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Aspects of Non-Equilibrium Behavior in Isolated Quantum Systems

Robin Heveling
Fachbereich Physik, Universität Osnabrück, Barbarastr. 7, D-49076 Osnabrück, Germany

Based on the publications [P1–P6], the cumulative dissertation at hand addresses quite diverse
aspects of non-equilibrium behavior in isolated quantum systems. The works presented in
publications [P1, P2] concern the issue of finding generally valid upper bounds on equilibration
times, which ensure the eventual occurrence of equilibration in isolated quantum systems. Recently,
a particularly compelling bound for physically relevant observables has been proposed. Said
bound is examined analytically as well as numerically. It is found that the bound fails to give
meaningful results in a number of standard physical scenarios. Continuing, publication [P4]
examines a particular integral fluctuation theorem (IFT) for the total entropy production of a
small system coupled to a substantially larger but finite bath. While said IFT is known to hold
for canonical states, it is shown to be valid for microcanonical and even pure energy eigenstates
as well by invoking the physically natural conditions of “stiffness” and “smoothness” of transition
probabilities. The validity of the IFT and the existence of stiffness and smoothness are numerically
investigated for various lattice models. Furthermore, this dissertation puts emphasis on the issue
of the route to equilibrium, i.e., to explain the omnipresence of certain relaxation dynamics in
nature, while other, more exotic relaxation patterns are practically never observed, even though
they are a priori not disfavored by the microscopic laws of motion. Regarding this question, the
existence of stability in a larger class of dynamics consisting of exponentially damped oscillations
is corroborated in publication [P6]. In the same vein, existing theories on the ubiquity of certain
dynamics are numerically scrutinized in publication [P3]. Finally, in publication [P5], the recently
proposed “universal operator growth hypothesis”, which characterizes the complexity growth of
operators during unitary time evolution, is numerically probed for various spin-based systems in
the thermodynamic limit. The hypothesis is found to be valid within the limits of the numerical
approach.
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I. Introduction

The interplay of many microscopic constituents can give
rise to surprisingly regular behavior on the macroscopic
scale. For instance, a ball consistently traces a parabola
when thrown, even though the individual atoms of
ball and air act in an uncontrollable, chaotic manner.
Another example is the mixing of two liquids. While the
boundary between the liquids distorts in an evermore
intricate pattern, the situation on the macroscopic scale
becomes conceivably simple. Eventually, an equilibrium
is reached and all initial imbalances of temperature,
pressure, concentration, etc. have disappeared. This
phenomenon occurs despite the microscopic dynamics
never coming to a halt.
The frameworks of statistical mechanics and thermody-
namics are tremendously successful at “glossing over
the details” and characterizing equilibrium states of
macroscopic systems with only a handful of parameters.
However, away from equilibrium, generally valid laws
are hard to come by. Notable exceptions and pillars of
non-equilibrium statistical physics are linear response
theory (LRT) [7] and fluctuation theorems (FTs) [8].
The former concerns systems weakly perturbed by an
external force. The response of these displaced systems
is routinely found in terms of autocorrelation functions
evaluated exactly at equilibrium. The latter mentioned
FTs relate the entropy production of processes, which
may take the system arbitrarily far away from equi-
librium, to properties of the equilibrated system in a
quantitative manner. Therefore, LRT and FTs suggest
that information about the equilibrium state is subtly
encoded in the behavior of a system driven out of
equilibrium.
Relating back to the above example of two mixing
liquids, it is puzzling how an equilibrium state can be
reliably reached in the first place. The laws that govern
the motion on the microscopic scale do not inherently
prefer the direction towards equilibrium. Nevertheless,
as soon as the liquids are mixed, they will not sepa-
rate again. This apparent emergence of macroscopic
irreversibility from microscopic reversibility1 is, to this
day, not understood in a satisfying manner.
More precisely, the second law of thermodynamics,
which comprises irreversibility in the sense that entropy
tends to maximize, has not yet been rigorously derived
from the microscopic equations of motion, e.g., the
Schrödinger equation. The following section IA gives a
short description of this emergent arrow of time.

1 In the 1960s it was found that processes involving the weak
nuclear force can break time reversal symmetry [9]. However,
these processes are quite exotic and far too weak to possibly
explain the apparent direction of time in everyday life.

These general issues of equilibration and thermalization
in isolated quantum systems have experienced renewed
interest in the last decades, leading to a sort of “revival”
of the field of (non-equilibrium) statistical mechanics.
First and foremost, this revival is driven by tremendous
progress on the experimental side. Nearly isolated
quantum systems, e.g., ultracold atoms trapped in
optical lattices [10–14], can be controlled with unprece-
dented accuracy in the lab. Further, on the theoretical
side, much headway has been made by the discovery
of the eigenstate thermalization hypothesis [15, 16]
and quantum typicality [17, 18]. These advancements
are accompanied by developments of sophisticated
numerical techniques and broad availability of powerful
computational resources.
Recently, the specifics of the route to equilibrium have
gathered much attention as well [19–21]. That is to say,
if a system reaches equilibrium, it commonly does so in
familiar patterns. For instance, exponential decays are
ubiquitous in nature [22, 23]. Then again, other, more
exotic relaxation dynamics -like recurrence dynamics-
are not disfavored by the microscopic laws of motion
from the outset. However, no observation has been
made in which a (sufficiently large) system, after it
has already spend some time in equilibrium, becomes
spontaneously imbalanced and has to restart the
relaxation process. This issue of the omnipresence of
some dynamics over others can be tackled by means
of stability arguments, which find common relaxation
patterns to be more stable against perturbations.
Next follows a short story (descriptive and non-historic)
of the arrow of time, after which the scope of this thesis
is presented in Sec. I B.

A. The Arrow of Time

The end of the nineteenth century was a pleasant time
for physicists. Particles had a definite position and mo-
mentum, and their collective dynamical evolution could
in principle be worked out via the laws of classical me-
chanics. Further, Maxwell’s equations accurately de-
scribed electromagnetic phenomena.
There were just a few theoretical kinks that needed to
be ironed out, for instance, the spectrum of a black-
body, which unfortunately radiated infinite energy. In
1901, Max Planck proposed that light transfers its en-
ergy in indivisible chunks -light quanta- and employed
this idea to successfully explain the black-body spec-
trum [24]. This success is viewed by many as the incep-
tion of quantum mechanics. Over the course of time,
the list of observations that could not be reconciled with
classical physics grew longer and the demand for a novel
framework of physics became more and more evident.
Today, the theory of quantum mechanics is one of the
most successful scientific theories and an inevitable part
of modern physics.
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While, more than a century later, physicists struggle
with questions of quantum gravity, dark matter and in-
consistencies in the standard model, a long-known yet
unsolved issue within quantum mechanics has regained
attention in the last decades. This issue is the emer-
gence of an Arrow of Time from the underlying time-
symmetric quantum theory.
Here, “time-symmetric” refers to the fact that the fun-
damental laws of nature, e.g., the Schrödinger equation,
are invariant under time reversal. That is to say that,
on a basic level, every process that is allowed to happen
forwards in time also has a non-zero probability to hap-
pen backwards.
A pendulum that swings in one direction can swing in
the other direction. An atom may emit a photon at the
cost of sending one of its electrons to an energetically
lower orbital, or the atom may absorb a photon, lifting
one of its electrons to a state of higher energy.
However, this principle does not seem to consistently
extent to our experience in the macroscopic world. As
an example, consider a high-board diver attempting
to jump into the water. After leaving the platform,
the diver’s potential gravitational energy is converted
to kinetic energy, which is then promptly transferred
to the water after impact. The kinetic energy of the
water quickly dissipates to smaller and smaller length
scales, after which it can be safely described as heat en-
ergy. Now imagine the time-reversed process. The diver
is peacefully swimming in the water when suddenly a
huge number of surrounding water molecules conspire
to transfer their kinetic energy to the diver, who is then
spontaneously catapulted into the air. It is safe to as-
sume that something like this never happened and will
never happen.
Of course, such a scenario does not need to involve grav-
ity. A classic example, which must not go unmentioned
in this thesis, is a hot cup of coffee. Over the course
of time, the coffee cools down until it has reached the
temperature of the surrounding air. A spontaneously
reheating coffee would be nice, but is, unfortunately,
unheard of.
This phenomenon, the emergence of an arrow of time
from underlying time-symmetric theories, poses one of
the biggest unsolved problems in modern physics.

B. Scope of this Thesis

The cumulative dissertation at hand is based on the
publications [P1–P6]. These works touch on quite di-
verse issues in the field of (non-equilibrium) quantum
statistical mechanics and (non-equilibrium) quantum
thermodynamics. Hence, the relatively broad and en-
compassing title “Aspects of Non-Equilibrium Behavior
in Isolated Quantum Systems”.
The present text is structured as follows. Section II pro-
vides the theoretical background on which the publica-
tions [P1–P6] rely. To begin, in Sec. IIA 2, the general
issue of thermalization in isolated quantum systems is
discussed, since this topic underlies most publications
in some manner. Thereafter, fundamental results on
fluctuation theorems are reviewed in Sec. II B, directly
relating to Pub. [P4]. Next, in Sec. II C, the frame-
work of the recursion method is introduced, which lays
the groundwork for Pubs. [P5], [P6] and partially [P3].
Finally, a brief discussion on employed models and nu-
merical methods is included in Sec. IID.
Section III constitutes the guide to the publications
[P1–P6]. Each of the guide’s sections corresponds to a
respective paper, with the only exception of Pubs. [P1]
and [P2], which share a section due to their similarity.
Finally, section IV summarizes the results of this dis-
sertation and gives some prospects for possible future
research.
Despite best efforts for self-containedness, the present
text is not meant as a stand-alone. The presenta-
tion of the publications [P1–P6] in section III is nat-
urally shortened and leaves out some important details.
Therefore, this thesis should be understood as a mere
supporting text to the publications, which are attached
at the end.
In the main body of this thesis, many influential works
in the fields of quantum statistical mechanics are ref-
erenced. This list of citations is necessarily incomplete
and not meant to be exhaustive. Further important ref-
erences can be found in the publications [P1–P6].
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II. Theoretical Background

This section provides the theoretical background on
which the publications [P1–P6] rely. To begin, in
Sec. II A, the general issue of thermalization in isolated
quantum systems is discussed. Thereafter, fundamental
results on fluctuation theorems are reviewed in Sec. II B
directly relating to Pub. [P4]. Next, in Sec. II C, the
framework of the recursion method is introduced, which
lays the groundwork for Pubs. [P5], [P6] and partially
[P3]. Finally, Sec. IID constitutes a brief introduction
to employed computational methods.

A. Thermalization in Isolated Quantum Systems

This section addresses aspects of thermalization in
isolated quantum systems. For starters, basic principles
of quantum mechanics and statistical physics are
briefly recalled in Sec. IIA 1. Thereafter, definitions
and notions of equilibration and thermalization are
introduced in Sec. II A 2. Lastly, in Secs. IIA 3 and
IIA 4, the Eigenstate Thermalization Hypothesis and
the concept of quantum typicality, two fundamental
mechanisms enabling thermalization, are respectively
presented and discussed.

1. Quantum Statistical Mechanics

The purpose of this section is to recall basic principles of
quantum mechanics and statistical physics. This brief
review is naturally far from exhaustive and there is a
particular focus on concepts and scenarios that are ac-
tually relevant to the publications presented later on.
All following statements, unless further indicated, can
be found in standard textbooks on the matter.
At the heart of every mathematical description of a
quantum system stands a Hilbert space H , a complex
vector space equipped with an inner product ⟨ · | · ⟩. In
the following, the Hilbert space is assumed to be of fi-
nite dimension, although the results presented in this
dissertation are not necessarily restricted to this case.
In quantum mechanics, all information about the state
of a system is encoded in the so-called wave function
|ψ⟩ ∈ H . Physical observables, such as position, mo-
mentum, spin, etc. are modeled by Hermitian operators
A : H → H acting on the Hilbert space2. Eigenvalues
an and eigenstates |an⟩ of A are defined by the eigen-
value equation A|an⟩ = an|an⟩. Since A is Hermitian,
i.e., A = A†, all eigenvalues an are real and the eigen-
states |an⟩ can be chosen as an orthonormal basis of the
Hilbert space.

2 Throughout this thesis, there will be no strict distinction be-
tween the operator A and the observable it is representing.

The possible outcomes of a measurement are the eigen-
values an of the measured observable A. The theory of
quantum mechanics is inherently probabilistic. There is
generally no way to determine a measurement outcome
with certainty, it is merely possible to ascribe probabil-
ities pn to the measurement outcomes an. These proba-
bilities are given by the absolute squares of the overlap
between the current state of the system and the corre-
sponding eigenstates, i.e.,

pn =

gn∑
i=1

|⟨ain|ψ⟩|2 , (1)

where the sum takes a possible gn-fold degeneracy into
account. Right after the measurement process, the wave
function |ψ⟩ is instantaneously projected into the eigen-
subspace associated with the measured eigenvalue, i.e.,

|ψ⟩ → Πn|ψ⟩√
⟨ψ|Πn|ψ⟩

, where Πn =

gn∑
i=1

|ain⟩⟨ain| . (2)

Arguably the most important operator in quantum me-
chanics is the Hamiltonian H. It is the quantum me-
chanical counterpart to the classical Hamilton function
and generator of time translations. The time evolution
of a quantum system is governed by the time-dependent
Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩ . (3)

For now, the Hamiltonian is assumed to be time-
independent, i.e., H(t) = H (this restriction is dropped
again in Sec. II B). Further, the reduced Planck’s con-
stant is set to unity (ℏ = 1). Given some initial state
|ψ(0)⟩, the Schrödinger equation is formally solved by

|ψ(t)⟩ = e−iHt|ψ(0)⟩ = U(t)|ψ(0)⟩ . (4)

The newly introduced symbol U denotes the time evo-
lution operator. Since the Hamiltonian H is Hermitian,
the time evolution operator U is unitary, i.e., UU† = 1.
The fact that time evolution in quantum mechanics is
unitary has some far-reaching consequences regarding
the issue of equilibration (cf. Sec. IIA 2).
For one thing, the time evolution never comes to a rest,
the system keeps evolving even if an apparent equilib-
rium is reached. For another, the evolving state will
eventually get arbitrarily close to the initial state again3.

3 In the sense that for all ϵ > 0 there exists a time T > 0 such that
|| |ψ(T )⟩ − |ψ(0)⟩ || < ϵ, where || · || denotes the norm induced
by the inner product. These events of close proximity are called
Poincaré recurrences [25].
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In contrast to the measurement process, unitary time
evolution is completely deterministic.
The eigenvalue equation of the Hamiltonian H is re-
ferred to as the time-independent Schrödinger equation.

H|ψ⟩ = E|ψ⟩ (5)

Its solution yields eigenvalues En and eigenstates |n⟩,
whereby the formal solution to the time-dependent
Schrödinger equation takes the form

|ψ(t)⟩ =
∑
n

cne
−iEnt|n⟩ (6)

with complex coefficients cn = ⟨n|ψ(0)⟩.
Oftentimes the expected outcome of a measurement is
of interest. The expectation value of a measurement
of some observable A with respect to some normalized
state |ψ⟩ is given by

⟨A⟩ψ = ⟨ψ|A|ψ⟩ . (7)

In general, the expectation value is dependent on time,
plugging Eq. (6) into Eq. (7) yields

⟨A⟩ψ(t) =
∑
m,n

c⋆mcne
i(Em−En)tAmn , (8)

where Amn = ⟨m|A|n⟩ denote the matrix elements of
the operator A in the eigenbasis of the Hamiltonian. In
the Heisenberg picture of motion the time dependence is
shifted from the states to the observables, which evolve
according to A(t) = U†(t)AU(t).
At the time when the theory of quantum mechanics
was still eagerly developed, (classical) statistical physics
had already established itself as a mature research field.
Needless to say that proven concepts of classical statis-
tical physics were soon tested within the novel frame-
work of quantum mechanics. Thus, the field of quantum
statistical mechanics emerged, whose fundamental prin-
ciples are subject of the second part of this section.
Macroscopic objects consist of an enormous number of
particles, e.g., N = 1023. In principle, the behavior of
the object and its constituent parts is perfectly well de-
scribed by the Schrödinger equation. However, keeping
track of all microscopic degrees of freedom is practically
impossible4. Luckily, in most scenarios the knowledge
of what every single particle is doing is neither relevant
nor necessary. Only emergent macroscopic properties
like temperature, magnetization, pressure, etc. are of
interest.

4 It does not help that in quantum mechanics the microscopic de-
grees of freedom are exponential in the particle number, yielding

unfathomable 1010
23

degrees of freedom.

The framework of quantum statistical mechanics pro-
vides powerful tools that allow to calculate macroscopic,
experimentally accessible observables under a few key
assumptions.
One central idea in statistical mechanics is to consider
statistical ensembles, i.e., many identical copies of a
given system. Each copy is situated in the microstate
|ψα⟩ and weighs in with a probability wα.
Mathematically, a statistical ensemble is represented by
a density operator

ρ =
∑
α

wα|ψα⟩⟨ψα| , (9)

which is a positive-semidefinite Hermitian operator of
unit trace, i.e., Tr[ρ] = 1. A measure of how many
microstates are involved in the mixture ρ is given by
the purity

γ = Tr[ρ2] . (10)

A density operator represents a pure state if γ = 1, in
this case ρ = |ψ⟩⟨ψ| for some |ψ⟩, and a mixed state if
γ < 1. Maximum mixedness is achieved for γ = 1/d,
where d is the Hilbert-space dimension.
The time evolution of a density operator is governed by
the von Neumann equation

i
∂

∂t
ρ(t) = [H, ρ(t)] . (11)

For a pure state this reduces to the Schrödinger equa-
tion [Eq. (3)]. A formal solution for the time-dependent
density operator is given by

ρ(t) = U(t)ρ(0)U†(t) , (12)

where again the time-evolution operator occurs. Time-
dependent expectation values with respect to a mixed
state are calculated via

⟨A⟩ρ(t) = Tr[ρ(t)A] , (13)

which again reduces to Eq. (7) for a pure state.
The introduction of mixed states further allows to as-
sign states to subsystems of larger, composite systems.
Conceptually dividing a given system into subsystems
“A” and “B”, the reduced density operator ρA of sub-
system “A” can be obtained from the state ρ of the
whole system by “tracing out” subsystem “B”, i.e.,

ρA = TrB[ρ] . (14)

In general, ρA is a mixed state, even if ρ is pure. This
is the case if entanglement exists between the two sub-
systems, i.e., ρ can not be written as a product state
ρA ⊗ ρB.
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The von Neumann entropy (a similar measure as purity)
of a mixed state is defined by

SvN(ρ) = −kBTr[ρ log ρ] , (15)

where kB denotes Boltzmann’s constant, which will be
set to unity in the following (kB = 1). The von Neu-
mann entropy is an informational form of entropy and
measures the amount of information (or lack thereof)
contained in the state ρ. For a pure state it vanishes,
since it is known for certain in which state the sys-
tem is situated. Importantly, the von Neumann en-
tropy is invariant under unitary transformations, i.e.,
it is a conserved quantity. This observation has fu-
eled (and still fuels) the search for alternative defini-
tions of entropy, which should ideally increase over the
course of time. Due to the subadditivity of SvN, i.e.,
SvN(ρ) ≤ SvN(ρA) + SvN(ρB), the von Neumann en-
tropy of subsystems is allowed to increase over time.
Of particular importance are statistical ensembles that
describe systems at equilibrium, so-called thermody-
namic ensembles. To determine which microstates par-
take in these ensembles, further assumptions are needed.
The principle of maximum entropy states that an equi-
librium ensemble should maximize the entropy while
still respecting the conditions imposed on the system.
In 1957, Jaynes pointed out that there is a correspon-
dence between entropy and information, such that the
maximum entropy state is also the state that requires
the least amount of information to describe [26, 27].
Thus, the above principle is also known as Jaynes’ prin-
ciple and it can be viewed as an application of Occam’s
razor. The two most prominent thermodynamic ensem-
bles are introduced in the following.
The microcanonical ensemble describes an isolated sys-
tem with fixed energy E at equilibrium. Included in
the ensemble are all energy eigenstates within an en-
ergy shell I = [E −∆/2, E +∆/2] of width ∆ centered
around the energy E , i.e.,

ρmc =
1

ΩI

∑
n:En∈I

|n⟩⟨n| . (16)

For most purposes, the width of the energy shell ∆
should be small compared to the width of the whole
spectrum, but large compared to the average level spac-
ing. The symbol ΩI denotes the number of energy eigen-
states in the energy interval. Microcanonical expecta-
tion values5 of observables are then given by

⟨A⟩ρmc = Tr[ρmcA] . (17)

5 Throughout this thesis, different notations for this expectation
value occur, which are ⟨A⟩ρmc , ⟨A⟩mc and Amc.

The von Neumann entropy of the microcanonical ensem-
ble conveniently coincides with the Boltzmann entropy,
i.e., SvN(ρmc) = log ΩI .
The second prominent ensemble is the canonical ensem-
ble, which describes a system weakly coupled to a larger
heat bath at temperature T = 1/β. The density oper-
ator that maximizes the von Neumann entropy given a
fixed mean energy reads

ρcan =
1

Zβ

∑
n

e−βEn |n⟩⟨n| , (18)

with the canonical partition function Zβ = Tr[e−βH].
In the thermodynamic limit, i.e., in the limit of infinite
systems, the canonical distribution becomes sharply
peaked and expectation values of observables generally
coincide with predictions by the microcanonical ensem-
ble6 at energy E = Tr[ρcanH]. To calculate expectation
values for large systems, this equivalence of ensembles
can be exploited to choose a thermodynamic ensemble
that is easy to work with.

2. Equilibration and Thermalization

While the rules of statistical mechanics presented in the
last section accurately describe equilibrated systems,
the term equilibrium has not yet been further elaborated
on. Following an intuitive notion, an equilibrium state is
characterized by stationary dynamics, i.e., expectation
values of observables no longer drastically change over
time and only mildly fluctuate around some equilibrium
value. This practical definition requires a (subjective)
choice of an “acceptable” range δA of deviations, e.g.,
one percent of the difference between initial and equi-
librium value. Further notions of equilibration include,
e.g., equilibration on average [28] or equilibration of sub-
systems [29–31].
In view of the aforementioned Poincaré recurrences,
a system can not remain in equilibrium indefinitely.
Therefore, one might argue that “true” equilibration can
not occur in isolated quantum systems. The time scales
at which these recurrences happen, however, are so large
that calling them “astronomical” would not do justice.
Even for moderately sized systems consisting only of a
handful of particles, the recurrence times easily exceed

6 Although temperature is a priori defined only in the canonical
case, there are ways to assign a temperature to microcanon-
ical and even pure states. For instance, as described above,
given an energy E of a microcanonical or pure state, the cor-
responding inverse temperature is given by the specific β for
which E = Tr[e−βHH]/Zβ . Another possibility, which is em-
ployed in some publications, is via the density of states, i.e.,
β = ∂ log Ω(E)/∂E|E=E .
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the age of the universe. Thus, recurrence events are of
no relevance to the practical issues of equilibration ne-
gotiated here.
The temporal average over a time interval [0, τ ] of a
time-dependent expectation value is given by

Aτ =
1

τ

∫ τ

0

⟨A(t)⟩dt . (19)

Of particular interest is the long-time average7

A = lim
τ→∞

Aτ , (20)

which can be explicitly calculated. To this end, the ex-
pression for the time-dependent expectation value of a
pure state8 in Eq. (8) is conveniently split into a diago-
nal and an off-diagonal part, i.e.,

⟨A(t)⟩ = ⟨ψ(t)|A|ψ(t)⟩ (21)

=
∑
n

|cn|2Ann +
∑
m ̸=n

c⋆mcne
i(Em−En)tAmn .

Plugging Eq. (21) into Eq. (20), the off-diagonal terms
dephase and average to zero under the non-resonance
condition9. The diagonal term remains and the long-
time average evaluates to

A =
∑
n

|cn|2Ann . (22)

This expression still features the initial state in the form
of the coefficients cn. Intuitively, the equilibrium value
should, however, be independent of the specific initial
state, such that the system has lost all memory once
equilibrium is reached. The two subsequent sections
IIA 3 and IIA 4 offer mechanisms that solve this issue
and lead to initial state independence [34].
The long-time average A can be interpreted as the ex-
pectation value with respect to a diagonal ensemble de-
fined by ρde =

∑
n |cn|2|n⟩⟨n|.

Note that the value A always exists, even if the expec-
tation value does not remain close to it. Therefore, a
properly equilibrated observable should further feature
only small deviations from A.

7 It is assumed that limits of this type are well-defined.
8 For simplicity, the following considerations are laid out for pure
states. However, they generalize to mixed states in a straight-
forward manner by replacing |cn|2 → ρnn and c⋆mcn → ρmn.

9 Which states that En −Em = Ek −El if and only if n = k and
m = l [32, 33].

These deviations can be quantified by the long-time av-
erage of the temporal fluctuations10, which is given by

σ2
A = lim

τ→∞

1

τ

∫ τ

0

[⟨A(t)⟩ − A ]2 dt (23)

=
∑
m ̸=n

|cm|2|cn|2|Amn|2 .

The second line follows by plugging in Eq. (21) and
again assuming non-degenerate energy gaps. Thus, it
is evident from Eq. (23) that fluctuations are to some
extent controlled by the off-diagonal elements.
In systems with many degrees of freedom, equilibration
(in some sense) can be shown to occur quite generically
[36–38]. In fact, preparing setups that do not equili-
brate seem to demand a lot of fine-tuning [39].
Mathematical relations that ensure equilibration are fre-
quently cast in the form of inequalities of the type

µ[TδA] ≤ f [H,A, ρ] . (24)

Here, µ[ · ] denotes some measure of the time TδA spend
“away” from equilibrium, i.e., the amount of time at
which |⟨A(t)⟩ − A| ≥ δA. The function f [ · ] on the
right-hand side of Eq. (24) denotes some general, pos-
sibly quite involved function of the Hamiltonian H, ob-
servable A and initial state ρ.
The logical question that arises next is whether the long-
time equilibrium state agrees with predictions by statis-
tical mechanics. As mentioned, initial non-equilibrium
conditions will persist in the dephased state ρde since
the ρnn are conserved quantities.
Nevertheless, the long-time average value A should co-
incide with the thermal value, e.g., Amc in the micro-
canonical case. If this is indeed the case, the system is
said to have undergone thermalization and

A ≃ Amc . (25)

The two following sections discuss sufficient conditions
under which thermalization eventually occurs.

10 The temporal fluctuations concern the deviation of ⟨A(t)⟩ from
A and are distinct from “quantum fluctuations”, which concern
the deviation of measurement outcomes from A [35].
For comparison, the long-time average of quantum fluctuations
reads

lim
τ→∞

1

τ

∫ τ

0
⟨[A(t)−A]2⟩dt .

11



3. Eigenstate Thermalization Hypothesis

The Eigenstate Thermalization Hypothesis (ETH) out-
lines a fundamental mechanism that ensures eventual
thermalization of isolated quantum systems [15, 16]. For
instance, the ETH reconciles the apparent discrepancy
between the microcanonical [Eq. (17)] and the long-time
average expectation value [Eq. (22)] discussed at the end
of Sec. II A 2.
One central idea of the hypothesis is that the expecta-
tion values ⟨n|A|n⟩ of local, few-body observables with
respect to energy eigenstates of generic, non-integrable
Hamiltonians coincide with the thermal equilibrium
value Amc at that energy11.
Srednicki proposed a formulation of the ETH, which can
be motivated by random-matrix theory [40], that is an
ansatz for the matrix representation of an observable in
the energy eigenbasis [35], i.e.,

Amn = A(ϵ)δmn +Ω(ϵ)−
1
2 fA(ϵ, ω)rmn , (26)

with ϵ = (Em + En)/2 and ω = Em − En. Crucially,
A and fA are smooth functions of their arguments
and A(ϵ) coincides with the microcanonical expectation
value at energy ϵ. The rmn can be thought of as ran-
dom12 numbers (only constrained to rmn = r⋆nm) drawn
from a Gaussian distribution with zero mean and unit
variance. Finally, Ω(ϵ) denotes the density of states at
energy ϵ. This ansatz incorporates the aforementioned
idea of thermal eigenstates, but also has further conse-
quences, which will be briefly discussed in the following.
Starting from Eq. (22) and assuming the ETH to be
valid, an initial (pure) state with a relatively sharp en-
ergy distribution around an energy E yields the long-
time average expectation value

A =
∑
n

|cn|2Ann ≈ A(E)
∑
n

|cn|2 = A(E) . (27)

Here, the diagonal elements Ann only change negligibly
over the populated energy range and were thus approx-
imated by A(E), which is per ETH ansatz more or less
independent of n. Continuing, the microcanonical ex-
pectation value reads

Amc =
1

ΩI

∑
n:En∈I

Ann ≈ A(E)
ΩI

∑
n:En∈I

1 = A(E) , (28)

where the same approximation was employed. Thus,
A ≃ Amc and both expectation values coincide.

11 This means that energy eigenstates are “typical”, cf. Sec. II A 4.
12 Recently, investigations into the existence of correlations be-

tween matrix elements of physical observables have gathered
much attention [41].

This finding is often referred to as the diagonal ETH,
since only properties of A(ϵ) were utilized.
While the diagonal ETH ensures matching long-time
and microcanonical mean values, in thermal equilib-
rium the time-dependent expectation value should fur-
ther only fluctuate mildly. As is evident from Eq. (23),
the off-diagonal elements Amn need to be small in order
for σ2

A to be small. Plugging the ETH ansatz [Eq. (26)]
into the expression for the long-time average of the tem-
poral fluctuations [Eq. (23)] yields

σ2
A =

∑
m̸=n

|cm|2|cn|2|Amn|2 (29)

≤ max
m ̸=n

|Amn|2 ∝ Ω(E)−1 .

At the inequality sign, the off-diagonal elements were
bounded by their maximum and normalization of the
state was used. The final relation reveals that the tem-
poral fluctuations are inversely proportional to the den-
sity of states at energy E . Since Ω(E) is routinely ex-
ponentially large in system size [42], the fluctuations
in turn become exponentially small in system size and
expectation values indeed stay close to their respective
equilibrium values. This finding, together with the es-
sentially random off-diagonal elements, is commonly re-
ferred to as the off-diagonal ETH.
To summarize, the off-diagonal ETH implies equilibra-
tion on average, while (in addition) the diagonal ETH
implies thermalization on average. Thus, the full ETH
(diagonal + off-diagonal) is a sufficient condition for
thermalization on average in isolated quantum systems
(assuming suitable initial states).
There exists a multitude of variations of the ETH, which
either slightly weaken or strengthen certain assumptions
or statements. For instance, the rigged ETH [19] is a
strengthened version of the ETH in which the the en-
velope function fA(ϵ, ω) is additionally assumed to be
(approximately) independent of the mean energy ϵ, i.e.,
fA(ϵ, ω) ≈ fA(ω), at least within the populated energy
interval.
To date, a rigorous “proof” of the ETH’s validity
based on physically plausible conditions is still lack-
ing. However, it is generally believed that the ETH
holds for “physical” observables (local and few-body)
and generic, non-integrable Hamiltonians [40]. On the
one hand, this belief stems from various numerical inves-
tigations of quantum lattice models, in which the ETH
is explicitly checked by computing corresponding ma-
trix elements [43–48]. On the other hand, there exist
heuristic arguments in favor of the general validity of
the ETH [16, 33, 40].
The daunting task of understanding under which condi-
tions the ETH holds naturally extends to characterizing
scenarios in which it breaks down.
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The two most prominent classes of systems in this
category are integrable13 systems and certain types of
disordered systems.
Systems of the first class are commonly characterized
by an extensive number of local conservation laws
[49, 57]. Consequently, integrable systems usually fail
to thermalize to standard statistical ensembles such
as the microcanonical ensemble. Rather, they have
been found to reach steady states matching predictions
by the generalized Gibbs ensemble [58], which is the
ensemble obtained by taking into account additional
conserved quantities when applying the principle of
maximum entropy.
The second class consists of systems with (sufficiently
strong) disorder, leading to many-body localization
(MBL) [59–62]. Systems exhibiting MBL routinely
feature suppressed transport properties, inhibiting
the spread of information through the systems. As a
consequence, many-body localized systems fail to act as
their own heat bath and thermalization does not occur.
A transition between a MBL- and an ETH-phase may
occur by tuning the disorder strength [63].
While none of the publications [P1–P6] take the
ETH into the main focus, the hypothesis turns up in
Pubs. [P1, P2] as part of analytical arguments regard-
ing bounds on equilibration times. Further, the close
relation between the rigged ETH and the (yet to be
introduced) properties of “stiffness” and “smoothness”
of transition probabilities is discussed in Pub. [P4].

4. Quantum Typicality

The Schrödinger equation (or von Neumann equation
for that matter) entail no mechanism that changes the
purity or mixedness of a state. Consequently, the purity
γ = Tr[ρ2] is a conserved quantity and it is impossible
for a pure initial state ρ(0) = |ψ(0)⟩⟨ψ(0)| to unitarily
evolve into an equilibrium ensemble like ρmc. However,
a quantum state itself is not measurable. Rather, direct
measurements or expectation values of observables are
of physical relevance.
The concept of quantum typicality states that, under
certain conditions, pure states can behave similarly to
entire statistical ensembles and yield basically the same
expectation values [17, 18, 64, 65]. In particular, the
vast majority of pure states (“typical” states) give rise
to expectation values close to the thermal equilibrium
value. In other words, non-equilibrium pure states are
mathematically rare.

13 The issue of integrability in quantum mechanics is much dis-
cussed topic in itself [28, 49]. Common definitions are based on
the Bethe ansatz [50–52], energy level statistics [53–55] or the
existence of an integrable classical limit [56].

Pure states evolving in time are thus exceedingly likely
to evolve into typical states signaling apparent equili-
bration. Further, the state is likely to remain in the
giant “bubble” of typical states, even though the dy-
namics never come to a halt.
To demonstrate that a random state is likely to be typ-
ical, it needs to be specified what is meant by drawing
a random state from the Hilbert space. With respect to
some arbitrary orthonormal basis {|ξk⟩}, any pure state
can be written as |ϕ⟩ =

∑
k ck|ξk⟩ with complex coef-

ficients ck. It can be shown that drawing the real and
imaginary parts of ck from a Gaussian distribution with
zero mean and variance 1/2 corresponds to a uniform
distribution on a complex sphere [66] (almost sphere,
but variance of norms is small, see below). The result-
ing distribution of pure states is invariant under unitary
transformations, i.e., |ϕ⟩ and |ϕ′⟩ = U|ϕ⟩ are equally
likely (U is an arbitrary unitary operator). The state
|ϕ⟩ is said to be drawn according to the unitary invari-
ant Haar-measure and is called a Haar-random state
(hereafter just referred to as a random state).
Starting from the ensemble of random states |ϕ⟩, a new
ensemble can be constructed with states

|ψ⟩ =
∑
k

ckR|ξk⟩ , (30)

where R is some Hermitian, non-negative operator. A
state |ψ⟩ from this ensemble is likely to yield similar
expectation values as the statistical ensemble ρ = RR†

[67], provided the following conditions are met. First,
the state ρ should be sufficiently mixed such that
γ = Tr[ρ2] ≪ 1. Second, the spectral width of the perti-
nent observable A should not significantly change under
upscaling of the system (as is the case for, e.g., local op-
erators and adequately defined sums thereof). Note that
R can be chosen such that Tr[ρ] = 1.
Let the average over the random state ensemble from
Eq. (30) be denoted by E[ · ]. The ensemble average of
the (unnormalized) expectation value of some observ-
able A then evaluates to

E[⟨ψ|A|ψ⟩] =
∑
i,j

E[c⋆i cj ]⟨ξi|R†AR|ξj⟩ = Tr[ρA] , (31)

where E[c⋆i cj ] = δij was used [65, 67, 68]. Indeed, the
ensemble average coincides with the expectation value
of A with respect to ρ. Abbreviating A′ = R†AR, the
ensemble average of the squared expectation value is
given by [65, 67, 68]

E[⟨ψ|A|ψ⟩2] =
∑
i,j,k,l

E[c⋆i cjc⋆kcl]⟨ξi|A′|ξj⟩⟨ξk|A′|ξl⟩

= Tr[(ρA)2] + Tr[ρA]2 , (32)
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where E[c⋆i cjc⋆kcl] = δijδkl + δilδjk was used14. The re-
sulting ensemble variance can then be bounded as

var(A) = E[⟨ψ|A|ψ⟩2]− E[⟨ψ|A|ψ⟩]2 (33)

= Tr[(ρA)2] ≤ Tr[ρ2A2] ≤ γ||A||2 ,

where at the first inequality sign, the Cauchy-Schwarz
inequality with respect to the Frobenius inner product
(A|B) = Tr[A†B] was employed. At the second in-
equality sign, the trace was carried out in the eigen-
basis {|aj⟩} of the observable and the squares of the
eigenvalues a2j were bounded from above by the square

of the largest absolute eigenvalue ||A||2. Since, per as-
sumption, ||A|| only changes mildly under upscaling and
γ ≪ 1, the variance is quite small. Introducing the ef-
fective dimension deff = γ−1, the standard deviation
thus scales as ∝ 1/

√
deff. Consequently, the vast major-

ity of states from the ensemble in Eq. (30) indeed yield
expectation values close to ⟨A⟩ρ.
Choosing A as the unit operator (A = 1), it im-
mediately follows that E[⟨ψ|ψ⟩] = 1 and further that
E[(⟨ψ|ψ⟩ − 1)2] = Tr[ρ2] ≪ 1.

Setting R = 1/
√
d yields E[⟨ψ|A|ψ⟩] = Tr[A]/d and

var(A) = Tr[A2]/d2 ≤ ||A||2/d. Here, the identity op-
erator can be defined on the whole Hilbert space or on
a subspace specified by some constraint, e.g., a micro-
canonical energy shell. In this case, a random state |ψ⟩
yields the microcanonical expectation value with high
probability.
Relating this result back to Sec. IIA 3, the diagonal
ETH basically states that energy eigenstates are typi-
cal. However, it is important to note that the ETH and
typicality are two distinct concepts. While the ETH
is expected to hold for local, few-body observables in
non-integrable systems [40], typicality only relies on a
sufficiently large Hilbert space and also works when the
ETH is violated.
A further application of the typicality concept is canon-
ical typicality [17, 69, 70], which reveals that the vast
majority of pure states of an isolated compound sys-
tem yield reduced density operators of small subsystems
(by tracing out the larger part of the system) that are
practically indistinguishable from the canonical ensem-
ble on the considered subsystem (relating respective en-
ergy and temperature as described in footnote 6).
Yet another remarkable result is dynamical typicality
[66, 71–73], which extends the above considerations to
time-dependent expectation values. As mentioned in
Sec. II A 1, in the Heisenberg picture of motion the ob-
servable A(t) evolves in time, while the state ρ does not.

14 This relation neglects the case i = j = k = l, which, however,
is of order d−1 and therefore negligible when d≫ 1 [65].

Due to unitarity, the spectrum of A remains unchanged,
especially ||A||, such that the above upper bound on
the ensemble variance still holds. From Eq. (31) and
replacing A → A(t), it follows that the overwhelming
majority of pure states from the ensemble in Eq. (30)
feature time-dependent expectation values similar to
the time-dependent expectation value with respect to
the mixed state ρ.
In Pubs. [P1–P6], the concept of typicality reappears in
several places. In particular, dynamical typicality was
employed in Pubs. [P1, P3] to drastically reduce the
computational cost of the simulations (cf. Sec. IID 2).

