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Abstract: With the developments in improved computation power and the vast amount of (automatic)
data collection, industry has become more data-driven. These data-driven approaches for monitoring
processes and machinery require different modeling methods focusing on automated learning
and deployment. In this context, deep learning provides possibilities for industrial diagnostics
to achieve improved performance and efficiency. These deep learning applications can be used
to automatically extract features during training, eliminating time-consuming feature engineering
and prior understanding of sophisticated (signal) processing techniques. This paper extends on
previous work, introducing one-dimensional (1D) CNN architectures that utilize an adaptive wide-
kernel layer to improve classification of multivariate signals, e.g., time series classification in fault
detection and condition monitoring context. We used multiple prominent benchmark datasets for
rolling bearing fault detection to determine the performance of the proposed wide-kernel CNN
architectures in different settings. For example, distinctive experimental conditions were tested with
deviating amounts of training data. We shed light on the performance of these models compared to
traditional machine learning applications and explain different approaches to handle multivariate
signals with deep learning. Our proposed models show promising results for classifying different
fault conditions of rolling bearing elements and their respective machine condition, while using a
fairly straightforward 1D CNN architecture with minimal data preprocessing. Thus, using a 1D CNN
with an adaptive wide-kernel layer seems well-suited for fault detection and condition monitoring.
In addition, this paper clearly indicates the high potential performance of deep learning compared to
traditional machine learning, particularly in complex multivariate and multi-class classification tasks.

Keywords: fault detection; condition monitoring; multivariate signals; time series analysis; deep
learning; industrial application

1. Introduction

In the current industrial era, manufacturers rely more and more on the use of sensors
for data collection and analysis. These developments boost the industry towards newer
standards as what is called Industry 4.0 [1,2]. These new approaches for improving
performance and increasing production efficiency require scalable methods to process
and explain the collected (often complex) data such as multivariate time series. With
improved computational power, automated methods are easier to deploy while requiring
less background knowledge on the engineering and physics part of the machinery, resulting
in more efficient and “intelligent” approaches [3,4]. Due to the improved availability of
large datasets derived from sensors, these automated learning techniques, e.g., deep
learning, provide strong performance in signal classification tasks. This work focuses on
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such approaches and provides specific enhancements for accurately distinguishing signals
in fault detection and condition monitoring applications.

Regarding data analysis, in particular industrial applications with heavy machinery
can benefit from a better understanding of the underlying processes and the state of the
equipment in order to adapt their maintenance strategies. Previous research has shown
that depending on the type or size of the machine, rolling bearing element defects account
for at least 40% of broken machinery in industrial applications [5,6]. Such parts are used
in rotating mechanisms of the machine. Due to frictions when the machine rotates, these
bearing elements degrade over time. Traditionally, the condition of a rolling bearing
element would be approximated based on historical data of breakdowns. Nowadays, the
condition of a bearing element can be measured by mounting sensors on selected sections
of the machine to record vibrations [7] or by measuring motor currents of the electrical
engine that drives these elements [8]. Especially vibrations have proved to be effective for
displaying the underlying state of bearings [9].

As one important prerequisite for an effective analysis, raw signals need to be denoised
and preprocessed before analysis—using complex and time-consuming signal processing
techniques to retrieve usable information [7,10]. As a result, the general focus has been
shifted towards deep learning algorithms that are able to process raw data and can auto-
matically construct features by recognizing patterns in the input data [9]. This automated
process saves time, is less prone to human error and may require less domain expertise of a
specialized domain expert.

This paper investigates the use of deep learning in the context of fault detection of
rolling bearing elements and builds on our earlier research [11], exploring the usage of
one-dimensional CNNs for classifying multivariate signals based on data derived from
rotating machines. In particular, we propose several architectures that are built on the
wide-kernel framework developed by [10]. These models tend to handle high frequency
sensor data particularly well, while using a somewhat “shallow” deep learning structure;
therefore, these models are easily trainable, can be scaled when the dimensionality of
the data increases and are applicable in real-time settings. Due to these reasons, such
architectures are then also applicable in different contexts and application domains. We
exemplarily investigate those approaches using two datasets, where we demonstrate their
efficacy for classifying multivariate signals.

Our contributions are summarized as follows:

1. We investigate the performance of wide-kernel CNNs [10] in several settings and
adaptations designed to process multivariate time series derived from various ex-
periments. For this, we demonstrate how high performance in multi-class signal
classification tasks can be achieved.

2. We propose a method for implementing an adaptive wide-kernel in the first convo-
lutional layer that is able to transform any form of sequential sensor data without
any dimensionality reduction; therefore, abiding the principles of a wide-kernel
convolutional layer as proposed in [10,11]. We implement this in two models.

3. We evaluate our model options thoroughly on multiple datasets in deviating contexts
in order to show their generalizability, both with and without large amounts of
training data.

4. Finally, we illustrate the impact of model settings and architecture adaptations on
model performance, resulting in a streamlined model on both the performance side,
as well as computational efficiency.

The rest of the paper is structured as follows: We discuss related work in Section 2,
where we also briefly summarize the necessary background on deep learning. This is
followed by the introduction of the proposed models in Section 3. Next, we describe
the experiments and findings in depth in Section 4. Finally, Section 5 concludes with a
discussion and summary and also outlines some promising future prospects.
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2. Related Work and Background

This section covers relevant work relating to maintenance of industrial machinery
connected to fault detection and condition monitoring, and describes related deep learning
methods in the section below.

2.1. Maintenance

The usage of machinery is essential in industrial applications. Failure of these ma-
chines due to wear of the underlying elements is one of the most prevalent concerns in
industry; therefore, equipment maintenance is critical in preventing malfunctions and, as a
result, minimizing downtime. According to [12], maintenance expenses range from 15% to
60% of the total cost of the manufactured goods. Around 33% of maintenance expenses
are directly connected to redundant and incorrect equipment maintenance within these
margins. As a result, lowering the expenses of costly maintenance might substantially
reduce overall production costs by improving equipment productivity [13].

