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1. Introduction

Silicon substrates have been always of particular interest due to their important
role in the semiconductor industry as an integral part of transistors, thus being the
foundation of a majority of modern technology like computers, smart phones, and
many other devices. To understand the electronic properties of surface structures
and hence be able to tailor their characteristics, knowledge of the underlying atomic
structure is of utmost importance. However, obtaining geometrical atomic informa-
tion of surfaces is no trivial task due to the complex interactions happening at these
interfaces.

Low-energy electron diffraction (LEED) is one possible experimental approach
to determine atomic positions within the surface, as opposed to purely theoretical
approaches like ab initio density-functional theory (DFT) calculations. Nonetheless,
structural analysis by LEED requires the application of multiple scattering theory
to interpret the measurements adequately. These calculations limit the complexity
of the structures that can be investigated successfully by LEED.

For example, the covalent bonds of silicon can lead to complex displacements
of atoms near the surface, making the determination of the structure increasingly
complicated. This is further aggravated by the interaction of adsorbates, forming
reconstructions, which can have interesting electronic properties. The self-induced
formation of quasi-one-dimensional nanowires is a type of structures promising phys-
ical properties, which can not be found in systems with higher dimensionality, as
Peierls instability [1], needing the Luttinger liquid theory [2] as an alternative de-
scription of the interacting particles. The term quasi-one-dimensional originates
from the fact that real one-dimensional systems are not stable and need therefore a
substrate for stabilization, making the system quasi-one-dimensional. A prominent
example for those wires is the Si(111)-(5 × 2)-Au reconstruction [3–5], which is also
an example of the difficulties of structural analyses, being still debated over 50 years
after its discovery. Furthermore, the self-assembled gold chains on vicinal Si(hhk)
substrates [6–8] are another group of self-assembled nanowires. Thereby, the terraces
of the vicinal substrates predetermine the growth direction of nanowires.

Experimental structural analysis of such material systems is predominantly car-
ried out by X-ray diffraction (XRD), which can be described by a single scattering
formalism. Large unit cells combined with reconstructions reaching deep into the
crystal make the inclusion of the effects of multiple scattering for the description
of electron diffraction much more challenging, which is the reason why structural
LEED analyses of large unit cells are rather rare. This thesis aims to examine these
material systems and propose possible improvements to advance the structural de-
termination of complex crystalline surfaces.
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1. Introduction

The first part (Chapters 2, 3 and 4) discusses the theoretical foundations as well
as the material systems relevant within this thesis and gives an overview of the
used experimental setup. Chapter 5 covers the analysis of the Si(001) surface and
proposes an approach to facilitate the LEED analysis of covalent crystal surfaces.
Chapter 6 resolves the discussion about the different models of the Si(111)-(5×2)-Au
reconstruction. Finally, in Chapter 7, possibilities to make use of the enormously im-
proved computational power in the last decades within LEED intensity calculations
are discussed.
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2. Physical Foundations

In this chapter, first, the experimental technique of low-energy electron diffraction
(LEED) is presented. In the following, the theoretical background necessary for this
thesis as well as insights into the description of the interaction of electrons with
surfaces are given.

2.1. LEED Experiment

After the first observation of electron diffraction at crystal surfaces in 1927 by Davis-
son and Germer [9], expectations were high that electron diffraction would reiterate
the successful path of X-ray diffraction with the first experiment in 1912 by von
Laue followed by the first structural analysis in 1913 by Bragg [10]. But it took
more than forty years until Pendry had success in the description of strong atomic
scattering while introducing a perturbation scheme to manage the multiple scatter-
ing [11]. Since then, numerous structures have been solved using LEED. Nowadays,
LEED has become a standard tool for UHV laboratories due to its relatively easy
experimental access to structural properties of crystalline surfaces. The high surface
sensitivity of LEED electrons, caused by the low inelastic mean free path in the
order of only a few nanometers independent from the specific surface [12], makes it
a valuable tool in the examination of surfaces. The information about the surface
that can be derived from the reflexes of the diffraction pattern can be roughly split
into three groups: Periodicities and symmetries can be obtained from the position,
details of the morphology may be derived from the spot profiles, and atomic posi-
tions can be inferred from the intensity distribution. The latter point is the main
focus of this thesis.

2.1.1. Setup

Due to the short mean free path of electrons at ambient pressure, a LEED optics
can only operate in a vacuum environment. A schematic sketch of a typical three-
grid LEED optics is depicted in Figure 2.1. An electron gun generates an electron
beam that is accelerated by a voltage UB and focused by electrostatic lenses, located
in the center of a hemispherical screen. The diffracted electrons need to overcome
a potential step, which is created by a voltage slightly less than UB at the grids,
to reach the screen, preventing the detection of inelastically scattered electrons.
Finally, the voltage US accelerates the diffracted electrons onto the screen to cause
luminescence. The first and third grid as well as the sample are grounded to ensure
a field-free space between the sample and the grids. The camera, mounted on the
outside of the UHV chamber at a view port, records the diffraction pattern from
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2. Physical Foundations
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Figure 2.1.: Schematic sketch of a three-grid LEED optics with an external camera to cap-
ture the diffraction pattern digitally. The optics is located inside a UHV chamber, while
the camera is mounted on the outside of a view port. The electron gun generates and
focuses an electron beam, while the voltages UB and US shield the screen from inelasti-
cally scattered electrons and accelerate the elastically scattered electrons to illuminate the
screen, respectively. A computer is used to control the voltages and record the resulting
diffraction patterns for further analysis.

behind the electron gun. A computer can be used to control the acceleration voltage
UB and to record the diffraction patterns for an energy range in an automated
process.

Typical beam sizes on the surface lie in the order of magnitude of 1 mm2, implying
that an incredible high number of atoms is probed simultaneously. This makes, on
the one hand, the demand that the surface must be prepared carefully, so the beam
is not diffracted at different surface structures, making the interpretation of the
diffraction pattern difficult. On the other hand, the large beam sizes in LEED
are beneficial for the purpose of structural analysis in contrast to local probing
techniques like STM, since the results are obtained from a significantly greater area
and are therefore insusceptible for random local deviations.

However, due to non ideal conditions in a real experiment, like the finite size of
the electron cathode, a distribution of the energy of the LEED electrons caused
by their thermionic emission and an angular opening of the beam, the coherence
of the probing electron is limited, leading to an instrumental transfer width of ap-
proximately 100 Å [10]. Therefore, the observed diffraction pattern is an incoherent
superposition of the diffraction processes occurring within these approximately 1010

coherent areas of the electron beam. Furthermore, due to the strong attenuation of
LEED electrons within the surface, those coherent areas can be further divided into
regions with a size of approximately 10 Å, which define scattered amplitudes [10].
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2.1. LEED Experiment

Requirements on the setup

To perform a successful LEED experiment for structural analysis, some requirements
on the setup should be considered to not impair the quality of the experimental data.
Most importantly, an ultra high vacuum (UHV) chamber is necessary to operate the
LEED optics and furthermore to minimize influences on the surface structure due
to contaminations from the gas phase. Besides the careful preparation of the surface
structure under investigation, the possibility to place the sample without constraints
in front of the LEED optics, so that the angle of incidence of the electron beam is
perpendicular to the surface, is desirable. This requires three degrees of freedom
for linear motion as well as two degrees of freedom for the rotation of the sample.
Already small inaccuracies in the angle of incidence in the magnitude of 1◦ have
a serious influence on the spectra [13]. Furthermore, it is advisable to be able to
cool the sample to decrease the background in the diffraction pattern. The thermal
influence is caused by vibrational motion of the atoms (cf. section 2.3.5), making the
constructive diffraction condition (cf. section 2.2.4) increasingly diffuse. Through
cooling, the details in the spectra get much more distinct [13], which improves the
evaluation of data.

2.1.2. Data evaluation

In principle, it would suffice to evaluate the relative intensities of the different beams
at one energy to deduce the underlying geometrical structure. However, due to the
loss of phase information upon the measurement of intensity (which is proportional
to the squared modulus of the diffracted electrons wave function), a direct calculation
of the structure from the diffraction pattern is not possible in general. Furthermore,
hardly controllable influences in the experiment (uneven sensitivity of the screen,
etc.) and the high amount of geometrical parameters make it advisable to collect a
huge data set to support the fitting of many parameters and to diminish the influence
of some experimental inaccuracies. For this purpose, the intensity as a function of
the electron energy of a given reflex (I(E) or IV spectra) is used for the analysis.
To obtain these IV spectra, the recorded collection of two-dimensional diffraction
patterns at different energies needs further evaluation.

The intensity of a single reflex at a certain energy can be extracted with two circu-
lar regions of interest (ROI) as depicted in Figure 2.2. This allows the subtraction of
the local background intensity to achieve more accurate measured values. Repeat-
ing this procedure for all beams and all recorded energies yields a set of IV curves.
These can then be compared to IV curves acquired by dynamical scattering theory
calculations. If the experimental spectra match the calculated ones very well, it can
be assumed that the structure given as input to the calculation is in accordance with
the real structure of the atoms in the experiment. Thus, by variation of the input
for the calculations, it is tried to achieve the best possible fit between experiment
and theory.

5
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Figure 2.2.: (a) Diffraction pattern recorded at an electron energy of 200 eV. Three ex-
emplary reflexes are encircled with ROIs, used to evaluate intensities. (b) Resulting IV
spectra of the evaluated beams. The spectra are shifted along the ordinate for improved
visibility. The electron energy used for the diffraction pattern in (a) is denoted by a red
dashed line.

Reliability factor

This trial and error approach requires an automated quantitative comparison be-
tween calculated and experimental spectra to facilitate the evaluation of many trial
structures. For this purpose a reliability factor that yields a single number as a mea-
sure for the agreement between calculated and experimental spectra is used. As can
be seen in Figure 2.2 (b), IV spectra consist of multiple peaks with varying inten-
sity. The positions of those numerous maxima are determined by multiple scattering
and are therefore sensitive to geometrical changes. By contrast, the absolute inten-
sity of those peaks is also dependent on thermal effects and data evaluation. The
Pendry reliability factor RP [14] sets emphasis on the positions of extrema, while
being comparably insensitive to relative intensities. To calculate RP, the logarithmic
derivative

L(E) =
d

dE
ln(I) =

dI
dE

I
(2.1)

is determined to obtain a function independent of the absolute intensity. Via the
definition of the Y -functions according to

Y (E) =
L−1

(L−2 + V 2
i )

, (2.2)
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2.1. LEED Experiment

with Vi being the imaginary part of the inner potential, the Pendry R factor is
defined as

RP =

∑︁
g

∫︁
(Yg,theo − Yg,exp)2 dE∑︁

g

∫︁
(Y 2

g,theo + Y 2
g,exp) dE

. (2.3)

Here, the summation is done over all g measured beams to form a weighted average
of the R-factors of individual spectra. The denominator is used for normalization.
Thus, RP = 1 if there is no correlation between the theoretical and experimental
spectra. If RP = 0, the spectra are identical, while RP = 2 results if there is an
anti-correlation. When RP < 0.2, it is usually assumed to have found the correct
structure [15].

While the reliability factor is a measure of the agreement between calculated and
experimental spectra, it does not make an estimation about the significance of this
agreement with respect to the number of free parameters in the structure model. To
analyze whether a RP value can result by chance, the assumption is made that the
IV spectra consist of closely packed Lorentzian-shaped peaks with widths defined
by the imaginary part of the inner potential Vi. This leads to the estimation of
N = ET/(4|Vi|) measured peaks that can be found in the total energy range ET of
all spectra [14]. Therefore, the redundancy ρ

ρ =
N

f
=

ET

4|Vi| f
(2.4)

approximates the ratio between significant structures found in the spectra and the
number of free parameters f used to simulate the spectra. A value of ρ < 1 means
over-fitting, since the use of more parameters than sampling points is expected to
yield a fit matching those points. However, when performing a structure optimiza-
tion with LEED, an increase in parameters can mainly be done by the inclusion
of more reconstructed layers. Due to the attenuation of the LEED electrons, those
additional parameters have only a reduced impact on the spectra. However, a high
redundancy is desirable for a conclusive analysis.

Furthermore, to estimate the errors in the determination of the values for the
respective parameters, the variance of RP (Var(RP) = RP,min

√︁
8|Vi|/ET) deduced

from the minimum of the Pendry R factor RP,min can be used [14]. It can be assumed
that a given parameter lies with the confidence of one standard deviation within
the range for which RP ≤ RP,min + Var(RP) is fulfilled under the variation of this
parameter.

Smoothing

One issue with the Pendry R factor is its sensitivity to high-frequency noise, which
can be found in experimental spectra, due to non-perfect experimental conditions
(varying electron beam flux, non-even efficiency of the luminescence screen, etc.) and
inaccuracies in measurement and data evaluation (quality of the recording camera,

7



2. Physical Foundations

intensity extraction from two-dimensional diffraction patterns, etc.). To ensure a
reliable comparison between calculated and experimental spectra, smoothing of the
curves is a necessity. The CLEED package [16] used in this thesis for the calculation
of IV spectra uses, as proposed by Pendry [14], the convolution of the IV spectra
with a Lorentzian according to

I ′(E) =
1

π

∫︂
I(E′) κ

(E − E ′)2 + κ2
dE ′ (2.5)

for smoothing purposes. The parameter κ should be equal to or lesser than the
imaginary part of the inner Potential Vi to avoid loss of information. Within this
thesis, κ = 4 eV was used. This smoothing alters the spectra significantly, but it
retains the position of the peaks. Hence, it must be applied to experimental as well
as calculated spectra to enable a meaningful comparison.

Due to the use of the logarithmic derivative in the calculation of RP, negative
intensities in the experimental spectra (which can happen in regions of very low in-
tensity) lead to a sign change, which affects the reliability factor immensely. Further-
more, since the logarithmic derivative is not defined for zero intensity, experimental
spectra must be corrected in regions of low intensity to fulfill these demands.

2.2. Periodical Surface Structures

In this section, the basic theoretical concepts necessary to understand diffraction at
crystalline surfaces are presented.

2.2.1. Crystals and surfaces

In solid state physics, a strict distinction is made between the solid and its surface.
Many properties of the solid are based on its periodicity, which is present in every
spatial direction. It is thus composed of repeating unit cells, which do not differ
from each other. This arrangement can be conceived as a space lattice. For the
mathematical description of the lattice, the translation vector rcrystal is introduced,
which can reach any one point of the lattice from any other point of the lattice

rcrystal = n1ac + n2bc + n3cc with {n1, n2, n3} ∈ Z , (2.6)

with the linearly independent lattice vectors ac, bc, and cc that span the unit cell.
For the description of crystal structures, it is necessary to consider a basis. Con-
veniently, the reference point of the lattice is placed in the center of a basis atom.
If the unit cell contains more than one atom, the relative coordinates of the atoms
rB with respect to the origin of the basis are given. In Figure 2.3 (a) a schematic
sketch of a lattice with a basis consisting of two atoms is shown.

To describe planes within a crystal, Miller’s indices are used. They are calculated
from the reciprocals of the numbers n1, n2, and n3 at which the plane intersects
the respective axes. These reciprocals are then multiplied by their least common

8



2.2. Periodical Surface Structures

(a)

ac

bc

cc

rB

(b)

bc

ac

cc

(010)

(111)

(001)

Figure 2.3.: (a) Crystal lattice with primitive translation vectors ac, bc, and cc. The origin
of the reference frame is located at the position of a “red atom”. The description of the
full basis (red and yellow) is done by means of the vector rB, which gives the position of
the “yellow atom” relative to the reference point. (b) Cubic primitive unit cell. The gray
and blue and yellow colored surfaces correspond to the planes with Miller indices (111),
(010), and (001), respectively.

multiple to obtain the Miller indices. If there is no intersection with an axis, the
corresponding index is 0. Thus, for the plane with the axis intersections 4, 3, and
2, the corresponding Miller indices are (346). In Figure 2.3 (b), three planes with
their respective Miller indices are shown as an example. Directions in a crystal, on
the other hand, are indicated with square brackets. For cubic lattices, a direction
with the same indices as a plane is perpendicular to this plane.

At the surface, the translational invariance of the lattice is broken in one spatial
direction. Therefore, two translation vectors suffice to describe the periodicity. Fur-
thermore, unsaturated bonds at the surface can cause a reconstruction of the surface
atoms, which minimizes the total energy of the system. The resulting reconstructed
surface may differ from an equivalent plane in the solid by a change in translational
symmetry. For this reason, a separate translation vector rsurf is introduced for the
lattice of the surface, which is composed of two lateral primitive translation vectors

rsurf = m1a + m2b with {m1,m2} ∈ Z . (2.7)

The parallelogram spanning the vectors a and b is called the lateral unit cell. In
addition, to fully describe a two-dimensional structure, a basis with multiple atoms
may need to be considered. Instead of the 14 Bravais lattices used to classify different
three-dimensional crystal structures, the surface can be described by five Bravais
lattices that are depicted in Figure 2.4.

9
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(1)

a

b γ

(2)

a

b γ

(3)

a

b γ

(4)

a′

b′
γ

a

b
γ

(5)

a
b γ

Figure 2.4.: The 5 Bravais lattices for two-dimensional structures:
(1) square |a| = |b| ; γ = 90◦,
(2) rectangular |a| ≠ |b| ; γ = 90◦,
(3) oblique |a| ≠ |b| ; γ ̸= 90◦,
(4) centered rectangular |a| = |b| ; γ ̸= 120◦,
(5) hexagonal |a| = |b| ; γ = 120◦ .
For the centered rectangular lattice, a primitive and a non-primitive lattice are shown.
The non-primitive lattice is commonly used due to its convenience of description.
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cc

ac

a

[001]

[100]

[105]vacuum

crystal

Figure 2.5.: Example of a vicinal surface of a cubic crystal with the Miller indices (105).
The lattice vectors of the crystal are denoted by ac and cc, respectively. The relatively
small angle of about 11.31◦ toward the highly symmetric (001) plane leads to a surface
exhibiting terraces with (001) orientation separated by periodic atomic steps. The surface
translation vector a is significantly greater than the translation vectors of the crystal.

Vicinal surfaces

In the case of cutting a crystal along a plane that has an angle of a few degrees
toward a plane with low Miller indices (thus being highly symmetric), a so-called
vicinal surface is created. While not being a special case regarding the previous
definitions, the resulting planes described by high Miller indices have characteristics
that differentiate them from surfaces with low Miller indices. Figure 2.5 displays a
schematic sketch of the (105) and thus vicinal surface of a simple cubic crystal. The
angle of about 11.31◦ toward the highly symmetric (001) plane leads to a surface,
which exhibits terraces that are analogously to a pristine (001) surface but separated
by periodic mono-atomic steps. This leads to a significantly increased length of the
lateral translation vector a compared to the translations of the bulk ac. The asym-
metry of the surface induced by the steps creates different adsorption sites, making
vicinal surfaces especially interesting for self-induced reconstructions. Furthermore,
they can act as a template guiding the growth direction of nanowires if the growth
is constrained by the steps to only one dimension.

2.2.2. Superstructures

Due to unsaturated bonds of the surface or the interaction with adsorbates, surfaces
can reconstruct and thus exhibit periodicities deviating from those of the bulk. Fig-
ure 2.6 displays a rectangular lattice with a superstructure induced by additional
atoms. The usual notations for describing superstructures link the primitive lat-
tice vectors of the superstructure to the primitive lattice vectors of an underlying
unreconstructed plane of the solid with the lateral translation vectors a and b.

In matrix notation, the relationship between the translation vectors of the sub-
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2. Physical Foundations

bc

ac

b = 2bc

a = 3ac

Figure 2.6.: Example for the creation of a superstructure. On the left, a rectangular
lattice with the translation vectors ac and bc can be seen. On the right, the additional
blue spheres induce a deviating periodicity of the surface with the translation vectors a
and b.

strate and the translation vectors of the superstructure is denoted by

a = G11ac + G12bc b = G21ac + G22bc . (2.8)

The superstructure is then given by the matrix

G =

(︃
G11 G12

G21 G22

)︃
. (2.9)

By contrast, Wood’s notation, considers the ratio of the lengths of the translation
vectors

|a|
|ac|

= m
|b|
|bc|

= n . (2.10)

The superstructure in this notation is given as X(hkl)c(m × n) − Rφ − Ad, where
hkl corresponds to the Miller indices of the surface of the substrate X. A rota-
tion between the base translation vectors of the substrate and the superstructure
is indicated by the angle φ, if applicable, while any centering is represented by a c
(e.g., Si(001)c(4 × 2)). If the superstructure is induced by adsorbate atoms, Ad is
replaced by the corresponding chemical symbol with the number of adsorbate atoms
present in a unit cell (e.g., Si(111)(

√
3 ×

√
3) −R30◦−3Bi). It should be noted that

Wood’s notation, unlike the matrix notation, can only be used correctly if the angle
between the translation vectors of the substrate is equal to the angle between the
translation vectors of the superstructure. For example, the superstructure shown in

Figure 2.6 can be described as

(︃
3 0
0 2

)︃
with the matrix notation, or as (3 × 2) in

Woods notation.