B. Fluctuation Theorems

The second law of thermodynamics determines in which
direction thermodynamic processes are allowed to hap-
pen and in which they are not. It can be stated as

dS ≥ δQ

T
. (34)

Here, δ denotes an imperfect differential, since heat Q,
just like work W , is path-dependent and thus no func-
tion of state. For a system that exchanges no heat with
its surrounding, Eq. (34) becomes dS ≥ 0. Thus, in iso-
lated systems the entropy can only increase. Equality
holds if the process is reversible.
There are various equivalent formulations of the second
law, one of which goes back to Clausius (1854) [74]:
“Heat can never pass from a colder to a warmer body
without some other change, connected therewith, occur-
ring at the same time.”15 In this sense, the second law
introduces a kind of irreversibility, which is absent in
the microscopic laws of motion.
The second law firmly holds for processes involving
macroscopic objects. However, going to smaller and
smaller systems, it becomes apparent that the second
law is merely of statistical nature. There may be ex-
ceedingly rare but possible processes in which the en-
tropy does indeed decrease [75]. These deviations are
not random, but themselves obey rigid rules, which are
often summarized under the name of fluctuation theo-
rems [8, 75–81]. Fluctuation theorems formulate and to
some extent generalize the second law.
This section provides the theoretical background for
publication [P4]. To begin, in Sec. II B 1, the general
strategy to derive integral and detailed fluctuation the-
orems is presented. Said strategy is exemplarily applied
to the case of an isolated, driven system in Sec. II B 2.
Finally, Sec. II B 3 introduces the fluctuation theorem
central to Pub. [P4], which concerns the entropy pro-
duction of a system-bath setup.

15 Original quote is in german.
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1. Integral and Detailed Fluctuation Theorems

This section introduces two-point measurement statis-
tics and presents a strategy to derive generally valid
fluctuation theorems for various scenarios. The consid-
erations laid out in the following as well as in Sec. II B 2
closely follow Ref. [8].
Consider an isolated, possibly driven quantum system,
i.e., the Hamiltonian may depend on time. In this case,
the time-evolution operator reads

U(t) = exp+

[
− i

∫ t

0

H(t′) dt′
]
, (35)

where the “+”-subscript denotes proper time-ordering.
Further, the observable may be time dependent (in the
Schrödinger picture), e.g., due to an external driving.
Consequently, eigenvalues and eigenstates of the observ-
able may depend on time as well, i.e., A(t)|at⟩ = at|at⟩.
The initial state is denoted by ρ0.
One of the central quantities to construct fluctuation
theorems is the joint probability to measure the eigen-
value a0 at time t = 0 and the eigenvalue at at some
later time t, after the system has undergone unitary
time evolution. This probability is given by

P (at, a0) = Tr[ΠatU Πa0ρ0Πa0U†Πat ] (36)

= R(at, a0)⟨a0|ρ0|a0⟩ .

Here, Πat = |at⟩⟨at| denotes the projector into the
eigensubspace16 associated with the eigenvalue at. It
is straightforward to show that

∑
at,a0

P (at, a0) = 1

by employing the general properties Π2
at = Πat and∑

at
Πat = 1 of projection operators.

In Eq. (36), the transition probability to go from the
state |a0⟩ at t = 0 to the state |at⟩ at time t reads

R(at, a0) = |⟨at|U|a0⟩|2 . (37)

The joint probability can be used to define a new expec-
tation value17 ⟨⟨·⟩⟩, which denotes an average with re-
spect to differences in projective measurement outcomes
at the initial time t = 0 and some final time t. For any
quantity q(at, a0), this expectation value is defined as

⟨⟨q⟩⟩ =
∑
at,a0

P (at, a0)q(at, a0) . (38)

16 For simplicity, it is assumed that the eigenvalues at are non-
degenerate. In the case of degeneracy, additional indices i, j
can be introduced to differentiate states with the same at.

17 Not to be confused with the quantum mechanical expectation
value ⟨ · ⟩ defined in Eq. (7).

In analogy to Eq. (36), a corresponding time-reversed
joint probability is given by

P tr(a0, at) = Tr[Πa0U†Πatρ
tr
0 ΠatU Πa0 ] (39)

= R(at, a0)⟨at|ρtr0 |at⟩ .

Here, the initial state ρtr0 simply evolves backwards in
time under U†. Proceeding from the joint probabilities
in Eqs. (36) and (39), the quantity

s(at, a0) = log
P (at, a0)

P tr(a0, at)
= log

⟨a0|ρ0|a0⟩
⟨at|ρtr0 |at⟩

(40)

can be defined. Constructing e−s(at,a0) from Eq. (40),
an integral fluctuation theorem (IFT) of the form

⟨⟨e−s⟩⟩ =
∑
at,a0

P (at, a0)e
−s(at,a0) = 1 (41)

immediately follows from the normalization of the time-
reversed joint probabilities P tr(a0, at).
Exploiting the Jensen inequality e⟨⟨x⟩⟩ ≤ ⟨⟨ex⟩⟩, Eq. (41)
yields ⟨⟨s⟩⟩ ≥ 0, which resembles the second law of ther-
modynamics and hints at a close relation between the
quantity s(at, a0) and thermodynamic entropy.
Defining a probability distribution for continuous s via

p(s) =
∑
at,a0

P (at, a0)δ(s− s(at, a0)) (42)

and a corresponding distribution ptr(s) for the back-
wards process, a detailed fluctuation theorem can be de-
rived [8], reading

p(s)

ptr(−s)
= es . (43)

Thus far, the fluctuation theorems in Eqs. (41) and (43)
are completely general without any further restrictions.
They are also useless since s(at, a0) and ⟨⟨·⟩⟩ are
basically defined to ensure their validity.
Fluctuation theorems with physical meaning only
arise from Eqs. (41) and (43), when s(at, a0) can be
exclusively expressed in terms of physical, measurable
quantities, i.e., eigenvalues of A(0) and A(t). Therefore,
suitable A(t), ρ0 and ρtr0 need to be found, for which
such useful fluctuation theorems emerge. The arguably
most prominent yet simple example of a fluctuation
theorem is presented in the next section.
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2. Jarzynski Equation and Crooks Relation

This section derives detailed and integral work fluctua-
tion theorems for isolated, driven quantum systems as
special cases of the recipe presented in the last section.
To set the stage, consider a system described
by the Hamiltonian H(0) in the canonical state
ρ0 = e−βH(0)/Zβ(0) resulting from contact with a heat
bath at inverse temperature β. At t = 0, the reser-
voir is removed and the energy is measured for the first
time, i.e., A(t) = H(t) and a0 = E0. After the measure-
ment, the system evolves unitarily in time under the
time-dependent Hamiltonian H(t). The second energy
measurement is taken at some later time t, i.e., at = Et.
In the backwards process, the system is initially
in the canonical state with respect to H(t), i.e.,
ρtr0 = e−βH(t)/Zβ(t). The energy is measured at some
time t. Then, the state is evolved backwards in time
after which the energy is measured again at t = 0.
According to Eq. (40), the quantity s evaluates to

s(Et, E0) = β[(Et − E0)−∆F ] (44)

simply by plugging in energy eigenstates and respec-
tive initial states. Here, ∆F = F (t)− F (0) denotes the
difference in free energy F (t) = −β−1 logZβ(t) between
both canonical equilibrium states. Indeed, s only de-
pends on physically measurable quantities.
Since the system is isolated, all changes in energy
Et−E0 can be attributed to work w done on the system
by the driving, i.e.,

w = Et − E0 . (45)

In reference to Eq. (41), the Jarzynski equation [76]
reads

⟨⟨e−βw⟩⟩ = e−β∆F . (46)

Due to Jensen’s inequality it follows that

⟨⟨w⟩⟩ ≥ ∆F , (47)

which is a common formulation of the second law of
thermodynamics when work can be done on/by the sys-
tem. The expectation value ⟨⟨w⟩⟩ can also be expressed
in terms of standard quantum mechanical expectation
values, i.e.,

⟨⟨w⟩⟩ = ⟨H(t)⟩ρ(t) − ⟨H(0)⟩ρ(0) . (48)

The corresponding detailed fluctuation theorem, called
Crooks relation [78], is given by

p(w)

ptr(−w)
= eβ(w−∆F ) . (49)

3. IFT for Entropy Production in a

System-Bath Compound

This section derives the integral fluctuation theorem rel-
evant to Pub. [P4] and discusses a generalizing formu-
lation to arbitrary initial states.
Consider a system-bath setup with Hamiltonian

H = Hsys +Hbath +Hint , (50)

where Hsys is the system Hamiltonian and Hbath is the
bath Hamiltonian. System and bath are allowed to in-
teract via an interaction term Hint. The eigenstates of
the system and bath are denoted by |k⟩ and |b⟩, respec-
tively. Bath energy eigenvalues are denoted by εbbath.
The composite system is initialized in a product state

ρ0 = ρsys(0)⊗ e−βHbath/Zβ (51)

of some initial system state ρsys(0) and a canonical bath
state with Zβ = Tr[e−βHbath ]. The reference state ρtr0 for
the backwards process simply replaces ρsys(0) by ρsys(t).
The observable under consideration is an “entropy-
production operator” given by18

σ(t) = − log ρsys(t) + βHbath , (52)

which is explicitly time dependent due to the first term.
Eigenvalues of the entropy-production operator read

σj,a(t) = − logP jsys(t) + βεabath , (53)

where P jsys(t) are the eigenvalues of ρsys(t). Correspond-

ing eigenstates are denoted by |σj,a(t)⟩.
Now that all quantities that enter Eq. (40) have been
introduced, said equation yields

s(ja, kb) = − log
P jfin
P kini

+ β(εabath − εbbath) , (54)

where the short-hand notation P kini = P ksys(0) and

P jfin = P jsys(t) was used. As required, s is expressed only
in terms of eigenvalues of σ(t).
Continuing, s is exponentiated, i.e.,

e−s(ja,kb) =
P jfin
P kini

e−β(ε
a
bath−ε

b
bath) . (55)

Further, the joint probability [Eq. (36)] reads

P (ja, kb) = R(ja, kb)P kinie
−βεbbath/Zβ . (56)

18 In case of further conserved quantities, the second term should
be modified accordingly. For instance, β(Hbath−µNbath) when
particle number is conserved. Here, µ is the chemical potential.
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The resulting IFT then holds by construction, i.e.,

⟨⟨e−s⟩⟩ =
∑
j,a,k,b

P (ja, kb)e−s(ja,kb) (57)

=
∑
j,a,k,b

R(ja, kb)P kini
e−βε

b
bath

Zβ
P jfin
P kini

e−β(ε
a
bath−ε

b
bath)

=
∑
j,a,k,b

R(ja, kb)P jfin
e−βε

a
bath

Zβ

=
∑
j,a

P jfin
e−βε

a
bath

Zβ
= 1 .

Here, the double stochasticity of the transition proba-
bilities was utilized, i.e.,

∑
k,bR(jk, ab) = 1, as well as

the normalization of respective states in the last step.
Hence, an IFT for the entropy production of a system-
bath compound has been shown to hold for canonical
bath states. Employing the Jensen inequality yields

⟨⟨s⟩⟩ = ⟨σ(t)⟩ρ(t) − ⟨σ(0)⟩ρ(0) (58)

= ∆Ssys + β∆Ubath ≥ 0 .

Here, ∆Ssys is the change in von Neumann entropy of
the system and ∆Ubath accounts for entropy change in
the bath due to heat transfer. This equation corre-
sponds to a generalized Clausius inequality.
A naturally arising question is whether an IFT can
be derived that also holds for microcanonical (or
even pure) bath states. Naively executing the pre-
sented strategy with states ρ0 = ρsys(0)⊗ ρmc and, e.g.,
ρtr0 = ρsys(t)⊗ ρmc yields a (trivially) valid relation.
However, this relation would not be useful since loga-
rithms of microcanonical occupation probabilities occur,
which can not be directly measured (in contrast to the
canonical case, in which eigenvalues of Hbath appear).
At this point, a slight change in perspective proves help-
ful. Instead of starting from ρ0 and ρtr0 and following
the above recipe, begin by considering some physical
quantity sph(at, a0) of interest resembling entropy. An
expression for ⟨⟨e−sph⟩⟩ is obtained via Eq. (38), i.e.,

⟨⟨e−sph⟩⟩ =
∑
at,a0

⟨a0|ρ0|a0⟩R(at, a0) e−sph(at,a0) . (59)

For an attempt at a microcanonical version of Eq. (57),
choose sph as in Eq. (54) and an initial state
ρ0 = ρsys(0)⊗ ρmc. Now, if a suitable ρtr0 could be found
such that sph(at, a0) = s(at, a0) [cf. Eq. (40)], one is in
business since in this case automatically ⟨⟨e−sph⟩⟩ = 1.
If no such ρtr0 can be found, the quantity ⟨⟨e−sph⟩⟩ may
still be close to unity and, thus, an IFT may still approx-
imately hold due to other mechanisms. Publication [P4]
identifies the properties stiffness and smoothness of
R(at, a0) as such potential mechanisms.

C. Recursion Method Framework

This section introduces the framework of the recursion
method [82, 83] mainly employed in Pubs. [P5, P6]. In
particular, Sec. II C 1 presents the Lanczos algorithm
in Liouville space. Thereafter, in Sec. II C 2, further
central quantities are defined and their relation among
each other is discussed. Finally, the universal operator
growth hypothesis as brought forth in Ref. [84] is
presented in Sec. II C 3.

1. Operator Growth in Liouville Space

A pair of Hamiltonian H and observable19 O give rise
to a corresponding autocorrelation function20

C(t) = Tr[O(t)O] , (60)

where the observable evolves in time according to the
Heisenberg equation

d

dt
O(t) = iLO(t) . (61)

The superoperator L acting on the observable as
LO ≡ [H,O] is called the Liouvillian. Just as wave
functions evolve under the Hamiltonian, operators
evolve under the Liouvillian, i.e., O(t) = eiLtO.
For the following considerations, it is convenient to
work directly in the Hilbert space of operators, the
Liouville space, and denote its elements O as states
|O). The Liouville space is equipped with an infinite-

temperature inner product (O1|O2) = Tr[O†
1O2], which

induces a norm via ||O|| =
√

(O|O). In this man-
ner, the autocorrelation function may be written as
C(t) = (O|eiLt|O).
For now, the Liouville space is assumed to be of finite
dimension d. This restriction is dropped in Pub. [P5],
where infinite systems are considered.
For the purpose of characterizing operator growth,
choosing the so-called Krylov basis as a basis of the
Liouville space is advantageous. The Krylov basis is
constructed by considering the observable O as an
initial “seed” and repeatedly applying L. Every newly
generated state is orthogonalized with respect to the
set of already existing states using a Gram-Schmidt
procedure. This process, also referred to as the Lanczos
algorithm, is detailed in the following [84].

19 To keep notation consistent with Pubs. [P5, P6], the observable
is now denoted by O instead of A.

20 The autocorrelation function is usually normalized such that
C(0) = 1.
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To begin, consider the normalized initial state
|O0) = |O), i.e., (O|O) = 1, and set b1 = ||LO0|| as well
as |O1) = L|O0)/b1. Then iteratively compute

|Qn) = L|On−1)− bn−1|On−2) , (62)

bn = ||Qn|| ,
|On) = |Qn)/bn .

The representation of the Liouvillian with respect to the
Krylov basis is tridiagonal21, i.e.,

Lmn = (Om|L|On) =


0 b1 0 ...

b1 0 b2

0 b2 0
. . .

...
. . .

. . .


mn

, (63)

where the Lanczos coefficients bn are real, positive num-
bers output by the algorithm. They can be interpreted
as hopping amplitudes in a tight-binding model. In this
manner, many physical problems, like the calculation
of autocorrelation functions, can be reduced to a one-
dimensional (finite or semi-infinite) chain, which is re-
ferred to as the “Mori-chain” in the title of Pub. [P6].
The coefficients bn can be used to characterize the com-
plexity growth of operators and as a signature of quan-
tum chaos [84–90].
Rewriting the Heisenberg equation of motion in the
Krylov basis yields

∂tφn = bnφn−1 − bn+1φn+1 , (64)

where φn(t) ≡ i−n(On|O(t)). The initial condition is
given by φn(0) = δn0 and φ−1 ≡ 0.
The above Eq. (64) takes the form of a discrete
Schrödinger equation and can be numerically solved
by familiar means of, e.g., exact diagonalization or
iterative schemes, cf. Sec. IID 2. The autocorrelation
function coincides with the amplitude on the first site,
i.e., C(t) = φ0(t).

2. Memory-Kernel, Spectral Function

and Moments

Central quantities that appear in Pubs. [P3, P5, P6]
besides the autocorrelation function C(t) and the Lanc-
zos coefficients bn, are the (first) memory-kernel K(t),
the spectral function Φ(ω) and the moments µ2n. This
section introduces the latter three and examines some
relations between all five quantities.

21 With zeros on the diagonal since O0 is Hermitian.

To start, a few remarks on the relation between the al-
ready introduced C(t) and bn are in order. There exists
a (non-linear) one-to-one map between the Lanczos coef-
ficients bn and the autocorrelation function C(t). Thus,
a set of bn’s uniquely determines C(t) and vice versa.
However, the correspondence can be quite subtle, i.e.,
there may be fairly similar dynamics with vastly dif-
ferent Lanczos coefficients. On the other side, similar
Lanczos coefficients may lead to quite different dynam-
ics. The autocorrelation function C(t) is obtained from
the bn by solving Eq. (64) with φn(0) = δn0 as described
above. The other way around, given some C(t), it is
possible to reverse-engineer the bn from C(t) to some
extent, see appendix of Pub. [P6].
The spectral function Φ(ω) is introduced as the Fourier
transform of C(t), i.e.,

Φ(ω) =

∫ ∞

−∞
e−iωt C(t) dt . (65)

The moments µ2n of the autocorrelation function are
defined by

µ2n =
d2n

dt2n
C(t)

∣∣∣
t=0

(66)

or, respectively, in terms of the spectral function

µ2n =

∫
ω2nΦ(ω) dω . (67)

Since C(t) is an even function, all odd moments nec-
essarily vanish. The information contained in the mo-
ments µ2n is identical to the information conveyed by
the Lanczos coefficients bn. The two quantities can be
converted into each other as follows.
From moments to Lanczos coefficients:
To calculate the Lanczos coefficients bn from a
given set of moments µ2n, first define cn = µ2n/µ0.
Then, compute determinants of certain matrices
constructed from the normalized moments cn, i.e.,
Bn = det(ci+j)0≤i,j≤n−1 where n ≥ 2 and B0 = B1 = 1
as well as Cn = det(ci+j+1)0≤i,j≤n−1, where n ≥ 1 and
C0 = 1. The Lanczos coefficients are obtained as frac-
tions of these determinants, i.e.,

b22n =
Bn+1Cn−1

BnCn
, b22n−1 =

Bn−1Cn
BnCn−1

. (68)

From Lanczos coefficients to moments:
Take the representation L of the Liouvillian L in the
Krylov space spanned by the vectors generated by the
Lanczos algorithm, cf. Eq. (63). The moments µ2n can
be easily read off as the upper-left element of even pow-
ers 2n of the matrix L, i.e.,

µ2n = (L2n)00 . (69)
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The quantities C(t), Φ(ω) and µ2n all depend linearly
on one another, whereas the respective relations to bn
are highly non-linear.
Next, the concept of a memory-kernel is introduced,
which appears in Pub. [P3]. Given some reference dy-
namics C(t), its memory-kernel K(t) is implicitly de-
fined by the integro-differential equation

d

dt
C(t) = −

∫ t

0

K(t− t′)C(t′) dt′ . (70)

The map between C(t) and K(t) is bijective. Hence, it
is possible to calculate the (unique) memory-kernelK(t)
solely from the function C(t) and, vice versa, the func-
tion C(t) can be calculated given the memory-kernel
K(t) and some initial value C(0). Loosely speaking, the
memory-kernel captures in which manner a system re-
members its history.
Iterating the above equation by considering the
memory-kernel of the “first” memory-kernelK(t) and so
on, yields a sequence of memory-kernels Kn connected
by a set of coupled Volterra equations, i.e.,

d

dt
Kn(t) = −

∫ t

0

Kn+1(t− t′)Kn(t′) dt′ . (71)

Here, n = 0, 1, 2, ..., K0(t) ≡ C(t) and K1(t) ≡ K(t).
Taking the Laplace transform22 of Eq. (71) yields

Φn(s) =
Kn(0)

s+Φn+1(s)
, (72)

where

Φn(s) =

∫ ∞

0

e−stKn(t) dt (73)

denotes the Laplace transform of Kn(t) and s is a com-
plex argument.
An alternative way to obtain the n-th memory-kernel is
by erasing the first n columns and rows of the Liouvil-
lian matrix in Eq. (63). The resulting matrix represents
the operator Ln (by definition of Ln).
It can be shown that the n-th memory-kernel is propor-
tional to the autocorrelation function of On evolving
under Ln. In particular,

Kn(t) = b2n(On|eiLnt|On) , (74)

which entails that Kn(0) = b2n, since |On) is normalized.

22 Expressions for Laplace transforms of derivatives and convolu-
tions can be found in respective tables.

Expanding Eq. (72) and setting s = iω yields

Φ0(iω) =
1

iω +
b21

iω +
b22

iω + ...

. (75)

This continued fraction terminates at b2d for finite,
d-dimensional systems. The expression in Eq. (75) is
related to the spectral function via

Φ(ω) = 2Re[Φ0(iω)] . (76)

It can be shown that the spectral function takes the
functional form

Φ(ω) ∝ [Pd(ω
2)]−1 , (77)

where Pd(ω
2) denotes an even polynomial of order ω2d.

3. Operator Growth Hypothesis

This section presents the universal operator growth hy-
pothesis as brought forth in Ref. [84].
The hypothesis concerns the asymptotic behavior of
the Lanczos coefficients bn. It basically states that in
generic, non-integrable systems the Lanczos coefficients
of local, few-body observables grow asymptotically lin-
ear, i.e., above some n the growth is given by

bn ∼ αn+ γ + o(1) , (78)

where α > 0 and γ are real constants and o(gn) denotes
some real sequence fn with limn→∞ |fn/gn| = 0.
In the special case of a one-dimensional system, the
asymptotic growth is sublinear due to an additional log-
arithmic correction i.e.,

bn ∼ A
n

lnn
+ o(n/ lnn) , (79)

where A > 0 is a real constant. The above equations
entail that the bn can never grow faster than linear, e.g.,
quadratically or exponentially.
These bounds on fastest possible, asymptotic growth
ultimately originate from a powerful statement on the
behavior of the spectral function Φ(ω) for large ω.
The spectral function usually features non-vanishing
high-frequency tails for generic many-body systems.
By means of geometric arguments, these tails can be rig-
orously bounded by an exponential function such that

Φ(ω) ≤ Ke−κ|ω| (80)

for some adequately chosen constant K > 0 and decay
constant κ > 0, which is related to the geometry of the
system [91].
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It can be shown that spectral functions actually
featuring exponentially decaying tails give rise to
asymptotically linear growth in the Lanczos coefficients
[92, 93]. Therefore, the operator growth hypothesis is
equivalent to an exponentially decaying spectral func-
tion and basically states that the Lanczos coefficients
should grow as fast as “permitted by the geometry”.
Rigorous lower bounds exist as well [94].
The operator growth hypothesis has been probed in
several works, testing its validity numerically [95, 96] as
well as analytically [84]. Publication [P5] adds to this
list by numerically checking the hypothesis for systems
in the thermodynamic limit. Further, the numerical
experiments in Pub. [P6] assume the validity of the
hypothesis.

D. Numerical Experiments

Experiments are an indispensable mechanism to con-
firm or reject physical theories and arguably constitute
the backbone of all of science.
In the last decades, the field of quantum statistical
mechanics has experienced a sort of renaissance, not
last due to tremendous progress on the experimental
side. In particular, experiments probing essentially
isolated quantum systems have seen rapid advance-
ments. Ultracold atoms, for instance, can be controlled
with unprecedented accuracy [10–14, 97–101], enabling
observations of, e.g., quantum phase transitions, Bose-
Einstein condensation and quantum magnetism.
The publications [P1, P3–P6] feature numerical ex-
periments, i.e., simulations of quantum systems on a
computer. One major advantage of numerical simula-
tions is the full control over all microscopic degrees of
freedom. For example, systems can be easily prepared
in an energy eigenstate.
This section provides the background to the numer-
ical simulations presented in Pubs. [P1, P3–P6]. In
Sec. IID 1, basic spin models are introduced, which
are heavily featured in the publications. Numerical
methods, e.g., to solve the Schrödinger equation, are
discussed in Sec. IID 2.

1. Quantum Spin Models

Interacting quantum spins on lattices are arguably one
of the simplest examples of many-body quantum sys-
tems. It is (at least conceptually) relatively straight-
forward to simulate these spin systems on a computer.
Despite their seeming simplicity, spin systems are rich
in complexity and decades worth of research have been
conducted. This research includes, for instance, physical
questions of transport and relaxation [102], modeling of
magnetic molecules [103, 104] as well as issues of purely
mathematical nature [105].

Publications [P1, P3–P6] feature spin systems in some
form as numerical testbeds for proposed theories. Thus,
the basics of quantum spin and most commonly encoun-
tered models are discussed in the following.
For starters, a single spin of spin quantum numbers s is
considered. This (non-negative) number s can either be
integer or half-integer, classifying the particle carrying
the spin as either a fermion or a boson. The spin of
the particle is mathematically represented by operators
s⃗ = (sx, sy, sz). Importantly, the components do not
commute and instead satisfy the commutation relation

[si, sj ] = iεijks
k , (81)

where εijk is the antisymmetric Levi-Civita symbol and
i, j, k ∈ {x, y, z} [sum over k included in Eq. (81)].
This relation resembles the commutation relation of an-
gular momentum, hinting at the close connection be-
tween the two quantities. As a consequence, spin is
sometimes referred to as the intrinsic angular momen-
tum of a particle.
Since the spatial components of the spin operator do not
commute, a single direction, usually the z-direction, is
chosen as an axis of reference. Then, a basis of the
Hilbert space of a single spin is spanned by the eigen-
states |s,ms⟩ of the sz-operator. The magnetic quan-
tum number ms ∈ {−s,−s+ 1, ..., s− 1, s} attains val-
ues from −s to s in unit steps. Thus, the Hilbert-space
dimension is d = 2s + 1. Since [s⃗ 2, sz] = 0, the basis
states are also eigenstates of the total spin.

s⃗ 2|s,ms⟩ = s(s+ 1)|s,ms⟩ (82)

sz|s,ms⟩ = ms|s,ms⟩ (83)

Raising and lowering operators can be introduced as
s± = sx ± isy. They act on basis states as follows:
s±|s,ms⟩ =

√
s(s+ 1)−ms(ms ± 1)|s,ms ± 1⟩.

Thus far, only a single spin has been considered. The
next step is to allow multiple spins, arranged on L lattice
sites, that may interact with one another. The mathe-
matical structure that is used to describe quantum sys-
tems of many particles is the product Hilbert space

H =

L⊗
ℓ=1

Hℓ . (84)

The dimension of the product Hilbert space equals the
product of the local dimensions, i.e.,

dim H =

L∏
ℓ=1

dim Hℓ . (85)

If all spins have the some spin quantum number s, sim-
ply dim H = (2s+ 1)L = dL.
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A natural basis of the product Hilbert space is inher-
ited from the local bases. The so-called Ising basis (or
product basis) is given by {|m⟩} ≡ {|m1m2...mL⟩}.
The local spin operators are “inflated” to the whole
Hilbert space, e.g., an operator on site ℓ reads

sx,y,zℓ = ...⊗ 1⊗ sx,y,z︸ ︷︷ ︸
ℓ−th site

⊗1⊗ ... , (86)

where 1 denotes the identity and the one-particle oper-
ator sx,y,z acts on site ℓ. Operators acting on different
sites naturally commute.
In the following, common models of interacting spins
are presented. The Hamiltonian of the Heisenberg model
[106] (also called XXZ model) is given by

HXXZ =
∑
ℓ,ℓ′

Jℓℓ′ [s
x
ℓ s
x
ℓ′ + syℓ s

y
ℓ′ +∆szℓs

z
ℓ′ ] (87)

=
∑
ℓ,ℓ′

Jℓℓ′ [(s
+
ℓ s

−
ℓ′ + s−ℓ s

+
ℓ′)/2 + ∆szℓs

z
ℓ′ ] .

Here, the lattice geometry is expressed via the interac-
tion matrix Jℓℓ′ . Geometries featured in the publica-
tions are simple chains, ladders and also a wheel-like
structure. The interaction can be either ferromagnetic
or antiferromagnetic, depending on the sign of Jℓℓ′ . In
these cases, two coupled spins in the ground state either
align or anti-align. This may lead to complicated frus-
tration effects when spins can not simultaneously meet
the demands of all their neighbors [107, 108].
The Heisenberg Hamiltonian can be rewritten with rais-
ing and lowering operators, see second line in Eq. (87).
In this form, it can be seen that the first xxyy-term ef-
fectively transports magnetization through the system.
This term is sometimes referred to as the “kinetic term”.
Consequently, the second zz-term is sometimes called
the “potential term”.
The anisotropy ∆ distinguishes the z-direction. Spin
transport in the Heisenberg chain is generally believed
to be diffusive for ∆ > 1 and ballistic for ∆ < 1 [102].
The Heisenberg model possesses certain symmetries.
For instance, the total magnetization sz =

∑
ℓ s
z
ℓ in

z-direction is a conserved quantity since [H, sz] = 0.
For ∆ = 1, the model additionally possesses SU(2)-
symmetry and the total spin s⃗ =

∑
ℓ s⃗ℓ is conserved as

well, i.e., [H, s⃗ 2] = 0. Depending on the lattice geom-
etry, further symmetries may exist, e.g., translational
invariance or point group symmetries. These symme-
tries can be exploited to solve the Schrödinger equation
more easily, see Sec. IID 2.

A further model featured in the publications is the Ising
model [109], whose Hamiltonian reads

HIsing =
∑
ℓ,ℓ′

Jℓℓ′s
x
ℓ s
x
ℓ′ + hℓs

z
ℓ . (88)

The local Zeeman terms hℓs
z
ℓ take interaction with a

magnetic field into account.
Everything discussed thus far holds true for any spin
quantum number s. However, the systems featured in
the publications all have s = 1/2, which constitutes the
“most quantum” case23, since a measurement of, e.g.,
the z-component can only yield two results, either “spin-
up” or “spin-down”. Further, s = 1/2 corresponds to
the smallest local dimension d = 2 and is thus easier to
manage than larger values of s.
For the spin quantum number s = 1/2, the spin oper-
ators represented in the natural basis |1/2, 1/2⟩ ≡ |↑⟩,
|1/2,−1/2⟩ ≡ |↓⟩ are related to the Pauli matrices via
sx,y,z = σx,y,z/2 where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (89)

Depending on the model, spin-1/2 systems can be
mapped to either free or interacting fermions via
a Jordan-Wigner transformation [110]. Further, a
description as hard-core bosons appears in Pub. [P4].

2. Numerical Methods

The landscape of numerical techniques to tackle many-
body quantum systems is vast. This section discusses a
selection of methods, including and particularly focus-
ing on those which were employed to obtain the numer-
ical results presented in the publications [P1, P3–P6].
To work with states and operators on a computer, they
need to be represented as matrices and vectors, respec-
tively. Components of the Hamiltonian matrix are given
by Hσσ′ = ⟨σ|H|σ′ ⟩ and components of the state vector
by ψσ = ⟨σ|ψ⟩, both with respect to some basis {|σ⟩}.
In many scenarios, the aforementioned Ising basis con-
stitutes a convenient working basis.
Maybe the most straightforward way to numerically
handle many-body quantum systems is the method of
exact diagonalization (ED). Within this approach, the
time-independent Schrödinger equation [cf. Eq. (5)] is
solved directly by computing the eigenstates |n⟩ and
corresponding eigenvalues En of the Hamiltonian ma-
trix, i.e.,

H |n⟩ = En |n⟩ . (90)

23 The classical limit is obtained by taking s → ∞, ℏ → 0 while
keeping ℏ

√
s(s+ 1) constant.
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Both |n⟩ and En are independent of the chosen working
basis. In practice, the diagonalization routine itself is
implemented from standard linear algebra packages like,
e.g., LAPACK.
With the knowledge of all energy eigenvalues and eigen-
states, dynamical and thermodynamic quantities [cf.
Sec. II A 1] can be calculated exactly - the dynamics,
in principle, even for arbitrarily long times.
One major drawback of ED is that its applicability is re-
stricted to comparatively small systems. The reasons for
this are twofold. On the one hand, standard diagonal-
ization routines have a quite demanding computational
complexity of O(d3), where d total dimension. On the
other hand, even before that and more severe, storing
the matrix in memory can be challenging. Thus, the
method of ED is only practically feasible for matrices
up to a dimension of about 105 × 105. For instance, 18
spins 1/2 (d ≈ 2 · 105) require about 500 GB of memory
if no symmetries are used. Therefore, ED is oftentimes
employed when the exact knowledge of eigenvalues and
eigenstates is of absolute necessity, or when going to
larger systems brings no further benefit. The publica-
tions [P4] and [P6] employ ED.
For systems beyond the range of ED, the time-
dependent Schrödinger equation can be tackled by a va-
riety of approximate numerical techniques, which com-
monly rely on finding an approximation U ′(δt) to the
time evolution operator U(δt) = e−iHδt. The approxi-
mate solution is then obtained by iteratively propagat-
ing the state in time, i.e.,

|ψ(t+ δt)⟩ ≈ U ′(δt)|ψ(t)⟩ . (91)

Here, δt denotes the time step, which should be chosen
sufficiently small to maintain a certain degree of accu-
racy, but still large enough to reach the desired end-
point of the simulation in an acceptable amount of time.
Some widely popular methods that follow this strategy
are, e.g., Runge-Kutta expansions [111, 112], Suzuki-
Trotter decompositions [113, 114] or Krylov-space tech-
niques [115].
The method that is most heavily employed in the publi-
cations presented later on is based on Chebyshev poly-
nomials [116–118]. Therefore, this approach is discussed
in more detail in the following.
An arbitrary but well-behaved function f(x) can be ex-
panded into a polynomial series f(x) =

∑∞
n=0 αnPn(x),

which is always possible if the polynomials Pn(x) fulfill
some orthogonality relation. All types of (orthogonal)
polynomials can, in principle, be used for such an ex-
pansion. However, it turns out that in many scenarios
(including the one at hand) a certain set of polynomials
is best suited [119]. These are the Chebyshev polyno-
mials of the first kind denoted by Tn(x) [120].

All properties of Chebyshev polynomials listed in the
following can be found in Ref. [121]. The Chebyshev
polynomials are orthogonal with respect to the weighted
scalar product

⟨Tn, Tm⟩ =
∫ 1

−1

Tm(x)Tn(x)

π
√
1− x2

dx = δmnwn (92)

with wn = (δn0 + 1)/2. A recursive relation that comes
in handy later is given by

Tn(x) = 2xTn−1(x)− Tn−2(x) (93)

with T0(x) = 1 and T1(x) = x. A closed expression also
exists, i.e., Tn(x) = cos(n arccosx). A function f(x)
expanded into Chebyshev polynomials reads

f(x) = c0 + 2

∞∑
n=1

cnTn(x) , (94)

where cn = ⟨Tn, f⟩. For the case at hand, not a real-
valued function needs to be expanded, but a complex-
valued matrix exponential. This is done by rescal-
ing the spectrum of the Hamiltonian to the inter-
val [−1, 1]. Let Emax and Emin denote the extremal
eigenvalues of H. Define a = (Emax − Emin)/(2− ϵ)
and b = (Emax + Emin)/2 and set H′ = (H− b)/a. Ex-
tremal eigenvalues can be obtained without full exact di-
agonalization via, e.g, the Lanczos algorithm [122]. The
parameter ϵ is a small safety parameter that ensures
that the rescaled spectrum lies well within the interval
[−1, 1]. The expansion of the time-evolution operator is
then given by

e−iHδt = e−ibδt
[
c0(aδt) +

∞∑
n=1

cn(aδt)Tn(H′)
]

(95)

with coefficients

cn(aδt) =

∫ 1

−1

Tn(x)e
−iaxδt

π
√
1− x2

dx = (−i)nJn(aδt) , (96)

where Jn denote Bessel functions of the first kind. Since
the coefficients cn only depend on the time step δt, but
not on time itself, they only have to be computed once.
Applying Eq. (95) to a state boils down to calculating
Tn(H′)|ψ⟩ for various n, which can be done recursively
using Eq. (93). Terminating the sum in Eq. (95) at
M − 1 gives the M -th order Chebyshev approximation
of the time-evolution operator.
In most pure-state propagation schemes, the cen-
tral operation is the application of the Hamilto-
nian to a state. This corresponds to matrix-vector-
multiplications, which can be heavily parallelized.
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However, as mentioned above, even storing the matrix
in memory can be a bottleneck and push larger systems
out of reach24.
In practice, it is possible to circumvent this problem of
limited memory to a certain degree. Since it is known
how the spin operators act on basis states, the action
of the Hamiltonian H on some state |ψ⟩ can be directly
implemented25 without storing Hσσ′ in memory.
As an example, consider the Heisenberg Hamiltonian in
Eq. (87) for a two-site spin-1/2 system. The kinetic
term swaps respective components of the state vector
(or gives zero), whereas the zz-coupling term simply
yields additional factors in the components of |ψ⟩, i.e.,

sz1s
z
2|m1m2⟩ = m1m2|m1m2⟩ (97)

2(sx1s
x
2 + sy1s

y
2)|m1m2⟩ = (1− δm1m2)|m2m1⟩

In this manner, there is no need to store the Hamiltonian
matrix at all and the matrix elements (or contributions
thereto) are calculated “on the fly”. This massively re-
duces the memory usage as only a handful of vectors
need to be stored.
Thus far, only time evolution of pure states was dis-
cussed. However, it is sometimes desirable to likewise
evolve a mixed state ρ in time. An example relevant to
this thesis may be that ρ is a product state of an excited
system state |↑⟩sys and mixed bath state ρbath.
To this end, the in Sec. II A 4 presented concept of
dynamical typicality comes in handy. Exploiting typ-
icality, the full statistical ensemble ρ can be replaced
by a pure state that yields more or less the same
time-dependent expectation value with an induced er-
ror ϵ ∝ 1/

√
deff. In this manner, efficient time-evolution

schemes for pure states can be practically employed for
mixed states as well.
To further increase performance, symmetries possessed
by the system may be exploited to effectively reduce the
dimension of the problem. For instance, the Heisenberg
model conserves magnetization and eigenstates can be
labeled with the good quantum number Sz. Represent-
ing the Hamiltonian in a symmetry-adapted basis leads
to a block-diagonal matrix structure [123].
In this manner, only the individual blocks need to be
diagonalized (or used for propagation in time), which
greatly reduces numerical effort. Further commonly oc-
curring symmetries include conservation of total spin
[SU(2)-symmetry], translational invariance or other
point-group symmetries depending on the geometry.

24 Hamiltonian matrices of spin-based systems often exhibit some
sparseness, which, however, only pushes the limits of practical-
ity to some extent.

25 With this knowledge, the matrix representation is computed in
the first place.

To complete the picture on time evolution, some ad-
ditional numerical methods are briefly mentioned that
conceptually go beyond merely approximating the time-
evolution operator.
The numerical linked-cluster expansion (NLCE) [124,
125], for instance, allows to calculate some quantities in
the thermodynamic limit up to some time26.
Even more involved methods compress the information
in the state itself, like the density matrix renormaliza-
tion group (DMRG), which is routinely formulated in
terms of matrix product states (MPS) [126, 127].
To end this section, the numerical details for the compu-
tation of the Lanczos coefficients bn are discussed. The
Lanczos algorithm that yields the bn corresponding to
some C(t) has been presented in Sec. II C 1.
In practice, a suitable basis of the Liouville space
is needed. A convenient choice is the set of Pauli
strings {|P⟩}, i.e., P = ⊗ℓPℓ with Pℓ ∈ {1ℓ, σxℓ , σ

y
ℓ , σ

z
ℓ }.