According to [14,15] there are three distinct techniques for maintaining equipment:
(1) modificative maintenance, in which components are upgraded to improve machine
productivity and performance, (2) preventive maintenance, in which a component is
replaced just before it fails and (3) break-down corrective maintenance, in which a part is
replaced after it fails, leading to downtime of the machine. In this paper, we concentrate
on (2) preventive maintenance, which itself is separated into two types: usage-based
maintenance (UBM) and condition-based maintenance (CBM).

The UBM method relies entirely on arranging maintenance visits by the engineer
when a specific threshold of consumption is achieved. In practice, this implies that visits
are scheduled with a certain interval between them, comparable to a yearly automobile
inspection. This technique results in relatively little equipment downtime, which is good
for production. However, this method has two major disadvantages; the high expenses of
maintenance visits and the replacement of parts that are still usable. As a result, in many
industrial applications, CBM is the recommended maintenance approach, making use of
data-driven methods and approaches, e.g., cf. [14,16,17].

CBM assesses the current state of equipment to identify if maintenance is required.
The concept behind CBM is to only execute maintenance when specific parameters, e.g.,
deviating behavior in the data, indicate a reduction in performance or a predicted rise in
failures. This means fewer maintenance visits and more efficient usage of the underlying
components, which in turn leads to lower overall maintenance costs.

2.2. Fault Detection and Condition Monitoring

Within CBM, fault detection and condition monitoring are common approaches for ro-
tating industrial equipment where faults regularly occur [18]. In the past, this was achieved
using physics-based models, which require background knowledge on the underlying
processes. These models hardly adapt to changing circumstances and increments in the
amount of data and variables [19]. Innovations in data-driven analytics and the advances
in Industrial Internet of Things (IOT) have altered the area of fault detection and condition
monitoring towards a more intelligent approach [4,20]. These methods allow for automated
data processing without prior understanding of technical elements of industrial machinery,
while easily adaptable to changing operation conditions.

Because of the increased availability of large-scale time series datasets and better
processing capacity, the usage of deep learning applications has grown in popularity. These
time series are recorded by sensors, which are increasingly being used for fault detection
and condition monitoring. When elements of equipment decay over time, for example,
the analog metrics of the machine will not immediately reflect this; however, increased
power usage (motor current), vibrations or temperature of machine elements monitored
with internal and external technologies, such as sensors, might indicate that the underlying
parts need to be replaced [4,9,10]. These signals derived from sensors can be converted
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into numerical time series data for subsequent study. However, for reliable fault detection,
considerable efforts in feature extraction is typically required.

Traditional methods for extracting representative features to classify signals include
time-domain analysis (e.g., statistical measures such as mean and standard deviation),
frequency-domain analysis (e.g., Fourier transformations [7], see Figure 1) and time-
frequency domain analysis, (e.g., wavelet transformations [21,22]). As one could expect,
the quantity of features derived from the different domains results in a high-dimensional
dataset. Therefore, features are picked [23] and techniques are frequently used to decrease
the dimensionality of these features, such as principal component analysis (PCA) [24,25]
or linear discriminant analysis (LDA) [26]. Furthermore, [27], for example, utilized infor-
mation entropy to preprocess the original time series data.
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(b) Signal in the frequency-domain

Figure 1. Example of the original signal in the time-domain (a) transformed to the frequency-domain
(b) using the fast Fourier transformation algorithm.

Before the final dataset can be supplied to a classifier, the essential preprocessing
steps typically take a substantial amount of time and high-level knowledge in signal
processing and data processing—regarding standard (non-deep learning) machine learning
approaches. Additionally, the feature extraction process is influenced by the type of
data gathered from a particular machine or sensor, for instance, vibration sensors require
different preprocessing steps than analog sensors.

Within fault detection and condition monitoring, many different classifiers are re-
searched, including k-nearest neighbors (K-NN) [28,29], support vector machines
(SVM) [21,30–32], artificial neural networks [33,34] and interpretable machine learning
methods such as random forests (RF) [35]. The performance of these techniques varies
a lot depending on the data quality, thoroughness of the feature extraction process and
complexity of the classification task; therefore, it is often difficult to find the right classifier
for the task at hand. In other words, there is not one particular machine learning classifier
that is most capable of distinguishing different fault conditions. As a result, a comparison
between classifiers is deemed necessary for every fault detection task to find the most
optimal model.

This work concentrates on deep learning applications, and more specifically on the
use of one-dimensional CNNs in the context of fault detection utilizing time series data,
i.e., multivariate signal data. To evaluate our proposed deep learning techniques, we used
renowned benchmark datasets for fault detection and condition monitoring in various
settings. We look at the generalizability of these techniques, their performance with limited
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training data and compare them to traditional machine learning approaches such as k-
nearest neighbors, random forests and support vector machines.

2.3. Deep Learning

In general, deep learning methods offer strong processing and learning on complicated
data. For instance, automatic feature generation and refinement techniques, such as for
complicated classification problems, may typically leverage connections in the data in order
to retrieve valuable information from the data into redefined structures. Using complicated
multivariate signal data for fault detection and condition monitoring is an example of
utilizing these complex data structures. Overall, there has been a lot of interest in utilizing
neural networks for such complicated classification problems during the previous decade.

Initially, the multi-layer perceptron (MLP) was used, in which all network layers are
fully linked [36]; however, because of the significant increase in calculation time, the depth
of these networks is restricted. Thus, in the past years, more advanced neural network
architectures were developed to accommodate for this.

The creation of recurrent neural networks (RNN), such as long short-term memory
(LSTM) networks, has yielded promising results since they are able to account for time
dependencies and therefore can handle time series data and signals very well [37,38].
However, because of memorizing long-term time dependencies, RNNs use vast amounts
of memory (RAM). So, these models are less suited for long sequence data due to increased
training times. This is especially the case for signal data from sensors, which is often
sampled at a high frequency consisting of many data points. To tackle the training issue
of RNNs, combined models utilizing autoencoders as feature extractors were created [39].
These models enhance computation but also increase the model’s complexity and decrease
its interpretability.