Domains

On real surfaces, if a superstructure is induced, the formation of different domains
can be typically observed. Within each domain, the periodicity of the superstructure

12
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Figure 2.7.: Schematic sketch of a surface covered by different (rotational) domains. The
addition of blue spheres on the surface with a square unit cell (yellow spheres) forms a
superstructure, whereby two different alignments are supported. The (2×1) reconstruction
highlighted in red and the (1 × 2) reconstruction highlighted in gray (rotated by 90◦)
form different rotational domains. The intensity observed in the diffraction pattern is an
incoherent superimposition of the different domains.

is well defined. However, at domain boundaries the long range order is broken. For
a LEED experiment, if the domains are sufficiently large, it can be assumed that
the influence of the domain boundaries in the diffraction pattern is negligible. Then,
due to the limited transfer width, the diffraction pattern consists of the incoherent
superposition of the contribution of the different domains.

Domains can be classified into different types. Anti-phase domains occur when
the periodicity of the superstructure is shifted by half a lattice constant at domain
boundaries, which can lead to the extinction of reflexes. Another type of domains
are rotational domains, which can be observed when different alignments of a super-
structure are supported by the substrate. A schematic sketch of a surface covered
by rotational domains is depicted in Figure 2.7. The superimposition of those rota-
tional domains in the diffraction pattern can lead to additional reflexes with regard
to the consideration of a single domain. Thereby, the superimposed diffraction pat-
tern can exhibit a higher symmetry than the superstructure, making the averaging
of the intensity of calculated beams necessary for a comparison with experimental
spectra.

2.2.3. Reciprocal space

The reciprocal space is a concept that is very useful when using diffractive measure-
ment methods such as LEED. Thereby, each lattice describing the periodicity of a
surface structure is assigned to a reciprocal lattice. This reciprocal lattice can be

13
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(a)

(1̄|1̄)

(1̄|0)

(1̄|1)

(0|1̄)

(0|0)

(0|1)

(1|1̄)

(1|0)

(1|1)

H
K
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(b)

(1̄|1̄)

(1̄|0)

(1̄|1)

(0|1̄)

(0|0)

(0|1)

(1|1̄)

(1|0)

(1|1)

Figure 2.8.: (a) Schematic representation of the reciprocal space for a three-dimensional
crystal lattice with a cubic unit cell. (b) Schematic representation of the reciprocal space
for a two-dimensional crystal lattice with square unit cell. While the reciprocal space of
the three-dimensional crystal consists of points, the reduced translation symmetry of the
surface results in reciprocal lattice rods for the two-dimensional crystal.

described analogously to equation (2.7) by

G∥ = ha∗ + kb∗ with {h, k} ∈ Z , (2.11)

where a∗ and b∗ are the reciprocal translation vectors of the reciprocal lattice. The
subscript of G∥ indicates that the lattice lies within the plane of the surface. The
reciprocal translation vectors are obtained from the translation vectors of the real
space lattice according to

a∗ = 2π · b × n

|a × b|
b∗ = 2π · n × a

|a × b|
, (2.12)

where n is a unit vector perpendicular to the surface. Thus, the dimension of the
reciprocal translation vectors is [ 1

length
]. Notably, a is perpendicular to b∗ and b is

perpendicular to a∗. Furthermore, the scalar products a · a∗ and b · b∗ yield 2π,
respectively. The reciprocal space of a three-dimensional crystal lattice consists of
points. For two-dimensional lattices, because of the lack of periodicity, the distance
between two lattice points in the vertical direction can be assumed to be infinite,
bringing the points in the reciprocal space together to form rods. Figure 2.8 shows
the reciprocal space of a three-dimensional and a two-dimensional crystal lattice.
The two-dimensional case corresponds to a single layer of the three-dimensional
crystal.

However, in a generic diffraction experiment, the surface of three-dimensional
crystalline solids is examined. In this case, the unit cell extends from the surface
deep into the crystal (cf. Figure 2.9). Although a three-dimensional crystal is
examined, strict periodicity can only be found in lateral directions. Therefore, the
reciprocal space of a truncated crystal consists of rods as depicted in Figure 2.8 (b).
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surface

bulk

unit cell

Figure 2.9.: Schematic representation of the
unit cell of a surface structure. The surface,
in which the positions of the atoms deviate
from the crystal lattice sites, and the bulk, in
which the atoms are arranged according to
the crystal lattice, are to be distinguished.
Due to the broken periodicity, the crystal
is only in lateral directions strictly periodic.
Therefore, the reciprocal space of a trun-
cated crystal consists of rods as depicted in
Figure 2.8 (b).

2.2.4. Diffraction on periodical structures

In this part, first, the diffraction condition for periodic surface structures is derived.
Subsequently, it is illustrated with the Ewald construction in reciprocal space.

Diffraction condition

According to the wave particle dualism of quantum physics, a de Broglie wavelength
can be assigned to the electrons used for diffraction according to

λ =
2πℏ√
2meE

. (2.13)

The energy range of approximately 50 eV to 700 eV typically used in LEED corre-
sponds to wavelengths of about 0.5 Å to 1.7 Å, which is the same order of magnitude
as typical atomic distances in crystals. Since the distance of the electron source
from the sample surface is sufficiently large, the electrons can be treated as plane
waves. From Figure 2.10, the condition for constructive interference of two neigh-
boring scattering centers whose position with respect to each other is described by
a can be derived. Constructive interference can be expected if the path difference
between the two waves is equal to a multiple of the wavelength λ, which is described
by

a · (s − s0) = hλ with h ∈ Z , (2.14)

where s and s0 are unit vectors with the directions of the incident and scattered
wave, respectively. For two points whose relative position to each other is described
by b or c, it follows analogously

b · (s − s0) = kλ with k ∈ Z (2.15)

c · (s − s0) = lλ with l ∈ Z . (2.16)
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s0

s

a

a · s

a · s0

·

·

Figure 2.10.: Sketch for the derivation of
the diffraction condition of two neighbor-
ing scatterers whose relative position to each
other is described by a. The vectors s and
s0 are unit vectors with the direction of the
incident and diffracted beam, respectively.
From the lengths of the red dashed lines, the
path difference can be determined.

For any translation vector of the reciprocal lattice G = ha∗+kb∗+lc∗, the equations
(2.14) to (2.16) can be expressed by

s − s0 =
λ

2π
G , (2.17)

which is therefore the diffraction condition for a three-dimensional crystal. As a
proof, both sides can be multiplied scalar by a, b, or c. Respecting the definition of
the reciprocal lattice vectors, the equations (2.14) to (2.16) are obtained. Replacing
s and s0 by the wavenumber vectors k and k0 according to

s =
λ

2π
k and s0 =

λ

2π
k0 (2.18)

and the introduction of the scattering vector K = k − k0 allows to write equation
(2.17) as the Laue equation

K = G . (2.19)

Thus, constructive interference is expected, when the scattering vector matches a
vector of the reciprocal lattice. Since the reciprocal space of a surface consists of
rods, the component of G that is perpendicular to the surface can take any value to
satisfy equation (2.17). Thus, only the components of k and k0 that are parallel to
the surface are important. Therefore, the diffraction condition for a two-dimensional
surface is given by

k∥ − k0,∥ = G∥ . (2.20)

Ewald construction

Since only elastically scattered electrons are detected in LEED, |k| = |k0| must
hold. With this additional condition, equation (2.20) can be illustrated by the
Ewald construction as depicted in Figure 2.11.

In conventional LEED, the angle of incidence of the electron beam is typically
perpendicular to the sample. For this reason, k0 is drawn parallel to the diffraction
rods so that its tip lies on the (00)-diffraction rod, at the origin of the reciprocal
space. A circle of radius |k0| is now drawn around the starting point. For the validity
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(2̄0) (1̄0) (00) (10) (20)

θ

θ′

k0

k′

k

K

K′

K∥

K⊥

Figure 2.11.: Sketch of the Ewald construc-
tion for diffraction on a surface for the two
beams (2|0) and (1̄|0) with perpendicular in-
cidence. k0 points to the origin of the recip-
rocal space. The two reflexes (2|0) and (1̄|0)
can be observed at angles θ and θ′, since in
these directions the equation (2.20) is sat-
isfied. The scattering vectors K is also de-
picted with its components K∥ and K⊥. For
better illustration, only a section through
the reciprocal space and the Ewald sphere is
shown and further possible diffracted beams
are not included.

H

L

K

(1̄|1̄)
(1̄|0)

(1̄|1)

(0|1̄)
(0|0)

(0|1)

(1|1̄)
(1|0)

(1|1)

Figure 2.12.: Due to the three-dimensional
unit cell, whose periodicity is broken in one
spatial direction by the surface, diffraction
rods are created in reciprocal space. Here
the varying shading of the rods shall sym-
bolize that the observed intensity at differ-
ent points on the rods is not constant.

of equation (2.20), only the components of the vectors k0 and k, which are parallel to
the surface, are important. Thus, the equation is always satisfied if k runs from the
starting point of k0 to an intersection of the circle with the diffraction rods. Hence,
these are the directions in which reflections are to be expected in the diffraction
experiment.

The used energy for the electron beam and its angle of incident on the surface
determine at which points the Ewald sphere intersects with the reciprocal lattice
rods. This can be used to measure along the reciprocal lattice rods. The atomic
structure of the surface within the three-dimensional unit cell determines which
intensity can be expected at each point of the reciprocal lattice rod. Figure 2.12
shows the reciprocal space of a surface consisting of rods. However, the atomic
structure causes a variation in observed intensity, depending which point of the rod
is probed in a diffraction experiment. Here, this is visualized by a varying shading of
the rods. Conversely, the intensity distribution along the rods can be used to infer
the atomic structure.
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(0|0)

(0|1)

(1|0)

b∗

a∗

b∗
c

a∗c

(3× 2)

(1× 1)

Figure 2.13.: Schematic part of the diffrac-
tion pattern of the superstructure depicted
in Figure 2.6, as it would be observed in a
LEED experiment. The reflexes originating
from the substrate (yellow spheres) are de-
picted with yellow squares, while the reflexes
originating from the superstructure are de-
picted with blue circles. Due to the larger
translational vectors in real space, the re-
flexes of the superstructure are closer in re-
ciprocal space.

Connection to observable LEED pattern

In a LEED experiment, the diffraction patterns that can be observed on the lu-
minescent screen can be interpreted as a view onto the Ewald sphere (along the
direction of k0). Thus, the reflexes on the screen correspond to the intersections
of the diffraction rods with the Ewald sphere. Therefore, varying the energy of the
electron beam (and hence the length of k0) allows the evaluation of the diffraction
rods at different positions, while the pattern of reflexes does not change. Further-
more, at higher energies and thus a larger radius of the Ewald sphere, more beams
become accessible. Figure 2.13 displays the diffraction pattern of the superstructure
from Figure 2.6. As can be seen, the LEED pattern allows a direct inference on the
relation of the translational vectors of the substrate and the superstructure. Addi-
tionally, the positions of the reflexes allow a direct inference on the surface lattices
(here, a rectangular lattice and a square superstructure).

2.2.5. Symmetries

Additional to the five Bravais lattices, which characterize the different possible trans-
lations, further symmetries can be found on real surfaces. These include rotations,
reflections and glide reflections, which occur depending on the arrangement of the
atoms within the unit cell. For two-dimensional patterns 17 so-called wallpaper
groups exist to describe the symmetry operations possible. The two groups relevant
within this thesis are pm and p2mm, which are depicted in Figure 2.14. The p fol-
lowed by a number indicates rotational symmetry, meaning a pattern containing p2
symmetry can be rotated by 360◦/2 without changing its appearance. The number
of ms (and eventually gs) denotes the possible (glide) reflections. Due to the addi-
tional reflection axis, the p2mm has therefore a higher symmetry. The intersection
of the perpendicular reflection axes acts as a rotational center of order 2 (180◦).

Applied to surface structures, these symmetry operations can be used to reduce the
number of free geometrical parameters in a structural optimization. While an atom
located on a reflection plane can only move on this plane, two atoms on opposite
sides of such a plane must conserve symmetry and are hence bound to mirror each
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(a)

b

a

(b)

b

a

Figure 2.14.: (a) Example for a pattern with pm symmetry. (b) Example for a pattern
with p2mm symmetry. The blue lines denote horizontal reflection axes, while the red ones
denote vertical reflection axes, which are not present in (a). The intersections of reflection
axes are also rotational centers of order 2 (180◦). Translational vectors are denoted in
yellow.

others position.
These symmetries in real space can also be found in reciprocal space in the diffrac-

tion pattern. Therefore, on surface with symmetries, reflexes with identical IV spec-
tra are expected. For a LEED analysis, these symmetries can be exploited by aver-
aging equivalent spectra, thus reducing noise. Furthermore, small inaccuracies like a
deviation from a perpendicular perpendicular incidence can be partly compensated.
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2.3. LEED Theory

In this section, the essential ingredients for a successful description of the scattering
of electrons on crystalline surfaces are presented. Historically, the kinematic scat-
tering theory had great success in the explanation of diffraction experiments using
X-rays. Within the kinematic scattering theory, it is assumed that every probing
particle gets scattered elastically exactly one time. However, it could not explain the
intensity spectra observed with the diffraction of electrons. This is mainly due to the
fact that in LEED, multiple scattering plays a dominant role and leads to additional
smaller peaks in the spectra between those that can be explained kinematically. The
kinematic scattering theory can be extended by many aspects that are necessary for
a successful description of electron diffraction like the correct scattering of electrons
at atoms, temperature effects, and the inner potential, whereby the agreement with
experimental spectra can be improved. Nonetheless, the inclusion of multiple scat-
tering events is essential to simulate LEED spectra. Hence the introduction of a
dynamical scattering theory was inevitable.

2.3.1. Surface of a one-dimensional crystal

To explain the concepts and parameters used in a full dynamical calculation, it
is helpful to start with a model of an one-dimensional crystal, placing scatterers
periodically along one axis in only one direction (z < 0) with the spacing d as shown
schematically in Figure 2.15 (a). The incident electron wave can be described by
e−ikz, with the wave vector k being connected to the de Broglie wavelength by
k = 2π

λ
. The most basic approximation of the amplitude of the scattered wave is

the summation of each wave reflected by exactly one of these atoms. This leads to
a phase shift ei2kzi between these reflected waves, depending on the position zi of
those atoms causing interference. The factor 2 is due to the way from the surface
to the atom and then back.

Figure 2.15 (b) depicts the energy-dependent intensity, which is the square of the
(probability) amplitudes. For most energies, the resulting intensity is low, but when
a multiple of the wavelength equals to the atomic distance d, peaks with high inten-
sity can be observed, since all scattered waves interfere constructively. An increase
in the number of atoms N used to model this surface causes an increasing intensity
of the peaks, getting also sharper. However, this description does not fit electron
diffraction, since they have a short mean-free path due to their large scattering
cross sections with atoms. Therefore, it is necessary to limit the penetration depth
of the electrons. This can be done by the introduction of an imaginary potential Vi

within the crystal. Hence, the wave vector of the electron itself becomes complex,
causing a dampening of the amplitude as the wave propagates inside the crystal.
This leads also to a broadening of the reflexes, although no intermediate peaks can
be observed (now it does not matter if the surface consists of 100 or 1000 atoms,
since the electrons can not reach deep enough into the crystal) as can be seen in
Figure 2.15 (b). Notably, the peak intensity increases now with increasing energy
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due to weaker dampening at higher energies within this approach of an imaginary
part of the potential. Additionally, a real part of the potential Vr leads to a shift
of the whole spectra. This potential step causes a change in the wavelength of the
electron inside the crystal, hence shifting the condition for constructive interference.
However, this has not been done here.

Due to the potential around an atom core, the electron is expected to be phase
shifted upon scattering. This can be qualitatively understood by the acceleration
an electron experiences when approaching the atom core. This increase in kinetic
energy shortens its wavelength momentarily. Hence, when leaving the atom, its
phase is advanced compared to the propagation without the atomic potential. This
effect changes the conditions for constructive interference to lower energies, since
the optical path has been lengthened as can be seen in Figure 2.15 (d). However,
the inclusion of multiple scattering does not alter the IV spectra otherwise, since all
possible path differences of the electron are also included in the kinematic model.
Notably, this is not the case for scattering on a two or three-dimensional crystal.

The introduction of a relaxed surface (changing the positions of the top 4 layers
slightly) does change the spectra immensely, as is depicted in Figure 2.15 (e). The
peaks from the non-reconstructed case still exist, but many additional peaks emerge
and their intensities are no more easily predictable.

Peak width

As can be seen in Figure 2.15 (b), the width of the peaks increases in the kinematic
approach by reducing the number of scatterers as well as by the use of an imaginary
potential (cf. Figure 2.15 (c)). Therefore, the imaginary part of the potential effec-
tively limits the penetration depth of the electrons into the surface. The electron
wave inside a surface with an imaginary potential Vi can be described by

eikz = ei
z
ℏ

√
2me(E+Vi) with k =

√︁
2me(E + Vi)

ℏ
. (2.21)

To illustrate the effect of Vi, the approximation with the first two terms of the Taylor
series of

√
E + x =

√
E + x

2
√
E

+ . . . leads to

eikz ≈ e
i zℏ

√
2me

(︂√
E+ 1

2
√
E
Vi

)︂
= eikrz e

i zℏ
√
2me

Vi
2
√
E , (2.22)

with kr being the wave vector of the electron within a surface without an imaginary
potential. Since Vi = i|Vi|, this can be rewritten to

eikz ≈ eikrz e−
kz
2E

|Vi| . (2.23)

Thus, the imaginary potential causes an exponential dampening of the amplitude of
the electrons. The mean free path Λ is the distance that must be traveled, so the
amplitude becomes e−1, so

Λ =
2E

k|Vi|
. (2.24)
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Figure 2.15.: (a) Sketch of the
surface of a one-dimensional
crystal. Atoms are aligned
along one axis with the dis-
tance d. An electron wave
e−ikz reaches the crystal (z <
0) from the vacuum (z >
0) and gets scattered. (b)-
(e) Intensity spectra start-
ing with a kinematic ap-
proach and including progres-
sively dynamic concepts like
an imaginary part Vi of the in-
ner potential and a more de-
tailed description of the scat-
tering process at the atoms.
In (d) are the peak positions
of (b) and (c) denoted to dis-
play the shift to lower en-
ergies, caused by the inclu-
sion of phase shifts occurring
at atomic scattering. In the
one-dimensional model, addi-
tional peaks due to multiple
scattering can only be ob-
served in the presence of a re-
laxation.
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To relate the expected width of peaks with the mean free path a closer look to
Figure 2.15 (b) exhibits that two major peaks are separated by N − 1 minima, with
the number of scatterers N . Additionally, their distance in the reciprocal space can
be expressed by ∆k = π

d
, since constructive interference happens, when nλ = 2d is

fulfilled. Therefore, the width of the peaks (in reciprocal space) is approximately
given by ∆k′ ≈ ∆k

N
= π

Nd
.

The assumption that only scatterers up to a depth of one mean free path partici-
pate in the scattering process can be expressed by

Nd = Λ (2.25)

π

∆k′ =
2E

k|Vi|
π

(∆
√
E)

=
2
√
E

|Vi|
, (2.26)

with (∆
√
E) =

√︂
E + ∆E

2
−
√︂

E − ∆E
2

. It can be shown (cf. appendix B) that
√
E (∆

√
E) ≈ ∆E

2
, thus the imaginary part of the potential Vi leads to peaks in the

spectra with a width of approximately

∆E = π|Vi| . (2.27)

However, this is only a rough estimation and shall only illustrate the effect of the
imaginary potential. Within the derivation of the Pendry R factor [14] a value of
∆E = 2|Vi| is assumed.

2.3.2. Intensity distribution

Until now, only the angles under which constructive interference is expected were
discussed. How the intensity is distributed over these reflexes can be estimated with
the help of the structure factor within the kinematic scattering theory. Since the
electron source is at a large distance from the surface, the amplitude of the incident
electrons ai at the position r can be described as plane waves by

ai = a0e
ik0r with k0 =

√
2meE

ℏ
, (2.28)

with the incident wave vector k0, the electron mass me, and the kinetic energy of
electrons E. The amplitude of the scattered beam af with the scattered wave vector
kf at the position r can be expressed by the plane wave

af = a0 eikfr
∑︂
n

fn(q) e
iqrn with q = kf − k0 , (2.29)

with the summation over all n atoms at positions rn with the scattering factor fn(q),
depending on the momentum transfer q. This includes the phase shift due to the
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different positions of the atoms (eiqrn) as well as the change in the amplitude of
the electron wave due to the scattering at a single atom (fn(q)). For a surface with
two-dimensional periodicity, the atomic positions can be expressed as

rn = ru + rsurf = ru + m1a + m2b , (2.30)

where ru includes all atoms within the surface unit cell. As described in section
2.2.4, to determine whether constructive interference occurs, only the component of
the momentum transfer parallel to the surface q∥ is relevant. Inserting into 2.29
yields

af = a0 eikfr
∑︂
u

fu(q) e
iqru

∑︂
m1,m2

eiq∥rsurf . (2.31)

The exponential function in the second summation is one if the momentum transfer
and the reciprocal lattice vector are equal (q∥ = G∥) due to the definition of the
reciprocal lattice vectors. For an infinite surface, the scattered amplitude is there-
fore infinite in directions of constructive interference and else zero. As rsurf is only
dependent of the size and shape of the unit cell, the position of reflexes is indepen-
dent of the geometry within the unit cell, as well as the scattering mechanism itself.
This means that multiple scattering can not affect the positions of reflexes.