The commutation relation of the Pauli matrices
σaσb = δab1 + iϵabcσ

c [sum over c included, also cf.
Eq. (81)] ensures that the Pauli strings are orthonor-
mal, i.e., (P|P ′) = δPP′ . Thus, any operator may be
written as |O) =

∑
α cα|Pα).

The commutator of two operators then boils down to
the commutator of Pauli strings, which evaluates to
[P,P ′] = (1− (−1)χ(P,P

′))PP ′, where χ(P,P ′) counts
the number of sites on which Pℓ ̸= P ′

ℓ when both Pℓ, P ′
ℓ

are not the identity 1ℓ [96].
A representation of a finite27 Pauli string that reduces
computational cost is given by [128]

P = iδ(−1)ϵ(σz1)
v1(σx1 )

w1 ⊗ ...⊗ (σzn)
vn(σxn)

wn . (98)

The newly introduced parameters are binary, i.e.,
δ, ϵ, vk, wk ∈ {0, 1}, such that a Pauli string of length n
can be represented by two binary vectors v, w and two
binary digits δ, ϵ. Commutators and other operations
can then be simplified and broken down to this binary
level as well [84, 128]. In this manner, the Lanczos
algorithm can be efficiently implemented.

26 NLCE in itself is not a method for time evolution. It relies on
other time-evolution schemes, e.g., the ones presented above.

27 The implementation based on Pauli strings and binary numbers
can be generalized to infinite systems by exploiting translational
invariance [84].
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III. Guide to Publications

This section gives an overview of the work that has
been published in Pubs. [P1–P6]. Each of the following
sections corresponds to a respective paper, with the
only exception of Pubs. [P1] and [P2], which share a
section due to their similarity.
The mathematical notation largely coincides with the
notation in the theoretical background section. When
inconsistencies are unavoidable, the notation from the
publications is preferred.
Publications [P1], [P2] and [P3] rely mostly on theo-
retical concepts outlined in Sec. II A. Publication [P4]
concerns a particular fluctuation theorem and thus di-
rectly relates to Sec. II B. Publications [P5] and [P6] are
formulated in the framework of the recursion method
and make use of concepts introduced in Sec. II C. All
publications, except Pub. [P2], in some form employ
numerical methods presented in Sec. IID.
The following sections are structured as follows. First,
some context and motivation for the presented work
is given. Thereafter, the main results are laid out and
explained in a necessarily shortened manner. Citations
relating to other works are kept to a minimum here.
For details, additional results and further references the
reader is always referred to the respective publication.

[P1]. Compelling Bounds on Equilibration Times -

the Issue with Fermi’s Golden Rule (including [P2])

While general results in the form of Eq. (24) oftenly en-
sure the occurrence of equilibration in the very long run
under relatively mild conditions concerning the Hamil-
tonian, observable and initial state, they hardly entail
any relevant information on the “true” equilibration
time Teq, which is usually much shorter. That is to
say, the times at which these results establish equilibra-
tion are “unrealistically long” compared to the times at
which stationary dynamics have evidently already set
in. This shortcoming is partly due to the reliance on
as few assumptions as possible in order to obtain re-
sults that are as generally applicable as possible. Thus,
fine-tuned, “pathological” setups that exhaust the un-
satisfactorily large bounds are inevitably included.
Consequently, improved bounds on equilibration times
based on additional, physically plausible conditions that
capture the actual, physical state of affairs are much
sought after. Such a bound (based on additional condi-
tions on all H,A and ρ) has been suggested by Garćıa-
Pintos et al. in Ref. [129] [hereafter referred to as the
“Garćıa-Pintos bound” (GPB)].
The paper “Compelling Bounds on Equilibration Times
− the Issue with Fermi’s Golden Rule” [P1] numeri-
cally probes the GPB and finds that it is not applica-
ble/useful in the limit of weak interactions (at least)

for the specific setup at hand, which shares some fea-
tures with standard solid-state systems like periodicity
and locality. Unrelated to the GPB, the presented nu-
merics shed some light on the breakdown of standard
quantum master equations in the “superweak” coupling
limit, which occurs for finite-sized baths.
The “Comment on ‘Equilibration Time Scales of Physi-
cally Relevant Observables’ ” [P2] presents two standard
scenarios and one concrete, spin-based example (all en-
tailing slow, exponential dynamics) in which the GPB
is analytically shown to not be applicable.
Both publications begin with a brief recapitulation of
the main results of Ref. [129]. In short, the GPB is an
explicit expression for a point in time denoted by Teq,

at which for all T ≫ Teq it holds that DT ≪ 1, where

D(t) ∝ [⟨A(t)⟩ − A]2, i.e.,

Teq =
πa||A||1/2Q5/2√
∂2t ⟨A(t)⟩|t=0

. (99)

Here, ||A|| denotes the largest absolute eigenvalue and
a,Q are defined below. Evidently, the GPB links Teq
to the initial “curvature” of the expectation value dy-
namics ∂2t ⟨A(t)⟩|t=0. An actual, concrete bound on the
equilibration time only arises from Eq. (99) if the nu-
merator can be shown to be in an adequate sense small
or at least bounded. This is a pivotal feature on which
the “predictive power” of the GPB hinges. The crucial
quantities in the numerator are a and Q, which are both
quite involved functions of H,A and ρ. Concretely, they
depend on the probability distribution

pjk

{
∝ |ρjkAjk| , for Ej ̸= Ek
= 0 , for Ej = Ek

(100)

with
∑
j,k pjk = 1. Here, energy eigenvalues Ej , Ek

correspond to energy eigenstates |j⟩, |k⟩ and ma-
trix elements are abbreviated as ρjk = ⟨j|ρ|k⟩ and
Ajk = ⟨j|A(0)|k⟩. For practicality, the probability dis-
tribution pjk is “coarse-grained” into a histogram w(G),
where G denotes the energy gap. The quantities a and
Q that eventually enter the GPB are now defined as

a = wmaxσG , Q =
∑

j,k:Ej ̸=Ek

|ρjkAjk|
||A||

, (101)

where wmax is the maximum of w(G) and σG the stan-
dard deviation. As it is practically impossible to calcu-
late a from its definition for many-body quantum sys-
tems, the authors of Ref. [129] instead resort to an as-
sumption. They argue that a ∼ 1 may be expected for
w(G) that are “unimodal”, which means that w(G) es-
sentially consists of one central elevation like a Gaussian
or a box distribution, etc.

24



For the first standard scenario in which the numerator
in Eq. (99) diverges, consider the expectation value of
an observable A that is conserved with respect to an
unperturbed Hamiltonian, i.e., [H0,A] = 0. A weak,
symmetry-breaking perturbation λV commonly28 leads
to slow, (mono-)exponential dynamics, i.e.,

⟨A(t)⟩ = [⟨A(0)⟩ − A ]e−t/τrel +A , (102)

where τrel = rλ−2 and r is a real, positive number that
depends on H0 and V. Replacing the time derivatives
in the denominator of Eq. (99) by a commutator i[H, · ]
with H = H0 + λV and exploiting the well-justified as-
sumption Teq ≥ τrel yields a lower bound on the numer-
ator in Eq. (99), i.e.,

πa||A||1/2Q5/2 ≥ r

√
c1λ+ c2λ2

λ2
. (103)

The r.h.s. clearly diverges in the limit of weak interac-
tions λ→ 0. Consequently, either a or Q (or both) in
the numerator diverge as well.
Exponential dynamics also commonly occur when slow
Fourier modes in sufficiently large systems are consid-
ered. In this case, a similar lower bound on the numera-
tor is derived, which diverges in the limit of small wave
numbers k → 0. This is the second standard scenario
presented in Pub. [P2] and will not be laid out in detail
here.
The final takeaway of Pub. [P2] is that it is probably the
quantity a that diverges and not Q. This conclusion
is drawn by considering a concrete, physical example,
which is nonetheless simple enough to allow for analyti-
cal analysis. Thus, the assumption a ∼ 1 by the authors
of Ref. [129] is likely to be unjustified in many physically
common scenarios, even if w(G) is unimodal.
The above results are substantiated by the numerical
analysis presented in Pub. [P1], in which a particular
system-bath setup is investigated. The system consists
only of a single spin, whose interaction with the bath is
controlled by the interaction strength λ. The system’s
magnetization in z-direction, initially polarized, is mon-
itored over the course of time. For a visual representa-
tion of the Hamiltonian and specifics on Hamiltonian,
observable and initial states see Pub. [P1].
The time-dependent expectation value of the system’s
magnetization in z-direction is displayed in Fig. 1 for
three interaction strengths.

28 Provided that H0 has a sufficiently wide and dense spectrum.
Many well-understood approaches, such as Fermi’s golden rule,
Weisskopf-Wigner theory and projection operator techniques
(Nakajima- Zwanzig, Mori, etc.), arrive at such exponential de-
cay dynamics [22, 23, 130–132] for standard, non-equilibrium
situations.

In accordance with open quantum system theory, these
results suggest to distinguish three cases.
i. Non-Markovian regime: for strong coupling (e.g.
λ = 1.0) the magnetization quickly decays to the equi-
librium value ⟨Szsys⟩mc in a non-exponential way. The
description of these dynamics requires the incorpora-
tion of memory effects in some way. While this is a very
active field in open quantum theory, it is not investi-
gated any further in Pub. [P1].
ii. Markovian regime: for weak coupling (e.g. λ = 0.1)
there is a mono-exponential decay to the thermal equi-
librium. This exponential decay is in full accordance
with Fermi’s golden rule (FGR). A large number of sys-
tems in areas ranging from quantum optics to condensed
matter fall into this regime [23, 133].
iii. Superweak coupling regime: for very weak coupling
(e.g. λ = 0.01) the magnetization does not decay to the
thermal equilibrium value at all, it rather gets stuck at
a value closer to the initial value, which indicates the
breakdown of FGR. This value depends on the interac-
tion strength and on the bath size. In accordance with
standard open quantum system theory, below results in-
dicate that this regime only exists for finite baths.
Next, Pub. [P1] systematically investigates the rela-
tion between the long-time value Szsys, the interaction
strength λ and the bath size N . It is found that the
critical interaction strength λcrit(N), below which the
dynamics gets stuck, is exponentially small in the bath
size. Hence, this effect quickly becomes undetectable for
larger baths.
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Figure 1. Decay of the magnetization for N = 25. For strong
coupling (e.g. λ = 1.0) the magnetization decays quickly and
non-exponentially to the thermal expectation value. Note
that the time axis is scaled with λ2. For weak coupling (e.g.
λ = 0.1) the magnetization decays exponentially toward the
thermal equilibrium value. For very weak coupling (e.g. λ =
0.01) the magnetization gets stuck at a non-thermal long-
time average value.
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Coming back to the numerical assessment of the
GPB, a lower bound of the numerator in Eq. (99) is
calculated explicitly for the setup at hand. To this
end, the relaxation time τrel and the curvature term
in the denominator are determined for the respective
dynamics. It is found that the numerator grows at
least up to values of ca. 55 already for N = 25 and
interactions within the range of numerical accessibility.
Moreover, the data do not indicate any “nearby” upper
bound of the numerator at 55, which is at odds with a
conclusive application of the GPB.

[P3]. Modeling the Impact of Hamiltonian

Perturbations on Expectation Value Dynamics

There is an abundance of evidence that some relaxation
dynamics are much more common in nature than oth-
ers. For example, slow exponential dynamics commonly
arise whenever a system interacts weakly with an en-
vironment or whenever long-wavelength Fourier com-
ponents of spatial densities of conserved quantities are
considered. In contrast, “strange” relaxation dynamics,
like recurrence dynamics29, are seldom if ever observed.
Recently, there have been attempts to trace this dom-
inance back to a certain stability of the prevalent dy-
namics versus generic Hamiltonian perturbations. In
particular, three theories have been brought forth in
Refs. [134], [135] and [20], respectively, which suggest
that a majority of the numerous, permissible Hamilto-
nian perturbations entail more or less the same type of
alteration to the decay dynamics. The theories are here-
after referred to as “theory [134], [135], [20]”.
The paper “Modeling the Impact of Hamiltonian Per-
turbations on Expectation Value Dynamics” [P3] applies
the three theories to a particular spin-based setup. To
begin, the gist of the three theories is briefly presented
for self-containedness. Their respective conditions are
named and scrutinized with regard to the scenario at
hand. Lastly, the results are evaluated and the accuracy
of each theory is assessed. Satisfying agreement is found
in the weak perturbation regime only for theory [20].
In short, the theories [134, 135] work with ensembles of
perturbations and predict that a “typical” perturbation
will lead to an (exponential) damping30 of the unper-
turbed dynamics a(t), i.e.,

ã(t) = e−γta(t) (104)

for some γ depending on microscopic properties.

29 This refers to “early” recurrences after the system has already
equilibrated and not to Poincaré recurrences.

30 Since the slope of autocorrelation functions vanishes at t = 0,
the dynamics can not truly be exponentially damped.
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Figure 2. The time dependence of the slowest mode of a
magnetization wave with q = 2π/13 is depicted for vari-
ous perturbation strengths for the initial state ρ1(0). For
small perturbations the unperturbed dynamic (λ = 0.0, grey
curve) remains basically unchanged. For stronger perturba-
tions there is a noticeable slowdown of the decay.

For details, the reader is referred to the publications
themselves. The mechanics of theory [20] will be laid
out in more detail, since it exclusively provides viable
results (for the case at hand) and utilizes the concept of
the memory-kernel introduced in Sec. II C 2.
Contrary to the other two theories, in theory [20] the
dynamics itself is not directly damped, rather the per-
turbation leads to an exponential damping of the (first)
memory-kernel. Thus, the perturbed dynamics ã(t) are
obtained from the unperturbed dynamics a(t) via

a(t) → K(t) → K̃(t) → ã(t) , (105)

where K̃(t) = e−γτK(t). Here, γ is a free fit parameter
and the integro-differential Eq. (70) gives the relation
between dynamics and memory-kernel.
For the below defined spin systems, this is merely an
heuristic approach31. For other scenarios, the memory-
kernel ansatz has been rigorously proven to hold [136].
Further, numerical evidence for its validity exists
beyond what can be rigorously established [20, 137].
To probe the three theories, a spin ladder described
by the Hamiltonian H0 is considered, with additional
szsz-couplings as a perturbation V on the diagonals.
The total Hamiltonian then reads H = H0 + λV, where
λ is the perturbation strength. The observable A is
chosen as the slowest Fourier mode of the magnetization
along the legs of the ladder. The two initial states ρ1,2

31 The fact that [V,A] = 0 for the below defined systems makes a
successful applications of the memory-kernel ansatz more prob-
able, see Pub. [P3] for details.
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Figure 3. Solid lines represent the perturbed dynamics from
Fig. 2, vertically shifted in steps of −0.1. Crosses indicate
the data obtained from the memory-kernel ansatz.

are at finite and infinite temperature, respectively, and
feature a single polarized “spin-up” rung. For a visual
representation and specifics on Hamiltonian, observable
and initial states see Pub. [P3].
Numerically solving the time-dependent Schrödinger
equation with methods presented in Sec. IID 2, it is
found that the magnetization spreads (more or less
diffusively) throughout the ladder. Consequently, the
expectation value of the observable decays more or
less exponentially. The dynamics for various per-
turbations strengths are displayed in Fig. 2 for the
infinite-temperature initial state ρ1.
While the specific conditions for the applicability of
theory [134] and [135] are quite difficult to check
in detail, it is argued in Pub. [P3] that the setup
at hand should yield at least somewhat reasonable
results. However, the perturbed dynamics decay slower
than the unperturbed one, which is visible in Fig. 2.
Since theories [134] and [135] predict a damping of
the dynamics, see Eq. (104), they fail to capture the
perturbed dynamics even qualitatively since a damping
leads to faster decaying dynamics.
These findings suggest that the perturbation V is
indeed one of the mathematically untypical members of
the ensemble considered in theory [134]. However, even
though V is untypical with respect to an ensemble of
random matrices, it is a physically simple perturbation
consisting of standard spin-spin interactions.
The additional failure of theory [135] only leaves theory
[20] as a possible candidate to describe the observed
behavior. The prediction by the memory-kernel model
is depicted in Fig. 3 for the infinite-temperature initial
state ρ1. For weak perturbations (λ = 0.1, 0.2) the
memory-kernel model seems to capture the modified
dynamics quite well. For stronger perturbations
(λ = 0.4, 0.7) there are some noticeable deviations.

That being said, it comes as no surprise that the
memory-kernel model loses potency in the strong
perturbation regime, as it was originally conceived
to describe the alteration of dynamics due to weak
perturbations.

[P4]. Integral Fluctuation Theorem and
Generalized Clausius Inequality for

Microcanonical and Pure States

An integral fluctuation theorem (IFT) for the entropy
production of a system-bath setup has been derived in
Sec. II B 3. Further, its (exact) validity has been demon-
strated for canonical bath states. While the IFT itself is
more encompassing, its most prominent consequence is
a generalized Clausius inequality, cf. Eq. (58), which is
sometimes viewed as one possibility to express the sec-
ond law of thermodynamics [138].
Given the significance of the generalized Clausius in-
equality, it is remarkable that, so far, the validity of
the respective IFT has been proven only in full gener-
ality for canonical states, but not for microcanonical or
pure states [8, 139]. It is worth mentioning that for far-
from-equilibrium statements like fluctuation theorems,
results from the canonical ensemble do not straightfor-
wardly carry over to, e.g., the microcanonical ensemble
simply by the equivalence of ensembles [140–142].
The paper “Integral Fluctuation Theorem and Gener-
alized Clausius Inequality for Microcanonical and Pure
States” [P4] establishes the validity of the above IFT for
microcanonical and pure states under two conditions,
which are referred to as “stiffness” and “smoothness” of
transition probabilities. The validity of the IFT and the
existence of stiffness and smoothness are numerically in-
vestigated for various lattice models.
Recall that the IFT in question [cf. Eq. (59)] reads32

⟨⟨e−∆σ⟩⟩ =
∑
j,k,a,b

P jfinW
b
ini e

−β(εabath−ε
b
bath) (106)

×R(jk, ab) = 1 .

which holds exactly for canonical bath states, as shown
in Sec. II B 3. The question that Pub. [P4] aims to
answer is under which conditions Eq. (106) holds true
when W b

ini corresponds to a microcanonical or even a
pure state.
To tackle this issue, a “coarse-grained” IFT quantity is
derived as an intermediate step, which reads

32 The quantity s is now denoted by ∆σ.
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⟨⟨e−∆σ⟩⟩c.g. =
∑

j,k,A,B

P jfinW
B
inie

−βδ(A−B) (107)

×R(jk,AB) .

Since the system comprises only a few energy levels,
e.g., a single spin, just the energy of the bath is divided
into bins of finite size. In short, capitalized letters now
indicate energy ranges EBbath = [(B − 1/2)δ, (B + 1/2)δ]
and δ is the bin size of the graining. Further details of
the coarse-graining process, like the construction of av-
erage transition probabilities33 R(jk,AB) between en-
ergy ranges in the bath or interpretation of the coarse-
grained IFT quantity are laid out in Pub. [P4].
Continuing, the central properties of stiffness and
smoothness are introduced.
A transition probability to go from some initial energy
interval EBbath to a final energy interval EAbath is called
stiff (for given j, k) if

R(jk,AB) = R(jk,A−B) , (108)

i.e., the probability to transition from the initial energy
interval EBbath to a state within the final energy interval
EAbath is only a function of the difference in energies.
A set of transition probabilities R(jk,Ab) from an ini-
tial state |k, b⟩ to a final energy interval EAbath is called
smooth (for given j, k), if

r(jk,Ab) = R(jk,Ab)−R(jk,AB) ≈ 0 (109)

for all b ∈ B, i.e., all transition probabilities to go from
a state with initial energy εbbath within the initial inter-
val EBbath to the final energy interval EAbath are close to
the average value of transition probabilities within that
initial energy interval.
The paper continues to rigorously show that the as-
sumption of stiffness leads to the validity of the coarse-
grained IFT for WB

ini = δB,B0
, i.e.,

⟨⟨e−∆σ⟩⟩c.g. = 1 . (110)

Furthermore, the assumption of smoothness yields

⟨⟨e−∆σ⟩⟩ r→0−→ ⟨⟨e−∆σ⟩⟩c.g. . (111)

Hence, the validity of the microscopic IFT even and es-
pecially for initial energy eigenstates, may be inferred
from the validity of the coarse-grained IFT, if Eq. (109)
applies sufficiently well. These are the two main analyt-
ical results of the paper.

33 Denoted by an overbar, but not to be confused with the notation
for a temporal average used earlier.
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Figure 4. Bath-size dependence of the stiffness quantifier χ
for the Ising model at t = 4 for various interaction strengths.
For all λ, the quantifier decreases with increasing bath size,
indicating perfect stiffness in the limit of infinitely large
baths, i.e., L → ∞.

In App. C of Pub. [P4], the connection of stiffness to
the rigged ETH is discussed. Further, it is argued that
stiffness may be the rule rather than the exception.
The natural question that arises next is whether stiff-
ness and smoothness are present in physical systems. To
this end, three models are investigated numerically - an
Ising model with defects, a hard-core boson model and
an integrable Heisenberg chain. Some selected results
for the Ising model are displayed in the following.
In order to measure to what extent stiffness and smooth-
ness are present, two quantifiers χ and φ are introduced.
Both quantifiers tend to zero if the respective assump-
tions (stiffness and smoothness) indeed apply. For defi-
nitions of quantifiers as well as details on Hamiltonians
and initial states see Pub. [P4].
The stiffness quantifier χ is plotted over the inverse bath
size in Fig. 4. There is a clear decrease of χ with L
for all λ. Moreover, the figure suggests that stiffness
becomes perfectly fulfilled and thus the coarse-grained
IFT exactly valid in the thermodynamic limit. This
finding is accompanied by the (approximate) validity of
the coarse-grained IFT, which is not displayed here.
The smoothness quantifier φ is logarithmically plotted
in Fig. 5 as a function of bath size L. It appears to
decrease exponentially with L for all λ. Thus, perfect
smoothness in the sense of Eq. (109) may be expected
in the thermodynamic limit. To numerically check the
pure state IFT [Eq. (106)], Fig. 6 displays the average
(also denoted by an overbar) over the absolute devia-
tions from unity for 100 individual pure states around
some energy E . A small average of the absolute devi-
ations signals a good agreement with the microscopic
IFT for the majority of the individual initial states.
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Figure 5. Bath-size dependence of the smoothness quantifier
φ for the Ising model for various interaction strengths λ at
t = 4. For all λ, the quantifier decreases (approximately
exponentially) with increasing bath size, indicating perfect
smoothness in the limit of infinitely large baths, i.e., L → ∞.

For each system size, the deviations exhibit a clear max-
imum at intermediate times. These maxima may be
related to the build-up and drop-off of correlations be-
tween system and bath [143, 144]. However, already
for relatively small system sizes, the maximum devia-
tion is rather small, e.g., approximately one percent for
L = 12. But more importantly, the maximum of the
deviations decreases exponentially with increasing bath
size, as especially the inset of Fig. 6 shows. Thus, the
microscopic IFT for pure states is found to be fulfilled to
very good accuracy already for mesoscopic-sized baths
at all times. This result furthermore confirms the ex-
pectations induced by Figs. 4 and 5.
At this point, alternative approaches [139, 145, 146] to
the IFT should be mentioned, which are based on Lieb-
Robinson times, typicality and the ETH. With these
tools, the IFT can be proved for pure states in case
of infinitely large baths as well as for extremely large
baths paired with intermediate interaction strengths be-
tween system and bath. However, there is a significant,
physically relevant set of combinations of bath sizes and
interaction strengths for which these approaches are un-
suitable [147]. These scenarios that are not covered fea-
ture a lack of overlap between the Lieb-Robinson time
and the relaxation time (within this gap, the validity
of the IFT for pure states can not be established by
these approaches). Nevertheless, Fig. 6 demonstrates
that also within the temporal gap (which remains open
as the bath grows) the IFT is fulfilled to very good accu-
racy. Since the result based on stiffness and smoothness
makes no reference to any time scales, the findings of
Pub. [P4] go conceptually beyond Refs. [139, 145, 146].
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Figure 6. Average “violations” of the microscopic IFT
[Eq. (106)] plotted over time t for the Ising model for a simul-
taneous scaling of interaction strength λ and bath size L as
described in Pub. [P4]. This scaling is chosen to keep open
a gap between the Lieb-Robinson time τLR and the relax-
ation time τrel (respective dashed vertical lines), even in the
limit of large baths. Inset: Maximum average violation of
the microscopic IFT logarithmically plotted over bath size.
The average violation decreases exponentially with bath size
L, indicating the increasing validity of the microscopic IFT
even within the temporal gap.

The publication presents more numerical results for a
hard-core boson model and an integrable Heisenberg
chain. While the outcomes in the boson model are sim-
ilar to the ones presented above, the integrable model is
found to violate the microscopic IFT to a larger extent,
i.e., deviations are on the order of ten percent. An
analysis of stiffness and smoothness quantifiers suggests
that it is indeed the violation of smoothness (and not
stiffness) that causes these deviations.

[P5]. Numerically Probing the Universal Operator

Growth Hypothesis

As stated in Sec. II A 4, the idea of “typicality of states”
is that an overwhelming majority of pure states (at some
energy) give rise to corresponding thermal expectation
values. Thus, it is quite likely that over the course of
time a pure state eventually ends up in the giant “bub-
ble” of typical states.
In the Heisenberg picture formulation of quantum me-
chanics, not the states are time dependent, but the ob-
servables themselves. Hence, it may be somewhat ex-
pected to find a similar notion of “typicality of observ-
ables”, going from initially simple, few-particle opera-
tors to more complex, generic operators.
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The paper “Numerically Probing the Universal Opera-
tor Growth Hypothesis” [P5], no surprise, numerically
probes the “universal operator growth hypothesis” pro-
posed in Ref. [84] and discussed in Sec. II C 3. Besides
numerical verification, Pub. [P5] derives a particular up-
per bound Bn on the Lanczos coefficients bn and com-
pares it to the actual growth in physical, spin-based
models.
Said bound is derived from geometric arguments involv-
ing the locality of the Hamiltonian as well as the lat-
tice configuration. These arguments are easiest applied
by considering the moments µ2n of the autocorrelation
function, which can be written as

µ2n = ||LnO||2 . (112)

Here, O is a local operator with ||O|| = 1 and
H =

∑
ℓ hℓ a local Hamiltonian, or, respectively,

L =
∑
k ℓk a local Liouvillian with terms ℓk = [hk, · ].

In the following, the inequality ||ℓA|| ≤ E ||A|| is repeat-
edly used, where E denotes the maximum eigenvalue of
ℓ. Equality holds if the operator A is an eigenopera-
tor of the local Liouvillian corresponding to the largest
eigenvalue (all ℓk = ℓ are assumed to be of the same
type). Additionally exploiting the triangle inequality,
the moments can be bounded as

µ2n = ||LnO||2 ≤ E2nN2
sum(n) . (113)

Here, Nsum is a geometric term that counts the num-
ber of “trivially non-vanishing” terms in the sum
Ln =

∑
x1,...,xn

ℓx1
...ℓxn

. This number typically grows
quite fast with n and can be exactly determined for
simple geometries [148].
The above bound on the moments is sharp, meaning
first, no sequence of physical moments µ2n can possibly
grow faster and, importantly, second, this bound could
in principle be achieved (as opposed to, e.g., two times
the bound). This is the case if and only if all involved
inequalities are satisfied as equalities34.
The fastest growing moments, i.e., moments equal to the
r.h.s. of Eq. (113), can be translated to corresponding
coefficients Bn as described in Sec. II C 2, which will be
interpreted as a sort of “global uniform” upper bound
on the bn, meaning that it is impossible to further in-
crease the value of one specific coefficient “by hand”,
without simultaneously decreasing the value of another
one (or several other ones). For more details on deter-
mining Nsum and the interpretation of Bn the reader is
referred to Pub. [P5].

34 Publication [P5] makes no statement about the existence of
such a fine-tuned pair of H and A.
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Figure 7. Lanczos coefficients bn of the transverse Ising
model for the fast mode of an energy wave. The integrability-
breaking magnetic field attains values from Bx = 0.0 to
Bx = 0.5. The transition from a free model to a non-
integrable model is evident. The coefficients Bn are explicitly
depicted for the case Bx = 0.5 as yellow triangles. Dashed
lines indicate the “lower branches” of the corresponding Bn.
To avoid clutter, only the dashed lines are depicted as a
guide to the eye for other values of Bx. The coefficients Bn

are larger than the physical bn by a factor of about two.

The publication continues by introducing the investi-
gated models, i.e., 1d and 2d Ising models as well as
1d Heisenberg models. Respective Hamiltonians take
the form H = H0 + λV, where H0 is an integrable part
and λV breaks the integrability via, e.g., an additional
magnetic field in the Ising models, or long-range
interactions in the Heisenberg models. Observables
are, for instance, Fourier modes of energy waves with
support throughout the whole (infinite) system, or local
operators supported only on a single site. For specifics
on Hamiltonians and observables, see Pub. [P5].
A frequently observed growth pattern of the Lanczos
coefficients is depicted in Fig. 7 for a fast Fourier mode
of an energy wave in the Ising model. Without an
integrability-breaking term, i.e., Bx = 0, the Lanczos
coefficients seem to be more or less constant. In this
case, the system can be mapped to free fermions via a
Jordan-Wigner transformation [110].
As soon as a small perturbation that breaks the
integrability is introduced, e.g., Bx = 0.01, the Lanczos
coefficients begin to grow. The distinction between the
free case and non-integrable cases is clearly visible.
The growth for larger values of Bx already looks
quite linear. The slight curvature also hints at a
possible logarithmic correction due to the system’s
one-dimensionality.
The data presented in Fig. 7 support the operator
growth hypothesis and similar results have been found
for other observables in Pub. [P5] and Refs. [84, 96].
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Additionally, Pub. [P5] numerically shows that a 2d
Ising model yields strictly linear growth (without a
logarithmic correction), which is also in favor of the
hypothesis. In contrast, linear growth could not be
clearly identified in the Heisenberg model. Not least,
this may be due to a limited availability of numerical
data for larger n.
The second main result of Pub. [P5] concerns the
derived bound Bn, which is also depicted in Fig. 7 as
dashed lines. It can be seen that the bound is larger
than the physical coefficients by about a factor of
two. Given the excessive usage of inequalities in its
derivation, it is not surprising that the bound is not
tightly achieved.
The reason for the consideration of this bound in the
first place is that in Ref. [84], a similar, much looser
bound has been derived, which has been shown to
correspond to an asymptotically linear, upper bound on
the bn. Since the “optimized” bound in Eq. (113) is not
tightly achieved, the much looser bound from Ref. [84]
is even less tight. However, the growth observed in,
e.g., Fig. 7, seems to nonetheless be consistent with the
hypothesis. Thus, Pub. [P5] corroborates the sentiment
that the “fastest possible growth” is to be understood
with respect to the “functional form” of the growth,
rather than the concrete, numerical values. Along
this line of thinking, modified coefficients B̃n obtained
from a rescaled “effective” energy scale Ẽ in Eq. (113)
could capture the correct asymptotic behavior, giving
a prospect for possible future research.

[P6]. Stability of Exponentially Damped

Oscillations under Perturbations of the Mori-Chain

While concepts like the ETH and quantum typicality
hint at fundamental mechanisms ensuring eventual equi-
libration, they are not concerned in which manner this
equilibrium is reached. It is an empirical fact that
some relaxation dynamics, e.g., exponential decays, oc-
cur much more often in nature than others, e.g., recur-
rence dynamics. Recently, there have been attempts to
trace this dominance back to a certain stability of the
prevalent dynamics versus generic Hamiltonian pertur-
bations [20].
The paper “Stability of Exponentially Damped Oscilla-
tions under Perturbations of the Mori-Chain” [P6] tack-
les this issue from yet another angle, namely in the
framework of the recursion method (cf. Sec. II C). Nu-
merical experiments are performed, which suggest the
existence of stability in a larger class of relaxation dy-
namics consisting of exponentially damped oscillations
(including exponential decays as oscillations with zero
frequency).
To set the stage, the general strategy to probe the sta-
bility of classes of dynamics is laid out. To this end, two

correlation functions CA(t) and CB(t) are chosen, whose
respective stability will be assessed and compared. In
the first investigation of Pub. [P6], CA(t) is an exponen-
tial decay and CB(t) a Gaussian decay.
Publication [P6] goes into much detail how correspond-
ing Lanczos coefficients bAn and bBn can be found, that do
not only reproduce the dynamics, but additionally sat-
isfy further physically plausible conditions, which are:
i. Compliance with the operator growth hypothesis [84].
ii. Similarity of relaxation time scales.
iii. Specific magnitude requirements.
The considered perturbation is designed on the level of
Lanczos coefficients bn, which are slightly altered ac-
cording to b̃n = bn + λvn. Here, λ is the perturbation
strength and vn is given by

vn =

Nf∑
k=1

xk cos(2πnk/d) + yk sin(2πnk/d) , (114)

where the xk, yk are real, random numbers from a Gaus-
sian distribution with zero mean and unit variance.
They are normalized as

∑
k x

2
k + y2k = 1.

The sum in Eq. (114) is capped at a number Nf. This
corresponds to excluding higher frequencies, which in-
duces a minimal correlation length in the coefficients b̃n.
This is necessary to avoid localization effects, which oc-
cur when k’s larger than Nf ≈ d/3 are included (d is the
dimension of the Liouville space).
The stability is assessed by measuring to what extent
the perturbed dynamics still falls into the original class
of functions to which the unperturbed dynamics be-
longed. To this end, the perturbed dynamics is fitted
with a function that also describes the unperturbed dy-
namics. The quality of such a fit f(t) is assessed by
calculating “how far off” it is from the given perturbed
dynamics. Concretely, a measure of the “error” ϵ is de-
fined by the expression

ϵ =

√√√√ 1

Neq

Neq∑
n=0

(C̃(tn)− f(tn))2 , (115)

where C̃ denotes the perturbed dynamics and Neq cor-
responds to the time at which equilibrium is reached.
A similar quantifier σ is introduced to measure how
strongly the unperturbed dynamics are altered due to
the perturbation in the first place. This concludes the
short version of the overall strategy.
Publication [P6] continues to apply said strategy to two
cases. The first case compares the stability of expo-
nential decays to that of Gaussian decays. The second
case concerns two kinds of damped oscillations, the first
with an exponential damping factor, the second with a
Gaussian damping factor. The results of the first case
are presented in the following.
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Figure 8. Histogram of the fit quality measure ϵ with a
bin size of 5 · 10−4. Dashed lines indicate respective mean
values. The stability of the exponential decay is evident. In
contrast, the Gaussian decay does not seem to be stable, as
the deviations ϵ become quite large. Inset: scatter plot of
all points (σi, ϵi). Both dynamics are equally affected by the
perturbation.

Turning on the perturbation (λ = 0.5), the altered
dynamics are fitted by exponential and Gaussian
decays, respectively. While the publication displays
figures of unperturbed coefficients and dynamics as well
as examples of perturbed cases, here, for conciseness,
only the most important data are depicted.
A histogram of all deviations ϵ (obtained fromN = 1000
repetitions) of the fits from the respective perturbed
dynamics is displayed in Fig. 8. There is a clear division
between the exponential cases (blue) and the Gaussian
cases (red), i.e., the mean deviation in the exponential
case is about twenty times smaller than in the Gaussian
case (dashed lines in Fig. 8).
The inset takes the second quantifier σ into account
in order to exclude the possibility that exponential
decays are generally less affected by the constructed
perturbation than the Gaussian decays. Since this is
evidently not the case, it is concluded that exponential
decays are indeed stable with respect to perturbations
[as in Eq. (114)]. In contrast, Gaussian decays seem to
be quite unstable.
Publication [P6] proceeds to the second investigation, a
comparison between the two above-mentioned kinds of
damped oscillations. Exponentially damped oscillations
are found to be stable. In contrast, oscillations damped
by a Gaussian factor are found to be more unstable.
However, the distinction is not as striking as in the
case presented above.
The dynamics that Pub. [P6] has found to be stable are
ubiquitous in nature. For example, slow exponential
dynamics may commonly arise whenever a system
interacts weakly with an environment or whenever

long-wavelength Fourier components of spatial densities
of conserved quantities are considered. Further, expo-
nentially damped oscillations are routinely observed in
the context of open quantum systems [22, 23]. They
arise whenever a small system featuring oscillating
observables is weakly coupled to an environment, which
causes the oscillation to be exponentially damped.
To obtain the final result of the paper, the restriction
on Nf is lifted, such that the perturbation modifies the
bn in a completely random, uncorrelated matter. As
hinted at above, localization effects similar to Anderson
localization [149] emerge, which yield uncommon,
“pathological” dynamics. This finding could be of
interest in the context of the works on “typicality of
perturbations” [134, 150, 151], as it presents a criterion
to identify “untypical” perturbations.

IV. Summary and Conclusion

The dissertation at hand discussed the works presented
in the publications [P1–P6], in which quite diverse as-
pects of non-equilibrium behavior in isolated quantum
systems have been addressed.
The first two publications [P1, P2] have examined a
compelling bound on equilibration times. While said
bound is mathematically sound, it has been (numeri-
cally and analytically) shown to be inapplicable to many
standard scenarios featuring slow, exponential relax-
ation dynamics.
Publication [P3] has numerically scrutinized three theo-
ries modeling the effect of perturbations on expectation
value dynamics. For the specific spin-based setup, only
one theory has been shown to yield good results for weak
perturbations.
A major part of this dissertation concerned fluctuation
theorems. Publication [P4] has investigated a particular
integral fluctuation theorem (IFT) for the entropy pro-
duction of a system-bath setup. Said IFT has been ana-
lytically shown to hold for microcanonical and pure bath
states under the assumption that the transition proba-
bilities satisfy the conditions of stiffness and smooth-
ness. The validity of the IFT and the existence of stiff-
ness and smoothness have been numerically investigated
for various lattice models. In the investigated non-
integrable systems, the IFT becomes more and more
fulfilled the larger the bath gets. Fittingly, stiffness
and smoothness also become more and more fulfilled
with growing bath sizes. In the integrable case, the IFT
is violated to some extent for pure bath states, which
is traced back to the absence of sufficient smoothness.
These findings demonstrate the significance of stiffness
and smoothness, thus, possible prospects for future re-
search could be to examine the origins of their (non-)
validity more closely.

32



Continuing, publication [P5] has numerically examined
the recently proposed “universal operator growth hy-
pothesis” for various spin-based systems in the thermo-
dynamic limit. The hypothesis has been shown to be
valid within the limits of the numerical approach. Fur-
ther, the specific growth pattern has been found to be
consistent with an “optimized” upper bound, hinting at
a possible direction of future research.
Finally, publication [P6] has addressed the issue of sta-
bility of relaxation dynamics in the framework of the re-

cursion method. A larger class of functions consisting of
exponentially damped oscillations has been numerically
found to be stable against certain perturbations on the
level of Lanczos coefficients. This finding subtly hints
at the possibility that exponentially damped oscillations
constitute sort of fundamental “building blocks” of re-
laxation dynamics. This notion is part of a set of ideas
that has been affectionately named “the weak model”
and it will be interesting to see what future research
comes out of it.
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Compelling Bounds on Equilibration Times -
the Issue with Fermi’s Golden Rule

Robin Heveling,∗ Lars Knipschild,† and Jochen Gemmer‡

Department of Physics, University of Osnabrück, D-49069 Osnabrück, Germany

Putting a general, physically relevant upper bound on equilibration times in closed quantum
systems is a recently much pursued endeavor. In PRX, 7, 031027 (2017) Garćıa-Pintos et al. suggest
such a bound. We point out that the general assumptions which allow for an actual estimation of
this bound are violated in cases in which Fermi’s Golden Rule and related open quantum system
theories apply. To probe the range of applicability of Fermi’s Golden Rule for systems of the type
addressed in the above work, we numerically solve the corresponding Schrödinger equation for some
finite spin systems comprising up to 25 spins. These calculations shed light on the breakdown of
standard quantum master equations in the “superweak” coupling limit, which occurs for finite sized
baths.

