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Abstract

Around 2006 the signal processing community was thrilled when the con-
cept of Compressed Sensing was brought forward. While according to
the long-established Nyquist-Shannon theorem, the sampling rate for sig-
nals must be at least twice as high as the highest relevant frequency in
the signal, with Compressed Sensing lower average sampling rates become
suitable. As a more general toolkit, Compressed Sensing allows for merg-
ing sensing and compression in a single step. In other words, only a tiny
amount of data needs to be sensed but a huge amount of information can
be reconstructed from this data. While Compressed Sensing already has
been successfully applied in some areas, mainly in medical scanning where
it helps to reduce the exposure to radiation, adaptation to new application
areas is relatively slow.
We identify two causes that slow down the adaption and contribute

to overcoming these obstacles: firstly, the adaption of Compressed Sens-
ing requires interdisciplinary thinking even more than for many other new
technologies: Compressed Sensing itself comes from the field of signal pro-
cessing, the application adds a second field. The automatized processing of
the data always touches the field of computer science and lastly, designing
Compressed Sensing solutions often requires a modification or redesign of
measurement hardware, touching the fields of electronics and sometimes
mechanics. We address this issue by supplying a more structured approach
for designing Compressed Sensing solutions. Secondly, Compressed Sens-
ing usually performs a lossy compression on real world data. Not knowing
the quality of the solution limits its usability. We address this issue by
supplying a list of potential metrics for assessing the quality of the solution
and evaluate their performance for various datasets.
Along the way, we develop two Compressed Sensing solutions in the ap-

plication area of Precision Agriculture: The first is Compressive Field Es-
timate (CFE), a method for improving the remote estimate of a scalar field
based on limited data supplied by a moving probe such as a combine har-
vester. The second is Multi- to Hyperspectral Sensor Network (M2HSN), a
wireless sensor network that records light spectra at mediocre spectral res-
olution and allows for increasing the spectral resolution. For the M2HSN,
we discuss different designs of the sensor nodes and different approaches
for increasing the resolution. Those are simulatively evaluated on different
datasets and in a real-world prototype.
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1. Introduction

Despite being one of the oldest technologies of mankind, agriculture is still
continuously improved with innovative new technologies. In the last two
decades the concept of precision farming (Auernhammer 2001; Zhang et
al. 2002) became popular. The core idea of precision farming is optimizing
the cultivation of land at a high spatial resolution. Instead of adding the
same amount of, e.g., fertilizer or irrigation on a whole field, for every part
of the field, the exact amount is chosen. This not only helps to make the
process more economical but also more sustainable.

A crucial first step for taking such actions is obtaining accurate mea-
surements of the situation. In the last decades, especially remote sensing
with satellites made major progress in this direction (Mulla 2013). More
recently, the spatial resolution was increased by using Unmanned Aerial
Vehicles (UAVs) for remote sensing (Maes et al. 2019).

These approaches have some drawbacks: due to weather constraints
and regulations, they are not suitable for continuous monitoring at high
temporal resolution. For such measurements, ground based solutions are
better-suited. These can even be used for some more direct measurements
of vegetation data such as yield rather than indirectly deriving such data.
The high temporal resolution is critical for early detection of anomalies
that reduce the yield unless taking countermeasures timely. Such anoma-
lies are, e.g., weed growth, pathogens, and drought stress (Maes et al.
2019). Furthermore, it can help to improve yield prediction which is use-
ful, e.g., for predicting trading prices (Rembold et al. 2013). Continuous
ground-based measurements can also be helpful for calibration of satellite
data.

However, there are major challenges in collecting data on the ground.
Due to the number of measurement devices required for high spatial res-
olutions, it is critical to keep the devices as simple and cheap as possible.
For long-term continuous measurements, they need to be optimized for
low power consumption. Another major challenge is, that in rural areas,
wireless communication architecture is often weak, offering only slow and
unreliable connections.

Compressed Sensing is a technology perfectly suited for these kinds of
challenges. It combines the common steps of sensing data and compressing
data in a single process. It helps by reducing the measurement effort
and thereby simplifying measurement devices. At the same time, the
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1. Introduction

amount of data which needs to be transmitted is reduced, lowering power
consumption of data transfer and making it more suitable for weak wireless
connections.

Nevertheless, Compressed Sensing only gets adapted slowly in different
application areas. We identify mainly two issues causing this:

1. Building Compressed Sensing (CS) solutions is rather difficult due
to the multidisciplinary challenge touching electronics, mechanics,
computer science, mathematics, and the field of the application, here
agriculture.

2. CS reconstructions are not lossless for real-world data but an in-
formation on the quality of the reconstruction is not generated by
ordinary CS.

We address the first issue by describing a more structured approach to
build CS based solutions in section 2. We use this structured approach to
build two solutions for ground-based sensing in agriculture: Compressive
Field Estimate (CFE), which we have previously published in (Hänel et al.
2017a) and the Multi- to Hyperspectral Sensor Network (M2HSN), which
we have first proposed in (Hänel et al. 2019) and improved in (Hänel et al.
2021b). The content of these three publications is the core of this thesis.

In the CFE, the focus is mainly on weak wireless connections. We ac-
celerated the approximation of scalar fields such as a yield map based
on a limited number of measurement samples taken by a harvester during
harvest. In the M2HSN, the focus is mainly on developing simple measure-
ment devices. We conceptualized, built and evaluated both simulatively
and experimentally a Wireless Sensor Network (WSN) consisting of mul-
tispectral sensors. From the sensor readings, we derived hyperspectral
data.

In both solutions, some special challenges arose that we researched in
greater detail. In the context of CFE, we especially discuss how to select
measurement samples for transmitting when the data rate is insufficient
for sending all data while keeping the data suitable for CS. In the con-
text of the M2HSN, we compare different designs that can handle varying
amounts of a priori knowledge and evaluate different approaches for the
upsampling of the spectral resolution.

In both solutions, one question came up frequently: is it possible to
estimate the quality of the result? While there are some approaches for
determining this, we did not find a large-scale comparison of multiple
approaches. Especially, more trivial estimates were not included in such
comparisons. Therefore, we contribute exactly this comparison for both
CFE and M2HSN data and extract observations that seem applicable to
other problems as well.

The attached core research questions can be phrased as follows:

6



1. To what degree can Compressed Sensing results be improved by
selecting sample positions smartly in sparse sampling settings?

2. To what degree can hyperspectral data be derived from a multispec-
tral wireless sensor network?

3. How well can the quality of a Compressed Sensing Reconstruction
be estimated?

In this thesis, we contribute to answering these questions.
The remaining thesis is structured as follows: in chapter 2, we give an

overview of CS, formulating a more structured approach for developing CS
based solutions. In chapter 3, we describe vegetation spectra, which play
a crucial role for the M2HSN and we describe related work and put our
work in context. In chapter 4, we conceptualize the two approaches CFE
and M2HSN. In chapter 5, we compile a list of approaches for estimating
the reconstruction quality. In chapter 6, we optimize the configurations of
the approaches which we then evaluate in detail in chapter 7 and discuss
in chapter 8.

7





2. Compressed Sensing (CS)

Being the core technology of the approaches considered in this thesis, we
will summarize the basic principle of Compressed Sensing (CS) in this
chapter, mostly sticking to the terminology that has been commonly used
since the survey written by Candes et al. (2008). Compressed sensing was
originally described by Donoho (2006). It is also known as Compressive
Sensing or Compressive Sampling. While the terms Compressed Sens-
ing and Compressive Sensing are used mostly synonymously, Compressive
Sampling is mainly used in cases where sampling occurs over time.

2.1. Overview

The basic process of CS is visualized in figure 2.1. Similar to traditional
compression, one may differentiate a compression and a decompression
step.

2.1.1. Compression / Measurement Process

For the compression step in CS, a vector of measurements f with length n
is compressed into a shorter vector y of length m by matrix multiplication:

y = Φ · f (2.1)

where Φ is called the measurement matrix. Note that, in order to ac-
tually compress while measuring, it is crucial to avoid both measuring f
completely and explicitly calculating formula (2.1).

2.1.2. Decompression

The compressed vector y needs to be decompressed. As equation (2.1) is
under-determined, when trying to gain f from Φ and y, a special trick
is needed. The core idea is integrating the knowledge that f is sparse
in some known domain such as the frequency space. The transformation
may again be expressed as a matrix multiplication:

f = Ψ · x and x = Ψ−1 · f (2.2)

where x denotes the transformed vector, Ψ the transformation matrix and
Ψ−1 the inverse matrix of Ψ. Inserting (2.2) in (2.1), we gain:

y = Φ ·Ψ · x (2.3)

9



2. Compressed Sensing (CS)

Raw data Measurement
Process

Compressed
 

Data
Decompression

Sparsity
Base

Measurement
pattern

Measurement
pattern

Figure 2.1.: The compressed sensing process in an abstract
form.

Now, the sparsity requirement needs to be incorporated. This is ex-
pressed by minimizing the ℓ0-norm which equals the number of non-zero
values of a vector and is denoted by || · ||0. Which leads us to the decom-
pression operation:

xestimate = argmin
x

||x||0 with y = Φ ·Ψ · x (2.4)

As this is a non-convex problem, which usually cannot be efficiently solved,
it is common to instead solve the equation:

xestimate = argmin
x

||x||1 with y = Φ ·Ψ · x (2.5)

with the ℓ1-Norm:

||x||1 =

n∑︂
i=0

|xi| (2.6)

This is possible because vectors with minimal ℓ1-Norm have a minimal
ℓ0 as well with overwhelming probability. Equation (2.5) may, e.g., be
solved using linear programming. However, many solvers have been used
or specifically developed for CS. Some of these solvers will be discussed in
section 2.4. In handling noise, equations (2.4) and (2.5) are often modified
as section 2.4 will show. Note that decompression is rather expensive in
terms of computational effort in comparison to compression. Therefore,
it is recommendable to perform decompression at a sink with significant
computational resources or using cloud computing.

2.1.3. Matrix design

One task in order to use this compression and decompression scheme is the
proper design of the matrices Φ and Ψ. Whereas the transformations be-
hind Ψ are often well known - Discrete Cosine Transform (DCT), Discrete
Fourier Transform (DFT), or Discrete Wavelet Transform (DWT) are used
frequently - the corresponding matrix representations are somewhat less
popular due to the comparably slow calculation. Therefore, we would
like to highlight the possibility of transforming the unit basis vectors of
the Cartesian coordinate system to normal space and using the resulting
vectors as columns of Ψ (Jensen et al. 2001, pp. 37–39).
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2.2. Measurement Matrices and the Measurement Process

In section 2.3, multiple transform matrices will be discussed. The design
of Φ is more specific to CS. A key requirement is incoherence between Φ
and Ψ. Although, newer findings by Candes et al. (2011) indicated that
it is not strictly required. The most astonishing finding here is that dense
random matrices for Φ of various designs meet the requirement indepen-
dent of the transformation Ψ. This means that the sparsity promoting
basis does not necessarily need to be known while compressing the data.
Furthermore, it has been shown that the sparse Φ matrices mentioned
in section 2.1.1, which may be constructed randomly just like the dense
matrices, often suffice. The following section 2.2 provides more details on
the measurement process.

2.2. Measurement Matrices and the
Measurement Process

The key trick for compression is finding a proper way for gaining y by
implicitly calculating equation (2.1). We describe three examples on how
this may be accomplished:

Firstly, the most famous example for this is the single pixel camera,
where the matrix calculation is done implicitly by measuring the total in-
tensity of light reflected by an array of switchable mirrors with a single
light sensor (Takhar et al. 2006). Secondly, Analog-to-Information Con-
verters (AICs) may be used where in a first step, analog sensor readings
are processed according to equation (2.1) in an analog circuit and in the
second step, the resulting values are read by an Analog-to-Digital Con-
verter (ADC) at a reduced rate (Kirolos et al. 2006). Thirdly, a more triv-
ial example is a sparse matrix Φ with a single non-zero value per row. In
that case, the measurement process degrades to sampling less frequently
and at random points of time. This third case is the one where sub-
Nyquist sampling may be achieved in a direct way. The success of these
sparse measurement matrices was shown by (Rudelson et al. 2006) for
DFT and Gaussian transforms. Taking such random samples still leaves
some design decisions: firstly, the pattern of the samples needs to be cho-
sen, which plays a crucial role for multiple topics of this thesis, especially
for CFE in section 4.1. Secondly, of course the number of samples must
be selected which we discuss here from a practical perspective.

2.2.1. Choice of the Compression Ratio

Considering sparse samples, a typical CS decompression task is the re-
construction of some physical signal x(t) in a given timespan T from M
measurements within this timespan. For simplification, here we assume

11



2. Compressed Sensing (CS)

only the time domain and only sparse sampling matrices. However, the
same holds true in a non-time domain (e.g. spectra) and similar problems
occur with dense sampling matrices (e.g. gaussian matrices).

A problem, which plays a role in this thesis, arises from the fact, that
x(t) won’t be handled as a continuous function but rather as a time-
discrete vector x of N values at equidistant points in time. So during
system design it does not only need to be decided how many measurements
M are taken but also how many values N shall be available after the
reconstruction. In the non-CS case, only N has to be chosen. Apart from
technical limitation, the only limitation comes from the Shannon-Nyquist
theorem that requires the sampling rate to be twice as high as the highest
relevant frequency in the signal:

νOS > 2 · νsig (2.7)

Which allows us to determine N :

N > 2 · νsig · T (2.8)

The important part here is that there is no fundamental upper limit for
N .
For CS, the following condition has been found for M (Candes et al.

2008; Donoho 2006):

M ≥ C · µ2(Φ,Ψ) · S · log(N) (2.9)

So instead of depending on the maximum frequency of the signal, the
number of frequencies S and the number of reconstructed values N must
be considered. Therefore, CS does suffer from choosing N too high for
a given signal and number of measurements M . For this reason, when
N is chosen too high, even a simple interpolation can outperform CS.
Evaluation results in such cases can be misleading because the compression
ratio M/N seems extremely good due to the high value of N and the
reconstructed signal also looks pretty good.

Idea of CS-Interpolation Hybrid

In many cases, N can indeed be chosen arbitrarily. In these cases, the
maximal frequency may be estimated or extracted from existing data. N
should then be chosen only slightly above the lower bound set by the
Nyquist-Shannon theorem (see equation (2.8)). In some cases, a specific
N may be required in the application. Here, one may consider introduc-
ing an interim sampling frequency νI or number of samples U . Then, the
decompression generates a vector of U values, which is afterwards upsam-
pled to N values via some interpolation method, e.g. linear interpolation.
This scenario is also useful for better visualizing the problem.
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Figure 2.2.: Influence of interim rate and measurement (low)
rate on reconstruction quality.

Numerical Evaluation

Rather than just setting the U as suggested we varied it in a simple exper-
iment to demonstrate this. We used a sine wave with a fixed frequency of
0.01Hz and a fixed target sampling rate of 1Hz. So it is drastically over-
sampled. N is fixed to 2048 values. We varied the number of samples M
chosen randomly from the N original values. We decompressed this vector
via CS using a DFT matrix and the solver SL0 (see section 2.4.2). For the
decompression we again use different vector lengths U . Then a vector of
N values is generated by upsampling with linear interpolation. The dif-
ference between the resulting vector and the original vector is calculated
by means of the Root Mean Square Error (RMSE).

The result is shown in figure 2.2. Instead of giving the raw values of
M and U , the interim rate and the average measurement rate (here: low
rate) are used on the axes. At the right side of the plot, the interim
rate is equal to the original rate. This is the case of just using CS to
estimate the original vector. On the left, along the border of the evaluation
region, indicated by a dotted line, the measurement rate is equal to the
interim rate which corresponds to just using linear interpolation. Note,
that the Root Mean Square (RMS) of the sine wave is approximately 0.707.
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2. Compressed Sensing (CS)

Only when the RMSE is significantly below this value, the reconstruction
becomes better than guessing, e.g., the mean. This is reflected by the
colors. So, the green region indicates the region of the parameter space
where a suitable result can be obtained. Taking a look at the results along
the line of pure interpolation results, the RMSE increases significantly
when the measurement rate drops below the Nyquist rate shown as a
dashed line. This is just as expected from the theorem.

On the right side, the results are rather bad which demonstrates the
oversampling problem. However, the results here are still better than
linear interpolation when the sampling rate is low. The interim rate which
gives the lowest RMSE for a given measurement rate can be found along
the solid green line. It clearly should be chosen higher than the Nyquist
rate, and it should be chosen higher for higher measurement rates. It also
shows that the RMSE becomes worse when the interim rate is chosen too
high.

Overall, this shows that it is crucial to avoid oversampling during re-
construction by carefully choosing not onlyM but also N and thereby the
compression ratio. Especially if sensing above the Nyquist rate, CS might
even lead to worse results than ordinary sampling if this is not obeyed.
Understanding this dependency is crucial for comprehending some of the
evaluation results.

2.3. Transform Matrices

Finding a proper transform domain is critical for designing a successful CS
solutions. In the beginning, mainly commonly used transforms for signal
processing were considered. Some of these are listed in sections 2.3.1–
2.3.4. Later on, the construction of transforms became more creative,
adapting CS to more kinds of data. There are even approaches for CS with
unknown transform, called blind compressed sensing, e.g., by Gleichman
et al. (2011). Several transforms are considered in this thesis, ranging
from the simple addition of signals in different transform bases (section
2.3.5) over the combinations of different transforms per dimension (section
2.3.7) and modeling similarity between signals (section 2.3.8) to learned
transform bases (section 2.3.9).

2.3.1. Discrete Fourier Transform (DFT)

The DFT may be one of the best known sparsity promoting transforms.
This short summary is based on the explanation by Burger et al. (2016,
pp. 469–479). The DFT is used in a wide range of fields, especially
in signal processing. It makes use of the fact that periodic signals can
be represented as a weighted sum of base periodic signals of different
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2.3. Transform Matrices

frequencies. For the DFT, the complex roots serve as periodic signals:

x[n] =

N−1∑︂
u=0

f [u] · ei·2·π·n·u/N with 0 ≤ n < N (2.10)

This can be expressed in matrix form x = Ψ · f with the following matrix
elements:

ψn,u = ei·2·π·n·u/N (2.11)

DFT and Fourier transform have the advantage that they are elegant
and well-understood in mathematics which makes them suitable for proofs
such as the one by Rudelson et al. (2006). Very efficient implementations
of the DFT, named Fast Fourier Transform (FFT), such as the one by
Cooley et al. (1965), are widely available in libraries. One drawback of
the DFT is that the transformed vector is complex even for purely real
valued input data. This can be problematic for practical applications.
E.g., in classic compression one may transform input data and then only
transmit or store the most significant entries of the transformed vector.
As these entries are complex valued, typically more bits are required for
storing or transmitting the values. This does not affect CS because real
valued measurements are transmitted. The transformations which require
complex numbers are only performed during decompression. However,
some solvers or their implementations do not support complex numbers.

2.3.2. Discrete Cosine Transform (DCT)

The DCT (Burger et al. 2016, pp. 503–509) and similarly the less used
discrete sine transform offer a solution to this problem, using the cosine
or sine as purely real-valued periodic base functions. The transform is
defined as follows:

x[n] =
√︁

1/N · f [0] · cos
(︃
π
u · (2 · n+ 1)

2N

)︃
+

+
√︁
2/N ·

N−1∑︂
u=1

f [u] · cos
(︃
π
u · (2 · n+ 1)

2N

)︃
for 0 ≤ n < N

(2.12)

This can be expressed in matrix form x = Ψ·f with the following matrix
elements:

ψn,u =

⎧⎨⎩
√︁
1/N · cos

(︂
π u·(2·n+1)

2N

)︂
for u = 0√︁

2/N · cos
(︂
π u·(2·n+1)

2N

)︂
for u > 0

(2.13)

The DCT is very popular for classic compression tasks. It is, e.g., a core
component of Joint Photographic Experts Group (JPEG) image compres-
sion.
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2. Compressed Sensing (CS)

2.3.3. Discrete Wavelet Transform (DWT)

A major drawback of DFT and DCT is that the transformed vector only
expresses frequency information and no time information. An early ap-
proach for circumventing this is using a windowed version of the DFT.
However, a resolution trade-off always needs to be made - it is impossi-
ble to measure the frequency of very slow components and the time of
short-term components at once. (Kaiser 2011, p. 60)

The DWT offers a sophisticated solution to this problem and is also
being applied for compression, e.g., in JPEG-2000. There are multiple
ways of introducing wavelets. As the building of different transforms is
particularly useful for CS, the approach via the lifting principle seems
most appropriate, which has also been used in the book by Jensen et al.
(2001) which served as the main source for this section.
In this approach, two operations are used, prediction and update. These

operations are applied to pairs of neighboring elements of the input vec-
tor. These steps differ depending on the wavelet family. In the case of
Haar wavelets, the prediction is that the values remain the same and the
difference from this prediction is calculated. The update calculates the
mean of the two elements.
Applying these operations to a vector of N elements generates N/2

elements that result from the prediction and N/2 elements that result
from the update. Note, that elements resulting from the update contain
a down-sampled or low-pass filtered approximate version of the original
vector, they are also called approximation coefficients. Similarly, the el-
ements resulting from the prediction contain local details and are often
called detail coefficients. These terms are used, e.g., in the Python library
PyWavelets1 which is the library used for all wavelet-related calculations
in this thesis.
The vector consisting of these coefficients is called the single level DWT

result. The same operations can be performed on the approximation co-
efficients again, leading to N/4 approximation coefficients and N/4+N/2
detail coefficients. This can be repeated until only one approximation
coefficient remains, that contains the mean of the original vector.
The vector resulting in the end is the result of the maximum level DWT.

Unless otherwise specified, we refer to this transformation when mention-
ing the DWT.
Note, that the vector at each level can be expressed as a linear combi-

nation of the vector elements of any of the previous levels. Therefore, it
is a linear transform. It can be reversed and expressed in matrix form.
We refrain from supplying formulas for the matrix forms of all the matrix
families. However, we would like to highlight that the matrix can be ob-
tained by applying the transformation to the vectors of an identity matrix
as demonstrated by Jensen et al. (2001, pp. 37–39).

1https://pywavelets.readthedocs.io, visited on 2021-11-15
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Figure 2.3.: Comparison of linear interpolation and CS for an
exemplary wavelet signal.

A note on DWT in combination with sparse sampling matrices

For temporal sampling, operators or matrices that only require few sam-
ples at random points in time as described, e.g., by Charbiwala et al.
(2009) is of particular interest because it usually requires less special hard-
ware than dense measurement matrices. The feasibility of using sampling
at random instances has been proven by Rudelson et al. (2006) for the
DFT.

We will show at a small example, that the combination of certain DWTs
with this sparse random sampling might actually pose a problem. The
example is shown in figure 2.3 consisting of a signal which is 2-sparse
in Daubechies-4 wavelet space. A CS reconstruction based on sparse
random sampling and a linear interpolation based on roughly the same
number of samples are shown. The corresponding accumulated absolute
errors are shown as well. The error clearly increases steeper for the CS-
reconstruction. For the longer, lower frequency wavelet on the left, linear
interpolation is already sufficient making CS superfluous. At the shorter,
higher frequency wavelet on the right, there are just not enough samples
for successful reconstruction. The same problem does not occur for high
frequency continuous oscillations when using DCT or DFT as there are
more samples due to the spreading across the whole time. Therefore,
the big advantage of DWT, the combination of frequency and time infor-
mation is somewhat lessened when performing CS with sparse sampling
matrices. Note, that when using one of the non-sparse random matrices,
e.g., a Gaussian matrix, the reconstruction of the short wavelet is pretty
good.

Being restricted to dense matrices for actual CS, imposes a limitation
to more specialized hardware solutions for the measurement process such
as the single-pixel camera proposed by Takhar et al. (2006) with an ar-
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2. Compressed Sensing (CS)

ray of mirrors with adjustable reflectivity or Compressive Wireless Sens-
ing (CWS) proposed by Bajwa et al. (2006) which uses constructive inter-
ference of radio waves.

2.3.4. Difference Matrix2

For piece-wise constant vectors, a matrix that describes f as the element-
wise difference of x or inversely x as the cumulative sum of f similar to
the Horz-diff matrix (Quer et al. 2009) may be sufficient:

ΨD =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1 1
0 1 . . . 1 1
...

...
. . .

...
...

0 0 . . . 1 1
0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ (2.14)

Note, that this may also be expanded to the difference of the difference
similar to the second derivative for functions ΨD2 = ΨDΨD or even to
any higher degree ΨDN = ΨN

D .