However, real surfaces do not have perfect periodicity due to domain boundaries
and atomic steps. Therefore, the second summation does not yield infinity at the
constructive diffraction condition for real surfaces. This allows the inference from
the spot profile of reflexes on the morphology of the surface. Due to its dependence
on the lattice, it is called lattice factor G. The relative intensities of the different
beams are, however, determined within the first summation which is only dependent
on the structure within the unit cell, hence called structure factor F .

The intensity observed in the experiment is proportional to the (probability) am-
plitude of the electrons

I ∝ |af |2 = |a0|2 |F |2 |G|2 . (2.32)

This illustrates the dependence of the atomic positions on beam intensity nicely.
In principle, the effects of multiple scattering on the diffracted intensity could be
included in the scattering factor fu. However, since neighboring atoms scatter toward
each other, such a modified scattering factor of a single atom would be dependent
on the scattering factors of neighboring atoms. This complicates the evaluation of
this approach and therefore does not help directly in the development of a theory
that includes multiple scattering.

2.3.3. Description of the surface

To be able to calculate the amplitudes of the electrons diffracted at the surface and
hence the intensities, it is necessary to make approximations for the surface, since
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Figure 2.16.: Schematic sketch of the potential energy of a LEED electron within the
muffin-tin model at the surface. The spherical symmetric atomic potentials are separated
by regions of constant potential outside the muffin-tin radius. When entering the crystal
from the vacuum, a potential step causes refraction of the electron wave.

the solution of the Schrödinger equation of an electron inside the potential of all
surface atoms is too complex to solve generally. Therefore, the muffin-tin model is
used to simplify the description of the surface. A sketch of the muffin tin model can
be seen in Figure 2.16. The potential in the space inside the crystal between the
atoms is assumed to be constant. This can be justified by the small variations in the
potential in these regions compared to the energies of LEED electrons. Furthermore,
the potential around atoms within the muffin-tin radius is approximated as spherical
symmetric. Especially near the surface, this assumption is quite ambitious because
of the highly anisotropic environment. Nevertheless, this approximation has been
justified by the good agreement between experimental and calculated IV spectra
and can be explained by the rather small contribution of the valence electrons to
the scattering process.

These two approximations facilitate the treatment of the interaction between elec-
tron and surface massively. The potential step at the surface causes a refraction of
the electron wave due to its changed kinetic energy and therefore altered wavelength.
Propagation of the electron between the scatterers is easy to describe due to the con-
stant potential, while the actual scattering at spherical symmetric potentials is also
treatable.

2.3.4. Atomic scattering

With the assumption of spherical symmetrical atoms, the solution of the Schrödinger
equation for a LEED electron can be expressed as the product of a radial function
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Rl(r) multiplied with the spherical harmonics Ym
l (θ,φ) as the angular functions with

the angular momentum quantum numbers l and m. Thus, the differential equation
becomes one-dimensional

−ℏ2

2mr2
d

dr

(︃
r2

dRl(r)

dr

)︃
+

ℏ2l(l + 1)

2mr2
Rl(r) + Veff(r)Rl(r) = ElRl(r) . (2.33)

This expansion to spherical waves is especially convenient, since the angular momen-
tum is conserved in the scattering process at a spherical symmetric potential. The
definition of the spherical harmonics as well as other functions used in the following
can be found in appendix A.

Scattering of spherical waves

A solution for the radial part are the spherical Bessel functions [17], which can be
expressed as a sum of Hankel functions of the first and second kind as in

Rl(r) = jl(kr) =
1

2

(︂
h
(1)
l (kr) + h

(2)
l (kr)

)︂
, (2.34)

with the wavenumber k =
√

2meE/ℏ. Here, the Hankel functions describe an in-
coming and outgoing wave, respectively. If only elastic scattering processes are
considered, the incoming and outgoing scattered wave must have the same ampli-
tude because of flux conversation and thus can only be phase shifted. Hence, the
scattering potential can modify the outgoing wave and therefore the solution to the
Schrödinger equation only according to

R′
l(r) =

1

2

(︂
e2iδl h

(1)
l (kr) + h

(2)
l (kr)

)︂
, (2.35)

with the phase shifts δl that are dependent on the angular momentum quantum
number l. To obtain an expression for the generated scattered wave, the difference
between equations (2.35) and (2.34) yields

e2iδl − 1

2
h
(1)
l = tlh

(1)
l . (2.36)

Here, tl is the amplitude of the scattered wave for a given l, in the following called
scattering element.

Scattering of plane waves

Since the incoming electron beam on the surface can be regarded as a plane wave,
it is necessary to determine how a plane wave is affected by a spherical symmetric
potential. Therefore, the plane wave expansion

eikr = 4π
∞∑︂
l=0

l∑︂
m=−l

il jl(kr) Ym
l (k)

∗Ym
l (r) (2.37)
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Figure 2.17.: Angular depen-
dence of the absolute values
of the atomic scattering factor
|tθ| of silicon for two energies
(65 eV and 250 eV). The for-
ward scattering (angle of 0)
increases with increasing en-
ergy. Values are given in [Å].

is used. The asterisk denotes complex conjugation. A substitution of the Bessel
function jl(kr) by the scattered waves of 2.36 results in

2π
∞∑︂
l=0

l∑︂
m=−l

il (e2iδl − 1) h
(1)
l (kr) Ym

l (k)
∗Ym

l (r) , (2.38)

as a expression for the amplitude of a scattered plane wave. For large arguments,
the Hankel functions can be expressed as

lim
kr→∞

(︂
il+1 h

(1)
l (kr)

)︂
=

eikr

kr
, (2.39)

and thereby, for the asymptotic behavior of the scattered wave follows

tθ
eikr

r
, (2.40)

with the atomic scattering factor tθ

tθ =
4π

i k

∞∑︂
l=0

l∑︂
m=−l

tl Ym
l (k)

∗Ym
l (r) . (2.41)

The index of tθ denotes the dependence on the scattering angle θ, which is the
angle between the directions of incident wave k and scattered wave r. Figure 2.17
shows the absolute value of the atomic scattering factor |tθ| of a silicon atom for two
different energies. The angle dependence stems from phase shifts of the respective
partial waves. While at lower energies, the side and back scattering is comparably
strong, forward scattering is predominant at higher energies.

According to Heinz [10], the atomic scattering factor is related to the differential
and total elastic cross section by

dσ

dΩ
= |tθ|2 and σ =

4π

k2

∑︂
l

(2l + 1) sin2 δl =
4π

k2
Im{tθ=0} . (2.42)
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Figure 2.18.: The energy de-
pendence of the phase shifts
of silicon up to l = 8. The
magnitude of the phase shift
decreases with increasing l,
while at higher energies an
increasing number of phase
shifts is relevant.

Therefore, the cross section is of comparable order as the geometrical cross section,
which means that in a densely packed crystal, the probability that an electron gets
scattered by an atom its passing is quite high.

Phase shifts

As can be seen from equations (2.36) and (2.38), the scattering process can be
described using only the phase shifts δl, without the need to solve the Schrödinger
equation for every incident wave. This is only true for the region outside the muffin-
tin radius, but for LEED the exact solution inside the muffin-tin radius is irrelevant.
For this reason, it is possible to separate the calculation of phase shifts (scattering
of the single atoms) from the calculation of the scattering of the lattice.

The phase shifts can be obtained by the requirement that the wave functions inside
and outside the muffin-tin radius rm must have a continuous transition. This criteria
is met, when the logarithmic derivatives are equal [17], yielding for the solutions Rl(r)

of equation (2.33) and the scattered wave field from equation (2.35)

R
′

l(rm)

Rl(rm)
=

e2iδl h
′(1)
l (krm) + h

′(2)
l (krm)

e2iδl h
(1)
l (krm) + h

(2)
l (krm)

. (2.43)

Reorganizing yields

e2iδl =
h

′(2)
l (krm) − L h

(2)
l (krm)

L h
(1)
l (krm) − h

′(1)
l (krm)

, with L =
R

′

l(rm)

Rl(rm)
. (2.44)

Figure 2.18 shows the energy dependence of the phase shifts of silicon up to l = 8.
While at 100 eV approximately five phase shifts are sufficient, it is necessary to
include more phase shifts for higher energies. Nonetheless, the infinite sum from
equation (2.38) can be truncated at approximately l = 10 for most cases, without
much loss of accuracy.
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With the description of atomic scattering through phase shifts, the scatterers are
effectively replaced by point scatterers. Hereby, the description of the scattering by
the lattice is further simplified. This point scatterer picture is not an approxima-
tion; instead, it is a consequence of the fact that outside the muffin-tin radius, the
scattering can be described as a phase shift.

2.3.5. Temperature effects

In the previous picture, the atoms were assumed to be motionless at their respective
positions in the lattice. To estimate the influence of thermal vibrational motions
within the kinematic scattering theory, the Debye-Waller factor can be used.

Debye-Waller factor

The structure factor from equation (2.31) can be extended, to include the time
average of the displacements of the atoms around their lattice position (ru + ∆ru)

F (T ) =
∑︂
u

fu(q) e
iG∥(ru+∆ru) =

∑︂
u

fu(q) e
iG∥ru eiG∥∆ru = F (T=0) eiG∥∆ru . (2.45)

This can be shown [13] to be approximately

F (T ) ≈ F (T=0) e−
1
6
|G∥|2 (∆ru)2 , (2.46)

assuming isotropic thermal vibrations. Hence, the observed intensity is attenuated
by the Debye-Waller factor according to

I(T ) = I(T=0) e−
1
3
|G∥|2 (∆ru)2 . (2.47)

This is only valid within kinematic theory. For electrons that get scattered by
multiple atoms, a stronger attenuation is expected. Therefore, the decrease of the
reflex intensity in the spectra is dependent on the dominant scattering mechanism
of this single peak. Hence, the attenuation of the intensity should be different for
distinct parts of the spectra.

Temperature dependent phase shifts

To include thermal vibrations within a frame applicable to multiple scattering, tem-
perature dependent phase shifts can be used. If only isotropic vibrations and no
correlations between different atoms are considered, the temperature dependent scat-
tering factor tθ(T ) can be expressed by

tθ(T ) = e−M tθ =
4π

i k

∞∑︂
l=0

l∑︂
m=−l

tl(T ) Ym
l (k)

∗Ym
l (r) (2.48)
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with the the dampening factor e−M and the now temperature dependent scattering
elements tl(T ) that are in turn given by

tl(T ) =
e2iδl(T ) − 1

2
, (2.49)

with the temperature dependent phase shifts δl(T ). According to van Hove et al.
[18], the relation between the scattering element tl and the temperature dependent
scattering element tl(T ) is given by

tl(T ) =
lmax∑︂
li=0

ilj e−4α(E+Vr) jlj (4α(E+Vr)) tlj

(︃
4π(2li + 1)(2lj + 1)

2l + 1

)︃ 1
2

γ(l,li,lj) (2.50)

with α = me

ℏ2
1
6

(∆r)2. γ(l,li,lj) are the Gaunt coefficients with m = mi = mj = 0 and
thus lj = l + li for non-zero values and lmax being the highest value of l considered
for calculations that appear again in section 2.3.6. The prefactors in α are due to
the use of the Debye-Waller factor with M = 1

6
|G|2 (∆r)2.

Thus, the previous discussed formalism for the atomic scattering can be retained.
By the conversation of the phase shifts to their temperature dependent counterparts,
an isotropic thermal vibration is taken into account.

2.3.6. Propagation inside the crystal

While scattering on single atoms was described in chapter 2.3.4, a full dynamical
scattering theory also needs a description of the electrons propagating inside the
crystal between the atoms. Within the muffin-tin model, the inter-atomic space has
constant potential. Furthermore, the assumed spherical symmetry of the atomic
potential allows them to be treated as point scatterers. Notably, due to the descrip-
tion of atomic scattering by phase shifts, the results for propagation obtained by a
point scatterer picture are identical to those obtained by calculations with a finite
muffin-tin radius. Therefore, the muffin-tin radius only appears in the calculation
of phase shifts, while for propagation point scatterers are assumed.

To describe the propagation of an electron between two atoms within the spherical
wave representation, it is necessary to define how the spherical waves centered on
the first atom decompose into spherical waves centered on the second atom. This
can be done using a Greens Function G [17], in the following called propagator given
by

2
1G

L2
L1

= 4π
∑︂
lr

lr∑︂
mr=−lr

ilr γ(L1,L2,Lr) h
(1)
lr

(k|r2−r1|) Ymr
lr

(r2−r1) . (2.51)

Here, the value of 2
1G

L2
L1

gives the transition for a spherical wave with L1 = {l1,m1}
centered on atom 1 (located at r1) to the spherical wave with L2 = {l2,m2}, centered
on atom 2 (located at r2). The values of Lr = {lr,mr} are given by

|l1 − l2| ≤ lr ≤ l1 + l2 and mr = m1 + m2 . (2.52)
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This constraint stems from the Gaunt coefficients γ

γ(L1,L2,Lr) =

∫︂ 2π

φ

∫︂ π

θ

Ym1
l1

(θ,φ) Ym2
l2

(θ,φ)
∗Ymr

lr
(θ,φ) sin θ dθdφ , (2.53)

that are zero otherwise. The Hankel function and the spherical harmonics describe
the propagation, while the need for the Gaunt coefficients arises from the expansion
from spherical waves in one reference frame (atom 1) into spherical waves of another
reference frame (atom 2). The use of this propagator requires the treatment of the
atoms as point scatterers as the propagation ranges from one atomic center to the
other.

2.3.7. Inelastic effects

Neither in the atomic scattering, nor in the propagation were any inelastic effects
included until now. In the experiment, the grids in front of the screen of the LEED
optics repel electrons that have lost energy through inelastic effects. In the dynamic
LEED theory, it is therefore sufficient to include all inelastic effects (no matter what
exact processes take place) by the decrease of the amplitude of the wave functions of
elastically scattered electrons. This can be done by the introduction of an imaginary
part Vi to the inner potential. Hereby, the wave vector k of the electron inside the
crystal becomes complex, so that the Hankel function in the propagator causes
a dampening of the electron wave. In this picture, the electron is still scattered
elastically at the atoms, but its probability amplitude is decreased the further it
propagates inside the crystal. Therefore, the concept of the imaginary part of the
inner potential is equivalent to a mean free path of the electron inside the crystal
(cf. section 2.3.1).

2.3.8. Calculation of multiple scattering

To determine the amplitude of the electron scattered by the surface, all possibil-
ities, how the electron can be scattered should be considered. Unfortunately, the
possibilities are virtually infinite, since the electrons can penetrate the crystal ef-
fectively to an infinite depth and also can be scattered infinite times between the
atoms. However, the probability amplitudes for those paths with a very high num-
ber of scatterings or long propagations inside the crystal are low, so it is sufficient
to include only those scattering paths with higher probability.

Probability of a single path

To obtain the probability for any given path, the atomic scattering must be combined
with the propagation. In terms of spherical waves, this can be done using matrix
multiplication. The scattering elements tl can be arranged in a diagonal scattering
matrix T with the size of (lmax + 1)2, containing an entry for every L = {l,m}.
The fact that T is diagonal stems from the conservation of the angular momentum
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quantum numbers l and m upon scattering at a spherical potential. Thus, for non-
spherical potentials, T would also be non-diagonal. The propagator matrix contains
all possible combinations of L1 and L2 and has therefore also the size (lmax + 1)2.
For scattering at atom 1, respectively propagation from atom 1 to atom 2, T and G
would be composed for lmax = 1 according to

1T =
1

ik

⎛⎜⎜⎝
1tl=0 0 0 0

0 tl=1 0 0
0 0 tl=1 0
0 0 0 tl=1

⎞⎟⎟⎠ , (2.54)

2
1G = ik

⎛⎜⎜⎜⎜⎝
2
1G

l2=0,m2=0
l1=0,m1=0 G0,0

1,−1 G0,0
1,0 G0,0

1,1

G1,−1
0,0 G1,−1

1,−1 G1,−1
1,0 G1,−1

1,1

G1,0
0,0 G1,0

1,−1 G1,0
1,0 G1,0

1,1

G1,1
0,0 G1,1

1,−1 G1,1
1,0 G1,1

1,1

⎞⎟⎟⎟⎟⎠ . (2.55)

Here, inside the matrices, the indices for the respective atoms 1 and 2 were omitted,
except for the first entry. The prefactors result from the common expression as a
T-matrix [19]. The probability amplitude of an electron is then given by a vector of
length (lmax + 1)2, containing the amplitudes of all spherical waves up to lmax. With
this formalism, the expression

A′ = 1T
1
2G 2T

2
3G 3T

3
1G 1T A (2.56)

gives the final probability amplitude A′ of an electron with initial amplitudes A
which is scattered by atom 1, then propagates to atom 3, then gets scattered at
atom 3 to propagate to atom 2 to get scattered there, to finally propagate to atom 1
and get scattered there again. This path is depicted in Figure 2.19. In this fashion,
the probability of every possible path can be determined. Finally, to obtain the
resulting total amplitude, a summation over the spherical waves of all paths must
be performed.

Computation

The only thing left is a scheme to include paths, until the final scattered ampli-
tudes converge. While there are several possibilities how this can be achieved, it
is necessary to consider the computational effort, so the calculations converge fast
enough. While there have been multiple approaches in the beginning [18, 20–25],
a self-consistent formalism that divides the surface into distinct layers [18] has be-
come the prevalent approach. Thereby, the final wave departing from atom 1 (A′

1)
is expressed by the sum of the scattered incident plane wave on atom 1 (A1) and all
waves scattered from neighboring atoms toward atom 1 to be a last time scattered
there. For two atoms, this is described by the infinite sums

A′
1 = 1T A1 + 1T

1
2G 2T A2 + 1T

1
2G 2T

2
1G 1T A1 + . . . , (2.57)

A′
2 = 2T A2 + 2T

2
1G 1T A1 + 2T

2
1G 1T

1
2G 2T A2 + . . . , (2.58)
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Figure 2.19.: Schematic
sketch of the scattering path
described by equation (2.56).
The electron with amplitude
A gets scattered from atom
1 to atom 3, then to atom
2 and back to atom 1 to
have the resulting amplitude
A′. The propagators G and
scattering matrices T are
denoted at their respective
segments.

which can also be written as

A′
1 = 1T A1 + 1T

1
2G A′

2 , (2.59)

A′
2 = 2T A2 + 2T

2
1G A′

1 . (2.60)

Thus, scattering up to an infinite order is included. This can be done analogously
for any number of atoms. To calculate the amplitudes A′

n, these equations can be
solved using matrix notation as(︃

A′
1

A′
2

)︃
=

(︃
I −1T

1
2G

−2T
2
1G I

)︃−1(︃
1TA1

2TA2

)︃
. (2.61)

While this is an elegant solution in including multiple scattering up to an infinite
order, this comes at the cost of requiring repeated matrix inversions that are compu-
tationally expensive, thus limiting this approach to small numbers of atoms. How-
ever, this dilemma can be circumvented by the use of the translational symmetry of
the surface.

Since any atoms scattered amplitude must equal the scattered amplitudes of equal
atoms in adjacent unit cells due to symmetry, every atom in a so-called Bravais layer
(one atom per unit cell) has the same diffracted wave. Figure 2.20 depicts how the
surface is divided into Bravais layers, which are used in the description of multiple
scattering. First, the multiple scattering within each Bravais layer is solved. A
layer diffraction matrix can be used to describe how an incident wave on a given
layer is diffracted into departing waves. Forward as well as back scattering must be
considered. Then, the transition from one Bravais plane to another is determined.
This can be done either in spherical waves or in plane waves for which the layer
spacing must not be smaller than 0.7 Å to ensure convergence [10]. Thereby, the
scattering of the whole surface is described by a stacking of those layers. This can
be done efficiently by renormalized forward scattering, sorting the possible sequence
of layers participating in the scattering such that low numbers of backscattering are
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Figure 2.20.: Illustration of the division of
the surface atoms into Bravais layers Ln,
denoted by gray dashed lines. First, the
multiple scattering inside a layer is calcu-
lated (yellow arrows). Then, the propaga-
tion between layers is computed (red ar-
rows). Thereby, a layer diffraction matrix
can describe how a plane wave incident on
a layer is diffracted into departing plane
waves. The summation over all possible se-
quences of layers describes the diffraction of
the entire surface.

considered first. This helps converging the calculations, since the backscattering is
weak compared to the forward scattering of a layer for LEED electrons (cf. Figure
2.17).

Another aspect is the inclusion of the unreconstructed atoms below the surface,
which also exhibit perfect periodicity in the direction into the surface. The method of
layer doubling can be used to calculate the diffraction of the atoms at bulk positions.
Thereby, the diffraction for a slab of n bulk layers is calculated. Then, the thickness
of this slab is doubled and the diffraction is calculated again. This is repeated, until
the diffracted amplitudes converge.

Nonetheless, full dynamical calculations are computationally costly. The trial and
error approach of IV LEED makes it very time consuming to optimize surface struc-
tures. This is further complicated through the complex process of matrix inversion,
making it necessary to recalculate everything if only a small change in one atomic
position is considered. A solution to this problem is Tensor LEED [26]. Within this
method, a full dynamical calculation of a reference structure is conducted. Then, the
effects of small deviations from this reference structure is expressed in a first-order
perturbation theory, allowing the fast analysis of the full parameter space around
the reference structure. This leads to a significant acceleration compared to the full
dynamical approach. However, this does not solve the problem of the enormous
effort it takes to calculate the diffraction at large unit cells or vicinal surfaces. Since
the approximations allow only the exploration of the parameter space close to the
reference structure, still multiple full dynamical calculations are necessary.