I. INTRODUCTION

The last decades have seen a major progress in the field
of equilibration in closed quantum systems [1]. Con-
cepts like typicality [2–4] and the eigenstate thermaliza-
tion hypothesis [5, 6] have been brought forth. Further-
more, it has been established that for an initial state
ρ populating many energy levels, expectation values
⟨A(t)⟩ will generically be very close to their temporal
averages for most times within the interval to which
the average refers (“equilibration on average”). While
the conditions for this statement to be true are rather
mild concerning the observable A and the Hamiltonian
H [7–9], the respective time interval may be very large.
For specific observables it may, e.g., scale with the di-
mension of the relevant Hilbert space [10, 11]. Moreover,
concrete examples are known in which the correspond-
ing equilibration times for physically relevant observ-
ables scale as Teq ∝ Nα, α ≥ 1/2, where N is the size of
the system. This result has been found for systems fea-
turing long range [12] as well as short range interactions
[13], albeit for a somewhat different definitions of equi-
libration times. In fact, already for mesoscopic many-
body systems with standard interaction strengths, the
required equilibration interval may be on the order of
the age of the universe [12]. Thus, although the above
statements in some sense establish equilibration under
moderate conditions in the very long run, it is unclear
whether or not this equilibration will ever occur in a
physically relevant period of time. Hence, the ques-
tion of an upper bound on this relaxation timescale has
recently been much discussed. Since it is always pos-
sible to find mathematically well defined, permissible
initial states that fully exhaust the above, unsatisfac-
torily large time interval, most contributions focus on

∗ rheveling@uos.de
† lknipschild@uos.de
‡ jgemmer@uos.de

additional, physically plausible conditions. These con-
ditions, which are intended to capture the actual, phys-
ical state of affairs, may be imposed on the initial state,
the observable, the structure of the system, or combina-
tions thereof [14–19]. In the present paper we primarily
discuss results from Ref. [20]. The latter rests on as-
sumptions on all of the above.
This paper is organized as follows: In Sect. II we briefly
present a main result from Ref. [20]. Furthermore, we
elaborate on the lack of predictive power of this result
in cases in which Fermi’s Golden Rule applies. In Sect.
III we explain some models, each of which comprises
a single spin in a magnetic field interacting with a (fi-
nite) bath, consisting of spins itself. We initialize the
system in a standard system-bath product state and
numerically solve the Schrödinger equation, monitor-
ing the system’s spin component parallel to the mag-
netic field. These data unveil the regime of validity of
Fermi’s Golden Rule with respect to the crucial system
parameters. Sect. IV discusses the scaling of the critical
interaction strength at which open system predictions
start to become unreliable. In Sect. V the implica-
tions of the numerical findings from Sect. III on the
assumptions and statements from Ref. [20] are named
and explained. Eventually, we sum up and conclude in
Sect. VI.

II. GARCÍA-PINTOS BOUND AND FERMI’S
GOLDEN RULE

To begin with, we state the main result of Ref. [20]
(hereafter called the Garćıa-Pintos bound (GPB)) in a
comprehensive form. The GPB addresses an equilibra-
tion time Teq. To further specify Teq we introduce some
notation. Let ρ be the initial state of the system. Fur-
thermore, let A(t) denote an observable A in the Heisen-
berg picture and ⟨A(t)⟩ := Tr{A(t)ρ} its time dependent
expectation value. Because the closed system dynamics
is unitary (and the system is finite), ⟨A(t)⟩ has a well de-
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fined “infinite time average” ⟨A⟩ =: ⟨A⟩eq, which is rou-
tinely considered as the equilibrium value of A in case
the observable A equilibrates at all [9]. Now, consider
a deviation D(t) of the actual expectation value from
its equilibrium, i.e., D(t) := (⟨A(t)⟩ − ⟨A⟩eq)2/4||A||2,
where ||A|| is the largest absolute eigenvalue of A. More-
over, consider an average of D(t) over the time inter-
val [0, T ] denoted by DT . The condition that defines
Teq is that DT ≪ 1 must hold for T ≫ Teq (for non-
equilibrating systems such a Teq may not exist [9]).
The GPB is an explicit expression for such a Teq (see
Eq. (4)), based on ρ,A(0) andH, whereH is the Hamil-
tonian of the system. As the GPB involves somewhat
refined functions of the above three operators, we need
to specify these before stating the GPB explicitly. A
central role is taken by the probability distribution pjk,
which is defined as

pjk ∝ |ρjkAkj | for Ej − Ek ̸= 0 , (1)

pjk = 0 for Ej − Ek = 0 ,
∑
j,k

pjk = 1 ,

where Ej , Ek are energy eigenvalues corresponding to
energy eigenstates |j⟩, |k⟩. Furthermore, matrix el-
ements are abbreviated as ρjk := ⟨j|ρ|k⟩, Ajk :=
⟨j|A(0)|k⟩. While the GPB is not limited to this case,
here, we focus on the pjk that may be described in terms
of a probability density function w(G). All examples we
present below conform with such a description and it is
plausible that this applies to many generic many-body
scenarios. Prior to defining w(G), we define w(G, ϵ) as

w(G, ϵ) :=
1

ϵ

∑
j,k

Θ
( ϵ
2
− |Ej − Ek −G|

)
pjk , (2)

where Θ is the Heaviside function. This definition is
the standard construction of a histogram in which the
pjk are sorted according to their respective energy dif-
ferences Ej −Ek. It is now assumed that there exists a
range of (small but not too small) ϵ such that w(G, ϵ)
is essentially independent of variations of ϵ within this
range. The w(G, ϵ) from this “independence regime”
are simply abbreviated as w(G). Let the standard devi-
ation of w(G) be denoted by σG. Additionally, let wmax

denote the maximum of w(G). The quantities a and Q
that eventually enter the GPB are now defined as

a := wmaxσG , Q :=
∑

i,j:Ei ̸=Ej

|ρijAji|
||A||

. (3)

We can now state the GPB:

Teq =
πa||A||1/2Q5/2√
|Tr([[ρ,H], H]A)|

=
πa||A||1/2Q5/2√
| d2

dt2 ⟨A(t)⟩
∣∣
t=0

|
. (4)

Obviously, the GPB links Teq to the initial “curvature”
of the observable dynamics ∂2t ⟨A(t)⟩|t=0 (which is prac-
tically accessible, cf. Fig. 7). An actual, concrete bound
on the equilibration time by means of Teq, however, only
arises from Eq. (4) if the numerator can be shown to be
in an adequate sense small or at least bounded. This is
a pivotal feature on which the “predictive power” of the
GPB hinges. The crucial quantities in the numerator
are a and Q. As it is practically impossible to calculate
a from its definition for many-body quantum systems,
Garćıa-Pintos et al. instead offer an assumption.
They argue that a ∼ 1 may be expected for w(G) that
are “unimodal”. Unimodal means that w(G) essentially
consists of one central elevation like a Gaussian or a box
distribution, etc. Indeed, a is invariant with respect to
a rescaling as w(G) → sw(sG), as it would result from
rescaling the Hamiltonian as H → sH (here s is some
real, positive number). Garćıa-Pintos et al. also offer
various upper bounds on Q for different situations.
In the remainder of this section, we explain in which
sense the conclusiveness of the GPB is in conflict with
Fermi’s Golden Rule (FGR). Let us stress that this con-
flict does not concern the validity or correctness of Eq.
(4) as such, the latter is undisputed. It only concerns
the assumptions on a and Q, which are required to find
an actual value or estimate for Teq. (Note that there
is some evidence (cf. Sect. V) that specifically the as-
sumption on a is violated, rather than the assumption
on Q). Consider a Hamiltonian consisting of an unper-
turbed part H0 and a perturbation Hint.

H = H0 + λHint (5)

Furthermore, consider an observable A, which is con-
served under H0, i.e. [A,H0] = 0. If H0 has a suffi-
ciently wide and dense spectrum and λ is small, FGR
may apply under well investigated conditions [21–23].
The applicability of the FGR approach yields, in the
simplest case, a monoexponential decay, i.e.

⟨A(t)⟩ = (⟨A(0)⟩ − ⟨A⟩eq)e−t/τrel + ⟨A⟩eq , (6)

where τrel := rλ−2 and r is a real, positive number that
depends on H0 and Hint. More refined approaches, such
as the Weisskopf-Wigner theory or open quantum sys-
tem approaches, also arrive at such exponential decay
dynamics [24, 25]. In the relevant case ∂t⟨A(t)⟩|t=0 = 0,
obviously Eq. (6) cannot apply at t = 0. In this case Eq.
(6) is meant to apply after a short “Zeno time” τzeno that
is often very short compared to the relaxation time τrel
[23]. (Note, however, that the denominator of Eq. (4)
addresses a time below the Zeno time, if the latter is
nonzero). We now aim to find the principal dependence
of quantities in Eq. (4) on the interaction strength λ.
While the definition of Teq as given at the beginning of
the present Sect. does not fix the relation of τrel and Teq
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rigorously, for exponential decays it appears plausible to
require at least

Teq ≥ τrel . (7)

For the denominator of Eq. (4) we find with Eq. (5)√∣∣∣∣ d2dt2
⟨A(t)⟩

∣∣
t=0

∣∣∣∣ = √
|c1λ+ c2λ2| , (8)

where c1 = Tr([Hint, A][ρ,H0]), c2 = Tr([Hint, A][ρ,Hint]).
Plugging Eqs. (6, 7, 8) into Eq. (4) yields

πa||A||1/2Q5/2 ≥ r

√
|c1λ+ c2λ2|

λ2
(9)

for the numerator of Eq. (4). Obviously, the numerator
of Eq. (4) diverges in the limit of weak interactions, i.e.
λ→ 0. The latter holds even if c1 = 0. This contradicts
the central assumption behind the GPB as outlined be-
low Eq. (4). Hence, the validity of FGR in the weak
coupling limit and a conclusive applicability of the GPB
are mutually exclusive. This is the first main result of
the present paper. Note that, in the above scenario, the
exponential decay is due to some small “conservation
breaking” part of the Hamiltonian. However, exponen-
tial decay also often occurs without some part of the
Hamiltonian being particularly small, e.g., slow Fourier
modes in sufficiently large systems. Although the prac-
tical success of FGR is beyond any doubt, the theoret-
ical applicability of FGR rests on various assumptions
on the system in question, so does the applicability of
standard open system methods. In order to learn about
the applicability of either the GPB or FGR from con-

Figure 1. Single system spin (green) and spin-bath (red)
interact with strength λ. Solid black lines indicate isotropic
Heisenberg interactions.

sidering examples, we analyze some spin systems in the
following Sect. III by numerically solving the respective
Schrödinger equations. This analysis is comparable to
numerical investigations performed in Ref. [20]. How-
ever, other than Garćıa-Pintos et al. we analyze the
weak coupling limit and consider system sizes that are
too large to allow for numerically exact diagonalization
of the respective Hamiltonians.

III. NUMERICAL SPIN-BASED
EXPERIMENTS PROBING EQUILIBRATION

TIMES

While we analyze a number of concretely specified mod-
els below, it is important to note that these models just
represent some generic instances of the system-bath sce-
narios which are routinely considered in open quantum
system theory. The (non-integrable) baths share some
properties with standard solid state systems, like pe-
riodicity and locality (in this respect they differ from
the otherwise comparable models from Refs. [26–28]).
Other than that, the details of our modeling are not pe-
culiar at all. We varied details of the bath Hamiltonians
in piecemeal fashion and found all below results unal-
tered (cf. App. C). Our archetypal model is an isotropic
spin-1/2 Heisenberg system, consisting of a single sys-
tem spin coupled to a bath. The bath is rectangularly
shaped with 3 × L spins and features periodic bound-
ary conditions in the longitudinal direction resulting in a
wheel-like structure (cf. Fig. 1). Thus, the total number
of spins is given by N = 3L+1. The single system spin
is subject to an external magnetic field in the z-direction
and interacts with three neighboring bath spins in the
transverse direction. This model is non-integrable in the
sense of the Bethe-Ansatz.
The bath Hamiltonian reads

Hbath = J

3∑
r=1

L∑
i=1

(
Sxi,rS

x
i+1,r + Syi,rS

y
i+1,r + Szi,rS

z
i+1,r

)
+ J

L∑
i=1

(
Sxi,1S

x
i,2 + Syi,1S

y
i,2 + Szi,1S

z
i,2

)
+ J

L∑
i=1

(
Sxi,2S

x
i,3 + Syi,2S

y
i,3 + Szi,2S

z
i,3

)
, (10)

where Sx,y,zi,r are spin-1/2 operators at site (i, r) and
L+ 1 ≡ 1. The exchange coupling constant J as well
as ℏ are set to unity. The Hamiltonian of the system is
given by

Hsys = BSzsys , (11)

where Sx,y,zsys denote the spin-1/2 operators of the addi-
tional system spin and B = 0.5.
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The interaction between bath and system is described
by the Hamiltonian

Hint =

[(
Sx1,1 + Sx1,2 + Sx1,3

)
Sxsys (12)

+
(
Sy1,1 + Sy1,2 + Sy1,3

)
Sysys

+
(
Sz1,1 + Sz1,2 + Sz1,3

)
Szsys

]
and contributes with a factor λ to the total Hamiltonian

H = Hsys +Hbath + λHint . (13)

The considered initial states are product states of a sys-
tem state π↑ and a bath state πE,δ. This corresponds to
a situation where system and bath are initially uncor-
related and then brought into contact via Hint at t = 0.
The system state is a projector onto the Szsys-eigenstate
corresponding to spin-up. The bath state πE,δ is a pro-
jector onto a (small) energy window of width δ centered
around a mean energy E.

ρ =
π↑ ⊗ πE,δ

Tr{π↑ ⊗ πE,δ}
(14)

Concretely, we fix the width of the energy window
δ = 0.1, which is very small compared to the scale of
the full energy spectrum of the bath. Given the size
of the systems, it comprises nevertheless a very large
number of energy eigenstates. To keep track of finite
size effects, we increment the baths circumference L in

0 2 4 6 8

0.0

0.1

0.2

0.3

0.4

0.5

Figure 2. Decay of the magnetization for N = 25. For strong
coupling (e.g. λ = 1.0) the magnetization decays quickly and
nonexponentially to the thermal expectation value. Note
that the time axis is scaled with λ2. For weak coupling (e.g.
λ = 0.1) the magnetization decays exponentially towards
the thermal equilibrium value. For very weak coupling (e.g.
λ = 0.01) the magnetization gets stuck at a non-thermal
longtime average value.

steps of size one, thus adding three spins to the bath
in each step. An inverse temperature β is defined as
∂E log Ω(E), where Ω(E) is the density of states of the
bath at energy E. This “microcanonical” definition of
temperature is also employed in Ref. [20]. For com-
parability of different bath sizes we aim at keeping β
fixed while incrementing the bath size. As Hbath is lo-
cal, the bath energy is expected to scale linearly with
the bath size. Hence, we choose a scaling of the ini-
tial bath energy as E ≈ −0.15(N − 1), which corre-
sponds to choosing β ≈ 0.4. Given these specifications
of the Hamiltonian and the initial state, we numerically
solve the corresponding Schrödinger equation and mon-
itor the expectation value of the z-component of the
magnetization of the system-spin, i.e. ⟨Szsys(t)⟩. Some
results are displayed in Fig. 2 for a schematic overview.
In accord with open quantum system theory, these re-
sults suggest to distinguish three cases.
i. non-Markovian regime: For strong coupling (e.g.
λ = 1.0) the magnetization quickly decays to the equi-
librium value, i.e. ⟨Szsys⟩mc, in a nonexponential way.
The description of these dynamics requires the incor-
poration of memory effects in some way. While this is
a very active field in open quantum theory, we do not
investigate this regime any further in the present paper.
ii. Markovian regime: For weak coupling (e.g. λ = 0.1)
there is a monoexponential decay to the thermal equi-
librium. This exponential decay is in full accord with
FGR. A large number of systems ranging from quantum
optics to condensed matter fall into this regime [25, 29].
It also largely coincides with the field of quantum semi-
groups and the Lindblad approach.
iii. superweak coupling regime: For very weak coupling
(e.g. λ = 0.01) the magnetization does not decay to the
thermal equilibrium value at all, it rather gets stuck at

N = 19

N = 22

N = 16

N = 25

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-0.05

0.00

0.05

0.10

0.15

Figure 3. Longtime average value of the magnetization plot-
ted over the interaction strength λ for various bath sizes.
For sufficiently strong coupling the system thermalizes for
all bath sizes. For sufficiently weak coupling the magnetiza-
tion gets stuck for all bath sizes.
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Figure 4. Critical interaction strength plotted over inverse
system size. The data is fitted as λcrit(N) = C2N

1/4 exp−bN

with fit parameters C2 = 12.7 and b = 0.25. The principal
form of this fit is motivated in Sect. IV.

a value closer to the initial value, which indicates the
breakdown of FGR. This value depends on the interac-
tion strength and on the bath size. In accord with stan-
dard open quantum system theory, our below results
indicate that this regime only exists for finite baths.
We are not aware of any systematic approach to this
regime in the literature to date. As the conflict be-
tween the GPB and FGR arises in the limit of weak
interactions, cf. Eq. (9), we are primarily interested
in the transition from the Markovian to the superweak
regime. A prime indicator of superweak dynamics is, as
mentioned, that ⟨Szsys(t)⟩ no longer decays down to the
microcanonical expectation value ⟨Szsys⟩mc = −0.05 as it
does in the non-Markovian and the Markovian regime.
Fig. 3 shows the longtime average value of the magneti-
zation plotted over the interaction strength λ for various
bath sizes. For sufficiently strong coupling the magne-
tization decays to the thermal equilibrium value for all
bath sizes. For each bath size there exists a critical in-
teraction strength λcrit, below which the magnetization
gets stuck at a non-thermal longtime average value, thus
signaling the transition from the Markovian to the su-
perweak regime. This critical interaction strength λcrit
decreases with bath size. We chose ⟨Szsys⟩ = −0.04 (hor-
izontal grey line) to define λcrit. This choice is quite ar-
bitrary, but it turns out that the below scaling of λcrit is
rather insensitive to the exact positioning of this thresh-
old, as long as it is sufficiently close to the thermal equi-
librium value. This finding is corroborated in App. D,
where the scaling of the fit parameters C2 and b with
the critical threshold value of ⟨Szsys⟩ is shown. Obvi-

ously, one expects ⟨Szsys⟩ → 0.5 as λ → 0. Fig. 4 dis-
plays the critical interaction strength plotted over the
inverse system size. It strongly suggests that λcrit → 0
very quickly with increasing bath size N . Hence, for all
mesoscopic to macroscopic systems, and even more so

0 2 4 6 8
0.001

0.005

0.010

0.050

0.100

0.500

Figure 5. Various exponential decays from the Markovian
regime logarithmically plotted. Depicted are 9 curves; for
N = 22 (N = 25) the curves for λ = 0.2, 0.15, 0.1 (λ =
0.3, 0.2, 0.15, 0.1, 0.08, 0.06) are shown. For short times the
collapse is evident, at t ∼ 5 quantum fluctuations become
more prominent.

in the thermodynamic limit, the transition to the super-
weak regime practically never occurs, such that behav-
ior other than Markovian can hardly be expected even
for physically very weak interactions. While this find-
ing is another main result of the quantitative analysis
at hand, it qualitatively hardly comes as a surprise in
a larger context, given the practical success of Marko-
vian quantum master equations. However, to elaborate
on this result somewhat further, we present a theory
that captures the data in Fig. 4 rather accurately in
Sect. IV. Next we confirm the validity of FGR in the
Markovian regime and discuss relaxation/equilibration
times in all regimes. The motivation for the latter is
twofold: On the one hand equilibration times enter the
GPB (cf. Eq. (4)), on the other hand the scaling of
equilibration times with the interaction strength may
serve as a additional, quantitative indicator for the va-
lidity of FGR. Fig. 5 displays the observable dynamics
⟨Szsys(t)⟩ for all 11 interaction strengths and bath sizes
from the Markovian regime, which is lower bounded by
λcrit as determined from Fig. 4 and upper bounded by
λnon-Mark ≈ 0.3 for all N . Note the the time axis is
scaled with the squared interaction strength such that a
collapse of the data onto one decaying exponential indi-
cates the accordance with Eq. (6) and hence FGR. This
collapse is evident.
In Fig. 6 the relaxation time τrel is plotted over λ−2.
Here τrel is the time at which the magnetization has de-
cayed to 1/e of its original value relative to the equilib-
rium value (cf. Eq. (6)). In the Markovian regime, i.e.
for λ−2

non-Mark ≤ λ−2 ≤ λ−2
crit, the relaxation time scales

as τrel ∼ λ−2, as predicted by FGR, which also confirms
the applicability of FGR in the Markovian regime. At
very small λ, i.e. in the superweak coupling regime, τrel
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Figure 6. Relaxation time plotted over the inverse inter-
action strength squared for various bath sizes. Left of the
vertical dashed black line lies the non-Markovian regime.
Between the vertical dashed black line and the vertical
dashed colored lines lies the respective Markovian regime,
i.e, the vertical dashed colored lines indicate the correspond-
ing λ−2

crit’s. For N = 16 the Markovian regime does not ex-
ist. Within the respective Markovian regimes τrel ≈ 0.95λ−2

holds for all system sizes in accord with FGR.

first increases more slowly with increasing λ−2 and likely
eventually even decreases to zero. From the data dis-
played in Fig. 6 this behavior is, however, qualitatively
only visible for N = 16 due to numerical limitations at
extremely small λ. Eventually, we directly numerically
probe the connection between short time and long time
dynamics suggested in Eq. (4). To this end we compute

the “initial curvatures”
√
|∂2t ⟨A(t)⟩

∣∣
t=0

| for various in-

teraction strengths and systems sizes. The result is dis-
played in Fig. 7. As expected from Eq. (8), and in full
accord with a corresponding statement in Ref. [20], the
square root of the initial curvature scales linearly with
λ and is practically independent of the system size. We
are now set to assess the crucial numerator from Eq. (4)
numerically. From Eqs. (4, 7) follows

πa||A||1/2Q5/2 = Teq

√∣∣∣∣ d2dt2
⟨A(t)⟩

∣∣
t=0

∣∣∣∣ (15)

≥ τrel

√∣∣∣∣ d2dt2
⟨A(t)⟩

∣∣
t=0

∣∣∣∣ .
The lower bound to the numerator is displayed in Fig. 8.
Recall that for a conclusive application of the GPB this
numerator must be appropriately upper bounded. Cor-
respondingly, Ref. [20] offers estimates for both a and
Q. While a ∼ 1 is simply traced back to the unimodal-
ity of w, the discussion on the order of magnitude of Q
is quite involved. However, in the case of weak inter-
actions, a microcanonical initial bath state comprising

N = 16
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N = 25
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0.0
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0.2
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0.4

0.5

Figure 7. Square root of the initial curvature of the observ-
able dynamics at t = 0 plotted over the interaction strength.
The data indicate that this quantity is independent of the
system size in all regimes of the interaction strength.

a large number of energy eigenstates, and an exponen-
tially growing density of states in the bath (with an
exponent β which is not too large), Q may also be ex-
pected to be of order unity, according to Ref. [20]. All
these conditions apply to the models at hand. However,
quite in contrast we find that the numerator grows at
least up to values of ca. 55 already for N = 25 and inter-
actions within the range of our numerical accessibility.
Moreover, the data do not indicate any “nearby” upper
bound of the numerator at 55. This is at odds with
a conclusive application of the GPB and another main
result of the present paper. Large numerators must oc-
cur, as outlined in Sect. II, for large systems in the
Markovian regime on the verge to the superweak regime.

N = 16
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N = 22

N = 25

0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30
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60

Figure 8. Numerator of Eq. (4), i.e, the central quantity
of the GPB plotted over the interaction strength. The nu-
merator reaches values substantially larger than unity. The
increase of the numerator with decreasing λ extends into the
superweak regime.
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Although Fig. 8 indicates that in the outer mathemati-
cal limit (which may be considered to be physically less
relevant) λ→ 0, the numerator may eventually be of or-
der unity, its growth appears to continue substantially
into the superweak regime. While we are unable to ver-
ify this directly, it appears plausible that the unbound
growth of the numerator is due to an unbound growth
of a, while Q ∼ 1 may very well hold. We argue for this
plausibility in Sect. V.
We sum up this section as follows: In a potentially wide
regime of interaction strengths, which is lower bounded
by λcrit, FGR is found to apply as suggested by standard
open quantum system theory in the Markovian regime.
The lower bound appears to decrease rapidly with sys-
tem size N (cf. also Sect. IV), making it practically ir-
relevant for mesoscopic and macroscopic systems. This
relates to the GPR inasmuch as the validity of FGR im-
plies the breakdown of the practical applicability of the
GPB at sufficiently weak interactions. We numerically
confirmed the occurrence of this breakdown directly for
a system comprising N = 25 spins.

IV. GENERAL SCALING OF λcrit WITH
TOTAL SYSTEM SIZE

While the results on λcrit in Fig. 4 are model depen-
dent, a similar scaling may be expected whenever Hint

complies with the eigenstate thermalization hypothe-
sis. This claim is substantiated in the following. The
starting point is the assumption that within the super-
weak regime, the overlap of the eigenstates of the uncou-
pled system |n, sys + bath⟩ and those of the full system
|n, sys + bath + int⟩ is relatively large, i.e.

|⟨n, sys + bath|n, sys + bath + int⟩| ≈ 1 . (16)

A strong indication for this to occur, arises from the
leading order contributions to a perturbative correction
to the eigenstates being small. This condition may, ac-
cording to textbook level perturbation theory, be ap-
proximated as

λ2
∑
m ̸=n

|⟨m, s + b|Hint|n, s + b⟩|2

((m− n) 1
Ω(N,β) )

2
≪ 1 , (17)

where Ω(N, β) is the density of states of a system com-
prising N spins (or other similar subsystems) at the en-
ergy that corresponds to the inverse temperature β. In
Eq. (17) it is assumed that the level spacing within the
relevant energy regime may be approximated as being
constant. In this case the “mean” level spacing is given
by 1/Ω(N, β). Following the eigenstate thermalization
hypothesis ansatz [30] we furthermore assume that there
exists a typical value for the absolute squares of the ma-
trix elements of the coupling operator, which varies with

the energies En, Em only on energy scales much larger
than the one relevant here. Furthermore, the eigenstate
thermalization hypothesis suggests a specific scaling of
these matrix elements with the density of states. Fol-
lowing the eigenstate thermalization hypothesis we thus
assume

|⟨m, sys + bath|Hint|n, sys + bath⟩|2 ≈ C1

Ω(N, β)
, (18)

where C1 is some real constant.
Exploiting this, Eq. (17) turns into

λ2C1Ω(N, β)
∑
k ̸=0

1

k2
≪ 1 . (19)

As the sum assumes the finite value π2/3, we conclude

λcrit =
C2√

Ω(N, β)
(20)

for the scaling of λcrit, where C2 is a constant whose
concrete value depends on Hsys, Hbath and Hint. Now
we turn to an estimate for Ω(N, β). For a sufficiently
large Heisenberg spin system (or any other system con-
sisting of N similar, similarly and locally interacting
subsystems) it is reasonable to assume that the density
of states is Gaussian with mean zero and variance pro-
portional to the particle number N .

Ω(N,E) ∼ 2N√
N
e−E

2/αN (21)

Using β = ∂E log Ω leads to

Ω(N, β) ∼ 1√
N
e(log 2−0.25αβ2)N . (22)

Inserting this into Eq. (20) and fitting for C2 and α
yields the dashed line in Fig. 4, which matches the data
quite well. This remarkable agreement in turn backs up
the argumentation which lead to Eq. (20). As the den-
sity of states is routinely expected to scale exponentially
in system size, Eq. (20) indicates that λcrit will generally
be exponentially small in the system size and thus the
superweak regime will practically never be observed.

V. GARCÍA-PINTOS BOUND AND
EXPONENTIALLY DECAYING OBSERVABLES

As explained in Sect. II the applicability of the GPB
hinges on the two parameters a and Q, both of which
should be of order unity to establish a meaningful
relation between the short time dynamics and the
equilibration time in the sense of the GPB. However,
for some of the numerical examples considered in
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Sect. III, at least one of the parameters must be
substantially larger than unity. While we are unable
to perform a direct numerical check for large system
sizes, we strongly suspect that a ∼ 1 is violated at weak
interactions even though the corresponding w(G) (cf.
Sect. II) is strictly unimodal. In the remainder of the
present section we explain and back up this claim.
Consider the mathematically simple case of an
infinite-temperature bath in the initial state
ρ = (Szsys + 1sys/2)⊗ 1bath/dbath. This state yields

⟨Szsys(t)⟩ = Tr{Szsys(t)ρ} = Tr{Szsys(t)Szsys} (23)

for the dynamics of the observable ⟨Szsys(t)⟩, which may
be rewritten as

⟨Szsys(t)⟩ =
∑
j,k

|⟨j|Szsys|k⟩|2ei(Ej−Ek)t . (24)

Now, consider the distribution pjk as defined in Eq. (1)
for this initial state of observable A = Szsys.

pjk ∝ |⟨j|Szsys|k⟩2| = |⟨j|Szsys|k⟩|2 for j ̸= k (25)

For non-integrable systems in the sense of a Bethe
ansatz, the eigenstate thermalization hypothesis may be
expected to hold, yielding |⟨j|Szsys|j⟩|2 ≈ 0. Exploiting
this case, the insertion of Eq. (25) into Eq. (24) yields

⟨Szsys(t)⟩ ∝
∑
j,k

pjke
i(Ej−Ek)t . (26)

To the extend that pjk may indeed be replaced by a
smooth probability density as discussed around Eq. (2),
Eq. (26) may be rewritten as

⟨Szsys(t)⟩ ∝
∫
w(G)eiGtdG . (27)

Thus, for the present scenario, w(G) is essentially the
Fourier transform of the observable dynamics ⟨Szsys(t)⟩.
Based on the numerical findings displayed, e.g., in Fig. 2
it appears plausible that ⟨Szsys(t)⟩ will be an exponen-
tial decay for infinite temperature initial states as well.
Therefore, w(G) will be Lorentzian. While a Lorentzian
distribution is clearly unimodal with one well-behaved
maximum, its variance diverges. Consequently a, as de-
fined in Eq. (3), diverges as well. Thus, in contrast
to the assumptions in Ref. [20], a ∼ 1 does not hold.
This is the last main result of the present paper. Of
course σG cannot really diverge in any system featuring
a finite energy spectrum. However, the finiteness of the
spectrum essentially causes a cut-off of the tails of the
Lorentzian at some frequency. This cut-off actually ren-
ders the standard deviation σG finite. Nonetheless, this
standard deviation does not reasonably reflect the width
of w(G). It will be much larger than other measures of

the width such as the full-width-at-half-maximum, etc.
Some attention should also be paid to the question
whether or not the GPB scales with the size of the en-
vironment. (Earlier works presented upper bounds that
explicitly depend on the size of the environment, which
is often seen as a drawback [10, 11]). While the GPB
does not explicitly dependent on the size of the environ-
ment, the latter may enter via the parameter a. For any
(weak) interaction strength λ there exists a system size
N(λcrit) above which FGR applies. Above that size the
GPB is independent of N . Below or at N(λcrit), how-
ever, the numerator in Eq. (4) may depend on N rather
strongly. For arbitrarily small λ this N(λcrit) may be-
come arbitrarily large. Thus, in the class of models
discussed in the paper at hand, one can always find in-
stances for which the GPB depends on system size even
for very large systems, i.e. N ≫ 1.

VI. SUMMARY AND CONCLUSION

In the paper at hand we conceptually and numerically
analyzed an upper bound on equilibration times pre-
sented in a recent paper by Garćıa-Pintos et al. To
this end, we investigated a standard system-bath setup
by monitoring the system’s magnetization for various
bath sizes and interaction strengths. This numerical
investigation is based on the solution of the time
dependent Schrödinger equation for the full system,
including the bath. We identified a Markovian regime
of interaction strengths λ in which Fermi’s Golden Rule
holds, i.e., the system thermalizes in an exponential
way and the equilibration time scales as λ−2. This
relates to the Garćıa-Pintos bound inasmuch as the
validity of Fermi’s Golden Rule and the usefulness of
the Garćıa-Pintos bound are analytically shown to be
mutually exclusive at sufficiently small λ. At extremely
small λ, we indeed find a “superweak” regime in which
Fermi’s Golden rule does not apply. This regime (in
principle) exists for finite baths and is reached below
some λcrit which is shown to scale inversely exponen-
tially in the bath size, suggesting that the superweak
regime practically ceases to exist when considering
moderately large systems. However, in the superweak
regime the Garćıa-Pintos bound may eventually regain
applicability, although its non-applicability is found to
extend also into the superweak regime.
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APPENDIX

Details of our numerical implementation will be
discussed in this appendix. We make use of the
concept of typicality (cf. App. A) and use a time
evolution algorithm (real and imaginary) based on
Chebyshev polynomials (cf. App. B). Since the full
Hamiltonian conserves magnetization, we perform
the procedure outlined below in each magnetization
subspace. The dynamics in the full Hilbert space are
obtained by piecing together the contributions of each
magnetization subspace weighted with their respective
binomial weight. Note that the main hindrance to our
calculations is not the exponentially large Hilbert space
dimension, but rather the extremely long times that
have to be reached in real time for small interaction
strengths. In App. C a result for randomized bath
couplings is shown.

A. Typicality

As mentioned in Sect. III, the initial state is a product
state of a microcanonical bath state and a projected
spin-up system state. Since the numerical integration
of the von-Neumann equation can be cumbersome, we
make use of the concept of typicality, which states that
a single “typical” pure state can have the same ther-
modynamic properties as the full statistical ensemble
[31]. Not only is it more memory efficient to work with
pure states, the availability of efficient time evolution
algorithms for pure states, e.g. Runge-Kutta or Cheby-
shev polynomials, constitutes a major advantage. To
find such a typical state, a pure state |ϕ⟩ is drawn at
random from the Hilbert space according to the unitary
invariant Haar measure.

|ϕ⟩ =
∑
i

ci|i⟩ (A1)

Real and imaginary part of the complex coefficients ci
are drawn from a Gaussian distribution with mean zero
and unit variance and the set {|i⟩} is an arbitrary basis
of the Hilbert space, e.g., the Ising basis. Consider the
new normalized state

|ψ⟩ =
√
ρ |ϕ⟩√
⟨ϕ|ρ|ϕ⟩

. (A2)

It can be shown [32] that for the overwhelmingly ma-
jority of random states |ϕ⟩, the pure state |ψ⟩ exhibits
effectively the the same thermodynamic behavior as the
mixed state ρ, i.e.,

⟨A(t)⟩ = Tr{ρA(t)} = ⟨ψ|A(t)|ψ⟩+ ε . (A3)

0 50 100 150 200
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Figure 9. Comparison between setups with couplings set to
unity and randomly drawn couplings. There is no apparent
difference.

Importantly, the induced error ε = ε(|ψ⟩) has mean
zero, i.e., ε = 0, and a standard deviation that scales
inversely proportional to the square root of the effective
Hilbert space dimension, i.e., σ(ε) ∝ 1/

√
deff [33]. The

effective dimension deff = 1/Tr{ρ2} is a measure of how
many pure states contribute to the mixture ρ.
In the paper at hand the initial state ρ (cf. Eq. (14))
is a projection operator. Therefore, it is permissible to
drop the square root in the numerator in Eq. (A2).
Now the projectors π↑ ⊗ 1 and 1⊗ πE,δ need to be ap-
plied to the state |ϕ⟩, which is an element of the product
Hilbert space. As we are working in the Ising basis, the
action of π↑ ⊗ 1 on |ϕ⟩ is easily implemented by set-
ting corresponding components of the state vector to
zero. Since it is unfeasible to diagonalize the full many-
body Hamiltonian, we replace the bath projector by a
Gaussian filter which suppresses contributions of energy
eigenstates far away from the desired energy E, result-
ing in a narrowly populated energy window of width
(variance) δ.

πE,δ ≈ exp

(
−(Hbath − E)2

2δ

)
(A4)

The Gaussian filter is applied with a Chebyshev algo-
rithm (cf. App. B). Lastly, the resulting wave function
is normalized to obtain the state |ψ⟩ as in Eq. (A2).
In this scenario the effective dimension deff is essentially
the number of states in the energy window. Increas-
ing the size of the system, while keeping δ fixed, results
in an exponentially growing effective dimension deff and
therefore in a negligible typicality error for moderately
sized systems.
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Figure 10. Scaling of the fit parameter C2 with the choice
of the critical threshold.

B. Chebyshev polynomials

A Chebyshev type algorithm is employed in order to
evolve a pure state in real and imaginary time [34, 35].
Say it is desirable to approximate a scalar function f(x)
in the interval [−1, 1] by a polynomial expansion, i.e.

f(x) ≈
∑
n

dnPn(x) , (B1)

with coefficients dn and polynomials Pn of order n. The
unique set of polynomials that minimizes the maximum
error in this interval is called Chebyshev polynomials of
the first kind. They are denoted by Tn(x) and can be
written down recursively as

Tn(x) = 2xTn−1(x)− Tn−2(x) (B2)

with T0(x) = 1 and T1(x) = x. They are orthogonal
with respect to the weighted scalar product

⟨Tn|Tm⟩ =
∫ 1

−1

Tn(x)Tm(x)

π
√
1− x2

dx = δnmDn (B3)

with Dn = 1 and Dn>0 = 1/2. In order to approx-
imate the time evolution operator, the bandwidth of
the Hamiltonian has to be rescaled accordingly. Defin-
ing ω = (Emax − Emin)/2 and χ = (Emax + Emin)/2,
where Emax (Emin) is the maximal (minimal) energy
eigenvalue, the rescaled Hamiltonian is obtained by
H̃ = (H − χ)/ω. In practice a small safety parame-
ter is chosen that ensures that the rescaled spectrum
lies well within [−1, 1].
Now we get

e−iH∆t = e−iχ∆t

[
d0(ω∆t) + 2

∑
n≥1

dn(ω∆t)Tn(H̃)

]
(B4)
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Figure 11. Scaling of the fit parameter b with the choice of
the critical threshold.

with complex coefficients

dn(ω∆t) =

∫ 1

−1

Tn(x)e
−ixω∆t

π
√
1− x2

dx = (−i)nJn(ω∆t), (B5)

where Jn denotes the n-th order Bessel function of the
first kind. Since the coefficients only depend on the time
step, but not on time itself, they only have to calculated
once. Applying Eq. (B4) to a state |ψ(t)⟩ boils down

to calculating Tn(H̃)|ψ(t)⟩ for various n, which can be
done iteratively using Eq. (B2). Terminating the sum
in Eq. (B4) at an upper bound M gives the M -th order
Chebyshev approximation of the time evolution opera-
tor. The required order for convergence depends on the
particular problem. For our biggest system with N = 25
spins we had to go up to order 40.