Deep learning algorithms have been used to detect faults and monitor machine condi-
tions many times. The MLP [40] was one of the earliest deep learning applications in fault
detection and condition monitoring. Later, RNNs [37] and CNNs [4,20,41,42] became more
common in fault detection, where they have exhibited significant performance increases.
Further, CNN approaches combined with data transformations, e.g., spectrograms, have
been proposed several times [3,43]. Ref. [44] was successful in the creation of a 1D CNN
that is able to handle raw signals by integrating automated feature extraction with time
series classification. These 1D CNNs can also withstand noise effectively and can be trained
with small amounts of data [45].

Overview—Convolutional Neural Networks

A convolutional neural network (CNN), in general, is a regularized MLP that spe-
cializes in processing two-dimensional inputs such as picture pixels and color channels.
CNNs have previously proven to be effective in computer vision tasks including image
classification and video identification [46,47].

The main advantages of a CNN, compared with a traditional neural network, such as
an MLP, is the use of local receptive fields, weight-sharing and sub-sampling. Especially,
the weight-sharing significantly reduces memory requirements and therefore improves
algorithmic efficiency [48]. Commonly, a convolutional layer consists of three phases. The
first layer performs a number of convolutions, followed by the second phase that consists
of an activation function. Afterwards, a pooling function is applied [48].

Before employing a CNN on one-dimensional data, e.g., time series, the data has to
be converted using signal processing techniques into a two-dimensional representation
in the time-frequency spectrum or using wavelet transforms [22,49,50]. For example, one-
dimensional signals can be transformed in two-dimensional spectrograms, which in turn
can be fed as an image to the CNN. This approach is not able to process raw signals directly,
thus contradicting the advantages of employing deep learning applications over standard
machine learning approaches. The one-dimensional (1D) CNN was created to tackle this
challenge by integrating automated feature extraction for time series classification tasks [44].
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These models are good at handling noise in time series and can be trained with different
data sizes, while being less computationally heavy compared to RNNs or MLPs. As a
result, 1D CNNs are becoming more and more applied in time series classification tasks
such as fault detection and condition monitoring [45].

Convolutional Layer

A convolutional layer convolves the input with filter kernels followed by the activation
unit to generate output features. Each of these filters uses the same kernel to extract local
features from the input local region, called weight-sharing. Results of the convolutional
operations across the input are fed to the activation function that leads to the output
features. The convolution operation is described as:

yl+1
i (j) = kl

i ∗Ml(j) + bl
i . (1)

Here, bl
i denotes the bias and kl

i denotes the weights of the i-th filter kernel in layer l. Ml(j)
describes the j-th local region in layer l. (∗) represents the convolution operation that
computes the dot product of the kernel and the local regions. yl+1

i (j) denotes the input of
the j-th neuron in feature map i of layer l + 1.

Activation Function

The activation function is embedded in every convolutional layer to acquire nonlinear
features from the input after the convolutional operation. Depending on the input and the
task at hand, there are several different activation functions available; however, in recent
years, the rectified linear unit (ReLU) has proven to be efficient in its computations and is
therefore the most common used activation function. In this study, the ReLU activation
function was used in the convolutional layers and can be described as follows:

ReLU(x) = max{0, x + N(0, σ(x))}. (2)

Here, x represents the outputs of the convolutional operation yl+1
i (j) and N(0, σ(x)) rep-

resents Gaussian distributed noise with mean 0 and variance σ(x), which has proven to
make optimization easier [51].

Pooling Layer

The output of the convolutional layer and activation function are usually fed to a
pooling layer (also known as sub-sampling layer). This layer reduces the spatial size of the
input features by a down-sampling operation and decreases the number of parameters and
computations in the network. There are different pooling functions such as max-pooling
and average-pooling. The pooling function performs a local operation over the input
features resulting in a representation that becomes invariant to small translations of the
input. In general, the pooling function can be denoted as:

Pl
i = f (ωl

i S
(

Ml−1
i

)
+ bl

i). (3)

S(·) denotes the pooling operation where values of the convolved features are computed
on different locations. For every layer l, the i-th weight matrix is denoted as ωi. Mi
represents the outputs of the convolutional layer (feature map) and bi denotes the bias.
These calculations then result in the compressed feature representation pl

i given above.

3. Method

The design of a CNN and the quality of the data have a significant impact on its
classification performance, for instance, sensor signals from industrial machinery regularly
contain significant levels of noise. Previous work showed the great performance of using
a wide-kernel in the first convolutional layer, followed by smaller kernels in the follow-
up layers, for detecting faults and classifying conditions of rotating equipment [10,11].
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However, these methods were not able to automatically scale with varying data inputs;
therefore, we extend on those approaches in this work by developing an adaptive wide-
kernel layer that extracts features and filters out signal noise, transforming the input
without any representation loss.

The general idea behind this adaptive layer is that depending on its input data, it will
transform the data into an n-dimensional matrix without losing any information, e.g., the
dot product of the first layer’s output is equal to the dot product of the input data. Hence,
the layer functions as a feature extractor without reducing its dimensionality, which results
in a feature set extracted from low frequency bands [10].

This adaptive layer does require a set of rules to be adhered to. Otherwise, the output
of the first wide-kernel layer does not correspond with the input data. The rules for the
adaptive layer are summarized as follows:

• The sequence length and width of the first kernel should be a power term of two.
• The width of the first kernel should be higher than the denominator for calculating

the stride in the first layer (default = 4).
• The kernel width of the first layer should not exceed the sequence length.

In this case, we calculate the amount of stride in the first layer, followed by the number
of filters used:

Fs =
K
x

,

δ =
S
Fs , (4)

where K is the kernel size of the first layer, x is the denominator used to calculate the stride
in the first layer Fs with a default setting of 4 and S the sequence length of a signal resulting
in penalty function δ. Based on these values, the number of filters can be calculated:

F =
S · TS

δ
. (5)

Here, TS denotes the number of time series available in the data, for example, the number
of sensors. The result is the number of filters, denoted as F, used in the first layer of
the model.