2.3.5. Building Custom Transforms

While the typical introductions to CS may raise the suspicion that only
few real-world signals are actually sparse under one of the listed trans-
forms, transforms can be built quite flexibly as a simple example will
show. Previous works that hint at this are, e.g., the one on Compressive
Data Gathering (CDG) (Luo et al. 2009) which handled anomalous read-
ings similarly to the example considered here and Kronecker Compressive
Sensing (KCS) (Duarte et al. 2012) and Distributed Compressive Sens-
ing (DCS) (Baron et al. 2009) which also heavily use the possibility of
constructing special transforms. Learned transforms, such as via K Sin-
gular Value Decomposition (K-SVD) (Aharon et al. 2006) are also an
extreme example for the freedom in building transforms.
A main aspect to keep in mind is that Ψ is not limited to a quadratic

form. Or in other words, the vector in sparse domain does not need to
have the same length as the one in the ordinary domain. When a signal
is known to be the sum of two components (x = xA + xB) and there are
sparse representations fA and fB of each component (xA = ΨAfA and
xB = ΨBfB) a solution for x may be found using the combined transform
matrix and sparse representation:

Ψ =
[︁
ΨA ΨB

]︁
and f =

[︃
fx
fy

]︃
(2.15)

2The content of section 2.3.4 has been previously published (Hänel et al. 2019).
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Figure 2.4.: The signal and its reconstructions with M = 11.
dct exactly covers combi here.

Note the notation for constructing larger matrices and vectors from stack-
ing smaller matrices or vectors vertically or horizontally. This notation
will be used extensively within this section. The resulting Ψ can be used
just like any other transform matrix in equations (2.4) or (2.5).

Example

Now we consider an example of a sine signal and an abnormal sample.
An appropriate Ψ then consists of a DCT matrix and an identity matrix.
We have N = 128 and vary M . The measurement matrix is a Gaussian.
The solver is Smoothed ℓ0 (SL0). The original and the reconstructions for
different values of M are shown in figure 2.4 and 2.5.

The figures do not only contain the reconstruction assuming the com-
bined Ψ (combi) but also those assuming a pure DCT matrix (dct) and a
pure identity matrix (iden). The RMSE was calculated for more values of
M as shown in figure 2.6.

Generally, the RMSE falls with increasingM - the more data, the better
the reconstruction. The pure identity matrix makes a good reconstruction
impossible. Sometimes the abnormal reading is captured quite well as in
figure 2.5. However, it is impossible to reconstruct the sine wave - the
other peaks in the reconstruction are not helpful.
For DCT and the combined Φ, the solutions are more interesting. At

M = 11 and higher, the reconstruction improves significantly as the step
in figure 2.6 indicates. Figure 2.4 shows the reason for this step: From
here on, the sine wave gets reconstructed quite well. A second step occurs
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Figure 2.5.: The signal and its reconstructions with M = 28.
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2.3. Transform Matrices

at approximately M = 28: the combined solution becomes almost perfect
while the DCT solution becomes worse. Figure 2.5 reveals the reason: the
combined solution now captures the abnormal reading as well. The DCT
solution suffers from over-fitting: it attempts to reconstruct the abnormal
reading but thereby worsens the remaining solution.

Discussion

The major observation here is that the combined Ψ improved the recon-
struction at a very low cost as it is about as good as the DCT reconstruc-
tion at low M and significantly better at high M . Just the calculation
time increases which has not been evaluated here. With this relatively
simple custom matrix already showing such a drastic improvement, it be-
comes clear that building custom transform matrices is a key ingredient
for designing successful CS solutions.

2.3.6. Wavelet Packet and the Best Basis

While the DWT already offers many different transforms, due to the dif-
ferent families and the different levels, even more transforms can be gener-
ated when switching to the wavelet packet (Jensen et al. 2001, pp. 87–97).
While for the normal DWT, only the approximation coefficients were pro-
cessed when adding the new layers. The same can be done for the detail
coefficients, leading to the full wavelet packet decomposition of the signal
if repeated up to the maximal level.
In a next step, one may vary the number of levels for different parts

of the input vector. The choice is rather arbitrary. However, for a given
metric, e.g., the reconstruction quality or achievable compression ratio,
a best suitable choice may be determined. This is called the best basis.
It has been used for CS by Peyré (2010) and Bi et al. (2015). These
approaches have not been used in this thesis because the overhead in
selecting the basis does not seem justified.

2.3.7. Kronecker Compressive Sensing (KCS)

The term Kronecker Compressive Sensing (KCS) has been formed by
Duarte et al. (2012), who investigated this approach in detail. The core
idea of KCS is the ability to form transform and measurement matrices
for data with any number of dimensions. In this thesis, we focus solely on
the construction of transform matrices based on KCS, not the construc-
tion of measurement matrices. The transform matrices for the individual
dimensions Ψ1,Ψ2, . . . ,ΨD are combined in a single transform matrix Ψ,
making use of the Kronecker product ⊗:

Ψ = Ψ1 ⊗Ψ2 ⊗ · · · ⊗ΨD (2.16)
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2. Compressed Sensing (CS)

This allows for any combination of transform matrices to create a particu-
larly well-suited sparsifying base for multi-dimensional signals. Note, that
this also offers a very compact formulation for the construction of two-
dimensional DFT, DCT, DWT, etc. matrices based on the correspond-
ing one-dimensional matrices. The Kronecker product creates a matrix
consisting of the second matrix multiplied with each element of the first
matrix:

C = A⊗B =

⎛⎜⎜⎜⎝
a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
. . .

. . .

am1B am2B . . . amnB

⎞⎟⎟⎟⎠ (2.17)

So, if A is of size m×n and B of size o×p, then C is of size (m ·o)×(n ·p).

2.3.8. DCS-JSM-13

Distributed Compressive Sensing (DCS) (Baron et al. 2009) encompasses
three different models for expressing the similarity between vectors mea-
sured at different locations. These models are called Joint Sparsity Mod-
els (JSMs). JSM-1 assumes a sparse common component and a sparse
additive innovation per location, JSM-2 assumes a shared support but dif-
ferent coefficients, and JSM-3 assumes a non-sparse common component
and a sparse additive innovation. Caione et al. (2014) point out, that DCS
is usually better suited for realistic WSN applications than KCS.

Among the three sparsity models, JSM-1 seems most suitable for spec-
tra as they are piece-wise constant and the same holds true for the dif-
ferences. Furthermore, JSM-2 and JSM-3 require customized solvers,
whereas JSM-1 is compatible with any solver suitable for Compresed Sens-
ing. For those reasons, we limit our considerations to JSM-1 from here
on. In JSM-1, the data for each position is modeled as

xj = x∆,j + xc

xj = Ψjfj +Ψcfc
(2.18)

where x∆,j denotes the innovation at position j, xc the common part, Ψj

the transform matrix for position j, and Ψc the transform matrix for the
common part. The second row was obtained by inserting equation (2.2).

For a total of J sensors, vectors combining all positions may be defined:

x = (xT1 , x
T
2 , . . . , x

T
J−1, x

T
J )

T

y = (yT1 , y
T
2 , . . . , x

T
J−1, y

T
J )

T

f = (fTc , f
T
1 , f

T
2 , . . . , f

T
J−1, f

T
J )T

(2.19)

3The content of section 2.3.8 has been previously published (Hänel et al. 2019).
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with x being of length J ·N , y of length J ·M , and f of length (J +1) ·N .
This allows formulating a joined Ψ of size (J ·N)× ((J + 1) ·N):

Ψ =

⎛⎜⎜⎜⎝
Ψc Ψ1 0 . . . 0
Ψc 0 Ψ2 . . . 0
...

...
...

. . .
...

Ψc 0 0 . . . ΨJ

⎞⎟⎟⎟⎠ (2.20)

With these vectors, a combined Φ with a size of (M · J)× (J ·N) may be
defined:

Φ =

⎛⎜⎜⎜⎝
Φ1 0 . . . 0
0 Φ2 . . . 0
...

...
. . .

...
0 0 . . . ΦJ

⎞⎟⎟⎟⎠ (2.21)

with Φj being the measurement matrix of the j-th position.

2.3.9. K Singular Value Decomposition (K-SVD)4

The transforms considered so far in this section all require some kind of
expert knowledge on the data. A transform needs to be selected that
transforms to a sparse representation of the data. When example data
is available, one possible approach for finding a suitable transform is just
trying multiple and selecting the best. But for sufficiently large example
data sets, another approach may be chosen which consists of training a
transform matrix. One example approach for training a transform matrix
is K-SVD (Aharon et al. 2006). Such a transform matrix is also called an
overcomplete dictionary. Given the time of the publication, Aharon et al.
(2006) did not explicitly present the transform matrix as a part of the CS
toolkit. A transform matrix obtained with K-SVD was used explicitly as
part of the CS toolkit, e.g., by Cilia et al. (2019).

The learning process of K-SVD consists of two steps which are re-
peated until the solution converges. In the first step, a sparse solution for
the training data based on the current dictionary is determined using a
compressed sensing solver, typically Orthogonal Matching Pursuit (OMP)
such as in the Python implementation5 used in this thesis. In the second
step, the dictionary is improved by replacing elements of the dictionary
using Singular Value Decomposition (SVD).

4The content of section 2.3.9 has partially been previously published (Hänel et al.
2021b).

5https://github.com/nel215/ksvd, visited on 2022-05-19
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2. Compressed Sensing (CS)

2.4. Solvers

Clearly, a major challenge lies in calculating solutions for the compressed
sensing problems, i.e. performing the decompression. The algorithms for
this tasks are called solvers. Intensive research work has been spent on
new solvers that provide improved results, provide them faster, or concen-
trate on niche applications. SL0 is the mostly used solver in this thesis,
simply because it turned out superior whenever we compared solvers em-
pirically for the problems considered in this thesis. However, especially
for reconstruction quality estimation, we also consider some other solvers,
namely ℓ1 magic, LASSO, BCS, and OMP, listed here as well. A more
complete survey on solvers was given by Crespo Marques et al. (2019).

2.4.1. ℓ1 magic

The ℓ1 magic packet (Candès et al. 2005) has become a reference for
CS problems because it was the first solver packet that became widely
popular. It addresses multiple specialized CS-related problems. Thereof
we only consider the variant Min-ℓ1 with quadratic constraints because it
addresses the conventional CS problem. Specifically, it solves the following
problem:

fe = argmin
f

||f ||ℓ1 subject to ||Φ ·Ψ · f − y||ℓ2 ≤ ϵ (2.22)

It handles noise by allowing a discrepancy between the simulated mea-
surement for the solution and the actual measurement limited by ϵ.

Due to the calculation of the ℓ2 norm, this problem cannot be addressed
as a linear program. It can however be addressed as a Second Order
Cone Program (SOCP). Candès et al. (2005) solved it with a log barrier
approach. The penalization of the log barrier is increased iteratively and a
solution is found by a Newton search in each iteration. The solver usually
requires three parameters: the ϵ from equation (2.22), a value called µ
that determines the rate for increasing the barrier, and the tolerance for
the Newton search. The number of iterations in the Newton search is
limited to 50 because it is guaranteed to require few steps. The number
of iterations of the log barrier is calculated from the other parameters.
This feature is deactivated for the parametrization. Instead, the number
of iterations is varied, introducing a fourth parameter.

2.4.2. SL0

The solver Smoothed ℓ0 (SL0) has been proposed by Mohimani et al.
(2009). The core idea is to start with the ℓ2 solution and iteratively
approach a sparse solution. For this purpose, they introduce the following
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2.4. Solvers

Listing 2.1: Pseudocode of the algorithm SL0

1 #Input : Φ , Ψ , y
2 #Parameters : σmin , α , µ0 , L
3 #I n i t i a l i z a t i o n :
4 A = Φ ·Ψ
5 f = A−1 · y
6 σ = 2 ·max(|f |)
7

8 whi le σ > σmin :
9 f o r i in 1 . . . L :

10 #Gradient descent :

11 δ = f · exp
(︂

−|f |2
σ2

)︂
12 f = f − µ0 · δ
13 #Fu l f i l l i n g measurement again :
14 f = f −A−1 · (A · f − y)
15 σ = σ · α
16 re turn f

Gaussian-based metric:

||f ||σ = N −
N∑︂

n=1

exp

(︃
−|fn|2

σ2

)︃
(2.23)

For σ → 0, this approaches the ℓ0 norm, similarly to how the Dirac delta
function can be approximated by a Gaussian. Iteratively, two steps are
performed: In the first step, the gradient for optimizing the norm is cal-
culated and the solution is modified in that direction. In the second step,
the solution is modified to match the measurements again. In the next
iteration, the steps are repeated. In some iterations, σ is reduced, ap-
proaching the ℓ0 norm. The algorithm stops, when σ has been reduced to
a pre-defined value. The pseudo-code for the solver is given in listing 2.1.
This includes some modifications in comparison to the original paper as
it is based on the actual implementation6 by the authors.

There is a total of four input parameters: the desired σmin which deter-
mines how close the ℓ0 shall be approximated. A smaller value generally
leads to better results at prolonged calculation time. The rate at which σ
is reduced is given by α. Higher values lead to better results at prolonged
calculation time. The µ0 determines the step size in the gradient descent.
The L sets the number of iterations without decreasing σ.

6http://ee.sharif.ir/~SLzero/, visited on 2022-05-19
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The major advantages of SL0 are its simplicity, its speed, and that it
can handle complex number and is therefore suitable for DFT matrices.
A major disadvantage is the relatively high number of parameters.

2.4.3. LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) problem
formulation by Tibshirani (1996) is actually much older than CS. However,
it can produce solid results especially for noisy data. The main idea here
is using a single metric that combines the ℓ1 norm of the solution and the
difference from the measurements via the ℓ2 norm. The problem to solve
has the following form:

fe = argmin
f

(︃
1

2 ·N
||Φ ·Ψ · f − y||2ℓ2 + λ · ||f ||ℓ1

)︃
(2.24)

Only if λ is chosen properly, both norms are adequately considered.

Strictly speaking, LASSO is not a solver but rather a problem formu-
lation. Here, we consider the solution via coordinate descent, which is
common in machine learning libraries (Pedregosa et al. 2011). Besides λ,
there are two parameters: the maximum number of iterations and a tol-
erance value, that determines when improvements become insignificant.

The main advantage of LASSO is the wide availability in libraries due
to its age and it being used in machine learning. The main disadvantages
are that it is relatively slow and the results are often worse than those of
the other algorithms.

2.4.4. Bayesian Compressive Sensing (BCS)

BCS has been proposed by Ji et al. (2008). Being a Bayesian approach,
it does not only return an estimate for f but also a covariance matrix
which estimates the accuracy of the estimate. The algorithm is shown
in listing 2.2. As the stopping condition has not been clearly stated in
the original paper, multiple stopping conditions have been introduced to
avoid infinite loops. The choice of τ is relatively simple. It should be
close to the maximal allowed value of the data-type in use. It stops the
loop when an element of α becomes too high. This is necessary in actual
implementations because α increases indefinitely and may increase too fast
to purely rely on the main stopping condition.

The main advantage of BCS is that it supplies the user with the covari-
ance matrix and that it requires nearly no parameter optimization. A dis-
advantage is that it may be outperformed by a different, well-parameterized
solver.
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Listing 2.2: Pseudocode of the algorithm BCS

1 #Input : Φ , Ψ , y
2 #Parameters : αi , τ
3 #I n i t i a l i z a t i o n :
4 M = length(y)
5 N = width(Ψ)

6 α = (αi . . . αi)
T ∈ RN

7 α0 = αi

8 Σold =

⎡⎢⎣τ . . . τ
...

. . .
...

τ . . . τ

⎤⎥⎦ with s i z e N ×N

9 Σ = Σold/2
10 A = Ψ · Φ
11

12 whi le max(α) < τ and max(Σ) < max(Σold) :
13 #Step 1 :
14 µold = µ
15 Σold = Σ

16 Σ =
(︁
α0 ·AT ·A+ diag(α)

)︁−1

17 µ = α0 · Σ · (AT · y)
18 #Step 2 :
19 γn = 1− αn · σnn
20 αn = γn/µ

2
n

21 α0 =
M−

∑︁N
n=1 γn

||y−A·µ)2||2ℓ2
22

23 re turn µold , Σold

2.4.5. OMP

Just like LASSO, OMP dates back to the era before CS. The term has
first been used by Pati et al. (1993). It has become widely used in CS, e.g.,
in JSM-3 of DCS (Baron et al. 2009) and in K-SVD (Aharon et al. 2006).
Due to its age, similarly to LASSO, it has found its place in libraries such
as scikit-learn. It is closely related to a normal Matching Pursuit and
consists of an iterative approach. OMP iteratively adds elements from a
dictionary (the matrix Φ ·Ψ) in order to create the observed signal. In an
iteration, OMP first determines an unused element of the dictionary, that
correlates strongly with the error in recreating the signal. This element
is then used to further improve the recreation. This is repeated until the
remaining error is sufficiently small.

According to the description by Pati et al. (1993), there are two ad-
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2. Compressed Sensing (CS)

justable parameters: a parameter α that adjusts the threshold for how
strong the new elements have to be correlated with the remaining error
and the abort condition, i.e., the maximal remaining error δ. The imple-
mentation in scikit-learn does not know the parameter α. Instead, there
is a target sparsity which can replace the δ as a stopping condition.

2.5. Conclusion and Recipe

In this chapter, an overview of CS was given, which allows for the formu-
lation of a recipe for designing CS solutions.

1. The first and often most challenging step is designing a measurement
process which actually helps by reducing the measurement effort.

2. The second step is finding a suitable transform, this is the step most
crucial for designing an effective solution, because this is where the
most variations are possible as discussed in section 2.3.

3. The third step of choosing a solver can be kept relatively simple as
discussed in section 2.4.

4. The fourth step is finding a suitable parametrization: the compres-
sion ratio needs to be chosen as discussed in section 2.2, the choice
of the transform needs to be refined, and the solver needs to be
parameterized.

In sections 4 and 6, we will apply this recipe, designing multiple CS-based
solutions for applications in agriculture.

28
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Before engineering compressed sensing based solutions for precision agri-
culture in chapter 4, this chapter gives an overview of related approaches
and some background information. Section 3.1 discusses the relevance of
vegetation spectra. In section 3.2, an overview of approaches for estimat-
ing scalar fields from moving sensors is given which is related to the first
of the solutions, CFE. In section 3.3, an overview for making use of CS in
WSNs is given, putting the choices for the second solution, the M2HSN,
in context. Previous approaches for the main task in the M2HSN, the
increase of the spectral resolution, are explained in section 3.4. Lastly,
existing approaches for estimating reconstruction quality in CS are listed
in section 3.5.

3.1. Spectral Information in Vegetation

In this section, we give a short overview of reflectance spectra of vegeta-
tion and the information which may be derived from the spectra. Under-
standing the significance of these spectra is crucial for the main approach
developed in this thesis, the M2HSN.

3.1.1. Biological background

The spectra of plants in and around visible light are dominated by the
components which take part in photosynthesis. The core components and
their contribution to the spectra were, e.g., compiled by Blackburn (2006)
and are summarized here briefly. Photosynthesis absorbs visible light and
uses the energy for the growth of the plant. Interacting with visible light,
this also dictates the color of the plant. The components which influence
the color, are called pigments. The most important pigments for pho-
tosynthesis are the group of Chlorophylls, especially Chlorophyll a and
Chlorophyll b.
Both types mainly absorb red and blue light. Green being less ab-

sorbed makes the plants appear green. In the Near Infra Red (NIR), the
absorbance of Chlorophyll a and b is much weaker, leading to a steep
decrease of absorbance towards wavelengths above 700 nm, called the red
edge (Mulla 2013).
While the spectra absorbance peak in the blue is rather narrow for the

Chlorophylls, the next group of pigments contributing to photosynthesis,
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the Carotenoids, absorb light in a wider range, further stretching to the
greens. There are two subtypes, the Carotenes and the Xanthophylls.
The most important and best known representative of the Carotenes is
Beta Carotene. The spectral range of the light which is used by photo-
synthesis stems from the combined absorption ranges. It is also called
Photosynthetically Active Radiation (PAR). There are also further, less
dominant and less researched pigments such as the Anthocyanins.

3.1.2. Vegetation Indices7

The spectrum of plants contains plenty of information on their status. A
basic example is assessing how green a plant is, which the human eye is
capable of. In the remote sensing community, this was expressed more for-
mally with vegetation indices such as the Visible-Band Difference Vegeta-
tion Index (VDVI), the Normalized Green-Red Difference Index (NGRDI),
and the Normalized Green-Blue Difference Index (NGBDI) (Du et al.
2017) which are based on a red, a green, and a blue band or a subset
thereof. However, reflection of vegetation is much higher in the NIR.
Therefore, the Normalized Difference Vegetation Index (NDVI) (Tucker
1979) which uses a red band and a near infrared band became widely
used. It measures the red edge and has also been used in the calcula-
tion of another vegetation index, the Normalized Difference Red Edge
Index (NDRE)(Barnes et al. 2000).

However, the exact choice of the bands used for the calculation of these
vegetation indices is not defined, depends on the sensors, and has a signif-
icant impact on vegetation indices which was shown for the NDVI (Huang
et al. 2013). Gaining higher resolution spectra allows for choosing the
exact bands for the calculation of indices later on. An online database
(Henrich et al. 2009) lists more than 200 vegetation indices based on many
different bands. While low resolution spectra only contain small subsets of
bands for small subsets of these indices, all indices which lie in the spectral
range of a high resolution spectrum are calculable from it. While the indi-
vidual indices typically require relatively few bands, for the determination
of the inflection point of the red edge, multiple bands at high resolution
around the red edge are required (Horler et al. 1983).

3.1.3. Classification 8

Besides the expansion to a greater selection of vegetation indices, another
application that benefits from high resolution spectra is the classification
of plant species (Hennessy et al. 2020).

7The content of section 3.1.2 has been previously published (Hänel et al. 2021b).
8The content of section 3.1.3 has been previously published (Hänel et al. 2021b).
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3.1.4. Regression Models

Besides finding different types of the soils or vegetation via classification,
a typical task is the derivation of actual physical properties of a plant,
such as the Leaf Area Index (LAI), the chlorophyll content, the humidity
of the plant, and especially the expected yield in t/ha.
A very common approach is predicting the yield from vegetation indices

such as the NDVI with a simple linear regression model (Panek et al. 2021;
Mirasi et al. 2021). Especially, when using more bands, it is also possible
to use regression models such as Partial Least Squares Regression (PLSR)
for estimating physical parameters directly from the bands (Siegmann et
al. 2015).

3.1.5. Conclusion

In this section, the composition of plant spectra was discussed, showing
that high resolution spectra are desirable for two reasons: firstly, more
information may be derived from them. Secondly, lower resolution spectra
may be derived from high resolutions spectrum, allowing for the re-use of
trained models and the comparability with metrics acquired by different
sensors of lower spectral resolution.

3.2. Field Estimation / Interpolation 9

In the beginning of CS research, the exploitation of sub-Nyquist sam-
pling made time series an obvious field of research. But researchers soon
expanded their considerations to the measurement or sensing of two-
dimensional scalar fields. Whereas these scalar fields are usually cam-
era images (Takhar et al. 2006) or medical imagery (Lustig et al. 2008),
environmental monitoring with static wireless sensor networks attracted
some interest as well as discussed in section 3.3. However, the CS-based
measurement of an environmental scalar field with moving devices has
only been rarely considered and usually a rather high number of devices,
which are homogeneously distributed, is considered (Yu et al. 2010; Lin
et al. 2010). In contrast to this we pay attention to a – to the best of our
knowledge – previously not examined aspect: When exploring a new area
with few devices or even just one, the available information is focused only
on a small, slowly increasing subset of the area. Therefore, our proposed
approach CFE performs not only a compression but also a forecast for
the still unexplored area. Alternatively, in conjunction with the sparse
sampling mentioned in section 2.2, the compression may instead be seen
as an interpolation, similarly to the considerations by Yu et al. (2010) and
consequently the forecast as an extrapolation.

9The content of section 3.2 has been previously published (Hänel et al. 2017a).
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In the robotics community, scalar field estimation has been explored as
well (e.g., (Jin et al. 2007)). However, they heavily rely on navigating
a robot for maximal information gain. In real-world applications this is
often undesirable as movement is predetermined by the main task whereas
sensing is just a side task.

3.3. CS in WSNs

WSNs offer a wide range of possibilities for exploiting CS. We provide
a classification of the applications of CS to WSNs in figure 3.1. As sen-
sor nodes in WSNs are equipped with sensors and ADCs, special sensing
hardware such as Analog-to-Information Converters (AICs) may be used.
Furthermore, new Medium Access Control (MAC)-schemes were devel-
oped that exploit CS and are applied to WSNs (Mao et al. 2010; Qaseem
et al. 2009). We argue that these applications are not specific for WSNs
and focus on methods that apply CS directly to the collected data for
compression.

These methods can be classified in two classes. Some exploit temporal
sparsity whereas the majority of methods exploits spatial sparsity. The
class of the spatial methods may be further differentiated into those that
aggregate data while routing, those concentrating purely on the localiza-
tion of events, and those which simply take less measurements. As the
majority of methods uses aggregation schemes, we further differentiate
between dense and sparse aggregation schemes.

The classes are explained in the remainder of this section.

