
funCode—Versatile Syntax and Semantics
for Functional Harmonic Analysis Labels

Markus Lepper1 , Baltasar Trancòn y Widemann1,2

and Michael Oehler3

Abstract
Traditional harmonic analysis annotations can be represented in a computer model of a piece of music by plain text

strings. But whenever automated processing like analysis, comparison or retrieval is intended, a formal definition is help-

ful. This should cover not only the syntactic structure, but also the semantics, i.e. the intended meaning, and thus adheres

to the technique of mathematical remodelling of existing cultural phenomena. The resulting models can serve as a basis for

automated processing, but also help to clarify the communication and discussion among humans substantially. This article

proposes such a definition in four layers, which address different problems of encoding and communication: (a) relation of

symbol sequences to staff positions, (b) combining functions, (c) chord roots, and (d) interval structure and voice leading.

Only one of them is specific to functional (Riemannian) theory and can possibly be replaced to represent scale degree

theory. The proposal is configurable to different interval specification methods and open to localisation. Syntax and

semantics are defined by precise mathematical means, borrowed from computer science, and thus are unambiguously

documented.

Keywords
Formal semantics, context free language, harmonic analysis, Riemannian analysis, computational thinking

1 Introduction
Symbol sequences representing harmonic analysis results
can be attached to computer models of music as a mere aux-
iliary device for retrieval, analysis and comparison.
Furthermore, in (historic or contemporary) documents
from published music theory, such sequences may have a
value on their own, as creative utterance by their author.
In either case, automated processing requires clarification
and specification of syntax and semantics of these symbol
sequences and their different variants, by applying mathe-
matical modelling. Such a clarification can also be helpful
to add precision to communication and discussion among
humans. The funCode proposal defines a framework in
four layers, which address different problems of encoding
and communication: relation of symbol sequences to staff
positions, simultaneously sounding functions, chord roots,
interval structure, and voice leading. funCode models the
functional style of harmonic theory of Western music.
Only the third layer must be exchanged for an adaptation
to scale degree theory; selected layers can possibly be
adapted to other cultures, whenever these employ the mod-
elled concepts.

1.1 Harmonic Analysis Methods and Symbol Systems
Modern harmonic analysis of Western music began in 1726
with Jean-Phillipe Rameau ([1722]1965) and with the idea
that particular patterns of interval structures and of chord
sequences may have a characteristic effect on the listener,
independent of most other aspects of a musical work like
voice leading and instrumentation, and especially independent
from transposition. Theories of musical harmony in the widest
sense are already known from the times of antique Greek phi-
losophy. But only when the keyboard became the leading
instrument in practice and theory, and printing and publishing
opened access to a wide range of diverse musical literature,

1 semantics GmbH, Berlin, Germany
2Nordakademie Elmshorn Germany
3Universität Osnabrück Germany

Corresponding authors:
Markus Lepper, semantics GmbH, Berlin, Germany.

Email: post@markuslepper.eu

Michael Oehler, Universität Osnabrück, Germany.

Email: moehler@uni-osnabrueck.de

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access page

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

Research Article

Music & Science

Volume 5: 1–20

© The Author(s) 2022

DOI: 10.1177/20592043221085659

journals.sagepub.com/home/mns

https://orcid.org/0000-0002-9120-3908
mailto:post@markuslepper.eu
mailto:moehler@uni-osnabrueck.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://doi.org/10.1177/20592043221085659
https://journals.sagepub.com/home/mns
http://crossmark.crossref.org/dialog/?doi=10.1177%2F20592043221085659&domain=pdf&date_stamp=2022-05-06

could a debate about the harmonic structure of complex and
elaborate compositions be conducted on an objective basis.

Various theories of musical harmony were proposed in
the following centuries, with very different intentions: a
theory can act as a mere description of a particular practice,
or it can try to find reasons (based in physics or physiology)
why a particular practice is sensible, or it can try to name
and explain effects caused in the recipient’s mind; or, in
the other extreme, a harmonic theory can act as a prescrip-
tion, as a ‘cook book’ for correct accompaniment or effec-
tive composition, in a particular style. Most of the historic
theories serve a certain mixture of these use cases.

A first milestone in the chain of reactions to Rameau was
set byWeber (1817), who examined the triads on every step of
the diatonic scale, in major and minor mode, and invented the
roman numeral notation. Hugo Riemann started in 1877 with
a large catalogue of possible chord interval structures and an
even larger one of possible distances and relations between
pairs of chords. (Riemann, 1877; Engebretsen, 2011) After
many years filled with the tedious work of refactoring his
system again and again, he finally arrived at the functional
theory of harmony, which derives every chord from the
three basic functions tonic, dominant and subdominant
(Riemann, 1918). There were many others going also in this
direction, even earlier, but it was him who found, at last, the
clearest formulation and most comprehensible symbol system.

In the first half of the twentieth-century in particular,
numerous further theories evolved, which can be strictly
divided into the ‘roman numeral’ tradition on one side (also
called ‘scale degree theories’, German ‘Stufentheorie’) and
the ‘functional’ approach on the other. In more recent
times, new theories have arisen beyond this dichotomy,
based e.g. on the notion of pitch classes modulo enharmonics
(Forte, 1973; Rahn, 1980), or based on even more advanced
notions from mathematics like topologies (Vogel, 1975;
Mazzola, 1990; Tymoczko, 2011; Cambouropoulos et al.,
2014).1 But in the traditional approaches, that dichotomy is
still relevant, especially in education.2

In all these theories the central means for discussing,
explaining and analysing is some specially designed
symbol system. This is given by a collection of rules govern-
ing how to create short-cut symbols for chords, their inter-
val structures and their progressions, how to combine these
symbols, and what these combinations should express. A
first use case is to attach these symbols to selected time
points in a sequence of notated music, which means that
at these time points the harmonic situation corresponds to
or is explained by the symbol. This is called a harmonic
analysis and a symbol attached to a particular time point
is a (harmonic or functional) label. A quite different use
case is to employ a stand-alone sequence of such labels to
mean an abstract sequence of harmonic situations or to rep-
resent any concrete fragment of music that matches it.

Each such theory comes with its own symbol system.
Nevertheless there are pedigrees, variants, common
subsets and families of systems, which treat many details
in a similar or even identical way.

1.2 Possible Semantics of Harmonic Analysis Label
Sequences
In practice there are very different kinds of semantics that can
be assigned to a harmonic analysis label sequence, no matter
whether functional symbols or roman numerals are used:

S-1 Making a psychological statement about the
reception of a particular piece of music by ‘a lis-
tener’, like:

‘This sequence of chords will be recognised as
, but not before hearing the third

chord.’3
S-2 Describing an (assumed) syntactical pattern, to

make different scores (possibly in different keys)
comparable, as in: ‘The sequence
appears at these positions: …’

S-3 For talking about concepts in general, like in
‘Beethoven in his early works prefers the sequence

as nearer to the current tonic key than
.’

S-4 For generating a concrete set of pitch classes. For
example, when applied to the tonal key C, the first
above-mentioned coding will produce this
sequence of sets of pitch classes

〈{a♭, c, e♭, g♭}, {d♭, f , a♭}, {g, b, d, f }, {c, e♭, g}〉
and this sequence of bass tones:

〈a♭, f , g, c〉

S-5 In the tradition of the older ‘figured bass’ notation,
the interval numbers in the superscript of the func-
tional symbol can be meant to indicate voice
leading: two different numbers in the same stack
position in subsequent superscripts indicate a
change from the first to the second interval, exe-
cuted by some voice of the score.

There are coarse as well as subtle differences between these
use cases: ‘the listener’ in case S-1 can be (S-1-0) a theore-
tical construct, an ‘ideal listener’. Or it can simply stand
(S-1-1) for the personal feeling of the author, without
further claims. Or they can be (S-1-2) theoretic representa-
tives of particular social groups with dedicated training, like
‘the average Telemann addict’ or ‘the hip-hop recipient’. Or
they may be (S-1-3) concrete people from an empirical
study. The real meaning of the symbol sequence is slightly
different in each of these cases.

Semantics S-2 can be useful with different degrees of
precision, for instance, one may want to address chord
sequences without specifying the inversions.

Semantics S-3 can be relevant for encoding and auto-
mated processing e.g. when comparing, documenting and
analysing analyses as such, i.e. works in music theory. It
could be a fruitful attempt to translate the (approximately)
50 different publications on the harmonic structure of the

2 Music & Science

first twelve measures of Tristan and Isolde into one format,
strong enough to capture all intended semantics, and apply
automated analysis.

Semantics S-4 has most of its relevance on the meta-level
of discourse and practical work-flow: it shows which pitch
classes are not covered, i.e. which are in the notes but not
considered relevant by the author of the analysis, or, con-
versely, which are not present in the score but in the effective
harmony, according to that author. Thus it can be used for
correctness checks by author, editor, reviewer and reader.

Only the semantics of kind S-4 are currently computable
by machines. It is implemented by funCode for the func-
tional style of musical analysis, as it is done by Nápoles
López & Fujinaga (2020) for the roman numeral style.