C. Validity of numerical results for a larger class
of systems

While the investigated model class may seem peculiar,
it has just been chosen as one generic representative of
the whole of condensed matter type systems. To ex-
clude that overall results are just due to any uninten-
tional, subtle conserved quantities, etc., we redid parts
of our numerical analysis with randomized bath cou-
plings, drawn from a Gaussian distribution with mean
zero and standard deviation 0.2. One result is displayed
in Fig. 9 for N = 25 and λ = 0.2. One readily verifies
that the curves coincide nicely. This hints at the generic
nature of our model class.
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D. Scaling of fit parameters with choice of critical
threshold

The choice of ⟨Szsys⟩ = −0.04 to define λcrit is rather
arbitrary. However, the above two figures show that

the fit parameters C2 and b are quite insensitive to
the exact positioning of this threshold, as long as it
is sufficiently close to the thermal equilibrium value.
Furthermore, the principled form of the curve in Fig. 4
is quite robust to small variations of the fit parameters.
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Robin Heveling,∗ Lars Knipschild,† and Jochen Gemmer‡

Department of Physics, University of Osnabrück, D-49069 Osnabrück, Germany

Putting a generally valid upper bound to equilibration times of physically relevant observables is
a much pursued endeavor. Recently such a bound has been suggested by Garcia-Pintos et al. While
the mathematical correctness of the bound as such is undisputed, its concrete calculation requires
the knowledge of certain quantities, which Garcia-Pintos et al. assess by means of assumptions.
We show that, e.g., in standard cases of slow, exponential equilibration (at least) one of these
assumptions is not valid. This demonstration highlights the difficulty to judge the validity of the
above assumptions without further information, which are in general not attainable.

I. ADDRESSED RESULT FROM PRX, 7,
031027 (2017) AND DEFINITION OF w(G)

For selfcontainedness, we (re-)state the main result
of Ref. [1] (hereafter called the Garćıa-Pintos bound
(GPB)) in a comprehensive form. (It should be quick
read-through for readers familiar with this result.) Fur-
thermore, we define the function w(G), cf. Eq. (2),
which is directly calculated from the probability distri-
bution denoted by pjk in Ref. [1].
The GPB addresses an equilibration time Teq. To fur-
ther specify Teq we introduce some notation. Let ρ
be the initial state of the system. Let furthermore
A(t) denote an observable A in the Heisenberg pic-
ture and ⟨A(t)⟩ := Tr{A(t)ρ} its time-dependent expec-
tation value. Due to the closed system dynamics be-
ing unitary (and the system being finite), ⟨A(t)⟩ has

a well-defined “infinite-time average” ⟨A⟩ := ⟨A⟩eq,
which is routinely considered as the equilibrium value
of A in case the observable A equilibrates at all [2].
Consider now a deviation D(t) of the actual expecta-
tion value from its equilibrium, i.e. D(t) := (⟨A(t)⟩ −
⟨A⟩eq)2/4||A||2, where ||A|| is the largest absolute eigen-
value of A. Consider furthermore an average of D(t)
over the time interval [0, T ] denoted by DT . The con-
dition that defines Teq is that DT ≪ 1 must hold for
T ≫ Teq (for non-equilibrating systems such a Teq may
not exist [2]). The GPB is an explicit expression for such
a Teq (see Eq. (4)) based on ρ,A(0) and the Hamilto-
nian of the system H. As the GPB involves somewhat
refined functions of the above three operators, we need
to specify these before stating the GPB explicitly. A
central role is taken by the probability distribution pjk,
which is defined as

pjk ∝ |ρjkAkj | for Ej − Ek ̸= 0 , (1)

pjk = 0 for Ej − Ek = 0,
∑
j,k

pjk = 1 ,

∗ rheveling@uos.de
† lknipschild@uos.de
‡ jgemmer@uos.de

where Ej , Ek are energy eigenvalues correspond-
ing to energy eigenstates |j⟩, |k⟩. Furthermore,
matrix elements are abbreviated as ρjk := ⟨j|ρ|k⟩,
Ajk := ⟨j|A(0)|k⟩. While the GPB is not limited to this
case, we focus here on pjk which allow for a descrip-
tion in terms of a probability density function w(G).
The examples we present below conform with such a de-
scription and it is plausible that this applies to generic
many-body scenarios. Prior to defining w(G), we define
w(G, ϵ) as

w(G, ϵ) :=
1

ϵ

∑
j,k

Θ
( ϵ
2
− |Ej − Ek −G|

)
pjk , (2)

where Θ is the Heaviside function. This is the standard
construction of a histogram in which the pjk are sorted
according to their respective energy gaps Ej −Ek. It is
now assumed that there exists a range of (small but not
too small) ϵ such that w(G, ϵ) is essentially independent
of variations of ϵ within this range. The w(G, ϵ) from
this “independence regime” are simply abbreviated as
w(G). Let the standard deviation of w(G) be denoted
by σG. (In Ref. [1] σG denotes the standard deviation of
w(G, 0), however, here we focus on situations where this
difference is negligible.) Let furthermore wmax denote
the maximum of w(G). The quantities a and Q that
eventually enter the GPB are now defined as

a := wmaxσG , Q :=
∑

i,j:Ei ̸=Ej

|ρijAji|
||A||

. (3)

We are now set to state the GPB:

Teq =
πa||A||1/2Q5/2√
|Tr{[[ρ,H], H]A}|

=
πa||A||1/2Q5/2√
| d2

dt2 ⟨A(t)⟩
∣∣
t=0

|
. (4)
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II. THE GENERAL PROBLEM OF UPPER
BOUNDING a,Q IN THE CASE OF SLOW

EXPONENTIAL DECAY DYNAMICS

Obviously, the GPB links Teq to the initial “curvature”
of the observable dynamics ∂2t ⟨A(t)⟩|t=0 (which is of-
ten practically computable, simply from its form in the
denominator in the middle of the double equation in
Eq. (4)). An actual, concrete value or upper bound for
Teq, however, may only be computed from Eq. (4) if also
the numerator can be be computed or upper bounded.
Let us stress that this (rather obvious) statement is piv-
otal for the argument in the Comment at hand. The
three main results, which are formulated further below,
attain there significance only in connection with this
statement. The crucial quantities in the numerator are
a and Q. As it is practically impossible to calculate
a from its definition for many-body quantum systems,
Garćıa-Pintos et al. instead resort to an assumption
concerning a. They argue that a ∼ 1 may be expected
for w(G) that are “unimodal”. Unimodal means that
w(G) essentially consists of one central elevation like a
Gaussian or a box distribution, etc. Indeed, a is invari-
ant with respect to a rescaling w(G) → sw(sG), as it
would result from rescaling the Hamiltonian asH → sH
(here s is some real, positive number). Garćıa-Pintos et
al. also offer various upper bounds on Q for different
situations.
In contrast to the argument in Ref. [1], we show in the
following that the assumption of any two fixed upper
bounds on a and Q is necessarily violated for generic,
sufficiently slow, exponential decays of ⟨A(t)⟩. To this
end, two standard scenarios of slow dynamics are an-
alyzed below. In Sect. III we also provide a concrete
spin-based example (along the lines of Scenario 1) in
which a is found to diverge while the bound on Q from
Ref. [1] applies. This occurs even though w(G) is uni-
modal.
Scenario 1: Dynamics of quantities that are conserved
except for a weak perturbation to the Hamiltonian
Consider first an Hamiltonian consisting of an unper-
turbed part H0 and a perturbation λHint.

H = H0 + λHint (5)

Consider furthermore an observable A, which is con-
served under H0, i.e. [A,H0] = 0. If H0 has a suf-
ficiently wide and dense spectrum and λ is small, ex-
ponential decay, in the simplest case monoexponential
decay, occurs, i.e.

⟨A(t)⟩ = (⟨A(0)⟩ − ⟨A⟩eq)e−t/τrel + ⟨A⟩eq , (6)

where τrel := rλ−2 and r is a real, finite, pos-
itive number which depends on the details of the
setup. Many well understood approaches, such as

the Weisskopf-Wigner theory, projection operator tech-
niques (Nakajima-Zwanzig, Mori, etc.) arrive at such
exponential decay dynamics [3–7] for standard, phys-
ical, nonequilibrium situations. A bold numerical
demonstration for the emergence of dynamics in accord
with Eq. (6) in closed quantum systems is given in
Ref. [8]. For even more evidence see Refs. [9, 10]. If
∂t⟨A(t)⟩|t=0 = 0, obviously Eq. (6) cannot apply at
t = 0. In this case Eq. (6) is meant to apply after a
short “Zeno time” τzeno, which is usually exceedingly
short compared to the relaxation time τrel [4, 7]. Note,
however, that the denominator of Eq. (4) necessarily ad-
dresses a time below the Zeno time, namely t = 0. We
now aim at finding the principal dependence of quan-
tities in Eq. (4) on the interaction strength λ. From
the definition of Teq given at the beginning of Sect. I it
follows that

Teq ≥ τrel . (7)

For the denominator of Eq. (4) we find with Eq. (5)√∣∣∣∣ d2dt2
⟨A(t)⟩

∣∣
t=0

∣∣∣∣ = √
|c1λ+ c2λ2| , (8)

where c1 = Tr{[Hint, A][ρ,H0]}, c2 = Tr{[Hint, A][ρ,Hint]}.
While initial states ρ such that c2 = 0 are possible,
they are not generic, rather they are very rare (untyp-
ical) for a given, nonvanishing ⟨A(0)⟩ [11]. Plugging
Eqs. (6, 7, 8) into Eq. (4) yields

πa||A||1/2Q5/2 ≥ r

√
|c1λ+ c2λ2|

λ2
(9)

for the numerator of Eq. (4). Obviously, the numerator
of Eq. (4) diverges in the limit of weak interactions, i.e.
λ → 0. The latter holds even if c1 = 0. The divergence
of the numerator of Eq. (4) necessarily implies the
divergence of a or Q or both. Thus, no concrete, finite
Teq may be computed from Eq. (4) in this case. This
is the first main result of the present Comment.
Scenario 2: Dynamics of long wavelength Fourier-
components of spatial densities of conserved quantities
In the above Scenario 1 the exponential decay is due to
some “conservation breaking” part of the Hamiltonian
being small. However, exponential decay also often
occurs without some part of the Hamiltonian being
particularly small. Consider, e.g., a spatially more
or less homogeneous system in which some quantity
Z (like energy, particles, magnetization, etc.) is
totally conserved. Nevertheless, the spatial density
of this quantity p(x, t) may undergo some time evo-
lution. If this evolution complies with a diffusion
equation, a Fourier component of this density, e.g.
⟨Ak(t)⟩ = ⟨

∫
cos(kx)p(x, t)dx⟩, will decay exponen-

tially, i.e.,
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⟨Ak(t)⟩ = ⟨Ak(0)⟩e−κk
2t , (10)

where κ is the nonnegative, finite diffusion coefficient.
However, just like in Scenario 1, we additionally need to
find ∂2t ⟨Ak(t)⟩|t=0 in order to find the scaling of a and
Q with k. While the following consideration in principle
applies to all spatial dynamics of conserved quantities,
we here resort to a specific example for clarity. We con-
sider the XXZ-chain of length N with periodic bound-
ary conditions (N + 1 ≡ 1) and anisotropy ∆ described
by the Hamiltonian

HXXZ =

N∑
j=1

(Sxj S
x
j+1 + Syj S

y
j+1 +∆Szj S

z
j+1) . (11)

The total magnetization of the system, i.e. Z =
∑
i S

z
i ,

is conserved. The Fourier components of the spatial
distribution of the magnetization are

Ak =
1√
N

N∑
i=1

cos(ki)Szi , (12)

where k = 2πm/N are the discrete wave numbers
and m = 0, 1, ..., N − 1. The scaling in N guarantees
the convergence of the variances of the spectra of the
Ak to finite values of order unity at large N . (This
may be inferred from considering the corresponding
Hilbert-Schmidt norms.) Calculating the second tem-
poral derivatives of the Ak yields

−[HXXZ,[HXXZ, Ak]] =

2(cos(k)− 1)(Ak +Bk)− sin(k)Ck ,
(13)

where

Bk =
2√
N

N∑
j=1

cos(kj)(Sxj−1S
z
j S

x
j+1 + Syj−1S

z
j S

y
j+1)

− ∆√
N

N∑
j=1

cos(kj)(Szj−1S
x
j S

x
j+1 − Sxj−1S

x
j S

z
j+1

+ Szj−1S
y
j S

y
j+1 − Syj−1S

y
j S

z
j+1) ,

Ck = − 2∆√
N

N∑
j=1

sin(kj)(Szj−1S
x
j S

x
j+1 − Sxj−1S

x
j S

z
j+1

+ Szj−1S
y
j S

y
j+1 − Syj−1S

y
j S

z
j+1) .

(14)

For small k this may be approximated as

[HXXZ, [HXXZ, Ak]] ≈ k2(Ak +Bk) + k Ck . (15)

Note that the variances of the spectra of Bk and Ck are
all of order unity for any k, just like the spectra of the
Ak. Relying on the small k approximation yields√∣∣∣∣ d2dt2

⟨Ck(t)⟩
∣∣
t=0

∣∣∣∣ = √
c3k + c4k2 , (16)

where c3 = Tr{Ckρ} and c4 = ⟨Ak(0)⟩ + Tr{Bkρ}.
While initial states ρ resulting in Tr{Bkρ} = −⟨Ak(0)⟩
are mathematically possible, they are not generic or typ-
ical at all. Instead, typical values are Tr{Bkρ} ≈ 0, even
and especially for a given ⟨Ak(0)⟩ [11]. Thus, exploiting
Eq. (16) yields in general, by the same line of argumen-
tation employed before in Scenario 1 (cf. Eqs. (7, 8, 9))

πa||Ck||1/2Q5/2 ≥ κ

√
|c3k + c4k2 , |

k2
(17)

where the r.h.s. diverges in the limit k → 0, analo-
gous to Eq. (9). Again, this divergence occurs even
for c3 = 0. Thus, no concrete, finite Teq may be com-
puted from Eq. (4) in this limiting case, either . This
is the second main result of the present Comment. We
want to emphasize the following. The XXZ-chain ex-
hibits, depending on (nonsmall) ∆ and ρ, various sorts
of transport behavior, such as diffusive, ballistic, possi-
bly superdiffusive, with the inclusion of some disorder
possibly subdiffusive, etc [12, 13]. The constants a and
Q cannot be simultaneously finite in the long wavelength
limit (k → 0, N → ∞) if the transport is diffusive. They
may be finite if the transport is, e.g., ballistic. Thus,
telling whether or not a and Q are both finite is as hard
as telling whether transport is ballistic or diffusive. The
latter is, however, a long standing and only partially an-
swered research question for the XXZ-chain [12].

III. CONCRETE, PHYSICAL EXAMPLE
ENTAILING a ≁ 1

Here we present a concrete, physical example, which is
nevertheless simple enough to allow for analytical anal-
ysis. This analysis unveils that, in this particular in-
stance, indeed a diverges while the bound on Q as pro-
vided in Ref. [1] applies. The exemplary setup consists
of a single spin (hereafter called the “system”) subject
to a magnetic field of strength B along the z-direction,
weakly coupled to a large (but finite) environmental sys-
tem (hereafter called the “bath”). Thus, the unper-
turbed Hamiltonian is given by H0 = BSzsys + Hbath

and the coupling interactions by λHint. The observ-
able of choice is the magnetization in the z-direction
of the system spin, i.e. A = Szsys. For a numerical
analysis of such an example see Ref. [8]. We con-
sider the simple case of a product initial state, where
the system is maximally aligned with the magnetic field
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and the bath is in an infinite-temperature state, i.e.
ρ = (Szsys + 1sys/2)⊗ 1bath/dbath. According to Ref. [1],
Sect. V, Eq. (29), this entails Q ≤ 2. Furthermore, we
obtain

⟨Szsys(t)⟩ = Tr{Szsys(t)ρ} = Tr{Szsys(t)Szsys} (18)

for the dynamics of the observable ⟨Szsys(t)⟩, which may
be rewritten as

⟨Szsys(t)⟩ =
∑
j,k

|⟨j|Szsys|k⟩|2ei(Ej−Ek)t . (19)

Now consider the distribution pjk as defined in Eq. (1)
for the given setting.

pjk ∝ |⟨j|Szsys|k⟩2| = |⟨j|Szsys|k⟩|2 for j ̸= k (20)

For nonintegrable systems the eigenstate thermalization
hypothesis is expected to hold, yielding |⟨j|Szsys|j⟩|2 ≈ 0.
Exploiting this, the insertion of Eq. (20) into Eq. (19)
yields

⟨Szsys(t)⟩ ∝
∑
j,k

pjke
i(Ej−Ek)t . (21)

To the extend to which pjk may indeed be replaced by a
smooth probability density as discussed around Eq. (2),
Eq. (21) may be rewritten as

⟨Szsys(t)⟩ ∝
∫
w(G)eiGtdG . (22)

Thus, for the present example, w(G) is essentially the
Fourier transform of the observable dynamics ⟨Szsys(t)⟩.
If the expectation value ⟨Szsys(t)⟩ would decay strictly
exponentially, i.e., if Eq. (6) would strictly apply, w(G)
would be strictly Lorentzian. While a Lorentzian distri-
bution is clearly unimodal with one well-behaved maxi-
mum, its variance diverges. Consequently, a, as defined
in Eq. (3), would diverge as well. This is the third main
result of the Comment at hand. A strict mathematical
divergence of a is only hindered by the small deviations
of the true dynamics in a finite system from Eq. (6).
These deviations are captured by the aforementioned
Zeno time. As well known, Zeno times may become
arbitrarily small in systems with arbitrarily broad en-
ergy spectra [4]. Thus, a may indeed become arbitrar-
ily large, i.e. a ≁ 1. In very many standard scenarios
rather large a may be expected if the coupling is suffi-
ciently weak and the baths are large. For a numerical
illustration of this statement see [8].
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Evidently, some relaxation dynamics, e.g. exponential decays, are much more common in nature
than others. Recently there have been attempts to explain this observation on the basis of “typicality
of perturbations” with respect to their impact on expectation value dynamics. These theories suggest
that a majority of the very numerous, possible Hamiltonian perturbations entail more or less the
same type of alteration of the decay dynamics. Thus, in this paper, we study how the approach
towards equilibrium in closed quantum systems is altered due to weak perturbations. To this
end, we perform numerical experiments on a particular, exemplary spin system. We compare our
numerical data to predictions from three particular theories. We find satisfying agreement in the
weak perturbation regime for one of these approaches.

I. INTRODUCTION

The issue of the apparent emergence of irreversible dy-
namics from the underlying theory of quantum mechan-
ics still lacks an entirely satisfying answer [1]. While
concepts like the “eigenstate thermalization hypothesis”
[2, 3] or “typicality” [4–6] hint at fundamental mecha-
nisms ensuring eventual equilibration, they are not con-
cerned in which manner this equilibrium is reached. It
is an empirical fact that some relaxation dynamics, e.g.
exponential decays, occur much more often in nature
that others, e.g. recurrence dynamics. There are efforts
to attribute this dominance to a certain sturdiness of
some dynamics against a large class of small alterations
of the Hamiltonian [7]. In general, it is of course im-
possible to predict how the unperturbed dynamics will
change due to an arbitrary perturbation. However, the-
ories aiming at capturing the typical impact of generic
perturbations have recently been suggested.
In the following three such theories that predict the al-
tered dynamics due to weak, generic perturbations are
very briefly presented. Notably, Refs. [7–9] are con-
cerned with describing the modified dynamics under cer-
tain assumptions, cf. also Sect. V.
In Ref. [8] the authors consider an entire ensemble of
“realistic” Hamiltonian perturbations, i.e. the ensemble
members are sparse and possibly banded in the eigen-
basis of the unperturbed Hamiltonian. The authors
analytically calculate the ensemble average of time-
dependent expectation values and argue firstly that the
ensemble variance is small and secondly that thus a per-
turbation of actual interest is likely a “typical” member
of the ensemble.
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The authors eventually arrive at the result that the
unperturbed dynamics will likely be exponentially
damped with a damping factor scaling quadratically
with the perturbation strength.
A similar random matrix approach is taken in Ref. [9].
In this paper, the authors base their argument on
projection operator techniques. Again, the ensemble of
perturbations that are essentially random matrices in
the eigenbasis of the unperturbed Hamiltonian leads to
an exponential damping of the unperturbed dynamics
at sufficiently long times, with a damping constant
scaling quadratically with the perturbation strength.
Routinely, the specific projection operator technique
(“time convolutionless” [10]) yields a time-dependent
damping factor, which ensures that the slope of the
time-dependent expectation value at t = 0 remains
unchanged by the perturbation.
Lastly, the authors of Ref. [7], other than the authors
of Ref. [8, 9], focus on the matrix structure of the
perturbation in the eigenbasis of the observable rather
than in the eigenbasis of the unperturbed Hamiltonian.
In this paper, the modified dynamics is not necessarily
obtained by a direct damping, but rather by an
exponential damping of the memory-kernel. As the
predictions of this scheme are somewhat involved, we
specifically outline them below in Sect. II.
This paper is structured as follows. Firstly, in Sect. II
we give a short introduction to the memory-kernel
ansatz employed in Ref. [7]. The numerical setup is
described in Sect. III. In Sect. IV the numerical results
from the solution of the Schrödinger equation are pre-
sented and discussed. Sect. V scrutinizes the possible
application of the above three theories (Refs. [7–9]) to
the obtained numerical results and the accuracy of the
respective predictions. We conclude in Sect. VI.
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II. MEMORY-KERNEL ANSATZ

To outline the memory-kernel ansatz we first need to in-
troduce the general description of dynamics by means of
integro-differential equations of the Nakajima-Zwanzig
type [11]. Consider some (reasonably well-behaved)
time-dependent function a(t), e.g. the expectation value
of an unitarily evolving observable. There exists a map
between a(t) and its so-called memory-kernel K(τ), im-
plicitly defined by the integro-differential equation

da(t)

dt
= −

∫ t

0

K(t− t′)a(t′) dt′ = −(K ∗ a )(t) . (1)

This map is bijective, i.e., it is possible to calculate the
memory-kernel K(τ) solely from the function a(t) and,
vice versa, it is possible to calculate the function a(t),
given the memory-kernel K(τ) and some initial value
a(0). Loosely speaking, the memory-kernel describes
how a system remembers its history. Ref. [7] now sug-
gests that the generic impact of a certain class of per-
turbations is best captured by describing its effect on
the respective memory-kernel. If the perturbation V is
narrow-banded in the eigenbasis of the observable A, i.e.
[V,A] ≈ 0, then the memory-kernel K(τ) correspond-
ing to the unperturbed dynamics will be exponentially
damped as

K̃(τ) = exp(−γτ)K(τ) . (2)

To obtain the modified dynamics, we proceed as fol-
lows: from a(t) we calculate the memory-kernel K(τ)

and damp it according to Eq. (2). Plugging K̃(τ) back
into Eq. (1) and solving for ã(t) yields the modified
dynamics. In this procedure γ is a free fit parameter.

a(t) → K(τ) → K̃(τ) → ã(t) (3)

Note that, in the context of the below (cf. Sect. III)
defined spin ladders, this is an heuristic approach. How-
ever, for other scenarios, this memory-kernel ansatz is
proven to hold [12]. These scenarios feature systems for
which the eigenstate thermalization hypothesis (ETH)
[3] applies to some observable A. The role of the pertur-
bation is taken by an environment, which induces pure
dephasing in the eigenbasis of A. The memory-kernel
ansatz then applies to the expectation value of A. The
rationale behind using the memory-kernel ansatz in the
context of, e.g., isolated spin ladders, is that a generic
perturbation V with [V,A] ≈ 0 may have an effect com-
parable to the above dephasing. Moreover, the applica-
bility of the memory-kernel ansatz to closed systems has
been numerically demonstrated for some concrete but
rather abstract examples in Ref. [7]. It has also been
found to yield surprisingly accurate results for systems
similar to the ones discussed below [13].

III. SETUP

We consider a periodic spin-1/2 ladder described by the
(unperturbed) Hamiltonian

H0 = H∥ +H⊥ , (4)

with the chain Hamiltonian

H∥ = J∥

2∑
k=1

L∑
l=1

S⃗l,k · S⃗l+1,k (5)

and the rung Hamiltonian

H⊥ = J⊥

L∑
l=1

S⃗l,1 · S⃗l,2 , (6)

where S⃗l,k = (Sxl,k, S
y
l,k, S

z
l,k) are spin-1/2 operators on

lattice site (l, k) and L+1 ≡ 1. The interaction strength
along the legs (rungs) is denoted by J∥ (J⊥) and set to
unity. Additional diagonal bonds act as a perturbation
V , the parameter λ indicates the perturbation strength.
This results in the total Hamiltonian

H = H0 + λV ,

which is displayed in Fig. 1. The observables of interest
are the magnetizations on each rung, which are given
by

Szl = Szl,1 + Szl,2 , (7)

and the respective Fourier modes

Szq =

L∑
l=1

cos[q(l − L/2)]Szl , (8)

with discrete momenta q = 2πk/L with k = 0, 1, ... , L−
1. We numerically solve the Schrödinger equation and
study the dynamics of the time-dependent expectation
values pl(t) = ⟨Szl (t)⟩ of the magnetization profile along
the ladder as well as time-dependent expectation val-

Figure 1. Orange circles mark spin sites, solid black lines
mark Heisenberg interaction. Dashed diagonal lines indicate
the perturbation.
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ues pq(t) = ⟨Szq (t)⟩ of the Fourier modes, especially
the slowest mode with q = 2π/L. In order to be
able to clearly discriminate between predictions from
the memory-kernel ansatz and the other two theories,
we choose a perturbation with a specific, yet physically
common property named below. This perturbation on
the diagonals of the ladder only consists of SzSz-terms.

V =

L∑
l=1

(
Szl,1S

z
l+1,2 + Szl,2S

z
l+1,1

)
(9)

In this manner, the observables of interest do commute
with the perturbation, i.e. [V, Szq ] = 0. In other words,
the perturbation V is diagonal in the eigenbasis of the
observable.
We consider two types of initial states. The first initial
state is given by

ρ1(0) ∝ 1− ε SzL/2 , (10)

where ε is a small, positive, real number. This state can
be regarded as the high temperature, strong magnetic
field limit (β → 0 while βB = ε) of the Gibbs state

ρ2(0) ∝ exp[−β(H +BSzL/2)] , (11)

which is the second initial state of interest.

IV. NUMERICAL RESULTS ON THE
PERTURBED DYNAMICS

We now present our numerical results. We prepare a
spin ladder with L = 13 rungs (i.e. N = 26 spins) in
the initial states mentioned above, which both feature
a sharp magnetization peak in the middle of the ladder.
During the real time evolution the magnetization will
spread throughout the ladder diffusively [13], which can
be seen in Fig. 2.
From Eq. (8) we obtain the Fourier modes of the broad-
ening process. We choose to investigate the slowest
mode with q = 2π/13 in depth since it is closest to
an exponential decay. In Fig. 3 the slowest mode
is depicted for different perturbation strengths for the
first initial state ρ1(0). The unperturbed dynamic (red
curve, λ = 0.0) remains basically unaltered by weak
perturbations. Cranking up the perturbation strength
(to λ = 0.4 or λ = 0.7) leads to a noticeable deviation
and the equilibration process is much slower than in the
weakly perturbed case.
The same qualitative behavior remains when going to
finite temperature β = 0.1 and finite magnetic field
B = 5.0.
In this case, the initial value pq(0) depends on the per-
turbation strength λ since the total Hamiltonian is part
of the initial state ρ2(0), cf. Eq. (11). To be able

Figure 2. Broadening of the magnetization profile of a spin
ladder with L = 13 rungs prepared in the initial state ρ1(0).

to compare the dynamics for various λ, the curves are
scaled such that they all start at the same initial value
of the unperturbed dynamic. The results are depicted
in Fig. 4. For weak perturbations the deviation from
the unperturbed dynamic is again small, although now
clearly visible. For stronger perturbations the dynamics
equilibrate again more slowly, however, the discrepancy
to the unperturbed dynamic is more severe compared to
the first initial state ρ1(0) in Fig. 3. A rough estimate
indicates that at inverse temperature β = 0.1 the mean
energy is down-shifted by approximately half a standard
deviation of the full energy spectrum of the system with
respect to the infinite temperature case (β = 0). Thus,
β = 0.1 is noticeable far away from infinite temperature
while still not exhibiting low temperature phenomena.

0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3. The time-dependence of the slowest mode with
q = 2π/13 is depicted for various perturbation strengths for
the initial state ρ1(0). For small perturbations the unper-
turbed dynamic (λ = 0.0, red curve) remains basically un-
changed. For stronger perturbations there is a noticeable
deviation.
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Figure 4. The time-dependence of the slowest mode with
q = 2π/13 is depicted for various perturbation strengths for
a Gibbsian initial state ρ2(0) with β = 0.1 and B = 5.0.
Similar behavior as for the first initial state can be observed.

V. MODELLING THE PERTURBED
DYNAMICS

Is it possible to describe the observed behavior to some
extend by any the three theories mentioned in the in-
troduction? Before we present a somewhat bold, sim-
ple comparison of the predictions from said modeling
schemes with the actual perturbed dynamics, we briefly
comment on the agreement of our setup (cf. Sect. III)
with the preconditions of the respective theories.
The theory advocated in Ref. [8] relies on a constant
density of energy eigenstates (DOS) within the energy
interval occupied by the initial state ρ(0) with respect to
the unperturbed Hamiltonian H0. First of all it should
be noted that it is rather hard to check whether or not
this criterion applies in standard situations with larger
systems. However, a histogram corresponding to the
DOS of H0 for a “small” system with N = 12 spins is
depicted in Fig. 5. The red dashed vertical lines are
intended to mark the regime of more or less constant
DOS (of course this choice is rather arbitrary). The ini-
tial state ρ1(0) populates the full spectrum with equal
weight, i.e. 57% of the weight falls into the interval of
approximately constant DOS. Likewise, although pop-
ulating more low-lying energy eigenstates, a large por-
tion (54%) of the weight of the initial state ρ2(0) still
falls into the interval of approximately constant DOS,
cf. Fig. 5.
The assessment of this finding is twofold: On the one
hand, “natural” initial states like ρ1(0) and ρ2(0) do not
necessarily live entirely in an energy window of strictly
constant DOS. On the other hand, Fig. 5 indicates that
the states ρ1(0) and ρ2(0) are not completely off such a
description. One may thus be inclined to expect at least
qualitatively reasonable results from an application of
the theory presented in Ref. [8]. Concerning perturba-
tions V , the approach in Ref. [8] strictly speaking makes

-10 -5 0 5 10

0.00

0.02

0.04

0.06

0.08

0.10

Figure 5. Density of states (black) for N = 12 spins. The
quantity N(E) is the number of energy eigenstates in a par-
ticular bin of size one, d = 4096 is the Hilbert space di-
mension. The interval of approximately constant DOS is
marked from E = −3 . . . 3 by red lines. A histogram of the
local density of states (LDOS), i.e. the probability to find
the system at a certain energy, is shown in blue. The quan-
tity ρ̄(E) indicates the weight in a given bin. The LDOS of
ρ1(0) is exactly identical to the DOS (black) and not shown
again.

no restrictions, except for “smallness”. But the result
from Ref. [8] is of statistical nature: To the overwhelm-
ing majority of the ensemble of matrices V that is gen-
erated by drawing matrix elements in the eigenbasis of
H0 independently at random (according to some proba-
bility distribution, which may give rise to some sparse-
ness) the prediction of Ref. [8] (exponential damping)
applies. While any V may be viewed as an instance of
this set, not all V are equally likely. Again, judging the
“typicality” of some concrete V is hard. However, for a
qualitative evaluation of the typicality of the perturba-
tion V at hand with respect to the above ensemble, a
color-scaled plot of V in the energy eigenbasis of H0 for
N = 12 is depicted in Fig. 6. The red lines correspond
to the energy regime marked in Fig. 5. Obviously, there
is some sparseness, about 2% of all elements differ from
zero. Other than that the assessment of this finding is
also twofold: On the one hand, some structure is vis-
ible in Fig. 6. On the other hand, this structure is
not sufficient to clearly identify V as particularly un-
typical. Hence, again, one may be inclined to expect
at least qualitatively reasonable results from an appli-
cation of the theory presented in Ref. [8]. The theory
advocated in Ref. [9] relies on projection operator tech-
niques [10] and thus has, in principle, no formal applica-
bility limit. However, as projection operator techniques
result in perturbative expansions, concrete predictions
going beyond leading order are very hard to obtain [14].
Even the accurate computation of the leading order re-
quires the knowledge of the detailed form of the ma-
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Figure 6. Matrix plot of the perturbation V in the eigenbasis
of the unperturbed Hamiltonian H0. Red lines mark the
interval of approximately constant DOS, cf. Fig. 5.

trix depicted in Fig. 6 has to be taken into account.
The simple guess of an exponential damping at suffi-
ciently long times only results under preconditions that
are rather similar to the ones on which the approach
from Ref. [8] is based. The conditions under which the
dynamics is well captured by a leading order description
are technically hard to define and even harder to check.
However, there are indications that the sparseness of the
matrix depicted in Fig. 6 threatens the correctness of a
leading order calculation [15].
The approach advocated in Ref. [7] is heuristic and pri-
marily based on some numerical evidence, thus no for-
mal preconditions may be formulated so far, cf. Sect.
II. However, the numerical examples in Ref. [7] to which
this scheme applies do feature unperturbed Hamiltoni-
ans with constant DOS, weak perturbations (small λ)
and initial states of the type ρ1(0). Furthermore the
V ’s in the examples in Ref. [7] are matrices whose ele-
ments, in the eigenbasis of the observable, are indepen-
dently drawn at random according to some probability
distribution. As already mentioned in Sect. II, in con-
trast to Refs. [8, 9], the approach in Ref. [7] takes the
structure of V in the eigenbasis of the observable (here
Szq ) rather than of H0 into account. Only if the latter
approximately commute, i.e. [V,A] ≈ 0, the prediction
computed as described in Sect. II applies. For our setup
we indeed have [V,A] = 0, cf. Sect. III.
We now embark on the announced bold comparison of
the perturbed dynamics with the predictions from the
three theories.
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Figure 7. Slowest mode with q = 2π/13 of the infinite-
temperature initial state ρ1(0) depicted for various pertur-
bation strengths. Solid lines represent the original data from
Fig. 3, vertically shifted in steps of −0.1 for better visibility.
Crosses indicate the data obtained from an exponentially
damped memory-kernel.

Firstly, note that for both initial states the perturbed
curves lie above the unperturbed one, i.e. the stronger
the perturbation the slower the relaxation occurs. Thus,
theories predicting a damping of the unperturbed dy-
namics are not a viable option in this case. Without
any further quantitative analysis this already renders
the predictions from Ref. [8] and Ref. [9] qualitatively
unsuitable. Moreover, it can be shown (at least for the
first initial state) that all curves must feature zero slope
at t = 0. An exponential damping (with a constant
damping factor) would always change the slope at t = 0
to a non-zero value. A time-dependent damping factor
Γ(t) with Γ(0) = 0 (as employed in Ref. [9]) at least
preserves the zero slope at t = 0.
These findings suggest that the perturbation V is in-
deed one of the mathematically untypical members of
the ensemble considered in Ref. [8], even though the
matrix visualization in Fig. 6 does not necessarily in-
dicate this. However, even though V is untypical with
respect to an ensemble of random matrices, it is a phys-
ically simple, common perturbation consisting of stan-
dard spin-spin interactions. The failure of the scheme
presented in Ref. [9] indicates that the V at hand does
not allow for a leading order truncation of the projec-
tive scheme employed therein, not even for small λ. This
leaves the memory-kernel model from Ref. [7] as a the
only feasible theory to describe the observed behavior.
In the following, to test the approach from Ref. [7], we
apply the memory-kernel ansatz to the two unperturbed
dynamics (red curves in Fig. 3 and Fig. 4). The damp-
ing constant γ from Eq. (2) functions as a fit parame-
ter and is optimized such that the L2-error of the two
curves in question (perturbed dynamics and memory-
kernel prediction) is minimized.
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Figure 8. Slowest mode with q = 2π/13 of the Gibbsian ini-
tial state ρ2(0) with β = 0.1 and B = 5.0 depicted for vari-
ous perturbation strengths. Solid lines represent the original
data from Fig. 4, vertically shifted in steps of −0.05 for bet-
ter visibility. Crosses indicate the data obtained from an
exponentially damped memory-kernel.

For the infinite-temperature initial state ρ1(0) the re-
sults are depicted in Fig. 7, for the Gibbsian initial
state ρ2(0) in Fig. 8. Each curve is vertically shifted to
avoid clutter. For the infinite-temperature initial state
ρ1(0) and weak perturbations (λ = 0.1 and λ = 0.2)
the memory-kernel model seems to perfectly capture the
modified dynamics. For stronger perturbations (λ = 0.4
and λ = 0.7) there are deviations visible, e.g. for
short times (t ∼ 2) the memory-kernel prediction for
λ = 0.7 overshoots the perturbed dynamic while for
longer times t ≳ 10 it undershoots. For the Gibbsian
initial state ρ2(0) the qualitative behavior remains the
same as for the first initial state. For weak pertur-
bations the memory-kernel ansatz captures the modi-
fications due to the perturbation extremely well. For
stronger perturbations there are again more noticeable
deviations. However, it comes as no surprise that the
memory-kernel model looses potency in the strong per-
turbation regime, since it was originally conceived to
describe the alteration of dynamics due to weak pertur-
bations.

VI. SUMMARY AND CONCLUSION

In the paper at hand we numerically analyzed the
applicability of three theories predicting the generic
impact of Hamiltonian perturbations on expectation
value dynamics to a Heisenberg spin ladder. To this
end, we numerically calculated the time-dependent spa-
tial distribution of the magnetization along the ladder
for various perturbation strengths. We focused on a
particular perturbation that commutes with the observ-
able, e.g. the considered perturbation V consisting of
SzSz-couplings on the ladder diagonals commutes with
the observed spatial magnetization distribution. We
consider both, infinite and finite temperatures. Two
out of three scrutinized theories feature in principle well
defined conditions for their applicability [8, 9], a third
one is rather heuristic [7]. One of the theories with well
defined conditions [8] only predicts the overwhelmingly
likely behavior with respect to a hypothetical, large,
“random matrix ensemble” of in principle possible
perturbations V . Only the heuristic theory takes the
the commutativity of the observable and the pertur-
bation as a specifically relevant structural feature into
account. It turns out to be hard to judge a priori
whether or not the concrete spin ladder example falls
into the realm of applicability of the two theories with
well defined conditions. However, direct comparison
of the theoretical predictions with the numerically
computed results clearly shows that both theories fail
even qualitatively. This suggests that, while the the
considered V is very common from a physical point of
view, it must be very rare and exotic with respect to
the above random matrix ensemble. Only the heuristic
theory was found to yield good results for weak
perturbations (and acceptable results for strong per-
turbations). This indicates that the commutator of V
with the observable is a specifically relevant structural
feature that should be taken into account. A survey
of the three theories for perturbations V that do not
commute with the observable is left for further research.
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for Microcanonical and Pure States

Robin Heveling,∗ Jiaozi Wang,† Robin Steinigeweg,‡ and Jochen Gemmer§

Department of Physics, University of Osnabrück, D-49076 Osnabrück, Germany

Fluctuation theorems are cornerstones of modern statistical mechanics and their standard deriva-
tions routinely rely on the crucial assumption of a canonical equilibrium state. Yet, rigorous deriva-
tions of certain fluctuation theorems for microcanonical states and pure energy eigenstates in isolated
quantum systems are still lacking and constitute a major challenge to theory. In this work, we tackle
this challenge and present such a derivation of an integral fluctuation theorem (IFT) by invoking
two central and physically natural conditions, i.e., the so-called “stiffness” and “smoothness” of
transition probabilities. Our analytical arguments are additionally substantiated by numerical sim-
ulations for archetypal many-body quantum systems, including integrable as well as nonintegrable
models of interacting spins and hard-core bosons on a lattice. These simulations strongly suggest
that “stiffness” and “smoothness” are indeed of vital importance for the validity of the IFT for
microcanonical and pure states. Our work contrasts with recent approaches to the IFT based on
Lieb-Robinson speeds and the eigenstate thermalization hypothesis.