One of the main properties of this equation is that the number of filters will increase
when the kernel size and therefore stride is set to a higher level, while the number of filters
decreases with a low set value. This aligns with the idea that if the kernel size reduces
the local information, there will be multiple versions of those local combinations. If the
kernel size increases, there are less steps that the kernel is applied to per filter. Therefore,
increasing the number of filters will equalize this deviation.

We implemented this adaptive layer structure on several fault detection and condition
monitoring tasks in the form of a time series classification task. In this section, the proposed
1D CNN models are described in more detail. In addition, a supplementary page (https:
//github.com/JvdHoogen/Adaptive-WCNN) is made available containing the code for
the proposed models.

3.1. Adaptive Wide-Kernel CNN (A-WCNN)

Similar to our previous proposed WDTCNN model [11], the adaptive wide-kernel
CNN (A-WCNN) contains five convolutional layers followed by two fully connected
layers; however, the A-WCNN is able to adapt its first wide-kernel layer based on the
dimensionality of the input data. So, this hybrid version can be easily deployed on different
datasets with other dimensionalities, without having to manually adjust the architecture
of the model. After each convolutional layer, the model utilizes local average pooling to
decrease the vector size of the convolutional output with length T divided by two, resulting
in a pooled output length of T

2 .

https://github.com/JvdHoogen/Adaptive-WCNN
https://github.com/JvdHoogen/Adaptive-WCNN
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In our experiments, we assessed the performance of the A-WCNN under deviating
circumstances using multiple sensors. In addition, the model generalizes more easily
and allows different kernel sizes, which is set to 64 in this paper. The architecture of the
A-WCNN based on a two-dimensional time series input, segmented into sequences of
2048 data points, is shown on the left side of Figure 2.
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Figure 2. Left: A-WCNN model utilizing the adaptive wide-kernel layer on two time series. Right:
Ada-WMCNN model that processes two times series in separate channels.

3.2. Adaptive Wide-Kernel Multichannel CNN (Ada-WMCNN)

As we have presented and shown in our previous work, a wide-kernel deep multi-
channel CNN (WDMTCNN) [11] is able to better process and classify signals due to its
separate feature extraction between the different time series dimensions. The model is
fed by separate inputs each representing a univariate time series. These time series are
processed at the same time by the separate CNNs, which are concatenated in the last stages
of the model, e.g., before the fully connected layers. This approach leads to completely
independent feature representations of the separate time series, which has proven to per-
form better in [11]. One main issue with the multichannel approach is that the model is less
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scalable than the non-multichannel versions, since the number of separate CNNs increases
with every additional feature in the multivariate time series, resulting in a complex model
with many more parameters. In many cases this leads to longer processing times while
performance gains are not always evident.

We adapted the WDMTCNN by only implementing a separate CNN structure in
the first wide-kernel layer. This optimized model is still able to extract these specific
characteristics of every individual time series, e.g., features from low-frequency bands, but
concatenates directly after, resulting in less parameters and is therefore less computationally
heavy. To compare its performance properly with our previous multichannel model
(WDMTCNN) that runs completely separate CNNs, which is called the A-WMCNN in this
paper, we experimented with both model settings to show its behavior across multiple
datasets and multiple experiments. In addition, our adapted multichannel model also
exploits local average pooling throughout every convolutional layer, reducing the vector
size with steps of two. A complete overview on Ada-WMCNN can be seen on the right
side of Figure 2.

3.3. Parameter Settings

Besides the models’ architecture, parameter settings are vital in finding the most
optimal classification performance. In this section, we examine the parameter settings of
both models.

• Normalization: The distribution of each layer’s input varies throughout training,
slowing down the process. Batch normalization is a technique for minimizing the
influence of internal covariance on the training process, thus speeding up the training
process [52]. We imputed batch normalization right after the convolutional layer. For
each input x, batch normalization normalizes each dimension k and computes the
training set’s expectation and variance:

x̂(k) =
x(k) − E

[
x(k)

]
√

Var
[
x(k)

] . (6)

When it comes to nonlinear representations, normalizing each input may modify what
the layer represents. For each activation, batch normalization has a shift and scale
function to account for this constraint:

y(k) = p(k) x̂(k) + q(k) , (7)

where p(k) and q(k) scale and shift each activation x(k), respectively. These parameters
are learnt in tandem with the model’s initial parameters, restoring the network’s
representation power.

• Fully Connected Layer: Before the final classification layer, the models are provided
with a fully connected layer. This layer is used to identify global compositions of the
final convolutional output and is equivalent to a fully connected layer in a multilayer
perceptron. The fully connected layer is denoted as follows:

FCl = f
(

ωl ∗ xl + bl
)

, (8)

for layer l, where ωl is the weight matrix and xl is the input for the fully connected
layer, represented as a flattened vector of the output from the previous pooling layer.
A dot product operation is denoted by ∗, while a bias term is denoted by bl . The
Sigmoid activation function employed in the layer is represented by f (·).

• Classifier: In the last layer of both models, a Sigmoid classifier is used, which is
expressed as:

σ(xi) =
exi

1 + exi
, (9)



Appl. Sci. 2021, 11, 11429 10 of 21

where x is the value of the preceding layer’s ith output, and e is Euler’s mathematical
constant. This results in output values that are independent of each other and are not
constrained to sum up to 1. Therefore, we chose Sigmoid because it excels in classifying
signals of any length with modest or no variations across classes, necessitating the
calculation of each probability separately.

• Optimization: An Adam stochastic optimizer is used to optimize the networks. For
each individual parameter, it makes use of the power of adaptive learning rates. The
optimizer is computationally efficient and memory-light, making it ideal for models
with a large number of trainable parameters that process high dimensional data.
Adam is particularly well suited for noisy and non-stationary signals [53]. Adam
optimization can be denoted as:

gt = ∇θ f t(θt−1) ,

mt
θ = β1mt−1

θ + (gt − β1gt) ,

vt
θ = β2vt−1

θ +
(

g2
t − β2g2

t
)

,

m̂θ =
mt

θ
1−(β1)t ,

v̂θ =
vt

θ
1−(β2)t ,

θt = θt−1 − α · m̂θ

(
√

v̂θ+ε)
.