The differences between the semantics S-1 and S-4 are the
widest: in S-1 the terms DD and SP describe two different
functional derivations, implying different inner mental repre-
sentations induced by listening. In S-4 they simply deliver
identical sets of pitch classes. Similar with D/79+ vs.Sp6+,
with s6- vs. sG3_, etc. Each of these cases is a typical
example of identical ‘reference’ (‘denotation’/‘significance’/
‘Bedeutung’), but different ‘sense’ (‘meaning’/‘Sinn’), as dis-
cussed by Hyer (2011, pg. 121ff) referring to Frege. This corre-
sponds to the difference between ‘measuring […] as an
empirical fact’ and ‘as an intuited chain of intuitions’, strongly
emphasised by Lewin ([1987]2007, pg. 18).4

1.3 Intended Use Cases
In the tradition of mathematical re-modelling (Lepper, 2021),
our proposal does not invent anything new, but only tries to
unify and simplify a family of historically evolved annotation
styles, which are currently in wide use, and give them pre-
cisely definedmathematical semantics—to make them acces-
sible for automated processing and to clarify their semantics
unambiguously for human discourse. funCode is thus a con-
tribution to practical data processing, not to music theory,
but based on the theories of computer languages and har-
monic analysis.

Even nowadays authors must still explicitly clarify their
labelling system. The first footnote in the article by
Heetderks (2015) (which is taken in the following as an
example of a recent, typical and arbitrarily chosen publica-
tion using scale degree theory) starts: ‘In this article, major
triads will be indicated by …’ In the context of more and
more automated processing by digital systems, but also for
human discussion, precisely defined but versatile and modi-
fiable encoding standards are desirable. Therefore the authors
of the recent ‘Annotated Beethoven Corpus’ (Neuwirth et al.,
2018) added a formal definition of the syntax of their scale
degree labelling system. For applications of funCode in the
human discourse see the discussion of the abbreviation
“Gr” in section 2.10 and the naming problems in Table 5.

The formalisation of funCode is published in a technical
report (Lepper et al., 2022) as a Prolog program which at
the same time is executable and serves as a formal specifi-
cation of syntax and semantics. The adaptability of this

basic framework is intended to map different labelling
systems, thus making them accessible e.g. to automated
translation and comparison, and clarifying their semantics
in human discussion.

The implementation is also maintained as open source,
currently on sourceforge.net. It allows funcode
source texts to be parsed and evaluated into (sets of) coor-
dinates in the Euler space. These results could e.g. be
further reduced to 12-tone pitch classes and fed into exist-
ing retrieval engines to search for harmonic constructs
which are more conveniently written in the functional
style, like the example (D)sG3- D7 t from above.

As a by-product, thousands of existing analyses in the
European functional tradition can possibly be connected to
contemporary analytical tools (from Neo-Riemannian and
transformation theory) semi-automatically by aligning them
manually to the precisely defined funCode language and pro-
cessing them as described in detail in section 2.8.

The implementation additionally provides a layout algo-
rithm to generate conventional two-dimensional rendering
and an experimental back-end, see section 2.2.

Integrating harmonic labels into a computer model of
music is a non-trivial task not yet addressed, and is
briefly discussed at the end of section 2.1.

A (semi-)automated annotation of music scores with
functional symbols is currently out of reach. Nevertheless
funCode is a first contribution: before attempting an auto-
mated translation, a precise and unambigious specification
of a target language is required.

1.4 Design Principles of the funCode Approach
Not intending to invent something new, nevertheless in
mathematical re-modelling always a certain ‘clean-up’
takes places. Any language found in cultural practice has
evolved through history, but has not been designed ex ovo
as a ‘Domain Specific Language’ with properties defined
by the contemporary professional mathematical theory of
language and parsing. Consequently, there are always
some ‘rough edges’ which should not be taken over but
straightened out, in particular, because these are often only
small peculiarities that cause considerable damage to compo-
sitionality, general applicability, easier parsing, etc. Most of
the corrections to apply are canonical continuations: they
remove a particular restriction which evolved in practice as
‘professional blinker’ but which is not necessary from the
mathematical viewpoint.5 ‘Computational thinking’ (Broy,
2011) means to learn from automated processing for the pre-
ciseness and handiness of human communication.

Thus some basic properties have been clearly marked as
indispensable:

D-1 Transposition-invariant symbols: every identical
harmonic pattern must deliver identical symbol
sequences, e.g. appearing in a key of c major, c
sharp major and c flat major. The harmonic sub-
stance which shall be encoded must be readable

Lepper et al. 3

independently from the transposition and always
completely explicit.6

D-2 Syntax and semantics must be easily readable and
writable by humans and machines.

D-3 Semantics must be recognised with minimal
context information. (Nevertheless, little
dependency may be allowed for ergonomic
reasons. For example, D7 always means a minor
seventh, an abbreviation following convention
and practical usability, but T7- and T7+ must
always be qualified explicitly.)

D-4 Localisation and further adaptability: every har-
monic notation system has its merits, and many
scholars have been used to a particular system for
decades, which they want to continue to use.
Since in funCode all possible adaptations are for-
malised, complete automatic translation between
these variants is feasible.

1.5 The Layered Syntax of funCode
All funCode specifications are organised by four hierar-
chically layered dimensions of addressing. They model

the concrete practice when adding analytical labels to a
piece of music, which has remained largely unchanged
since its historic beginnings: the top part of Figure 1
shows the (simplified) music in staff notation. Below
are the added labels (regardless of whether roman numer-
als or functional theory). The very last line (in teletype
font) shows the funCode encoding of that complete anal-
ysis. The arrows and numbers in gray are not part of the
analysis notation but added to indicate the dimensions
of its organisation:

L-1 On the top level, one can have a vertical stack of
tracks. In practice, the existence of more than
one track can have very different meanings, see
section 2.1 below. This is called conventional two-
dimensional arrangement (C2DA) in the follow-
ing and has existed from the very first beginnings
till today, see Figure 3, cited from Heetderks
(2015), a recent publication.

L-2 Internally, each track is a horizontal sequence of
labels. The graphical position establishes the relation
between each label and a time point in the music.

Figure 1. Typical appearance of a harmonic analysis by labelling. The top part shows a simplified staff notation of the music under

consideration (Mahler, II/1, m.327ff). Below are two tracks in conventional two-dimensional arrangement (C2DA), aligning the

functional labels vertically with the score positions. The gray layer is not part of the notation, but a comment on it, showing the four

axes of semantics and their representation by graphical arrangement: (L1) tracks, (L2) score positions, (L3) simultaneous chords, and

(L4) voice leading. The bottom line shows both tracks as funCode source text.

4 Music & Science

L-3 Each horizontal position in the track can carry
zero to many function symbols. A label combin-
ing more than one function symbol stands for a
compound chord (a case more frequently found
with functional symbols than with roman
numeral analysis).7

L-4 The finest coordinate models the voice leading
internal to the same chord: few voices change
their pitch from on score position to the next,
without altering the chord’s basic function.

Table 1 defines the syntax of all four layers of funCode
completely; only the structure of the track names and of the
interval modifiers are pluggable and appear as parameters T
and M. The syntax is given as an ‘extended’ context free
grammar (Wikipedia contributors, 2021), where on the
right side regular expressions (Wikipedia contributors,
2022) may appear. Their operators and have
the usual meaning of alternative, option, and arbitrary and
non-empty repetition, respectively.

The syntax and semantics of all four layers of the
funCode architecture will be explained step by step in
section 2.

1.6 Fundamental Entities of funCode Semantics
Figure 2 shows the fundamental semantic entities which
result from parsing and evaluating a funCode label
sequence as UML classes (UML, 2022). Please note that
these correspond not always to concrete class definitions
of implementation, but exist on the conceptual level; in
the current implementation (Lepper et al., 2022) they are
realised by term compounding or by facts in the Prolog
data base. (This section is for orientation only, all these enti-
ties are explained in detail in the next section.)

Each combination of Track and ScorePos identifies at
most one Sum node, realising the axes L-1 and L-2 as
described in the preceding section and in Figure 1. Each
Sum node represents the axis L-3 and contains one or more
simultaneous Chord nodes. Each of these requires a
RootExpr and may carry ExplicitIntervals. These in turn
must have a Number (= their traditional name, encoded
numerically) and may have a Modifier (to indicate major,
minor, augmented, or diminished size etc.). The sequence of
intervals is ordered (in the funCode source text horizontally,
in C2DA vertically), which allows intervals to be inherited
from a predecessor chord with an identical root, along with
axis L-4. The pitch classes which do sound for a particular
label result from the explicit intervals in the source text and
the rules for default intervals. Each Sum node liesIn a
Context, which is either a Track or a RelativeSection,
and which is used to resolve the pitch of the relative root
expression. Each Context also has a context, except the
top-most track—the graph of the ‘liesIn’ relation forms a
tree, which is not easily expressible in UML.

Each RelativeSection is relativeTo either a Sum
(with only one Chord!) or a Virtual. The latter consists
only of a RootExpr and means a function expected in a
context, but not realised by any sounding note in the music.