3.3.1. Temporal

Temporal CS in WSNs exactly coincides with the original idea of CS -
sampling is performed at a lower rate thereby reducing both the sampled
data as well as the transmitted data. In contrast to the remaining classes,
here it is often required to actually sample below the Nyquist-Shannon
rate. However, due to the limited resources in wireless sensor nodes, some
special requirements arise and research has been spent on meeting these
requirements.

3.3.2. Spatial

With WSNs being distributed systems, spatial CS gained significantly
more attention in research than temporal CS. We further differentiate
using the following subclasses:
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CS in WSNs

MAC

(Mao et al. 2010)
(Qaseem et al. 2009)

Data CS

Spatial

Aggregation

Dense

CDG((Luo et al. 2009))
(Caione et al. 2012)
(Mehrjoo et al. 2010)
(Tsai et al. 2013)

Sparse

CDS(RW)((Sartipi et al. 2011))
SLCS((Lee et al. 2009))

(Wang et al. 2010)
(Chou et al. 2009)

CDC((Liu et al. 2015))
RLCS((Colonnese et al. 2013))

Event Loc.

(Meng et al. 2009)
(Ling et al. 2010)
(Zhang et al. 2011)

Direct
Transmission

DSRP(Wang et al. 2007)
(Lin et al. 2010)

RACS((Fazel et al. 2011))
CWS((Bajwa et al. 2006))
KCS(Duarte et al. 2012)

Temporal

DACS(Karakus et al. 2013)
ARS((Charbiwala et al. 2009))

RTV((Rubin et al. 2013))
(Chen et al. 2011)
(Chen et al. 2012)

Spatio-
Temporal

Separated
Decompression

(Feizi et al. 2011)
(Masiero et al. 2009)

Joint
Decompression

(Leinonen et al. 2013)
(Fazel et al. 2012)

DCS(Baron et al. 2009)
KCS(Duarte et al. 2012)

Sensing HW

AIC((Laska et al. 2007))

Figure 3.1.: Classification of the application of CS in WSNs.
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Aggregation

The algorithms of the most common subclass use aggregation schemes.
All those aggregation schemes rely on a common principle. The elements
of f are the sensor readings at n different nodes. The calculation of a
single element in y, i.e. the dot product of f and a row of Φ is called a
projection (Haupt et al. 2008):

yi =

n∑︂
j=0

φijfj (3.1)

where φij is an element of Φ. A single projection is calculated by ag-
gregating the sum while routing through the network. Different kinds of
routes are possible and common. Either a simple route may be used. A
projection may also be sparse, then only a fraction of the network is cov-
ered by the route or tree. Note, that for one projection each node only
needs to transmit at most one value due to the summation (Luo et al.
2009).

Due to the fact that this is the class of methods that has gained most
attention in research, we further differentiate approaches with dense sam-
pling, which are mostly using trees that cover the whole network, and
sparse approaches, which use mostly short routes.

Dense Although the general idea of using aggregation for CS was known
before as mentioned by Haupt et al. (2008), the first publications with
in-depth descriptions of the approach followed in the year 2009. One of
the most popular approaches that use dense sampling is CDG (Luo et al.
2009). A well-balanced tree is formed that covers the whole network with
the sink as the root node of the tree. In order to gain a snapshot of the
sensor readings in the whole network, each node only needs to transmit
m instead of up to n sensor readings.

Sparse Instead of performing a full aggregation, random routes through
parts of the networks may be chosen, offering spatially sparse measure-
ments. E.g., Spatially Localized Compressive Sensing (SLCS) (Lee et al.
2009) aims for a compromise between sparse sampling and performing
dense measurements across the whole network. The key idea is parti-
tioning the network in clusters and calculating projections within these
clusters. This lowers the number of hops required for the aggregation.

Event Localization

The event localization approaches are quite different from the other ap-
proaches in the way that they do not aim at recovering a rawly measured
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field of environmental values but instead at locating rare events within a
given area. These events are localized to small areas and thereby sparsity
is already given.
The Ψ matrix contains coefficients to model the propagation of the

observable signal from the event sources to the sensors. Examples for
the event are acoustic or radio wave sources. The Φ matrix is a simple
selection matrix which picks the rows of Ψ corresponding to the active
sensors.

Direct Transmission

Rather simple approaches are based on just sending measurements di-
rectly to the sink. Some special mechanisms can be used in single hop
environments. E.g., Fazel et al. (2011) researched transmitting at random
times, analyzing collision probabilities and the impact on reconstruction
probability. This approach was named Random Access Compressed Sens-
ing (RACS). CWS by Bajwa et al. (2006) creates projections analogously
by using coherent transmissions. Sparsely sampling scalar fields, assuming
a two-dimensional transform also falls in this category. In this case, any
way of transport can be used for the samples. One approach for building
such two-dimensional transforms is KCS which was researched by Duarte
et al. (2012). Direct Transmission is the application class mainly con-
sidered in this thesis with M2HSN falling into this class, despite using a
transform from the spatio-temporal class.

3.3.3. Spatio-Temporal

Actual Spatio-Temporal CS has been considered less frequently, although
Leinonen et al. (2013) showed that it can be beneficial. Some approaches
split the usage of spatial and temporal redundancies in separate steps
(Feizi et al. 2011; Masiero et al. 2009). Others decompress the spatio-
temporal data jointly in a single step. Transforms which are suitable for
this case are, e.g., described in DCS by Baron et al. (2009) and three-
dimensional matrices built with KCS(Duarte et al. 2012).

3.4. Increasing spectral resolution10

Due to the high costs of hyperspectral sensors, in section 4.2, we instead
suggest using sensors with lower spectral resolution for WSNs. Related
research mainly focused on images, not single measurements. Creating hy-
perspectral images from images of lower spectral resolution is uncommon.
However, it is possible to perform an image fusion of a panchromatic

10The content of section 3.4 has been partially published previously by Hänel et al.
(2019) except for section 3.4.2.

35



3. Background and Related Work

image with high spatial resolution and a hyper- or multispectral image
with low spatial resolution, which is called pan-sharpening. In the past,
researchers mainly focused on multispectral images (Ehlers et al. 2010;
Vivone et al. 2015). However, pan-sharpening of hyperspectral images
gained more attraction in the last decades spawned by the launch of hy-
perspectral satellites such as EO-1. Pan-sharpening can also be used for
fusing multi- and hyperspectral data when a panchromatic image is first
created from the multispectral data.

Two methods that take a slightly different approach are Universal Pat-
tern Decomposition Method (UPDM) (Liu et al. 2009) and Spectral Res-
olution Enhancement Method (SREM) (Sun et al. 2015) which fuse multi-
and hyperspectral data directly without first creating a panchromatic im-
age. Thus, they increase the spectral resolution of multispectral images
by incorporating hyperspectral data from a subset of pixels where it is
available. SREM still requires a hyperspectral image but generates a hy-
perspectral image of higher spatial resolution in a larger area than the
one of the original hyperspectral image. UPDM was instead used to simu-
late hyperspectral images based on multispectral images. It only requires
few high-resolution spectra to be known a-priori and may, therefore, be
adapted for the envisioned M2HSN.

3.4.1. Universal Pattern Decomposition Method (UPDM)

Universal Pattern Decomposition Method (UPDM) (Liu et al. 2009) rep-
resents each spectrum as a linear combination of some base spectra such
as soil, water, and vegetation:

xj = cs,jxs + cw,jxw + cv,jxv (3.2)

with the spectrum xj at position j, the coefficients cs,j of soil, cw,j of water,
and cv,j of vegetation which state the fractions of these components and
the corresponding base spectra xs, xw, and xv. This may also be expressed
in matrix form:

xj = Xcj with X =
(︁
xs xw xv

)︁
and cj =

⎛⎝cs,j
cw,j

cv,j

⎞⎠ (3.3)

with the matrix of base spectra X and the fraction vector cj . At a
lower spectral resolution, the coefficients remain the same but the spectra
change. Equation (3.3) then changes to:

yj = Y cj (3.4)

with the low-resolution spectrum yj and the matrix of low-resolution base
spectra Y .
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The matrix of base spectra need to be known in its multispectral version
Y and in its hyperspectral version X. Then, the vector of coefficients cj
is gained from the low-resolution spectra using the pseudoinverse Y −1 of
Y :

cj = Y −1yj (3.5)

Lastly, the coefficients are used to gain the hyperspectral representation
xj at the given location by inserting cj from equation (3.5) into equation
(3.3):

xj = XY −1yj (3.6)

As only the base spectra, albeit in two representations, are required, the
a priori knowledge put into the process is reduced in comparison to pan-
sharpening approaches which require hyperspectral images.

3.4.2. K-SVD for spectra11

One other research group attempted to apply K-SVD to calculate hyper-
spectral data and impressively demonstrated its success on RGB images
from DSLR cameras (Arad et al. 2016; Arad et al. 2017). The photos
considered were those typically taken with such cameras, e.g., landscape
and architecture. Here we use a very similar approach. However, the kind
of data we consider, i.e. ground-measurements and remote sensing data, is
very different from those examples. The spectral range is wider, including
the near infra-red which is of particular interest in vegetation applications
and the number of bands is not fixed to three. We specifically focus our
research on how the approach performs with this kind of data as it is one
of the prime application areas for hyperspectral data.

3.5. Quality metrics

Some previous research has been performed on quality metrics before,
these mainly focused on methods based on those known from statistics
such as cross-validation (Ward 2009), jackknife, and bootstrap (Tygert
et al. 2018). These are closely related, as they always use a subset of the
measurements and calculate CS solutions for these. They differ in how
they select the subset and whether they compare the difference of simu-
lated and actual measurement or whether they measure the convergence
of the solution. A second group of approaches encompass solvers that out-
put a quality metric besides the result. A popular representative of these
solvers is BCS from section 2.4.4 with its covariance matrix. A qualitative
comparison for real-world data was done for jackknife and bootstrap by

11The content of section 3.4.2 has been previously published (Hänel et al. 2021b).
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Tygert et al. (2018). However, a large-scale quantitative comparison on
real-world data of existing approaches and more trivial metrics has not
been performed to the best of our knowledge.

3.6. Conclusion

In this chapter, we have outlined the necessity of deriving vegetation infor-
mation. We provided a systematic classification of CS methods in WSNs
and used it for putting the solutions developed in this thesis into context.
Furthermore, approaches were summarized that are used in the solutions
engineered in sections 4 and 5 or related to these solutions.
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4. Engineering Compressed
Sensing Solutions for Precision
Agriculture

In this chapter, the first step of the recipe for the creation of CS based
solutions from chapter 2 is applied for building the concept of CFE in
section 4.1 and the concept of M2HSN in section 4.2. For the M2HSN,
two variants are presented, the Heterogeneous M2HSN (HeM2HSN) in
section 4.3 and the Homogeneous M2HSN (HoM2HSN) in section 4.4.
After concentrating on the concept and the algorithms, section 4.5 presents
the design decisions for the actual protoype of the M2HSN.

4.1. Compressive Field Estimate (CFE)12

With Compressive Field Estimate (CFE), we address the scenario of a
harvester that is harvesting a crop field and measures various informa-
tion with some of this information being spatially distributed scalar fields.
Some remote operator is interested in gaining the whole scalar field. Clas-
sic approaches to transmit the data encompass transmitting measured val-
ues in order as fast as possible or collecting the data and transmitting it
in the end in compressed form. The former approach is usually preferable
as it allows for a live preview.

However, imagine the case that the time τ to transmit a sample is longer
than the time δ between measuring two consecutive samples. Then, the
transmitted values quickly lack behind as the data rate is too low. Not
even recent technologies such as 5th-generation cellular network (5G) and
Long Range Wireless Area Network (LoRaWAN) aim to combine high
data rates with good coverage in rural areas: 5G concentrates on higher
data rates in small and dense cells (Gupta et al. 2015) which is more
suited for urban areas whereas LoRaWAN (LoRa-Alliance 2015) concen-
trates on offering long ranges suitable for rural areas but it offers low data
rates. We expect this problem to persist in the future as improving public
land mobile networks infrastructure in rural areas will remain unattrac-
tive for wireless providers due to low population densities. Furthermore,

12The content of section 4.1 has been previously published (Hänel et al. 2017a).
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harvesters acquire more and more information at increasing rates, so that
only a small portion of the available bandwidth may be used for each
scalar field.

4.1.1. Procedure

We propose CFE as a new approach that builds upon the toolkit of CS
to send and recover data in a way that allows for a faster recovery of the
whole scalar field. The core principle is to not simply send samples in order
but rather selecting samples for transmitting randomly from the values
measured so far. To put it more formally, the harvester begins measuring
at t0, taking a measurement every δ seconds. The sample measured at
time t is called xt. The corresponding coordinates (either geographical or
indexes in a grid) are called it and jt . At time Tnow the harvester has
all tuples (xt′ , it′ , jt′) with t′ ≤ t in its storage. It sends tuples every τ
seconds randomly selected from the available samples. So that at time t
there are (t−t0)/δ samples in the harvesters storage and (t−t0)/τ samples
in the storage of the remote evaluation center.
This randomization is the only change required at the harvester. The

compressed sensing toolkit is applied at the remote evaluation center. In-
stead of a time series representation, it uses a spatial representation. For
now, let us assume that some preprocessing assures that we get at most
one measurement per location and the locations form a two-dimensional
grid. With every received tuple we can fill in one cell in the grid: xi,j with
0 ≤ i < I and 0 ≤ j < J . The total number of grid cells is N = I · J .
For CS, a vector representation is more desirable, therefore, we introduce
a new index l = i · J + j that allows addressing all cells of the grid. The
vector of all xl is called x.
The task of the remote evaluation center is recovering x from the mea-

sured xl. The vector of all measured xl at time t is called yt and has length
Mt = (t− t0)/τ . Note that the extraction of yt from the unknown vector
x may be represented with a matrix product: yt = Φtx where Φt is an
Mt ×N -matrix in which all ϕl′,l are set to one where l denotes a received
packet in x and l′ the same element in yt. All other elements of Φ are set
to zero. So with every received measurement, a new row is appended to
the matrix, which results in an identity matrix where random rows have
been removed. With this measurement matrix and the vector of received
measurements yt, the remote evaluation center has a common CS-problem
to solve (compare equation (2.4)):

festimate,t = argmin
f

||f ||0 with (yt − ȳt) ≈ Φt ·Ψ · f (4.1)

Where Ψ now denotes the matrix of the two-dimensional transform which
may be constructed from the corresponding matrix of the one-dimensional
transform using the Kronecker product (Duarte et al. 2012) as described
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Figure 4.1.: Examples and probability densities for different
sampling strategies (Hänel et al. (2017a), © 2017
IEEE).

in section 2.3.7. The mean of the measurements ȳt has been removed as
solvers struggle with the reconstruction of the offset. From festimate,t an
estimate for x may be calculated:

xestimate,t = Ψ · festimate,t + ȳt (4.2)

Note that the compression ratio R decreases over time:

R(t) =
F

Mt
=

τ · F
(t− t0)

(4.3)

Where F denotes the amount of cells in the grid that are actually part of
the field. This naturally leads to an increase of reconstruction quality. At
te = τ ·F + t0 all samples have been received. Therefore, the compression
ratio has decreased to R(te) = 1 and the reconstruction is perfect as the
constraint in equation (4.1) allows only a single solution. However, the
normal way would be to abort the transmission earlier, once a sufficient
compression ratio has been reached and thereby a lossy compression has
been performed.

4.1.2. Random sampling strategy

So far, we have omitted one question on the harvester side: which strat-
egy is used for the selection of values to transmit? At tp = F · δ + t0 the
harvester has explored the whole area. From here on it may select values
from its storage uniformly that have not been transmitted yet. Before
tp, an adequate strategy is required. There are two straight forward ap-
proaches: In the first approach (Fig. 4.1a), samples are selected uniformly
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from the un-transmitted values in storage at all times. Therefore, we call
it CFEuniform. In the second approach (Fig. 4.1b), the sample is selected
only from samples that have been measured since the last transmission,
i.e., all xt′ with t− τ < t′ ≤ t. We call this approach CFElatest.
CFEuniform may lead to poor reconstruction quality as more sam-

ples will be selected from the beginning of the measurement leading to
a non-uniform distribution over the whole field. A potential problem that
may arise when using CFElatest is that the selected values may be a
checkerboard-like pattern, only distorted by some jitter. Such a checker-
board pattern is periodic and, therefore, coherent with common transform
matrices such as DCT and DFT which leads to poor reconstruction qual-
ity (Candes et al. 2008). In order to further explore this trade-off we try
a third strategy (Fig. 4.1c) with a probability density that is increasing
linearly over the un-transmitted samples in a timely order. Due to the
form of the probability density function we call this approach CFEramp.
In figure 4.1c the ramp seems distorted due to the samples which have
been transmitted already. Showing only the un-transmitted samples, the
ramp would be perfectly linear. The extension to other monotonically
increasing probability density functions may be a promising improvement
for future work.

4.1.3. Remarks

We would like to make some remarks about the benefits of our approach
that go beyond what is covered in the following evaluations: The modifi-
cation of transmissions only affects the order and not the content of the
measurements, so each single transmission keeps a meaning on its own.
Building the measurement matrix from the received samples has two key
benefits. Firstly, no additional information, such as the seed for generat-
ing the measurement matrix (Yu et al. 2010), needs to be exchanged and
secondly it does not need to be known which data has been sent originally.
The latter can be exploited in multiple ways: If only an approximate field
is required, transmissions may be simply stopped earlier. Dealing with
lost packets is particularly easy as pointed out by Fazel et al. (2011) and
others: If a lossy reconstruction suffices, no explicit retransmit is required
- transmission goes on until sufficient packets have been received. If a full
reconstruction is desired, some form of Automatic Repeat reQuest (ARQ)
mechanism may be used. As duplicate packets or a wrong order of packets
do not influence the reconstruction, CFE is very insensitive towards the
ARQ system in use. For the estimate just like for the lossy reconstruction,
packet loss only leads to a more slowly increasing reconstruction quality.
A special case arises when the harvester crosses areas that have been

explored before or stops for some time: as no relevant new values are
measured, CFElatest has to select values uniformly instead. The other
strategies may proceed as before. This situation presents a relaxation of
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Figure 4.2.: The location of samples and the resulting grid dis-
tribution for the crop yield (Hänel et al. (2017a),
© 2017 IEEE).

the problem as the gap between measurement rate and transmission rate
is reduced. Therefore, in this thesis, we focus on the worst case scenario
with no stops.

4.1.4. Preprocessing

Before we can actually evaluate CFE’s performance, some preprocessing
is required. The evaluations in the sections 6.2, 7.1, and 7.6 are based
on traces from a harvester working on a field in an area of approximately
1.7 km by 0.5 km. The harvester collected telemetry data every five sec-
onds. We concentrate on data that describes spatial distributions across
the field, e.g., the yield and the humidity of the crop. As most spatial
compression algorithms concentrate on data in a grid, we build such a
grid in a preprocessing step as follows: First an empty grid is initialized
with a fixed cell size. Then, we iterate the trace of samples in the order of
recording. For each sample, the corresponding grid cell is determined. If
the grid cell is empty and the value of the sample is not zero, the value of
the sample is assigned to the grid cell. Otherwise, the sample is ignored.
Our motivation for this approach rather than using the sum or mean of
the values is the following line of thought: If the value is zero, either the
harvester is currently not harvesting or the area has already been cleared.
In both cases, the values do not reflect the original spatial distribution.
We only consider the first value as when harvesting in a grid cell, the
spatial distribution is disturbed, making later measurements incorrect.

While creating the grid, a new trace is generated that only contains
samples contributing to the grid and replaces the original trace in the
following evaluations. This trace contains some unnatural movement as
there are jumps when the harvester crosses already explored areas. How-
ever, a more natural trace makes the evaluation less expressive as a lot of
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Figure 4.3.: Sensor node and network architecture of an
M2HSN.

data can be transmitted during breaks and while crossing already explored
areas. Thereby, the generated trace represents the worst case scenario as
discussed in section 4.1.3.

When using the approach in reality, this preprocessing may be either
performed on the harvester or in a remote evaluation center. The only
prerequisite is the desired grid size which may be set based on the field
shape calculated in previous years, e.g., using the algorithm from Lauer
et al. (2014).

Figure 4.2 shows the locations of the original measurements and the
resulting grid. The coordinates have been anonymized by removing an
offset in order to preserve the privacy of the owner. Note that we have
chosen the grid cell size as a trade-off being coarse enough to avoid gaps
in the distribution and fine enough to not waste too many of the original
samples. The displayed distribution is the one of the crop yield, i.e. the
amount of crop that was collected per area in tons per hectare (t/ha).

4.2. Multi- to Hyperspectral Sensor
Network (M2HSN)13

An M2HSN consists of multiple WSN sensor nodes which are equipped
with multispectral sensors. The multispectral data of the whole WSN is
collected to then estimate hyperspectral data from it. This estimation
process can be based, e.g., on DCS, UPDM, or K-SVD. Before discussing
the estimation process, we first describe the sensor nodes and the network.
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4.2.1. Sensor Nodes

First, sensor nodes have to be prepared, e.g., as shown in figure 4.3 on the
right. Each node has a multispectral sensor. Albeit not being the only
possible architecture, in this thesis we assume the multispectral sensor
to consist of M light sensors (e.g., photodiodes). The light sensors are
connected to an ADC which supplies a Central Processing Unit (CPU)
with digital readings of each sensor, that are then transmitted to a fusion
center. Each light sensor is covered with a filter. The choice of the filters
depends on the requirement for the hyperspectral resolution. From this
requirement, one may deduce the number of bands N to be included in
the output data generated by the fusion center. This equals the number
of bands which would be acquired by conventional hyperspectral aerial or
satellite-based remote sensing. For each sensor node, each of the M light
sensors is covered with a filter picked from the N different filter types.
Different processes for picking the filters are discussed in section 4.2.3.
In order to measure the reflectance, it makes sense to put the sensor

in a slightly elevated position, such as on a post, pointing downwards.
The angle of view of the light sensors should be sufficiently wide to ensure
averaging over a sufficiently wide area. Neither should the angle be too
wide as light from the sides may disturb the measurement. If the angle
of view of the sensors is too narrow or to wide, a diffuser or an aperture
may be added.

4.2.2. Sensor Network

An example network of J = 4 sensor nodes is shown in the upper left part
of figure 4.3. In a real network, the number of sensor nodes J depends on
the size of the area that shall be monitored, the required spatial resolution,
and the required estimation quality of the hyperspectral data.
Each sensor node is prepared as described in the previous section 4.2.1.

The sensor nodes can be placed in the given area using different patterns:
They may be placed at areas of interest, on a grid, or randomly. The grid
pattern allows for generating images similar to those of a satellite.
Each sensor node sends its readings of each light sensor to a fusion cen-

ter at a frequency depending on the required temporal resolution. With
the amount of data being lower in comparison to hyperspectral data, the
transmission time is also lower, leading to reduced power consumption
and, thereby, a prolonged lifetime of the sensor node. The frequency of
measurements will usually be on a scale of hours, making synchroniza-
tion challenges, bandwidth requirements, and the calculation time for the
estimation of the high-resolution spectrum negligible. This allows us to
describe the data acquisition as taking a snapshot of the whole area. Each

13The content of section 4.2 has been partially previously published by Hänel et al.
(2019) except for section 4.2.3.
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snapshot may be recorded independently from snapshots at other times.
The data collection for one snapshot can be done using any communica-
tion pattern: it may happen in a multi- or single-hop pattern or even via
the internet.

4.2.3. Choice of Filters14

A key aspect for this thesis is the choice of the filters in the sensor nodes.
There are two fundamental approaches for choosing the filters: these may
be chosen heterogeneously with varying filter sets at different positions
or homogeneously with the same set of filters in every node. The two
variants are shown in figure 4.3. The main benefit of the heterogeneous
approach is that it is capable of gaining information in additional parts of
a spectrum.

For the homogeneous approach, no customization of the hardware is
required with respect to the location, the mass fabrication of such sensors
will be more feasible. These are in fact similar to sensors already being
cheaply available nowadays, such as the sensors integrated in the Spark-
Fun Triad (see section 4.5.1). A major advantage for this homogeneous
approach is the possibility of finding a particularly well-suited set of filters.

M2HSNs with these approaches are also called Heterogeneous M2HSNs
(HeM2HSNs) and Homogeneous M2HSNs (HoM2HSNs) in this thesis.

4.2.4. Algorithms for the Spectral Reconstruction

For making the M2HSN work, the main task in processing is the estima-
tion of the hyperspectral data. If the resources of the fusion center are
insufficient, this estimation may also be outsourced to a high performance
computing cluster. As the general idea of an M2HSN is new to the best
of our knowledge, there are no existing algorithms to compare against.
It seems unreasonable to develop a completely new algorithm instead of
relying on previous research results in signal processing and remote sens-
ing. Therefore we modify existing algorithms to be used for an M2HSN,
yielding four different approaches for the estimation: (1) interpolation,
(2) UPDM, (3) DCS, and (4) K-SVD. The interpolation is independent
for each location and consists of a simple linear interpolation between the
band readings. It is merely included as a trivial solution for comparison.