(10)

At epoch t, f (·) represents the stochastic objective function with parameters θt, yield-
ing gradient gt. The first and second biased moment estimates are designated as
mt

θ and vt
θ , respectively, where the decay rates are β1 = 0.9 and β2 = 0.999. The

bias-corrected momentum is represented by m̂θ and v̂θ . Using a default learning
rate of α = 0.001 and ε = 10−8, the corrected momentum is utilized to update the
parameters θt.

• Loss Function: Both networks construct the loss function using mean squared error
(MSE), which is more often employed in regression analysis than classification tasks.
MSE, on the other hand, may produce fewer differences between values, which we
think is beneficial for our experiments, since certain fault circumstances seem to be
comparable. The MSE is calculated as the average of the squared differences between
the projected ŷ and actual y values, with greater discrepancies penalized by the model.
MSE is expressed as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 . (11)

3.4. Software and Resources

In this research, we used Python combined with Tensorflow and Keras to develop the
proposed models. In addition, all other algorithms, such as the machine learning models,
are derived from the Sklearn package. Calculations were performed with the support
of Numpy and table formatting with Pandas. For optimizing processing time, the data
was standardized using the StandardScaler algorithm provided in the Sklearn package.
Furthermore, to reduce the overall training time, the models were trained on a dedicated
server with two Intel Xeon CPUs (3.2 GHz), 256 GB RAM and a Nvidia Quadro RTX 6000
(24 GB) GPU. After training, the models are fairly small (between 1 and 2 MB) and are
deployable on standard PC hardware as well as edge computing platforms.

4. Results

To evaluate the proposed models, we used data from the Case Western Reserve
University (CWRU) [54] and Paderborn University [8] reflecting bearing fault experiments
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of rotating equipment. In this section, both experiments and datasets are described in more
detail. Furthermore, all results are discussed in this paragraph.

4.1. CWRU Bearing Dataset

The CWRU bearing dataset represents a bearing fault experiment where damages were
applied to the bearing element. To measure vibration signals, sensors were placed on the
drive end and fan end of the machine; we refer to [54,55] for more detail. The test rig is also
displayed at: https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures;
Figure 3 shows an example of the according signals. These vibrations are digitized into
two time series that we segmented into sequences of 2048 data points without overlap.
The data from the experiments used in this study is divided into two categories; 12k fan
end and 12k drive end, both utilizing a sampling rate of 12 kHz. Both experiments contain
different properties, resulting in deviating datasets with fluctuating amounts of classes.
Within these datasets, different machine operations are used to measure the vibrations,
respectively; 1797, 1750, 1730 and 1772 motor speed (revolutions per minute, RPM). Next
to that, there is a normal condition for every motor speed.

Figure 3. Example signal of the vibrations from both sensors derived from the CWRU Bearing dataset.
The red box indicates the length of one data sample (sequence).

Overall, in many fault detection and condition monitoring studies, the CWRU bearing
dataset [54,55] has been used, e.g., [10,43,45,56–58]. It can be considered as a de facto
benchmark dataset for fault detection because it is publicly available and in principle
modeled analogously to important industrial application settings, where data are typically
not made openly available. Furthermore, the CWRU dataset is straightforward to interpret
and analyze by combining the large number of supplied class labels, which are typically
difficult for standard machine learning models to handle.

There are three different depths of damages inflicted to the bearing, 0.007, 0.014 and
0.021 inches, respectively. Each damage type has five distinct bearing fault locations (ball,
inner race, outer race opposite, outer race orthogonal and outer race centered). To enhance
the tasks’ complexity and restrict the number of data samples per class, we opted to count
each condition as a single class. Thus, resulting in a large-scale classification task where
distinctions are made on fault level and machine condition. The data samples are made by
segmenting the two time series into 2048-point sequences with no overlap. This sequence
length has been extensively utilized in other research for efficient implementation of the
fast Fourier transform (FFT) method, which is known as a powerful baseline [10,45,59].
Every fault condition has approximately the same number of samples per class. Except for
the normal conditions, where the number of samples fluctuate. An overview of the dataset
with its number of classes and samples can be seen in Table 1.

https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures
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Table 1. Number of data samples (sequences) for every experiment type, with their respective motor
speed (RPM) and the supplementary normal conditions.

Experiment Name Motor Speed Nr. of Classes Samples per Class

12k Fan End 1797 13 59
1750 12 59
1730 12 59
1772 12 59

12k Drive End 1797 14 59
1750 14 59
1730 14 59
1772 14 59

Normal Condition 1797 1 119
1750 1 236
1730 1 237
1772 1 236

Within these experiments, we applied varying combinations of the different motor
speeds. Combining these different motor speeds leads to various numbers of samples, but
also changes in the number of classes to classify, therefore increasing the complexity of
the given classification task. In addition, we experimented with different percentages of
training data, e.g., 80%, 40% and 20% training data, to exhibit the behavior of our model
under different circumstances. Furthermore, we used k-fold cross validation with k set to
5 to improve the generalizability of the trained models. The classification accuracy of the
models is calculated by averaging the accuracy across every fold. However, within every
fold, we predicted on the same unseen test set. We chose accuracy as the most important
metric due to the multi-class classification task with mostly balanced data (except the
normal conditions), as used in many previous studies [10,43,45].

4.2. Paderborn Bearing Dataset

The Paderborn bearing dataset can also be seen as a benchmark for fault detection
and condition monitoring of damaged rolling bearing elements of rotating equipment,
cf. [20,42]. The dataset represents motor current signals of an electromechanical drive
system and vibrations of the housing [8]. The signals can be extracted in the existing
frequency inverters. Therefore, no additional sensors needed to be placed on the system,
as was the case in the CWRU bearing experiments, resulting in more resource-efficient
experimentation, thus less expensive. Monitoring damages in external bearings, which
are positioned in the drive system but outside the electric motor, is a unique feature of
the current method. Regardless, the motor current signal was employed as an input for
fault detection.