The (optional) tonal center of a track, the root symbols,
the explicit intervals, and all properties derived by their
summation, evaluate into the Euler data type.

2 The Four Layers of funCode
2.1 Top-Level: Track Building and Horizontal Score
Positions
As mentioned above, doing harmonic analysis can be seen
as adding labels under the music, at selected time points.

Table 1. Complete syntax of all funCode layers.

Lepper et al. 5

Figure 2. Most important semantic entities seen as UML Classes. Simplified diagram: attribute definitions are not shown; boxes

without attribute part are mere scalar data types or simple interfaces.

Figure 3. Analysis from Schubert D 960 by Heetderks (2015), using sub-tracks. (a) = staff notation and roman numeral analysis from

the publication; (b) = translation into functional style; (c) and (d) = application of the funCode L-1 linear encoding to (a) and (b).

6 Music & Science

Assume all these time points are numbered consecutively,
starting with 1. By which means this numbering is estab-
lished is out of scope of funCode—in C2DA it is done
by mere vertical juxtaposition. The relation from labels
to the music is established only by this index, called
score position in the following: the source text of a
funCode expression is parsed from left to right and the rec-
ognised labels are consecutively assigned to the score
positions. The next position to be assigned at a particular
parsing state, i.e. when interpreting a particular position in
the funCode source text, is called current score position in
the following.8

An analysis is often organised in several vertically
stacked and horizontally extending tracks. Tracks can be
employed for very different purposes:

T-0 To model psychological ambiguity during ‘modu-
lations’ in one single (ideal) listener. This is the
most frequent use case in the conventional text-
book analysis.

T-1 For describing different parts of the music which
sound simultaneously, e.g. one track describing
an organ point and the track above the changing
upper voices.

T-2 To document different interpretations by different
listeners, found empirically or proposed in theory.9

T-3 To represent different opinions by different schol-
ars, for comparison and discussion, or

T-4 in school lessons: different solutions by different
pupils.

Printing and hand-writing normally use different vertical
positions for different tracks (similar for interval stacking
and voice leading, as described later). But this is tedious
and possibly ambiguous, e.g. when reusing physical lines
on the paper or at the line and page breaks. Conversely,
the linear funCode syntax (see Table 1) is always unambig-
uous. It uses the characters “>”, “<”, “{” and “}”:

The reserved character “>” sets a tabulator stop at the
current score position. The construction of each track
starts with one tab stop implicitly set at its starting score
position.

The braces “{” and “}” open a new track which starts at
the current score position. Prepending one or more “<”
characters go back one or more tab stops to start this new
track. After the closing brace, the interrupted track will be
continued as if the braced source text were not present.
From the source text perspective, the second track can be
called a sub-track of the first, its parent track. The sub-track
can inherit some context information, in particular, the
current tonic reference point. The grammar in Table 1
shows that a tonal key (denoted by the non-terminal
tonicCenter) can be given at the start of any (sub-)track
explicitly, thus overriding the inherited value.

One or more “<” not followed by a brace also start a
sub-track, but with no means of continuing the inter-
rupted one, which is thus considered to be complete.

This is a standard use case with modulations, i.e. shifts
of the current tonal centre.

Figure 3 shows the transcription of a typical analysis from
a recent publication: in the upper part is the staff and the
roman numeral analysis as published by Heetderks (2015).
Below is the same analysis rewritten by us in a functional
style (using German pitch names), followed by both ver-
sions as a linear source text using the L-1 track syntax of
funcode. (Only the functional part is really formalised by
funCode; applying L-1 to roman numeral analysis is done
here informally and left to future work.)

Each track can be given a title, which currently is any
sequence of characters not containing the double quote
‘"’. This title could encode the roles of and a hierarchical
order among the tracks, but this is currently not defined
by funCode.10

When an analytic annotation is already encoded as a
computer model, e.g. as MusicXML or MEI, then tracks
and labels are already separated into different ‘XML ele-
ments’ of the encoding. In this case the top-level L-1
funCode operators are not needed, but parsing and evalua-
tion of the other layers L-2 to L-4 is applied directly to these
elements’ contents. Then all data flow by inheritance (from
parent track to sub-tracks, but also between adjacent chords,
see below) must be provided for accordingly. These are
non-trivial problems not yet addressed by funCode.
Similar problems arise with the more abstract proposal by
Hentschel et al. (2021), in which each piece of information
is anchored at some particular chord object and contextual
cross-references as required by the funCode layers L-1
and L-4 are not foreseen.

2.2 Details and Pitfalls With Tracks and Score Positions
While syntax and semantics of the L-1 layer seem rather
simple, indeed subtle pitfalls and problems had to be
solved by taking appropriate design decisions. Figure 4
shows examples (using dummy contents).

We want to give precise semantics to the common
pen-and-paper practice. In C2DA a parent track is found
by starting at the beginning point of the sub-track and
searching upwards for the first track which starts earlier
(= C2DA-subtracking). Thus a sub-track may not start
earlier than its parent track which (possibly) defines a new
tonic centre, to be recognisable in C2DA; therefore in
funcode no tab stops earlier than its beginning are inherited
by a sub-track. In the first example from Figure 4 this prevents
the source variant “{e:E F G << J K }” which would yield
the same score positions, but for “J K” the tonal context “e:”
in the source text versus “a:” by C2DA-subtracking.

Tab stops later than the beginning could be inherited if
they are ignored as long as they are not yet overtaken by
the current score position. But this would make the
meaning of the “<” operator context-dependent, which can
be confusing. In the tracks defined by “A B >C D <<{E <
X}” versus “A B >C D <<{E F G < X}”, the X would
jump back under the A and E versus the C and G, respectively.

Lepper et al. 7

Hence it appears more regular to inherit no single tab stop
(except the own starting score position) from the parent track.

In the functional style, larger segments can be put in
parentheses, to make them relative to a preceding or the fol-
lowing label, see section 2.7 below. A sub-track may not
start earlier than a containing relative section for a correct
indication of the tonic reference point in C2DA. The
second example source in Figure 4 cannot change its end
“<K L)” to “<<K L)”, because this would move these
labels out of the containing parenthesis, which means ‘rel-
ative to C’.

C2DA-subtracking also forbids that a later sub-track is sep-
arated from its parent track by an earlier long sibling. The lines
in the second example of Figure 4 show the x coordinates of
the labels correctly, but are not a correct pen-and-paper ren-
dering: label “K” seems to inherit from the track starting
with “d:”, but is meant to inherit from the top-level track
starting with “c:”. Therefore funCode comes with a simple
layout algorithm that ensures that every subtrack is optically
bound to its parent track, see Figure 5 for a demonstration.
This algorithm gets a minimum gap size g ≥ 1 as its param-
eter, which ensures that tracks are sufficiently separated
when paper lines are reused.

Please note that parsing of C2DA as an input would
be even more complicated because you need a ‘micro x
coordinate’ (finer than the mere score position) to

distinguish

2.3 Track Items, Sequential Order and Compound
Function
Each track is a sequence of items, see dimension L-2 in
Figure 1. The source text of these items will be separated
by the funCode parsing process. Most of the items will be
function labels, which are assigned to the score positions
consecutively.

In most cases, a function label is only one functional
symbol, which stands for the simultaneously sounding
pitches which realise this function. But for more advanced
compositions it is sometimes useful to combine

several of these. In C2DA this is simply done by vertical
juxtaposition—in funCode by the operator “&”, see the
axis L-3 in Figure 1, the examples in Figures 1 and 10
and the entities Sum and Chord in Figure 2.

Two further kinds of items are allowed in tracks: “-”
says explicitly that the preceding item is valid also for
this score position, and “~” says that there is no entry at
all for this particular score position. In a printed or hand-
written version, the first is often represented by a similar
symbol like ‘—’, the second corresponds to paper left
blank. (They are not represented in Figure 2.)

The special Eureka operator “!” can be prepended to a
function label, indicating that the functional sequence up to
this point is recognised by the listener only a posteriori when
this point is reached. This is a fundamental mechanism in all
kinds of modulations. In traditional rendering this has been
indicated by a backward arrow, see the last track in Figure 6.

2.4 Function Symbols and Their Semantics
The next finer level of the funCode architecture defines the
function symbols. Each one consists of a sequence of letters
(case is significant, see the non-terminal rootAndMode in
Table 1), followed by a sequence of numbers, each one pos-
sibly decorated (non-terminal intervalDecorated in that
Table). Each function symbol describes and/or interprets
one single chord appearing in the concrete music or abstract
pattern under description.

In semantics S-4 (evaluating to pitch classes), the letter
sequence merely defines the pitch class of the root of that
chord, and whether its third is major or minor.

But in semantics S-1 different character sequences stand
for different perceptive situations, different paths in the
mental space of harmonic experience. Different character
sequences which have identical S-4 semantics stand for
different paths which reach the same ‘acoustic’ end point,
see section 1.2 above. For instance “C:Tps” and “C:Sp”
both stand for d minor in semantics S-4. Another
example is “T5-” to a ‘modern’ listener, where everybody
trained ‘classically’ hears “D46+”.