The dependencies of the algorithms differ as some of them exclusively
work with a HeM2HSN or a HoM2HSN. Table 4.1 lists the compatibility.
More information on the algorithms are given in the following sections 4.3
and 4.4.

14The content of section 4.2.3 has partially been previously published (Hänel et al.
2021b).
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Table 4.1.: Different variants for realizing the M2HSN

U
P
D
M

U
P
D
M
-B

B
S

K
-S
V
D

K
S
V
D
-B

B
S

D
C
S

HoM2HSN ✓ ✓ ✓ ✓ ✗
HeM2HSN ✓ ✗ ✓ ✗ ✓

4.3. Heterogeneous M2HSN (HeM2HSN)15

In the Heterogeneous M2HSN (HeM2HSN), the data processing based on
DCS uses JSM-1. Ψ is generated using equation (2.20) with Ψc = Ψ1 =
Ψ2 = ... = ΨJ = ΨD with ΨD being the difference matrix from equation
(2.14). An explanation for using the difference matrix is given in section
6.3.2. The Φj constructing Φ according to equation (2.21) are directly
deduced from the filters used in sensor node j according to Φj = Φ′

jΘ.
Each Φ′

j consists of theM rows of an N×N identity matrix corresponding
to the M out of N filters used on the sensor node. The N ×NSpec sized Θ
contains the transmission spectra of the filters. From here on we assume
ideal narrow-band filters by setting Θ to the identity matrix and Φj = Φ′

j

respectively. y contains the concatenated band readings from all sensors.
The combined Φ, Ψ, and y are used in equation (2.4):

festimate = argmin
f ′

||f ′||0 with y ≈ ΦΨf ′ (4.4)

We use the solver SL0 (see section 2.4) which offers a good trade-off be-
tween reconstruction quality and speed in our experience.
The result festimate may be inserted into equation (2.2) to get the con-

catenation of all high-resolution spectra xestimate:

xestimate = Ψfestimate (4.5)

4.4. Homogeneous M2HSN (HoM2HSN)16

In contrast to the HeM2HSN, the HoM2HSN does not gather any infor-
mation on the bands not included in the band set. The data must instead
be obtained from a different source. One may argue, that this is a prob-
lem of the approach, because obtaining hyperspectral data is not fully

15The content of section 4.3 has been previously published (Hänel et al. 2019).
16The content of section 4.4 has partially been previously published by Hänel et al.

(2021b) except for subsection 4.4.2.
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avoided. Therefore, we evaluate the feasibility of supplying this informa-
tion by learning it from remote sensing data. The remote sensing data for
training needs to be hyperspectral; however, no hyperspectral measure-
ments are required on the ground. As the M2HSN is mainly intended as
an addition to remote sensing, the less frequently obtained remote sens-
ing data can be used as training data for the HoM2HSN. It is therefore
relatively easy to obtain.

4.4.1. K Singular Value Decomposition (K-SVD)

One algorithm for learning the information is K-SVD (see section 2.3.9).
K-SVD is used similar to the approach by Arad et al. (2016) explained
in section 3.4.2: a high resolution dataset is used to train a transform
base for compressed sensing. The resulting transform matrix consists of
some artificial spectra that are well suited for sparse representations of the
spectra in the training set. The resulting transform matrix is then used
for the recovery of the high resolution spectrum in an ordinary compressed
sensing approach. In this step, we use SL0.

4.4.2. Universal Pattern Decomposition
Method (UPDM)17

UPDM is applied by measuring the base spectra in advance and then
independently applying the algorithm to the multispectral data. It may
be used for random bands as well, when the matrix of base spectra Y is
known for each combination of filters. As each combination should ideally
be unique, this will usually result in one matrix per node, i.e., replacing
Y in equations (3.4) and (3.5) with Yj .

4.4.3. Band Selection

As K-SVD, in contrast to DCS, does not require heterogeneous band selec-
tion, we used a simple selection of best bands. Unlike Arad et al. (2017),
we did not use a genetic algorithm for two reasons: firstly, a genetic algo-
rithm would introduce many adjustable parameters, making the solution
too much dependent on finding good parameter sets for each dataset.
For our scenario, we consider this an unjustified overhead considering the
small increase in performance found by Arad et al. (2017). Secondly, we
will show that it is more important to discard bad band sets than trying to
find a near-optimal selection - this is also in line with the original idea of
making random samples in Compressed Sensing. Discarding these is much
easier: we simply try a few random band sets on a different dataset and se-

17The content of section 4.4.2 has been previously published (Hänel et al. 2019).
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Table 4.2.: Multispectral sensors considered for the M2HSN.

Name #Bands Wavelengths[nm] Price [€]

SparkFun Triad 18 410–940 ≈70
Hammatsu Minispec. e.g. ≈ 136 e.g. 320–1000 not listed
Ocean Insight Flame e.g. ≈ 488 e.g.350–1000 e.g. ≈ 3000
Pixelteq Pixelsensor 8 of 16 425–850 250?
X-Rite i1Studio 36 380–730 400

lect one of the good ones. This approach can also be used for UPDM. The
variants using the band selection are called UPDM-BBS and DCS-BBS
in the evaluations.

4.5. Prototype for the M2HSN

A core goal of this thesis project was building an actual prototype for the
M2HSN. This required several design decisions: A sensor node platform
had to be chosen, containing power supply, processing, and communication
capabilities. But the most important choice are the sensors. These can
be split into two main categories: The first category are ready-to-use
multispectral sensors which offer cheap solutions and less development
effort. However, these are not suitable for the HeM2HSN, because the
wavelengths cannot be chosen arbitrarily. The second category of sensors
are simple light sensors, that need to be equipped with filters.

4.5.1. Sensors

Several multispectral sensors were found during research. These are com-
piled in table 4.2. While the spectrometer series by Hammatsu and Ocean
Insight offer compelling wavelength ranges and spectral resolution, these
have not been further considered mostly because the prices exceed what
is acceptable for WSN nodes. The Pixelteq Pixelsensor is particularly
intriguing: because of its configurability, it seems usable even for the
HeM2HSN.

However, even if considering all available filters, there are still less bands
available than with the SparkFun Triad. As the SparkFun Triad also offers
a slightly wider wavelength range and a lower price, it was chosen as one
of the sensors used in the prototype.

For the evaluation of the HeM2HSN, none of the ready-to-use multispec-
tral sensors seems suitable. Therefore, a self-built multispectral sensor was
developed. It consists of multiple light sensors equipped with exchange-
able filter. Note, that the design is similar to the cheaper ones of the
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Table 4.3.: Lightsensors considered for the prototype.

Name WL[nm] Measurement range Output TC Dyn. range

OPT3001 440–670 10mlx− 83klx Digital ✓ 8.3 · 106
VEML7700 ALS 470–640 7mlx− 120klx Digital ✓ 1.7 · 107
VEML7700 W 400–1000 unspecified Digital ✓ unspecified
VEML6035 ALS 460–690 4mlx− 6.7klx Digital ✓ 1.7 · 106
VEML6035 W 400–1000 unspecified Digital ✓ unspecified
OPT3002 300–1000 (1.2nW − 10mW )/cm2 Digital ✓ 8.3 · 106
OPT101
(+ ADS115)

400–1100 depends on circuit Analog 1.6 · 106

TSL237 300–1050 (43pW − 435µW )/cm2 Freq. ✓ 5.0 · 106
S1087-01
(+ TelosB)

320–1100 (1.5µW − 6mW )/cm2 Analog 4.1 · 103

ready-to-use multispectral sensors. The price of the filters made this op-
tion more expensive than the ready-to-use multispectral sensor but it is
still cheaper than the more expensive ones of the ready-to-use multispec-
tral sensors. It is used for the evaluation of the HeM2HSN. However, the
vision of an integrated sensor like the existing ones remains: miniaturized
and at a lower price tag. This second design should only be seen as an
interim step for validating the HeM2HSN approach.

For this second design option, a suitable light sensor had to be found.
Multiple such sensors were considered, those are listed in table 4.3. The
OPT3001, the S1087-01, and the TSL237 are included because we en-
countered them in popular measurement platforms, namely the Sensortag
CC2650STK by Texas Instruments, which we used in (Hänel et al. 2021a),
the Telos B sensor node by Crossbow and UC Berkeley, which was pre-
sented by Polastre et al. (2005) and widely used in WSN research, and the
Sky Quality Meter by Unihedron, which was researched, e.g., by Cinzano
(2005) and is widely used by astronomers. The OPT3001 is representative
of a wide variety of sensors, which are not usable because of the limita-
tion to wavelengths of the human eye. These are typically called Ambient
Light Sensors (ALSs).

Besides the wavelength range, the measurement range played a crucial
role for the selection of the sensors. The band filters only let a fraction
of the light pass through, leading to very low levels of power. The nar-
row viewing angle required for the filters further reduces the power. This
holds true especially in the infrared region, because in this region, the
sensitivity of the sensors is low and the infrared intensity in the sunlight
is low. However, it is desirable to use the same sensor not only for the
reflected light but also directly for the incoming sunlight without requiring
a neutral density filter. In this case, the power level is very high. Further-
more, the illumination varies significantly in the course of a day. A wider
measurement range makes a longer part of the day usable.

50



4.5. Prototype for the M2HSN

This made the OPT3002 a perfect choice for the prototype with its
dynamic range of 8.3 · 106 : 1. It adjusts the gain setting automatically
which also makes it easy to use.
While the TSL237 comes close, its sensitivity is shifted overall to lower

power levels which lead to its exclusion. The VEML7700 is an interest-
ing alternative for future evaluations because of its even higher dynamic
range and the combination of two sensors in a single packet: one with
visible light response function (here called VEML7700 ALS) and one with
a wider response function (here called VEML7700 W). A sensor named
VEML6030 offers mostly identical specification but a different form fac-
tor. Unfortunately, detailed specifications are only offered for the visible
light sensor. Measurements indicated, that resolution at low light is better
with the OPT3002 in a side-by-side comparison making it better suited
for usage behind narrowband filters. The VEML6035 offers similar speci-
fications to the VEML7700, albeit shifted to lower light levels, but it was
released too late to be considered for the first prototype. The OPT101
may be adjustable to an even wider range with an ADC that offers higher
resolution and range of gains, however this was not pursued as it would
require significantly more development effort.

4.5.2. Filters

For the configuration of sensor nodes actually deployed, some additional
considerations played a role. While the results of the scalability evalua-
tion discussed in section 7.2.4 lead to a suggestion of 40 sensor nodes, for
the prototypical experimental evaluations we limited the number to five
sensor nodes with exchangeable filters due to funding constraints. Fur-
thermore, we wanted to make sure, that we can use the measurement
results for processing via both DCS and K-SVD. To generate filter sets
suitable for both approaches, we optimized the filter sets for K-SVD as
described in section 4.4. We then simulated using the J best filter sets for
a HeM2HSN. The results are shown in figure 4.4 for J = 5 for J = 64 as
DCS-KSVDCHANNELSETS. J = 64 was chosen because it is significantly
higher than necessary so it approximates the best achievable result.
The K-SVD results with the same band sets (KSVD-BBS ) is shown for

comparison as well as the DCS result for completely random band sets
(DCS-RANDOM ). For J = 5, the selection of the band sets even helps to
improve the reconstruction quality, making these filter sets a surprisingly
good compromise. Although, DCS cannot compete with K-SVD in this
case. For J = 64, the limitation to the optimized band sets shows its
impact on the extraction of the common signal. The result is slightly
worse in this case. However, the result is still better than the K-SVD
result in this case.
The datasets used in this simulation were Air MA for training K-SVD,

Air MB for the band set evaluation and Ground Full for the evaluation.
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Figure 4.4.: Results for K-SVD band sets in the HeM2HSN.

Table 4.4.: Filter sets selected for the prototypes. Wavelengths
in nm.

Set 1
Sim. 579.9 690.5 732.5 746.6 803.4 959.8 1031.7
Real 580 690 730 750 800 960 1040

Set 2
Sim. 566.0 593.8 649.3 760.7 846.0 9959.8 1050.7
Real 570 590 650 770 850 960 1050

Set 3
Sim. 552.1 579.9 649.3 746.6 846.0 959.8 1031.7
Real 550 580 650 750 850 960 1020

Set 4
Sim. 538.5 552.1 649.3 746.6 817.6 974.0 1050.7
Real 540 550 650 750 820 970 1050

Set 5
Sim. 498.4 538.5 593.8 760.7 846.0 974.0 1069.6
Real 500 540 590 770 850 970 1064

For more information on these datasets, we refer to section 6.4.1. The
number of atoms is 8 as it turned out superior in the evaluation. The
number of bands is M = 7 with an 8th sensor being used as sky sensor.

The resulting filter sets are listed in table 4.4. Note, that the wave-
lengths of the filters actually built into the prototypes slightly vary as
listed due to availability.
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4.5.3. System

As the mainboard for the system, a LILLYGO TTGO T-Beam V1.1
was chosen, that combines LoRa, a GPS, an ESP-32, and a recharge-
able battery (type 18650) on a single board. The ESP-32 offers suffi-
cient GPIO ports, as well as deep sleep support and additional wireless
technologies, namely Bluetooth Low Energy (BLE) and Wireless Local
Area Network (WLAN). Note, that previous versions offer less power
management functions making them less suitable for long-term deploy-
ments. All components were connected with custom designed Printed
Circuit Boards (PCBs) that help directing the light sensors in the correct
directions. Cases for rudimentary protection from stray light and weather
conditions were produced via Fused Deposition Modeling (FDM) from
Polylactic Acid (PLA) and PolyEthylene Terephthalate Glycol (PETG).
The case contains light tubes for restricting the field of view of the light
sensors directed to the ground. The resulting field of view is (10.5±2)◦ for
the nodes with configurable bands and (14.5±2)◦ for the nodes with fixed
bands. The choice of the field of view was constrained by factors such as
the size of the filters, the angle-dependency of the filters, and the distance
of the light sensors on the PCB. However, the core trade-off consists of
choosing a sufficiently wide angle for averaging across a sufficient area and
having the sensors sufficiently illuminated and a sufficiently narrow angle
for blocking stray light. In the case of the nodes with configurable bands,
a tray containing one bandpass filter per band is placed in the path of
the light tubes. For the sky sensor, instead a diffuser was chosen that has
been found to have consistent transmission properties across a wide range
of wavelengths (Bauer et al. 2016).

Figure 4.5 shows impressions of the sensor nodes. The total costs of the
two sensor node types are listed in table 4.5. Especially the node design
with fixed wavelengths already qualifies as a low-cost solution. When
producing larger numbers of the sensor nodes, joining everything on a
single PCB will allow reducing weight, size, assembly time, and costs even
further.

4.5.4. Communication

Communication in the WSN takes place in two steps, the first is via LoRa
to a border router, the second is via Public Land Mobile Network (PLMN).
The sufficient range of LoRa, the redundancy of consecutive measure-
ments, and the uni-directional nature of the data transfer allowed us to
choose a very simplistic and efficient communication pattern that lost some
popularity with the birth of the Internet of Things (IoT): The sensors sleep
most of the time. They wake up periodically for taking measurements and
sending data without waiting for any incoming packets. In comparison to
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Top

Bottom

Filter Tray

Figure 4.5.: Photos of top and bottom of the connection PCB,
the filter tray, and a fully assembled sensor node.

Table 4.5.: Resulting material costs of one sensor node in Euro.

Common

Connector PCB 1 2.91
Main Board 1 34.93

Battery 1 8.14
Bubble Level 1 1.49

M3 rods 4 2.15
Filament 76g 1.52

OPT 3002 1 7.37
other (glue, solder, etc.) < 5.00

Sub-total 63.51

Fixed
Triad Spectro 1 72.44

Filament 84g 1.68
Total 137.63

Configurable

I2C Multiplexer 1 2.00
OPT 3002 7 51.57

Filters 7 396.20
Filament 138g 2.76

Total 516.04
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RACS by Fazel et al. (2011), the transmission times are not chosen explic-
itly at random, because the probability of collisions was sufficiently low
and no CS for the time domain was planned.
The benefits of this approach is that the sleep time can be maximized

because no additional wake time is required for forwarding packets, re-
ceiving acknowledgments, or synchronization of the clocks. Due to its
simplicity, the approach is also very robust against software errors and
failure states. However, it is not robust against packet loss.
Measurements are taken once every five minutes containing the node’s

identifier, the temperature, the voltage of the battery, the brightness val-
ues from the spectrometers, and the brightness from the sky sensor. Every
6 hours, instead of a normal measurement, a Global Navigation Satellite
System (GNSS) fix is acquired - this simplifies the deployment process be-
cause no manual GNSS measurements are required. As a side-effect, the
time to fix is highly variable, which helps to further avoid LoRa collisions.
For LoRa, a coding rate of 4/5, bandwidth of 250 kHz, center frequency

of 868MHz, and a spreading factor of 7 are used. This is sufficient for small
areas and reduces battery consumption with short transmission times of
approximately 150ms for packets of 200 bytes. No packet exceeded this
length. Assuming this worst case transmission time, the probability for a
collision of a packet in a network of ten nodes is 1−( 300 s−2·0.15 s

300 s )9 ≈ 0.009,
a loss of this magnitude is negligible in comparison to other packet loss
causes.

4.5.5. The test network

A prototypical test network was built near Osnabrück on a winter wheat
field. The last weeks before the harvest were monitored from June 15th,
2021 till August 3rd, 2021. For comparison, in-situ measurements of the
spectra at high resolution with a spectroradiometer of type HR-1024i by
Spectra Vista Corporation (SVC), and multispectral images by an Un-
manned Aerial Vehicle (UAV) of type DJI Phantom 4 Multispectral (P4)
were taken. Figure 4.6 shows sensor node positions on an NDVI map
generated from a UAV image taken on June 18th, 2021. A total of 10
sensor nodes were placed, among them 5 of the 7-band model and 5 of
the 18-band model. The positions were chosen such that they are evenly
distributed on the field for both sensor types. At the center position, one
of each type was used.

4.5.6. Data Processing

The sensor readings xraw are processed by first dividing the readings for
the individual bands by the reading of the sky sensor xsky:

xamc = xraw/xsky (4.6)
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Figure 4.6.: Positions of the sensor nodes on an NDVI map.
Circles indicate 18-band sensors and squares indi-
cate 7-band sensors. The Coordinates are in UTM
zone 32U.

On June 18th, we held white reference surfaces below the sensors and
took multiple measurements. The resulting values xamc,whiteref are used
for conversion into reflectance values:

xrefl = xamc/xamc,whiteref (4.7)

A dark current compensation did not turn out to be necessary because
the sensors already read 0 in darkness. Unless otherwise mentioned, we
calculated the median spectrum of a day over all measurements taken
between 10am UTC and 2pm UTC. Solar noon was approximately at
11:30am. The limitation to noon reduces the effect of shadows on the
reflection values.

4.6. Conclusion

In this chapter, the concepts of CFE and M2HSN were presented. For the
M2HSN, two different approaches were differentiated, the HoM2HSN and
the HeM2HSN and two CS based approaches for processing the data were
introduced. Furthermore, the design of an actual prototypical M2HSN was
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described. Before parametrizing the approaches for optimal performance
in chapter 6, chapter 5 gives an explanation on how the quality of the
reconstructions may be estimated.
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5. Adding Quality Estimates to
Compressed Sensing

A major issue of CS based systems is that the data generated by them is
only an approximation due to the lossy decompression for realistic data.
This issue can be drastically reduced when the approximation error is
known. Therefore, this chapter lists approaches for estimating the error.
In section 5.1 metrics for quantifying the approximation error are intro-
duced. These are used for most of the evaluations in chapter 7. There-
after, in section 5.2 a concept for developing metrics that estimate the
approximation error based on information available during decompression
is presented, culminating in a list of such metrics in section 5.3. Lastly,
in preparation for the evaluation of these metrics, section 5.4 discusses
metrics for judging the success of the estimation.

5.1. Error Metrics

In order to make an estimate on the reconstruction quality, we first need
a way to measure the reconstruction quality. This is easy whenever the
uncompressed data is known besides the decompressed or reconstructed
data. In the simulations we have this data available, but in real-world
applications it is not available because it never gets measured. Only the
compressed data and the reconstructed data are known then, not the
uncompressed data. The error metrics we use are well-established in lit-
erature. The Root Mean Square Error (RMSE) measures the difference
between two vectors:

RMSE =

⌜⃓⃓⎷ N∑︂
n=1

(xn,est − xn)2/N (5.1)

A nice property of the RMSE is that it has the same unit as the original
values making it intuitively interpretable.

One drawback of the RMSE is its inability to reflect an error of the same
magnitude usually being worse when the values in x are generally lower.
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Therefore, usually the Signal-to-Noise Ratio (SNR) or the Noise-to-Signal
Ratio (NSR) is used. Here we choose the NSR to keep consistency with
the RMSE in the way that larger values are worse than smaller values:

NSR =
RMSE2

x2/N
=

∑︁
n
(xn − xn,est)

2∑︁
n
(xn)2

(5.2)

Instead of measuring the quality of the whole vector, in some cases, the
absolute error of individual elements in the vector needs to be assessed
instead:

ϵn,abserr = |xn − xn,est| (5.3)

5.2. The Quality Metrics

Estimating the reconstruction quality in Compressed Sensing is challeng-
ing because far less data is collected than traditionally assumed necessary.
For the reconstruction quality, even more information needs to be squeezed
from this tiny amount of data. One way of gaining such information is the
incorporation of the calculation in the solver (Ji et al. 2008). However,
the major drawback of this is that many solvers have been developed,
some usable for all kinds of data, some specialized on specific kinds of
data. This development is ongoing, and quality estimation would have to
be incorporated in every single one of these solvers which may not always
be possible. A generic approach that uses information independent of the
solver seems more tempting. In the quest for finding suitable metrics we
use two strategies: In the first strategy we use that the prerequisites for
Compressed Sensing are known. We cannot check how well the prereq-
uisites have been fulfilled by the original data because we do not know
the original. However, we have an estimate of the original data and can
check if the estimate fulfills the prerequisites. The two core requirements
are that the data needs to be sparse and that the measurement needs to
be suitable for the transformation, and hence, the data. In the second
strategy for finding such metrics, we research solvers. These often use
iterative approaches which also rely on metrics for finding out whether a
sufficient solution has been found. These metrics may in some cases be
usable independent of the solvers.
Two main types of quality metrics will be considered in this thesis: on

the one hand there are metrics which assign a quality value to each element
of a reconstructed vector, from here on called In-Signal Metric (ISM), on
the other hand there are metrics which assign a quality value to a whole
vector, from here on called Per-Signal Metric (PSM).
Using a suitable operation, such as median, a PSM may be derived from

an ISM. ISMs mainly help experts assessing the data and which parts to
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rely on or ignore. It may also be used in algorithms that rely on the recon-
structed data for improved decision-making. The PSMs have the potential
to become useful for even more purposes, if being well-calibrated: They
may be used to find a better reconstruction if being used to compare the
results from different solvers or different solver parameter sets. Similarly,
the PSMs can be used to select the best transform when it is not known.
When it is possible to acquire more samples iteratively, PSMs may be
used to keep sampling until sufficient data has been collected (Chou et al.
2009).