In total, the data derived from the experiments represents “healthy”, “real damaged”
and “artificially damaged” bearings. Data were recorded for approximately 4 s with
a sampling rate of 64 kHz, resulting in many separate data files with approximately
256 thousand data points. We concatenated the data files based on their specific bearing
conditions, e.g., “healthy”, “real damaged” and “artificially damaged” bearings. Due to
the many different machine settings, we decided not to deviate between these, and only
look at the specific bearing fault condition. This resulted in a large multi-class classification
task and a large-scale dataset containing many sequences of length 2048, similar to the
CWRU data.

However, in contrast to the CWRU data, the number of classes is a bit lower, the data
between every single class are more balanced and due to the high number of sequences, the
training time of the models is much higher. Furthermore, the Paderborn Bearing dataset
contains three time series, e.g., two motor current signals and one vibration signal, that are
taken into account during processing. Therefore, the first wide-kernel layer adapts itself to
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the input data, resulting in a slightly changed architecture compared with our models on
the CWRU data.

For this experiment we also used k-fold cross validation with k = 5 to improve the
generalizability of the trained models and tested models’ performance with different train
splits. However, due to the larger number of available samples, we attempted to complicate
the classification task by lowering the train split even further, e.g., with only 10% and
5% training data. Table 2 provides an overview on the different conditions with their
respective number of samples.

Table 2. Number of data samples (sequences) for every bearing condition, with their respective
number of classes and samples per class.

Bearing Condition Nr. of Classes Samples per Class

Healthy 6 10.000
Real damage 14 10.000

Artificial damage 12 ≈10.000

4.3. Machine Learning Algorithms

Our proposed models are compared with traditional machine learning (ML) algo-
rithms such as k-nearest neighbors (K-NN), random forest (RF) and support vector machine
(SVM). These models do not lend themselves for processing raw signals, which means that
we preprocessed the data into a set of features in both the time and frequency domain. The
features used to feed the ML models are derived from various studies, e.g., [60,61] and
are described in detail in Table 3. All of these features were used in the ML models and
are calculated across the sequences (with length 2048). Features in the frequency-domain
are calculated after transforming the time series to the frequency spectrum using the FFT
algorithm that computes the one-dimensional discrete Fourier transform (DFT) with back-
ward normalization, which is known as a potent baseline [10,45,59]. In total, the feature set
consists of nine different features for every one of the separate time series.

Table 3. Set of features used for the ML algorithms with their formula and description.

Features Formula Description

Time-Domain
Mean µx = 1

t
(
∑t

i=1 xi
)

The average value of sequence x = (xi) , i = 0 . . . t− 1.
Standard Deviation σx = 1

t−1 ∑t−1
i=0(xi − µ)2 The standard deviation of sequence x = (xi) , i = 0 . . . t− 1.

Variance ∑t
i=1

xi−µx
t Square of standard deviation.

Median Medianx = x(n+1)/2 Median value of a sequence x given by xi as above.
Minimum Minx Minimum value of sequence x given by xi as above.
Maximum Maxx Maximum value of sequence x given by xi as above.

Range Range = Maxx −Minx Difference between the maximum and minimum value.

Frequency-Domain
Signal Energy Peng = ∑(fft xi)

2 Energy of a signal calculated using FFT.

Signal Power Psig = ∑ (fft xi)
2

∑t
i

Power of a signal calculated using FFT.

For all ML models, we used grid search optimization with five-fold cross-validation
derived from the Sklearn package to assess which model performs best for every experi-
ment. The parameter settings of the best performing model vary throughout the different
experiments and datasets used. In Table 4 the properties of the grid search optimization are
described. In addition, we compared the models with the standard WDCNN models as pro-
posed in [10]. The results are described per dataset since these sets have different properties
and classification conditions. Further, we distinguished between different percentages
of training data to see how well the ML models perform under varying circumstances
regarding data availability.
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Table 4. Overview of parameter settings used in grid search optimization for every ML model using
Sklearn package.

Model Parameter Grid Search Range

K-NN K 1–20
Weight Options Uniform or Distance

RF Nr of Estimators 100–1000 (100 per step)
Feauture Estimation Square Root or Log2

SVM C 10–40 (5 per step)
Gamma 0.0001, 0.001
Kernel Linear or Radial Basis Function

4.4. Results CWRU Dataset

In general, the results on the CWRU dataset in Table 5 clearly show that in almost
every case the deep learning applications outperform traditional ML approaches, there-
fore emphasizing on the power of automated learning approaches in fault detection and
condition monitoring. Overall, Ada-WMCNN shows the best performance on the different
experimental settings suggesting that using a multichannel structure is particularly useful
for the first wide-kernel layer. However, compared to the A-WMCNN, the margins are
really close. Therefore, choosing a multichannel approach seems to be well-suited for
the task at hand. In that case, one should look at the amount of computational resources
needed for the model, which is significantly less for the Ada-WMCNN due to its fewer
trainable parameters. This model merges the separate inputs in an earlier stage, compared
to the A-WMCNN, resulting in less convolutional operations.

Table 5. Test accuracy scores (%) averaged across the 5-fold cross validation for each of the models with their respective
train split on the CWRU Bearing dataset.

Experiment Type Motor Speed Number of Sequences Training Data (%) Accuracy

K-NN RF SVM WDCNN A-WCNN A-WMCNN Ada-WMCNN

Drive End 1797/1750 1.889 80 85.71 97.35 97.62 99.38 100 100 100
40 82.98 94.27 91.62 95.62 97.72 97.34 97.74
20 73.88 93.65 87.37 56.53 76.79 93.20 93.44

1797/1750 2.892 80 63.56 81.87 81.69 87.89 89.86 89.46 89.59
1772 40 57.89 80.13 77.82 80.35 70.13 85.31 84.93

20 52.33 77.18 69.88 66.20 77.39 77.56 65.22

1797/1750 2.894 80 74.44 94.13 93.61 99.69 99.97 99.80 100
1730 40 67.47 89.81 87.16 91.13 96.07 96.29 96.79