Figure 4. Examples of sub-track specifications. The upper case letters stand for function labels; the lines before the arrow are source

text; the two-dimensional arrangement after the arrows shows the intended score positions. (The second example is not a correct

C2DA, see the text.)

8 Music & Science

Following these letters, a sequence of instances of
intervalDecorated describes additional intervals added to
the triad.

2.5 The Euler Net as the Semantic Domain for Roots
and Intervals
As semantic domain for both chord roots and chord compo-
nents funCode employs the Euler net (Tonnetz). This is a
two-dimensional vector space of pitch or interval classes,
i.e. pitches or intervals modulo octave. The first coordinate

represents the exponent with which the interval of the pure
fifth is applied, the second that of a pure major third. As
usual, a point in this space is identified by a pair of
integer numbers (q, t). Any triad thus corresponds to two
neighbouring points on a parallel to the axis of fifths
(q0, t0) and (q0 + 1, t0), plus a point (q0, t0 + 1) or (q0 +
1, t0 − 1) (which is a major third above the lower or
below the upper point) for a major or minor triad, respec-
tively. A minor third is represented by the vector (1, − 1).

First proposed by Euler (1774), it has since been used in
very different variants of music theory. Please note that
very different semantics can be assigned: originally it was

Figure 6. Analysis of the ‘Schicksalsfrage-Motiv’ from ‘Die Walküre’. Above: simplified staff notation of the music; middle: traditional

two-dimensional arrangement of labels, including the backward arrow; last two lines: the same in funCode encoding.

Figure 5. The funCode layout algorithm creates a conventional two-dimensional arrangement (C2DA), in which going upward from

the head of each track first hits its parent track. The algorithm visits the tree of sub-tracks in the depth-first manner, siblings sorted by

ascending start positions. The dashed box in the first graphic is the third sub-track of the topmost track. Its preceding sibling has already

been allocated and is overlapping, thus must be shifted down. The next graphic shows the recursive application of this process, which

may affect more than one track.

Lepper et al. 9

used to explore the relationship between notation and
tuning, and the axes were meant to represent the two inter-
vals verbatim as pure frequency relations. Conversely, the
functional theory uses the points to represent psychological
situations, inner models or ‘situative feelings’ of the receiv-
ing mind: functional theory implies that the human recep-
tion of harmonic processes operates as if pure intervals
ruled. Even when equal-tempered tuning is applied to
produce the sounding physical frequencies of music perfor-
mance, as it is mostly the case nowadays, the resulting
mental representations are different when a process goes
two fifths up (from T to DD) versus to the subdominant’s
relative minor and then up again (to SpD). This is repre-
sented symbolically by the difference of a syntonic
comma, the vector (4, − 1) in the Euler net.11

The Euler net can be used to represent pitch classes or
intervals; both versions are easily convertible but should
be distinguished.

Furthermore different notions of enharmonic identity can
be applied: originally and in funCode there is none—the
vector space is infinite in every direction. When used to
model the equal-distance twelve tones, then a cyclic closure
is defined after 12 steps on the fifth axis; more recent theories
add a cycle after three steps on the third axis, etc.

The Euler net is more expressive than conventional
notation, which identifies the pitch classes “d” of the fifth
of the dominant in C major and the root “d”, of the relative
chord of its subdominant (in funCode notation: C:D//5
and C:Sp//1). Even less expressive are the equal-distance
pitch classes (MIDI keys) which identify even and .

Figure 7 shows some typical variants of a graphical rep-
resentation of the Euler net: the left version has orthogonal
axes for the coordinates of the fifths and the major thirds, thus
clearly showing the underlying construction. This form is
especially useful when a third orthogonal axis for the pure
seventh is added, see Vogel (1975). Its labelling uses one of
the many variants to indicate the syntonic comma: the
E, reached from C by a natural third ‘is lower’ that
the E reached by four-fifths, which is again lower than the
E’ reached by going one third down and eight fifths up, etc.12

Nowadays the variant on the right side of the Figure is
often preferred: its didactic advantage is that every set of
labels that looks like a minimal triangle indeed represents
a triad, which is not the case in orthogonal variant. On
the other hand, major and minor thirds seem to be on
equal terms, which contradicts the construction. (For a
survey on literature about the Euler net see Cohn (2012,
pg. 28, 29); see also Cohn (2011) and Gollin (2011).)

2.6 Labelling Root and Mode of Chords
The sequence of characters encoding the root pitch class
and the major-minor-mode of the chord thus is interpreted
as a vector in the Euler space. Applying this vector to the
current tonic reference point, as defined by the context of
the expression, yields the root pitch. Function in
Table 2 shows the mapping of the starting points (given

by the tonicCenter at the start of the track) into the Euler
net. Setting c = (0, 0) is totally arbitrary; assuming that
the key values stand for the ‘circle of fifth’ can later
become critical, see section 2.11 below.

funCode re-models the most widely used system in con-
tinental Europe’s functional analysis. While historically
there were fundamentally different alternatives (Marschner
(1894), Oettingen (1913), Keller (1957), Erpf ([1927]
1969), Karg-Elert (1931)), this system (in many slight varia-
tions) is the only one which survived and is the pre-dominant
in German language literature and many other countries of
the European continent. It is based on the works of
Grabner (1923) and Maler (1931)13 and has been further
developed and modified by many theorists—for a survey
see Imig (1970). Because of those alternatives, it should be
called ‘GM-style notation’ or similar, but in the following,
we simply write ‘functional’. (funCode itself only adds a
few canonical continuations, for instance to allow the opera-
tors D and S in a ‘free compositional way’ at any position in
the string.)

Each instance of rootAndMode starts with S, T, or D, fol-
lowed by arbitrary many P, G, S or D, all in upper or lower
case. The upper and lower case indicate major and minor
third, so the mode of the constructed triads is immediately
visible for the reader. The vectors in the Euler net which
correspond to these operator characters are depicted in the
left part of Figure 8.

While this calculus indeed is somehow similar to
Neo-Riemannian achievements (see section 2.8 below),
the main difference is that professionally educated ‘classi-
cal’ musicians in most parts of Europe carry in mind con-
crete experiences and mental and emotional associations
with these symbols (not only semantics S-1 but also S-4,
‘intuited chains of intuitions’, see above). The remark of
Clark (2011, pg. 297) ‘classical harmonic thinking
[implies] Roman numerals’ is simply wrong.

The letter G stands for the German ‘Gegenparallelklang’,
as introduced by Grabner (1923), or simply ‘Gegenklang’,
which corresponds to the English ‘counter parallel’, and to
the ‘Leittonwechselklang’ of Riemann. The letter P stands
for the German ‘Parallele’, which corresponds to the
English ‘relative chord’. The application of these operations
per se always goes from a minor to a major triad or vice
versa. If such a character follows a character of the same
case, a change of the third is meant to be appended as a
further operation. Writing a change from minor to major
as “⇑” and the other as “⇓”, the transformations in the top
of Table 3 make these implicit operations explicit.

After these transformations have been applied as often as
possible (a process which always terminates) a simple
addition of the vector values given by the function in the
same Table delivers a vector. Applying this vector to the
current tonic reference point delivers the root of the chord.
The mode of the chord is simply indicated by the case of the
very last character (⇑ counting for upper case and⇓ for lower.)

With the current tonic reference point set to c, the Sp is a
d minor chord, SP a D major, SPg an f sharp minor and

10 Music & Science

SPG an f sharp major. SpD is an A major, namely the dom-
inant to the parallel to the subdominant. Please note that
preceding a d, D, s or S, a change of mode is redundant
because the third is not at all relevant to construct the
next chord. Therefore SPD is rejected as an error by the
reduction in the right part of Table 3.

2.7 Relative Sections
The Euler vector defined by an instance of rootAndMode is
applied to the current tonic reference point to get the root of
the chord, all again encoded as coordinates in the Euler net.
Every track either declares a tonicCenter at its beginning, or
it inherits it from its parent track.

But sequences of labels can also be included in parenthe-
ses. This means that the tonic reference of all these labels is
not the track-wide value but the root of the immediately pre-
ceding or following label (= node type RelativeSection in
Figure 2). Figure 9 schematically shows some examples.
The square brackets can be used to notate a chord that
does not sound, i.e. which has no correspondence in the
concrete music, but nevertheless serves as a reference
point (= node type Virtual in Figure 2).14

Please note that the relative sections need not be properly
nested for establishing the tonic reference, see lines f) to i)
in the Figure. This is especially convenient for sequences of
falling fifth, etc.15 Relative sections are used in practice
quite frequently. They correspond to the ‘slash notation’
like “V/V” from scale degree labelling.

Of course, the track definitions (layer L-1) and relative
sections (layer L-2) are designed for ‘full compositionality’
in the computer science meaning of the term, i.e. for being
independently combinable. But some nasty cases of ‘feature
interaction’ have to be treated by the implementation
because sub-tracks should not extend beyond a containing

relative section. See the technical report Lepper et al.
(2022) for details and examples.