2.4. Elastic Strain Energy of Crystals

The elastic strain energy in covalent crystals is caused by the deviation of bond
lengths and bond angles from their equilibrium values. The Keating energy is a
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concept to quantify this energy [27, 28] by the approximation

α
∑︂
i,j

(︁
r2ij − r20

)︁2
+ β

∑︂
i,j,k

(︃
rij · rik +

1

3
r20

)︃2

(2.62)

for crystals with tetrahedral bonds. Here, rij is the vector from atom i to atom j,
while r0 denotes the equilibrium bond length. The sums run over each bond (ij) and
each bond angle (ijk), respectively. The factor 1

3
causes a tetrahedral equilibrium

bond configuration. The parameters α and β are element specific constants. In this

thesis, for silicon, the values of α = 0.2009 eV Å
−4

and β = 0.0183 eV Å
−4

according
to Pedersen [28] were used. Notably, the concept of the Keating energy can be
extended to any covalent crystal (exhibiting different chemical elements and non-
tetrahedral bond angles). However, for this thesis, the special case from equation
(2.62) is sufficient.

Since the Keating energy is derived from the deviation of the equilibrium, it is
zero for a fully relaxed crystal. Furthermore, this concept can not be used to find
new structures due to the fact that all bonds have to be predefined and thus neither
new bonds can be formed nor existing bonds can be broken. However, the Keating
energy can be used to predict the displacements of atoms adjacent to a disturbance
of the perfect crystal structure like a surface reconstruction.
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In this chapter the material systems investigated in this thesis are presented. This
includes basic properties as well as a rough overview of previous studies to enable a
better understanding of the experiments within this thesis.

3.1. Silicon Substrates

Silicon is the second most common chemical element within the Earth’s crust and
has the chemical symbol Si. Its atomic number is 14; hence it is part of the carbon
group and has the electron configuration [Ne] 3s2 3p2. Therefore, it crystallizes
sp3 hybridized in a tetrahedral configuration, building a diamond cubic lattice as is
depicted in Figure 3.1. The silicon crystal is a semiconductor, offering the possibility
to tune its conductivity at room temperature by the doping with other elements
(e.g. boron, phosphorous or nitrogen). These electrical characteristics as well as
its abundance in the earth’s crust made silicon the predominantly used substrate
within the semiconductor industry. Silicons cubic lattice constant is aSi ≈ 5.430 Å,
resulting in a next neighbor distance of aNN = aSi

√
3/4 ≈ 2.351 Å. Its melting point

is Tmelt ≈ 1410 ◦C.

3.1.1. Si(001)

The Si(001) surface is a cut along one face of the cubic unit cell, exhibiting a
quadratic unit cell with the lattice constant a001 = aSi/

√
2 ≈ 3.840 Å, as is depicted

in Figure 3.2. The layer spacing is aSi/4 ≈ 1.357 Å. Due to the two unsaturated
bonds per surface atom, the surface reconstructs at room temperature into a (2×1)

aSi

Figure 3.1.: Cubic unit cell of the dia-
mond cubic lattice, caused by the tetrahe-
dral bonding of the silicon atoms. The red
rods highlight the cubic unit cell, while the
white rods illustrate the covalent bonds be-
tween the silicon atoms.
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(a)

(1× 1)

a001

d001

(b)

(2× 1)

[1̄10]

[110]
[001]

[001]

[110]
[1̄10]

Figure 3.2.: (a) Bulk terminated surface of the Si(001) surface. The face of the cubic bulk
unit cell is denoted in red, while the surface unit cell with the lattice constant a001 is
denoted in yellow. The layer spacing is depicted in blue. (b) Sketch of the reconstruction
due to the dimerization of surface atoms forming a (2 × 1) reconstruction as denoted in
blue. The diameter of the atoms decreases with increasing distance to the surface for
illustration purposes.

superstructure to minimize its surface energy. In this reconstruction, two adjacent
surface atoms form a new bond to reduce the number of dangling bonds. The so-
formed dimers are tilted, but can switch their orientation. This happens at room
temperature at such a high rate that they appear symmetric within STM imaging
[29]. However, the probing of the LEED electrons is so fast that this is not the
case for LEED [30]. At low temperatures, the surface undergoes a transition into
a c(4 × 2) reconstruction, caused by an alternating alignment of the tilted dimers,
which is the ground state of this surface, although transitions to other reconstruc-
tions can be induced easily by electron beam or probing tips [31–34]. Therefore, at
room temperature the dimers are not neatly aligned in a (2× 1) reconstruction, but
randomly tilted, which causes the appearance as (2 × 1) in the LEED pattern.

Due to the bonding to the second layer, the dimers can only form along one axis,
though at atomic steps that are always present in the experiment, this axis is rotated
by 90◦ for adjacent terraces. Therefore, in the diffraction pattern, the superposition
of both rotational domains can be observed as depicted in Figure 3.3. The Si(001)
surface is highly reactive, so a diffraction pattern of a (2 × 1) reconstruction is a
good indication for a clean and adsorbate free Si(001) surface.

3.1.2. Si(111)

The Si(111) surface is a cut along the diagonal plane of the cubic unit cell. Therefore,
it exhibits a hexagonal surface structure with a lattice constant of a111 = aSi/

√
2 ≈
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(1× 1)
(1× 2)

(2
×

1)

(0|0)

(0|1)

(1|0)

Figure 3.3.: Schematic diffraction pattern for the recon-
structed surface of Si(001). The reflexes of the (1 × 1) are
depicted with black crosses. The (2× 1) reconstruction ex-
ists due to the rotation at atomic steps in two rotational do-
mains (red squares and yellow circles), which superimpose
in the diffraction pattern. Hence, the resulting diffraction
pattern has a quadratic box like shape.

a111

db
ds

[112̄]

[11̄0]
[111]

[111]

[11̄0]
[112̄]

Figure 3.4.: Sketch of the
bulk-terminated Si(111) sur-
face. The surface unit cell is
denoted in yellow, while the
lattice constant of the surface
unit cell is denoted in blue.
The diameter of the atoms
decreases with increasing dis-
tance to the surface for illus-
tration purposes.

3.840 Å, as is depicted in Figure 3.4. The unsaturated bonds of each surface atom
lead upon annealing to a (7 × 7) reconstruction, described by the so-called DAS
model (dimer stacking fault [35]), where Si adatoms reduce the total energy. This
reconstruction can be used as an indication for a clean Si(111) surface.

As depicted in Figure 3.4, the layers have an alternating big (db = aNN ≈ 2.351 Å)
and small layer spacing (ds = db/3 ≈ 0.784 Å). This is relevant for the treatment of
this substrate within the common dynamical LEED formalism. The two layers with
the small spacing must be treated as a composite layer to ensure convergence of the
calculation and are hence called in the following bilayer.

3.2. Gold on Si(111)

Gold is a chemical element with the chemical symbol Au and has the atomic number
79 with the electronic configuration [Xe] 4f14 5d10 6s1. It belongs to the noble metals
and exhibits therefore a low chemical reactivity.

On a Si(111) surface, multiple reconstructions induced by gold atoms appear in
the sub-monolayer regime, depending on the temperature and especially the cov-
erage. At elevated temperatures of approximately 700 ◦C, Au coverages less than
0.5 monolayers lead to a coexistence of pure (7× 7) reconstructions of the substrate
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EBH KK

[112̄]

[11̄0][111]

Figure 3.5.: Structure models of the EBH and the KK model. The unit cell is denoted in
red. The additional gold atom in the KK model is highlighted with a blue circle. Both
models exhibit a silicon honeycomb motif between the rows of gold atoms.

and areas with a (5 × 2) reconstruction induced by gold atoms. A surface covered
completely by the (5 × 2) reconstruction can only be observed at approximately
0.67 monolayers. Higher coverages lead to the coexistence of the (5 × 2) recon-
struction with a reconstruction exhibiting (

√
3 ×

√
3) periodicity until the (5 × 2)

reconstruction vanishes. At temperatures above 800 ◦C only a disordered (1 × 1)
phase can be observed [36].

However, for this thesis, only the (5 × 2) reconstruction is of particular interest.
Since its first description [3], multiple suggestions about the atomic arrangements
were made. Currently, there are two models that can explain experimental data well,
the Erwin-Barke-Himpsel (EBH [4]) and the Kwon-Kang (KK [5]) model, which are
depicted in Figure 3.5. The main difference is an additional gold atom in the KK
model (highlighted by a blue circle), leading to small displacements of surrounding
atoms. The otherwise high similarity of the two models causes the difficulties to
distinguish them on the basis of experimental data.

Notably, due to the honeycomb motif of the silicon atoms at the surface, the gold
adatoms build chains, and thus represent a model system of nanowires. Since these
wires can be shifted with respect to each other by a lattice vector of the substrate,
adjacent wires are uncorrelated. This leads to streaks in the diffraction pattern,
instead of sharp reflexes for the ×2 periodicity.
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aAg

Figure 3.6.: Cubic unit cell of the face cen-
tered cubic lattice. The red rods highlight
the cubic unit cell with the lattice parameter
aAg ≈ 4.085 Å, while the blue rods act only
as guide to the eye to clarify the positions of
the atoms on the faces.

3.3. Ag(001)

Silver is a chemical element with the atomic number 47 and the chemical symbol
Ag. It has the electron configuration [Kr] 4d10 5s1 and crystallizes in a face-centered
cubic lattice with a lattice constant of aAg ≈ 4.085 Å, as depicted in Figure 3.6. The
(001) surface is a cut along a face of the cubic unit cell, thus exhibiting a fourfold
rotational symmetry with the lattice constant a001 = aAg/

√
2 ≈ 2.89 Å and a layer

spacing of dAg = aAg/2 ≈ 2.04 Å. The surface atoms are arranged highly symmetric,
so no reconstructions can be observed on the clean surface. The only reaction to
the broken symmetry at the surface is a relaxation of the topmost layers, meaning
a variation in the interlayer spacings near the surface.

Due to its minor deviations from bulk positions and simple quadratic surface
unit cell, the Ag(001) surface is an particularly good material system to examine
the influence of experimental aspects of LEED [13], since a very good agreement
between experiment and calculations has been achieved [37, 38]. Within this thesis,
no actual silver crystal is used, however, the Ag(001) surface is used to compare the
results of different approaches to the calculation of LEED spectra.
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4. Experimental Setup

In this chapter, the experimental setup used for the experiments as part of this thesis
is presented.

4.1. UHV Chamber

On the one hand, the Ultra High Vacuum (UHV) chamber is necessary to operate
the LEED optics. On the other hand, the structures of the investigated surfaces
in this thesis are sensitive to contamination of adsorbates. The UHV chamber is
therefore a means to minimize the interaction between the surface and the gas phase.

The chamber used in this thesis is schematically depicted in Figure 4.1 and was
designed and taken into operation as a part of the work within this thesis. The
chamber is equipped with a LEED optics and an effusion cell to enable in-situ
measurements. The valve, transfer rods and load lock allow the exchange of samples
without breaking the vacuum inside the UHV chamber. The manipulator can move
the sample inside the chamber in all spatial directions linearly. Additionally, two
independent rotations are possible, enabling the adjustment of the sample in front
of the effusion cell and LEED optics.

The base pressure inside the UHV chamber of 1 × 10−10 mbar is achieved by a
combination of different pumps. A dry scroll pump creates the vacuum necessary to
operate the two turbo-molecular pumps, which are attached to the UHV chamber
and load lock, respectively. An ion getter pump provides, in combination with a
titanium sublimation pump, the base pressure of the UHV chamber.

The sample on the sample holder can be heated by direct current, while the
temperature of the sample can be monitored by an infrared pyrometer through a
view port and a thermocouple, attached to the manipulator in proximity to the
sample. Additionally, the manipulator can be cooled by liquid nitrogen, allowing
measurements at low temperatures.

4.2. Effusion Cell

To apply material onto the substrate for self-induced reconstructions, the technique
of physical vapor deposition is used. This can be done using an effusion cell as
depicted schematically in Figure 4.2. Inside a crucible made of tantalum, the mate-
rial to be evaporated is stored. The crucible is heated by the bombardment of free
electrons, generated by thermionic emission at the filament, that are accelerated by
a high voltage applied to the crucible. The rise in temperature of the crucible leads
eventually to the evaporation of the material inside, forming a molecular beam due
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UHV chamber

manipulator

LEED effusion cell

valve

load
lock

transfer rods

ϑ

φ

sample
Figure 4.1.: Schematic sketch
of the UHV chamber used for
the experiments presented in
this thesis. The pumping sys-
tem is omitted. The trans-
fer rods allow to convey the
sample from the load lock to
the manipulator, on which it
can be placed in front of the
effusion cell or LEED optics.
The manipulator allows the
linear movement of the sam-
ple on three axes and rota-
tions around two axes. Fur-
thermore, it enables the cool-
ing of the sample with liquid
nitrogen.

to the apertures. The flux of the molecular beam can be controlled by the power
of the electrons impinging on the crucible. The shutter allows the precise control
of the time the substrate is exposed to the beam and thus the amount of material
deposited onto the sample. To prevent a rise of pressure inside the UHV chamber
due to the heating of the whole effusion cell, a copper body that can be cooled by
water encloses the crucible.

fl
an

g
e

water supply copper body

shutteraperture

filament

crucible
electrical
feedthrough

Figure 4.2.: Schematic sketch of an effusion cell used for physical vapor deposition. The
material to be evaporated is stored in the crucible, which can be heated by electron
bombardment. A water supply cools the body of the effusion cell, while the shutter is
used to control the emission.
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4.3. Sample Preparation

4.3. Sample Preparation

The silicon substrates are cut from commercial silicon wafers to a size of approx-
imately 2×0.5 cm2 to allow the mounting on the sample holder. After removing
splinters and dust in a stream of nitrogen gas, the sample is transferred into the
UHV and heated to 600 ◦C by direct current to desorb remaining adsorbates for at
least 12 h. Afterward, the native SiO2 layer is removed by repeated cycles of flash-
annealing. Therefore, the sample is heated quickly up to 1200 ◦C by direct current
within a few seconds. After reaching this temperature, the direct current is stopped
so the sample can cool down to 500 ◦C. The pressure may not exceed 1× 10−8 mbar
within this procedure. This cycle is repeated approximately 5 times and can also
be used to remove the material brought onto the sample by means of physical vapor
deposition, so the same sample can be used for multiple preparations. The LEED
patterns of the (2×1) and (7×7) reconstruction for Si(001) and Si(111) respectively,
verify a clean, adsorbate free surface.

To prepare the gold-induced reconstructions investigated in this thesis, the cru-
cible of an effusion cell was equipped with a gold wire. Upon heating, the gold wire
is melted and then evaporates into the vacuum. The amount of gold brought onto
the sample is controlled by the opening time of the shutter for a fixed heating power
applied to the crucible. This approach gives no access to the absolute amount of
gold brought onto the substrate, but allows to vary the evaporation time to achieve
the right amount for the well-known (5× 2) reconstruction. The silicon substrate is
heated to 750 ◦C while exposed to the gold beam. Directly after the preparation, the
sample is cooled with liquid nitrogen to −170 ◦C for the conduction of the LEED
measurements.

4.4. MCP-LEED

The diffraction experiments in this thesis were performed with a commercial LEED
optics by OCI (Model BDL800IR-MCP1). Opposed to the schematic sketch de-
picted in Figure 2.1, this optics has no spherical screen. Behind the grids, a micro-
channel plate (therefore MCP-LEED) multiplies the elastically scattered electrons
by secondary emission. Behind the (flat) micro-channel plate, a flat luminescent
screen is located to enable the observation of the diffracted beams. With this setup,
the diffraction pattern appears to be distorted, compared to a conventional LEED
with a spherical screen. For the analysis of the reflex intensities this distortion is
irrelevant, since neither the shape nor the exact positions of reflexes is crucial for
a structural analysis, it is only the intensity of the beams that must be recorded
properly. However, the multiplication of electrons allows the usage of lower beam
currents for the LEED experiment. This can be beneficial for delicate material sys-
tems, whose structure can be altered by the interaction with the LEED electrons,
as the Si(001) surface for temperatures below 40 K [39].
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4.5. Data Acquisition

The diffraction patterns were recorded with a commercial camera by Unibrain (Fire-i
580b) equipped with a lens by Ricoh (ricoh tv lens 12mm 1:1.2). The resulting
images were then processed by two Graphical User Interfaces (GUIs), which were
developed within the work for this thesis. The first GUI extracts the IV spectra
from the collection of images using circular ROIs. The positioning of the ROIs works
automatically, but can also be corrected manually, if necessary. The second GUI is
used to revise the spectra. This includes the concatenation of separate parts (if the
full data set was recorded within different measurements) as well as the removal
of artifacts like sudden jumps in intensity and negative intensities. Furthermore, a
Savitzky-Golay filter can be used to improve the smoothness of the spectra. This is
important, since the Pendry R factor uses the logarithmic derivative of the spectra
and thus outputs high values if any noise is contained in the experimental spectra.
Additionally, within this second ROI, beams that are expected to be equivalent due
to symmetry can be averaged.

The dynamical scattering calculations were conducted with CLEED [16], which
also compares the calculated spectra to the revised averaged experimental spectra.
To improve the automatic variation of parameters to the calculations, a wrapper for
CLEED was programmed and used.

46



5. Structural LEED Analysis of the Reconstructed
Si(001) Surface

5.1. Introduction

Due to their role in the semiconductor technology, silicon surfaces have always been
of particular interest. To understand the electronic properties of the surface, on
which the devices are manufactured, knowledge of the atomic geometry is impor-
tant. While the formation of dimers on the Si(001) surface was undoubted, it took
many years to obtain accurate structural data, although much effort was taken [29,
30, 40–45]. Two main problems have been, on the one hand, the sensitivity of the
reconstruction to adsorbates on the silicon surface, complicating a proper prepa-
ration and measurement of experimental data. On the other hand, computational
performance was not comparable to today’s possibilities, impeding the calculation
of the scattering and full theoretical methods like DFT. Hence, early attempts of a
structural LEED analysis in the 1980s were likely to not succeed [40, 42], relying
on high quality experimental data and the computational costly dynamical diffrac-
tion theory. Only more than 20 years later conclusive results could be achieved by
LEED studies [39, 46]. Today, investigations of the reconstructed Si(001) surface are
still useful to test new methods, which can be expanded toward more complicated
systems that are in reach for today’s resources.

5.2. Experimental Details

For the structural LEED analysis of the Si(001) surface, commercial Si(001) wafers
(n-doped, resistivity of 7-10 Ω cm) were used. The choice of the dopant has negligible
influence on the results of the structural analysis of Si(001)[39]. The surface was
prepared by repeatedly flash annealing the sample with direct current to 1200 ◦C.
After preparation, the sample was cooled down to 105 K using liquid nitrogen. IV
LEED data were recorded from 63-430 eV in 1 eV steps. At each energy, a camera
using an exposure time of 50 ms per frame averaged 20 frames to obtain the final
diffraction pattern. The Si(001) surface is sensitive to contamination, which has
a serious effect on the arrangement of the dimers [47] . Due to this degradation
of the surface, the energy range was split into three parts. Between those parts,
the sample was flash annealed to ensure a clean surface throughout the full energy
range. The diffraction patterns exhibited a fourfold symmetry as expected for a
Si(001) surface with rotational domains due to mono atomic steps. Therefore, 13
inequivalent beams were recorded which yield a total energy range of 2603 eV. The
quarter order reflexes could not be evaluated properly due to low intensities and
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200 eV
(1|1)

(2̄|0)

200 eV
(1|1)

(2̄|0)

+20min

Figure 5.1.: Diffraction pattern of Si(001)-c(4 × 2). Directly after flash annealing, the
cooled sample exhibits a c(4× 2) pattern. After 20min, the quarter order reflexes are
gone due to the interaction with residual gases. The distortion of the pattern is caused by
the MCP-LEED optics.

fast degradation due to the contamination. In Figure 5.1, a diffraction pattern of
the freshly prepared surface can be found, exhibiting quarter order reflexes of the
c(4 × 2) reconstruction. After 20 min in the UHV chamber without any further
incident electron beam, these quarter order spots vanish leaving only slight streaks.
This effect could be explained with the increasing density of so-called type-C defects
originating from the surface with the residual gas [47].

5.3. IV LEED Analysis

The CLEED package [16] was used to calculate theoretical spectra. The atomic scat-
tering was simulated by thirteen phase shifts (lmax = 12) obtained by the Barbieri-
van Hove phase shift calculation package [48]. Damping was represented by an imag-
inary part of the inner potential of 3.8 eV. The angle of incidence of the electron
beam as well as the isotropic thermal vibrational amplitudes were optimized. The
Pendry R factor (RP) [14] was used to evaluate the difference between experimental
and calculated spectra to direct the automatic optimization of parameters.