I. INTRODUCTION

The question of how irreversible thermodynamics can
emerge from the underlying theory of quantum mechan-
ics has regained interest in the last decades [1]. On the
theoretical side concepts like the eigenstate thermaliza-
tion hypothesis [2–6] and quantum typicality [7–9] have
been developed. Furthermore, rapid advancements on
the experimental side in recent years enable the obser-
vation of thermalization in isolated quantum systems,
e.g., in experiments on ultra-cold atoms [10–14].
At the heart of these issues is the second law of ther-
modynamics, which states that in isolated systems the
total entropy can only increase. However, the second
law is merely of statistical nature, i.e., there may be ex-
ceedingly rare but possible processes (which occur more
often as systems become smaller) in which the entropy
does indeed decrease [15]. These deviations are not ran-
dom, but obey themselves rigid rules, which are often
summarized under the name of fluctuation theorems
[15–22]. Fluctuation theorems formulate and to some
extent generalize the second law of thermodynamics by
relating the entropy production of processes, which may
take the system arbitrarily far away from equilibrium,
to properties of the equilibrated system in a quantita-
tive manner. Just as for the second law, the underlying
mechanisms which render these theorems valid or in-
valid are still under discussion.
In this work, we consider an integral fluctuation theo-
rem (IFT) for the total entropy production of a small
quantum system coupled to a substantially larger but

∗ rheveling@uos.de
† jiaowang@uos.de
‡ rsteinig@uos.de
§ jgemmer@uos.de

finite bath. While the IFT itself [Eq. (9)] is more en-
compassing, its most prominent consequence reads

Ssys(t1) +
⟨Hbath(t1)⟩

T
≥ Ssys(t0) +

⟨Hbath(t0)⟩
T

, (1)

for t1 ≥ t0. Here, Ssys is the von Neumann entropy of
the system, the mean energy of the the bath is denoted
by ⟨Hbath⟩ and T is the microcanonical bath tempera-
ture. Eq. (1) corresponds to the generalized inequality
of Clausius, which is sometimes viewed as one possibil-
ity to express the second law of thermodynamics [23].
Given the significance of the generalized Clausius in-
equality, it is remarkable that, so far, the validity of the
respective IFT has only been proven in full generality
for canonical initial states of the (closed) full system,
but not for microcanonical or pure states [19, 24]. It
is worth mentioning that for far-from-equilibrium state-
ments like fluctuation theorems, results from the canon-
ical ensemble do not straightforwardly carry over to,
e.g., the microcanonical ensemble directly by the equiv-
alence of ensembles. This may be inferred from, e.g.,
the existence of recent works, which aim at establishing
alternative fluctuation relations for microcanonical con-
ditions [25–27].
Recently, pioneering steps to bridge this gap, i.e., to
establish the validity of the IFT also for (pure) ini-
tial states with a sharp bath energy, have been put
forth [24, 28, 29]. These approaches rely on finite Lieb-
Robinson speeds, typicality and the eigenstate thermal-
ization hypothesis. They prove the IFT for infinite
baths and also for extremely large baths paired with
intermediate interaction strengths between system and
bath. However, there is a significant, physically rele-
vant set of combinations of bath sizes and interactions
strengths for which these approaches [24, 28, 29] are
unsuitable [30].
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Nevertheless, also for these combinations the IFT is nu-
merically found to hold (see Figs. 7, 9).
Related to the paper at hand, but conceptually differ-
ent, are the works in Refs. [25, 26]. While these works
also aim at establishing Crooks-Type fluctuation the-
orems for microcanonical conditions, the employed no-
tion of entropy is different from the definition of entropy
production used in [24, 28, 29] and the paper at hand,
cf. Eq. (4). The former is not amenable for a direct
connection to the generalized Clausius inequality. Fur-
thermore, the former holds more or less by virtue of the
laws of quantum mechanics, whereas the validity of the
IFT based on the latter depends on the features of the
specific physical system.
With the paper at hand, we aim to establish the va-
lidity of the IFT as in [24, 28, 29] for a wider range
of systems, also covering a substantial portion of cases
for which the mentioned approaches fail. To this end,
we rely on entirely different concepts. We employ nat-
ural assumptions on transition probabilities, which we
call “stiffness” and “smoothness”. In essence, stiffness
states that transition probabilities are largely indepen-
dent of the specific initial energy and only depend on
the difference between initial and final energy. Fur-
thermore, smoothness states that individual transition
probabilities are close to the average transition probabil-
ity in some respective energy interval. The existence of
stiffness and smoothness and their importance for valid-
ity the Jarzynski relation has already been numerically
demonstrated [31, 32].
The paper at hand is organized as follows: In Sec. IIA,
the original, “microscopic” IFT and a “coarse-grained”
version of it are presented. In Sec. II B, we introduce
the notion of stiffness and show that the validity of the
coarse-grained IFT follows from the assumption of stiff-
ness. Next, in Sec. II C, we introduce the notion of
smoothness and show that the validity of the micro-
scopic IFT follows from the (additional) assumption of
smoothness. In Sec. III, we substantiate our theoreti-
cal considerations by numerically analyzing three exem-
plary models: an Ising model (Sec. III A), a hard-core
boson model (Sec. III B) and an integrable Heisenberg
model (Sec. III C). A concluding discussion follows in
Sec. IV. We give technical details of our derivations in
App. A and B and make a case for the ubiquitous ex-
istence of stiffness in App. C. Definitions of numerical
quantities as well as additional numerical results can be
found in App. D, E, F and G.

II. INTEGRAL FLUCTUATION THEOREMS
FROM STIFFNESS AND SMOOTHNESS

The eventual aim of this full section is to establish the
validity of the microscopic IFT for pure initial energy
eigenstates of the bath under some assumptions. To this

end, we introduce, as an intermediate step, a coarse-
grained IFT (Sec. IIA) and show that it holds under
the assumption of stiffness (Sec. II B). In a second step,
this result is processed to show that under the additional
assumption of smoothness not only the coarse-grained
IFT but also the microscopic IFT holds (Sec. II C).

A. Microscopic and coarse-grained integral
fluctuation theorem

We consider a system-bath setup with total time-
independent Hamiltonian

H = H0 +Hint = Hsys +Hbath +Hint , (2)

where Hsys is the system Hamiltonian and Hbath is the
bath Hamiltonian. System and bath are allowed to in-
teract via an interaction term Hint. The eigenstates of
the system (bath) are denoted by |k⟩ (|b⟩). The com-
posite system is initialized in a product state

ρ(0) =
∑
k,b

P kiniW
b
ini|k, b⟩⟨k, b| , (3)

where |k, b⟩ = |k⟩ ⊗ |b⟩. Here, the initial system (bath)
state is diagonal in the eigenbasis of the system (bath)
Hamiltonian. The quantity P kini (W b

ini) is the initial
weight distribution over the energy eigenstates of the
system (bath). System and bath are initially uncorre-
lated and then brought into contact at t = 0 via Hint.
The composite system evolves unitarily in time, i.e.,
ρ(t) = U(t)ρ(0)U†(t), where U(t) = exp(−iHt) is the
time evolution operator (ℏ = 1). A central operator of
interest is the entropy production operator [24, 33]

σ(t) = − log ρsys(t) + β(Hbath − µNbath) , (4)

where the reduced density operator of the system at
time t is denoted by ρsys(t) = Trbath[ρ(t)], β = 1/(kBT )
is the inverse temperature of the bath and kB is the
Boltzmann constant. A nonzero µ has only to be taken
into account if a “particle-number-like” quantity exists,
which is conserved on the full system and may flow be-
tween system and bath.
The operator σ(t) is explicitly time-dependent due to
the first term. The eigenvalues of σ(t) are given by

σj,a(t) = − logP jsys(t) + βεabath , (5)

where εabath is an eigenvalue of the operator in brackets
(Hbath − µNbath) in Eq. (4) and P jsys(t) are the eigen-
values of ρsys(t). For simplicity, we will still refer to
the εabath as energy eigenvalues. The eigenstates are de-
noted by |σj,a(t)⟩. We consider an ensemble average of
differences in projective measurement outcomes at the
initial time t = 0 and some final time t [19] (denoted by
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double brackets ⟨⟨ • ⟩⟩). Given some arbitrary but nicely
behaved function f , the ensemble average of f(σ(t)) is
defined by

⟨⟨f(∆σ)⟩⟩ =
∑
j,k,a,b

f(σj,a(t)− σk,b(0)) (6)

× P kiniW
b
iniR(jk, ab) ,

where

R(jk, ab) = |⟨σj,a(t)|U(t)|σk,b(0)⟩|2 (7)

is the probability to transition from an initial state
|σk,b(0)⟩ to a final state |σj,a(t)⟩. For brevity, we drop
the explicit time dependence of the quantity in double
brackets and in the argument of the transition probabil-
ities. For f(x) = x, Eq. (6) yields the average entropy
production ⟨⟨∆σ⟩⟩, which may be written as a standard
quantum mechanical expectation value (denoted by ⟨•⟩)

⟨⟨∆σ⟩⟩ = ⟨σ(t)− σ(0)⟩ (8)

= ∆Ssys + β∆Ubath − βµ∆Nbath .

The first term is the change in von Neumann entropy of
the system, the other terms account for entropy change
in the bath due to heat and particle transfer, respec-
tively. Another important quantity is ⟨⟨e−∆σ⟩⟩, which
is defined by Eq. (6) by setting f(x) = exp(−x). This
quantity (hereafter referred to as the microscopic IFT
quantity) appears in the frequently considered integral
fluctuation theorem (hereafter referred to as the micro-
scopic IFT) which reads

⟨⟨e−∆σ⟩⟩ = 1 . (9)

This microscopic IFT is known to hold exactly if the ini-
tial energy distribution of the bath is (grand-)canonical
[19, 24]. It is also well-known that the microscopic IFT
implies the second law of thermodynamics in the sense
that the average entropy production (between some ini-
tial and some final point in time) is positive. This can be
obtained by plugging Eq. (9) into the Jensen inequality
e⟨⟨x⟩⟩ ≤ ⟨⟨ex⟩⟩ yielding ⟨⟨∆σ⟩⟩ ≥ 0, which is tantamount
to the generalized inequality of Clausius [Eq. (1)].
An explicit expression for the microscopic IFT quantity
is given by

⟨⟨e−∆σ⟩⟩ =
∑
j,k,a,b

P jfinW
b
ini e

−β(εabath−ε
b
bath)R(jk, ab) , (10)

where P jfin = P jsys(t). Importantly, even though P kini
does not appear anymore, the sum over k must still be
kept (otherwise the IFT does not even hold for canonical
initial states). For system-bath setups treatable with
exact diagonalization techniques, Eq. (10) constitutes a
convenient formula to check whether the IFT holds.

Continuing, we construct a coarse-grained version of the
IFT quantity [Eq. (17)] and discuss/proof a correspond-
ing coarse-grained fluctuation theorem [Eq. (21)]. The
starting point is the conceptual restriction to finite en-
ergy resolutions. We think of the system only compris-
ing a few energy levels, e.g., a single spin. Hence, we
will resort to dividing just the energy scale of the bath
into bins of finite size δ, see Fig. 1. As of yet, individual
eigenvalues were denoted by an “ε”. Now, energy inter-
vals are denoted by an “E” and enumerated by capital-
ized indices. The bin size δ should be small compared to
the energy scale of the bath, but large compared to its
level spacing, or, to be more precise, δ should be cho-
sen as small as possible subject to the condition that
the number of bath eigenvalues εbbath in an interval cen-
tered around Bδ [defined as ΩB below Eq. (12)] is still
a smooth function of B.
The probability R(jk,Ab) to transition from an initial
eigenstate |k, b⟩ to any state |j, a⟩ with εabath ∈ EAbath,
i.e., to a range of bath eigenstates, is obtained by

R(jk,Ab) =
∑
a∈A

R(jk, ab) . (11)

To clarify the notation, “a ∈ A” is short for “sum over
all a such that εabath ∈ EAbath”. Here, a comment on the
case in which the system has an additional “good quan-
tum number” [as discussed below Eq. (4)] is in order.
In this instance, the set of “target” states of the transi-
tion probability defined in Eq. (11) should not only be
specified by the respective energy interval, but also by
a specific value for the above quantum number. Thus,
the set should technically be labeled as, e.g., AZ to in-
dicate all eigenstates of the bath with eigenvalues in the
energy interval EAbath featuring the quantum number Z
(where Z is an eigenvalue of Nbath).
In order to avoid clutter, we suppress the quantum
number in the explicit notation whenever it is dispens-
able, which is the remainder of this section. How-
ever, the quantum number will be explicitly displayed in
Apps. D, F, G. The suppression of the quantum num-
ber is also applied in the usage of the letter B introduced
next.

Figure 1. Energy scale of the bath divided into inter-
vals according to EB

bath = [(B − 1/2)δ, (B + 1/2)δ], where
B = ...,−2,−1, 0, 1, 2, ... . The interval EB

bath is of width δ
and is centered around the midpoint Bδ.

73

https://doi.org/10.1103/PhysRevE.105.064112


Phys. Rev. E 105 064112 (2022) [Preprint of Publication]

We define the average probability to transition from an
initial state |k, b⟩ with εbbath ∈ EBbath to a final energy
interval EAbath by

R(jk,AB) =
1

ΩB

∑
b∈B

R(jk,Ab) , (12)

where ΩB is the number of bath energy eigenvalues
εbbath within the energy interval EBbath (up to a bin size-
dependent prefactor, ΩB is essentially the density of
states (DOS) of the operator Hbath − µNbath).
To continue, we introduce auxiliary processes in which a
states evolve under U†. Corresponding transition prob-
abilities are defined by

R̃(jk, ab) := |⟨σj,a(0)|U†(t)|σk,b(t)⟩|2 (13)

[this is to be compared to Eq. (7)]. We also define aux-

iliary average transition probabilities R̃(jk,AB), com-
pletely analogous to R(jk,AB), cf. Eq. (7), Eq. (11)
and Eq. (12), except for a replacement of R(jk, ab) by

R̃(jk, ab) in Eq. (7).
Next, we compute the ratio between a given average
transition probability and the corresponding auxiliary
quantity, i.e.,

R(jk,AB)

R̃(kj,BA)
=

ΩA
ΩB

. (14)

Note that this relation does not rely on the concept
of microreversibility. In the following, we assume an
exponential DOS, i.e.,

ΩB ∝ eβδB . (15)

Of course, we do not assume Eq. (15) to hold globally,
but only for states that actually participate in the dy-
namics resulting from some initial state. (Strong) re-
strictions to this set of states may arise from conserva-
tion of energy and, possibly, additional conserved quan-
tities like particle number. Strictly speaking Eq. (15) is
an assumption just like the (yet to be) introduced con-
cepts of stiffness and smoothness. However, Eq. (15)
is a “traditional” assumption for short-range interact-
ing systems (without additional conserved quantities)
that at least goes back to Landau and Lifshitz [34].
Thus, there will be less focus on it than on stiffness
and smoothness.
By algebraic manipulation of Eq. (14), multiplying with

P jfinW
B
ini (where W

B
ini :=

∑
b∈BW

b
ini) and summing over

j, k, A,B we get that

∑
j,k,A,B

P jfinW
B
inie

−βδ(A−B)R(jk,AB) (16)

=
∑

j,k,A,B

P jfinW
B
iniR̃(kj,BA) .

The l.h.s. of Eq. (16) looks similar to the r.h.s. of
Eq. (10), such that we define the coarse-grained (“c.g.”)
IFT quantity as

⟨⟨e−∆σ⟩⟩c.g. =
∑

j,k,A,B

P jfinW
B
inie

−βδ(A−B)R(jk,AB) .

(17)

Indeed, Eq. (17) may be interpreted as a “coarse-
grained” version of ⟨⟨e−∆σ⟩⟩ in the sense that:
i. energy changes in the bath are now counted on the
level of energy intervals rather than individual energy
eigenvalues,
ii. the transition probabilities now apply to transitions
from microcanonical initial states (restricted to the ini-
tial interval EBbath) to the final energy interval EAbath
rather than to transitions between individual energy
eigenstates and
iii. the initial probabilities for the bath are now proba-
bilities to find the bath in the respective energy interval
rather than in the corresponding eigenstate.
One may be inclined to think that Eq. (17) in general
becomes Eq. (10) in the limit of small energy intervals.
But this sentiment is flawed, since Eq. (15) and thus
Eq. (17) rely on notions that ultimately break down in
the limit of small energy intervals. This is the case, if δ
is too small to render ΩB a smooth function of B and
thus Eq. (15) cannot apply.
It is important to note that for a microcanonical ini-
tial bath state the microscopic IFT quantity [Eq. (10)]
becomes equal to the coarse-grained IFT quantity
[Eq. (17)] for temperatures that are not too low, i.e,
for βδ ≪ 1. Thus, establishing the coarse-grained IFT
[⟨e−∆σ⟩⟩c.g. = 1] would already be sufficient to also es-
tablish the microscopic IFT [⟨e−∆σ⟩⟩ = 1] for micro-
canonical initial bath states, if the above conditions ap-
ply. However, a single initial energy eigenstate of the
bath certainly violates these conditions and will be sep-
arately addressed in Sec. II C.

B. Validity of the coarse-grained integral
fluctuation theorem via stiffness

Now we are set to define the crucial property of stiffness,
which will be utilized to show that the coarse-grained
IFT [⟨⟨e−∆σ⟩⟩c.g. = 1] holds for all possible initial distri-
butions WB

ini including microcanonical conditions.
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A transition probability to go from some initial energy
interval EBbath to a final energy interval EAbath is called
stiff (for given j, k), if we have that

R(jk,AB) = R(jk,A−B) , (18)

i.e., the probability to transition from the initial energy
interval EBbath to a state within the final energy interval
EAbath is only a function of the difference in energies.
As will become clear in the remainder, the assumption
of stiffness is a central ingredient that allows to establish
the validity of the coarse-grained and microscopic IFT
in parameter regimes of the respective systems that are
not covered by the approaches in Refs. [24, 28, 29], see
also explanations in and around Fig. 7. While stiffness
itself is an assumption, in App. C we present a consid-
eration indicating that stiffness may in general be the
rule rather than the exception. It may further be worth
noting that some authors consider the existence of stiff-
ness at large energies as so obvious that they rely on
it without any further justification [27]. In Sec. III, we
provide numerical evidence for stiffness for all consid-
ered models.
Stiffness as defined in Eq. (18) implies a useful relation
for the time-reversed transition probabilities, i.e.,∑

A

R̃(kj,BA) =
∑
B

R̃(kj,BA) , (19)

which is based on Eq. (14) and Eq. (15). For the concise
derivation see App. A. From the double stochasticity of
the regular R(jk, ab) we can deduce that∑

k,B

R̃(kj,BA) = 1 . (20)

For the derivation of the coarse-grained IFT we start
from the r.h.s. of Eq. (16). We consider a microcanonical
bath state with occupation probability WB

ini = δB,B0 ,
where δB,B0 denotes the Kronecker delta and WB

ini thus
completely “fills” one energy interval B0. PluggingW

B
ini

into Eq. (16) yields

⟨⟨e−∆σ⟩⟩c.g. =
∑

j,k,A,B

P jfinδB,B0
R̃(kj,BA) (21)

=
∑
j,k,A

P jfinR̃(kj,B0A)

=
∑
j,k,B0

P jfinR̃(kj,B0A) = 1 .

Firstly, the sum over B was carried out. Then Eq. (19)
was employed to replace the summation over A with a
summation over B0. Lastly, the sums factorize and yield
unity by means of Eq. (20). Thus, the validity of the
coarse-grained IFT is shown for microcanonical initial

states under the assumption of stiffness. This is the first
main result of our paper.
This result naturally entails the follow-up question,
whether or not stiffness is to be expected for a wide
range of systems. A full-fledged answer is certainly be-
yond the scope of this work and possibly subject of fu-
ture research.

C. Validity of the microscopic integral fluctuation
theorem via stiffness and smoothness

In this subsection, we will define the property of smooth-
ness of transition probabilities and show that under the
assumption of smoothness the coarse-grained IFT quan-
tity [Eq. (17)] actually becomes an arbitrarily good ap-
proximation of the microscopic IFT quantity [Eq. (10)].
This holds even if the bath initially only occupies an in-
dividual energy eigenstate. In general, the probability
to transition from some initial energy eigenstate to some
final energy interval differs from the average transition
probability to go from the initial energy interval to the
final energy interval. We denote the difference of these
two quantities by r according to

R(jk,Ab) = R(jk,AB) + r(jk,Ab) . (22)

We call a set of transition probabilities R(jk,Ab) from
an initial state |k, b⟩ to a final energy interval EAbath
smooth (for given j, k), if we have that

r(jk,Ab) ≈ 0 (23)

for all b ∈ B, i.e., all transition probabilities to go from
a state with initial energy εbbath within the initial inter-
val EBbath to the final energy interval EAbath are close to
the average value of transition probabilities within that
initial energy interval. In App. B it is shown in detail
that

⟨⟨e−∆σ⟩⟩ r→0−→ ⟨⟨e−∆σ⟩⟩c.g. , (24)

i.e., the two versions of the IFT indeed coincide if the
transition probabilities are sufficiently smooth.
A well-controlled approximation of the exponential
factor enters this derivation as well, for details see
App. B. Hence, the validity of the microscopic IFT,
even and especially for initial eigenstates, may be
inferred from the validity of the coarse-grained IFT, if
Eq. (23) applies. This is the second main result of our
paper.
In general, the validity of Eq. (23) cannot be directly
inferred form the validity the eigenstate thermalization
hypothesis [5], however there is a strong connection:
An approximation (whose quality depends on the
details) to the R(jk,Ab) may be computed in first-
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order time-dependent perturbation theory. Within
this framework, it may be shown that Eq. (23) applies
if the eigenstate thermalization hypothesis applies to
Hint when displayed in the eigenbasis of H0, see App. C.

III. NUMERICAL ANALYSIS

In this section, we present a numerical analysis on three
systems, a transverse Ising model with defects, a hard-
core boson model and an integrable Heisenberg chain,
all of which consist of a considered system, a bath and
an interaction. For each model we investigate various
interaction strengths and present a finite-size scaling
concerning the bath size. Our primary goal is to check
whether the coarse-grained and/or the microscopic IFT
hold for microcanonical and pure initial states, respec-
tively. We also analyze to what extent stiffness and
smoothness are fulfilled/violated in each case. We also,
though less thoroughly, address whether or not the DOS
of the bath is indeed exponential, cf. Eq. (15).
For conciseness, we present more data for the Ising
model in the main text than for the two other mod-
els. However, the corresponding numerical results for
the latter can be found in App. E, F and G.
We employ exact diagonalization to calculate energy
eigenvalues and eigenstates and use a Chebyshev itera-
tor to evolve states in time.
Through the operator σ [cf. Eq. (4)], the microscopic as
well as the coarse-grained IFT quantities [cf. Eq. (10)
and Eq. (17)] involve the parameters β and (in specific
cases) µ. Optimal values for these parameters corre-
spond to energy and, possibly, particle number of the
initial bath state for a given system. The computation
of this correspondence is rather technical and may be
somewhat involved, therefore, we describe the employed
method in detail in App. D.
Furthermore, checking stiffness and smoothness requires
adequately defined quantifiers that capture how well Eq.
(18) and Eq. (23) are fulfilled, respectively. Both quan-
tifiers defined below tend to zero if the respective as-
sumptions (stiffness and smoothness) indeed apply.
We introduce a stiffness quantifier χ that is defined by

χ =
1

4NB

∑
j,k,B:|B−B0|≤CΞ(λ)/δ

(25)

∑
W

|R(jk;W +B,B)−R(jk;W +B0, B0)| ,

where NB is the number of terms in the sum over B.
We choose the parameter C = 3, however, χ is not very
sensitive to this specific choice (this quantifier basically
measures the deviation from the “diagonal structure”,
which is visible in Fig. 4.)

The quantity Ξ(λ) that determines the limit in the first
summation in Eq. (25) is the average standard devia-
tion of the transition probability distributions over final
energy intervals.

Ξ(λ) =
1

nb

∑
b

√
⟨ψk,bt |H2

0 |ψ
k,b
t ⟩ − ⟨ψk,bt |H0|ψk,bt ⟩2 (26)

The states |ψk,bt ⟩ = exp(−iH(λ)t)|k, b⟩ are states of the
composite system at the final time t, the index b is re-
stricted to a small energy regime of unit width around E0
and nb is the respective number of the b’s taken into ac-
count. While the construction of χ is quite involved, the
meaning is simple: a value of χ that is small compared
to unity signals that Eq. (18) holds to good accuracy.
For smoothness we define a quantifier by

φ =
1

4ΩB0

∑
j,k,A,b∈B0

|R(jk,Ab)−R(jk,AB0)| , (27)

where the sum runs over all final energy intervals EAbath
and energy eigenvalues εbbath in the energy interval

EB0

bath. This quantifier measures the deviation of the
transition probabilities R(jk,Ab) from the average tran-
sition probability, cf. Eq. (22). A small value of φ com-
pared to unity indicates that smoothness is fulfilled to
a good extent.
In the following, in order to ease the numerics, we re-
place the eigenstates of σ(t) by the eigenstates of H0,
i.e., |σk,b(t)⟩ → |k, b⟩. While this would, in principle,
not be necessary, it greatly reduces numerical effort.
Both sets of eigenstates are product states with coincid-
ing bath states. The system states differ to the extend
to which ρsys(t) develops nonzero off-diagonal elements
(in the basis in which it was initially diagonal). We
argue and numerically confirm that these off-diagonal
elements remain exactly zero for the hard-core boson
and the Heisenberg model, and negligible for the Ising
model, even for strong interactions, cf. App. E.

A. Transverse Ising model

Figure 2. Sketch of the
transverse Ising model.

The first setup under con-
sideration is a transverse
Ising model with defects.
The system (blue) consists
of a single spin and the
bath (orange) is a ring
of length L, yielding a
total of L+ 1 spins, see
Fig. 2. The system, bath
and interaction Hamiltoni-
ans are given by
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Hsys = σx0 , Hint = λσz0σ
z
1 , (28)

Hbath =

L∑
i=1

σzi σ
z
i+1 +

L∑
i=1

σxi + h3σ
z
3 + h6σ

z
6 ,

where σx,y,zi denote Pauli matrices on site i and we set
L+ 1 ≡ 1. The local magnetic fields are chosen as h3 =
0.55 and h6 = 0.81, while the interaction strength λ
is varied. This choice of parameters ensures that the
bath exhibits chaotic behavior [35]. We fix the inverse
temperature to β = 0.1, which for L = 18 corresponds
to E0 = −4.01. This yields an acceptable validity of
Eq. (15) within the relevant energy regime (cf. App. E).
The bin size is adequately chosen as δ = 0.03.
Firstly, we will investigate the coarse-grained IFT. The
composite system is initialized in a product state of a
spin-up system state and a microcanonical bath state

ρ(0) =
π↑ ⊗ πE0,δ

Tr[π↑ ⊗ πE0,δ]
, (29)

where πE0,δ denotes a projector onto an energy shell of
width δ centered around the energy E0.
For a first overview, the temporal behavior of the de-
viation from unity of the coarse-grained IFT quantity
[Eq. (17)] is depicted in Fig. 3 for various interaction
strengths. Note that a value of zero indicates the per-
fect validity of the coarse-grained IFT. For all consid-
ered interactions strengths λ, the coarse-grained IFT is
fulfilled to very good accuracy, even for the moderate
bath size L = 18. This is our first main numerical re-
sult.
Since stiffness necessarily renders the coarse-grained
IFT valid [see Sec. II B], we now examine stiffness in the
transverse Ising model in more detail. To get a better
intuition for the property of stiffness, a colormap of the

0.5 20.2 1 205 10 500.1
0.000

0.001

0.002

Figure 3. “Violations” of the coarse-grained IFT [Eq. (21)]
plotted over time t for the Ising model (L = 18) for various
interaction strengths. Even the maxima of the deviations
are very small, i.e., the coarse-grained IFT is well fulfilled
for all interaction strengths λ.

average transition probability as a function of the initial
and final energy is shown in Fig. 4 for (j, k) = (↓, ↑).
The translational invariance along the diagonal clearly
indicates the presence of stiffness. For a more quanti-
tative analysis, the stiffness quantifier χ is plotted over
inverse bath size in Fig. 5. There is a clear decrease of
the stiffness quantifier with bath size for all interaction
strengths. Moreover, the figure suggests that stiffness
becomes perfectly fulfilled and thus the coarse-grained
IFT exactly valid in the thermodynamic limit. This is
our second main numerical result.
Before we present microscopic IFT data for pure initial
states below, we display data for our second quantifier.
The smoothness quantifier is logarithmically plotted in
Fig. 6 as a function of bath size L. It appears to decrease
exponentially with L for all interaction strengths. Thus,
perfect smoothness in the sense of Eq. (23) may be ex-
pected in the thermodynamic limit. This is our third
main numerical result (in accordance with the ETH).
Next, we turn our attention to the microscopic IFT for
pure states. The initial states are now product states of
a spin-up system state and pertinent energy eigenstates
of the bath, i.e.,

ρ(0) = |↑, b0⟩⟨↑, b0| . (30)

To keep the display of numerical results as concise and
transparent as possible, we no longer show data for inde-
pendently varied interaction strengths and system sizes
as done in, e.g., Fig. 5 and Fig. 6. Rather, we focus on

-8.0 -4.0 0.0 4.0

-8.0

-4.0

0.0

4.0

10-5

10-4

10-3

10-2

Figure 4. Average probabilities to transition from a mean
bath energy δB to δA [Eq. (12)] while the system spin tran-
sitions from |↑⟩ to |↓⟩. The translational invariance along the
diagonal indicates the existence of stiffness [Eq. (18)]. The
transition probabilities are calculated for the Ising model
with λ = 0.3 for L = 15 at t = 4, the bin size is chosen as
δ = 0.03.
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parameter sets that are of particular interest, since a jus-
tification of the microscopic IFT for these sets is so far
lacking in the literature. A short explanation of this ab-
sence is in order. Recent results establish the validity of
the microscopic IFT at times shorter than the so-called
Lieb-Robinson time and/or longer than the relaxation
time [24, 28, 29]. As the Lieb-Robinson time τLR in-
creases with L and the relaxation time τrel decreases
with λ, there are combinations of (small) bath sizes and
(weak) interactions for which there is a gap between the
Lieb-Robinson time and the relaxation time [note that
the relaxation time τrel quickly becomes independent of
L as the bath size grows, see also Fig. 13 in App. E].
Within this gap, the reasoning in Refs. [24, 28, 29] can-
not establish the validity of the microscopic IFT. In the
following, we focus on this “gapped” region in parameter
space. Since the Lieb Robinson-time increases at most
linearly with system size and the relaxation time scales
inversely with the square of the interaction strength [see
Fig. 13 in App. E], the temporal gap remains open for
combinations of λ, L fulfilling

λ ≤ K/
√
L , (31)

where K is some suitable constant. We choose to check
the situations at the “edge” of this parameter region,
i.e., for the equality sign in Eq. (31) with K = 0.3

√
18.

This value of K turns out to be appropriate to produce
a substantial temporal gap between the respective Lieb-
Robinson times and relaxation times as indicated in Fig.
7 by the dashed vertical lines (the Lieb-Robinson time
is taken to be τLR = 0.05L in accord with Ref. [28], the
relaxation times are to be inferred from Fig. 13).
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Figure 5. Bath-size dependence of the stiffness quantifier χ
for the Ising model at t = 4 for various interaction strengths.
For all interaction strengths λ the quantifier decreases with
increasing bath size, indicating perfect stiffness in the limit
of infinitely large baths, i.e., L → ∞.
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Figure 6. Bath-size dependence of the smoothness quanti-
fier φ for the Ising model for various interaction strengths λ
at t = 4. For all interaction strengths λ the quantifier de-
creases (approximately exponentially) with increasing bath
size, indicating perfect smoothness in the limit of infinitely
large baths, i.e., L → ∞.

Since the quantity displayed in Fig. 7 is somewhat
involved, we explain it in detail. Each pure initial
state yields a time-dependent microscopic IFT quantity,
which more or less deviates from unity at different times
t. For conciseness, we plot the average (denoted by “...”)
over the absolute value of said deviations for 100 indi-
vidual pure states. These initial states are energy eigen-
states of the bath from a range around the initial energy
E0 [36]. A small average of the absolute deviations sig-
nals a good agreement with the microscopic IFT for the
majority of the individual initial states. (Note that this
could not be inferred from a small average of the devia-
tions themselves, since the latter are not non-negative).
Further note, that even though there is an averaging in-
volved, Fig. 7 serves as a check of the microscopic IFT
[Eq. (9)] rather than a check of the coarse-grained IFT
[Eq. (21)].
Next, we interpret the actual data displayed in Fig. 7.
For each system size, the deviations exhibit a clear max-
imum at times, which fall into the gap between Lieb-
Robinson and relaxation time. These maxima may be
related to the build-up and drop-off of correlations be-
tween system and bath [37, 38]. However, already for
relatively small system sizes, the maximum deviation is
rather small, e.g., approximately one percent for L = 12.
But more importantly, the maximum of the deviations
decreases exponentially with increasing bath size along
the scaling set by Eq. (31), as especially the inset of
Fig. 7 shows. Recall that, even though the bath size
(and thus the Lieb-Robinson time) increases, due to the
scaling implemented by Eq. 31, the gap between be-
tween Lieb-Robinson and relaxation does not shrink, it
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Figure 7. Average “violations” of the microscopic IFT
[Eq. (9)] plotted over time t for the Ising model for a si-
multaneous scaling of interaction strength λ and bath size
L. This scaling is chosen to keep open a gap between the
Lieb-Robinson time τLR (dashed vertical lines) and the re-
laxation time τrel (dashed vertical lines), even in the limit
of large baths, cf. Eq. (31). Inset: Maximum average vio-
lation of the microscopic IFT logarithmically plotted over
bath size (curves for odd L and L < 12 are not depicted in
the large figure for clarity of presentation). The average vi-
olation decreases exponentially with bath size L, indicating
the increasing validity of the microscopic IFT even within
the temporal gap. Note that this finding goes beyond the
results of Refs. [24, 28, 29].

rather even grows, see Fig. 7. Thus, we find the micro-
scopic IFT for pure states to be fulfilled to very good
accuracy already for mesoscopic sized baths at all times,
regardless of whether or not the Lieb-Robinson time and
the relaxation time overlap. This finding is our fourth
main numerical result. As explained above, it goes con-
ceptually beyond the findings of Refs. [24, 28, 29]. It
furthermore confirms the expectations induced by Fig. 5
and Fig. 6.

B. Hard-core boson model

Figure 8. Sketch of the
hard-core boson model.

The second setup of inter-
est is a hard-core boson
model, which was also the
subject in Ref. [24]. The
system (blue) consists of
a single site and the bath
(orange) is a rectangularly
(3 × L) shaped lattice,
yielding a total of 3L + 1
sizes, see Fig. 8. The
system interacts with one
corner of the bath.
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Figure 9. Data on “violations” of the microscopic IFT, dis-
played as in Fig. 7, but for the hard-core boson model. Also
in this case, the violations vanish with increasing bath size,
even though the gap between Lieb-Robinson time τLR and
the relaxation time τrel does not.

The relevant Hamiltonians read

Hsys = n0 , Hint = −λ(c†0c1 + c†1c0) , (32)

Hbath =
∑
i

ni −
∑
⟨i,j⟩

(c†i cj + c†jci) + γ
∑
⟨i,j⟩

ninj ,

where cj (c†j) are annihilation (creation) operators of a

boson on site j and nj = c†jcj is the occupation number

on site j. The double sums ⟨i, j⟩ run over horizontally
and vertically neighboring sites. Following Ref. [24], we
initialize the full system with bath states |b0⟩ from the
third-filling sector, i.e.,

∑
i⟨b0|ni|b0⟩ = L, where the

sum runs over all bath sites. We consider γ = 0.1 and
again choose the bin size as δ = 0.03. For 3L = 21 an
inverse temperature of β = 0.1 corresponds to a bath
energy E0 = 5.80. The pure initial states are chosen
as formulated in Eq. (30). Since the total Hamiltonian
conserves particle number and system and bath can ex-
change particles due to the interaction term, we have to
determine a pertinent µ as mentioned in Sec. III [and
detailed in App. D]. For 3L = 21 we find µ = −5.20 [the
accuracy to which this µ renders Eq. (15) valid may be
inferred from Fig. 15 in App. G].
For this model (as well as for the Heisenberg model in
the next section) we resort to just showing the most im-
portant data for the microscopic IFT in the same way
as done in Fig. 7. This data is displayed in Fig. 9. (Fig-
ures depicting the coarse-grained IFT as well as stiffness
and smoothness quantifiers can be found in App. F.)
Again, we choose a scaling of the interaction strength
with bath size as λ(L) = 0.3

√
21/L. Similarly as for the

Ising model, Fig. 9 shows that the maximum deviation
from the microscopic IFT decreases exponentially with
bath size. Just like in the case of the Ising model, this
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indicates that the the microscopic IFT for pure states
is fulfilled to very good accuracy already for mesoscopic
sized baths at all times, regardless of whether or not the
Lieb-Robinson time and the relaxation time overlap.

C. Heisenberg model

As a third numerical example we consider an integrable
(in the sense of the Bethe-Ansatz) system, the Heisen-
berg model. The system (blue) consists of a single spin
and the bath (orange) is an open chain of length L, see
Fig. 10. The Hamiltonians are given by

Hsys = Sz0 , Hint = λ(Sx0S
x
1 + Sy0S

y
1 +∆Sz0S

z
1 ) (33)

Hbath =

L−1∑
i=1

(Sxi S
x
i+1 + Syi S

y
i+1 +∆Szi S

z
i+1 + Szi ) ,

where Sx,y,zi denote spin operators on site i. The
anisotropy is chosen as ∆ = 1.4 such that the bath ex-
hibits diffusive transport behavior [39]. Just as for the
hard-core boson model, we initialize the system as in
Eq. (30) with a bath state from the third-filling sector,
which here means

∑
i⟨b0|Szi |b0⟩ = L/3. For L = 21

the bath energy corresponding to β = 0.1 is given
by E0 = −3.33, the bin size is chosen as δ = 0.015.
Since the total Hamiltonian conserves magnetization
and system and bath are able to exchange magneti-
zation, we must again take a chemical potential into
account (which here plays the role of a global magnetic
field). A value of µ = −5.68 renders Eq. (15) sufficiently
applicable, cf. App. G.
Similarly as for the hard-core boson model, we only
show the figure for the average deviation of the micro-
scopic IFT quantity for pure states in Fig. 11, again in
the same display style as Fig. 7. The scaling of the λ
with the bath size is given by λ(L) = 0.3

√
21/L. Fur-

ther numerical data is shown in App. G.
For this model we find a qualitatively different behavior
than for the nonintegrable models. First of all, the abso-
lute magnitude of the deviations is quite larger than for
the Ising model and hard-core boson model, namely on
the order of ten percent even for longer times. Further-
more, the maximum deviation does not seem to decrease
at all while enlarging the bath (see inset of Fig. 11).
Consequently, an eventual fulfillment of the microscopic
IFT for pure states is not expected, not even for larger

Figure 10. Sketch of the Heisenberg model.
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Figure 11. Data on “violations” of the microscopic IFT, dis-
played as in Fig. 7, but for the Heisenberg model. Violations
are larger than for the Ising and the hard-core boson model,
moreover, they are almost independent of bath size, inside as
well as outside the gap between Lieb-Robinson time τLR and
the relaxation time τrel (which is not visible on this scale).
This failure of the microscopic IFT even for large systems
is traced back to the lack of smoothness, which in turn is
traced back to integrability, see text.

baths. This finding is interpreted as follows: Smooth-
ness is closely related to the applicability of the eigen-
state thermalization hypothesis, cf. Sec. II C. However,
to this integrable Heisenberg model, the eigenstate ther-
malization hypothesis does not apply. Thus, it is natural
to assume that the breakdown of the microscopic IFT
roots in the breakdown of smoothness. Further numer-
ical analysis supports this assumption, since transition
probabilities do not become smoother with increasing
bath size as displayed in Fig. 22 in App. G.

