake after a spinach crop
rotation. However, this implies a shorter growing season, which would reduce farmers’
income considerably.

Beside N turnover, the crop residues management can also affect the population and
activity of obligate plant diseases in the following growing seasons [19]. Therefore, spinach
is usually only grown every four years on the same site in the region Borken [97]. However,
as shown by the disease severity test, spinach was not affected by the tillage treatment
compared to the control (treatment 1) (Table 4). Overall, the disease severity index was
rather high, between 40% and 88%. Based on the results of Larsson and Gerhardson [98],
comparable disease indices have been observed in cases where spinach was grown in
monoculture. In contrast, when spinach was grown in rotation with other crops, the degree
of plant damages was reduced. However, from the data provided in Table 4, no estimates
can be made with regard to how long the cultivation of a spinach crop should be avoided
depending on the treatment.

4.3. Effects of DMPP on Soil N Dynamics

In order to delay nitrification and subsequently NO3
− leaching, DMPP was sprayed

on crop residues immediately before tillage in treatments 2 and 6 in early and late autumn,
respectively. As an equal distribution within the upper 10 cm of soil after harrowing was
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expected, a content of 0.40 mg (kg soil)−1 DMPP was applied. Within the soil sampling
layer of 15 cm, its content was 0.26 mg (kg soil)−1 DMPP. However, the application of
DMPP in early or late autumn delayed nitrification at best for only a few weeks (Tables S1
and S2). Similar observations were made in a glasshouse pot study at an air temperature of
16–24 ◦C after the application of 0.70 mg (kg soil)−1 DMPP to cauliflower residues [99]. In
contrast, in an incubation experiment, the application of 0.90–1.80 mg (kg soil)−1 DMPP
to cauliflower crop residues delayed nitrification for at least 95 days at a fluctuating soil
temperature of 2–14 ◦C (mean: 7 ◦C) [45].

The effectiveness of a nitrification inhibitor depends on the immobilization and de-
composition of its active ingredient by soil microorganisms as well as leaching and soil
adsorption kinetics [100]. Likewise, in trial 1, some DMPP leaching at below 15 cm was
observed (Figure 8a). However, most of the non-extractable DMPP was probably due to
the adsorption, immobilization, and mineralization of the active ingredient. In general, the
DMPP half-life ranged from a few days to several weeks within the upper centimeters of soil
at 20–25 ◦C [101]. In addition, DMPP only has an inhibitory effect on ammonium oxidizing
Bacteria rather than on ammonium oxidizing Archaea or comammox Nitrospira [102,103].
Especially at low soil pH, nitrification by Archaea can be considerable [104,105]. Thus, they
can at least partially compensate for the reduced bacterial activity [106], and this may also
have been the case here, given the low soil pH (Table 1).

Overall, a higher DMPP content in the bulk soil might be more effective in reducing
the nitrification of both the crop residues as well as the soil organic N. This can be realized
by a shallower tillage depth after DMPP application. However, based on research of Nett
et al. [73], a higher NH3 volatilization can also be expected by this approach. Therefore,
further research is required to facilitate the efficient use of nitrification inhibitors to reduce
N losses after the incorporation of vegetable crop residues.

5. Conclusions

This study aimed to determine whether the N losses during the off-season following
autumn-grown spinach can be reduced by (a) flatter tillage depth, (b) postponing the tillage
date from early to late autumn or early spring, or (c) the application of the nitrification
inhibitor DMPP to crop residues. Averaged over the four field trials, postponing the tillage
date from early autumn to spring seemed to be the most promising management option
to reduce total N losses after growing spinach in the autumn. This strategy led to low net
mineralization and allowed the spinach crop residues to resprout, effectively turning them
into a catch crop. However, the N uptake of spinach and catch crops strongly depended on
the actual weather conditions. The other two approaches, a shallow tillage depth or the
application of DMPP, proved to be less effective in reducing N losses from spinach crop
residues during autumn and winter.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12030653/s1, Figure S1: Content of the nitrification
inhibitor 3,4-Dimethylpyrazole phosphate (DMPP) within the upper soil layers (0–15 and 15–30 cm)
after application to the spinach crop residues and subsequent harrowing into the soil in trial 2 (n = 1).
Trt = Treatment; Table S1: Soil ammonium N and nitrate N concentrations (0–30 cm) following
application of 3,4-Dimethylpyrazole phosphate (DMPP) to spinach crop residues in trials 1 and
4 from autumn to early spring (n = 3); Table S2: Soil ammonium N and nitrate N concentration
(0–30 cm) after application of the nitrification inhibitor 3,4-Dimethylpyrazole phosphate (DMPP) to
spinach crop residues in trial 2 from autumn to early spring (n = 3).
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