5.3.1. Optimized model

The best agreement between experimental and calculated spectra was achieved by a
c(4×2) reconstruction of the topmost nine layers, yielding an RP of 0.048. Figure 5.2
shows the experimental IV curves and calculated spectra of the best fit model. The
maxima and minima coincide very well. Apart from deviations in relative intensities
of different maxima, especially at lower energies, the agreement of spectra is very
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Figure 5.2.: Calculated IV spectra (yellow) of the best fit model in comparison with the
experimental spectra (red). The different beams are shifted along the ordinate for better
visibility. For each pair the index of the respecting beam is given as well as the Pendry R
factor. The overall Pendry R factor is 0.048.

good. A visualization of the model is given in Figure 5.3. The optimization of
atomic positions was conducted conserving a p2mm symmetry which leads to a
reduction of free parameters. The bulk-terminated surface was used as a starting
point for the optimization. The corresponding coordinates for inequivalent atoms
can be found in Table 5.1. The uncertainties were determined using the variance
of RP (Var(RP) = RP,min

√︁
8|Vi|/ET) deduced from the imaginary part of the inner

potential Vi and the total energy range ET. The results are in excellent agreement
with previous detailed LEED studies on this reconstruction [39, 46] and ab initio
DFT calculations [49]. The redundancy for this model is ρ ≈ 4.2, thus indicating
that the amount of experimental data supports the number of parameters within
this model.

5.3.2. Detailed analysis

Figure 5.4 shows the derivation of the uncertainties of exemplary atoms. The po-
sition of a single atom was varied, while all other atoms were fixed. The uncer-
tainties were determined by the displacement necessary to raise RP over the value
of RP,min + Var(RP). This analysis was done for every single atom, however, curves
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Figure 5.3.: Structure model
of the Si(001)-c(4 × 2) recon-
struction in top view (a) and
side view (b). The silicon
atoms are represented by gray
spheres. Their diameter de-
creases with increasing dis-
tance to the surface for bet-
ter clarity of the view from
top. The primitive unit cell
is marked by a red rhom-
boid, while the inequal atoms
are denoted with red num-
bers. The side view is a cut
along the (1̄10)-plane. Only
the top five layers are shown
corresponding to the height of
a cubic bulk unit cell.

Table 5.1.: Atomic coordinates of the best fit structure. Values are given as displacement
from the bulk positions. Atom numbers correspond to Figure 5.3. Numbers with asterisks
indicate identical lateral bulk positions, but a deeper layer.

Layer Atom ∆x [Å] ∆y [Å] ∆z [Å]

1 1 0.96± 0.07 −0.605± 0.018
2 −0.60± 0.08 0.118± 0.018

2 3 −0.13± 0.04 −0.05± 0.14 0.024± 0.013
3 4 −0.160± 0.017

5 0.06± 0.14 0.157± 0.013
4 6 0.103± 0.027

7 0.14± 0.19 −0.132± 0.027
8 0.132± 0.024

5 9(1∗) −0.06± 0.08 −0.009± 0.024
10(2∗) 0.08± 0.07 −0.016± 0.022

6 3∗ 0.04± 0.04 −0.03± 0.10 −0.007± 0.010
7 4∗ 0.027± 0.031

5∗ 0.03± 0.11 −0.040± 0.014
8 6∗ −0.028± 0.026

7∗ −0.01± 0.12 0.022± 0.020
8∗ −0.028± 0.027

9 1∗∗ 0.03± 0.12 0.007± 0.030
2∗∗ 0.03± 0.15 −0.022± 0.035

50



5.3. IV LEED Analysis

−0.02 0 0.02

0.05

0.06

RP,min +Var(RP )

≈ 0.053

2
5
10
5∗

2∗∗

R
P

δz [Å]
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Figure 5.4.: Dependence of the Pendry R factor (RP) from the displacement of a single
atom relative to its best fit position (δz, δx, δy) while holding all other positions constant.
The plots are divided into lateral and vertical displacements due to the different sensitivity
of backscattered electrons on the respective displacements.

for only exemplary atoms are displayed in Figure 5.4. The uncertainties for lateral
displacements are, as expected, significantly larger than for vertical displacements
due to the high sensitivity of backscattered electrons on the vertical position. Sur-
prisingly, the IV spectra are more sensitive to the vertical position of atom 5∗ in the
seventh layer than of atom 2 on the surface. This proves the validity to include the
deeper layers in this analysis. Varying its depth, atom 2∗∗ in the ninth layer exhibits
a much wider opening of the curve and hence an increased uncertainty. This is
the reason why no more than nine layers were included in the optimization. Inter-
estingly, some of the RP values for lateral displacement show a steep slope in one
direction, while much more shallow in the opposite direction. Further investigation
on this effect can be found in section 5.5.

Due to the covalent bonds of silicon, the dimerization is expected to cause recon-
structions of several layers. To investigate this effect further, models with varying
number of reconstructed layers were optimized. Figure 5.5 (a) shows the improve-
ment of the Pendry R factor for an increasing number of layers included in the
optimization. Generally, increasing the number of layers in the optimization also
improves RP. The inclusion of different vibrational amplitudes for the top five lay-
ers achieves convergence in RP. Their optimized values change smoothly from a
radial root mean square displacement of 0.12 Å at the first layer toward 0.06 Å as
bulk value. The inclusion of different vibrational amplitudes for the top layers is
motivated by the covalent bonds of silicon, making an influence of the increased
vibrational amplitude at the surface toward deeper layers plausible.

Interestingly, for the inclusion of an increasing number of layers within the opti-
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Figure 5.5.: (a) RP as a function of the number of optimized layers (geometrical parameters
in black; vibrational amplitudes in yellow). (b) Average displacement per layer for an
optimized model including twelve layers.

mization, there are two major improvements with the layers three and four as well
as with the layers seven and eight for the geometrical parameters. In between, RP is
rather constant. Thus, increasing the number of layers included in the optimization
process from four to six, no improvement is observed, while the number of geomet-
rical parameters is increased. In Figure 5.5 (b) the averaged vertical displacement
of each layer is plotted. Here, two peaks of stronger displacements for the layers
3,4,7 and 8 can be seen, meaning they exhibit a displacement greater than that of
surrounding layers. The same tendency can be seen for layers 11 and 12, although
much less prominent. Here, it should be noted that the cubic bulk unit cell of silicon
consists of four layers, meaning that every fourth layer has the same lateral position
and identical chemical surrounding. Hence, this kind of periodicity in every fourth
layer is expected to stem from the directed bonds of silicon, which allow different
layers a different amount of absorption of the stress induced by the dimerization.

On the one hand, these deep reconstructions make the treatment of covalent
bonded substrates with IV LEED challenging, since one needs to include much
more parameters to achieve a conclusive result. This was a major drawback in
the past, when computing resources were not comparable to today’s and explains
why previous attempts yielded rather ambiguous results [30, 42] when including an
insufficient number of reconstructed layers. On the other hand, these reconstructions
can be understood easily in terms of elastic strains. Thus, the Keating model [27]
for elastic strain energy can be applied.

5.4. Accelerated Structure Optimization with Keating Energy

The model for the elastic strain energy in covalent crystals, as proposed by Keating
[27] (cf. section 2.4) allows the determination of the Keating energy, a quantity
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derived from the deviation of bond angles and lengths from their equilibrium values.
Hence, minimizing the Keating energy by optimizing atomic positions should yield
structural parameters that compensate the strain induced by the dimerization of the
Si(001) surface. This can be used to predict the displacements of near surface atoms
from their bulk positions to improve the starting positions of the atoms of a model,
which in return saves efforts in the computationally more costly calculations of
dynamical diffraction theory. This has already been shown for ab initio calculations
and X-ray diffraction data [28].

Application

Since the Keating energy is based on the deviation of bond lengths and angles from
their bulk value, inaccuracies are expected, when facing dangling bonds of a sur-
face or heavily distorted bonds. Since both are to be expected at the reconstructed
Si(001) surface, it is reasonable to exclude the topmost layer from a structure op-
timization with the Keating model (in Figure 5.3 atoms number 1 and 2). In the
following, only silicon atoms with four covalent bonds will be considered for any
calculation of the Keating energy.

In a first step, the coordinates of the topmost and tenth layer of a bulk termi-
nated surface were fixed. The atoms of the remaining eight layers in between were
randomly displaced (up to 0.86 Å in random directions). Then, a simulated anneal-
ing algorithm optimized the positions to minimize the Keating energy and find the
global minimum. At convergence each atom was closer than 0.001 Å to its bulk po-
sition, so it can be concluded that the algorithm combined with the Keating energy
enables a relaxation of the atomic positions.

Next, the atoms of the topmost layer were fixed at their respective best fit values
from the previous IV LEED analysis. Afterward, the eight underlying layers were
optimized to minimize the Keating energy. Thereby, the validity of the Keating
energy to estimate the displacements of the subsurface layers can be analyzed.

Results

The differences between the LEED and the Keating model are represented in Table
5.2. The overall agreement is very good. The deviations are within the uncertainty
of the LEED analysis and are, with one exception, less than 0.1 Å. The deviation
of atom 3 in layer 2 is rather high due to the strong distortion of the bonds near
the surface, which is expected for the Keating model. Atom number 7 has by
margin the biggest deviation. Interestingly, the LEED analysis also resulted in a
high uncertainty of the position of this atom with the largest uncertainty of all atoms.
Figure 5.7 shows the dependence of the Keating energy from the displacement of
a single atom. For all atoms, the Keating energy exhibits a very similar parabolic
shape as opposed to the analogues curves of the LEED analysis, which exhibit more
differences between the single atoms and often asymmetric shapes (cf. Figure 5.4). A
possible explanation lies in the unit cell of the reconstruction (see further discussion
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layer atom ∆r [Å] ∆α [°] ∆rL [Å]

2 3 0.075 28.0 0.141
3 4 0.021 0.0 0.160

5 0.092 32.6 0.168
4 6 0.018 0.0 0.103

7 0.158 55.4 0.192
8 0.066 0.0 0.132

5 1∗ 0.019 12.5 0.060
2∗ 0.040 5.5 0.081

6 3∗ 0.040 47.5 0.050
7 4∗ 0.008 0.0 0.027

5∗ 0.037 36.5 0.050
8 6∗ 0.014 0.0 0.028

7∗ 0.012 24.4 0.024
8∗ 0.014 0.0 0.028

9 1∗∗ 0.022 10.9 0.030
2∗∗ 0.044 146.7 0.037

Table 5.2.: Deviations between the best fit
LEED model and the surface relaxed by
minimization of Keating energy. ∆r denotes
the total distance between the correspond-
ing atoms, while ∆α indicates the differ-
ence of the directions of the respective dis-
placement from the bulk values between the
LEED and Keating model (0 ° equals same;
180 ° equals opposite direction of displace-
ment, so small angles are desirable, cf. Fig-
ure 5.6). The atom numbers correspond to
Figure 5.3 and Table 5.1. As a reference, the
displacement of the respective atoms within
the optimized LEED model (∆rL) is also
given.

bulk Keating

LEED

∆r

∆rK

∆rL

∆α

Figure 5.6.: Schematic sketch for the defini-
tion of the parameter ∆r and ∆α used in Ta-
ble 5.2. The three gray spheres represent the
positions of the same atom in the three dif-
ferent structures (bulk-terminated surface,
LEED optimized model and Keating opti-
mized model).

in chapter 5.5). Notably, the Keating energy increases similarly for lateral and
vertical displacements from the relaxed structure.

Big deviations in the direction of the displacement (∆α) occur especially when the
displacements are small, diminishing the significance of these deviations. Notably,
the angles for atoms 4,6 and 8 are correct, indicating that the structure optimization
guided by the Keating energy indeed respects the symmetry restrictions, since those
atoms are only allowed to be displaced vertically. To evaluate the significance of the
deviations, the model based on the minimization of the Keating energy was used to
calculate IV spectra to shed light on the consequences of these deviations regarding
a structural LEED analysis.

The IV spectra of the model derived by the minimization of the Keating energy
yield RP = 0.172. While improving the R factor significantly in comparison to only
one or two relaxed layers (RP ≈ 0.6), an optimization of all layers using IV LEED
appears to be inevitable to achieve good agreement between experiment and calcula-
tion. Nonetheless, the elastic strain model by Keating can be helpful to improve the
starting position for an IV LEED analysis for covalent substrates, especially if there
are no models of more precise approaches like DFT. The averaged displacement of all
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Figure 5.7.: Dependence of
the Keating energy from the
vertical (δz) and lateral (δx)
displacement of a single atom
(while holding all other po-
sitions constant) exemplarily
for two different atoms. The
atom numbers correspond to
Figure 5.3 and Table 5.1.

atoms of the layers two to nine of the LEED best fit model from their bulk positions
is 0.0853 Å, while the averaged displacement between the Keating energy minimized
surface and the LEED model is only 0.0462 Å. In other words, approximately half
of the way from bulk structure toward the final LEED model for the subsurface lay-
ers can be done using the computational much less demanding approach using the
Keating energy. Unfortunately, the position of the top layer must be known for this
optimization. In practice, an iterative scheme, like optimizing the surface layer by
LEED, then relaxing the subsurface layers with the Keating energy, repeated until
convergence, could be used.

The tensor approximation also allows an enormous acceleration in the structural
optimization for large systems. However, for displacements far away from the refer-
ence structure, the approximation loses accuracy, so full dynamical calculations have
to be performed repeatedly for reliable results. In this case, a first relaxation using
the Keating energy can also be helpful to improve the starting model. In most prac-
tical use cases, the tensor approximation yields reliable spectra for a displacement
of up to 0.4 Å [10].

Summarizing, the approach using the Keating energy to estimate the displacement
of subsurface layers does work in principle. However, the deviation from the opti-
mized model by LEED calculations is still significant. Since the Keating formalism
is not easily extended generally toward highly distorted bonds at the surface and
unsaturated bonds, it can only be applied reliably to the sub-surface layers. How-
ever, these layers feature a rather small displacement and can therefore be treated
more efficiently by Tensor LEED. The only case, where the Keating energy might
have reasonable application within a LEED optimization, is the investigation of new
structure models. Thereby, the Keating energy allows the improvement of many
atomic positions to obtain a superior reference structure compared to using bulk
positions.
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5. Structural LEED Analysis of the Reconstructed Si(001) Surface

layer atom ∆x [Å] ∆z [Å]

1 1 0.05 0.010
2 0.08 0.004

2 3 0.00 0.009
−0.04 −0.008

3 4 0.03 −0.008
5 −0.01 0.004

4 7 0.19 0.010
8 0.03 0.017

5 9(1∗) −0.02 0.005
10(2∗) 0.00 −0.008

6 3∗ −0.04 0.022
−0.03 0.011

7 4∗ −0.07 −0.004
5∗ −0.03 0.004

8 7∗ 0.06 0.001
8∗ 0.02 0.001

9 1∗∗ 0.05 0.033
2∗∗ 0.07 −0.022

Table 5.3.: Deviations between the opti-
mized LEED models for the c(4×2) and the
(2 × 1) reconstruction. ∆x and ∆z denote
the lateral displacement in x-direction and
the vertical displacement, respectively. ∆y
was omitted, since all atoms are bound to
their respective y bulk values in the (2× 1)
model due to symmetry. The atom numbers
correspond to Figure 5.3. For atoms 3 and
3∗ two values are given, while atoms 6 and
6∗ are missing, because of multiple, respec-
tively no equivalent atoms in the different
models.

5.5. Comparison of the c(4×2) and (2×1) Structure Models

The fast degradation of the surface indicates that the data collected for the LEED
analysis could include the diffraction of parts of the surface that are reconstructed
differently than the c(4×2) superstructure. Since the diffraction pattern transforms
into a (2× 1) periodicity, it is consequential to assume a (2× 1) reconstruction with
a buckled dimer. It should be noted that these two reconstructions have different
symmetries. While the c(4×2) reconstruction has p2mm symmetry, a (2×1) recon-
struction exhibits only pm symmetry. Hence, the number of geometrical parameters
remains almost unchanged, due to the loss of the mirror plane, although the size of
the unit cell is halved.

An optimized model yields a Pendry R factor of 0.059, which is only slightly
worse than the best fit of the c(4 × 2) reconstruction. The deviations between the
two models are denoted in Table 5.3. Overall the values are within the uncertainty of
the LEED analysis, but apparently the deviation of atom 7 is by far the greatest. In
the c(4×2) reconstruction, the atom in the layer above (number 4) is bound laterally
by symmetry requirements. So any stress acting on atom 4 must be compensated
by a displacement of atom 7. However, if one considers a (2× 1) reconstruction, the
different symmetry allows a lateral displacement of atom 4, so part of the stress can
be accommodated leading to a much smaller displacement of atom 7. If the positions
of two equivalent atoms differ much for the two unit cells, a large insecurity in the
LEED analysis is expected, if both unit cells can be found simultaneously on the
surface, since the recorded intensity is a result of the incoherent superimposition of
diffraction at the two structures.
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5.6. Conclusion

However, the Keating energy predicts a displacement of atom 7 for the c(4×2) re-
construction much more similar to the LEED result for the (2×1) model. Shirasawa
et al. found a displacement for this atom (in a c(4 × 2) reconstruction) much more
similar to the here presented values for the Si(001)-c(4 × 2) model [46]. Notably,
their uncertainty for this atom was also slightly higher than that for surrounding
atoms.

The comparison of the calculated IV spectra of the c(4 × 2) and (2 × 1) recon-
struction yields RP = 0.044. Thus, the two models are practically indistinguishable
by means of IV LEED. This is due to the small deviations in most positions, so the
structure of the dimers in both models is comparable. Furthermore, the influence
of adjacent dimers on the IV spectra seems to be negligible. The observation of
reflexes originating from a c(4×2) periodicity alone, does not ensure that the whole
surface is covered by this reconstruction. An additional presence of disordered do-
mains causing a diffraction pattern of a (2 × 1) is not to be excluded easily. It can
be assumed that the distinction between a unit cell consisting of repeating sub-unit
cells, which are aligned in a certain way, and a surface that is covered by the same
sub-unit cells without any alignment, is generally problematic within IV LEED.

5.6. Conclusion

An optimized structure model for the c(4 × 2) reconstruction of the Si(001) surface
was presented, which is overall in very good agreement with previous LEED analyses
[39, 46] and DFT calculations [49]. The position of one atom deviates rather strongly,
for which the causes remain uncertain, although it was proposed as an effect of the
transformation of the c(4 × 2) superstructure to the (2 × 1) reconstruction.

Furthermore, the usefulness of the elastic strain model proposed by P. N. Keat-
ing [27] to improve initial positions for a structural LEED analysis was examined.
The model predicts overall a satisfying agreement with the LEED results, but has
deviations especially for the strongly strained top layers. For the Si(001) surface,
the computational effort to reach convergence can approximately be halved, using
only full dynamical scattering calculations. However, Tensor LEED is the superior
approach to speed up the optimization of many parameters.

Finally, it was shown that the structural analysis by IV LEED is not able to
distinguish sufficiently between the c(4× 2) and (2× 1) superstructures. Therefore,
it is still questionable whether the c(4 × 2) ground state really covers the whole
surface at low temperatures or disordered domains are still present.
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6. Structural LEED Analysis of Si(111)-(5×2)-Au

The Si(111)-(5×2)-Au reconstruction was first observed more than 50 years ago [3].
Since then, this surface has been studied intensively and many suggestions about
its geometrical structure have been made [50–58]. Since the surface can be regarded
as a prototype of self-assembled quasi-one-dimensional metallic chains, its atomic
structure is of fundamental importance to understand its physical properties. More
recently, the Au coverage for the models was revised, leading to the Erwin-Barke-
Himpsel-model (EBH [4]), the Abukawa-Nishigaya-model (AN [59]) and the Kwon-
Kang-model (KK [5]). Surface X-ray diffraction (SXRD) experiments conducted
by Shirasawa et al. [60] could rule out the AN model, while preferring the KK
model over the EBH model, supporting the theoretical work of Seino et al. [61].
Due to the geometrical similarity of the EBH and KK models, a clear distinction
by experimental means is not easy to achieve. Using low-energy electron diffraction
(LEED) for the first time on this complex reconstruction promises to give new
insights with its high sensitivity on the geometrical structure.

6.1. Experimental Details

The experiments were conducted using commercial Si(111) wafers (p-doped, resis-
tivity of 1-20 Ω cm). The substrate was cleaned by repeatedly flash annealing the
sample with direct current to 1200 ◦C. After cleaning, the temperature of the sam-
ple was held at 750 ◦C and gold atoms were applied by means of physical vapor
deposition. Only a very precise coverage led to an exclusive existence of a (5 × 2)
reconstruction, without reflexes of a (7 × 7) or (

√
3 ×

√
3) superstructure. After

preparation, the sample was cooled down to 105 K using liquid nitrogen. IV LEED
data were recorded from 60 eV-240 eV in 1 eV steps. At each energy, a camera using
an exposure time of 50 ms per frame averaged 20 frames to obtain the final diffraction
pattern.