IV. DISCUSSION AND CONCLUSION

In this article, we presented justifications for a well-
known microscopic IFT for entropy production, as well
as for a coarse-grained version of the latter. The coarse-
grained IFT was analytically shown to hold under the
assumption that the relevant transition probabilities are
sufficiently stiff. Moreover, the validity of the micro-
scopic IFT for pure states follows if said transition prob-
abilities are additionally sufficiently smooth. We defined
and explained the concepts of stiffness and smoothness
in detail. The validity of both versions of the IFT has
been checked for three exemplary setups including inte-
grable and nonintegrable ones.
For both nonintegrable models the main takeaway is the
same. Both IFT’s are fulfilled to very good accuracy al-
ready at moderate bath sizes. This accuracy increases
as baths grow. Correspondingly, we find stiffness as well
as smoothness to apply to very good accuracy already at
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moderate bath sizes. Further, this accuracy increases as
baths grow. These findings apply to setups that are not
covered by comparable but conceptually different inves-
tigations in Refs. [24, 28]. The integrable Heisenberg
model shows a qualitatively different behavior. The av-
erage deviation for the pure state IFT is much larger
than in the nonintegrable case. Moreover, a decrease of
the maximum deviation cannot be observed.
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Appendix A: Derivation of Eq. (19)

Throughout this derivation we consider j, k to be ar-
bitrary but fixed, such that we refrain from explicitly
writing them in each step. We start from the r.h.s. of

Eq. (19) and plug in the definition of R̃(BA). Then we

use R̃(ba) = R(ab), insert a one in the form of ΩB/ΩB
and use the definition of R(AB). Next, we employ Eq.
(15) and Eq. (18). Now the resulting expression only
depends on the difference A − B and it is possible to
replace the sum over A by a sum over B. Finally, we
perform all steps that lead to this point backwards to
arrive at the r.h.s. of Eq. (19).∑

A

R̃(BA) =
∑
A

∑
a∈A,b∈B

1

ΩA
R̃(ba) (A1)

=
∑
A

ΩB
ΩA

R(AB) =
∑
A

eβδ(B−A)R(A−B)

=
∑
B

eβδ(B−A)R(A−B) =
∑
B

R̃(BA)

Appendix B: Derivation of Eq. (24)

Here, we show that the coarse-grained and the micro-
scopic IFT coincide under the assumption of smoothness
[Eq. (23)]. To start, one more ingredient is needed. We
will make use of a well-controlled approximation of the
exponential factor, i.e.,

e−β(ε
a
bath−ε

b
bath) ≈ e−βδ(A−B) . (B1)

Before embarking on the derivation below, we will show
that this approximation is practically always justified
for small bin sizes. Since e−βx is a monotonically de-

creasing function of x and εa,bbath ∈ EA,Bbath, we have the
inequality chain

e−βδ(A−B)e−βδ (B2)

= e−β((Aδ+δ/2)−(Bδ−δ/2))

≤ e−β(ε
a
bath−ε

b
bath) (B3)

≤ e−β((Aδ−δ/2)−(Bδ+δ/2))

= e−βδ(A−B)eβδ . (B4)

In the limit of small bin sizes δ (while keeping Aδ and
Bδ constant) the relevant expression in Eq. (B3) is
pinned between the expressions in Eq. (B2) and Eq.
(B4). Thus, the approximation in Eq. (B1) is satisfied
to very good accuracy for larger systems for which the
bin size can be chosen small.
The starting point of the derivation below is the r.h.s. of
Eq. (10). Firstly, the sums over a and b are split accord-
ing to the belonging of εabath and εbbath to their respec-
tive energy intervals EAbath and EBbath. Then, Eq. (B1) is
employed such that the exponential factor can be pulled
to the front. Next, we recognize the sum over a from
Eq. (11). To go to the next line, we plug in Eq. (22) and
abbreviate all terms linear in r as O(r). Then, we made
use of the definitionWB

ini =
∑
b∈BW

b
ini introduced above

Eq. (16).Finally, we employ the assumption of smooth-
ness [Eq. (23)], which allows to neglect terms linear in
r. The result is the r.h.s. of Eq. (17).
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⟨⟨e−∆σ⟩⟩ =
∑
j,k,a,b

P jfinW
b
ini e

−β(εabath−ε
b
bath)R(jk, ab) (B5)

≈
∑

j,k,A,B

P jfine
−βδ(A−B)

∑
b∈B

W b
ini

∑
a∈A

R(jk, ab)

=
∑

j,k,A,B

P jfine
−βδ(A−B)

∑
b∈B

W b
iniR(jk,Ab)

= O(r) +
∑

j,k,A,B

P jfine
−βδ(A−B)

∑
b∈B

W b
iniR(jk,AB)

= O(r) +
∑

j,k,A,B

P jfinW
B
inie

−βδ(A−B)R(jk,AB)
r→0−→ ⟨⟨e−∆σ⟩⟩c.g.

Appendix C: Stiffness, riggedness and the ubiquity
of the latter

Here, we present a consideration leading to the overall
expectation that stiffness is the the norm rather than the
exception. In a first step, we show that a specific fea-
ture in the ETH ansatz for Hint yields stiffness at least
in first order perturbation theory. This feature is called
“riggedness”. Beyond first order perturbation theory, it
is difficult to make rigorous statements on the relation
between stiffness and riggedness. In a second step, the
existence of riggedness is linked to the insensitivity of
autocorrelation functions of respective observables and
other dynamics to extremely small changes in tempera-
ture. This insensitivity is ubiquitous to the extend that
is hardly ever specifically mentioned.
i. First step: While we intend to argue that there is a
close relation between stiffness and the ETH, it is impor-
tant to note that the validity of the ETH ansatz for Hint

as such does not imply stiffness. However, a slightly
“strengthened” version of the ETH ansatz called the
“rigged” ETH [40] entails stiffness in leading-order per-
turbation theory, as will be substantiated in the follow-
ing. The standard ETH ansatz [41] for the interaction
Hamiltonian reads

(Hint)fi = Fd(ϵ)δfi + η(ϵ)−1/2Fod(ϵ, ω)rfi . (C1)

Here, Fd and Fod are real and smooth functions of their
arguments, ϵ = (ϵf + ϵi)/2 and ω = ϵf − ϵi. The quan-
tity η(ϵ) is the density of states, which will below be as-
sumed to be exponential. The rfi are (pseudo-)random
numbers (with the constraint rfi = r∗fi) drawn from
a Gaussian distribution with zero mean and unit vari-
ance. In this general notation the subscripts i and f
encode states of the uncoupled Hamiltonian, i.e., with
respect to the scenario at hand, i = (k, b) and f = (j, a).
Without loss of generality, we can set Fd(ϵ) ≈ 0 for a
moderately sized energy interval. The modification that

implements the rigged ETH consists of the additional
assumption that Fod is (approximately) independent of
the mean energy ϵ, at least within the above energy in-
terval, i.e.,

Fod(ϵ, ω) ≈ Fod(ω) . (C2)

The (approximate) independence of Fod(ϵ, ω) from ϵ has
already been numerically demonstrated for physical ob-
servables [31, 40].
Next we show how stiffness follows from riggedness in
leading-order perturbation theory. The probability to
transition from some initial state |i⟩ to some final state
|f⟩ in first-order time-dependent perturbation theory is
given by

R(fi) ∝ |(Hint)fi|2g(ω, t) , (C3)

where g(ω, t) = sin2(ωt/2)/ω2. The average probability
to transition from some initial state |i⟩ with ϵi ∈ EI to
some final energy interval EF [Eq. (12)] in first-order
time-dependent perturbation theory then reads

R(FI) ∝ 1

ΩI

∑
i∈I,f∈F

|(Hint)fi|2g(ω, t) (C4)

=
1

ΩI

∑
i∈I,f∈F

F 2
od(ω)|rfi|2g(ω, t)

η(ϵ)
,

where ΩX (with X = I, F ) is the number of terms in the
respective sum. If the bin sizes are adequately chosen
(as described in Sec. II A), the only quantities that vary
non-negligibly in the above sums are the |rfi|2. To an
accuracy set by the law of large numbers, their summa-
tion can be approximated as

∑
i∈I,f∈F |rfi|2 ≈ ΩIΩF .
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All other quantities may be “pulled out of the sum”:

R(FI) ≈ F 2
od(δ(F − I))g(δ(F − I), t)

ΩIη(δ(F + I)/2)
ΩIΩF . (C5)

To proceed, we detail the assumption that η(ϵ) is expo-
nential, i.e.,

η(ϵ) = eβϵ ⇒ ΩX ≈ δeβδX . (C6)

Inserting Eq. (C6) into Eq. (C5) and simplifying yields

R(FI) = δF 2
od(δ(F−I))g(δ(F−I), t)eβδ(F−I)/2 , (C7)

which is clearly a function of F − I only, thus the cor-
responding R(FI) are indeed stiff. The only assump-
tion used in this derivation are the rigged ETH [Eq.
(C2)] and an exponential density of states [Eq. (C6)].
While the latter is a generally well-known feature of
short-range interacting systems, the former has not yet
been exhaustively scrutinized in the literature. How-
ever, some numerical evidence already exists [31] and
further was presented in Sec. III. An even more encom-
passing consideration in support of the wide occurrence
of stiffness will be put forth next.
ii. Second step: This goes to establish the ubiquity of
riggedness. We start with a standard textbook result
on the canonical ensemble, which links the variance s2E
of the energy distribution to the heat capacity CV (at
constant volume V ) via

s2E = kBT
2CV . (C8)

Furthermore, the difference of two mean energies at tem-
perature T and T +∆T , respectively, is given by

∆E = E(T +∆T )− E(T ) = CV∆T . (C9)

As we think of ∆T being small, this is basically the def-
inition of the heat capacity. For later reference we link
the total heat capacity to the specific heat capacity per
particle cV as CV = cVN where N is the number of
particles. The crucial point now is the following: the
calculation of autocorrelation functions and other phys-
ical quantities at a given temperature only concerns a
certain sector of the respective operator when displayed
in the energy eigenbasis. This means, only the matrix
elements within a certain “energy window” contribute
substantially to the autocorrelation function. This win-
dow has the width sE and is centered at E. The centers
of two windows at different temperatures are separated
by ∆E. Now clearly, if ∆E exceeds sE , the calcula-
tion of the two autocorrelation functions concerns two
disjoined sectors of the respective operator. So if the
rigged ETH in the sense of Eq. (C2) would not apply,
the two autocorrelation functions would be entirely dif-
ferent, since F 2

od(ϵ, ω) is essentially the Fourier trans-

form (with respect to ω) of the autocorrelation function
at energy ϵ =̂E. This leads to the question at what
temperature difference ∆Tsep this separation of the en-
ergy windows actually occurs. To answer this question
consider the ratio

∆E

sE
=

∆T

T

√
cVN

kB
. (C10)

Defining ∆Tsep as the temperature difference at which

∆E = sE , Eq. (C10) yields

∆Tsep = T

√
kB
cVN

. (C11)

From the scaling as ∝ 1/
√
N on the r.h.s. of Eq. (C11),

it may already be inferred that ∆Tsep will be very small,
even for mesoscopic systems, since already in this case
N will be very large.
As an example, consider one gram of iron with a heat
capacity of CV ≈ 0.5 J/K. Plugging Boltzmann’s con-
stant kB ≈ 10−23 J/K and room temperature T ≈
300K into Eq. (C11) yields a temperature difference of
∆Tsep ≈ 10−9 K, i.e., one nanokelvin. Since we do not
observe that measurements of dynamical physical quan-
tities like autocorrelation functions, etc. vary on this
scale, it may be inferred that the rigged ETH [Eq. (C2)]
applies in a plethora of cases. This, in turn, renders stiff-
ness a very likely property for a wide range of setups,
as explained in the beginning of the present section.

Appendix D: Definitions of parameters and
quantifiers

In the following, we define the numerical procedures
according to which temperature and chemical poten-
tial, which first appear in Eq. (4), are calculated. The
rationale behind the definitions of temperature and
chemical potential is the desired validity of Eq. (15).
Temperature: Temperature corresponds to the growth
of a pertinent DOS at a certain energy E0. Thus, in
order to render Eq. (15) as good an approximation as
possible to the actual DOS, the inverse temperature
β is determined by an exponential fit to ΩB=E/δ|µ=0

in the direct vicinity of E0. Here, . . . |µ=0 indicates
that the respective DOS corresponds to Hbath only
(rather than (Hbath − µNbath)). Practically, we choose
an inverse temperature β = 0.1 for all examples and
determine the corresponding E0’s, cf. Fig. 14. In case
that the particle number (magnetization) is a conserved
quantity (such as for the models in Secs. III B, III C),
this is done for ΩBN=E/δ|µ=0 := ΩN (E), where N is
the number of particles in the initial bath state.
Chemical potential: The determination of a perti-
nent (nonzero) µ as appearing in Eq. (4) is only
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necessary if the full model conserves particle num-
ber (magnetization, etc.). In this case we proceed
as follows, we consider the relevant DOS’s ΩX(E)
of the X-particle subspaces of the bath, where
X = N − 1, N,N +1. Then, we choose the three points
(E0 − ω − µ(N − 1),ΩN−1(E0 − ω)), (E0 − µN,ΩN (E0))
and (E0 + ω − µ(N + 1),ΩN+1(E0 + ω)), where ω is
the level spacing of the considered system only (in the
examples in Secs. III B, III C we have ω = 1) and take
a function of the form Kexp(βE), featuring the already
set inverse temperature β.
The parameters µ and K are adjusted such that the
three points are as close as possible to the given
function. This fitting procedure determines µ. For an
illustration see, e.g., Fig. 15 in App. F.

Appendix E: Additional numerics on the transverse
Ising model

As mentioned in Sec. III, for the numerics we assumed
that eigenstates |σj,a⟩ of the entropy production opera-
tor equal the eigenstates |j, a⟩ of the uncoupled Hamilto-
nian H0 such that Eq. (7) concerns transition probabili-
ties between energy eigenstates of H0. This assumption
is only strictly true if the reduced density operator of
the system remains diagonal in the energy eigenbasis of
the system for all times, which may indeed be the case
if the setup possesses certain symmetries. Such a sym-
metry is present in the hard-core boson model as well as
in the Heisenberg model. However, since this symmetry
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Figure 12. Average off-diagonal element of the system’s re-
duced density matrix of the Ising model plotted over time
for λ(L).
Inset: Maximum value logarithmically plotted over bath size
(curve for L = 10 is not depicted in the large figure).
The maximum value decreases exponentially with bath size
L, indicating that the assumption of small off-diagonal ele-
ments made in Sec. IIA is justified.

is absent in the transverse Ising model, the off-diagonal
elements of the system’s reduced density operator will
differ from zero. In this case, even in the absence of
symmetry, the off-diagonal elements are expected to be
sufficiently small. This expectation is based on typical-
ity, i.e., the mathematical finding that the overwhelming
majority of all pure states on the full system (with re-
spect to the unitary Haar-measure) yields local density
matrices with exponentially small off-diagonal elements
[1, 42]. Note that typicality arguments apply irrespec-
tive of the interaction strength. We also directly check
this assumption numerically in the following. In Fig. 12
the average absolute value of the off-diagonal element
|ρ12sys(t)| is plotted over t for λ(L) = 0.3

√
18/L. Even

for the most unfavorable case of |ρ12sys(t)| ≈ 0.01, the
average overlap between the uncoupled eigenstates and
the respective eigenstates of the entropy production op-
erator is still > 0.995. Further, the maximum deviation
decreases exponentially with increasing bath size, as can
be seen in the figures inset. Hence, we view our assump-
tion as justified.
The temporal behavior of the averaged first diagonal
element is depicted in Fig. 13 for various bath sizes
L. Shown is the deviation from the equilibrium value
(ρcansys )11 = 0.45 as predicted by a Gibbs ensemble. The
relaxation time τrel is determined by the dashed line,
which lies at one tenth of the initial value.

0 10 20 30
0.0

0.2

0.4

0.6

0 1 2 3 4
0.0

0.2

0.4

0.6

Figure 13. Temporal behavior of the first diagonal element
of the system’s reduced density operator for the Ising model
for λ(L) = 0.3

√
18/L. Depicted is the average deviation

from the thermal value of (ρcansys )11 = 0.45. The relaxation
time τrel is defined as the point in time at which the curve
has decayed to one tenth of its initial value (dashed line).
Inset: time axis scaled with λ2, the collapse of all curves is
evident signaling the independence of τrel and L.
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Figure 14. Density of states ΩB/δ plotted as a function of
(mean) energy δB. The bath size is L = 18 and the bin
size is δ = 0.03. The dashed line indicates the initial energy
E0 = −4.01 and the faint gray solid lines mark the region
E0 ± 1 in which the exponential fit approximates the DOS,
thus rendering Eq. (15) applicable.

The DOS of the bath is depicted in Fig. 14. In the
vicinity of E0 = −4.01 the DOS can indeed be well ap-
proximated by a single exponential function with expo-
nent β = 0.1 and some fit parameter K. This renders
our assumption of a local exponential DOS applicable
[Eq. (15)].
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Figure 15. Densities of states ΩBX/δ plotted as functions
of the (mean) energies δBX for the hard-core boson model.
Depicted are the three relevant subsectors with X = 6, 7, 8.
The chemical potential takes the value µ = −5.20 such that
all relevant parts of the spectra can be described by a single
exponential function.
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Figure 16. “Violations” of the coarse-grained IFT plotted as
a function of time for the hard-core boson model (L = 21)
for various interaction strengths. The coarse-grained IFT is
well fulfilled for all λ.

Appendix F: Additional numerics on the hard-core
boson model

This section presents additional numerics for the hard-
core boson model. The DOSs partaking in the dynamics
can be seen in Fig. 15. The chemical potential is ad-
justed to µ = −5.20 such that all energetically relevant
parts of the spectra are described by a single exponen-
tial. The coarse-grained IFT quantity as a function of
time is depicted in Fig. 16. The stiffness quantifier is
depicted in Fig. 17 as a function of inverse bath size and
the smoothness quantifier in Fig. 18 as a function of L.
The interaction strength takes on the same values as for
the Ising model, namely λ = 0.3, 0.6, 1.2.
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Figure 17. Bath-size dependence of the stiffness quantifier χ
for the hard-core boson model. For all interaction strengths
the quantifier decreases with increasing bath size, indicating
that stiffness (and therefore the coarse-grained IFT) is better
and better fulfilled.
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Figure 18. Smoothness quantifier φ for the hard-core boson
model logarithmically plotted over bath size L. The expo-
nential decrease with bath size is evident for all interaction
strengths, indicating that smoothness is better and better
fulfilled the larger the bath becomes.

All three figures are generally quite similar to the re-
spective figures for the Ising model. Firstly, the coarse-
grained IFT is fulfilled to a good extent with long-time
values depending on the interaction strength.
The stiffness quantifier again decreases with increasing
bath size. Thus, the validity of the coarse-grained IFT
is expected for large baths.
Furthermore, the smoothness quantifier shows an expo-
nential decay with bath size for all interaction strengths.
This is in line with the findings displayed in Fig. 9 in
the main text.
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Figure 19. Densities of states ΩBX/δ plotted as functions
of the (mean) energies δBX for the Heisenberg model. De-
picted are the three relevant subsectors with X = 6, 7, 8.
The chemical potential takes the value µ = −5.68 such that
all relevant parts of the spectra can be described by a single
exponential. The bath size is L = 21 and the bin size is
δ = 0.015.
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Figure 20. “Violations” of the coarse-grained IFT plotted
as a function of time for the Heisenberg model (L = 21)
for various interaction strengths. The coarse-grained IFT is
more or less fulfilled for all λ, even though the magnitude of
the deviation is larger than in the nonintegrable models.

Appendix G: Additional numerics on the
Heisenberg model

In this section, we present additional numerics for the
Heisenberg model. The densities of states of the rele-
vant subsectors can be viewed in Fig. 19. The chemical
potential is adjusted to µ = −5.68 such that the ener-
getically relevant parts of the DOS in Fig. 19 are in-
deed well described by a single exponential, which ren-
ders Eq. (15) (approximately) valid. The coarse-grained
IFT quantity as a function of time is depicted in Fig.
20. Stiffness and smoothness quantifiers are shown in
Fig. 21 and Fig. 22 as functions of (inverse) bath size.
The deviations from unity of the coarse-grained IFT
quantity in Fig. 20 are larger compared to the nonin-
tegrable models. Evidently, the larger the interaction
strength λ is, the smaller the deviations are. Similarly
as in the other models, the stiffness quantifier in Fig. 21
decreases with increasing bath size.
However, the smoothness quantifier in Fig. 22 does not
show the exponential decay behavior observed in the
nonintegrable cases. This confirms the observation from
Fig. 11 in the main text, where it was found that the mi-
croscopic IFT does not become more and more fulfilled
by enlarging the bath (although for slightly different λ).
This finding suggest that for the integrable model it is
indeed the violation of smoothness (and not stiffness)
that causes the violation of the microscopic IFT.
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Figure 21. Bath-size dependence of the stiffness quantifier
χ for the Heisenberg model. For all interaction strengths
the quantifier decreases with increasing bath size, indicating
that stiffness (and therefore the coarse-grained IFT) is better
and better fulfilled.
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Figure 22. Smoothness quantifier φ for the Heisenberg model
logarithmically plotted over bath size L. An exponential de-
crease with bath size as in the nonintegrable models cannot
be observed, indicating that smoothness is violated to some
extent.
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Numerically Probing the Universal Operator Growth Hypothesis

Robin Heveling,∗ Jiaozi Wang,† and Jochen Gemmer‡

Department of Physics, University of Osnabrück, D-49076 Osnabrück, Germany

Recently, a hypothesis on the complexity growth of unitarily evolving operators was presented.
This hypothesis states that in generic, non-integrable many-body systems the so-called Lanczos co-
efficients associated with an autocorrelation function grow asymptotically linear, with a logarithmic
correction in one-dimensional systems. In contrast, the growth is expected to be slower in integrable
or free models. In the paper at hand, we numerically test this hypothesis for a variety of exemplary
systems, including 1d and 2d Ising models as well as 1d Heisenberg models. While we find the
hypothesis to be practically fulfilled for all considered Ising models, the onset of the hypothesized
universal behavior could not be observed in the attainable numerical data for the Heisenberg model.
The proposed linear bound on operator growth eventually stems from geometric arguments involving
the locality of the Hamiltonian as well as the lattice configuration. We investigate such a geometric
bound and find that it is not sharply achieved for any considered model.

I. INTRODUCTION

The issue of the emergence of irreversible behavior from
the unitary time evolution of quantum mechanics has
yet to be answered in a satisfying manner [1]. In this
context, concepts like the “eigenstate thermalization
hypothesis” [2–4] and “quantum typicality” [5–7] have
been introduced as possible fundamental mechanism be-
hind an eventual equilibration of isolated quantum sys-
tems. The idea of typicality is that an overwhelming
majority of pure states (at some energy) give rise to cor-
responding thermal expectation values. Thus, it is quite
likely that over the course of time a pure state eventu-
ally ends up in the giant “bubble” of typical states, sig-
naling an apparent equilibration of the system. In the
Heisenberg picture formulation of quantum mechanics,
not the states are time-dependent, but the observables
themselves. Hence, it may be somewhat expected to
find a similar notion of typicality for observables, go-
ing from initially simple, few-particle operators to more
complex, generic ones. Recent works have studied this
notion of operator growth from various angles [8–13].
In this paper, we refer to the particular work presented
in Ref. [14], in which a hypothesis on the universality
of operator growth is brought forth. Said hypothesis
is formulated in the framework of the recursion method
[15, 16] and makes a statement about the growth of the
so-called Lanczos coefficients, real numbers that char-
acterize the complexity growth of operators over the
course of time. In the following, we numerically test this
operator growth hypothesis for various models and ob-
servables. Similar numerical investigations haven been
conducted [17, 18]. Further, we attempt to put the in-
formal version of the hypothesis into a more quantita-

∗ rheveling@uos.de
† jiaowang@uos.de
‡ jgemmer@uos.de

tive context with regard to the functional form of the
hypothesized universal growth pattern.
The paper at hand is organized as follows: we briefly
restate the universal operator growth hypothesis and
introduce related quantities in Sec. II. Following, in
Sec. III, we derive an upper bound on the complexity
growth of operators based on geometric arguments. We
present our numerical results and relate them to the op-
erator growth hypothesis in Sec. IV. We summarize our
main results and conclude in Sec. V.

II. OPERATOR GROWTH HYPOTHESIS

For self-containedness, in this section, we restate the op-
erator growth hypothesis brought forward in Ref. [14].
To start, the main quantities that eventually play a role
in the hypothesis are introduced. We consider a system
in the thermodynamic limit described by a local Hamil-
tonian H [here, local means short-range, few-body in-
teractions]. An observable of interest represented by a
Hermitian operator O gives rise to a corresponding au-
tocorrelation function

C(t) = Tr[O(t)O] , (1)

where O(t) = eiHtOe−iHt is the time-dependent opera-
tor in the Heisenberg picture (ℏ = 1). In the following,
it is convenient to work directly in the Hilbert space of
operators and denote its elements O as states |O). This
Hilbert space of operators is equipped with an inner

product (O1|O2) = Tr[O†
1O2], which induces a norm

via ||O|| =
√
(O|O). The Liouvillian superoperator is

defined by L|O) = [H,O] and propagates a state |O)
in time such that the autocorrelation function may be
written as C(t) = (O|eiLt|O).
The Lanczos algorithm can be employed to calculate
a tridiagonal representation of the Liouvillian L in a
(finite) subspace determined by some “seed” observable
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O. To start the iterative scheme detailed below, we take
the normalized initial state |O0) = |O), i.e., (O|O) = 1,
and set b1 = ||LO0|| as well as |O1) = L|O0)/b1. Then
we iteratively compute

|Qn) = L|On−1)− bn−1|On−2) , (2)

bn = ||Qn|| ,
|On) = |Qn)/bn .

The tridiagonal representation of the Liouvillian in the
Krylov basis {|On)} is then given by

Lmn = (Om|L|On) =


0 b1 0 ...

b1 0 b2

0 b2 0
. . .

...
. . .

. . .


mn

, (3)

where the Lanczos coefficients bn are real, positive num-
bers output by the algorithm. They can be interpreted
as hopping amplitudes in a tight-binding model and
their iterative computation is an elementary part of the
recursion method [15, 16].
Before the hypothesis itself is stated, we will briefly
present the relation between the Lanczos coefficients bn
and the autocorrelation function C(t) or, respectively,
its Fourier transform, the spectral function

Φ(ω) =

∫ ∞

−∞
e−iωt C(t) dt . (4)

There exists a (non-linear) one-to-one map between the
Lanczos coefficients bn and the spectral function Φ(ω),
thus, a set of bn’s uniquely determines Φ(ω) and vice
versa. It can be shown that the Lanczos coefficients bn
appear in the continued fraction expansion of Φ(ω), i.e.,

Φ(ω) = Re
2

iω +
b21

iω +
b22

iω + ...

. (5)

The universal operator growth hypothesis brought for-
ward in Ref. [14] concerns the asymptotic behavior of
the Lanczos coefficients bn. The hypothesis can infor-
mally be stated as follows: The Lanczos coefficients
bn should “grow as fast as possible” in generic, non-
integrable systems. It turns out that [as detailed below]
the fastest possible growth rate is (asymptotically) lin-
ear, i.e.,

bn ∼ αn+ γ + o(1) (6)

for some real constants α > 0 and γ. In the special case

of a one-dimensional system, the fastest possible growth
is sub-linear due to an additional logarithmic correction,
i.e.,

bn ∼ A
n

lnn
+ o(n/ lnn) , (7)

where A > 0 is a real constant and o(gn) denotes some
real sequence fn with limn→∞ |fn/gn| = 0.
These bounds on fastest possible (asymptotic) growth
eventually originate from a powerful statement on the
behavior of the spectral function Φ(ω) for large ω. The
spectral function usually features non-vanishing high-
frequency tails for generic many-body systems. By
means of geometric arguments these tails can be rig-
orously bounded by an exponential function such that

Φ(ω) ≤ Ke−κ|ω| , (8)

for some adequately chosen constant K > 0 and decay
constant κ > 0, which is related to the geometry of the
system [19]. It can be shown that spectral functions ac-
tually featuring exponentially decaying tails give rise to
asymptotically linear growth in the Lanczos coefficients
[20, 21]. Therefore, the operator growth hypothesis is
equivalent to an exponentially decaying spectral func-
tion and basically states that the Lanczos coefficients
should grow as fast as “permitted by the geometry”.
There are a few examples for which linear growth is an-
alytically known to be achieved [14, 22].

III. BOUND ON GROWTH VIA MOMENTS

The asymptotically linear bound on the growth of the
bn or, respectively, the exponential bound on the decay
of the spectral function Φ(ω) are ultimately a conse-
quence of geometric arguments concerning the locality
of the Hamiltonian and the observable as well as the
specific lattice geometry of the system [19]. A straight-
forward way to apply these arguments is by considering
the moments µ2n of the autocorrelation function and
determining an upper bound on these moments by tak-
ing the respective geometry of the system into account.
The moments of the autocorrelation function C(t) are
defined by

µ2n =
d2n

dt2n
C(t)

∣∣
t=0

(9)

or, respectively, in terms of the spectral function

µ2n =

∫
ω2nΦ(ω) dω . (10)

Since C(t) is an even function, all odd moments nec-
essarily vanish. The information contained in the mo-
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ments µ2n is identical to the information conveyed by
the Lanczos coefficients bn. It is detailed in App. A how
to translate between the two quantities.
Employing the Heisenberg equation of motion for time-
dependent operators, Eq. (9) can be written as

µ2n = ||LnO||2 . (11)

This quantity will be bounded from above in the follow-
ing. We again consider a local operator O with ||O|| = 1
and a local Hamiltonian H =

∑
ℓ hℓ with local terms hℓ

or, respectively, a local Liouvillian L =
∑
k ℓk with local

terms ℓk = [hk, · ].
The norm of a local Liouvillian ℓ [we assume periodicity
such that all ℓk are of the same type] applied to some
operator A can be bounded by

||ℓA|| ≤ E ||A|| , (12)

where E = Emax − Emin denotes the maximum eigen-
value of ℓ and Emax (Emin) is the maximum (minimum)
eigenvalue of the local Hamiltonian h. Equality holds if
the operator A is an eigenoperator of the local Liouvil-
lian with the largest eigenvalue. Utilizing the triangle
inequality and iteratively applying Eq. (12) yields

||LnO|| = ||
∑

k1,...,kn

ℓkn ... ℓk1O||

≤
∑

k1,...,kn

||ℓkn ... ℓk1O||

≤
∑

k1,...,kn

En = EnNsum(n) , (13)

where Nsum denotes the number of terms in the sum
[it is specified below which terms are actually counted].
This number typically grows quite fast with n and can
be exactly determined for simple geometries, as is pre-
sented at the end of this section. Consequently, the
moments can be bounded as

µ2n = ||LnO||2 ≤ E2nN2
sum(n) . (14)

This bound on the moments is sharp, meaning first,
no sequence of moments µ2n calculated via Eq. (9) can
possibly grow faster and, importantly, second, that this
bound can in principle be actually achieved with an
equality sign. This is the case if and only if two condi-
tions are met. Firstly, to get an equality in the triangle
inequality, all operators occurring in the sum must be
collinear. Secondly, the largest eigenvalue E must be
realized at each application of a local Liouvillian. In-
deed, it would be quite surprising if this bound were to
be achieved tightly for physical systems. On the other
hand, it may not be as far off as one might initially
guess, since multiple applications of the same operator
[here L] to a state increase the overlap of the resulting

state with the states at the edges of the spectrum [given
that the initial state has some overlap with eigenstates
corresponding to extremal eigenvalues].
The fastest possible growing moments, i.e., moments
equal to the r.h.s. of Eq. (14), can be translated to cor-
responding Lanczos coefficients as described in App. A.
For later reference, we denote the coefficients obtained
this way by Bn. They depend on the energy scale E
as well as on the lattice geometry expressed through
Nsum, both quantities are exactly known for the models
studied below. Even though Eq. (14) gives a rigorous
upper bound on the moments, the Bn obtained from this
bound do not necessarily constitute a pointwise upper
bound on the bn. In Sec. IVA we give more details on
the interpretation of the coefficients Bn.
To end this section, we exemplarily determine the num-
ber Nsum for the simple case of a one-dimensional chain
with nearest-neighbor interactions, i.e., H =

∑
ℓ hℓ,ℓ+1.

We start with a local operator O whose support is only
on site zero [the support of an operator contains all
sites on which the operator is not equal to the iden-
tity, e.g., here O = ... ⊗ I ⊗ O0 ⊗ I ⊗ ..., where I
denotes the identity on a given site]. The operator
LO consists of operators ℓ−1,0O0 with support on sites
(−1, 0) as well as ℓ0,1O0 with support on sites (0, 1).
Next, L2O contains six operators with support on sites
(−2,−1, 0), (−1, 0), (−1, 0, 1), (−1, 0, 1), (0, 1), (0, 1, 2),
respectively. In these lists we include [and count] triv-
ially non-vanishing operators, i.e., operators that van-
ish due to a lack of overlap between respective supports
are not counted [for example the operator ℓ8,9O0 triv-
ially vanishes], however, operators with respective over-
lap between supports [like ℓ0,1O0] are always counted,
even though the operator may vanish due to the spe-
cific choice of the local Hamiltonian and initial observ-
able. In this manner, we iteratively apply the Liou-
villian to the initial operator, grow the supports ac-
cordingly and keep track of the number of potentially
non-vanishing operators. For the case at hand, the
above procedure gives rise to a sequence of numbers
Nsum(n) = 1, 2, 6, 22, 94, 454, 2430, 14214, ... of terms in
the sum in Eq. (14). As rigorously shown in Ref. [23],
there exists a closed mathematical expression for this
sequence, i.e., Nsum(n) = Bn(2), where Bn denote the
Bell polynomials.
The above strategy of counting terms [which is pre-
sented in Ref. [23] in a more rigorous way] in principle
also works for more complicated geometries, e.g., higher-
dimensional or with long-range interactions. However,
it can be quite involved to keep track of all contributions
and closed expressions like the one above are generally
difficult to come by. Thus, for the lattice geometries in-
vestigated below, i.e., with next-nearest-neighbor inter-
actions and two-dimensional, respectively, we compute
the sequences iteratively up to some n.
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FIG. 1. Lanczos coefficients bn of the transverse Ising model for the 2-local observables a) O(1), b) slow mode of
O(2)
q with q = π/13, and c) fast mode of O(2)

q with q = π. The integrability-breaking magnetic field attains values
from Bx = 0.0 to Bx = 0.5. For all observables, the transition from a free model to a non-integrable model is
evident. The coefficients Bn are explicitly depicted in a) for the case Bx = 0.5 as yellow dots. Dashed lines indicate
the “lower branches” of the corresponding Bn. To avoid clutter, only the dashed lines are depicted as a guide to
the eye for other values of Bx and in all following figures. The coefficients Bn are larger than the physical bn by a
factor of about two for all observables.

IV. NUMERICAL ANALYSIS

In this section, we numerically check the proposed
operator growth hypothesis by explicitly calculating
the Lanczos coefficients bn for various exemplary se-
tups. These setups include one-dimensional and two-
dimensional Ising models as well as one-dimensional
Heisenberg models, all paired with a variety of differ-
ent observables. We compare the calculated bn with the
coefficients Bn [obtained from the r.h.s. of Eq. (14)] by
explicitly calculating E and Nsum for each model.
In practice, it is only possible [for the considered sys-
tems at least] to obtain a finite number N of Lanc-
zos coefficients bn, since the dimension of the operator
space grows exponentially. The achievable number of
coefficients N is around 30 for the 1d Ising model and
around 15 for the Heisenberg model. The difference in
obtainable bn is due to the fact that the operator space
grows much faster for the Heisenberg model than for the
Ising model. For all considered systems the Hamiltonian
H consist of two terms, an integrable part H0 and an
integrability-breaking part V, i.e.,

H = H0 + λV (15)

[except for the 2d Ising model, where H0 is already non-
integrable]. The parameter λ tunes the non-integrability
of the model. We suppose that the total Hamiltonian
H (as well as H0 and V individually) can be written in
terms of local Hamiltonians, i.e., H =

∑
ℓ hℓ. Again,

the local terms usually describe short-range, few-body
interactions. For each model, we consider a number
of observables O. Importantly, all observables should
have zero overlap with any conserved quantity [24], for
example (O|H) = 0.

A. Transverse Ising model

The first model under consideration is a transverse Ising
model with a tilted field. Respective unperturbed and
total Hamiltonians are given by

H0 =
∑
ℓ

Jxxσ
x
ℓ σ

x
ℓ+1 +Bzσ

z
ℓ (16)

H = H0 +Bx
∑
ℓ

σxℓ ,

where σx,y,zℓ denote Pauli operators on site ℓ. The
magnetic field Bx in x-direction plays the role of the
integrability-breaking parameter λ in Eq. (15), i.e., the
system is non-integrable for Bx ̸= 0 and integrable for
Bx = 0. We set Jxx = 1.0 and Bz = −1.05 and calcu-
late the Lanczos coefficients for various observables as
detailed in Sec. II. In practice, it is convenient to adopt
the set of Pauli strings as a working basis of the Hilbert
space of operators [14, 25].
The behavior of the Lanczos coefficients during a tran-
sition from an integrable to a non-integrable 1d Ising
model has been systematically probed in Ref. [17] for
local observables supported on one or two sites. Thus,
here, we primarily focus on observables with support
throughout the whole system. As a first example, we
consider the 2-local observable

O(1) ∝
∑
ℓ

1.05σxℓ σ
x
ℓ+1 + σzℓ , (17)

where 2-local means that the local terms are supported
on two sites respectively. The choice of the parame-
ter 1.05 in front of the xx-coupling term ensures that
(O(1)|H) = 0.
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Figure 2. Lanczos coefficients bn of the transverse Ising
model for a local observable O(3) = σx

0 for various
integrability-breaking parameters Bx. The distinction be-
tween the free and non-nonintegrable curves is not as strik-
ing a before. Green dash-dotted line indicates a fit ∝

√
n

to the data of the integrable model. Dashed lines serve as a
guide to the eye for the coefficients Bn, which are larger by
a factor of about two.