20 58.38 86.57 78.76 68.10 87.46 87.41 90.32

1797/1750 3.897 80 58.59 81.28 81.15 91.99 92.68 93.31 91.67
1730/1772 40 53.95 78.58 75.07 81.51 88.44 89.58 86.55

20 47.47 74.15 66.04 39.47 42.04 65.63 71.58

Fan End 1797/1750 1.710 80 83.33 90.64 87.43 99.43 99.94 99.83 99.94
40 76.02 87.91 83.43 97.69 99.25 99.19 99.87
20 69.74 84.21 77.63 40.55 60.98 90.56 72.66

1797/1750 2.593 80 61.85 73.60 71.10 85.27 89.92 89.28 90.15
1772 40 55.27 70.05 64.91 77.89 84.16 86.61 85.57

20 49.69 66.22 59.18 53.43 68.03 77.70 55.85

1797/1750 2.595 80 69.36 83.82 80.73 99.39 99.85 99.92 99.96
1730 40 56.07 82.66 74.63 94.40 98.34 98.07 99.49

20 54.87 79.82 64.98 59.07 86.88 91.67 92.46

1797/1750 3.478 80 55.32 73.85 69.97 91.75 92.85 92.15 92.94
1730/1772 40 47.29 69.81 64.54 82.96 88.86 89.87 90.76

20 40.71 66.12 52.71 38.04 54.08 55.64 68.37

In addition, the results for all models demonstrate that lowering the amount of training
data will almost always result in a lower performance on the test set, especially for the
more complicated classification tasks e.g., with all types of motor speed (RPM). These
results clearly indicate the importance of sufficient training samples for fault detection and
condition monitoring. For this particular dataset (CWRU), we expected this behavior due
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to the sparsity of the amount of sequences available. Especially with just 20% train data, the
number of samples per class is in the most complex case lower than 20 samples resulting
in major performance drops, sometimes even below 50% accuracy. This phenomenon can
be better observed in Figure 4 where the results of the CNNs are averaged across all the
CWRU bearing experiments for their given train split.

Figure 4. Averaged accuracy scores (%) across all CWRU experiments with their respective train
split (%).

4.5. Results Paderborn Dataset

As can be seen in Table 6, the results on the Paderborn dataset show different char-
acteristics compared to the results on the CWRU dataset. One of the most prominent
observations is the consistency in the results across multiple classification tasks with dif-
ferent train splits, which can also be observed when averaging the accuracy scores of the
CNNs across all experiments (see Figure 5). This particular behavior is ought to be caused
by three factors: first, the amount of data available is much higher than for the CWRU
experiments, even with lower train splits; second, there are fewer classes to choose from,
indicating that the classification task at hand is slightly easier; third, the data consist of
three signals instead of two representing motor currents and vibrations.

Figure 5. Averaged accuracy scores (%) across all Paderborn experiments with their respective train
split (%).
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Another remarkable observation is the much higher performance of the traditional
ML approaches compared to the results in the CWRU experiments. It seems that the
extracted features are particularly well-suited for motor current signals when detecting
bearing faults, especially in the case of the Random Forest algorithm. However, the results
clearly reveal that in this case the A-WCNN model is the favorite over the other models,
showing the highest accuracy performance in every single experiment, followed by the
Ada-WMCNN that runs closely behind. This result suggests that having an overarching first
wide-kernel layer with many filters performs slightly better compared to the multichannel
separation in the Ada-WMCNN model, while completely separating the signals and feed
them as univariate time series results in lower performance (results from the A-WMCNN
model). A reason for this might lie in the nature of the data where motor current signals
tend to be more correlated than separately installed vibration sensors as used in the CWRU
bearing experiments.

Table 6. Test accuracy scores (%) averaged across the 5-fold cross validation for each of the models with their respective
train split on the Paderborn Bearing dataset.

Experiment Combination Number of Sequences Training Data (%) Accuracy

K-NN RF SVM WDCNN A-WCNN A-WMCNN Ada-WMCNN

Real/Healthy 200.000 80 97.34 98.25 90.14 99.24 99.96 98.99 99.67
60 97.09 98.00 90.02 99.31 99.94 98.99 99.71
20 95.72 97.20 89.49 98.75 99.75 98.56 99.55
10 94.44 96.50 88.90 97.84 99.61 95.78 99.06
5 92.40 95.39 87.82 97.23 99.03 93.70 98.10

Real/Artificial 259.875 80 90.61 93.01 77.18 97.53 99.80 96.58 99.45
60 89.91 92.43 77.10 97.05 99.74 96.18 99.35
20 86.14 90.21 76.53 96.75 99.36 92.82 98.56
10 83.34 88.53 75.79 95.99 98.82 91.42 97.39
5 79.50 86.71 74.50 93.36 97.60 87.85 97.21

Healthy/Artificial 179.875 80 89.19 92.28 77.50 97.01 99.63 95.41 98.55
60 88.37 91.67 77.68 96.20 99.69 98.04 98.96
20 85.21 89.68 77.15 96.30 99.20 91.33 98.06
10 82.52 87.92 76.81 93.92 98.46 90.29 97.51
5 78.71 85.90 76.58 91.50 95.87 90.08 93.86

Real/Artificial/Healthy 319.875 80 90.64 93.16 78.17 94.63 99.47 92.17 98.75
60 89.98 92.69 78.20 95.77 99.36 94.61 98.59
20 86.85 90.78 77.80 93.96 99.15 95.26 98.18
10 83.98 89.25 77.00 92.02 98.63 88.49 96.76
5 80.58 87.14 75.70 74.41 96.98 84.16 95.32

4.6. Overall Model Performance

The results displayed in Tables 5 and 6 show the performance of the models for every
different experiment. However, to obtain a better understanding in general, we calculated
the mean accuracy score across all experiments for both datasets to give an indication of
the overall performance, regardless of the experiment combinations related to train splits
and machine conditions. In addition, we describe the standard deviation to explain the
stability of the models’ performance, therefore making some assumptions regarding the
generalizability of the models. Furthermore, for the CNNs, the model size in terms of
parameters and computation speed based on GPU acceleration for every epoch is described
in Table 7.