Figure 6.1 shows the diffraction patterns of the Si(111)-(5× 2)-Au reconstruction
at two different energies. Reflexes of the superstructure are distinctively visible.
Their arrangement suggests the presence of three rotational domains on the surface
that superimpose incoherently in the diffraction pattern. The streaks caused by a
statistical shift of adjacent unit cells (cf. Figure 6.8) can be seen especially promi-
nent in Figure 6.1 (a) at 82 eV (denoted by a yellow arrow). The pattern exhibits a
threefold symmetry due to rotational domains, although the absolute intensities dif-
fer for symmetry equivalent beams. This can be seen in Figure 6.2 for an exemplary
beam. The effect of different absolute intensities of symmetry equivalent beams is
assumed to be caused by a different fraction of the surface, which is covered by the
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6. Structural LEED Analysis of Si(111)-(5×2)-Au

82 eV (0|1)

(1̄|0)

(a)

156 eV
(0|1)

(1̄|0)

(b)

Figure 6.1.: Diffraction patterns of the Si(111)-(5 × 2)-Au reconstruction taken at an
electron energies of 82 eV and 156 eV, respectively. Especially at 82 eV the streaks (yellow
arrow) caused by the statistical shift of adjacent unit cells of the reconstruction are visible.
The distortion of the pattern is caused by the MCP-LEED optics.

respective rotational domains.
While the fractional order spots show a very good agreement in the shape of the IV

spectra for symmetry equivalent beams, symmetry equivalent integer order beams
exhibit a greater deviation. This is compatible with the assumption of the different
share of the respective rotational domains, since the observed reflexes of integer
order are a superposition of different beams originating from different rotational
domains. In contrast, fractional order beams originate exclusively from a single
rotational domain. Altogether, 27 inequivalent beams could be recorded, yielding
a total energy range of 3503 eV. The recorded reflexes are shown schematically in
Figure 6.3.

6.2. IV LEED Analysis

The CLEED package [16] was used to calculate theoretical spectra. The atomic scat-
tering was simulated by thirteen phase shifts (lmax = 12) obtained by the Barbieri-
van Hove package [48]. Damping was represented by an imaginary part of the inner
potential of 4.9 eV. The angle of incidence of the electron beam was optimized to
a value of 1.15◦. Furthermore, the isotropic thermal vibrational amplitudes of the
atoms were also optimized. The Pendry R factor (RP) [14] was used to evaluate the
difference between experimental and calculated spectra and to direct the automatic
optimization of parameters.
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Figure 6.2.: IV curves of sym-
metry equivalent reflexes (red
stars in Figure 6.3). One ro-
tational domain (causing the
(1|15) and the not-evaluated
(1̄|65)) has a significant lower
overall intensity. The differ-
ences between the remaining
four reflexes is caused mainly
by an incident electron beam
that is not perfectly perpen-
dicular to the surface.

(0|0)

(0|2)

(2|2̄)

Figure 6.3.: Schematic posi-
tion of reflexes (black dots) in
the diffraction pattern of the
Si(111)-(5 × 2). The reflexes
used for the LEED analysis
(cf. Figure 6.4) are marked by
different thick shapes. The fi-
nal IV curves result from the
averaging of symmetry equiv-
alent beams (denoted by thin
marks of the same color and
shape). Marked reflexes with-
out black dots could not be
evaluated due to low intensi-
ties or because they were hid-
den behind the electron gun.
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6. Structural LEED Analysis of Si(111)-(5×2)-Au

6.2.1. Comparison with the KK and EBH model

Both, the KK and the EBH model can explain the experimental data by XRD,
although the KK model is preferred [60]. Furthermore, the AN model could be
ruled out. To examine the accordance of the KK and EBH model with experimental
LEED data, calculated spectra of both models, each optimized by DFT calculations
[49], are compared with the experimental IV spectra. The KK model yields a RP of
0.220, which is overall a satisfactory fit without positions optimized for the LEED
analysis. However, the EBH model only yields a RP of 0.399, making it much less
conclusive than the KK model. A further discussion can be found in chapter 6.3.

6.2.2. Optimized KK model

The best agreement between experimental and calculated spectra was achieved by
an optimized version of the KK model [5] as a starting point, including three silicon
bilayers beneath the surface, yielding a RP of 0.117. Figure 6.4 shows the experi-
mental IV curves and calculated spectra of the best fit model. The extrema between
experimental and calculated spectra match very well apart from a few exceptions
like the (1̄|0) with an exceptional high value of RP. Overall, the integer beams
exhibit a worse RP than the beams of fractional order. This might be due to the
assumed inequal percentages of the respective rotational domains present on the
surface in the experiment, causing the averaging of calculated beams to not corre-
spond to the experiment. The fractional order beams are not affected, since there
is no superposition in the diffraction pattern for them.

Figure 6.5 shows a visualization of the optimized model. Atomic positions were
optimized, conserving the pm symmetry of the nanowires. Due to the shift of the
reflection axes of adjacent unit cells, the symmetry was not enforced on the silicon
atoms in the center of the honeycomb motif because of the ambiguity. Atoms 8,
9, 14, and 15 were bound according to the symmetry of the nearby gold structure,
while atoms 10, 11, 12, and 13 were optimized without any constraints. For the
silicon atoms of deeper layers, the same criterion was enforced, depending on their
respective positions on the y-axis ([112̄]-direction).

The coordinates for the surface atoms (without underlying silicon bilayers) of
the optimized model can be found in Table 6.1, while the coordinates of the silicon
bilayers are located in Table B.1 in the appendix. The uncertainties were determined
using the variance of RP (Var(RP) = RP,min

√︁
8Vi/ET ≈ 0.012), deduced from the

imaginary part of the inner potential Vi and the total energy range ET of recorded
data. The redundancy for this model is ρ ≈ 1.24. This indicates that the amount
of experimental data supports the number of parameters within this model only
scarcely. However, the inclusion of deeper layers contributes to the high number of
free parameters (f = 144), although their influence on the spectra is rather small
and can thus not be compared to a free parameter of a surface atom. Therefore,
this model can still be assumed to be supported well by the amount of experimental
data. Overall, the LEED-optimized model agrees within the uncertainties with the
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6.2. IV LEED Analysis

# x [Å] y [Å] z [Å]

1 Au 0.00± 0.00 5.91± 0.24 12.332± 0.19
3 Au 1.50± 0.21 10.11± 0.27 12.392± 0.24
5 Au 2.18± 0.27 12.99± 0.24 12.312± 0.16
6 Au 3.84± 0.00 6.01± 0.26 12.318± 0.19
7 Au 3.84± 0.00 8.77± 0.20 12.518± 0.14
8 hc 0.04± 0.28 −1.40± 0.21 11.657± 0.05
10 hc −1.81± 0.55 0.02± 0.25 11.668± 0.07
11 hc 2.12± 0.51 0.04± 0.27 11.710± 0.07
12 hc −2.01± 0.51 2.28± 0.25 11.741± 0.07
13 hc 1.97± 0.53 2.30± 0.25 11.741± 0.07
14 hc 0.00± 0.00 3.68± 0.28 11.743± 0.06
15 hc 3.84± 0.00 3.66± 0.26 11.730± 0.06
17 nw 1.65± 0.25 7.52± 0.22 11.913± 0.08
18 nw 0.00± 0.00 11.96± 0.23 11.838± 0.05
19 nw 3.84± 0.00 11.10± 0.25 11.936± 0.04

Table 6.1.: Atomic coordi-
nates of the best fit struc-
ture. The coordinate system
as well as the atom numbers
are given in Figure 6.5. Next
to the atom numbers, an in-
dication to which group this
atom can be counted, is given
(Au = gold atom, hc = hon-
eycomb motif, nw = silicon
atom within the nanowire).
z = 0 equals to the top of
the fourth silicon bilayer be-
neath the surface. Atoms re-
stricted by symmetry (2, 4,
9, 16) are omitted. Uncer-
tainties of atoms bound on a
mirror plane are denoted with
±0.00 Å.

KK model derived by DFT [49]. A visual comparison of both models as well as
detailed atomic displacements can be found in Figure B.1 and Table B.2 in the
appendix.

6.2.3. Detailed analysis

Due to the reconstruction on the surface, displacements are expected to occur also
in the deeper silicon layers. To ensure that enough layers for the optimization were
included, different numbers of layers were used. Figure 6.6 displays the dependence
of the Pendry R factor on the number of silicon layers beneath the surface used
within the optimization. Using only one reconstructed silicon bilayer beneath the
surface yields an RP of 0.390, while using two bilayers already results in RP = 0.136.
Three bilayers (as used in the best fit) yield a RP of 0.117. Displacements of the
fourth bilayer improved the best fit only to RP = 0.115, which can be regarded
as insignificant, since the improvement is smaller than the variance of RP for the
best fit using three bilayers. Due to the already very small displacements from bulk
positions in this depth (cf. Figure 6.6), the influence of a reconstruction of even
deeper layers was not examined.

A closer look at Table 6.1 exhibits dependencies in the magnitude of the uncer-
tainty corresponding to the position of the atom within the unit cell. While the un-
certainties of the y-coordinates ([112̄]-direction) are uniform, the uncertainties of the
x-coordinates ([11̄0]-direction) of the silicon atoms in the middle of the honeycomb
motif (atom numbers 10, 11, 12, and 13) are distinctly greater than the uncertain-
ties of other silicon atoms or the gold atoms. Figure 6.7 displays the dependence of
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Figure 6.4.: Calculated IV spectra (yellow) of the best fit model in comparison with the
experimental spectra (red). The different beams are shifted and stretched along the ordi-
nate for better visibility. For each pair the index of the respective beam is given as well
as the Pendry R factor. The overall Pendry R factor is 0.117.
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Figure 6.5.: Structure model of the reconstructed Si(111)-(5×2)-Au surface. The positions
optimized by LEED coincide well with the established KK model [5]. The gold atoms are
depicted with yellow spheres while the silicon atoms are represented by gray spheres. The
diameter decreases with increasing distance to the surface for illustration purposes. Bonds
toward gold atoms are drawn whenever atomic distances are in the range of the atomic
distance in the silicon bulk and do not convey chemical meaning. The unit cell is marked by
a red rhomboid, while atoms are denoted with red numbers. The origin of the coordinate
system is marked by a black circle. Coordinates can be found in Table 6.1. The numbering
of atoms is not oriented on the unit cell but on the axes of reflection (blue dashed lines)
of the pm symmetry within nanowires (nw) that shifts at the honeycomb motif (hc).
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Figure 6.6.: RP as a function
of the number of optimized
layers and averaged vertical
displacement per layer for the
LEED optimized model in-
cluding four bilayers. Layer
1 corresponds to the upper
layer of the first bilayer below
the surface.

RP on the displacement of single atoms. It can be seen that a displacement of the
silicon atom in the honeycomb motif in [11̄0]-direction (δx) affects RP only slightly,
which causes a high uncertainty. Since the best fit model incorporates only one
possible alignment of adjacent unit cells in y ([11̄0])-direction, while in the experi-
ment both possibilities are expected to occur (cf. Figure 6.8), discrepancies between
calculation and experiment are anticipated. Therefore, these uncertainties hint at
slightly different positions within the honeycomb motif for the respective alignments
of the nanowires. An approach using both possible alignments and superimpose the
respecting beams incoherently for the calculations would be correct, but increases
the computational effort significantly. Therefore, the exact positions of atoms 10,
11, 12, and 13 within the here-presented model are to be treated with caution.

On the other hand, their vertical positions have comparable uncertainties to the
other silicon atoms, which makes their vertical position much more reliable than
their lateral position. However, all the gold atoms have a considerable increased
vertical uncertainty compared to the silicon atoms in the surface layer. Their opti-
mized radial root mean square displacements are also with 0.157 Å greater, than the
radial root mean square displacements for either the silicon atoms within the honey-
comb motif, or the silicon atoms embedded within the gold atoms, with 0.122 Å and
0.124 Å, respectively. An explanation for this behavior could be a less rigid bonding
compared to the silicon atoms.

Surprisingly, the vertical and lateral uncertainties of the gold atoms are compara-
ble. In Figure 6.7, it can be seen that a lateral displacement affects RP comparably
to a vertical displacement. Typically, a difference is expected due to the heightened
sensitivity of the backscattered electrons to vertical positioning, as can be seen for
the silicon atoms in Figure 6.7. This behavior could hint at not well-defined positions
for the gold atoms, causing this insensitivity. A reason for this vertical uncertainty
could be the interaction with randomly distributed silicon adatoms, thus having only
marginal influence on the diffraction pattern.
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Figure 6.7.: Dependence of
the Pendry R factor (RP)
from the displacement of a
single atom relative to its best
fit position (δx dashed, δy
dotted, δz solid) while hold-
ing all other positions con-
stant. The atoms number 3,
10, and 17 represent a gold
atom (yellow), a silicon atom
from the honeycomb motif
(blue), and a silicon atom
from the nanowire (red), re-
spectively.

nw

hc

nw

hc

Figure 6.8.: Schematic sketch
of two possible alignments of
adjacent nanowires (nw) on
the Si(111)-(5×2)-Au surface,
separated by the silicon hon-
eycomb motif (hc). Unit cells
are denoted in red to high-
light the different lateral pe-
riodicity. Notably, the two
alignments are mirror-images
of each other, so they are
expected to be equally ther-
modynamically stable. When
both alignments of adjacent
nanowires occur statistically,
streaks are expected in the
diffraction pattern instead of
sharp (×2) reflexes.

67



6. Structural LEED Analysis of Si(111)-(5×2)-Au

model RP Var(RP)

KK (DFT ) 0.220 0.023
KK∗ (LEED optimized) 0.136 0.014
EBH (DFT ) 0.399 0.042
EBH∗ (LEED optimized) 0.166 0.017
KK∗ (missing Au) 0.168 0.017
KK∗(Si substitution) 0.147 0.015

Table 6.2.: RP values for the different exam-
ined models and their variance. The models
with a missing gold atom and a silicon atom
instead of the gold atom are based on the
KK model optimized by LEED. Further in-
formation of the models can be found in the
text.

6.3. Alternative Models

Although the KK model is favored by DFT calculations and diffraction data from
SXRD, the EBH model could not be ruled out confidently, due to its similarity to
the KK model. To examine the differences between the models in a LEED analysis,
also the EBH model was used to calculate LEED spectra and compare the results
with the experimental spectra.

To speed up calculations in the optimization process, only two silicon bilayers were
used. Additional to the EBH model obtained by DFT calculation, the EBH model
was geometrically optimized to fit the LEED data. In the following, the models
derived by DFT will be called KK and EBH, respectively. The LEED optimized
versions will be denoted by an asterisk (KK∗ and EBH∗). The Pendry R factors for
the KK, EBH, KK∗, and EBH∗ models can be found in Table 6.2. The KK∗ has the
lowest RP with 0.136. The comparison of the both models obtained by DFT is clearly
in favor of the KK model with RP = 0.22, compared to the EBH model yielding
0.399. This discrepancy means that the EBH can be ruled out with the LEED data.
However, the EBH∗ model results in RP = 0.166, which can be interpreted as a fine
fit. To analyze the significance of this result, displacements of the surface atoms,
caused by the optimization process, are further evaluated. As explained above, the
position of the silicon atoms within the honeycomb motif are rather ambiguous, due
to the statistical alignment of adjacent unit cells. In the following, only the gold
atoms and the silicon atoms 16, 17, 18, and 19 within the nanowires are considered.
To have a measure for the deviation of two models, the absolute displacement of
corresponding atoms can be averaged over these atoms. The comparison of the
EBH with the KK model (omitting atom 7 for the KK model) yields an average
displacement per atom of 0.165 Å, illustrating the similarity of the two models.
Nonetheless, the RP between the KK and EBH model is with 0.285 quite high,
making a clear distinction of the models with LEED possible. Comparing the KK
model with the KK∗, an average displacement of 0.096 Å per atom results, which
lies within the average of the uncertainties given in Table 6.1 for these atoms. A
comparison between the EBH and EBH∗ model yields an average displacement of
0.245 Å per atom, which is already a very substantial deviation. Therefore, it is
doubtful, whether this optimized model can still be termed EBH model. Indeed,
comparing the EBH∗ with the KK model yields an averaged displacement of 0.122 Å
per atom, proving that the EBH∗ model is closer to the corresponding coordinates of
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Figure 6.9.: Schematic arrangement of the surface atoms
(gray and yellow for silicon and gold, respectively) for the
EBH∗ model. The atom numbers are in analogy to Figure
6.5. Atomic positions derived by DFT are denoted by circles
for the KK model (red) and the EBH model (blue, dotted).
Differences between the EBH and KK models can mainly
be found around the missing gold atom (empty red circle)
within the nanowire (nw), while the honeycomb structure
(hc) is virtually identical. The deviation of the positions
within the honeycomb motif in the EBH∗ model is expected
to originate in the statistical shift of adjacent unit cells (cf.
Figure 6.8) that was not included in the LEED analysis.

the KK model than the EBH model. Figure 6.9 displays the schematic arrangement
of the surface layer for the KK, EBH and EBH∗ model. It can be seen nicely for the
EBH∗ model, how the surface atoms are displaced from the positions of the EBH
model toward the positions of the KK model.

To further investigate the influence of the additional gold atom 7 (cf. Figure
6.5) in the KK∗ model, this atom was omitted, respectively substituted by a silicon
atom. The Pendry R factor for the KK∗ model with the missing gold atom is
0.168, supporting the view that the EBH∗ model is rather a KK model without the
additional gold atom, due to their similar RP values (RP(EBH∗) = 0.166). Indeed,
the comparison of the IV curves of the EBH∗ model and the KK∗ model without the
additional gold atom yields RP = 0.068, while the difference between the KK∗ model
and the KK∗ model missing the gold atom is greater with RP = 0.098. Furthermore,
substituting the gold atom 7 in the KK∗ model with a silicon atom yields RP =
0.147 in comparison with the experimental spectra, thus being comparable to the
KK∗ model. While this gives no argument for the stability of such structure, it shows
that a scatterer is strongly needed in this position to reproduce the experimental
spectra well.

Since only one preparation of this reconstruction was investigated in-depth, lower
coverages could in principle allow the reconstruction as per EBH model, albeit only
a very small window in the coverage for an exclusive (5×2) reconstruction was found
within this thesis. Because of the different coverages of the EBH and KK model, it
is therefore not convincing that the EBH model could be found at lower coverages.

6.4. Conclusion

A structural LEED analysis on the Si(111)-(5 × 2)-Au surface reconstruction was
conducted, yielding a slightly optimized version of the established KK model [5]
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with a conclusive agreement between experiment and dynamical diffraction theory.
Furthermore, the EBH model, which is also able to explain X-ray diffraction data
satisfactorily, can not explain the electron diffraction data and can therefore be
ruled out. Additionally, a structure optimization by LEED of the EBH model leads
toward a geometry which has more resemblance with the KK model. Moreover, it
was shown that the presence of a scatterer at the location of the additional gold
atom is necessary to describe the experimental LEED data satisfactorily. However,
the positions obtained for the geometry of the honeycomb motif of silicon atoms
are ambiguous, which is expected to originate in the incoherent superposition of
diffracted beams from the different alignments of adjacent nanowires.
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Intensities

With the advent of structural analyses by LEED, multiple programs were developed
describing diffraction with varying success [20–25]. Differences were found mainly
in the effects included, approximations that were made, and how propagation was
described (spherical waves, plane waves, Bloch waves, or combinations of those),
leading to specialized programs, which were not universally applicable to every sur-
face [17]. The approach to divide the surface in layers, calculate multiple scattering
within the layers, and then stack those layers (cf. section 2.3.8) achieved most suc-
cess and has been adopted more recently to improve user friendliness or speed up
the search process of optimized geometries [16, 62].

However, while this approach is efficient for smaller unit cells and well-separated
layers, it also limits the possible surfaces to be investigated. This is due to the
scaling of computational time according to L3N3g2, with the number of spheri-
cal waves used L = (lmax + 1)2, the number of scatterers per unit cell N and the
number of beams g [17], making calculations for very large unit cells (increasing
N and g) or vicinal surfaces too slow to be feasible. Treatment of large unit cells
can somewhat be improved by using the Reverse-Scattering Perturbation method,
achieving computational time proportional to L2N2g2, and the Tensor approxima-
tion to reduce the number of full dynamical calculations necessary to optimize a
given structure. However, especially when analyzing vicinal surfaces, this method is
still very time-consuming, since the layers are packed too close together to perform
efficient calculations. This unfavorable scaling of computational time originates in
the matrix inversion necessary for the self consistent formalism and the high number
of diffracted beams in plane wave representation for large unit cells.

Therefore, in order to extinguish the drawbacks for large reconstructions and
vicinal surfaces, a different approach to calculate multiple scattering is presented in
this chapter. A similar approach had already been considered at the very beginning
of structural analysis by LEED [24]. However, due to computational limits at that
time, only a perturbation scheme could be used. In the last forty years, those limits
have changed drastically, making a reconsideration of this attempt worthwhile.

In this alternative approach, paths of the electron are specifically focused instead
of diffraction of surface layers. The foundations to describe the atomic scattering
and the propagation of spherical waves within the crystal are the same, so it is
expected to achieve virtually identical spectra. Since different approximations are
made, small deviations can emerge, but the spectra should converge to the same
results.
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7.1. Concepts for a Path Approach

To improve the scaling with computational time for vicinal surfaces, it can help to
avoid the explicit use of layers. This leads directly to the elimination of plane waves
used for the description of propagation between layers. Plane waves are only used
as incident waves and as final diffracted waves that reach the screen. Between single
scattering events, only the spherical wave representation is used. Furthermore, the
self-consistency is not included to avoid computationally costly matrix inversions.
This can be done by interpreting the scattering as an summation of all possible
paths that the electron can take within the surface due to multiple scattering.

Path Summations

The foundation of this approach is the path integral formulation of quantum me-
chanics. It allows the calculation of the probability for a given event (an electron
from the source gets scattered in such a way that it hits the detector afterward) by
a summation over all possible paths that the electron could have taken [63]. The
observed probability P for a given outcome X is therefore

P (X) = |Ψ(X)|2 with (7.1)

Ψ(X) =
∑︂
n

Φn(X) (7.2)

as the summation over all probability amplitudes that lead to the outcome X, de-
noted by Φ(X).