2.8 Relation to Neo-Riemannian Triad
Transformations
The European GM-style of labelling and the more recent tra-
ditions of transformation theory and Neo-Riemannism have
the same ancestors and thus much in common. (See Lewin
([1987]2007) and Hyer (1989) for the earliest works and
Gollin & Rehding (2011) for a recent survey.) In a major pub-
lication from this field, Cohn (2012, pg. 2ff) describes as an
initial motivating example verbosely the reception process
of the beginning of the recapitulation section in the first move-
ment of Schubert’s major piano sonata D960, measures
217–256. Applying the functional labelling (as taught in
many European continental high schools) in a mere schematic
way, would end up in measure 256 with the label Bb:tgPsG
for the finally reached major. Vice versa, this label can be
decoded by every pupil quite fluently as ‘ minor –
minor, writable as minor – A major – d minor –
major’. The one enharmonic exchange is only for ease of
spelling—it indicates that the final major is a priori some-
thing different than the starting point. A second and closer
look shows that we went three major thirds down (twice a
step xG and once a step xP, together with the step s), so we
are a small diesis higher than we started.

Provocatively we could say that the Neo-Riemannian
theorists had to re-discover what is evident to every high
school student who grew up with functional instead of
scale degree labelling. (Fortunately they had to, because
underways they discovered a plethora of new viewpoints,
analytical tools and modes of presentation.) This is partly
admitted by Cohn (2012, pg. xiii): ‘Although these [func-
tional] labels are descriptively useful, they do not in

Figure 7. An Euler net is a two-dimensional vector space with discrete points, addressed by integer coordinates. The two axes

represent the exponents of the intervals ‘pure fifth’ and ‘pure major third’. Their multiplication originally gave a concrete frequency, but

nowadays can also represent a pitch class (in very different tuning systems) or even an affective state in an abstract harmonic space. The

left variant with perpendicular axes is the older and more convenient when a third axis shall be added; the right variant has the didactic

advantage that all minimal triangles represent musical triads.

Lepper et al. 11

themselves lead to an understanding of triadic syntax […] I
view these labels as a bridge to a first approximation; what
lies on the other side of the bridge […] is an understanding
of how the moves designated by these labels behave as part
of a compositional system.’

Indeed the functional labels can directly be translated
into Cohn’s operations as shown in the right half of
Figure 8.16 See the Schubert result from above:

Bb:tgPsG ⇒ make all mode changes explicit

(make g, G, p and P always change mode, but

s, S, d and D never.)

Bb:tG⇓PS⇓G ⇒ replace XS by XpG, xs by xGp, XD by

XgP, xd by xPg ⇒
Bb:tG⇓PpG⇓G ⇒ eliminate adjacent inverses ⇒
Bb:tG⇓G⇓G ⇒ translate character symbols from German

to English ⇒
Bb:tLpLpL ⇒ write both directions of transformation in

a unified way ⇒
Bb:tLPLPL

The current implementation of funCode provides auto-
mated translation of functional root expressions into L/P/
R style coordinates (Lepper et al., 2022). The only
strange character remaining in the last line is the “t”
which says: ‘start the transformation chain with the tonic
triad in minor mode’. It is not evident why Cohn’s L/P/R
calculus should be more expressive than the original func-
tional encoding. For instance, the first line shows more
clearly that the step from A major to d minor is perceived
as a cadential one (tgP to tgPs) and not as a compound
RLP step.17 On the other hand, the last line shows more
clearly that we went three major thirds down. And, of
course, the much more regular structure of the L/P/R trans-
formations (and their further derivations N/H/S, see Cohn
(2012)) connect them much more directly to the mathemat-
ical devices like groups, lattices and relations.

2.9 Layer L-4: Chord Components and Voice Leading
The lowest level of the funCode architecture describes the
sounding components of a chord by giving the interval
from its root pitch.

With no explicit interval specification appended, the
semantics S-4 realise the tonal function indicated by the
function symbol as a concrete triad, with root tone, third
and fifth. Further intervals can be added to that chord by
appending numbers (with modifiers) to the symbol. The
root tone can be explicitly suppressed by a “/” character
immediately following the root symbol, the other default
components by appending 3/ and 5/. Our canonical con-
tinuation of this traditional way of writing are the double
slashes as in D// which cancel all default components of
the triad. This allows easy notation of the concept of
‘Klangvertretung’ (sound substitution), as proposed by
Riemann (1882, pg. 185): D// is equivalent to D/3/5/,
and Figure 10 shows two realistic applications.

As a by-product we get a notation for single-pitch
chords, which can also be (ab-)used as a notation for a
single chord component, like D//7.

The syntax and semantics for the additional chord com-
ponents are configurable, in particular, those for iModifier,
see section 2.10 for details. The examples used in this
article show the variant preferred by its first author.

The top of Table 6 shows the data type of the configura-
tion object, followed by some sample instances. The table at
the bottom is a sample declaration of all supported combi-
nations of interval numbers and modifiers.

Some added intervals suppress their default sounding
neighbours implicitly; this is configured by the field
suppressDefault of the configuration object.

Table 4 shows which components of the chords on the
different steps of a fixed scale are affected when this scale
changes between major and minor: the third, sixth and
seventh step of the scale changes, and these pitch classes
take descending interval roles when building chords on
ascending steps, represented by the descending lines of
boxes in the Table. Whenever the root of the chord is
affected itself, all pitches not affected reflect the major/
minor change and vice versa. This leads to a pattern
which may be interesting to theoretical reflection but not
suited for easy encoding. Indeed, it violates design princi-
ple D-2.

So we decided that only the third of each chord is
determined by its mode. All further added intervals
must be given their size explicitly, by an instance of
iModifier. Therefore the data type of the ‘current tonic

Table 2. Normalisation of functions codes and their Euler net semantics.

12 Music & Science

reference’ of each track is indeed only a pitch class,
without any mode indication. As a consequence, tonal
key does emerge from harmonies but is never given a
priori, as such. This corresponds to the more modern
ways of composition, starting with late Schumann,
Liszt, and Bruckner, and to the notion of tonality as
defined by Schenker (1906), which is always a mixture
(‘Mischung’) of major and minor steps. As a conse-
quence, only the size of the third is indicated by the
(upper or lower case) of the functional symbol, all other
intervals (suspensions, transitions or additions) must be
qualified explicitly.18

The configuration from Table 6 defines the modifiers
-, ε, + and ++ for the ‘perfect’ intervals 1, 4, 5 and 8,

meaning diminished, perfect, augmented and double-
augmented respectively, and--,-,+, and++ for the ‘imperfect’
intervals 2, 3, 6, 7, 9, meaning diminished, small, large, and aug-
mented. But very different notation systems and sets of allowed
interval sizes are frequently used and can be plugged in by rede-
fining the map in intervals.

For mere convenience, a replacement text for a 7
without modifier over a root symbol ending with D can
be defined, which allows to write D7 or D79- instead
of D7- and D7-9-, etc.

Describing the components of a chord by combining
numbers and modifiers had been invented by Riemann
(1880) and called ‘Klangschlüssel’ (= ‘sound key’). First,
he applied it not to function symbols but to names of

Figure 8. Relations between triads, according to Grabner (1923)/Maler (1931) and Cohn (2012).

Table 3. Encoding of the tonic centers, i.e. of the starting points in the Euler net. The origin

is chosen arbitrarily.

Figure 9. Relative sections. The upper case letters stand for function labels.

Lepper et al. 13

concrete pitch classes, as it is nowadays widely done in
‘lead sheet’ notation in popular music. To eliminate any
ambiguity, tone names may be followed by a colon charac-
ter in the context of funCode. So D:7-9- means a
D-major-seven-nine chord, but D7-9- means a dominant
relative to the current tonic centre.

But also in pure theory, a compact and non-ambiguous
notation of interval structure is desirable; see Table 5 for
several examples of complex chord structures with very idi-
osyncratic names in German, taken from a standard text book
on scale degree theory by Ganter (1975), and for the names of
the chords of the augmented sixth in English theory.

The number stacks seem to be borrowed from the
Baroque ‘figured bass’ notation, but indeed mean some-
thing fundamentally different, namely intervals relative to
the root note, not to the bass note. The bass note and possi-
bly the melody tone can be indicated by appending an
underscore “_” or the caret “^” to the interval specifica-
tion.19 An error is signalled by funCode if one of these
signs is present more than once.

Another relic from figured bass is that the number stack
is ‘abused’ to indicate voice leading: if the rootAndMode is
verbatim the same as its predecessor (not regarding the case
of the very last character) or even totally absent, then the
number stack is related to the preceding number stack.
Dots “.” in the stack stand for unaltered stack positions
(in the traditional rendering often printed or hand-written
as ‘–’), i.e. for the same tone in the preceding and in the
current chord, while numbers replacing another number
are possibly meant as ‘voice leading’: the c going to the b
in Figure 1 is indicated by the 4 replaced by the 3. But
that is not necessarily so. When applying semantics S-4 it
merely means that some pitch class is no longer present
but replaced by some other, saying nothing about octaves
and voice leading.