5.3. The List of Quality Metrics

These considerations let us build a list of metrics given in tables 5.1 and
5.2. Recalling our first strategy, one core requirement for CS is sparsity in
the data. This is expressed by the ℓ0 norm. As we are dealing with real-
world, noisy data, this metric is inconvenient, a threshold is needed for
differentiating between zero and non-zero values. In the CS community,
it is well known that ℓp norms with p ≤ 1 are similarly well suited as
a measure of sparsity. Therefore, we also consider some metrics in this
range, namely ℓ0.25, ℓ0.5, and ℓ1. The second core requirement for CS is
incoherence between the measurement matrix and the transform matrix.
According to Candes et al. (2008), this is expressed as:

µ(Φ,Ψ) =
√
N max

1≤k,j≤N
|⟨ϕk|ψj⟩| (5.4)

While this is usually defined for the whole base, in an actual measurement,
only a subset of M vectors out of the ϕk is actually applied. Using only
these for the calculation of µ may lead to a decreased value. However, we
quickly rejected this as a quality metric because it only differs significantly
from the actual µ in extremely rare cases. Furthermore, the requirement
of incoherence is somewhat outdated (Candes et al. 2011). The third and
most trivial core requirement for CS is that M is sufficiently high. There-
fore, we include the compression ratio N/M as another quality metric,
albeit it is only usable in some scenarios, often N and M will be constant
for all results that need to be compared.
Recalling our second strategy for finding results, we take a look at met-

rics used in solvers. Besides minimizing the ℓp norm with 0 ≤ p ≤ 1
for f , the solution must closely match the measurements. In LASSO,
this is measured with the ℓ2 norm for the difference of the reconstruc-
tion and the measurements. We call this RMSME from here on. In some
solvers, this metric is not usable, as they only generate solutions that fit
the measurements perfectly. Another observation for the solvers is, that
they sometimes generate solutions which are obviously wrong for human
observers, because they are in the wrong value range. With the ℓp metrics,
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Table 5.1.: List of Per-Signal Metrics (PSMs)

Name Description Requirements

l0norm psm ℓ0 norm of f , requires thresh-
old parameter

l025norm psm ℓ0.25 norm of f
l05norm psm ℓ0.5 norm of f
l1norm psm ℓ1 norm of f
l2norm psm ℓ2 norm of f
l1overl2 psm ℓ1/ℓ2 for f
l05normnd psm ℓ0.5 norm of x
l1normnd psm ℓ1 norm of x
l2normnd psm ℓ2 norm of x
rmsme psm Root Mean Square Measure-

ment Error (RMSME)
Suitable solver
(e.g. LASSO)

biggestgap psm Biggest gap in vector between
2 consecutive samples

Suitable mea-
surement
(spike)

gapdiff psm Difference between the
biggest gap and the smallest
gap

Suitable mea-
surement
(spike)

emptybinsfraction psm Number of filled bin, when
splitting vector in M bins

Suitable mea-
surement
(spike)

compressionratio psm The compression ratio N/M Variation ofM
coherence psm Coherence calculated be-

tween measurement and
transform

diff2common psm RMSE between common sig-
nal and individual signal

DCS-JSM-1

angulardiff2common psm Angle between common sig-
nal and individual signal

DCS-JSM-1

variance psm mean of variance ism Suitable solver
(BCS)

crossvall1o psm RMSME from leave-one-out
cross-validation

we already have metrics that may help to identify these cases. However,
as they are chosen to promote sparsity, which is not relevant for this con-
sideration, we also include ℓ2 for the sparse space reconstruction f and
several ℓp metrics for the normal space reconstruction x. The solver BCS
plays a special role, because it has the covariance matrix Σ as an addi-
tional output. A quality metric can be derived by extracting the diagonal
elements of the transformed covariance matrix (Ji et al. 2008):

γvariance,ISM = diagonal
(︁
Ψ · Σ ·ΨT

)︁
(5.5)
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Table 5.2.: List of In-Signal Metrics (ISMs)

Name Description Requirements

samdist ism Distance to closest
sample

Suitable measurement
(spike)

samdist2d ism Distance to closest
sample in two-
dimensional array

Suitable measurement
(spike), suitable data
(two-dimensional)

diff2common ism Difference per element DCS-JSM-1
variance ism Variance as deter-

mined by BCS
Suitable solver (BCS)

This is a vector with the ISM version of the metric. The PSM version is
the mean of the ISM version.

Besides these strategies, we collected some more metrics: Especially in
the case of simple sparse measurement matrices, intuitively, solutions are
expected to be better close to the samples. This leads us to the distance
to the closest sample, which is a discrete value as it specifies the number
of vector elements to the closest one. This metric is an ISM. For the
derivation of a PSM, we do not simply use the median or average as it is
closely related to the compression ratio. Instead, we concentrate on the
heterogeneity of the sample distribution. We try the following metrics for
this purpose: the size of the biggest gap, the difference between the size
of the biggest and the smallest gap. As a third metric for this purpose,
we cut the vector in M equally sized bins and count the bins that contain
no sample. We then calculate the fraction of empty bins.

We also consider JSM-1 of DCS. As it models multiple individual signals
as the sum of a common signal and an innovative term specific for each
individual, we compare each individual signal with the common signal.
The vector of absolute differences for each element of the two signal vectors
is the ISM version. The length of this vector and the angle between the
two signal vectors are two PSM versions.

Lastly, we also use a cross-validation metric similar to the one intro-
duced by Ward (2009): From the measurement vector y, we derive M
vectors ym of length M − 1 by leaving each sample out once. The left out
sample is pm = y[m].

We build the corresponding Ψm matrices, and calculate a CS solution
in sparse space fest,m for each of these vectors. For this, we calculate a
measurement result with yest,m = Φ ·Ψ ·fest,m. From this vector we select
the element corresponding to the previously left out sample: pest,m =
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yest,m[m]. Now, we can calculate a cross-validation metric as follows:

γcrossvall1o,PSM =

⌜⃓⃓⎷ 1

M

M∑︂
m=1

(pest,m − pm)2 (5.6)

Note that the calculation overhead is significantly higher than for the other
metrics, because M + 1 CS problems need to be solved instead of just a
single one.

5.4. Evaluation Metrics

For assessing the suitability of the quality metrics, we require evaluation
metrics to measure how well a quality metric correlates with the actual
quality of the reconstruction, measured by one of the error metrics. A
common measure for the correlation of two metrics is the coefficient of
determination R2. An optimal quality metric would have an R2 of one.
Achieving this is highly unlikely, but metrics with a lower R2 will often
be helpful as well. One issue of R2 in the context of quality metrics is
that it strongly penalizes non-linear dependencies. However, for many
applications it suffices to make a correct decision based on the comparison
of two reconstructions. Therefore, monotonicity in the dependency would
be perfectly sufficient in these cases. For rating this, we introduce a new
metric called Good Pairs (GP), that is related to the inversion number,
used for rating how well an array is sorted. For the calculation of GP,
every possible pair of the J values in the case of PSMs or the N values in
the case of ISMs is evaluated. There are 9 possible relations between the
pairs:

R1 = {ϵi < ϵj and γi < γj} (5.7a)

R2 = {ϵi < ϵj and γi = γj} (5.7b)

R3 = {ϵi < ϵj and γi > γj} (5.7c)

R4 = {ϵi = ϵj and γi < γj} (5.7d)

R5 = {ϵi = ϵj and γi = γj} (5.7e)

R6 = {ϵi = ϵj and γi > γj} (5.7f)

R7 = {ϵi > ϵj and γi < γj} (5.7g)

R8 = {ϵi > ϵj and γi = γj} (5.7h)

R9 = {ϵi > ϵj and γi > γj} (5.7i)

Note, that relations (5.7d)-(5.7f) occur with rather low probabilities
(P (R4), P (R5), P (R6) ≪ 1), because the error metrics are rarely exactly
identical. A similar statement can be made for relations (5.7b) and (5.7h).
However, some of the quality metrics tend to assume few discrete values
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making the relations significantly more frequent in these cases. For con-
tinuous metrics P (R2), P (R8) ≪ 1 is expected. For random continuous
metrics, independent of the actual, continuous error, the combinations of
relations have equal probabilities P (R1) = P (R3) = P (R7) = P (R9) and

with
∑︁9

i=1 P (Ri) = 1 and P (R2), P (R4), P (R5), P (R6), P (R8) ≪ 1), it
must be P (R1) = P (R3) = P (R7) = P (R9) = 0.25 − ϵ with 0 ≤ ϵ ≪ 1.
The metric GP+ contains the number of pairs fulfilling relation (5.7a),
(5.7e), or (5.7i) divided by the total number of pairs. For random con-
tinuous metrics, a value of GP+ ≈ 0.5 is expected. Significantly higher
values indicate a suitable metric. In some cases, the relation is inverted:
a low value of the quality metric indicates a high error and a high value
indicates a low error. Therefore, a second metric, GP−, is introduced,
which instead considers relations (5.7c), (5.7e), and (5.7g) as good. For
continuous metrics one can assume GP+ +GP− ≈ 1 whereas for discrete
metrics we typically get GP+ +GP− < 1 because equal values occur reg-
ularly. Note that GP− can also be interpreted as GP+ for the metric −γ,
making all the following discussions for GP+ applicable to GP− as well.

A remaining question is how much higher than 0.5 a GP+ value must
be for it to be significant. For continuous metrics, the significance of a
GP+ value can be determined similarly to the p value for R2. For a given
GP+ value, the GP+ p value is designed to indicate the probability of a
random metric generating a higher GP+ value. The following calculation
only makes an approximation in the sense that it assumes each value to
be unique. For the calculation of the GP+ p value, we consider a vector
of quality metrics γ. Among all permutations of this vector, we count the
percentage of the permutations that have less inversions than the given
GP+ value.
The number of permutations for a given number of inversions k in a

vector of size n is given by the Mahonian number Mn,k which is defined
recursively (MacMahon 1913):

Mn,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if k < 0

0 if k > (n2−n)
2

1 if k = 0

Mn−1,k +Mn,k−1 −Mn−1,k−n otherwise

(5.8)

The probability for k inversions in γ is p(k) = Mn,k/n!. Which allows
us to determine the probability that a random metric generates not more
than K = (1−GP+) · (n2 − n)/2 inversions:

p(k ≤ K) =

K∑︂
k=0

Mn,k/n! (5.9)

If this is sufficiently low, the value for GP+ can be considered a relevant
result. For discrete metrics (and non-unique continuous values), the GP+
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tends to lower values because equal values for γ are treated as inversions
as well (see relations (5.7b) and (5.7h)). This makes the p(k ≤ K) from
equation (5.9) an upper limit in these cases. The relevance is still given,
values with a higher p(k ≤ K) might be relevant as well. We refrain
from finding an adjusted value because the discretization is highly metric-
dependent and finding an upper limit seems sufficient.

5.5. Conclusion

In this chapter the error metrics used in the upcoming parametrization
and evaluation chapters 6 & 7 have been formally introduced. The chal-
lenge of estimating this error based on the information was pointed out
and approaches for the estimation were listed. Metrics for grading these
approaches have been introduced that will be used in sections 7.5-7.7 to
determine the quality of the approaches.
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6. Parametrization and
Configuration

The CS based solutions CFE, HeM2HSN, and HoM2HSN developed in
chapter 4 need to be parametrized and configured as laid out by the
recipe in chapter 2. Before getting to these specific solutions, the steps of
selecting and parameterizing CS solvers are first discussed for a more gen-
eral example in section 6.1, greatly simplifying this step for the following
parametrizations and configurations of CFE, HeM2HSN, and HoM2HSN
in sections 6.2-6.4.

6.1. Solver parametrization and why it does
(not) matter

In an attempt to find good parameters for each of the solvers, we use a
simple experiment. We generate an example signal with N = 256 samples
with a sample rate of 1 Hz. The signal is a sine wave with a frequency
of 0.2 Hz and an amplitude of 2 with an additive Gaussian noise with a
standard deviation of 0.1. Out of the N = 256 samples, M = 32 samples
are chosen randomly as the measurement vector y. As pointed out in
section 2.2, this means assuming a sparse measurement matrix consisting
of M rows of an identity matrix. As transform matrix, a DCT matrix
is assumed. We refrain from varying the signal or the measurement of it
to keep calculation time handleable. With each of the solvers, we solve
this CS problem and vary the parameters of the solver. More details on
the parameters and solvers were given in section 2.4. In the parameter
variation, we perform a global optimization using a brute force approach
on a grid. The goal is finding parameter sets that minimize the RMSE
between the reconstructed signal and the original signal.

ℓ1 magic

The parameter variation result for ℓ1 magic is shown in figure 6.1. For
all parameters, the common logarithm is shown. Within each subplot, µ
and the tolerance of the Newton search are varied. Between the plots, the
number of iterations is increased from left to right and ϵ is increased from
top to bottom. Cyan color indicates errors which exceed the scale. Red
color indicates that the calculation has been aborted because it took more
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Figure 6.1.: Results for parameter variation of ℓ1 magic.
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Figure 6.2.: Results for parameter variation of LASSO.

than 10 seconds. In the first and the last rows, errors are always high,
showing that the epsilon has to be chosen appropriately, although the sen-
sitivity is very low with valid values stretching over 8 magnitudes. With
the lower bound being arbitrary, the upper boundary is more interesting.
It is close to the actually achievable error. As a rule of thumb, it should
be chosen slightly below the expected achievable error. The number of
iterations must not be too low as indicated by the relatively high errors
in the first two columns. A higher number of iterations mainly increases
calculation time, leading to many aborted calculations. Further improve-
ments in dependence of the number of iterations do not seem significant.
The µ must be sufficiently high to actually increase the barrier, i.e. above
1. However, the exact value seems to be rather unimportant. The toler-
ance of the Newton search again has a rather low influence. Only a high
value, especially in combination with a low µ, low number of iterations
and high ϵ leads to high errors. Similar to the ϵ, the threshold is close to
the actually achievable error.

LASSO

For LASSO, only λ and the tolerance (tol) were varied. The maximum
number of iterations was kept constant. The result is shown in figure 6.2.
The axes show the common logarithm of the parameters. The color shows
the RMSE. The figure shows that the RMSE has a clear minimum region
in λ direction. It must neither be chosen too low, nor too high. Decreasing
the tolerance widens the minimum region, making the λ selection more
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forgiving. Overall, this shows that the λ has to be chosen relatively well,
whereas the other parameters merely determine how much calculation time
one is willing to spend.

SL0

Finding appropriate parameters for SL0 is particularly hard because there
are four parameters which have to be considered and actually have an in-
fluence on the performance. Figure 6.3 shows the result of the parameter
scan. The colors indicate the RMSE of the reconstruction. Within a single
figure, σmin and α have been varied, the parameters of the ℓ0 approxima-
tion. Note, that α is chosen linearly along the allowed range with α ∈]0, 1[
while σmin decreases exponentially from 1 closer to 0. Between the indi-
vidual figures, the gradient descent has been varied with the number of
variations L increasing exponentially from 1 to 100 and the step size fac-
tor being varied linearly: µ0 ∈ [0.1, 4.0]. For σmin and for L, the common
logarithm is shown instead of the actual value. Note, that the calculation
time increases within a subplot from top left to bottom right and across
the subplots from top to bottom.
First of all, comparing the subplots, there is an area of subplots con-

taining low RMSE values around the diagonal from the upper right to the
bottom left of the figure. This shows that the gradient descent has to be
properly parametrized. Either many small steps or few large steps have to
be made. Setting both high as in the lower right corner or both low as in
the upper left corner results in bad performance. Generally, it is better to
do many steps instead of large steps. In the figure, this is indicated by a
widening area of low RMSE values when moving along the diagonal from
the upper right to the lower left.
Within most of the individual subplots, a strikingly similar pattern may

be observed: the lowest RMSE values are again observed along the diag-
onal from the upper right to the lower left. This indicates that σ should
either be decreased slowly to a high value or fast to a low value. Going
too fast to a high value, there are too few steps to reach a good solution.
Going too slow to a low value, gives the gradient descent too many op-
portunities to optimize without obeying sparsity. Overall, when roughly
obeying these rules, chances are good for ending up within the area of low
RMSE values as it stretches decently far along each parameter. When
being in this area, chances are good for obtaining results that outperform
the other solvers.

BCS

For BCS, only α can be varied. Choosing different values seems rather
arbitrary, therefore all elements of α are set to the same value. The result
of the parameter variation is shown in figure 6.4. The x-axis (alphas) shows
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Figure 6.3.: Results for parameter variation of SL0.
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the common logarithm of αi. The RMSE varies mostly between 0.4 and
0.5. However the variation seems chaotic. There is no clear dependency
from αi. This means, BCS requires no parametrization, which facilitates
its usage.

OMP

The result for OMP is shown in figure 6.5 for variation of the tolerated
error term. The best result is achieved between values of approximately
4 and 10. Outside of this interval, the error is significantly higher. This
area needs to be hit, albeit the exact value within the interval is not
of importance. Note, that it drastically differs in this point from SL0,
LASSO, and ℓ1 magic in that the tolerance must not be set too low.

Figure 6.6 shows the alternative stopping condition, the sparsity goal.
Here again, the value needs to be hit exactly, disabling one of the core
ideas of CS, i.e. that sparsity does not need to be known.

Nevertheless, finding the optimum is relatively easy in both cases with
sparsity goal being an integer and the tolerance having a well-defined range
of good values. Comparing both variants, the optimal value is the same -
apparently, the same number of iterations was performed due to the two
stopping conditions.
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Figure 6.6.: Results for sparsity goal variation of OMP.
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Conclusion

Overall, these example parameter scans helped to find simple rules for
finding good solver parameters for all solvers that greatly simplify this
step in the remaining sections of this chapter. As SL0 quickly turned out
to be the best solver overall, this parametrization and configuration step
was kept to a minimum, only considering some of the solvers.

6.2. CFE

In this section, we choose a transform and a solver for the CFE based
on the sample yield data of a crop field, acquired by a combine harvester.
For simplification, we perform these evaluations directly on the whole data
instead of using the actual sample process of CFE. It does include an offset
removal and re-addition. We refer to this as the static case from here on.

6.2.1. Transform selection18

Having designed the concept of CFE in section 4.1, the next step according
to the CS recipe from section 2 is finding the best suited transform. One
approach for this is measuring the sparsity directly based on existing data.
For this purpose, we applied multiple common transformations to the grid
data, namely DCT, DFT, and the Haar transform as a representative for
DWTs. Furthermore, we considered the untransformed version. As we are
focusing on spatial distributions, we used the two-dimensional versions of
the transforms, created with KCS.
Figure 6.7 shows the resulting coefficients in descending order. For

comparability, they were scaled so that the maximal value is one. In the
untransformed case (Spike) the magnitude of the highest approximately
1800 values decreases slowly. Then there is a sudden drop from 0.17
to 0 with all remaining values being zero. The zero values are simply
those outside the measurement area whereas the non-zero values are those
within the measurement area of size f = 1782. This border is depicted as
a dashed line. The coefficients in Haar domain decrease about as slowly as
the untransformed values. The sudden drop is missing, instead the trend
is held across all values. The coefficients in frequency domain display a
significantly steeper decrease. Only 97 values have a magnitude larger
than 0.05 in DFT. For DCT there are only 25 values. After all, especially
the two frequency space transformations DFT and DCT are promising
candidates to be used in compressed sensing.
To further restrict our selection of Ψ, we compressed and decompressed

the grid data using the compressed sensing scheme with all combinations
of the transform matrices Identity (Spike), Haar, DCT, and DFT and the

18The content of section 6.2.1 has been previously published (Hänel et al. 2017a).
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Figure 6.7.: Coefficients in various domains in descending order
(Hänel et al. (2017a), © 2017 IEEE).

measurement matrices Identity (sam), Rademacher (rad), and Gaussian
(gau). Implicitly, this also contains a test of the third requirement of
compressed sensing, the incoherence. CFE being the first CS-based solu-
tion considered in this thesis, we included dense measurement matrices to
assess the impact of using sparse sampling matrices discussed in sections
2.2 and 2.3.3 for a real-world example. We used the solver SL0 mostly
because it supports complex values and thereby DFT. As a metric for the
quality of the reconstruction, we use the RMSE between the original and
the reconstructed field. This evaluation is limited to the area where we
actually have measurements. The results are shown in figure 6.8a where
the boxplots are based on random measurement matrices generated from
ten different seeds. For comparison, the reconstruction quality of JPEG is
shown as well, being one of the most established compression algorithms
for two-dimensional fields. For JPEG, we scaled the measured values to
the range of a byte. Due to this byte-wise representation, the file size in
byte is a metric that is approximately equivalent to M . Therefore, we use
it as M in the evaluation.

The RMSE of the compressed sensing results with DCT, DFT, and
Haar transform is about as low as the one for JPEG and shows the same
continuous decrease in dependence of M . In a stark contrast, the RMSE
for the untransformed case (Spike) is significantly higher and decreases
slower up to an M -value of approximately 3000. Then, the decrease be-
comes steeper. This change may be attributed to the fact that from here
on M is sufficiently higher than the approximately 1700 non-zero values
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Figure 6.8.: Examining the suitability of the data for CS and
CFE (Hänel et al. (2017a), © 2017 IEEE).
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due to the limited measurement area. Whereas there is no significant
difference in the RMSE for the Gaussian and Rademacher measurement
matrices, the results with random sample matrices fall behind especially
in the case of Haar tranform and the untransformed case. For DCT and
DFT the difference is rather small due to the incoherence with random
sampling which was proven by Rudelson et al. (2006). The overall disap-
pointing result in comparison with JPEG may be attributed to the waste
of samples for reconstructing the values outside the actual measurement
area.

However, random samples open up an elegant way for circumventing the
problem by just using samples within the measurement area. The result
is depicted in figure 6.8b. Note that the task performed by compressed
sensing now resembles an interpolation more than a typical compression.
Therefore, we included a linear interpolation between the random values
for comparison as well as the most trivial interpolation which is just as-
suming the mean of the samples for the whole field. For comparability
with figure 6.8a, we again included the result with JPEG compression.
As we are using random samples for the measurement, we limited our
evaluations to the transforms DCT and DFT.

Both, the interpolation techniques as well as compressed sensing, yield
drastically better results than JPEG because JPEG still suffers from wast-
ing data on the area outside of the field as well as having some more over-
head. In contrast to all other techniques, the mean has a constant RMSE
of approximately 5 t/ha and barely shows any improvements with an in-
creasing number of samples. Linear interpolation and CS use the mean as
default value and improve upon it. Therefore, they become better than
the mean assumption even with a small number of samples. CS with DCT
shows results that are slightly better than with linear interpolation. Us-
ing DFT, the difference gets even clearer, significantly less samples are
required for the same reconstruction quality. Note, that this is already
a significant result for certain applications: measurements of the mass of
plants that may be harvested can be taken at some random locations on
the field in order to get an estimate for the yield distribution.

6.2.2. Solver comparison

Having found DFT and DCT as the most promising transforms, the next
step according to the CS recipe is selecting a solver. As in section 6.2.1,
we consider DFT and DCT with solver SL0. Now, we add the solvers
BCS and LASSO in the evaluation. We use them only with DCT as they
cannot handle complex numbers. The result is shown in figure 6.9. LASSO
performs about as good as SL0 with DCT. BCS performs much worse for
unknown reasons on this data. It performs worse than linear interpolation.
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SL0 in combination with DFT delivers slightly but consistently the best
results. This makes SL0 the solver of choice, mostly because in contrast
to LASSO it works with DFT.

6.3. HeM2HSN

For the HeM2HSN, we compare transforms and solvers analogously to
CFE. But first we take a look at the datasets used for the evaluations.

6.3.1. Datasets19

For the trace-based evaluation of the HeM2HSN, three datasets as listed
in table 6.1 will be used, the first one has been measured directly on
the ground in wheat fields with a spectroradiometer of type HR-1024i by
Spectra Vista Corporation (SVC) and will give an insight of how spectra
typically look when acquired directly in-situ. The second dataset has been
acquired using a hyperspectral camera on an airplane and can be used for
evaluations at a larger scale. The third dataset has been acquired by
satellite. The main advantage of this third dataset is its availability which
facilitates reproduction of the results.20

19The content of section 6.3.1 has been previously published (Hänel et al. 2019).
20The satellite data is data available from the U.S. Geological Survey:

https://earthexplorer.usgs.gov/,
Entity ID: EO1H1960232013159110KF SG1 01
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Table 6.1.: Parameters of the datasets used in the evaluation.

Source Area [km2] Pixel size # Spectra N Wavelengths [nm]

Ground 3.5× 3.5 < 1m2 124 48 400.4 - 1099.2
Airplane 6× 2.7 9m2 1.8× 106 49 406.1 - 1107.5
Satellite 10× 100 900m2 9.4× 105 92 396.3 - 1104.2

6.3.2. Transform comparison

In finding a transform base for the spectra in an earlier Bachelor Thesis by
Tessmer (2016), it was shown that the established transforms do not gen-
erate proper reconstructions at suitable compression ratios. Considering
the extremely low spectral sampling rates necessary for the HeM2HSN, a
different transform is required. The core idea here is to model the spectra
at different locations jointly, which is achieved with JSM-1 of DCS (see
section 2.3.8). Experiments with the other JSMs were discarded early on,
as they did not generate suitable results with established transforms.
Generally, Joint Sparsity Model 1 (JSM-1) requires one transform base

for the common spectrum and one for each spectrum that is used for ex-
pressing the difference between this spectrum and the common spectrum.
Clearly, using different transforms for the individual spectra seems rather
arbitrary as more knowledge on the different locations needs to be incor-
porated.
As the evaluation for CFE in section 6.2 showed that the transform

base with the highest sparsity is not automatically the one best suited
for CS, we skip the measurement of the sparsity. Instead, we directly
evaluate the transform bases using the RMSE between original data and
reconstruction.
Figure 6.10 shows the resulting values, solved with SL0 for a simple

sampling matrix, picking M = 8 samples. The transform for the common
part is varied along the y-axis, the individual part is varied along the x-
axis. Most of the transform bases considered here are from the different
DWT families. Apart from these, DCT, DFT, an identity matrix, i.e. a
spike base, and difference matrices of first and second order are included.
All these matrices were introduced in sections 2.3.1-2.3.4.
The most important observation in this parameter scan is that the choice

of the individual transform seems most critical as indicated by the vertical
dark green line with lower RMSE values. It indicates the lowest RMSE
values only being achievable with the difference matrices, especially the
first order for the individual term. With different values for M and differ-
ent measurement matrices, the same effect can be observed. This is not
shown here. The success of the difference matrix makes sense - adding an
offset in some wavelength ranges seems like an intuitively correct way of
modifying the common spectrum to model the individual spectra.
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Figure 6.10.: Variation of Ψc and Ψi for a sampling measure-
ment matrix and M = 8.