In a LEED experiment, Φ is the wave function of a LEED electron taking one
possible path. In the experiment, the intensity of a reflex is proportional to the
number of electrons diffracted into this direction. Thus, relative intensities on the
LEED screen can be calculated using the summation from equation 7.2, as the
probability defines the distribution of the electrons on the screen. Since the size and
shape of the unit cell is given as input to a calculation, directions in which reflexes
can be found are known, so it is sufficient to calculate the probability only for the
relevant reflexes and not for the whole screen.

Figure 7.1 illustrates two scattering paths that leave the crystal in the same di-
rection. Thus, these wave functions need to be added to calculate the probability
of an electron getting scattered into this direction by the surface. Since the number
of atoms within the surface and the number of scattering events can be virtually
infinite, this approach can only be calculated if certain approximations are made,
which are described in the following in more detail.

Lattice periodicity

Crystalline surfaces exhibit a lateral periodicity, which can be used to simplify the
summation of paths. Since the atoms within each unit cell are identical, the scatter-
ing of each unit cell must also be the same. Consequently, it is sufficient to consider
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Figure 7.1.: Illustration of two different scat-
tering paths, which have the same angle of
incidence and leave the crystal in the same
direction with the probability amplitudes Φ1

and Φ2 and thus contribute to the same
reflex. The number of possible paths is,
however, infinite due to the high number of
atoms within the surface and the number of
scatterings per path ranging from one to in-
finity.
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Figure 7.2.: Illustration of two different scat-
tering paths that have the same probability
amplitude Φ1 = Φ2 due to lateral translation
symmetry. Independent of the number of
scatterings or whether adjacent unit cells are
involved, paths that are identical under the
translations of the surface periodicity must
have the same probability.

only those paths that experience their first scattering event in a single unit cell. Of
course, the electrons can be scattered into adjacent unit cells; however, the whole
scattering of the surface can be described by those paths that are initiated in one
single unit cell due to the lateral translation symmetry. This is depicted in Figure
7.2. Notably, if the angle of incidence of the electrons is not perpendicular to the
surface, a phase shift is expected to occur due to the different paths outside the
surface of a wave front.

Limitation of the possible paths

The probability amplitude decreases exponentially with the distance traveled within
the surface due to inelastic effects, which are modeled by the imaginary part of the
inner potential. These inelastic effects can be interpreted as additional possible
paths that do not contribute toward the intensity on the LEED screen (inelastically
scattered electrons are repelled by the grids) and thus decreasing the probability
(amplitude) of the LEED electron. However, this limits the crystal effectively in
depth, so only a finite number of atoms within each surface unit cell must be consid-
ered. Additionally, it limits the number of scattering events per path, since infinite
scattering events also require an infinite path traveled. The scattering can not com-
pensate for this decrease due to flux conservation, i.e., the scattered amplitude can
not be greater than the incident amplitude. Therefore, it is sufficient to evaluate
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only paths up to a certain length and treat the multiple scattering only up to a finite
order. Though, in advance of the calculation, it is not obvious which accuracy is
sufficient.

Treatment of the bulk

The abandonment of the layer-centered approach comes at the cost of the loss of
the highly efficient layer-doubling method. Therefore, it is necessary to include
enough atoms in the surface unit cell, so no difference between the diffraction of the
considered slab and a semi-infinite crystal results. In the following, it is, however,
shown that the inclusion of that many atoms is within the capabilities of today’s
computers.

Incoming and departing waves

As the incoming and departing waves can be interpreted as plane waves due to
their well-defined directions, it is most convenient to describe this first and last
part of a path in terms of plane waves. This simplifies the treatment of phase
shifts occurring at non-perpendicular angles to the surface for incident and departing
waves. Nonetheless, it must be defined how the many spherical waves superimpose
to gain correct probability amplitudes of the diffracted electrons. Since every atom
within a unit cell forms a Bravais layer with the equivalent atoms in adjacent unit
cells, the departing equivalent spherical waves of these atoms must interfere in such
way that only in the directions of the various beams, defined by the shape and size of
the unit cell, constructive interference occurs. The amplitudes of these plane waves
of every Bravais layer can then be added straightforwardly.

7.2. Implementation

While the previous section discussed mostly the concepts for this new approach,
here, the concrete implementation of these thoughts to perform the calculations
are presented. First, a rough overview of the structure of the program is given.
Afterward, some important details for the here-presented formalism that need to
be considered are discussed. In the following, the program developed within this
thesis calculating LEED intensities according to the path based approach is called
PathLEED.

7.2.1. Structure of the program

The calculations can be separated into three different parts, which are discussed in
the following: the evaluation of input parameters, the calculation of energy inde-
pendent quantities, and finally an energy loop, yielding the final IV spectra.
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Figure 7.3.: Illustration of the radius rN
defining which atoms are counted as neigh-
bors and therefore receive scattered elec-
trons from the considered atom. Since the
scattering cross sections are large and the
atoms densely packed, the number of neigh-
bors within rN is expected to be treatable.
Notably, atoms in greater distance than rN
can still be reached by multiple scattering.

Input

The inputs necessary to perform a calculation are, firstly, the atomic positions within
the unit cell (x,y,z-coordinates) and the lattice vectors a and b defining the unit cell.
Furthermore, the inner potential consists of two parameters for the imaginary and
the real part. Obviously, also the energy range for which the spectra are desired must
be set. Then, the angle of incident of the electrons as well as the desired value for
the maximum angular quantum number lmax used for the spherical waves is needed.
Since no self-consistent formalism is used, a criterion, determining the precision of
the calculation, must be defined. This can be done by setting a maximum number
for the scattering events per path or a (probability) cutoff value, so only paths with
probability amplitudes higher than that value are considered. Finally, it must be
defined to which neighbors an electron is scattered due to a single scattering event.
In principle, it can be scattered to any other atom in the surface; however, due
to the attenuation, great distances are very unlikely. Therefore, the radius rN is
introduced, which defines the maximum distance that is considered in between two
scattering events; the electron can be scattered to any atom within this radius but
not to the outside. Figure 7.3 depicts the definition of the radius rN schematically.
More accurately, this limitation should rather be an attenuation ratio, since rN is
expected to change with the electron energy, as the mean free path is also dependent
from the energy. However, this has not been implemented yet. If the radius is large
enough, results should be identical either way. Since the scattering cross sections
are large and the atoms densely packed, an appropriate value for rN is expected to
lie within a few nanometers. Notably, atoms at greater distances than rN can still
be reached by multiple scattering.

Energy independent calculations

The spherical harmonics Ym
l and Gaunt coefficients γ necessary for the calculation of

the propagator are independent from the energy. Therefore, they can be calculated
in advance of the actual calculation of the IV spectra. γ depends only on lmax, while,
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for the calculation of Ym
l , the relative angles between the atoms are needed. For this

purpose, all atomic distances and angles for atoms within rN are also determined in
advance of the energy loop.

Energy dependent calculations

The Hankel functions depend on the wave vector of the electron; therefore, the
propagators must be recalculated for every step of the energy range of the spectra.
Since the propagation within the surface is energy dependent, the multiple scattering
formalism must also be performed for every energy step. Furthermore, the directions
of the beams scattered to the detector are also dependent on the used electron energy.

7.2.2. Multiple scattering formalism

To calculate the scattering amplitudes by an explicit summation of the single paths, a
scheme is needed to determine which of the infinite number of paths (due to possible
infinite multiple scattering) must be considered. Since the number of possible paths
diverges fast with the number of scatterings (N s paths for an average of N neighbors
and s scatterings per path), unlikely paths must be disregarded efficiently. The
radius rN already filters paths with a long distance between two scattering processes.
However, this still yields far too many paths, which causes high computational times.

Path summation

In a first step, a set of the most probable paths, which are assumed to describe the
scattering sufficiently is determined. This can be done recursively using a function
that appends an additional scattering event to a path already in the set of relevant
paths. Then, the new probability amplitude is evaluated, and if it is higher than
a cutoff criterion ϵ, this new path gets added to the set. Therefore, every atom
within the surface is represented by the triple of integers (ni, nx, ny), which give the
number of the atom within the unit cell ni and the number the lateral lattice vectors
a and b are added (nxandny), respectively. In this way, any scattering path can
be described by a succession of these triples. Notably, the propagator for the path
from atom (i, nx, ny) to (j, nx + δx, ny + δy) is independent from the actual values
of nx and ny due to translational symmetry. Therefore, it is sufficient to calculate
only propagations starting from one unit cell.

The set of relevant paths contains initially only the kinematic paths with a single
scattering event. So it is iterated over all possible paths (with the maximum prop-
agation distance per step rN), but only those with a final amplitude greater than ϵ
are kept. This method finished in a reasonable time when the criterion was chosen
such that approximately the million most probable paths resulted.

However, the creation of the set of paths in this manner is rather time consuming.
If a set is obtained that can describe the scattering at each energy, the evaluation of
multiple scattering amplitudes is very fast, as only matrix multiplication is executed.
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In practice, for a structure optimization, this fast evaluation would be a desirable
property. The changes in positions and vibrational amplitudes are rather small in
a structure optimization; therefore, it can be assumed that the set of paths is still
valid. In that fashion many configurations could be evaluated very fast. However, the
validity of this path approach could not be proven yet, since the spectra calculated
by PathLEED do not match those of the established approach by layer stacking,
which has shown its validity in comparison with experimental data, satisfactorily.
The reason is still under investigation. Therefore, it is also still uncertain if the
approximately one million most probable paths describe the scattering sufficiently.

Scattering order summation

To speed up the time it takes to calculate the theoretical IV spectra of the path
approach from scratch, a summation scheme can be applied, resulting in a com-
putational time linear to the highest scattering order considered. However, this
comes at the downside of losing the information on how the final amplitudes are
composed of the contribution of single paths. For the comparison with the layer
stacking and to proof the validity of the path approach, this loss of information
is however unproblematic. The ansatz of the summation scheme is based on the
translational symmetry, such that the scattered amplitude for a given scattering
order must be equal for all symmetry equivalent atoms (except a phase factor for
a non-perpendicular incident wave). The scattered amplitude for atom i after one

scattering event F
(1)
i (the superscript denotes the scattering order Os) is given by

F
(1)
i = iT Ai , (7.3)

with the scattering matrix iT of atom i and incoming amplitude Ai on atom i (cf.

chapter 2.3.8). The atom i scatters the amplitude F
(1)
i now to all of its neighbors

a within the scattering sphere of radius rN. Conversely, all its neighbors scatter
toward atom i. Therefore, the amplitude of the next scattering order of atom i is
defined by

F
(2)
i =

∑︂
a

iT
i
aG aTAa =

∑︂
a

iT
i
aG F(1)

a , (7.4)

with the propagator i
aG from atom a to atom i (cf. chapter 2.3.6). This equation

expresses that the second scattering order of atom i consists of all contributions
from the first scattering order of neighboring scatterers, which propagate to atom i
and get scattered there.

Equation (7.4) allows the calculation of the amplitudes of the next scattering order
generally with the recurrence relation

F
(Os)
i =

∑︂
a

iT
i
aG F(Os−1)

a . (7.5)
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Figure 7.4.: Illustration of two paths includ-
ing the refraction occurring at the surface
due to the potential step. The path differ-
ences outside the surface are highlighted in
yellow. The path inside the surface must
also be taken into account, due to its effect
on the phase and amplitude (caused by the
attenuation of the imaginary part of the po-
tential.

Combined with equation (7.3), this allows to calculate the amplitudes to an arbitrary
high scattering order, with the same computational effort per scattering order, which
indicates a linear scaling with the computational time. Expanding these sums shows
that this is indeed equal to the set of all possible paths containing only propagations
within rN. Notably, this scheme is somewhat related to the modified propagator used
to calculate propagation between layers in the layer-based approach [17]. However,
this scheme yields the IV curves faster than the direct path summation while being
equivalent. Therefore, this scheme is used in the calculations in the following section.

Notably, the spectra calculated by the direct method, using the approximately
one million most probable paths, are virtually identical to the spectra calculated by
the scattering order summation, which considers all possible paths within rN up to
a given scattering order. This suggests, that the direct method is indeed a viable
approach to calculate LEED intensities.

Refraction

To correctly determine the amplitude and phase of the single paths, also the way
from the vacuum to the first scattering, and the way from the last scattering back
to the vacuum must be considered. Due to the well-defined direction of the incident
and the diffracted waves, the description as plane waves is most convenient for these
parts of the path. The potential step at the surface due to the real part of the inner
potential causes a refraction of the electron wave, changing its energy and direction.
The change in direction is a consequence of the conservation of momentum parallel
to the surface, while increasing the norm of the momentum (and hence the norm of
the wave vector). Figure 7.4 displays two paths including refraction at the surface.
The path outside the surface affects the relative phase of different paths and must
thus be considered. The path inside the surface, either before the first or after the
last scattering event, causes also an attenuation due to the imaginary part of the
potential. Those segments of the paths are described by plane waves.

The attenuated incident plane wave is expanded into spherical waves at the posi-
tion of the first scattering event, to enable the application of the formalism described
in section 2.3. The spherical waves, scattered by the last atom in the path, can be
added since they are partial waves, to obtain the amplitude of the resulting plane
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Figure 7.5.: Four exemplary
IV spectra calculated by
PathLEED with the pa-
rameters rN = 24 Å and
Os = 10. All spectra diverge
at certain energies. The most
prominent peak can be found
in all spectra at approxi-
mately 325 eV. Increasing
the scattering order increases
the intensity of the peaks
further.

wave.

7.3. Comparison with CLEED

The CLEED package was used as a reference to check how PathLEED performs
against the layer-based approach. To enable the comparison between the traditional
layer approach and the here-presented approach focusing on next neighbors, the
Ag(001) surface was chosen as a testing structure. This decision is based on the
outstanding agreement that has been achieved between experiment and theory for
this surface [38]. However, no relaxation of the top layers were included. Both
programs used the same set of phase shifts, while limiting the number of spherical
waves to lmax = 4, accelerating the calculation of spectra to enable fast comparisons
upon variation of other parameters. Furthermore, thermal vibrational amplitudes
were set to zero.

7.3.1. Comparison of IV spectra

Figure 7.5 displays four exemplary spectra obtained from PathLEED. The spectra
are dominated by peaks that diverge when increasing the scattering order. Of course,
this is highly problematic since the spectra should converge with an increase in the
scattering order. Therefore, this hints at paths with amplitudes not being attenuated
strong enough, while being scattered repeatedly.

While the exact origin of this flawed calculation is difficult to determine, a simple
modification of the scattering matrix (and thus decreasing the scattered amplitudes)
according to

T
′
=

1

2
T (7.6)

already yields spectra that are comparable to spectra calculated by CLEED as shown
in Figure 7.6. For rN and Os values of 18 Å and 7 were chosen, respectively. The
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Figure 7.6.: Three exem-
plary IV spectra calculated by
CLEED and PathLEED, re-
spectively. Used parameters
are rN = 18 Å and Os = 7. A
good agreement is apparent,
yielding an overall Pendry R
factor of 0.122. The RP val-
ues for the single spectra are
denoted next to the spectra.
However, some deviations are
evident.

overall Pendry R factor (for smoothed spectra according to equation (2.5)) is 0.122,
confirming the good match in peak positions. However, at distinct energies, the
PathLEED spectra are still non-convergent for an increase in the scattering order
Os. Furthermore, at low energies the intensities of CLEED are substantially higher,
while being lower at high energies compared to PathLEED.

To compare the spectra in more detail, the Y-functions as used in the definition
of RP are depicted in Figure 7.7. They exhibit a good agreement between the
calculations regarding the position of the extrema in the spectra. The apparent
deviations are mainly due to differences in relative intensities.

In conclusion, the positions of the peaks are calculated correctly, indicating that
PathLEED can indeed simulate multiple scattering. However, strong deviations in
predicted intensities can be seen between the programs. Furthermore, spectra cal-
culated by PathLEED diverge at certain energies, when increasing the considered
scattering orders. This could hint at a problem within the calculation of the prop-
agators and/or scattering amplitudes. The intensity at energies below 100 eV is
distinctly below that of the CLEED calculation. The rather strong backscattering
at this energy (cf. Figure 2.17) should indeed lead to higher intensities in this en-
ergy regime. To investigate the exact reasons for the deviations from the established
calculation, the dependence of the spectra from possible parameters is examined in
the following.
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Figure 7.7.: The Y-functions
of the spectra plotted in Fig-
ure 7.6. Due to the logarith-
mic derivative in the defini-
tion of the Y-functions, they
allow a detailed comparison of
peak position, while relative
differences in peak intensity
are not as prominent. Indeed,
the kinematic as well as mul-
tiple scattering peak positions
are reproduced satisfactorily,
save minor exceptions. The
deviations in the amplitude of
the Y-functions are caused by
the differences in relative in-
tensities.

value value
parameter ref. alt. RP

rN 18 Å 24 Å 0.002
nL 14 16 0.000
lmax 4 8 0.100
Os 7 12 0.009

Table 7.1.: Resulting Pendry R factors
RP between spectra calculated by Path-
LEED with the reference (ref.) and alter-
nated (alt.) value for the parameters rN (ra-
dius of scattering), nL (number of layers),
lmax (maximum angular quantum number l
considered) and Os (scattering order). Only
increasing lmax leads to significantly changed
spectra.

7.3.2. Dependence on parameters

To analyze, whether the difference observed between CLEED and PathLEED orig-
inates in errors within the program or the choice of parameters, these parameters
are varied to examine their influence on the spectra. Therefore, the above presented
calculation was taken as reference and all parameters were increased individually,
to check if the spectra were already converged. Thereby, only one parameter at a
time was changed, leaving the others constant. To evaluate the differences, Pendry
R factors were calculated. Results can be seen in Table 7.1.

For the calculation of the reference spectra, 14 layers were used, implying a thick-
ness of the slab of approximately 26 Å. While an increase in the number of layers nL

or the radius for which propagation was assumed (rN) did not change the spectra,
increasing lmax had an apparent influence. This is not surprising as the initial value
of lmax = 4 was rather small. However, the spectra are converged with lmax = 8,
since a further increase does not exhibit further changes. Values of lmax ≥ 8 also
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caused the aforementioned divergences, while having discrepancies with the spectra
calculated by CLEED comparable to the discrepancies seen in Figure 7.6. Also,
a small increase in the scattering order Os does not alter the spectra significantly.
However, a closer look at the spectra exhibits small spikes in regions where diver-
gences were observed before the modification of the scattering matrix. A further
increase of Os leads to strong peaks at those energies, while leaving the remaining
parts unchanged.

Summarizing, this indicates that PathLEED can indeed be used to calculate dy-
namical diffraction of electrons, since the spectra converge fast enough for the chosen
parameter of approximation to be manageable for today’s computers. However, un-
known problems within the program written within this thesis prevent a satisfactory
agreement with established programs. Since the positions of the multiple scattering
peaks can be predicted correctly, the basic aspects appear to be working. Addition-
ally, spectra that are expected to be equivalent due to symmetry are indeed equal,
indicating a correct implementation of the spatial components. Thus, the occur-
ring divergences indicate a wrong quantitative calculation of the scattering and or
propagation.

7.3.3. Computational effort

Despite the problems discussed above, the program is expected to work sufficiently
to estimate the dependencies of computational time from the size of the unit cell.
Therefore, the unit cell of the bulk-terminated Ag(001) surface is enlarged artificially
by an alternating doubling of the lengths of the lattice vectors a and b, thus doubling
the number of atoms within each unit cell. The spectra are not changed since the
surface remains unchanged (although the indices of the beams are modified), but
the calculation gets increasingly demanding.

Figure 7.8 shows the relative time increase as a function of the number of primitive
unit cells within the unit cell used for the computation x. The unit cells were
enlarged as (2 × 1), (2 × 2) and (4 × 2) “reconstructions”. Therefore, the number of
primitive unit cells per artificially enlarged unit cell was 2, 4 and 8, respectively. The
respective computing times were normalized to the computing time for the primitive
unit cell (1× 1). Notably, also, the unit cell for the bulk atoms was enlarged within
CLEED. This would not be the case for a large reconstruction. However, in the
case of a vicinal surface, also the bulk unit cell becomes large (in fact, due to the
small layer spacings, the computing time would increase even more drastically, since
the surface can not be divided into well-separated layers). Therefore, the yellow
circle denotes the relative time increase, if only the two topmost layers are enlarged,
yielding approximately a proportionality of x2 to the computing time. However, in a
real reconstruction one would need more than one enlarged layer, leading to a result
in between these two approximations (yellow triangle for four layers).