2.10 Localisation and Customisation
The evaluation process of chord bases and intervals is more
or less controlled by a configuration object, see the data
type Configuration in Table 6. It supports far-ranging

customisation and localisation. This is important for the
acceptance and practical usability of funCode, because a
theorist might be used to a particular idiom which they
want to keep as far as possible when switching to a
digital and more formalised representation, see design prin-
ciple D-4 in section 1.4.

funRenamings is applied to the input conceptually before
the evaluation described by Table 3 takes place. This allows
localisation of function symbols, like ‘C’ or even ‘Cp’ for
‘counter-parallel’ instead of ‘G’ for German ‘Gegenklang’.

Similar, keyRenamings is applied before from
Table 2 is evaluated, allowing national pitch names like
‘la’ or ‘h’.

chordAbbreviations are added as further alternatives to the
definition of the non-terminal rootAndMode in Table 1 and
expanded according to their definition. These short-cut
rules are not important for machine processing, but for read-
ability and writability by humans.

The configuration object in Table 6 contains two
widely used abbreviations for the chord of the diminished
seventh and the chord of the Neapolitan sixth. Please note
that these abbreviations are expanded verbatim: they
contain interval digits, so they put an end to the containing
character sequence.

allowed: (sN D) D T
allowed: DsN DD D T
both expand to: DsG3- DD D T
allowed: (D) sN D T
not allowed: sND sN D T
because it expands to: sG3-D sG3- D T

The customisation mechanism can be employed for
more precision. In English literature we found for instance
the abbreviation “Gr” used in different articles with
different meaning, see the last three lines in Table 5: most
authors restrict it to DD/5-–79-, some also include
D/5-–79-, and Heetderks (2015) uses it in his Figure 8
for DD/3–5-79-. A simple but fully formal declaration
at the begin of an article (like “Gr:=DD/5-79-”) would
clarify and allow the well-readable notation “Gr3–”.

The further fields in the data type Configuration in have
already been described above: the set of all intervals, which
make up the concrete chord at the given score position, is cal-
culated from the explicitly mentioned intervals and the defaults.
The default mechanism is again not required by machine pro-
cessing but for convenient reading and writing by humans.

The map intervals gives the external representations for
the corresponding Euler values. (In Table 6 the example
stdIntervals is printed as a two-dimensional table, but this
means indeed a map of type String ↛ CEuler.)

All intervals in the set defaults are added to the the set
of pitch classes, unless the interval’s number (stripped
from the modifier) appears in the explicit intervals, or a
suppressing interval appears there, as defined by the map
suppressDefault. So in standard ‘classic’ usage of harmony,
the third and the fifth are in every chord, but not if a

Figure 10. Labelling the concepts of ‘Klangvertretung’ (sound
substitution) and organ point.

14 Music & Science

‘suspension’ is signalled in the intervals. Consequently 4
implies 3/ and 6- and 6+ imply 5/. E.g. in the hypothetical
example in Table 6, all chords contain a minor seventh
by default and an explicit 6+ implies 7/.

The flexibility of interval encoding is necessary
to cover different functional theories. For instance,
there exist numerous different opinions about the
(physical and psychological) nature of the seventh in
the dominant function.20 By defining for instance

three different variants can even coexist and be applied occa-
sionally (as soon as CEuler has been embedded into the
three-dimensional vector space CVogel to support the
natural seventh).

2.11 Enharmonic Adjustments
Up to here, the semantics of one single annotation track (more
precise: its S-4 semantics) have been calculated relative to an
arbitrarily chosen starting point. As soon as two such tracks

overlap, which are intended to be simultaneously valid (i.e.
the T-0 use case from above), the Euler coordinates should
be adjusted accordingly, to reflect their mutual relation.

The upper part of Figure 11 shows an example of the
famous ‘syntonic mill’: simply evaluating the chord roots
according to the annotation delivers the coordinates in
large font. But since the first overlap in both tracks shows
a difference of the syntonic comma (4,-1), the following
coordinates should be adjusted to the sequence shown in
the box, which does not return to the starting point.

The lower part shows the well-known text-book enhar-
monic modulation from c major to major via the
‘German Sixth’. It shows that simply comparing the
chord roots is not sufficient but must be extended to all
notes. In this context, all kinds of enharmonic steps must
be considered, like (12, 0), (4, 2), (0, 3), (4, − 1) etc. For
this, an algorithm has not yet been implemented.

3 Conclusion
Mathematical remodelling of existing cultural symbol
systems aims at clarifying syntax and semantics for both
human discourse and automated processing. It forces all
conventional implicit assumptions to be discussed expli-
citly and encourages us to straighten out rough edges of his-
torical origin, often by canonical continuations.

funCode applies mathematical remodelling to a
widely used system of functional harmonic labelling
(Grabner–Maler style = GM-style). It is intended as a
target format for the transcription of existing analyses
(e.g. for automated processing) and as a versatile and adap-
tive labelling system on its own.

In course of the analysis of existing practice, it first turned
out that fundamentally different kinds of the semantics of har-
monic labelling per se must be distinguished (section 1.2).

Transforming current practice into a mathematical model
yields four more or less independent strata. Only one of them
is specific to functional theory (see Figure 1 and section 1.5).

Table 4. Chord components affected by the global mode of the

containing scale. The boxes show the scale degrees affected by a

change from major to parallel minor (here: c) and their roles in

the chords on all degrees of the scale. The numbers show the

chord components affected by that change.

Table 5. Examples for interval specifications and their idiosyncratic namings.

Lepper et al. 15

The complete grammar for all four strata is specified in the 18
lines of text in Table 1. The complete semantics are specified
as an ‘executable meta-model’ by some 800 lines of Prolog
code in the accompanying technical report (Lepper et al.,
2022).

On the top level L-1, the C2DA of tracks and labels is
represented by a linear encoding using tab stops and
braces (section 2.1). In spite of its seeming simplicity,
numerous subtle pitfalls have been identified, concerning
possible ambiguities of inheritance relations and the
nesting of tracks and relative sections (section 2.2,
Figure 5 and the technical report).

The next lower level L-2 is the horizontal sequence of
items in one single track, each item related to one abstract
score position. On this level the rules for relative references
have been formalised (section 2.7, Figure 9).

Level L-3, the combination of more than one functional
chord into one label, turned out as the least problematic.

The lowest level L-4 (covering functional symbols, root
pitch classes and chord components) employs the Euler net
as its semantic domain (section 2.5, Figures 7 and 8). A
close relation of GM-style and Neo-Riemannian triad trans-
formations is obvious which is discussed in section 2.8 and

is supported by additional translation functions in the
implementation.

To be acceptable by practitioners, all levels of the system’s
architecture must be adaptive to the different usus of schools
and even to personal styles of authors: different abbreviations
of conventional pitch classes and of function symbols can be
plugged into the system. Especially the modifiers for interval
modes (major, minor, diminished, augmented, etc.) can be
defined freely, together with the sets of both default intervals
and suspension rules. This can make funCode useful also in
‘non-classical’ contexts (section 2.10, Table 6).

ATranscriptions of Neo-Riemannian
Examples
The following lines give without any comment the tran-
scriptions of examples from major publications of the
Neo-Riemannian school, to demonstrate their combination
of expressive power with concrete connotations in any prac-
tical musician’s mind. The transcriptions reflect the ‘physi-
cal’ semantics (see section 1.2); alternatives according to
S-1 to S-3 are perhaps possible. An animated presentation
as suggested by Cohn (2011, pg. 330) could easily be

Table 6. Configuration and localisation of funCode.

16 Music & Science

implemented based on the funCode implementation con-
tained in Lepper et al. (2022).

Diagram ‘Ex. 10.8’ by Clark (2011):
“g#:t tP tp tpG {tP tG} {tP tpS} (D) Tg”

Diagram ‘Ex. 10.9’ ibd., with “|” standing for the sep-
arating bar lines:
“c:t tP tpG tpgP | T tG s Tp (:D) | (:TP) (:S)
(:S) (:S)”

Diagram ‘Ex. 10.12’ ibd.:
“Bb:t tP tp tpG tps tpS”

Engebretsen (2011, pg. 364): becomes
“sG DD”.

Ibd., pg. 368, Riemann’s Example 85: “c:T ss s3-

D6+4 7 T” (The second note head seems an engrav-
ing error for C5.)

Example 86: “a:t DD D t”
Example 87a: “a:tP D t”; example 87b: “c:Tp s T”
Example 88a: “c:T tG s56+ D46-53 t”; 88b: “c:T

tG (D46+ 53) tP”; 88c: “a:t Tg D5-7 T”; 88d: “c:t
Tg (s56+) Tp”

Example 89a: “c:T tG46- 53”; Example 89b: “a:t
(D) Tg”

Example 90a: “c:T (D) Sp”; Example 90b: “a:t
(s) dP”, etc.

The newly defined mediant operations by Kopp (2011)
have been covered by GM-style ever since: ‘USM’ = “TG”,
‘UFM’ = “tP”, ‘LSM’ = “TP”, and ‘LFM’ = “tG”.

Acknowledgements
The authors thank all reviewers for their valuable suggestions to
improve this article.

Action Editor
David Meredith, Department of Architecture, Design and Media
Technology, Aalborg University.

Peer Review
Nick Harley, Vrije Universiteit Brussel, Artificial Intelligence
Lab. Maximos Kaliakatsos-Papakostas, Athena Research and
Innovation Center in Information Communication and knowledge
Technologies.