For the choice of the transform base for the common part, we created
a line plot in figure 6.10 as the values are difficult to differentiate in the
heat maps. The transform for the innovation terms is the difference matrix
here. The five transforms with the lowest RMSE are highlighted. Among
them there are two representatives of the Daubechies wavelet family, two
representatives of the Symlet family, and the first order difference matrix.
For simplicity, we choose the first order difference matrix for both the
innovation transform and the common transform.
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Figure 6.11.: Comparison of DCS JSM-1 performance for differ-
ent matrix combinations on ground spectra.

6.3.3. Solver comparison

For the solver comparison we use one of the datasets as an example, the
satellite dataset. The result is shown in figure 6.12. All solvers generate
good reconstructions. The difference between the solvers is significant but
smaller than the variation between sensor nodes as the boxplots indicate.
SL0 (called DCS here for consistency with the other figures) shows the
best performance, BCS comes in second, and LASSO performs slightly
worse.
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Figure 6.12.: Performance of various algorithms on satellite
based M2HSN data.

6.4. HoM2HSN 21

For the HoM2HSN, we deviate from the strict scheme used for HeM2HSN
and CFE: as SL0 always turned out superior, we refrain from testing other
solvers. For the transform, the choice has already been made for K-SVD,
however, it needs to be parameterized.

6.4.1. Datasets

In this work, we consider two of the datasets considered for the HoM2HSN
listed in section 6.3.1: the one with spectra acquired with hand-held sen-
sors on the ground, containing only spectra from agricultural fields. The
second is the one taken by an airplane, containing an area mostly consist-
ing of agricultural fields. For the following evaluations we work with these
sub-datasets:

Air Full This is the complete air-based dataset.

21The content of section 6.4 has been previously published (Hänel et al. 2021b).
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Air MA, Air MB These are two sub-datasets acquired by cuttingAir Full
in two parts of equal size. The M stands for Mixed as they contain differ-
ent kinds of land-use.

Air M1, Air M2, Air M3 These are three sub-datasets acquired by cut-
ting Air Full in three parts of equal size. The M stands for Mixed as they
contain different kinds of land-use.

Air V1, Air V2 These are two sub-datasets acquired by cutting squares
out of Air Full, which solely contain vegetation.

Ground Full This is the complete ground-based dataset.

Ground V1, Ground V2 These two sub-datasets are obtained by cutting
Ground Full in two parts of equal size.

These datasets will be used as training datasets, as datasets for the
selection of best bands, and for the evaluation of the algorithms. Note,
that the air-based dataset and the ground-based dataset originally con-
tained different bands. In order to make them inter-operable, we limited
the range of wavelengths to those included in both sensors, from 406 nm
to 1100 nm. We then re-sampled the ground-based dataset selecting the
same bands as in the air-based dataset. This direction minimizes the re-
sampling error due to the higher spectral resolution of the ground-based
dataset.

6.4.2. Parametrization

In this section, the goal is to develop an understanding for how K-SVD
manages to cope with the data and to find an appropriate parametriza-
tion. In a first step, we determine the size of the dictionary and the
appropriate value for the sparsity target. We use a similar value range to
the plot by Arad et al. (2016) in order to allow for a comparison. The
result is shown in figure 6.13. The sparsity target has been varied from
5 to 50 and the dictionary size from 100 to 400. The training has been
performed on Air M1, the best bands have been selected using Air M2
and the evaluation has been performed on Air M3. The color shows the
median RMSE which we determined by first calculating the RMSE for the
spectrum of each pixel in the evaluation area. We then determined the
median across all pixels. Lastly, we repeated the process 20 times with
different seeds for the band selection and obtained the median of the 20
medians. Note, that we defer a closer investigation of the distribution of
the RMSEs to section 7. Curiously, the result differs drastically from the
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Figure 6.13.: Impact of different dictionary sizes and sparsity
targets on reconstruction quality.
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Figure 6.14.: Impact of different dictionary sizes and sizes of
the training data on reconstruction quality.

one in (Arad et al. 2016): the error increases when increasing the spar-
sity target. Increasing the dictionary size only increases reconstruction
for higher sparsity targets. However, as the previous effect is stronger,
therefore, best results are achieved with small dictionary and low sparsity
target. We attribute this to the spectra varying less across pixels, be-
cause of the comparably low resolution in remote sensing which leads to
averaging out special spectra and because of the relatively homogeneous
agricultural environment.
Having found that a very small dictionary suffices already, such a small

dictionary should be trainable from a smaller training dataset. Therefore,
we evaluated the training dataset size in the next step by just selecting
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a limited number of pixels at random from the training dataset. This is
shown in figure 6.14. It again displays the median RMSE of the reflectance.
Instead of the sparsity target, we now vary the number of training pixels.
The sparsity target is set to 10 percent of the number of bands in the
hyperspectral version of the spectrum. The 10 percent rule is the default
of the K-SVD implementation in use. The resulting sparsity target is 4,
which is close to the optimum in figure 6.13. Furthermore, the sparsity
target is limited to the dictionary size as it’s impossible to choose more
atoms than available. From figure 6.14 it becomes clear, that surprisingly,
a small number of training pixels already suffices for a reflectance RMSE
of less than approximately 0.03. Increasing the number of training pixels,
mainly helps increasing the result with larger dictionaries. However, as
seen already in figure 6.13, a large dictionary leads to a lower reconstruc-
tion quality. For dictionary sizes below approximately 16 the results are
quite good. Dictionary sizes of 2 and 8 are slightly worse. At the value
of 2, we attribute this to the dictionary simply being too small. At the
value of 8, we found out that this happens due to SL0 performing poorly
when the dictionary size equals the number of bands. The effect does not
occur with OMP - but we still stick with SL0 because of an overall bet-
ter reconstruction quality. Curiously, the reconstruction quality becomes
more variable with increasing training set size. We attribute this to an
increasing chance of having anomaly pixels in the training set. Just a few
of these suffice to create a transform base that tries to cover the anomaly
pixels as well. For smaller training sets, this can happen as well in rare
cases and will have an even worse effect. However, these cases are not
reflected in this evaluation plot as they get rejected when calculating the
median.
A nice advantage of such a small dictionary is that it can be visualized

for a qualitative investigation. Some samples are shown in figure 6.15.
Each plot contains the elements of a trained transform, also called atoms,
as line plots. The number of atoms is increased from left to right by re-
training with a different dictionary size. The atoms have different colors
merely for visualization, the order is arbitrary. Clearly, most atoms are
dominated by the red edge and adding more atoms mainly helps refining
the representation of the red edge. A comparison of 6.15a and 6.15b
shows that this effect may be observed for both datasets. Note that the
dimension of this basis is comparable to the one assumed in UPDM with
its three base spectra. Due to small number of atoms, which are usually
all present in the solution, even using an ℓ2 -solver becomes viable, turning
the approach into a more simplistic approach. However, we still use SL0
which starts with the ℓ2-solution anyway and can thereby be considered
a more general solver. Note, that this model of the spectra, being a linear
combination of few base spectra is very similar to the model in UPDM.
In a last step before the main evaluations, we consider the role of the

band selection. Rather than developing a sophisticated algorithm and tun-
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Figure 6.15.: Atoms trained at different dictionary sizes and on
different training sets.

ing its parameters as in (Arad et al. 2017), we concentrate on evaluating
on how well a band optimization on one dataset may be transferable to
another. The result is shown in figure 6.16: the dictionary was trained on
Air MA and evaluated for 20 random band sets on the datasets Air MB
and Ground Full. The figure shows the resulting RMSE for all band sets
sorted according to the RMSE. Each band set is denoted by a different
color and same band sets are connected with straight lines to visualize how
the order of set quality correlates between datasets. Firstly, as found in
(Arad et al. 2017), there are few very badly performing band sets. The re-
maining bands show similar performance. Now, taking the corresponding
position of the sets between datasets into consideration, the high RMSE
sets are rejected quite effectively by choosing some of the low RMSE filter
sets. However, in the plateau, there are many non-parallel lines, indicat-
ing that choosing one of the low RMSE sets is likely to be far less optimal
in the other dataset. Therefore, we refrain from using a more sophisti-
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Figure 6.16.: Applicability of band selection between datasets.
Training was performed on dataset Air MA.

cated algorithm and just select some of the good bands in the following
evaluations, as this brings a major part of the improvements with far less
effort.
Overall, we have found that the training size has relatively low influence

on the result, while the sparsity target and even the dictionary size should
be chosen surprisingly low. More precise values will be further investigated
in section 7.3.

6.5. Conclusion

In this chapter, we have selected transforms and solvers for CFE, HeM2HSN,
and HoM2HSN. We also parametrized these as far as required. These set-
tings will be used for the evaluations in the next chapter 7. Furthermore,
the datasets used in the evaluations have been presented.
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In this chapter, in sections 7.1–7.3, the performance of the approaches de-
scribed in chapter 4 with the configurations from chapter 6 will be evalu-
ated. For the M2HSN, an additional evaluation of a real-world continuous
measurement is supplied in section 7.4. The quality metrics from chapter
5 are evaluated for synthetic data in section 7.5, for CFE in section 7.6,
and for the HeM2HSN in section 7.7.

7.1. Trace-based Evaluation of CFE 22

Having shown the achievable performance when sampling from the whole
field area, the static case, in section 6.2.1, we now consider the case of
transmitting samples while driving and, therefore, not having all values
available using CFE as proposed in section 4.1. This approach will be
called CFE or the dynamic case from here on. As discussed in section 4.1,
we applied the three different strategies for selecting samples for transmis-
sion in the dynamic case. The limited bandwidth is simulated by being
able to transmit only one sample every τ = 15 s while measuring a sam-
ple every δ = 5 s, which are values typically used for low- and high-rate
sampling.

7.1.1. Qualitative evaluation

In order to gain an intuition for CFE’s performance, we first compare its
performance at different points of time and thereby a different number of
received samples. For now, we limit our considerations to the sampling
strategy CFElatest, we introduced in section 4.1.2. The samples that have
been transmitted as well as the results after reconstructing the field solving
equations (4.1) and (4.2) are shown in figure 7.1. Note that in favor of a
more compact visualization, we have omitted the color bar and changed to
integer indexes for the grid cells rather than longitude and latitude. This
information may be obtained from figure 4.2.

Figures 7.1a–7.1c show the situation after having received the firstMt =
200 samples. Figure 7.1a shows the samples that have been received. The
borderline of the area which has been explored by the harvester at this time

22The content of section 7.1 has been previously published (Hänel et al. 2017a).
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Figure 7.1.: Development of the reconstruction quality during
harvest (Hänel et al. (2017a), © 2017 IEEE).

is shown for comparison. The samples display a homogeneous distribution
within the explored area due to the sampling strategy CFElatest. In figure
7.1c, the reconstruction result is shown.

Note, that we have set all cells outside the field to 0 as this area has
no relevance and would be rather distracting. In the areas far from the
explored area, the values default to the mean due to its temporary re-
moval in equations (4.1) and (4.2) and display relatively high deviations
(Fig. 7.1b). In the explored area, the distribution already has some sim-
ilarity to the original distribution (see figure 4.2 or 7.1h for comparison).
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In the upper left of the field there is a row with high deviations. The
original distribution reveals that it coincides with a row of higher yields
highlighted by a green ellipse in figure 7.1h. Shortly after, whenMt = 250
readings have been received (Fig. 7.1d), this row has been crossed by the
harvester and seems to be well captured in the reconstruction (Fig. 7.1d)
but there are still some errors along this row. After Mt = 450 readings
(Fig. 7.1e), diagonal stripes which coincide with the movement pattern of
the harvester become apparent in the reconstruction. This is actually a
step in the right direction when comparing with the real distribution in fig-
ure 7.1h which also contains such stripes. This structure was forced by the
assumed DFT which demonstrates an explanation for DCT’s and DFT’s
superiority determined in section 6.2.1. After Mt = 500 (Fig. 7.1f), nearly
the whole area has been explored by the harvester. Afterwards (Fig. 7.1g),
the reconstruction gradually improves by filling the gaps with more values,
getting very close to the original (Fig. 7.1h) and ultimately identical to it
after transmitting all values.

7.1.2. CFE as field estimate

Although the distributions in figure 7.1 provide a more detailed under-
standing, this is not suitable for a broader evaluation. Instead, we again
measure the quality of the field estimate using RMSE as in section 6.2.1,
this time for the dynamic case. Therefore, the Mt axis now also serves as
a time axis. The results are shown in figure 7.2a. The behavior may be
roughly separated in two phases: in the first phase, the harvester did not
explore the whole field. Here the reconstruction is a mixture of compres-
sion and forecast. The change between phases occurs at tP = t0 + F · δ
or after receiving MtP = tP /τ = 594 samples. Initially, all dynamic sam-
pling strategies perform worse than the static case. The RMSE decreases
with increasing Mt for the dynamic as well as the static case. However,
the decrease is less regular but overall steeper in the dynamic case. Even
before tP , all strategies achieve RMSEs about as low as in the static case.
This is actually a remarkable result as it shows that the influence of the
restricted sampling is so insignificant for the whole field that it disap-
pears even before having covered the whole field. The results also help
us finding the appropriate sampling strategy: Mostly, the reconstruction
quality is not significantly different. However, in the phases where it is
different, the result is somewhat surprising considering the trade-off dis-
cussion from section 4.1.2: CFElatest is a clear winner. It continuously
shows better results than the other strategies with CFEuniform coming
in last and CFEramp in between the two. We attribute the superiority
of CFElatest to the fact that the achieved homogeneous distribution of
samples dominates the reconstruction quality whereas the resulting mea-
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Figure 7.2.: Reconstruction quality in the dynamic case with
different sampling strategies and metrics (Hänel et
al. (2017a), © 2017 IEEE).

surement pattern does not become less incoherent with the transformation
base because sufficient randomization is induced by the route of the har-
vester as well as the jitter.

The first phase requires some more investigation in order to separate
the influence of compression and forecast.

7.1.3. CFE as compression

First, we evaluate the influence of the compression area by calculating
the RMSE only for the part of the area that has been explored by the
harvester already. The result is shown in figure 7.2b. As expected, in
the beginning, the overall RMSE is mostly lower than for the whole field
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Figure 7.3.: Reconstruction quality over time (Hänel et al.
(2017a), © 2017 IEEE).

estimate (Fig. 7.2a). Note that from MtP onwards, the values are the
same as in figure 7.2a because the area that contributes to the RMSE
calculation becomes the same in phase two.

The ranking of the sampling strategies is the same as for the whole field
estimate. At the beginning when only few values from a highly localized
area have been transmitted, the RMSE is highly volatile. Whereas this
may be partially attributed to the small sample size of grid cells, the course
is qualitatively the same for all random seeds and sampling strategies,
indicating that it is mainly influenced by the real data of the field and
the exploration path. When comparing with figure 7.1, e.g., the steep
increase between Mt = 200 and Mt = 250 may be explained: The row
of high yield values in the upper left area of the field has been harvested
in between these points of time as a comparison of figures 7.1c and 7.1d
reveals. In several cells, reconstruction errors were made around this row,
generating the steep increase. The difference between the strategies which
is observable in figure 7.2a as well, is most significant during and after this
increase.

7.1.4. CFE as forecast

In the next step, we take a look at the reconstruction quality in the un-
explored area. This is shown in figure 7.2c. Naturally, this evaluation
can only be performed up to tP as there is no unexplored area left after-
wards. The RMSE is significantly higher, indicating that the forecast is
not very good. The difference between the strategies coincides with the
previous observations. Most promising are the drastic improvements of
reconstruction quality between Mt = 200 and Mt = 250 as well as the
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one between Mt = 400 and Mt = 450. Comparing with the compression
performance, the first increase clearly coincides with the steep decrease of
reconstruction quality in figure 7.2b, indicating that a difficult to recon-
struct area has been shifted from unknown to known space, the row of
high yields discussed for the compression performance. The same occurs
between Mt = 400 and Mt = 450: The difficult area here has been the
narrow path in the lower right corner. Figure 7.1f reveals that the val-
ues have been drastically underestimated in comparison with those in the
real distribution which is marked by a red ellipse in figure 7.1h. In the
beginning and in between, the reconstruction quality slowly increases, as
the unexplored area decreases and, therefore, the relatively small difficult
areas contribute more to the RMSE.

7.1.5. Timeliness of results in comparison

In the previous sections, we mainly used the number of transmitted values
Mt in order to compare algorithms, which is a perfectly suited metric
for compression performance. However, the availability of data depends
on the time and, therefore, we evaluate reconstruction quality over time.
This allows us to evaluate the influence of the bandwidth. Thereby, we can
assess the situation of having only a limited bandwidth available which we
assume to be the usual case. Note that we mainly aim for making good
use of a given limited bandwidth rather than trying to save bandwidth.
However, one may instead put a lower limit to enforce bandwidth savings.
We varied τ , which is directly linked to the available bandwidth b with
b = γ/τ where γ is the size of a transmitted tuple. The resulting RMSE
over time is shown in figure 7.3a. The decrease of the RMSE is stretched
further over time the lower the bandwidth. An additional effect from
the availability of the information for transmission is not observable and
thereby negligible.

Taking the timeliness into consideration also allows to expand our con-
siderations to more algorithms. The result is shown in figure 7.3b: The
most basic approach is sending data in the order of measurement, however
this leads to a very slow decrease of the RMSE. In order to perform a
JPEG-compression, first all data needs to be known. Therefore, it cannot
be done before tp. Assuming that compression can be performed nearly
instantly, the time of the completed reception as well as the reception
quality depend on the selected quality. Therefore, the line for JPEG in
figure 7.3b has a slightly different meaning: for all other approaches, the
reconstruction quality decreases over time. In contrast, for JPEG, just
one point on the line is chosen via the quality level.
The approaches that send current data on the go yield better reconstruc-

tion quality earlier. Even the rather simple approach of simply predicting
the mean of the collected samples for the whole area easily outperforms
in order and JPEG for a long time. The remaining approaches are based
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on the data transmission scheme of CFE. As it turned out to be the
best, we limit our considerations to the strategy CFElatest here. Like in
the static case, we choose interpolation techniques for comparison. Dur-
ing interpolation, we again default to the mean of the measured samples
outside the convex hull of samples. We have used the two common in-
terpolation methods linear and cubic. Whereas cubic tends to overshoot
and, therefore, offers highly volatile reconstruction quality especially in
the beginning, linear interpolation leads to relatively good reconstruction
qualities at all times. CFE is superior for a long time range. Only at the
beginning and in the end, linear interpolation can keep up.

7.2. Trace-based Evaluation of HeM2HSN23

Prior to spending effort on building an actual WSN, it is desirable to get
an estimate on the potential of such a system by means of trace-based
simulations which we supply in this section.

7.2.1. In-situ Data

We first evaluate the approach on the ground-based dataset described in
section 6.3.1. We consider a total of 124 wheat spectra acquired at dif-
ferent times and locations from an area of approximately 3.5 km× 3.5 km,
giving a good overview on how wheat spectra vary. The spectrometer ac-
quires data between 350 nm and 2500 nm. Thereof, we consider the 482
bands with center wavelengths from 400.4 nm to 1099.2 nm to match the
range typical of silicon-based photodiodes (400 nm to 1100 nm) as close
as possible. These are light sensors suitable for low-cost sensors. For an
increased wavelength range, significantly more expensive sensors are re-
quired. We investigate one sample reflectance spectrum. It is shown as a
black curve in figure 7.4. The blue, green, and red vertical lines show the
wavelengths of the corresponding colors in visible light and are included
for orientation. The spectrum is dominated by a step near the color red
and the border of visible and infrared light. It is called red edge and serves
as an important indicator for the condition of plants (Mulla 2013). In vis-
ible light below 700 nm, the reflectance is lower and in infrared light above
700 nm the reflectance is higher. In both ranges, the variations are smaller
but still contain features important for gaining information on the plants.
No significant variations occur for very small wavelength changes. This
implies that the 482 bands in the relevant spectral range are significantly
more than necessary.

As we want to concentrate on how far we can reduce the resolution, we
first reduce it by throwing away redundant values so we can concentrate

23The content of section 7.2 has been previously published (Hänel et al. 2019).

95



7. Evaluation

400 500 600 700 800 900 1000 1100
Wavelength [nm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
fl
e
ct

a
n
ce

Interpolation

After preprocessing

Before preprocessing

Samples

Difference

Figure 7.4.: Preprocessing of a high-resolution spectrum and
qualitative evaluation of its reconstruction from a
low-resolution spectrum using interpolation.

on the harder part of resolution reduction. This addresses the issue dis-
cussed in section 2.2.1 of trying to reconstruct too many values. After this
preprocessing step, we keep N = 48 bands. The bands are selected such
that the center wavelengths are closest to equidistant wavelengths. This
was not given in the original data as it is common to make bands wider
at high wavelengths because energy density is lower in this range in the
spectrum of the sun. This is not necessary in a stationary M2HSN as the
light sensors can instead be configured individually to collect photons for
a longer time at long wavelengths. Both the spectra before and after pre-
processing are shown in figure 7.4 as a black dotted curve and as a black
solid curve. They barely differ, showing that the resolution reduction kept
all the relevant information. The resolution after preprocessing is what
we call the hyperspectral resolution from here on.

For the multispectral version, we begin the evaluation with M = 8 ap-
proximately equidistant wavelengths. Eight bands are a convenient choice
because many ADCs offer eight channels. Using linear interpolation, the
samples and the result are shown for the example spectrum in figure 7.4
in blue. The differences to the spectrum at the hyperspectral resolution
are highlighted in a lighter blue. Some extrema got cut off, making the
resulting spectra unsuitable for many tasks.

For a qualitative comparison, we perform DCS on all J = 124 spectra
which gives the results shown in figure 7.5. For the following evaluations
we use the RMSE between the original spectrum and the calculated spec-
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Figure 7.5.: Qualitative comparison of the hyperspectral esti-
mate using DCS in comparison with the original
data for the minimal, median, and maximal RMSE.

trum. Such a metric is better suited than a comparison of resulting soil
or plant metrics as it evaluates the spectrum in all bands and making all
bands available is the main purpose of the approach. The bands sensed by
the sensors are now selected randomly and again shown with blue mark-
ers. The best spectrum, the median spectrum, and the worst spectrum as
indicated by the RMSE are shown as solid blue curves to give an overview
of the effects. The original spectrum (dashed blue), the mean spectrum
or common part (dashed black), and its estimate (solid black), which is
a by-product of JSM-1, calculated as xc = ΨDfc, are included for com-
parison. The best result as well as the common part include all relevant
features of the spectrum, deviations are negligible. The mediocre spec-
trum is just as good across most wavelengths, only the range near the red
edge shows some deviations at approximately 750 nm. In the worst spec-
trum, the reflectance in the range between 700 nm and 900 nm has been
significantly underestimated. We attribute this to the lack of samples in
this range and thereby defaulting to values closer to the common part.
Additionally, there are some smaller differences. This indicates that the
data may at some sensor nodes get insufficiently reconstructed in parts of
the spectrum. However, these deviations may be identified during evalu-
ation of experts or in an automated process by finding discrepancies over
time, space, or wavelength:

If the spectrum behaves un-normally for a short time, this may indicate
a problem with the estimate. If it differs drastically from its spatially
neighboring sensor nodes, this may be an indicator as well. Many plant
properties can be extracted from features at multiple wavelengths. If the
features at different wavelengths indicate contradicting information on a
plant property, this is an indicator for a bad estimation as well. We will
revisit this topic in section 7.7.
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Figure 7.6.: Quantitative comparison of DCS and linear inter-
polation at different multispectral resolutions for
ground-based measurements.

For a more thorough comparison of linear interpolation and DCS, we
have repeated the calculation for different values of M as well as 100 dif-
ferent seeds for the spectrum selection. The results for both DCS and
interpolation are shown in figure 7.6. Each box of the boxplot contains
the RMSEs of all combinations of spectra and seeds, a total of 12,400
values per box. The RMSE decreases with increasing M for both vari-
ants. The RMSE of DCS is significantly lower than for the interpolation,
demonstrating the benefit of incorporating multiple spectra to get a better
estimate. As it was mainly designed for remote sensing data, we defer the
evaluation of UPDM to the next datasets.

7.2.2. Aircraft-Based Remote Sensing Data

The second dataset has been acquired by airplane in a rural area in the
east of Germany with a hyperspectral camera (HySpex VNIR-1800 by
Norsk Elektro Optikk). Figure 7.7 shows an image generated from the
hyperspectral data. The area of 6 km× 2.7 km contains agricultural fields
with and without plants, forests, and small villages, giving a representative
mix found in rural areas. There is also a small lake covered by the blue
marker, making all base spectra available which are necessary for UPDM.
The coordinates refer to Universal Transverse Mercator (UTM) zone 32N.
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Figure 7.7.: Image from hyperspectral remote sensing data used
for larger scale evaluation. The locations for UPDM
base spectra are indicated by points. The green
square indicates the area used for vegetation-only
evaluation.