While CLEED exhibits a proportionality between N2 and N3, the here-presented
approach has only a computational time increase proportional to N . This is due to
the fact that every atom in the surface has approximately the same number of con-
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Figure 7.8.: Plot of the time
a calculation with larger unit
cell takes compared to the
time for the primitive unit
cell. The measured data
are marked by squares. The
dashed lines depict a propor-
tionality to x (gray) and x3

(blue), respectively. The yel-
low circle and triangle denote
the time increment if only the
two and four top layers were
enlarged in a CLEED calcula-
tion, respectively.
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Figure 7.9.: Dependence of
the calculation time from the
scattering order. The time
increase is normalized on the
time for the calculation of
a single scattering per path.
The dashed line is a guide to
the eye to illustrate the linear
dependence.

sidered neighbors. Therefore, the amplitude calculation must be performed N -times,
but does not get more complex for a larger surface. In the case of very large unit
cells (larger than the typical distance traveled by a LEED electron), the traditional
approach to calculate the scattering within each Bravais layer gets rather pointless,
due to the large distance between scatterers in each (Bravais) layer. Furthermore,
the stacking of layers by plane waves becomes expensive, since more different beams
must be considered each time. However, in the case of small unit cells, layer stacking
is very efficient and outperforms PathLEED significantly. For the (1 × 1) unit cell,
CLEED is faster by a factor of approximately 8. While this is also partly due to
the non-optimized state of the path-based program, no significant advantages for
small unit cells are expected. Nonetheless, PathLEED in its unoptimized version
supersedes CLEED already at a unit cell size four times bigger.

Figure 7.9 exhibits the aforementioned linear dependence of the calculation time
from the included scattering order. Hence, within this approach the inclusion of
high enough scattering orders is not computationally costly. However, it is still
uncertain, whether the approach of direct path summations without the recurrence
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Figure 7.10.: Dependence of
the Pendry R factor on the
variation of the vertical po-
sition of the top four lay-
ers. RP was determined
for the spectra of the bulk-
terminated Ag(001) surface
calculated by CLEED and the
spectra calculated with the
here-presented program for a
surface with a vertical dis-
placement of a single layer.

relation yields adequate results within a reasonable time frame.

7.3.4. Variation of structural parameter

To further evaluate, whether the path-based approach is valid, the influence on
varied geometrical parameters is examined. Therefore, a single layer is displaced
vertically. The resulting spectra calculated with PathLEED are then compared to
the spectra of CLEED for the bulk-terminated surface using the Pendry R factor.
Figure 7.10 displays the results of this procedure for the top four layers and dif-
ferent displacements. All curves exhibit a similar shape with a single minimum in
RP around the bulk-terminated structure and a mostly positive curvature. For layer
3, the exact position of the minimum is at a displacement of −0.01 Å. This deviation
is expected to originate in the discrepancies of the spectra mentioned above and thus
to be interpreted as statistical fluctuation of RP.

However, the shape of the curves implies that a geometrical optimization with
the current state of the program is already possible. This further supports the
assumption that qualitatively, the calculations are correct, but unknown errors in
the program lead to wrong quantitative results for the scattered amplitudes. A
comparison of the spectra for displaced layers by ±0.1 Å, calculated by CLEED and
PathLEED, yields RP values around 0.16, indicating that the program also works
qualitatively for displaced surfaces.

7.4. Hardware Considerations

With the advent of structural analysis by LEED in the seventies, programs had to
be developed in such a way that calculations would converge in a reasonable time
and limitations regarding memory had to be considered. The CRAY-1 supercom-
puter, first installed in 1976, had an 80 MHz processor and memory up to 8.4 MB.
Today, multiprocessor units with a clock rate of over 3 GHz each and random access
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memory (RAM) sizes beyond 16 GB can be found in consumer electronics. While
the improvement of processors mainly speeds up the calculation (especially, if par-
allel computing is performed, which is easily done for LEED calculations due to the
independence of the energy steps), the tremendous increase of accessible RAM may
allow approaches that were impractical previously.

This is indeed the fact for the here-presented approach. At each energy step, at
first, the scattering and propagation matrices are calculated for each atom and their
distance to a neighbor, respectively. Using double-precision floating-point format
leads to a size of 16 B for each (complex) element of the propagator matrix. In the
case of the artificial enlarged Ag(001)-(4×2) surface calculated above the N = 8·14 =
112 atoms per (4 × 2)-cell with an average number of neighbors of approximately
nN ≈ 1100 within rN requires 123200 matrices with a size of L2 = (l2max)

2 each.
For lmax = 9, those matrices only for the propagators occupy a total of 19.712 GB,
which would have been an absurd demand at the time of the initial development of
LEED programs. The use of symmetries in the deeper layers can, however, reduce
this number significantly, but nonetheless, this approach was plainly not possible
in the seventies due to hardware constraints. Nowadays, the accessible hardware
allows these calculations that could facilitate the analysis of large reconstructions
and vicinal surfaces.

7.5. Prospects for the Path Approach

The here-presented program PathLEED in its current form is rather rudimentary
and aims only to show the feasibility of this approach and hint at the possible
benefits. In this section, potential improvements that are viable within the path-
based approach are discussed.

Efficient calculations

The time for a full dynamical calculation could be reduced drastically by exploiting
the symmetries of the crystal. Since PathLEED uses many layers, which have to be
included into the multiple scattering formalism, a high number of propagators has to
be calculated. However, due to the periodicity of the crystal, many distances (length
and direction) occur repeatedly between different atoms and thus the propagators of
those distances must be equal. This can be used to reduce the number of calculated
propagators and therefore speed up the calculation as well as reduce the amount of
necessary memory. Indeed, the calculation of propagators is currently the most time-
consuming step. Additionally, those symmetries can also be used to accelerate the
calculation of the spherical waves and Hankel functions, which are the components
for the propagators. In its current form, the program uses only simple loops that
make the programming code very clear at the cost of many unnecessary repetitions.

Furthermore, it could be worthwhile to calculate as much as possible before launch-
ing the loop over the energy. In the definition of the propagator (equation (2.51)),
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the summation over mr is independent of the electron energy and could thus be
evaluated in advance, instead of recalculating it at every energy step.

These possible improvements were not applied yet, since they would complicate
the search for errors, causing the discrepancies toward CLEED.

Parameter optimization

The approach based on the summation of single paths does not only promise im-
proved handling of large unit cells and vicinal surfaces. It also enables new possi-
bilities for efficient schemes for the optimization of parameters. For example, the
addition of a single atom to an already calculated model can be treated easily. Since
the amplitudes for all possible paths not containing the additional atom are already
known, only those paths containing this very atom must be considered, which is less
expensive. For LEED at large unit cells, this feature is valuable, since the influence
of a single atom on the spectra is rather small (cf. chapter 6). This could allow the
easy addition of atoms in various locations to an existing model and thus simplify
the exploration of new structural models.

Furthermore, due to the information how distinct paths contribute toward the
intensity of peaks in the spectra, it could be possible to develop new algorithms
that exploit this connection for directed search algorithms. This would allow an
acceleration in the time consuming optimization process.

Besides, comparable to the Tensor approximation, in the path-based approach,
once a full dynamical calculation was performed, small deviations from this reference
structure can be approximated, thus allowing a fast exploration of the parameter
space. This can be done by the introduction of a shift in the phase and change in
the modulus, depending on the directions of the electron and displacement. Sub-
sequently, those variations in the amplitude must only be added to the already
calculated amplitude for the corresponding path in the reference structure.

7.6. Conclusion

An alternative approach for LEED intensity calculations was proposed, which was,
in the beginning of structural analyses by LEED, impossible due to the demands on
the computer hardware. Thereby, many single paths are calculated within spheri-
cal wave representation and superimposed outside the surface. While being rather
inefficient for small unit cells with well-separated layers, the presented linear de-
pendence of computational time from the number of atoms per unit cell makes it a
valuable approach for large unit cells. Furthermore, the explicit avoidance of layer
stacking makes structural LEED analyses of vicinal surface conceivable. Addition-
ally, a recurrence relation was proposed to allow the inclusion of higher scattering
orders within this framework, while scaling only linearly with the computational
effort. However, the resulting spectra do not agree well enough with the spectra
of established programs. While the positions of multiple scattering peaks are pre-
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dicted correctly, relative intensities are wrong. Due to the good convergence with
the parameters used for approximations, this difference is believed to originate from
unknown errors in the program code that could not be corrected yet.

Summarizing, the here-presented approach could show its value for large unit cells
and vicinal surfaces. Nonetheless, the implemented calculations must be reviewed
to find the source of the discrepancy to established calculations.
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8. Summary & Outlook

In this thesis, structural LEED analyses for the clean Si(001) surface as well as
the Si(111)-(5× 2)-Au reconstructions were performed. Furthermore, an alternative
approach was proposed to calculate the multiple scattering that could make the
LEED analysis of very large reconstructions and vicinal surfaces feasible.

The structural analysis of the Si(001) surface was in good agreement with previous
results [39, 46] and DFT calculations [49]. However, the limited means to distinguish
between different alignments of similar adjacent unit cells was exhibited, making a
structural LEED analysis suboptimal for the distinction between the (2 × 1) and
c(4×2) reconstructions. Additionally, the validity of the use of elastic strain energy
as proposed by Keating was shown to improve the starting position for a structural
analysis of covalent crystalline surface by LEED.

In the second part, the viability of the Kwon-Kang (KK) model for the Si(111)-
(5 × 2)-Au reconstruction was confirmed. Furthermore, the model proposed by
Erwin, Barke and Himpsel (EBH) could be ruled out due to the discrepancy with
the experimental data. An optimization of the EBH model to fit the LEED data
resulted in a geometry with more resemblance to the KK model. Thereby, the
higher structural sensitivity of LEED over XRD within a structural analysis could
be exhibited impressively.

The last part covered the possible enhancement of the traditional approach to cal-
culate LEED intensities for material systems with large unit cells or vicinal surfaces.
While it was shown that the computational time within this approach scaled only
linearly with the number of atoms per unit cell, discrepancies of unknown source to
spectra calculated by the established approach remained. However, the convergence
for the parameters used as approximation was satisfactorily, why it is plausible to
assume the flaws in the program, not the approach itself.

Summarizing, the strengths of LEED in the structural analysis of silicon surfaces
was shown. To boost the analysis of very large reconstructions and or especially
vicinal surfaces, further development in the calculation of LEED intensity is promis-
ing, utilizing the increase of computational power that was developed in the past
decades.
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A. Mathematical Functions

Spherical Bessel function

The spherical Bessel functions of the first and second kind jl and yl are derived by
the Bessel functions, which are the canonical solutions to the differential equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 .

The Bessel functions of the first kind Jα can be expressed generally as

Jα(x) =
∞∑︂

m=0

(−1)m

m!Γ(m+α+1)

(︂x
2

)︂2m+α

,

with the gamma function Γ(z). The Bessel functions of the second kind Yα are related
to Jα by

Yα(x) =
Jα(x) cosαπ − J−α(x)

sinαπ
.

The spherical Bessel functions can be expressed as

jl(x) =

√︃
π

2x
Jl+ 1

2
(x) and

yl(x) =

√︃
π

2x
Yl+ 1

2
(x) .

Spherical Hankel function

The spherical Hankel functions of the first and second kind h
(1)
l and h

(2)
l are related

to the spherical Bessel functions by

h
(1)
l (x) = jl(x) + iyl(x) and

h
(2)
l (x) = jl(x) − iyl(x) .

However, for the Hankel functions of integer order exist closed forms, since the Bessel
functions of half-integer order can be expressed in terms of trigonometric functions:

h
(1)
l (x) = (−i)l+1 eix

x

l∑︂
m=0

im

m!(2x)m
(l + m)!

(l −m)!
.

97



A. Mathematical Functions

Spherical Harmonics

The spherical harmonics Ym
l are a set of functions defined on the surface of a sphere

and form an orthonormal basis, hence any function defined on the surface of a sphere
can be expressed as a sum of spherical harmonics. They can be denoted by either
Ym

l (θ,φ) or Ym
l (r), where only the direction of r is relevant. They are defined by

Ym
l (θ,φ) =

√︄
(2l + 1)

4π

(l −m)!

(l + m)!
Pm
l (cos θ) eimφ ,

with the associated Legendre polynomials Pm
l (cos θ) given by

Pm
l (x) = (−1)m 2l

(︁
1 − x2

)︁m
2

l∑︂
k=m

k!

(k −m)!
xk−m

(︃
l

k

)︃(︃
l+k−1

2

l

)︃
,

containing the generalized form of the binomial coefficient(︃
α

k

)︃
=

A

k!
with A = α(α− 1)(α− 2) . . . (α− k + 1) .

Furthermore, the relations

∗Ym
l (θ,φ) = (−1)m Y−m

l (θ,φ) and

Ym
l (r) = (−1)l Ym

l (−r)

can be useful in the computation (with the complex conjugation denoted by ∗).

Gaunt coefficients

The Gaunt coefficients γ are defined as

γ(l1,m1,l2,m2,l3,m3) =

∫︂ 2π

φ

∫︂ π

θ

Ym1
l1

(θ,φ) Ym2
l2

(θ,φ) Ym3
l3

(θ,φ) sin θ dθdφ . (A.1)

Since the evaluation of the integrals is rather expensive, their relation to the Wigner
3-j-symbols can be used:∫︂ 2π

φ

∫︂ π

θ

Ym1
l1

(θ,φ) Ym2
l2

(θ,φ) Ym3
l3

(θ,φ) sin θ dθdφ

=

√︃
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(︃
l1 l2 l3
0 0 0

)︃(︃
l1 l2 l3
m1 m2 m3

)︃
.
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B. Supporting Information

Derivation of ∆E

Within section 2.3.1 an approximation for the peak width ∆E was postulated. To
evaluate the equation

√
E (∆

√
E) =

√
E

(︄√︃
E +

∆E

2
−
√︃

E − ∆E

2

)︄

the right side is squared, which yields

E

(︄
E +

∆E

2
− 2

√︄(︃
E +

∆E

2

)︃(︃
E − ∆E

2

)︃
+ E − ∆E

2

)︄
.

This can be rearranged to

E

⎛⎝2E − 2

√︄
E2 −

(︃
∆E

2

)︃2
⎞⎠ ,

and further simplified to

2E2

⎛⎝1 −

√︄
1 −

(︃
∆E

2E

)︃2
⎞⎠ .

The approximation of (1 − x)
1
2 ≈ 1 − x

2
according to the first two terms of a Taylor

series leads to

2E2

(︄
1 −

[︄
1 −

(︁
∆E
2E

)︁2
2

]︄)︄
=

(︃
∆E

2

)︃2

.

Since the equation was squared in the beginning, this results in

√
E (∆

√
E) ≈

(︃
∆E

2

)︃
.
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B. Supporting Information

Coordinates of Si(111)-(5× 2)-Au

Table B.1.: Positions of silicon atoms in the top six layers of the substrate for the LEED
optimized model. The coordinates are in the same reference frame as in Table 6.1.

layer no. x[Å] y[Å] z[Å] layer no. x[Å] y[Å] z[Å]

1 1 1.92 1.12 9.375 4 1 0.00 -0.05 5.425
1 2 -1.92 1.18 9.363 4 2 -3.94 -0.05 5.425
1 3 0.00 4.34 9.439 4 3 1.92 3.32 5.493
1 4 -3.84 4.44 9.415 4 4 -1.92 3.32 5.493
1 5 1.96 7.71 9.520 4 5 0.00 6.65 5.570
1 6 -1.96 7.71 9.520 4 6 -3.84 6.75 5.558
1 7 0.00 11.25 9.497 4 7 1.92 9.92 5.580
1 8 -3.84 11.09 9.513 4 8 -1.92 9.92 5.580
1 9 1.94 14.58 9.364 4 9 0.00 13.25 5.518
1 10 -1.94 14.58 9.364 4 10 -3.84 13.30 5.476
2 1 0.01 2.20 8.527 5 1 0.00 0.00 3.091
2 2 -3.88 2.21 8.521 5 2 -3.84 0.00 3.086
2 3 1.85 5.53 8.716 5 3 1.92 3.32 3.115
2 4 -1.85 5.53 8.716 5 4 -1.92 3.32 3.117
2 5 0.00 8.99 8.767 5 5 0.00 6.65 3.205
2 6 -3.84 8.85 8.738 5 6 -3.84 6.65 3.180
2 7 1.97 12.26 8.701 5 7 1.92 9.97 3.184
2 8 -1.97 12.26 8.701 5 8 -1.92 9.97 3.184
2 9 0.00 15.56 8.524 5 9 0.00 13.30 3.166
2 10 -3.84 15.55 8.505 5 10 -3.84 13.30 3.141
3 1 0.00 2.10 6.198 6 1 1.92 1.11 2.335
3 2 -3.89 2.20 6.202 6 2 -1.92 1.11 2.336
3 3 1.81 5.55 6.360 6 3 0.00 4.43 2.367
3 4 -1.81 5.55 6.360 6 4 -3.84 4.43 2.364
3 5 0.00 9.00 6.388 6 5 1.92 7.76 2.379
3 6 -3.84 8.86 6.368 6 6 -1.92 7.76 2.378
3 7 1.94 12.22 6.328 6 7 0.00 11.08 2.402
3 8 -1.94 12.22 6.328 6 8 -3.84 11.08 2.390
3 9 0.00 15.49 6.182 6 9 1.92 14.41 2.354
3 10 -3.84 15.65 6.164 6 10 -1.92 14.41 2.355

100



Deviation between the KK and KK∗ model

KK∗ (LEED optimized)
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Figure B.1.: Comparison off the surface of the KK model derived by DFT (red circles)
with the KK∗ model, which was optimized with LEED data (yellow spheres for gold atoms
and gray spheres for silicon atoms). Except from small differences within the uncertainty
of the LEED analysis the two models are in very good accordance. The deviations in
the honeycomb motif (hc) are expected to originate in the different possible alignments of
adjacent unit cells (cf. Figure 6.8).
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B. Supporting Information

Table B.2.: Differences from the KK∗ model (optimized by LEED) to the KK model
(derived by DFT) of the surface and topmost silicon bilayer. The cartesian components
are given as well as the radial difference (∆r) 6.1. The numbers of layers and atoms
corresponds to Table 6.1 and Table B.1, respectively.

layer no. ∆x[Å] ∆y[Å] ∆z[Å] ∆r[Å]

Surf 1 Au 0.00 -0.08 -0.006 0.080
Surf 2 Au -0.09 0.10 0.019 0.136
Surf 3 Au 0.09 0.10 0.019 0.136
Surf 4 Au 0.03 0.07 -0.014 0.077
Surf 5 Au -0.03 0.07 -0.014 0.077
Surf 6 Au 0.00 -0.04 0.021 0.045
Surf 7 Au 0.00 0.01 0.001 0.010
Surf 8 hc 0.06 0.01 -0.023 0.065
Surf 9 hc -0.06 0.01 -0.023 0.065
Surf 10 hc 0.12 0.01 -0.010 0.121
Surf 11 hc 0.19 0.09 0.013 0.211
Surf 12 hc -0.08 -0.04 -0.012 0.090
Surf 13 hc 0.04 0.03 -0.015 0.052
Surf 14 hc 0.00 0.05 -0.031 0.059
Surf 15 hc 0.00 -0.04 -0.025 0.047
Surf 16 nw 0.11 -0.07 -0.025 0.133
Surf 17 nw -0.11 -0.07 -0.025 0.133
Surf 18 nw 0.00 0.02 0.009 0.022
Surf 19 nw 0.00 -0.03 -0.037 0.048
1 1 0.00 0.00 -0.058 0.058
1 2 0.01 0.04 -0.058 0.071
1 3 0.00 0.01 -0.042 0.043
1 4 0.00 0.09 -0.044 0.100
1 5 0.06 -0.04 -0.047 0.086
1 6 -0.07 -0.04 -0.047 0.093
1 7 0.00 0.00 -0.036 0.036
1 8 0.00 -0.01 -0.058 0.059
1 9 0.00 0.02 -0.017 0.026
1 10 -0.00 0.02 -0.017 0.026
2 1 0.00 0.02 -0.032 0.038
2 2 -0.04 0.02 -0.034 0.056
2 3 -0.06 0.01 -0.038 0.072
2 4 0.06 0.01 -0.038 0.072
2 5 0.00 0.04 -0.037 0.054
2 6 0.00 -0.01 -0.058 0.059
2 7 0.01 -0.02 -0.017 0.028
2 8 -0.01 -0.02 -0.017 0.028
2 9 0.00 -0.02 0.017 0.026
2 10 0.00 0.01 -0.016 0.019
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C. List of Symbols and Abbreviations

Abbreviations

EBH model Structural model of Si(111)-(5 × 2)-Au proposed
by Erwin, Barke and Himpsel

GUI Graphical User Interface
IV Intensity-Voltage (implying the dependence of spot intensity

from the accelerating voltage)
KK model Structural model of Si(111)-(5 × 2)-Au proposed

by Kwon and Kang
LEED Low-Energy Electron Diffraction
MCP Micro-Channel Plate
ROI Region of Interest
STM Scanning Tunneling Microscopy
SXRD Surface X-ray Diffraction
UHV Ultra High Vacuum

Symbols

RP Pendry R (Reliability) Factor
δl Phase shift
tl scattering element (amplitude of a scattered spherical wave)
tθ atomic scattering factor
j
iG Propagator from atom i to atom j

iT Scattering matrix of atom i

h
(1)
l (x) Spherical Hankel function of the first kind

h
(2)
l (x) Spherical Hankel function of the second kind

jl(x) Spherical Bessel function of the first kind
yl(x) Spherical Bessel function of the second kind
Ym

l (θ,φ) or Ym
l (r) Spherical Harmonic

γ(l1,m1,l2,m2,l3,m3) Gaunt coefficients
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mir die DFT-Strukturmodelle zur Verfügung zu stellen und die Rolle des Zweit-
gutachters zu übernehmen.
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