Figure 11. Syntonic deviations.

Lepper et al. 17

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding
The authors received the following financial support for the
research, authorship, and/or publication of this article: Open
access publication of this article has been financially supported
by Deutsche Forschungsgemeinschaft (DFG) and Open Access
Publishing Fund of Osnabrück University.

ORCID iD
Markus Lepper https://orcid.org/0000-0002-9120-3908

Notes
1. Learning from mathematics is often sensible: contemporary

systems use the wording ‘pitch class’, which is borrowed
from the theory of congruence relations in mathematics. For
the same thing, older theories had to invent their own, stand-
alone nomenclature, like ‘Elementarfeld’ by Keller (1957).

2. There have been some attempts for compromise. For example,
Arnold Schoenberg uses roman numeral theory in his
Harmonielehre (Schoenberg, 1922), but integrates functional
symbols in his later work (Schoenberg, 1954).

3. The formula is given in the widest spread variant of the tradi-
tional functional notation (Imig, 1970, pg. 223). Possible
funCode encodings of the three examples are (D7) sG3– !
D7 t, DD5-7 D7 t and DD7 D7 t. (The first term describes
an augmented cadence where a dominant is applied to the
second chord which is the Neapolitanian subdominant; then
the normal dominant seventh and the minor tonic follow.
The second and third terms describe a cadence starting with
an applied dominant, which has a diminished or pure fifth,
respectively.)

4. S-5 is currently not supported by funCode. For this, the
semantic sphere needed a more complex data type than just
sets of pitch classes, but a notion of voice or octave, or
similar. But the current implementation is able to process
symbol sequences meant according to S-5 by its author and
produce S-4 results: the sequence ‘t24 33’ in S-5 represents
a double suspension, including the correct voice leading. In
our implementation, it is a valid input, and its S-4 interpreta-
tion is simply two sets of pitch classes, so it is equivalent to
‘t24 t’.

5. The early and far-going examples for a canonical continuation
are the ‘Riemann Systems’ by Lewin (1982), where the ‘triad
of triads’, as explored by Hauptmann (1873), is enhanced to
arbitrary generator intervals and tested a posteriori for their
applicability in musical practice.

6. ‘Aus praktischen Erwägungen ist es w unschenswert, dass
sich die Akkordstruktur (Intervallaufbau) unmittelbar aus
der Funktions- oder Stufenbezeichnung ablesen läßt.’
(Hussong, 2005, pg. 99) (‘For practical reasons it is desirable
that the chord structure (interval structure) is immediately
evident from the symbol for the function or scale degree.’)
In particular this should be context free and transposition
invariant. Commonly, the function ‘tP’ is written as
in C major, but as in C sharp major, which clearly vio-
lates these principles. This is a typical example of the confu-
sion between ‘external representation’ (= note writing =

syntactic sphere) and intended semantics, often found in
music theory.

7. ‘Eleventh and thirteenth chords, in particular, have a com-
pound nature, consisting of one chord superimposed over
another.’ (Hewitt, 2011, pg. 254). So what is labelled in
lead sheet notation as ‘11’ or ‘13’ often corresponds to axis
L-3.

8. According to Hentschel et al. (2021), always ‘a segment [of a
score is] referred to by [a] chord symbol’ (our emphasis). In
our model and in C2DA this segment extends from the
current score position to its successor.

9. A major example for a theoretic approach is the characterisa-
tion of three possible listener types when hearing ‘Himmel
nimm des Dankes Zähren’ from Freischütz by Ploeger
(1990, pg. 38).

10. The tracks in Figure 1 stand for different encoding styles, e.g.
by different authors, thus show case T-3, while those in
Figure 6 show the different effects which simultaneously
affect the listener = T-0.

11. Hewitt (2000, pg. 43,44) states ‘[The interpretation that]
enharmonically equivalent intervals [..] are the same interval
spelled differently [..] fails to take into account the various
psycho-acoustical and psychological modifications that may
be made be the perceiver’ (our emphasis). ‘[E]qual tempera-
ment is an unsatisfactory theoretical base from which to
approach and understand musical intervals.’ and cites
Mitchell (1962) ‘[..] whatever pair of pitches might represent
an isolated sound, as soon as it participates in a contiuum of
musical relationship, its nature becomes completely depen-
dent on its surroundings.’ See also the detailed discussion
by Ploeger (1990, pg. 47ff)

12. Since the nodes of the Euler net represent classes of pitches
modulo octave, the correct statement is of course ‘taking
one representative each, with minimal distance, the represen-
tative of E, is lower than that of E.’

13. See Holtmeier (2011, pg. 12p, 40ff) for a discussion of the dif-
ferent issues of these works and of the involvement of both
authors in politics, degenerating their own achievements.
We do not agree that ‘it was only its specific development
in National Socialism that led to its monopoly, which
allowed Maler’s function symbols to reach virtually all insti-
tutions of higher education after the Second World War.’ As
Holtmeier says himself, the definition of their symbol system
took place in their ‘open-minded’ pre-Nazi issues, and later it
got accepted for its clarity, compactness, expressiveness and
wide applicability, demonstrated therein. ‘Die Einfachheit
der Funktionssymbole ist ein wichtiger Faktor, der mit
entscheidet, ob sich ein Harmoniesystem durchzusetzen
vermag oder nicht’. (‘The simplicity of the functional
symbols is a decisive factor for the assertiveness of a har-
monic system.’) (Imig, 1970, pg. 229).

14. The corresponding non-terminal in Table 1 is
, which is further restricted not to end with

an operation ⇑ or ⇓, see technical report Lepper et al.
(2022) for details.

15. Lewin ([1984]2006, pg. 192 writes ‘S(S(S(S(S(S)))))’ for the
‘plagal power of D major’ at the beginning of the six plagal
steps at the end of Parsifal. In any coding system this is erro-
neous: conventionally he must write ‘(((((S)S)S)S)S)S’.
funCode’s canonical continuation allows ‘(S)(S)(S)(S)(S)S’,
saying simply that every chord functions as subdominant
for its follower, independent of its definition.

18 Music & Science

https://orcid.org/0000-0002-9120-3908
https://orcid.org/0000-0002-9120-3908

16. These operations were introduced as “DOM”, “SUBD”, “MED”,
“SUBM”, etc. by Lewin ([1987]2007). They were transformed
into the operators “L”, “R”, “D”, and “P” by Hyer (1989, pg.
162ff), written as postfix operators and linked to the Euler net
as their semantic domain (pg. 190ff).

17. The step types s and RLP have identical semantics accord-
ing to S-1, but differ according to S-4. See their discussion
above. Similar objections by David Kopp (Clark, 2011,
pg. 300).

18. The relevance of a global mode indication to the size of addi-
tional intervals is always critical. E.g. Kurth in his famous
interpretation of the begining of ‘Tristan’ explicitly mentions
the f natural instead of f sharp in the first chord (Hyer, 1989,
pg. 3), in spite of a DD5- being the default in a minor key
since Beethoven’s first piano sonata. Even a text book
addressing popular musicians supports our viewpoint:
“Modal interchange […] led to […] a common pot of
chords [which] contains all of the chords from both the
major and the minor keys. [Thus] chord progressions […]
are difficult to classify as being in the major or the minor
key. […] If the tonic triad is major, then the music will
sound like it is written in the major key; whereas it is
minor, it will sound like it is written in the minor key. This
is irrespective of what other chords are being used.”
(Hewitt, 2011, pg. 236)

19. These roles have been introduced by Georg Capellen, 1903
(Imig, 1970, pg. 143)

20. See among many others Hauptmann (1873, pg. 114),
Riemann (1918, pg. 142), Imig (1970, pg. 86), Vogel (1975,
pg. 92, referring to Leipniz and Euler), and Hewitt (2000,
pg.112) for different standpoints.

References

Broy, M. (2011). Informatik als wissenschaftliche Methode: Zur
Rolle der Informatik in Forschung und Anwendung. In: 41.
Jahrestagung der Gesellschaft für Informatik, LNI, volume
P192. Berlin. ISBN 978-3-88579-286-4, pp. 43–44.

Cambouropoulos, E., M Kaliakatsos-Papakostas., & C Tsougras.
(2014). An idiom-independent representation of chords for
computational music analysis and generation http://hdl.
handle.net/2027/spo.bbp2372.2014.155.

Clark, S. (2011) On the imagination of tone in Schubert’s
Liedesend (D473), Trost (D523), and Gretchens Bitte
(D564). In: Gollin & Rehding (2011).

Cohn, R. (2011). Tonal pitch space and the (neo-)Riemannian
Tonnetz. In: Gollin & Rehding (2011).

Cohn, R. (2012). Audacious euphony — chromaticism and the
triad’s second nature. New York, NY: Oxford Press. ISBN
978-0-19-977269-8.

Engebretsen, N. (2011). Neo-riemannian perspectives on the
Harmonieschritte. In: Gollin & Rehding (2011).

Erpf, H. ([1927]1969). Studien zur Hharmonie- und Klangtechnik
der neueren Musik. Wiesbaden: Breitkopf & Härtel.