The image has a spatial resolution of 3 meters per pixel and a total of
122 spectral bands between 406.1 nm and 2482.2 nm. As for the in-situ
data, we only use the N = 49 bands up to 1107.5 nm to match the range
of silicon-based photodiodes. Both the spectral range and the spectral
resolution approximately match those of the in-situ data. We fix M to
8 and vary the number of sensor nodes J . For each value of J , we pick
J pixels randomly from the map, serving as sensor node locations, and
repeat this selection of pixels with S = 100 different seeds.

We calculated the estimates for the high-resolution spectrum using all
three algorithms. For interpolation and DCS, the procedure is the same
as in section 7.2.1. For UPDM, we extracted the base spectra of soil,
vegetation, and water directly from the map at the locations indicated in
figure 7.7.

The resulting RMSEs are shown in figure 7.8a. Each box of the boxplot
contains the RMSE for all positions at all seeds, a total of J · S values
per box. For UPDM, the RMSE is highest and varies the most. This may
be attributed to the problem that the spectra at some locations are not
well-representable with the base spectra. The interpolation and DCS
results are significantly better. The DCS results are the best for approx-
imately J ≥ 20. This shows clearly that DCS profits from incorporating
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(a) Data selected from the whole map.
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tation.

Figure 7.8.: Comparative evaluation of the high-resolution spec-
trum reconstruction using interpolation, UPDM,
and DCS on aircraft-based remote sensing data.
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measurements from multiple locations. In contrast to DCS, the RMSE
for interpolation and UPDM is independent from J . For approximately
J ≥ 40 the DCS results show few further improvements.

As WSNs will often be deployed in more homogeneous areas, such as an
agricultural field with only one type of crops, we limited the evaluation to
such an area in the next step. The area of 300m× 300m is indicated by
a green square in figure 7.7 and the result is shown in 7.8b.
The interpolation performs much worse because vegetation spectra show

more variations and are thereby more difficult to approximate with an in-
terpolation than other spectra such as soil or water. UPDM performs
much better as the spectra are well-describable by the base spectra and it
delivers the best result for a small number of sensor nodes. It is outper-
formed by DCS for approximately J ≥ 40. DCS’s overall quality is better
than for the whole area (see Fig. 7.8a) as the spectra are more similar,
making the common part of JSM-1 a more appropriate assumption.

7.2.3. Satellite-Based Remote Sensing Data

The third dataset has been acquired by the EO-1 satellite with the hyper-
spectral camera Hyperion. Although having quality issues in comparison
to the previous datasets due to an incomplete calibration of the bands and
some bands not being operative, we included this dataset for assessing the
approaches when dealing with faulty data and at an even larger scale.
Furthermore, the data is freely available24, allowing for a reproduction of
the results.
The area has a size of approximately 10 km × 100 km and contains a

mixture of urban areas, forests, wetlands and mostly agricultural areas.
An image generated from the hyperspectral data is given in figure 7.9a. It
has a spatial resolution of 30m and a total of 242 bands in the range from
355.6 nm to 2577 nm. We processed the data as for the previous datasets
and select the N = 92 bands between 396.3 nm and 1104.2 nm for the
evaluation. For atmospheric correction, dark object subtraction assuming
the dark object marked in the map has been applied, this approach was
explained, e.g., by Song et al. (2001) and by Chavez Jr (1989). The
evaluation follows the same pattern for the airborne data with a fixed
number of M = 8 bands per sensor node and a varying number of sensor
positions J picked at random with S = 100 different seeds per value of J .
The resulting boxplots are shown in figure 7.9b. It shows the RMSE of the
radiance instead of the reflectance due to the incomplete calibration. For
interpolation and DCS, all outliers are included in the figure. For UPDM,
several outliers are significantly higher. The median of the RMSE for the
interpolation is the highest. UPDM yields medium RMSEs while DCS

24The satellite data is data available from the U.S. Geological Survey:
https://earthexplorer.usgs.gov/,
Entity ID: EO1H1960232013159110KF SG1 01
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Figure 7.9.: Map generated from EO-1 Hyperion data and com-
parative evaluation of the high-resolution spectra.

achieves the lowest RMSE and again benefits from an increased number
of sensors. UPDM’s mediocre performance in comparison to the good
performance in the vegetation-only evaluation on the airborne data and
the bad performance on the mixed evaluation on the airborne data may be
explained by the relatively high percentage of area covered by vegetation
as shown in figure 7.9a.
Besides the median RMSE, the spread of the RMSE is important, too.

It indicates how reliable a low RMSE can be achieved. For UPDM, the
spread is very high and the above mentioned outliers clearly indicate, that
the error is significantly higher than with interpolation, albeit only in a
few pixels. This may be attributed to some pixels not being describable
as a composition of the base spectra. Overall, DCS generates the lowest
errors at high reliability while UPDM is highly dependent on the choice
of base spectra matching the whole area to be evaluated.

7.2.4. Discussion

The evaluation results allow for a more thorough discussion of design
choices when realizing an M2HSN. First, we can make a more informed
statement on the scale of the network. In both remote sensing datasets
using more than approximately 40 sensors nodes did not generate further
RMSE improvements which opens up a way to improve the scalability of
the calculation: The sensor network may be partitioned in groups of ap-
proximately 40 sensor nodes and DCS may then be applied to each group
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of nodes separately at low loss of estimation quality. With respect to
the calculation time, which is higher for DCS, such a partitioning helps
reducing the overall calculation time for large networks.

Note that the improvement up to 40 sensor nodes shall not be used
to draw a conclusion such as: more sensor nodes have to be deployed
to obtain an improved spectral reconstruction. Instead, the number of
sensor nodes will be dictated by the required spatial resolution. If more
than 40 nodes are necessary for the desired spatial resolution, the spectrum
reconstruction will be good as well with DCS. For a smaller number of
nodes, UPDM is a better choice, if the base spectra are well-chosen. If
that is not possible, more spectral bands or even an actual hyperspectral
sensor on each sensor node may be necessary.

Besides the number of nodes, the viewing angle of the sensor and thereby
the surface area sensed by this sensor needs to be chosen as discussed in
section 4.2.1. The evaluations showed that the approach works for a great
range of sensed surface areas with 900m2 in the satellite data, 9m2 in
the airborne data, and less than 1m2 in the in-situ data, introducing no
stricter limits on the choice of the viewing angle.

The number of spectral bands enables an estimate for the communi-
cation requirements. Eight bands turned out to be a good compromise.
Assuming 16 bit ADCs, this totals at 16 Bytes per reading. Timestamps
are not necessary - due to the soft timing requirements, the reception
timestamp at the fusion center will suffice. Information about location
and selection of bands are also not required because they can be stored at
the fusion center.

Nevertheless, out of the stored information, the fusion center has to
select the part corresponding to the transmitting node. Therefore, an
identifier needs to be added to the transmitted data, raising the total
payload of a message to 17 or 18 bytes. However, such an identifier is
already included in many protocols (e.g. MAC-address, IP-address, host
name).

After all, the tiny amount of data allows for the use of communication
technologies that provide high energy efficiency at the cost of low data
rates such as IEEE 802.15.4 based protocols which are very commonly used
in WSNs with small operating systems such as Contiki 25 and TinyOS26

that support data collection via multiple hops at a fusion center. An
alternative for larger areas is LoRa which is an emerging technology that is
particularly well-suited for agricultural applications due to its long range.
The J ·M sensor readings of one snapshot are collected and processed at
the fusion center.

While the ranges may suffice for a single agricultural field, on huge ar-
eas, especially for calibrating satellite data, cellular networks might be an

25http://www.contiki-os.org/
26http://www.tinyos.net/
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Figure 7.10.: The evaluation results for all approaches on train-
ing set Air MA, band selection dataset Air MB,
and evaluation dataset Ground Full.

option in areas with sufficient coverage; many carriers already offer spe-
cialized plans for machine-to-machine communication which are affordable
when sending small amounts of data from many devices.

7.3. Trace-based Evaluation of HoM2HSN27

In this section, we compare the performance of the HoM2HSN based on
K-SVD against the other approaches in order to find out which is the best
choice under what circumstances. Other than the preliminary evaluations
in section 6.4, here, training is always performed on a dataset using a dif-
ferent sensor than the dataset used for evaluation in order to better reflect
the real-world situation. The selection of best bands is also performed on
one of the sub-datasets using the same sensor as the training sub-dataset
because the selection of best bands belongs to the training phase.

In each dataset combination, we compare the resulting RMSE for all
pixels in the dataset with 20 replications for band selection and, in the
case of DCS, for the groups of pixels evaluated together. For K-SVD we
keep varying the dictionary size in order to further investigate which size
is appropriate.

The results are shown in figures 7.10, 7.11, and 7.12 for a varying number
of bands M as box plots. Note, that we refrained from including outliers

27The content of section 7.3 has been previously published (Hänel et al. 2021b).

104



7.3. Trace-based Evaluation of HoM2HSN

3 4 6 8 12
M

0.00

0.02

0.04

0.06

0.08

0.10

0.12

RM
SE

 o
f r

ef
le

ct
an

ce

(a) Training: Air MA, Band Selection: Air MB, Evalu-
ation: Ground Full
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(b) Training: Ground V1, Band Selection: Ground V2,
Evaluation: Air Full

KSVD-BBS, 2 atom s

KSVD-BBS, 3 atom s

KSVD-BBS, 4 atom s

KSVD-BBS, 5 atom s

KSVD-BBS, 6 atom s

KSVD-BBS, 7 atom s

KSVD-BBS, 8 atom s

KSVD-BBS, 12 atom s

KSVD-BBS, 16 atom s

KSVD-BBS, 32 atom s

KSVD-BBS, 64 atom s

KSVD-BBS, 128 atom s

UPDM-BBS

DCS-GM

Figure 7.11.: The evaluation results for combinations of mixed
datasets and datasets containing only vegetation.

in the graphics as they were highly distracting due to the sheer number
as a result of the huge sample size. For some parameters, the boxes lie
partially or completely outside the plotting range.

7.3.1. Quantitative Evaluation on Ground-based Data

The first setting shown in figure 7.10 is the main use case followed in
the thesis: training on a remote sensing image with diverse environment
and using it on measurements from the ground. We compared a total
of six different approaches: K-SVD, KSVD-BBS, UPDM, UPDM-BBS,
DCS, and DCS-GM. KSVD-BBS refers to K-SVD including best band
selection, herein, the three best band sets according to the band selection
sub-dataset are kept. UPDM-BBS refers to UPDM including best band
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(b) Training: Ground V1, Band Selection: Ground V2,
Evaluation: Air V1
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Figure 7.12.: The evaluation results for datasets containing only
vegetation.

selection, again, the three best band sets are kept. DCS-GM refers to
DCS with mixing of the groups by calculating the median of all spectra
calculated for one pixel. As the 20 replications are generated by combining
5 group selections with 4 band set selections, 4 median spectra of 5 spectra
each are constructed per parameter set and pixel.

K-SVD and KSVD-BBS were performed with different number of atoms
as shown in figure 7.10. The main observations here are that an increasing
number of bands, naturally, leads to reduced RMSE for all approaches.
The selection of best bands in KSVD-BBS leads to a significant improve-
ment of the K-SVD results. Besides lowering the median, the spread of
values is also much lower. The selection of best bands in UPDM-BBS
leads to a decent improvement, especially at small numbers of bands. The
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Figure 7.13.: Selected reconstructed spectra from Ground Full.

group mixing in DCS-GM also leads to a slight but reliable reduction of
the RMSE in comparison to pure DCS, proving the benefit of this improve-
ment. These improvements were very similar for all dataset combinations.
Therefore, we refrained from including the un-improved versions in figures
7.11 and 7.12 to make it more comprehensible and ease the comparison of
the dataset combinations.

The first plot 7.11a shown in figure 7.11 is the same as in figure 7.10
in a more compact version, included here for easing the comparison. In
this dataset combination, DCS-GM reliably delivers good results and out-
performs UPDM-BBS. KSVD-BBS beats DCS-GM at certain dictionary
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sizes. Interestingly, for less than 6 bands, it performs best with approx-
imately 4 atoms, while for more than 6 bands it performs best with 8
atoms. For all numbers of bands, KSVD-BBS is able to outperform DCS-
GM at the best fitting number of atoms. However, even when selecting
the number of atoms only slightly wrong, DCS-GM tends to be better.

7.3.2. Qualitative Evaluation on Ground-based Data

In order to provide a better understanding of the results, we picked the
spectra with lowest, highest, and median RMSE from one of the simu-
lations with 8 bands and, in the case of KSVD-BBS, 8 atoms, for both
KSVD-BBS and DCS-GM shown in figure 7.13. In comparison to figure
7.5, the three plots are merged here. The results slightly vary for DCS(-
GM) due to differences in preprocessing, leading to different band selec-
tions and due to using the group mixing modification. For KSVD-BBS,
the band set which performed best in the band selection dataset (Air MB)
was chosen. For DCS-GM, the band sets were picked randomly as no such
indicator is available. In both approaches for both the best case as well as
the median, the differences of the estimate in comparison to the original
spectra are very low, confirming the quantitative findings qualitatively.
This allows an estimate of the impact on vegetation indices: these are
usually built by comparing the reflectance at different wavelengths. For a
vegetation index, that requires the reflectances at wavelengths which have
not been directly measured, the reconstruction results clearly deliver bet-
ter reflectance values for these wavelengths than simply using the closest
measured values or an interpolation between the closest measured values.
Hence, the result of the vegetation index will also be improved.

For the cases considered here, the errors with KSVD-BBS and DCS-GM
are qualitatively similar, not allowing the derivation of a general statement
on the cause of the difference between the two approaches. However,
the differences are much clearer in the worst case spectrum. In both
approaches, errors in the worst case spectrum become worst in spectral
ranges with few bands. In the case of DCS-GM (Fig. 7.13b), these ranges
are wider due to the many different band sets. One of the particularly
uneven band distributions generates the worst case seen here with 5 bands
clustered in the range between 450 nm and 570 nm. In the case of KSVD-
BBS (Fig. 7.13a), the band selection is not as uneven because such band
sets get rejected. While the relatively large gap with no bands between
500 nm between 700 nm causes the problems in the worst case, it cannot
be identified as a fundamental problem because it only affects the worst
cases. In the median and best case, this gap has little to no impact on the
reconstruction quality. Note, that the three representatives in both figures
7.13a and 7.13b were selected from the same set of pixels. Therefore, the
reflectance being overall higher in 7.13b is completely coincidental.
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7.3.3. Quantitative Evaluation on Air-based Data

In figures 7.12a and 7.12b, we investigated the performance when training
and evaluating on datasets containing solely vegetation data. In figure
7.12a, training was done on the remote sensing dataset and evaluation
on the ground dataset. In figure 7.12b, it was the other way around.
In both cases, DCS-GM is ahead as it performs particularly well with
homogeneous data. Interestingly, in figure 7.12a, KSVD-BBS is superior
over UPDM-BBS despite suffering from the same restriction with both
the training for KSVD-BBS and the base spectra for UPDM-BBS being
based on the other dataset. In figure 7.12b, UPDM-BBS performs almost
as good as DCS-GM for high band numbers and superior for small band
numbers as mentioned in section 7.2.2 which may be explained by very
similar vegetation spectra in dataset Air V1 that are also very similar to
the base spectra in use. In figure 7.12b, KSVD-BBS performs slightly
better than in 7.12a at least for higher number of bands and optimal
number of atoms. Together with figure 7.11a this shows a trend of KSVD-
BBS benefiting from more diversified training data. However, in figure
7.12b, DCS-GM and UPDM-BBS benefit more from the similar data,
rendering KSVD-BBS inferior in this case. The similarity also leads to
very low variation of the results with all approaches.

Figure 7.11b is included mainly for completion of the dataset combina-
tions. Its sense is limited as the learning dataset is far less diverse than
the evaluation dataset. However, KSVD-BBS still works surprisingly well
in this case in comparison to DCS-GM and UPDM-BBS which both fall
behind in this case because of lower similarity between pixels in the case
of DCS-GM and less vegetation pixels in the case of UPDM-BBS. With
Air Full being a typical remote sensing dataset, this shows that KSVD-
BBS may also be a promising approach for estimating hyperspectral re-
mote sensing images from based on multispectral remote sensing images
aside from its application in M2HSNs.

7.3.4. Qualitative Evaluation on Air-based Data

For a qualitative evaluation of this case, we assess the reconstruction qual-
ity across the area in figure 7.14. Figure 7.14a is an RGB image including
the corresponding bands from the original dataset. Figure 7.14b and 7.14c
show the RMSE per pixel for one of the best band sets according to train-
ing in KSVD-BBS and a group mixing selected randomly for DCS-GM.
In figure 7.14b, KSVD-BBS generates low RMSE values especially in veg-
etation areas. Curiously, the trained base is also suitable for the bare soil
areas although no such samples were included in the training base. The
quality suffers in the villages. If planning to use the approach on remote
sensing data, clearly a more diversified training dataset is required. Figure
7.14c shows why the RMSE values are higher with DCS-GM : the quality
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(c) Resulting
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Figure 7.14.: Investigation of reconstruction quality on
the area of Air Full. The coordinates are in
UTM zone 32U.

is only about as good as with KSVD-BBS in some of the vegetation areas
but the main effect affecting the RMSE is the extreme variation across the
whole area. We attribute this to mixture of two effects: the first one is the
one observed in figure 7.13b, that in some pixels an uneven bands selec-
tion leads to bad reconstructions. The second effect is that the groupings
often include spectra of differing kinds reducing the overall reconstruction
quality of the group. The latter effect also serves as the main explanation
for why the reconstruction quality is significantly better in all the other
scenarios with less variation across the spectra.
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7.3.5. Conclusion

Overall, we have found that the HoM2HSN due to the option of pre-
selecting bands greatly helps improving the spectral upsampling with
K-SVD and UPDM. In large-scale M2HSNs with very similar data, a
HeM2HSN with DCS turned out superior, in small-scale M2HSNs with
very similar data, a HoM2HSN with UPDM turned out superior. In
M2HSNs with variable data, a HoM2HSN with K-SVD turned out su-
perior.

7.4. Real-world Evaluation of the M2HSN

The previous trace-based evaluations in sections 7.2 and 7.3 gave a good
impression of the accuracy of the spectral upsampling and the extraction of
spatial differences. However, for the evaluation of the differences over time
and the measurement quality of low-cost sensors, an M2HSN prototype
was deployed on a wheat field as explained in section 4.5. In section 7.4.1,
we first investigate the measurement of the low-cost sensors in comparison
with other instrument. In section 7.4.2, we take a look at the measurement
over time.

7.4.1. Spectra Comparison

For the comparison of the measured spectra, we select a single day. On
June 18th in the forenoon, we measured the spectra with multiple instru-
ments: the WSN, the SVC, and the P4. From the WSN, we extracted
the values between 8am UTC and 10am UTC and formed median spec-
tra for each position. With the SVC, we took spectra next to the WSN
nodes. Note, that the SVC does not have a sky sensor. White reference
surface measurements were instead taken shortly before or after the mea-
surements. From the P4 flight an orthomosaic was created with a pixel
resolution of 1.8 cm. For squares of 100 × 100 pixels or 1.78m × 1.78m,
the median spectra were calculated. Note, that the median in combina-
tion with the relatively large area helps ignoring the sensor nodes and
their shadows, which are also visible in the orthomosaic.
The resulting spectra are shown in figure 7.15. For P4 and the 7-band

sensor nodes, a line plot for the spectra was added that shows the result
obtained with K-SVD trained on Air M1 for the WSN and trained on
Ground Full for the P4, meaning that the training data stems from a
different year and location.
The original samples for these spectra are shown as markers. For the

color codes, please refer to figure 4.6. Note, that the figure placement
corresponds with the sensor node positions on the field. The difference
between the spectra from the WSN and the SVC is indicated by colored
areas. The 18-band spectrometers (cyan, red, magenta, blue, and green)
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Figure 7.15.: Measured spectra on June 18th with different in-
struments at all sensor node positions.

often underestimate the reflectance at higher wavelengths. For the 7-band
spectrometers (yellow, violet, grey, orange, and black), no obvious pattern
may be observed, sometimes the WSN is closest to the SVC, sometimes
the WSN to the P4, sometimes the SVC to the P4.

Measurements with the SVC for spots closely together, not shown here,
offered an explanation for this: at the used fields of view, this is simply
the expected variation.

For a quantitative comparison, the RMSEs are compiled in figure 7.16.
Here, we always compare the spectra of two approaches. For the calcu-
lation of the RMSE, we selected the closest matching band of the higher
resolution spectrum to each band of the lower resolution spectrum. Then,
the RMSE was calculated for these pairs. Here, WSNK and P4K again
refer to high-resolution spectra calculated from the WSN and P4 spectra.
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Figure 7.16.: Difference between the spectra acquired with dif-
ferent sensors and processing approaches.

The results show, that SVC and P4 readings agree quite well with RMSEs
of 3 to 10 percent points. The average of the similarity of the WSN re-
sults and the SVC results is of a similar scale. However, the variation
is higher with RMSEs varying between 1 percent point and 15 percent
points. Increasing the resolution with K-SVD, increased the RMSE by a
few percent points in the case of the P4. This is the expected behavior
because perfect reconstructions are not expected. However, it is notewor-
thy that the additional error is far smaller than the one stemming from
the initial samples. For the WSN, K-SVD has a very interesting impact:
For the 18-band spectrometers, the spectra have extremely high RMSEs,
which stem mainly from the long wavelengths, where no samples have
been acquired. In comparison to the P4K, the high number of bands with
partially false readings lead to faulty over-fitting. For the 7-band spec-
trometers, the RMSE remains in the same magnitude, but the spread is
reduced. The resulting RMSEs are roughly in the same value range as
for the P4 - this is actually a remarkable result, showing that the high
resolution spectra are about as similar to the SVC as the low resolution
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Figure 7.17.: Development of the NDVI during the test deploy-
ment.

spectra of the P4. Overall, the main finding here is, that the experiment
confirmed the findings from the simulations: increasing the spectrum res-
olution is working well. The errors introduced by the procedure are small
in comparison to the errors of the initial low-resolution measurements.
Sometimes, it even helps reducing the errors.

7.4.2. NDVI Development

For the long-term evaluations, the spectra did not prove practical, be-
cause comparison spectra were only acquired once and visualizations with
many spectra are difficult to analyze. Instead we consider one vegetation
index derived from the data. We choose the most commonly used index,
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the NDVI. This also gives an impression of the performance of derived
parameters. The development of the NDVI at each position is shown in
figure 7.17. For June 18th, the SVC measurements are included with one
NDVI value per spectrum. For the central position, the values show more
variation because the position of the SVC has been slightly varied. For
the P4, measurements from multiple dates are included. Per date, the
NDVI was calculated for each pixel in the measurement area and three
markers indicate the first, second, and third quartiles of these values. For
the NDVI calculation, the wavelengths of the Red and NIR P4 bands were
used in the SVC and WSN data as well.
For the WSN, as before, the corresponding reflectance values were de-

termined with different approaches: just using the closest available value
(WSN), using an interpolation between the two closest values (WSNI),
using the closest values in a high-resolution spectrum created via K-SVD
(WSNK), and using interpolation between the two closest values of this
high-resolution spectrum (WSNKI). Similar to the median spectra, the
median NDVI in the 4-hour noon window per day is shown.
For all positions, a decline of the NDVI becomes visible, which is the

expected behaviour at this time of the year: the crops are drying and
loosing chlorophyll, leading to a yellowish color, and the difference between
reflectance in the near infrared and the visible range is reduced. A similar
decay from approximately 0.8 to approximately 0.2 was, e.g., observed by
Vannoppen et al. (2020) for wheat in Latvia.
The plots contain gaps and anomaly values because of problems such

as sensor nodes dropping on the ground after heavy rain, crashes of the
sensor nodes computing cores, water getting into the cases, and dirt in the
light tubes. Nevertheless, the decline is very similar for the P4 data and
the WSN data, especially for WSNK and WSNKI.
For a more quantitative evaluation, a correlation plot of the NDVI is

given in figure 7.18. For WNSKI and WSNK, the resulting R2 values
with 0.75 and 0.77 are higher in comparison to 0.58 and 0.61 for WSNI
and WSN. This shows, that increasing the spectral resolution with K-SVD
can improve the calculation of the NDVI when comparing NDVI values
derived from multispectral sensors that sense in non-matching bands.
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Figure 7.18.: Comparison of P4 and WSN NDVI measurements.
Higher transparency indicates samples at later
dates. The colors indicate the sensor positions.