As can be seen in Table 8, the proposed adaptive models clearly outperform any other
model. However, it seems that it depends on the properties of the dataset which model
performs best. For example, the A-WMCNN performs most optimal on the CWRU dataset,
also with the second lowest standard deviation, while having a lower performance on the
Paderborn dataset, with a relatively high standard deviation. Vice versa, we see similar
behavior for the A-WCNN model.
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Table 7. Number of parameters and computation speed, expressed in milliseconds per epoch
(Ms/step) using GPU acceleration, for the CNN models.

Model Experiment Parameters Ms/step

WDCNN CWRU 54.804 15.50
Paderborn 55.828 16.25

A-WCNN CWRU 58.468 15.88
Paderborn 65.204 16.50

A-WMCNN CWRU 107.460 23
Paderborn 161.140 29.25

Ada-WMCNN CWRU 56.420 17
Paderborn 59.060 18.75

Another interesting observation is the performance of the optimized multichannel
model (Ada-WMCNN). While performing a bit worse than the best performing model in
both experiments, its averaged overall performance is better. Further, as Table 7 suggests,
this model has less parameters and a competitive computation speed compared to the
other adaptive CNNs. Therefore, according to this study, the Ada-WMCNN is well-suited
for a variety of fault detection and condition monitoring tasks.

Finally, it is worth mentioning that even though the ML models perform considerably
worse than the deep learning approaches, the random forest (RF) algorithm seems to mark
the highest performance with a fairly low standard deviation, indicating that this ML model
is surprisingly stable under varying circumstances. The RF algorithm clearly outperforms
the other ML models, which may suggest that tree-based algorithms are well-suited for
fault detection and condition monitoring tasks—provided that the data are preprocessed
into a rich feature set. This is one of the directions to pursue in future work.

Table 8. Averaged test accuracy scores (%) for both datasets (with standard deviation).

Experiment K-NN RF SVM WDCNN A-WCNN A-WMCNN Ada-WMCNN

CWRU 62.34 81.57 76.63 78.24 85.07 89.39 88.16
(12.34) (9.09) (11.32) (20.54) (15.85) (10.99) (12.49)

Paderborn 88.13 91.84 80.00 94.94 99.00 93.54 98.13
(5.65) (3.78) (5.58) (5.31) (1.07) (4.06) (1.49)

Overall 74.06 86.24 78.16 85.83 91.40 91.27 92.69
(16.26) (8.79) (9.23) (17.58) (13.57) (8.73) (10.47)

5. Discussion

This work extends on our previous research [11] to investigate the performance of
our proposed models utilizing an adaptive wide-kernel in the first convolutional layer in
fault detection and condition monitoring tasks. This adaptive layer is able to scale towards
varying dimensionalities of time series data, while maintaining its core task for extracting
valuable features without representation loss.

With this adaptive layer we optimized our previous proposed models as described
in [11] resulting in two models, respectively A-WCNN and Ada-WMCNN. The first model
initializes the adaptive wide-kernel layer followed by small kernel layers, similar to the
previous proposed WDTCNN model. The Ada-WMCNN is able to process multivariate
time series in a univariate way in the first wide-kernel layer. This model has a similar
principle as the WDMTCNN model proposed in [11], but is more computationally efficient
due to the lower number of trainable parameters and higher computation speed, as can
be seen in Table 7. We compared the models with many traditional machine learning
applications (optimized with a grid search) as well as with the original WDCNN proposed
by [10] and our completely separate multichannel CNN (A-WMCNN).
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The proposed models are tested in a wide range of experiments on two well-known
bearing fault datasets; the CWRU Bearing dataset, a dataset with few samples and many
different fault and machine conditions and the Paderborn Bearing dataset, a large-scale
dataset with a vast number of samples and fewer fault conditions. Compared to the ML
models and the original WDCNN, our optimized models demonstrated a better perfor-
mance; therefore, concluding that an adaptive wide-kernel layer is a valuable addition
to existing 1D CNN architectures. However, between the different settings for the adap-
tive models, it seems that highest performance depends on the properties of the dataset,
e.g., the best performing model deviates per dataset. Overall, we can conclude that the
Ada-WMCNN model performs best throughout all experiments suggesting that a separate
multichannel in the first wide-kernel layer is effective and adaptable to changing envi-
ronments. Furthermore, both models handle raw signals directly and are quite good in
detecting faults and distinguish between machine conditions, even in cases with minimal
training data.

On another note, in this research our models are only trained on experimental data
that are carefully recorded and annotated, which is usually difficult to obtain in real-world
settings. Thus, generalization of the trained models in real-world settings is difficult to
assess, also due to scarcity of available data. Furthermore, it seems in many cases, especially
in the results on the Paderborn dataset, that the classification task is fairly easy for the
models to perform. Therefore, for future research, we intend to apply transfer learning
by training the models on experiment data and test their performance on real-world data
to assess the generalizability of the trained models in other contexts. However, in this
particular situation, the properties of the data should be similar, e.g., data derived from
vibration sensors or motor current signals. Further, we aim to investigate the performance
of the adaptive models in a context with variable sequence lengths. In addition, we plan
to research the application of attention mechanisms in time series classification tasks as
described in [62,63] and implement these mechanisms in fault detection and condition
monitoring tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

A-WCNN Adaptive Wide-Kernel CNN
Ada-WMCNN Adaptive Wide-Kernel Multichannel CNN
CBM Condition-based Maintenance
CNN Convolutional Neural Network
CWRU Case Western Reserve University
K-NN K-Nearest Neightbor
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LSTM Long Short-term Memory
ML Machine Learning
MLP Multi-layer Perceptron
1D One-dimensional
ReLU Rectified Linear Unit
RF Random Forest
RNN Recurrent Neural Network
RPM Revolutions per Minute
SVM Support Vector Machine
UBM Usage-based Maintenance
WDCNN Wide-kernel Deep CNN
WDMTCNN Wide-kernel Deep Multichannel Temporal CNN
WDTCNN Wide-kernel Deep Temporal CNN
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