Euler, L. (1774).De harmoniae veris principiis per speculum
musicum repraesentatis. Novi Commentarii academiae scien-
tiarum Petropolitanae 18.

Forte, A. (1973). The structure of atonal music. New Haven: Yale
University Press.

Ganter, C. (1975). Die dur-moll tonale Harmonik – Teil III:
Chromatik. Basel: Hega-Verlag.

Gollin, E. (2011). From matrix to map: Tonbestimmung, the
Tonnetz, and Riemann’s combinatorial conception of interval.
In: Gollin & Rehding (2011).

Gollin, E., & Rehding, A. (eds.) (2011). The Oxford manual of
neo-riemannian music theories. New York, NY: Oxford
Press. ISBN 978-0-19-522133-3.

Grabner, H. (1923). Die Funktionentheorie Hugo Riemanns und
ihre Bedeutung für die praktische Analyse. München:
Leuckart.

Hauptmann, M. (1873). Die Natur der Harmonik und Metrik.
Leipzig: Breitkopf und Härtel.

Heetderks, D. (2015). From uncanny to marvelous: Poulenc’s
hexatonic pole. Theory Pract, 40, 177–204. https://www.
jstor.org/stable/10.2307/26477736.

Hentschel, J., Moss, F. C., McLeod, A., Neuwirth, M., &
Rohrmeier, M. (2021). Towards a unified model of chords in
western harmony. In: proceedings of the Music Encoding
Conference MEC 2021, in preparation.

Hewitt, M (2000). The tonal phoenix. Bonn: Orpheus
Verlag.ISBN 3-922626-96-3.

Hewitt, M. (2011). Harmony for computer musicians. Boston,
MA: Course Technology. ISBN 1-4354-5672-6.

Holtmeier, L. (2011). The reception of Hugo Riemanns music
theory. In: Gollin & Rehding (2011).

Hussong, H. (2005). Untersuchungen zu praktischen
Harmonielehren seit 1945. Berlin: Verlag im Internet GmbH.

Hyer, B. (1989). Tonal intuitions in Tristan und Isolde. Ann
Arbor, MI: University Microfilms International. ISBN
1-4354-5672-6.

Hyer, B. (2011). What is a function? In: Gollin & Rehding (2011).
Imig, R. (1970). Systeme der Funktionsbezeichnung in den

Harmonielehren seit Hugo Riemann. Düsseldorf:
Gesellschaft zur Förderung der systematischen
Musikwissenschaft e.V.

Karg-Elert, S. (1931). Polaristische Klang- und Tonalitätslehre.
Leipzig: Leuckart.

Keller, W. (1957).Handbuch der Tonsatzlehre. Regensburg: Bosse.
Kopp, D. (2011). Chromaticism and the question of tonality. In:

Gollin & Rehding (2011).
Lepper, M. (2021). de linguis musicam notare — Beiträge zur

Bestimmung von Semantik und Stilistik moderner
Musiknotation durch mathematische Remodellierung.
Osnabrück: epOs.ISBN 978-3-940255-88-4.

Lepper, M., Trancòn y Widemann, B., & Oehler, M. (2022).
funCode 1.0 Technical Report. Universität Osnabrück.
https://doi.org/10.48693/28.

Lewin, D. (1982). A formal theory of generalized tonal functions.
J Music Theory, 26(1), 23–60. http://www.jstor.org/stable/
843354.

Lewin, D. ([1984]2006). Amfortas prayer to titurel and the role of
d in parsifal. In: Studies in Music with Text. Oxford University
Press. ISBN 978-0-19-531713-8.

Lewin, D. ([1987]2007). Generalized musical intervals and trans-
formations. New Haven: Yale University Press. ISBN
978-0-19-531713-8.

Lepper et al. 19

http://hdl.handle.net/2027/spo.bbp2372.2014.155
http://hdl.handle.net/2027/spo.bbp2372.2014.155
http://hdl.handle.net/2027/spo.bbp2372.2014.155
https://www.jstor.org/stable/10.2307/26477736
https://www.jstor.org/stable/10.2307/26477736
https://www.jstor.org/stable/10.2307/26477736
https://doi.org/10.48693/28
https://doi.org/10.48693/28
http://www.jstor.org/stable/843354
http://www.jstor.org/stable/843354
http://www.jstor.org/stable/843354

Maler, W. (1931). Beiträge zur durmolltonalen Harmonielehre.
München: Leuckart.

Marschner, F. (1894). Die Klangschrift. Wien: Selbstverlag.
Mazzola, G. (1990). Geometrie der Töne: Elemente der mathema-

tischen Musiktheorie. Basel: Birkhöuser.
Mitchell, W. J. (1962). The study of chromaticism. J Music

Theory, 6(1), 2–31. http://www.jstor.org/stable/843257.
Nápoles López, N., & Fujinaga, I. (2020). Harmalysis: A Language

for the Annotation of Roman Numerals in Symbolic Music
Representations. In: De Luca E and Flanders J (eds.) Music
Encoding Conference Proceedings 2020. Humanities
Commons, pp. 83–85. doi:10.17613/380x-dd98.

Neuwirth, M., Harasim, D., Moss, F. C., & Rohrmeier, M. (2018). The
Annotated Beethoven Corpus (abc): A dataset of harmonic analyses
of all Beethoven string quartets. Frontiers In Digital Humanities
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00016/full.

Oettingen, A. (1913).Das duale Harmoniesystem. Leipzig: Siegel.
Ploeger, R. (1990). Studien zur systematischen musiktheorie.

Lilienthal, Bremen: Eres. ISBN 3872040952.
Rahn, J. (1980). Basic atonal theory. New York: Longman.
965)]rameau Rameau, J. P. ([1722]1965). Traitè de l’harmonie.

New York: Broude.
Riemann, H. (1877). Harmonische Syntaxis. Grundriß einer har-

monischen Satzbildungslehre. Leipzig: Breitkopf und Härtel.
Riemann, H. (1880). Skizze einer neuen Methode der

Harmonielehre. Leipzig: Breitkopf und Härtel.

Riemann, H. (1882). Die Natur der Harmonik. Leipzig: Breitkopf
und Härtel.

Riemann, H. (1918). Handbuch der Harmonielehre. Leipzig:
Breitkopf und Härtel.

Schenker, H. (1906). Harmonielehre. Wien: Univeral Edition.
Schoenberg, A. (1922). Harmonielehre. Wien: Universal-Edition.

ISBN 3-7024-0029-X.
Schoenberg, A. (1954). Die formbildenden Tendenzen der

Harmonie. Mainz: Schott.
Tymoczko, D. (2011). A geometry of music: Harmony and coun-

terpoint in the extended common practice. Oxford: Oxford
University Press. ISBN ISBN 978-0-19-533667-2.

UML (2022). Unified modelling language – class diagram https://
en.wikipedia.org/wiki/Class_diagram.

Vogel, M. (1975). Die Lehre von den Tonbeziehungen. Bonn-Bad
Godesberg: Verlag für systematische Musikwissenschaft.

Weber, G. (1817). Versuch einer geordneten Theorie der
Tonsetzkunst. Mainz: Schott.

Wikipedia contributors (2021). Context-free grammar —
Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/
index.php?title=Context-free_grammar&oldid=1055322802.
[accessed 11 February 2022].

Wikipedia contributors (2022). Regular expression — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.php?
title=Regular_expression&oldid=1070604585. [accessed 11
February 2022].

20 Music & Science

http://www.jstor.org/stable/843257
http://www.jstor.org/stable/843257
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00016/full
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00016/full
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/w/index.php?title=Context-free_grammar&oldid=1055322802
https://en.wikipedia.org/w/index.php?title=Context-free_grammar&oldid=1055322802
https://en.wikipedia.org/w/index.php?title=Context-free_grammar&oldid=1055322802
https://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=1070604585
https://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=1070604585
https://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=1070604585

	 1 Introduction
	 1.1 Harmonic Analysis Methods and Symbol Systems
	 1.2 Possible Semantics of Harmonic Analysis Label Sequences
	 1.3 Intended Use Cases
	 1.4 Design Principles of the &sans-serif;funCode&/sans-serif; Approach
	 1.5 The Layered Syntax of &sans-serif;funCode&/sans-serif;
	 1.6 Fundamental Entities of &sans-serif;funCode&/sans-serif; Semantics

	 2 The Four Layers of funCode
	 2.1 Top-Level: Track Building and Horizontal Score Positions
	 2.2 Details and Pitfalls With Tracks and Score Positions
	 2.3 Track Items, Sequential Order and Compound Function
	 2.4 Function Symbols and Their Semantics
	 2.5 The Euler Net as the Semantic Domain for Roots �and Intervals
	 2.6 Labelling Root and Mode of Chords
	 2.7 Relative Sections
	 2.8 Relation to Neo-Riemannian Triad Transformations
	 2.9 Layer L-4: Chord Components and Voice Leading
	 2.10 Localisation and Customisation
	 2.11 Enharmonic Adjustments

	 3 Conclusion
	 Acknowledgements
	 Notes
	 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