7.5. Quality Metrics under Parameter Variation

In this first evaluation of the quality metrics, synthetic data is considered.
The main advantage of synthetic data is that parameters can be varied in a
controlled manner for researching their influence. Furthermore, replication
of results is particularly easy for synthetic data.
Being the most common example, we concentrate on a sine wave:

xn = x̂ · sin(2 · π · νsignal · n+ φ) + δn (7.1)

For the evaluations, while measuring the impact of most variables, some
are seen as fix: The length of vector x is N = 512. The δn values,
representing noise, are drawn from a Gaussian distribution with mean
of 0 and standard deviation of 0.2. Having just a single frequency, the
sparsity is 1.
The number of samples M , the frequency of the sine νsignal, the am-

plitude x̂, and the phase φ are varied. Herein, M and νsignal are not
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varied directly. Instead, we vary τ =
νsample

νsignal
with the average sam-

pling rate νsample of the elements in y. This may be easier interpreted
in terms of the Nyquist rate: according to pre-CS signal processing the-
ory τ must be greater than 2. This being a CS-based example, we just
use values up to 2. Similarly, we introduce ζ =

νoriginal

νsignal
which allows the

same interpretability for the reconstructed signal and must actually be
greater than 2 to make the signal usable in further applications. Note,
that νoriginal, the sampling rate of x, is implicitly fixed to 1 in equation
(7.1). From these values, νsignal can be obtained as νsignal =

νoriginal

ζ and

M as M = ⌊N · νsample

νoriginal
⌋ = ⌊N · τ

ζ ⌋
Ψ is a DCT transform matrix - although DFT may deliver superior

results - because we want to repeat the evaluation with various solvers and
not all of the solvers support complex numbers. Φ is a sparse sampling
matrix with M ones, because those offer the most intriguing applications
and allow more quality metrics.

7.5.1. Varying all parameters at once

For the following evaluations, we build J=100 signals x while varying the
four variables (τ , ζ, x̂, and φ) and the noise. The parameters are chosen
in the following intervals: τ = [0.5, 2.0], ζ = [4.0, 16.0], x̂ = [0.5, 2.0], and
φ = [0, π]. We then draw M random samples from each of the 100 signals
x, creating 100 compressed vectors y and build matching Φ matrices. For
each of the 100 compressed vectors, we reconstruct the signal xest from
y, Ψ, and Φ, using a suitable solver, for now, BCS. xest is modified by
re-inserting the measurements from y. For most solvers, this is not even
necessary because the values match. However, we want to avoid these sam-
ples having an influence on the result, because this simple improvement of
the reconstruction quality is always possible with the simple sub-sampling
Φ. From Ψ, Φ, xest, y, and in the case of BCS, the covariance matrix,
we then calculate all the quality metrics. We also calculate the actual
reconstruction error from x and xest. Note, that we compare against the
noisy original vector, not a noise free original vector. This better reflects
the approach of handling real world data, where it’s usually impossible to
fully remove noise from the data. Naturally, higher amplitudes correspond
with high RMSEs which would lead to high correlation between the norms
and the RMSEs. In order to compensate for this, we use the NSR as error
metric for the PSMs.

For the ISMs, we just use the absolute error because none of the ISMs
is norm-like. We then calculate R2, GP+, GP−, and the corresponding
p-values for each of the quality metrics. For the ISMs, pairs are built for
combinations within a signal, but all pairs are merged to calculate GP+,
and GP−. R2 is calculated per signal and the median of the resulting
values is shown. The only one of the quality metrics requiring external
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parameters is l0norm psm with the threshold for determining zero values
set to 1. The resulting correlation plots for each of the quality metrics
are shown in figure 7.19. The corresponding values may be found in the
appendix in table A.1. Firstly, the norms that are not promoting sparsity
in the sparse domain, i.e., l2norm psm and the norms for the normal do-
main, show a clear correlation with high norms coinciding with low NSRs
and vice versa. This can be explained with BCS showing high NSRs when
being too careful, choosing small values overall. Taking the other norms
into consideration, this group of signals with high NSRs seems relatively
dense as indicated by the high l05norm psm and l025norm psm. Appar-
ently, BCS tends to slightly increase all elements instead of going for a
sparse result in these cases. This is not reflected in the l0norm psm be-
cause too many of the values still fall below the threshold. However, in
the group with small NSRs, no clear correlation with the sparsity promot-
ing norms is visible. Overall, the correlation is too small for the sparsity
promoting norms being usable as quality metrics as originally intended.
The same groups are also identifiable in variance psm, displaying high
values at high NSR and 0 at low NSR. The other metric from related
work, crossvall1o psm works similarly well. The parameters evaluating
the sample distribution (biggestgap psm and gapdiff psm) except for emp-
tybinsfraction psm also show similarly good performance, but the more
trivial compressionratio psm works even better.

coherence psm and rmsme psm are not usable and, therefore, excluded
in the plots. For the combination of DCT and samples, Ψ includes a high
number of high values in Ψ due to the sine shape: even for small sample
sizes, the calculated coherence will equal the actual coherence and, there-
fore, is equal for all Φ, rendering the coherence psm useless. rmsme psm
is useless for BCS and SL0 because they match the measured samples
perfectly - in this example, it is also not usable for LASSO, because the
measured values are re-inserted in the solution.
With the exclusion of the original samples in the evaluation of the ISMs,

neither variance ism nor samdist ism showed significant correlation with
the error per sample.

7.5.2. Influence of Parameters and Solvers

In the next step, we want to investigate the influence of the parameters
more closely. As this would require several hundred correlation plots as
those in figure 7.19, we choose a more compact presentation here, albeit
losing some information. To explain the figures 7.21-7.23, we first take a
step back. We fix all parameters and just vary noise and sample selection,
again 100 times. We repeat this for 81 different parameter combinations,
resulting from three different values for each of the four parameters (τ ,
ζ, x̂, and φ), equally spaced in the same intervals as before. Figure 7.20
shows the GP− value for each of the 81 parameter combinations for metric
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Figure 7.19.: Resulting correlation plots for BCS on synthetic data with all parameters varied.119
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Figure 7.20.: Resulting GP− values for metric l2norm psm in
81 different parameter sets for a sine wave, solved
with BCS.

l2norm psm as a heatmap. It shows that the observation from figure 7.19,
that high l2norm psm values correspond with small errors and vice versa,
does not only hold true for reconstruction issues caused by variation of
parameters but also for reconstruction issues caused by noise and sample
selection for all points in the parameter space. This is indicated by the
GP− values being significantly higher than 0.5 in all cells of the heatmap.
Now we use the same visualization principle, albeit omitting the labels

in order to generate a more compact visualization, for all quality metrics in
the first row (”none”) of figure 7.21. We now make just a single parameter
variable, again in the same interval as before. This results in similar grids,
albeit with just 27 values, shown in the central 4 rows in figure 7.21. The
varied parameter is indicated on the left. The last row (”all”) shows the
result from figure 7.19 in the compact format, consisting only of a single
value because all parameters are variable. Some of the grids show the GP+

value while some show the GP−, this is indicated by the + or − in the
center of each parameter grid. It is always the value, that has the higher
median for the whole grid. This step was necessary because the directions
in which the metrics work invert under some circumstances.
Taking a look at all the metrics, the performance is quite similar when

not varying the parameters and when varying solely the phase, this is
the expected behavior because changing the phase means just shifting
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Figure 7.21.: Resulting good pairs values for all quality metrics when varying different parameters of the syn-
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the signal. Taking a look at the norms that do not promote sparsity,
it again becomes clear that by choosing the NSR over the RMSE, the
extremely good performance under amplitude variation was successfully
avoided: they even perform worse for amplitude variation than in the other
cases. This again reassures that the main effect visible here is indeed the
underestimation made by BCS. When the amplitudes change as well,
this effect becomes more difficult to differentiate, hence the decreased
performance under amplitude variation. However, even in this case, the
norms that do not promote sparsity perform better than the metric from
related work, crossvall1o psm despite the calculation of the norms being
significantly more simple and fast.
In the sparsity promoting norms, especially in l1norm psm, similar ef-

fects to those of the non sparsity promoting metrics are visible, merely
less pronounced, overshadowing the sparsity detection. Only in the cases
with no variation and solely phase variation, the sparsity grading effect
becomes visible as indicated by the GP+ instead of the GP− being supe-
rior, albeit only very lightly. The sampling pattern based metrics all are
just usable when τ and ζ are varied - this shows, that they just help by
grading the overall sampling density and not the inequalities, rendering
compressionratio psm a better metric for this purpose. The ISMs turn
out unsuccessful in all cases. variance psm has a similar performance to
the metrics evaluating the sampling pattern but it shows slighly better
performance with varying amplitude.
We now take a look at the other solvers. For SL0, shown in figure 7.22,

the differences in performance are similar. The slight success indicated by
the GP− metric for the non-sparsity promoting metrics stems again from
the solver tending to choose smaller values when delivering worse results.
BCS and SL0 behave quite similar in that regard. However, the GP−
value is significantly lower for SL0 and less consistent across all cases. We
attribute this to an overall better performance of SL0, making the cases of
underestimation less likely to occur. For the metrics rating the sampling
pattern, the results are also similar to BCS but overall, the GP+ is a bit
lower which we again attribute to less failures overall.
For LASSO, shown in figure 7.23, the situation changes more drastically.

When varying everything, the norms generally perform significantly worse,
in both terms of GP+ and GP−. Taking a look at the other rows, the
difference stems from the amplitude variation where GP+ is dominating
in contrast to all other solvers and the τ and ζ variation. The inversion
of the metric cancels out the successes. The explanation for this may be
found in the non-variation cases. There, the norms show lower GP− values
for high amplitudes which is caused by a different type of failure where not
only an underestimation happens but rather a complete failure with false
frequencies. LASSO’s sensitivity towards the amplitude can be explained
by the non-matching factor in LASSO weighing the ℓ1 versus ℓ2. Note,
that this becomes more striking towards lower τ and higher ζ which is the
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7.6. Quality Estimate for CFE

situation where CS becomes more likely to fail. The sampling rate based
metrics perform better for LASSO which we attribute to a generally lower
performance of LASSO.
Overall, we have made the following observations: Using gaps between

samples for the determination of reconstruction quality fails, it is only
suitable for telling that the data is better at the samples. Otherwise, the
only information on the quality shown by the metrics derived from the
sampling pattern is simply the compression ratio which can be used more
easily directly. The sparsity of the result is only a very weak indicator for
the quality, it only becomes slightly usable when it is not overshadowed
by other effects.
Surprisingly good indicators are the non-sparsity promoting norms. How-

ever, they tend to change direction in which they work because they work
indirectly by helping to identify failure cases of the solvers. A general
trend seen from comparing between the solvers is that the estimate of the
quality of the reconstruction becomes better when the reconstruction itself
becomes worse.

7.6. Quality Estimate for CFE

In this section, we consider a real world dataset containing yield data from
a harvester, evaluated in section 7.1. We first consider the iterative case
in section 7.6.1 and then the static case from section 6.2 in section 7.6.2.

7.6.1. Iterative Case

As a short recap, samples are recorded periodically and whenever the
data rate limitation allows a new transmission, a sample for transmission
gets selected at random from all the samples which have been recorded
since the last transmission. The scalar field of yield is reconstructed from
these samples, assuming two-dimensional DFT or DCT, modeled with
KCS. The resulting error over the number of collected samples is shown
in figure 7.24.
In addition to the evaluation in section 7.1, the results with BCS and

LASSO are included. However, they are outperformed by SL0. BCS fails
altogether just as in the static case in section 6.2.2. The ℓ1 norm is shown
as an example metric. Its behavior differs from the initial expectation.
Instead of decreasing over time like the RMSE, it actually increases with
a similar behavior as the RMSE, only mirrored. However, it is not suffi-
ciently accurate to correctly reflect the differences between the solvers.
The corresponding correlation plots may be found in figure 7.25 for

SL0. These plots slightly differ from the previous correlation plots as
values obtained from different seeds per value of M are included grouped
by color. The regressions have been performed per value ofM as well. The
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Figure 7.24.: RMSE development (lines) and ℓ1 development
(dashed) of iteratively collected samples in CFE
dataset.

overall correlation is even stronger as indicated by the data being close to
a diagonal line for most metrics. The dominating effect here seems to be:
the more data available, the better the reconstruction. This is achieved
by having more structure in the data which also leads to increasing values
of the norms, causing the reverse dependency. This effect dominates in
the iterative CFE data. We attribute this to the CFE data being less
sparse altogether. This is also reflected by the relatively low achievable
compression ratio and the performance of interpolation techniques being
only slightly worse. As already observed for the synthetic dataset, under
M variation, the compression ratio already serves as a very good indicator,
not justifying the overhead for the other metrics. These findings also
hold true for LASSO, the correlation may be found in the appendix in
figure A.1.

7.6.2. Static Case

In order to treat the case where the compression ratio cannot be used, we
took a closer look at the behavior with fixed M . Therefore, we switch to
the non-iterative or static version evaluated in section 6.2 which is relevant
when taking samples manually on the field.

In the following evaluations, we excluded the original samples because
estimating the perfect accuracy in these cases is trivial. The resulting
GP values for the ISMs and PSMs are shown in figures 7.26 for different
values ofM , different solvers, and in the case of SL0, both DCT and DFT.
The selection of samples has been performed 50 times. Independent of
the solver and the transform matrix, the norms show a solid correlation,
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Figure 7.25.: Correlation plots for PSM metrics on iterative CFE data using solver SL0.
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Figure 7.26.: Resulting GP value for all quality metrics.

except for ℓ0, while the gap-based metrics fail. Neither the distance-based
ISMs nor the variance show significant correlation with the reconstruction
quality.

For the norms, the inverse correlation is dominant, as indicated by GP−
being higher than GP+. This is consistent with the relation observed for
the iterative case. Note, that all norms in both normal and frequency
space show good correlations. The higher degree norms perform slightly
better.

For a more in-depth investigation of the cause, we take a closer look at
some example results. This is done for M = 300 because the differences
are more obvious in that case. For the investigation, we just consider ℓ1
with DFT and SL0. The correlation plot is shown in figure 7.27. We select
four samples as indicated in the figure. The corresponding reconstructions
and reconstruction errors are shown in figure 7.28. The selection encom-
passes two samples where the ℓ1 serves as a good estimator - one with
small error (green) and one with significant error (blue). The other two
samples are a significant underestimation of the error (red) and a signifi-
cant overestimation of the error (yellow). The green and the blue sample
show the behavior described above: higher ℓ1 indicates that the solver
was braver which led to a better reconstruction. The red sample shows
one of the expected cases where structure was introduced in the recon-
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Figure 7.27.: Correlation plot of ℓ1 with highlighted examples
for qualitative investigation.

struction but the structure is simply wrong. The yellow sample is more
curious: ℓ1 is low, the reconstruction still shows a lot of structures and
the reconstruction is actually quite good. Here, we are actually closer to
the originally expected behavior where the solver succeeds by generating
a sparse reconstruction. However, the other effect is dominating, which
also serves as an explanation for the other norms working as well - they
also increase with more structure.
The performance of the cross validation is similar to the one of the

norms. Interestingly, it works the wrong way, as indicated by the GP−
being higher than the GP+. This holds true not only for the NSR shown
here but also for the RMSE, not shown here. Instead of working the way
intended, the correlation merely stems from working like a norm.
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Figure 7.28.: Reconstruction result and reconstruction error
across the field for the seeds selected in figure
7.27.

7.7. Quality Estimate for HeM2HSN

As a second real-world data set, we use plant spectra acquired on the
ground for further evaluating the quality metrics for CS and DCS. The
RMSE evaluations for this CS application were given in section 7.3. The
band preprocessing of the spectra is the same as in section 6.4.1, i.e.,
dataset Ground Full, not the preprocessing from 6.3.1, which leads to tiny
differences in the evaluation results.

Figure 7.29 shows three exemplary spectra as reconstruction and origi-
nal. The three examples are the spectrum with the minimal error, the one
with the median error, and the one with maximal error, just like in figure
7.5. The NSR and an exemplary PSM are given in the top for each spec-
trum. These are the results acquired with SL0. For these three sample
spectra, the ranking is perfectly reflected by the angulardiff2common psm.
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Figure 7.29.: Best, median, and worst case reconstruction of ground spectra according to reconstruction error
with exemplary error metrics.
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Figure 7.30.: Resulting good pairs values for all solvers and
metrics on M2HSN data.

The absolute error at each band is shown with red ”x” signs. The cor-
responding samdist ism is indicated with blue ”+” signs. In the median
error and maximum error spectra, samdist ism helps to identify the erro-
neous regions over 1000 nm. In the maximum error spectrum, additionally
the erroneous regions around 700 nm, around 900 nm, and below 500 nm
are identifiable based on samdist ism. However, there are also cases where
the metric is misleading, mainly at wavelengths below 500 nm both for the
minimal and median error spectra.

For a more quantitative evaluation, figure 7.30 shows the the resulting
GP values for all metrics and solvers, similar to the previous visualizations.
It again shows the higher one of the good pairs metrics, specifying with a
plus or a minus which one it is. The full correlation plots and meta metric
values may be found in the appendix in figures A.2, A.3, and A.4. For ℓ0,
a threshold of 0.001 was used. We first concentrate on the results with
BCS. Among the PSMs, significant GP+ values are mainly observed for
all the ℓp metrics in sparse domain and metrics that compare the signal
with the common signal. Note, that the sparse version of the signal also
consists of the differences to the original signal. Therefore, its ℓp metrics
work similarly to the metrics comparing with the common signal.

The ℓp metrics for the normal domain show only a very weak correlation
with the reconstruction quality. We attribute this to the failure cases of the
solver not being well reflected in the norms of the normal domain. Failure
cases here usually have localized deviations from the original signal, those
may be over or below the actual value and thereby do not systematically
influence the norms. As for the CFE, the cross validation metric behaves
again mostly like the ℓp metrics for the normal domain.

The ISMs show slightly higher GP+ values here than in the synthetic
example. For samdist ism, this may not be so obvious with a GP+ value

132



7.8. Conclusion

0.507. However, in comparison with the much lower GP− of 0.322 it can be
considered about as good as the other ISMs. Especially for samdist ism,
this slight advantage in comparison to the synthetic data may be at-
tributed to the transform base. The difference matrix does not smear
the information of a single sample across the whole signal as the DCT
does. Therefore, samples in the vicinity help to improve the signal locally.
However, while this is working for the ISMs, the indication is not suffi-
cient to make the corresponding PSMs successful, except for the difference
to the common signal where the PSMs are even more successful. We at-
tribute the reduced performance of diff2common ism in comparison to the
corresponding PSMs to the easy displacement of large parts of the com-
mon part through the difference matrix for the innovation term. Thereby,
the differences to the common signal will greatly vary within the signal
anyways for both good and bad reconstructions. For the other solvers, the
findings are very similar. For LASSO, both the norms in sparse domain
and the ISMs perform worse.

7.8. Conclusion

In this evaluation chapter, we have shown that the CS based solutions
developed in this thesis, CFE and M2HSN are actually beneficial. For
the M2HSN, we have also provided a selection guide for different solu-
tions based on the findings in the evaluations. The prototype showed that
the measurement hardware and its placement offer more potential for im-
provements than the spectral upsampling. However, it already showed
results competing with professional systems and an improvement from
the spectral upsampling.
For the quality metrics, we have found that the approaches which in-

tuitively seem promising based on the sample positions and the com-
pressed sensing requirements showed no evidence of actually being suit-
able. Quality differences within a signal were only estimated correctly for
the HeM2HSN data because of the difference transform. For the quality
difference between signals, whenever the sample size varies, the compres-
sion ratio is a very good indicator which is hard to beat. For constant sam-
ple sizes, the most promising approach is identifying cases where solvers
fail. This is surprisingly easy with a higher order ℓp norm of f or x for
multiple solvers. The most suitable of these metrics and its correlation
with the reconstruction quality is dependent on solver, transform, and
data and must be found for every application. The metrics from related
work, namely the variance and the cross validation result did not show
good performance for the comparison of solutions. However, in compar-
ison to the other approaches, they estimate the magnitude of the actual
RMSE well, making them useful for error bars.
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In section 1, we have identified two main issues of building Compressed
Sensing based solutions for real world applications. The first issue is the
complexity of building solutions due to their interdisciplinary nature. We
have contributed solutions to this issue by supplying a more structured
approach to engineering CS-based solutions in section 2 and by building
two such solutions for precision agriculture, the CFE and the M2HSN. The
second issue is the lack of information on the quality of reconstructions.
We have contributed to the solution of this issue by providing a detailed
comparison of approaches for quantifying this information for the data in
both CFE and M2HSN.
Along the way, we have found the following answers to the research

questions from section 1: question 1 was on the choice of sparse samples.
For CFE in section 7.1, we have found that a homogeneous distribution
of samples is usually the best choice even though the randomness is lim-
ited due to constraints on the random sampling. When similar data is
measured repeatedly, a specific selection can be helpful, as seen for the
HoM2HSN in section 7.3. This improvement was even transferable to the
HeM2HSN as seen in section 4.5.2, albeit only for small networks. For
larger networks, it imposes too much of a constraint on the random sam-
pling. Despite these findings, the homogeneity of sampling positions did
not turn out useful for the assessment of the reconstruction quality in
sections 7.5–7.7 except for in-signal comparison for the HeM2HSN.
Question 2 was on the quality of the hyperspectral data of the HeM2HSN.

Quantitative results for this were found in sections 7.2 and 7.3. In the pro-
totype evaluation in section 7.4, the upsampling error turned out smaller
than typical measurement errors. For NDVI, it was also demonstrated
that the up- and down-scaling can indeed help to make data from differ-
ent multispectral sensors comparable.
Question 3 was on the estimate of the reconstruction quality. Here, we

have found that this is only possible to a very limited extent. Literature
approaches such as BCS and cross validation are suitable for estimating
the magnitude of the error but not for comparing the quality of different
results for similar data. For this purpose, simple metrics for identifying
solver failure cases are more effective.
In our future work, we would like to investigate an improvement of

the HeM2HSN by building clusters of similar solutions, some of the pre-
liminary work in this direction has been provided in this thesis with the
group-building and the quality metrics. We are also interested in further
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miniaturizing the sensors. One long-term vision known as smart dust is
having simple bio-degradable sensors that may be distributed on the field
just like fertilizer or seeds. If this becomes reality, we have described
one option for realizing parts of it. Of course, it is impossible to fore-
see whether this kind of sensor network will actually be chosen in the
future. Another alternative for continuous monitoring may be swarms of
autonomous drones which use multispectral cameras. If this technology
gets chosen instead, the contributions from this thesis can help as well,
CFE can be applied to fill spatial gaps and the spectral up-scaling algo-
rithms of the M2HSN may render cheaper cameras sufficient.

In the nearer future, we are planning to make a larger-scale deployment
to further investigate the potential of measuring spatial differences accu-
rately. Besides the impact on the NDVI, we are also working on evaluating
the impact on further derived metrics. We would also like to expand these
considerations to application areas beyond agriculture, e.g., to surveying
the use of artificial light at night in the course of a night.
In this thesis, narrowband filters were used to sample continuous spec-

tra. When observing spectra of gasses instead of solids, this becomes
harder because these spectra consist of discrete lines. Generally, the spec-
tral up-scaling algorithm can work for these spectra as well when using
different filters than simple narrowband filters. Similar to the selection of
filters, it may even become interesting to produce filters with transmission
spectra optimized for estimating certain classes of spectra. This may even
develop into a new approach of building spectrometers for many appli-
cation areas. However, a major limitation in using filters which are not
narrowband is that the light source spectrum also needs to be considered
more explicitly in the calculations which makes calibration harder, albeit
it may be applicable in situations with controlled illumination.
Going back to the issues that initially sparked this research, we are

planning to further facilitate the use of CS and its quality estimate by
providing the tools developed during this thesis project.
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Table A.1.: Resulting metrics for the synthetic dataset using
BCS and varying all parameters.

Metric R2 R2p GP+ GP+p GP− GP−p

l0norm psm 0.128 0.000 0.418 0.993 0.534 0.163
l025norm psm 0.720 0.000 0.493 0.588 0.507 0.414
l05norm psm 0.221 0.000 0.503 0.461 0.497 0.541
l1norm psm 0.192 0.000 0.344 1.000 0.656 0.000
l2norm psm 0.501 0.000 0.249 1.000 0.751 0.000
l1overl2 psm 0.833 0.000 0.697 0.000 0.303 1.000
l05normnd psm 0.541 0.000 0.231 1.000 0.769 0.000
l1normnd psm 0.525 0.000 0.238 1.000 0.762 0.000
l2normnd psm 0.475 0.000 0.252 1.000 0.748 0.000
biggestgap psm 0.539 0.000 0.767 0.000 0.220 1.000
gapdiff psm 0.535 0.000 0.766 0.000 0.220 1.000
emptybinsfraction psm 0.120 0.000 0.643 0.000 0.347 1.000
compressionratio psm 0.776 0.000 0.755 0.000 0.173 1.000
variance psm 0.580 0.000 0.714 0.000 0.286 1.000
crossvall1o psm 0.430 0.000 0.703 0.000 0.297 1.000
samdist ism 0.011 0.365 0.439 1.000 0.424 1.000
variance ism 0.015 0.260 0.522 0.074 0.478 0.926
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Figure A.1.: Correlation plots for PSM metrics on iterative CFE data using solver LASSO.
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Figure A.2.: Resulting correlation plots for solver BCS on
M2HSN data.
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Figure A.3.: Resulting correlation plots for solver SL0 on
M2HSN data.
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Figure A.4.: Resulting correlation plots for solver LASSO on
M2HSN data.
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