This exact setup was also studied in Ref. [14]. The cor-
responding Lanczos coefficients are depicted in Fig. 1a
for various values of the integrability-breaking parame-
ter Bx.
The Hamiltonian of the bare transverse Ising model
[with Bx = 0] can be mapped onto free fermions via
a Jordan-Wigner transformation. Further, the observ-
able in Eq. (17) is local in the fermionic picture. In
this non-interacting case, the Lanczos coefficients seem
to be more or less constant. As soon as a small per-
turbation that breaks the integrability is introduced,
e.g., Bx = 0.01, the Lanczos coefficients begin to grow.
The distinction between the free case and non-integrable
cases is clearly visible in Fig. 1a. The growth of the
Lanczos coefficients for larger values of Bx already looks
quite linear. A possible logarithmic correction due to
the system’s one-dimensionality is not directly notice-
able in the data, although it has been observed in this
model [17].
Before we continue, we want to make some remarks on
the interpretation of the coefficients Bn. As mentioned,
the Bn are computed by assuming that the moments
grow as fast as possible, i.e., an equality sign in Eq. (14),
and translating these maximum moments to Lanczos co-
efficients as detailed in App. A. However, even though
Eq. (14) gives a rigorous upper bound on the moments,
the resulting Bn do not necessarily constitute a strict
pointwise upper bound on the bn [this is simply due to
the way the Lanczos coefficients are calculated from the
moments]. Thus, the Bn should not be thought of as
such. Rather, the Bn represent a sort of “global uni-

form” upper bound, meaning that it is impossible to
further increase the value of one specific coefficient “by
hand”, without simultaneously decreasing the value of
another one [or several other ones]. In this sense the Bn
are the “maximum” coefficients. If the “physical” coef-
ficients bn would follow the Bn tightly, then one could
indeed conclude that the upper bound in Eq. (14) was
sharply achieved and that the Lanczos coefficients would
indeed grow “as fast as possible”, given the constraints
in Eqs. (12), (13).
The values of the Bn are explicitly depicted in Fig. 1a for
Bx = 0.5. The coefficients clearly exhibit some even-odd
effects. These even-odd effects also occur for all other
considered parameters and models. To avoid clutter, we
only show the “lower branches” of the Bn as dashed lines
for smaller values of Bx. Therefore, the dashed lines in
Fig. 1a [and all following figures] serve as a guide to the
eye for the “maximal possible” coefficients Bn. The en-
ergy scale is E = 3.2 [for Bx = 0.5] and Nsum is obtained
as detailed at the end of Sec. III, with the important dif-
ference that the initial operator is now supported on two
sites. In Fig. 1a, it is evident that the coefficients Bn
are larger than the physical coefficients bn by about a
factor of 2. Thus, the upper bound on the moments
is not achieved, i.e., Eq. (14) is an overestimate [26].
This general behavior of the bn as well as the Bn is re-
produced for the next observable, which constitutes an
energy density wave with momentum q, i.e.,

O(2)
q ∝

∑
ℓ

cos(qℓ)hℓ . (18)

We study a relatively slow dynamic with q = π/13 and
a relatively fast dynamic with q = π. Both observables
are local in the fermionic picture. The Lanczos coeffi-
cients bn and coefficients Bn are depicted in Fig. 1b for
q = π/13 and in Fig. 1c for q = π. In both cases, the
qualitative behavior is quite similar to the first observ-
able. Again, the Lanczos coefficients of the free model
with Bx = 0 seem to be more or less constant. Once
the additional magnetic field is added, the model be-
comes non-integrable and at some point, the bn grow
approximately linearly. Just as for the first observable,
the derived bounds are not tight and the Bn are larger
by a factor of about two.
The final considered observable for the one-dimensional
Ising model is a local operator whose support only con-
tains a single site, i.e.,

O(3) = σx0 . (19)

The corresponding Lanczos coefficients are depicted in
Fig. 2. There is a clear qualitative difference compared
to the observables investigated thus far. For the free
case with Bx = 0 the Lanczos coefficients seem to no
longer be bounded by a constant.
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Figure 3. Comparison between Lanczos coefficients for the
Ising model with Bx = 0.5 for all four observables considered
thus far. The growth is quite similar for larger n hinting at
a universality of operator growth.

Rather, the growth is quite accurately described by a
square-root ∝

√
n [see fit]. For this particular model

and observable the square-root-like growth can be un-
derstood analytically [22]. Further, this kind of growth
has been observed for a variety of other integrable mod-
els [14, 16, 27]. We suspect that this qualitatively dif-
ferent behavior compared to the previous cases is due
to the specific choice of the observable, which is, in con-
trast to all previously considered observables, non-local
in the fermionic picture. Consequently, one could be
inclined to formulate two sufficient conditions, which
both have to be met in order for the bn to be bounded
by a constant. First, the Hamiltonian has to describe
a free model and, second, the observable has to be lo-
cal. For the observable at hand, which is non-local in
the fermionic picture, the second condition is violated.
Therefore, the Lanczos coefficients are not bounded by
a constant, rather they grow as a square-root.
As the Hamiltonian departs from the integrable/free
point once Bx ̸= 0, the bn grow faster [which is not
too surprising, since there are simply more terms in
the Hamiltonian]. From the computed data it is not
immediately obvious whether the growth becomes lin-
ear (with a logarithmic correction) or remains more or
less square-root-like. Possibly, the data for larger Bx in
Fig. 2 hints at an onset of linear growth for larger n.
However, the distinction is certainly not as clear as for
the local observables. Without previous knowledge of
which coefficients belong to which Bx, it would be quite
difficult to say if a set of bn belongs to an integrable/free
or non-integrable model [barring the absolute values].
Therefore, calculating the bn as a potential method to
determine or define (non-)integrability does not seem
feasible, since the number at which universal behavior

sets in may be larger than the practically computable
number of Lanczos coefficients. Again, the Bn are off
by a factor of about 2.
It is interesting to note that in the non-integrable mod-
els all considered observables seem to more or less lead
to similar growth patterns and attain similar values for
larger n. For comparison, Fig. 3 depicts the Lanczos
coefficients for all four observables considered thus far
for Bx = 0.5. This figure certainly supports the hy-
pothesis of a universality of operator growth brought
forth in Ref. [14]. Particularly striking is the relation
between the observable O(1) and the slow Fourier mode
O(2)
q=π/13, since for n ≳ 10 the coefficients practically co-

incide. Before leaving the Ising model and continuing
with the Heisenberg model, we want to briefly present
data on the 2d Ising model. As the 2d Ising model is
non-integrable, the hypothesis predicts a strict asymp-
totically linear growth [without logarithmic correction]
of the Lanczos coefficients bn. Respective Hamiltonians
of the two-dimensional Ising model are given by

H0 =
∑
ℓ,ℓ′

Jxxσ
x
ℓ,ℓ′σ

x
ℓ+1,ℓ′ + J ′

xxσ
x
ℓ,ℓ′σ

x
ℓ,ℓ′+1 +Bzσ

z
ℓ,ℓ′

H = H0 +Bx
∑
ℓ,ℓ′

σxℓ,ℓ′ , (20)

where primed indices number the vertical direction and
unprimed indices the horizontal direction. As in the
1d case, we set Jxx = 1.0, Bz = −1.05 and vary Bx.
The coupling strength in vertical direction is set to
J ′
xx = 0.5. This model in non-integrable for all values of
Bx. The energy scale is given by E = 3.9 [for Bx = 0.5].

0 4 8 12
0

5

10

15

20

0

20

40

60

80

Figure 4. Lanczos coefficients bn of the two-dimensional
transverse Ising model for an observable O = σx

0,0 for various
Bx. For all values of Bx the growth is nicely linear. Dashed
lines serve as a guide to eye for the coefficients Bn, which are
much larger (note the additional vertical axis on the right).
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We again consider a local observable whose support is
only on one site, i.e.,

O = σx0,0 . (21)

The calculated Lanczos coefficients bn are depicted in
Fig. 4. Since the space of operators grows extremely
fast, it is only practically possible to calculate about 13
coefficients. These coefficients grow in a nicely linear
fashion for all values of Bx, which is in accord with the
operator growth hypothesis. The coefficients Bn from
the derived upper bound on the moments are very far
off. So far off, in fact, that there is an additional ver-
tical axis for the coefficients Bn on the right side in
Fig. 4, which includes a factor of four. As mentioned,
the number Nsum is computed iteratively. For the two-
dimensional Ising model the operator space grows so
fast that the Bn are only attainable up to n = 5.
Summarizing the results from this section, the opera-
tor growth hypothesis is supported by [most of] the
numerical data. The Lanczos coefficients of the one-
dimensional non-integrable Ising models seem to even-
tually attain approximate linear growth for observables
that are local in the fermionic picture. In these cases,
the transition from free to non-integrable is clearly vis-
ible. A possible logarithmic correction is not directly
noticeable in the presented data. However, it is possi-
ble to reveal the predicted correction by rescaling the
axes appropriately [17]. Further, the data for the two-
dimensional Ising model supports the hypothesis for all
considered values of Bx. Only the data for the third
observable O(3) = σx0 remains somewhat inconclusive.
The transition is not as distinct as for the other observ-
ables, however, the onset of the hypothesized universal
behavior may be suspected for larger n. All these nu-
merical results support the in Ref. [14] proposed oper-
ator growth hypothesis in the sense that the bn grow
asymptotically linear. This is the first main result of
the paper at hand.
In Ref. [14], the operator growth hypothesis is sev-
eral times informally stated as: the Lanczos coefficients
should “grow as fast as possible” and therefore even-
tually attain said linear growth. In fact, the data pre-
sented in this section corroborates the notion of asymp-
totically linear growth. However, the Lanczos coeffi-
cients could, in principle, grow much faster, as indicated
by the coefficients Bn, which are not tightly achieved in
any of the considered models. Thus, we want to clarify
the “fastest possible growth” is not to be understood
with respect to the absolute numerical values of the co-
efficients, but rather in regard to the functional form of
their growth. Indeed, the coefficients bn seem to grow
with quite a similar functional form as the [much to
large] coefficients Bn, also cf. V. This is the second main
result of the paper at hand.

B. Heisenberg model

The second model of interest is a Heisenberg model with
an additional next-nearest-neighbor interaction. Re-
spective Hamiltonians are given by

H0 =
∑
ℓ

σxℓ σ
x
ℓ+1 + σyℓ σ

y
ℓ+1 +∆σzℓσ

z
ℓ+1 (22)

H = H0 +∆′
∑
ℓ,ℓ′

σzℓσ
z
ℓ+2 .

The anisotropy of the nearest-neighbor interaction is de-
noted by ∆ and the integrability-breaking next-nearest-
neighbor interaction is tuned by the parameter ∆′

[which plays the role of λ in Eq. (15)]. The bare Heisen-
berg chain [with ∆′ = 0] is integrable for any ∆.
The model is gapless and exhibits ballistic transport be-
havior [of spin and energy] for |∆| < 1, whereas for
|∆| > 1 the transport of spin is diffusive, while energy
transport is still ballistic [28]. In the following numer-
ics we cover both cases by choosing values ∆ = 0.5, 1.5.
The parameter ∆′ that breaks the integrability is varied
in the same fashion as Bx in the Ising model.
Note that the full Hamiltonian in Eq. (22) conserves the
total magnetization in z-direction. Therefore, it is nat-
ural to consider a spin density wave with momentum q,
i.e.,

Oq ∝
∑
ℓ

cos(qℓ)σzℓ . (23)

Similar as for the energy density wave in the Ising
model, we study a relatively slow dynamic with q =
π/13 [depicted in Figs. 5a, 5c for ∆ = 0.5, 1.5 respec-
tively] and a relatively fast dynamic with q = π [de-
picted in Figs. 5b, 5d for ∆ = 0.5, 1.5 respectively].
Since the Heisenberg Hamiltonian contains more cou-
pling terms than the Ising Hamiltonian, the dimension
of the operator space [with respect to the Pauli basis]
grows faster and we are restricted to a smaller number
of coefficients, only about 15.
Comparing the variance (relative deviations) of the
Lanczos coefficients for ∆ = 0.5 and ∆ = 1.5, it is
striking that the coefficients for ∆ = 1.5 vary much less
for different values of ∆′. This is most likely due to
the relative strength of the perturbation. Let ||H∆

0 ||
denote the norm of the unperturbed Hamiltonian with
anisotropy ∆ and ||λV|| the strength of the pertur-
bation [where λ conforms to ∆′]. Then, for exam-
ple ||0.5V||/||H1.5

0 || = 0.34, but ||0.5V||/||H0.5
0 || = 0.47

[for comparison, in the one-dimensional Ising model
||0.5V||/||H0|| = 0.28].
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FIG. 5. Lanczos coefficients bn of the Heisenberg model for spin density waves. Depicted are various combinations
of anisotropies and momenta: a) ∆ = 0.5, q = π/13; b) ∆ = 0.5, q = π; c) ∆ = 1.5, q = π/13; d) ∆ = 1.5, q = π.
The integrability-breaking parameter ∆′ attains values from 0.0 to 0.5. Dashed lines serve as a guide to the eye for
the coefficients Bn, which are much larger (note the additional vertical axes on the right).

Again, the stronger the perturbation, the faster the co-
efficients grow, which is simply due to additional terms
in the Hamiltonian [in order to not obscure the main
points, we refrain from rescaling the Hamiltonian ac-
cordingly]. Other than that, the growth is more irregu-
lar than in the Ising model, at least in the regime where
data is available. For both values of ∆ the transition oc-
curs between an integrable [∆′ = 0] and non-integrable
[∆′ ̸= 0] model. However, for ∆ = 0.5 there is neither
square-root-like growth in the integrable case nor lin-
ear growth in the non-integrable case visible [for both
modes with q = π/13 in Fig. 5a and q = π in Fig. 5b].
For ∆ = 1.5, ∆′ = 0.0 and q = π/13 the growth of the
coefficients is more similar to a square-root [see fit] and
only visibly deviates for n ≳ 12, see Fig. 5c. For the
faster mode with q = π the growth seems more linear
with relatively small deviations, see Fig. 5d.
The coefficients Bn are much larger than any of the bn
such that the additional vertical axes contain a factor of
five in all cases. The number of terms in the sum Nsum

grows quite a lot faster than in the Ising model due
to the next-nearest-neighbor interaction. These terms

must in principle be included as soon as ∆′ attains an
arbitrarily small value strictly greater than zero. This
leads to a somewhat gross overestimation, since the en-
ergy scale E remains basically unaltered for small ∆′.
This is visible in all figures for the Heisenberg model,
where the coefficients Bn for ∆′ = 0 are calculated with
the smaller numbers Nsum of nearest-neighbor interac-
tion. In principle, one could improve the upper bound
on the moments by introducing a second energy scale
Ennn of the next-nearest-neighbor interaction and count
terms according to the appearance of nearest-neighbor
terms ℓk,k+1 and next-nearest-neighbor terms ℓk,k+2.
This is, however, more complicated and not in the spirit
of the derivations presented in Refs. [14, 19].
Summarizing, the numerical data for all considered val-
ues of ∆ and q can neither really reject nor support
the operator growth hypothesis [not least because data
for larger n is not available]. The transitions between
integrable and non-integrable models are certainly less
striking than for the Ising model. Again, only looking
at the bn it would be impossible to say which coeffi-
cients belong to an integrable or non-integrable model.
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This possibly raises the question whether the distinc-
tion between integrability and non-integrability regard-
ing the growth of the bn is an adequate distinction to
make. As mentioned in Sec. II, the Lanczos coefficients
are uniquely determined by the autocorrelation function
C(t). The Heisenberg model for ∆ = 1.5 and ∆′ = 0 is
integrable and exhibits diffusive transport behavior [28],
which is usually attributed to chaotic, non-integrable
systems. In view of this, it may be not too surprising
that the operator growth hypothesis is not supported
by the [limited] numerical data presented in this sec-
tion. This is the third main result of the paper at hand.

V. CONCLUSION

The first main message of the paper at hand concerns
the explicitly calculated data on the Lanczos coeffi-
cients. We numerically probed the operator growth
hypothesis proposed in Ref. [14], which states that in
generic, non-integrable systems the Lanczos coefficients
grow asymptotically linear [with a logarithmic correc-
tion in 1d]. We explicitly calculated Lanczos coefficients
bn for various combinations of models [including 1d and
2d Ising models as well as ballistic and diffusive Heisen-
berg models] and observables [including energy and spin
density waves as well as local ones].
We found that the Ising model data generally supports
the operator growth hypothesis. In particular, as soon
as an integrability-breaking perturbation is added to the
Hamiltonian, the coefficients eventually attain a linear
growth [this transition is more pronounced in the case
of a free Hamiltonian with a local observable (in the
fermionic picture) than in the case of a free Hamiltonian
with a non-local observable (in the fermionic picture)].
Further, the 2d Ising model exhibits clear linear growth.
Inconclusive, however, remains the data for the Heisen-
berg model. For none of the combinations of considered
parameters there is a clear distinction between the in-
tegrable and non-integrable cases. Of course, it may be
possible that the hypothesized universal behavior only
sets in at some larger n, which is not accessible by our
numerical tools.
The second main message of the paper at hand concerns
the coefficients Bn, which are obtained by considering
the fastest growing moments and converting them into
Lanczos coefficients. The informal version of the opera-
tor growth hypothesis is stated several times in Ref. [14],
namely that “the Lanczos coefficients should grow as
fast as possible” and a corresponding bound on the mo-
ments leading to linear growth [with a logarithmic cor-
rection in one dimension] is given [26]. As seen in the
available numerical data, even the “optimized” bound in
Eq. (14) is not remotely tight and the “physical” Lanc-
zos coefficients bn increase much slower than the “fastest

possible growing” coefficients Bn in all considered mod-
els. Therefore, technically, the Lanczos coefficients do
not grow as fast as possible. Nevertheless, the physical
Lanczos coefficients bn seem to grow in a manner that is
compatible with the “functional form” of the maximal
growth, i.e., we observe more or less linear growth for
the Ising models, only with a flatter slope than would be
induced by the bound on the moments. Along this line
of thinking, there are arguments which suggest that the
coefficients Bn capture the correct asymptotic behavior,
only with a rescaled “effective” energy scale Ẽ that is
generally different from E [23]. Thus, treating E in Eq.
12 as a fitting parameter may give reasonable results.
This is, however, beyond the scope of this work and a
possible prospect for future research.
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Appendix A: Translating between bn and µ2n

For completeness, we briefly present the relation be-
tween the coefficients bn and the moments µ2n [29].
i. From moments to Lanczos coefficients:
To calculate the Lanczos coefficients bn from a given
set of moments µ2n we proceed as follows: we define
cn = µ2n/µ0 and compute determinants of certain ma-
trices constructed from the normalized moments cn, i.e.,

Bn = det(ci+j)0≤i,j≤n−1 (A1)

where n ≥ 2 and B0 = B1 = 1 as well as

Cn = det(ci+j+1)0≤i,j≤n−1 (A2)

where n ≥ 1 and C0 = 1. Then the Lanczos coefficients
are obtained as fractions of determinants via

b22n =
Bn+1Cn−1

BnCn
, b22n−1 =

Bn−1Cn
BnCn−1

. (A3)

ii. From Lanczos coefficients to moments:
We take the representation L of the Liouvillian L in the
Krylov subspace spanned by the vectors generated by
the Lanczos algorithm, cf. Eq. (3). The moments µ2n

can be easily read off as the upper-left element of even
powers 2n of the matrix L, i.e., µ2n = (L2n)00.
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Stability of Exponentially Damped Oscillations under Perturbations
of the Mori-Chain
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Department of Physics, University of Osnabrück, D-49076 Osnabrück, Germany

There is an abundance of evidence that some relaxation dynamics, e.g., exponential decays, are
much more common in nature than others. Recently, there have been attempts to trace this domi-
nance back to a certain stability of the prevalent dynamics versus generic Hamiltonian perturbations.
In the paper at hand, we tackle this stability issue from yet another angle, namely in the framework
of the recursion method. We investigate the behavior of various relaxation dynamics with respect
to alterations of the so-called Lanczos coefficients. All considered scenarios are set up in order to
comply with the “universal operator growth hypothesis”. Our numerical experiments suggest the
existence of stability in a larger class of relaxation dynamics consisting of exponentially damped
oscillations. Further, we propose a criterion to identify “pathological” perturbations that lead to
uncommon dynamics.

I. INTRODUCTION

The apparent emergence of irreversibility from the
underlying reversible theory of quantum mechanics is
a long-standing puzzle that lacks an entirely satisfying
answer to this day [1]. Over the course of the last
decades, fundamental concepts like the “eigenstate
thermalization hypothesis” [2–4] and “quantum typi-
cality” [5–7] have crystallized, which give conditions
under which isolated quantum systems eventually reach
an equilibrium state. However, while these mechanisms
ensure eventual equilibration, they make no statement
in which manner the equilibrium state is actually
reached, i.e., they do not narrow down the eligible
routes to equilibrium. In contrast, it is evidently
true that some relaxation dynamics, e.g., exponential
decays, are much more common in nature than others,
e.g., recurrence dynamics.
There are recent attempts to explain this prevalence
with the idea that some dynamics are stable versus
perturbations of the Hamiltonian. These attempts
include, for example, investigations based on Hamil-
tonian perturbations on the level of random matrices
[8]. Further, there exist advances that consider an
entire ensemble of permissible perturbations [9–11].
It is then analytically shown that weak “typical”
perturbations lead to an exponential damping of the
original dynamics [9]. This renders exponential decays
stable since only the decay constant changes, whereas
recurrence dynamics are exponentially suppressed.
With the paper at hand, we address the issue of
stability of certain [classes of] relaxation dynamics
in the framework of the recursion method [12, 13].

∗ rheveling@uos.de
† jiaowang@uos.de
‡ cbartsch@uos.de
§ jgemmer@uos.de

Central quantities that appear within this framework
are the so-called Lanczos coefficients, real numbers
that characterize the complexity growth of operators
over the course of time. As will be presented in
Sec. II, the Lanczos coefficients can be interpreted
as hopping amplitudes in a tight-binding model. In
this manner, many physical problems, like calculating
correlation functions, can practically be reduced to a
one-dimensional [finite or semi-infinite] chain, which we
refer to as the “Mori-chain” in the title of this paper.
In the following, we consider perturbations on the level
of Lanczos coefficients and examine the resulting effect
on various kinds of relaxation dynamics.
The particular advantage of our approach within the
recursion method framework is that all considered
scenarios can be set up to directly comply with the
universal operator growth hypothesis [14], which previ-
ous approaches have been lacking [8]. Said hypothesis
concerns the asymptotic growth of the Lanczos coeffi-
cients and it basically states that the coefficients should
eventually attain linear growth [with a logarithmic
correction in one dimension]. The hypothesis is backed
up by analytical as well as numerical evidence [14–16].
The paper at hand is structured as follows: Sec. II con-
stitutes a preliminary section on the recursion method
and the operator growth hypothesis. Afterwards, in
Sec. III, the concrete strategy to study the stability of
certain classes of dynamics is explained in detail. In
Sec. IV we present and discuss our numerical results.
We conclude in Sec. V.

II. PRELIMINARIES: RECURSION METHOD
AND OPERATOR GROWTH HYPOTHESIS

In this section, we briefly recall the basics of the recur-
sion method [12, 13] as well as the universal operator
growth hypothesis [14]. We consider a system described
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by some Hamiltonian H. An observable of interest rep-
resented by a Hermitian operator O gives rise to a cor-
responding autocorrelation function

C(t) = Tr[O(t)O] , (1)

where O(t) = eiHtOe−iHt is the time-dependent
operator in the Heisenberg picture (ℏ = 1). In the
following, it is convenient to work directly in Liouville
space, i.e., the Hilbert space of operators, and denote
its elements O as states |O). Elements of the Liouville
space evolve under the Liouvillian L = [H, · ], i.e.,
|O(t)) = eiLt|O), similar to wave functions that evolve
under the Hamiltonian H. Using the Liouvillian
superoperator, the autocorrelation function may be
written as C(t) = (O|eiLt|O). The Liouville space is
equipped with an infinite-temperature inner product

(O1|O2) = Tr[O†
1O2], which induces a norm via

||O|| =
√
(O|O).

In the following, the central object of interest is the
Liouvillian L represented in a particular basis {|On)},
the so-called Krylov basis. The Krylov basis is routinely
constructed as part of the Lanczos algorithm. In this
basis, which is determined by some “seed” observable
O, the representation of the Liouvillian is tridiagonal.
To initialize the algorithm, we take the normalized state
|O0) = |O), i.e., (O|O) = 1, and set b1 = ||LO0|| as
well as |O1) = L|O0)/b1. Then we iteratively compute

|Qn) = L|On−1)− bn−1|On−2) , (2)

bn = ||Qn|| ,
|On) = |Qn)/bn .

The tridiagonal representation of the Liouvillian in the
Krylov basis {|On)} is then given by

Lmn = (Om|L|On) =


0 b1 0 ...

b1 0 b2

0 b2 0
. . .

...
. . .

. . .


mn

, (3)

where the Lanczos coefficients bn are real, positive num-
bers output by the algorithm. For our purposes, it is
sufficient to assume a finite-dimensional space. Then,
the algorithm halts at step n = d + 1, where d is the
dimension of the Liouville space, and L is a d × d-
matrix. Rewriting the Heisenberg equation of motion
in the Krylov basis yields

∂tφn = −bn+1φn+1 + bnφn−1 , (4)

where we defined φn := i−n(On|O(t)). The initial
condition is given by φn(0) = δn0 and both φn and
bn are set to zero by convention when n is “out of
bounds”. The above Eq. (4) takes the form of a discrete
Schrödinger equation and can be numerically solved by
familiar means of, e.g., exact diagonalization or iterative
schemes like Runge-Kutta and Chebyshev polynomials.
As mentioned, the Lanczos coefficients bn can be inter-
preted as hopping amplitudes in a tight-binding model.
Then, the correlation function coincides with the ampli-
tude of the first site, i.e., C(t) = φ0(t).
For later reference, we introduce the spectral function
Φ(ω) as the Fourier transform of the correlation func-
tion, i.e.,

Φ(ω) =

∫ ∞

−∞
e−iωt C(t) dt . (5)

It can be shown that the Lanczos coefficients bn appear
in the continued fraction expansion of Φ(ω).

Φ(ω) = Re
2

iω +
b21

iω +
b22

iω + ...

(6)

Consequently, there exists a (non-linear) one-to-one
map between the Lanczos coefficients bn and the auto-
correlation function C(t). Thus, a set of bn’s uniquely
determines C(t) and vice versa.
Lastly, we present the universal operator growth hy-
pothesis as brought forth in Ref. [14]. The hypoth-
esis concerns the asymptotic behavior of the Lanczos
coefficients bn and basically states that in generic, non-
integrable systems the Lanczos coefficients of local, few-
body observables grow asymptotically linear, i.e., above
some n the growth is given by

bn ∼ αn+ γ + o(1) , (7)

where α > 0 and γ are real constants and o(gn) denotes
some real sequence fn with limn→∞ |fn/gn| = 0. In the
special case of a one-dimensional system, the asymptotic
growth is sub-linear due to an additional logarithmic
correction [14].
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III. PROBING FOR STABILITY

In this section, we devise our strategy to probe the sta-
bility of classes of dynamics with respect to certain types
of perturbations. This section consists of the following
parts: We present ways to find Lanczos coefficients cor-
responding to a chosen [class of] correlation functions
[Sec. III A]. Next, we present four physically motivated
requirements that the Lanczos coefficients should ful-
fill [Sec. III B]. Then, we discuss the particular type of
perturbations we consider [Sec. III C]. Finally, we intro-
duce quantifiers that allow to evaluate the stability of
the respective dynamics [Sec. IIID].

A. Dynamics and Lanczos coefficients

The preliminary section already touched on the rela-
tion between a correlation function C(t) and the cor-
responding Lanczos coefficients bn. As mentioned, this
correspondence is one-to-one, thus, a set of bn’s uniquely
determines C(t) and vice versa. However, the conver-
gence can be quite subtle, i.e., there may be fairly sim-
ilar dynamics with vastly different Lanczos coefficients.
On the other side, similar Lanczos coefficients may lead
to quite different dynamics.
In the numerical experiments below, we proceed as fol-
lows. First, we choose a correlation function C ′(t) whose
stability we want to probe. We may specify C ′(t) as a
concrete analytical function, or as a member of a class
of functions, e.g., exponential decays. The exact Lanc-
zos coefficients corresponding to C ′(t) are denoted by
b′n. These coefficients are, in general, unknown and ob-
taining them is quite a difficult task. Our objective
is to find Lanczos coefficients bn corresponding to a
correlation function C(t) that should be practically in-
distinguishable from C ′(t) for all intents and purposes
[C(t) ≃ C ′(t)]. These “approximate” coefficients bn
may be obtained in three different ways:
i. The exact coefficients b′n may be analytically known.
In this case bn = b′n as well as C(t) = C ′(t).
ii. The coefficients may be obtained via an educated
guess. In this case, the bn may be quite different from
b′n while still C(t) ≃ C ′(t).
iii. The coefficients may be “reverse-engineered” from
the correlation function C ′(t). For details see App. A.
In the following, we will omit the technical distinction
between C(t) and C ′(t), since we assume that Lanczos
coefficients can be found for which the two correlation
functions are practically indistinguishable.

B. Design of the Lanczos coefficients

In the following, we compare dynamics of correlation
functions CA(t) and CB(t) with respect to their stability
under a certain class of perturbations. Corresponding
sets of Lanczos coefficients bAn and bBn may be obtained
by one of the three methods mentioned in the last sec-
tion. We demand that these Lanczos coefficients satisfy
the following [partly physically motivated] requirements
sufficiently well:
i . The Lanczos coefficients bXn should reproduce the
respective correlation function CX(t) to an acceptable
accuracy, where X = A,B (this is sort of obvious and
has already been addressed above).
ii . The Lanczos coefficients bXn should comply with the
universal operator growth hypothesis, i.e., they should
eventually attain linear growth.
iii . The resulting correlation functions CA(t) and CB(t)
should decay on more or less the same time scale. This
is to ensure a fair comparison between the two, since
faster dynamics are typically less affected by perturba-
tions than slower ones.
iv . The Lanczos coefficients bAn and bBn should be sim-
ilar in magnitude. In particular, we demand that the
quantity

∑
n(b

X
n )2 is comparable for X = A,B. We

show in App. B that this sum is related to the spectral
variance of the Hamiltonian. Hence, this condition fos-
ters the notion that the two correlation functions CA(t)
and CB(t) originate from different observables while the
underlying Hamiltonians are quite similar. In practice,
a value of

q(bAn , b
B
n) =

∑
n(b

A
n )

2∑
n(b

B
n)

2
(8)

close to unity is desirable.

C. Design of the perturbations

The considered perturbations are designed on the level
of Lanczos coefficients. The coefficients bn correspond-
ing to some correlation function C(t) will be slightly
altered according to

b̃n = bn + λvn , (9)

where the perturbed coefficients are denoted by b̃n.
Here, λ is the perturbation strength and vn is specified
below. We show in App. C that this particular form
of the perturbation yields a sensible scaling of the per-
turbed Hamiltonian with λ.
In general, it is an intricate problem to determine how
a perturbation in the form of vn corresponds to a per-
turbation V on the level of Hermitian matrices. This is
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an issue that we do not attempt to tackle in this paper.
Here, we try to make as few assumptions as possible and
model the perturbation vn as random numbers [with the
only restriction of a minimal correlation length, see be-
low]. Concretely, we set

vn =

Nf∑
k=1

xk cos(2πnk/d) + yk sin(2πnk/d) , (10)

where the xk, yk are real, random numbers from a
Gaussian distribution with zero mean and unit vari-
ance. They are normalized as

∑
k x

2
k + y2k = 1.

The sum in Eq. (10) is capped at a number Nf. This
corresponds to excluding shorter wavelength or higher
frequencies, which induces a minimal correlation length
in the coefficients b̃n [reddish noise]. No truncation
at all, i.e., Nf = d, would be equivalent to adding
uncorrelated random numbers [white noise] to the
coefficients bn. This choice can be justified by invoking
the tight-binding model interpretation in which the
Lanczos coefficients represent hopping amplitudes
between neighboring sites. Simply altering the hopping
amplitudes in a random, uncorrelated manner leads
to localization effects similar to Anderson localization
[17]. Through unsystematic varying of Nf, we find that
the transition from delocalized to localized behavior is
quite sharp. Since the aim is to study the stability of
certain relaxation dynamics, we choose Nf as large as
possible, but small enough to avoid said localization
effects. In practice, this amounts to Nf ≈ d/3. In Sec.
IVC, we ease this restriction to identify “pathological”
perturbations.

D. Assessing stability

Once the perturbation has acted on the coefficients bn
and yielded the perturbed coefficients b̃n, we can calcu-
late the corresponding perturbed dynamics C̃(t) as laid
out in Sec. II. Now, some tools are needed in order to
judge how strongly the dynamics were altered by the
perturbation. In particular, it is important to assess to
what extent the perturbed dynamics still falls into the
original class of functions to which the unperturbed dy-
namics belonged. For example, we may ask if C̃(t) is still
exponential, given that the original dynamics C(t) was
exponential [the decay constants may differ]. To this
end, we attempt to fit the perturbed dynamics with a
function that also described the unperturbed dynamics,
e.g., we may try to fit C̃(t) with f(t) = Ae−µt. In prac-
tice, the fit is obtained via a standard fitting routine.
Before we introduce quantifiers that measure the effect
of the perturbation, some remarks on the fitting ansatz
are in order. Correlation functions are symmetric in

time, thus, all odd moments necessarily vanish. In par-
ticular, correlation functions have zero slope at t = 0.
Further, we normalize the correlation function to unity
at t = 0. However, for fitting we choose functions that
lack these features, i.e., the above exponential ansatz
may yield an A that slightly differs from unity. Further,
the slope of an exponential at t = 0 is never zero. This
“negligence” is due to the fact that we are more inter-
ested in an overall description of relaxation dynamics,
rather than in the details of the short-time behavior.
We assess the quality of a fit f(t) by calculating “how
far off” it is from the given perturbed dynamics. Con-
cretely, we define a measure of the “error” or “devia-
tion” ϵ by the expression

ϵ =

√√√√ 1

Neq

Neq∑
n=0

(C̃(tn)− f(tn))2 . (11)

Here, the respective functions are evaluated at available
points in time tn = nδt, where δt is the time step used
to solve the equation of motion. The upper bound Neq

corresponds to a time at which the dynamics in question
has seemingly equilibrated [18].
To get a feeling of which numerical value of ϵ constitutes
a good or bad fit, we refer to the exemplary numerical
data displayed in Figs. 3, 4, 8 and 9.
We introduce a second quantifier σ that measures how
strongly the unperturbed dynamics are altered due to
the perturbation in the first place.

σ =

√√√√ 1

Neq

Neq∑
n=0

(C̃(tn)− C(tn))2 . (12)

The construction of this quantity is similar to the
construction of the quantity ϵ that measures the fit
quality.

IV. NUMERICAL ANALYSIS

In this section, we apply the presented strategy to cer-
tain relaxation dynamics. In particular, we investigate
and compare the stability of two classes of dynamics.
The first class in question is the class of damped
oscillations, whose damping is due to an ordinary
exponential factor. This class also includes simple
exponential decays, which can be viewed as damped
oscillations with zero frequency. These dynamics are
ubiquitous in nature. For example, slow exponential
dynamics may commonly arise whenever a system
interacts weakly with an environment or whenever
long-wavelength Fourier components of spatial densities
of conserved quantities are considered. Further, expo-
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nentially damped oscillations are routinely observed as
short-wavelength components.
The possible choices for the second class of dynamics
are of course manifold. Since an exhaustive analysis is
impossible, we decide on a “Gaussianized” version of
the first class. This is supposed to mean that the class
includes Gaussian decays as well as oscillations damped
by Gaussian factors.
The restriction of the second class of course stifles any
aspiration of generality. Thus, the following results
should be viewed as mere numerical experiments that
corroborate the existence of stability in the first class.
Concretely, in Sec. IVA, we compare exponential and
Gaussian decay. In Sec. IVB, the comparison is be-
tween two damped oscillations, one with an exponential
damping factor and the other with a Gaussian damping
factor. Lastly, in Sec. IVC, we identify “pathological”
perturbations that destroy the considered dynamics.
Throughout the next sections, we set the dimension
of the Liouville space to d = 10000 and the frequency
cut-off to Nf = 3333 ≈ d/3. We repeat the strategy
N = 1000 times by drawing random numbers xk, yk
and present statistics for the quantifiers ϵ and σ.

A. Exponential vs. Gaussian decay

In the first round of our stability investigation, an expo-
nential decay competes against a Gaussian decay. Fol-
lowing the strategy laid out in the previous sections,
the first step is to find suitable Lanczos coefficients that
comply with the four conditions presented in Sec. III B.
We begin with the Gaussian decay. The Lanczos coeffi-
cients that exactly correspond to Gaussian decay of the

form C(t) = e−t
2/2 are analytically known [method one

in Sec. III A)], i.e., bn =
√
n [19]. Nevertheless, the sec-

ond condition, the compliance with the operator growth
hypothesis, needs to be satisfied. To this end, we choose
a cutoff-point n⋆ at which the coefficients are continued
in a linear fashion. This yields the following Lanczos
coefficients [“g” = “Gaussian”]

bgn =

{√
n , n ≤ n⋆

αn+ γ , n > n⋆ .
(13)

The parameters α and γ are determined by the require-
ment of a smooth transition from square-root growth to
linear growth, i.e., α = 1/(2

√
n⋆) and γ =

√
n⋆/2. The

change from square-root to linear growth for n > n⋆

does not strongly affect the “Gaussianity” of the cor-
relation dynamics [compare Fig. 2] such that condition
one remains fulfilled.
Next, coefficients for an (approximate) exponential de-
cay need to be found. As mentioned, a correlation func-

tion can never be truly exponential, since it necessarily
features zero slope at t = 0. Thus, we only require the
exponential decay to be present after a short Zeno-time,
which is usually exceedingly short compared to the re-
laxation time [20, 21]. We achieve an approximate ex-
ponential decay via an educated guess [method two in
Sec. III A]. Slow dynamics are characterized by a rel-
atively small first coefficient b1, followed by a jump to
a larger remainder of coefficients bn≥2. Thus, we make
the following ansatz for the coefficients [“e” = “expo-
nential”]

ben =

{
a , n = 1

αn+ γ , n ≥ 2 .
(14)

The parameter a is set to 1.2, a similar magnitude as
the first Gaussian coefficient bg1. The other parameters α
and γ are the same as in the Gaussian case. Thus, con-
dition two, i.e., compliance with the universal operator
growth hypothesis, is fulfilled. The Lanczos coefficients
as defined in Eq. (13) and Eq. (14) are depicted in Fig. 1.
Since both sets of coefficients coincide for n > n⋆, condi-
tion four is satisfied as the quantity q(bgn, b

e
n) = 0.999993

is sufficiently close to unity. The corresponding dynam-
ics are depicted in Fig. 2. The ansatz for the coefficients
ben in Eq. (14) indeed yields a nice exponential decay. A
fit of the form Ae−λt with A = 1.02 and λ = 0.24 cap-
tures the dynamics quite well. Thus, condition one is
sufficiently fulfilled for the exponential decay as well.
Further, we can extract from Fig. 2 that both dynamics
decay on more or less the same time scale. Therefore,
we also view condition three as satisfied. If any, the
Gaussian dynamics is faster and thus less prone to per-
turbations.

0 50 100 150 200 250
0

5

10

15

Figure 1. Lanczos coefficients corresponding to Gaussian
decay (red) and exponential decay (blue). The square-root
growth transitions to linear growth at n = n⋆.
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Figure 2. Unperturbed correlation functions C(t) calculated
from the respective Lanczos coefficients. Dashed curves indi-

cate an exponential fit (cyan) and an exact Gaussian e−t2/2

(black).

Now that we have checked all four conditions presented
in Sec. III B, we are ready to apply the perturbation as
laid out in Sec. III C. We set λ = 0.5. Three exemplary
perturbed dynamics with respective fits for the expo-
nential case are depicted in Fig. 3.
It is evident that the perturbed dynamics are still nicely
described by an exponential, only the decay constant
changes. For the Gaussian decay, three exemplary per-
turbed dynamics with respective fits are depicted in
Fig. 4. Two displayed perturbed Gaussian curves fea-
ture oscillations, which can not possibly be captured by
a Gaussian fit ansatz. The three depicted fits are much
worse than in the exponential case.
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5
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Figure 3. Three exemplary correlation functions originat-
ing from the perturbed exponential Lanczos coefficients b̃en.
Dashed, black lines indicate exponential fits. The quantifier
ϵ of all three dynamics is relatively close to the mean value,
see Fig. 5. Inset: corresponding perturbed Lanczos coeffi-
cients.
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Figure 4. Three exemplary correlation functions originat-
ing from the perturbed Gaussian Lanczos coefficients b̃gn.
Dashed, black lines indicate Gaussian fits. The quantifier
ϵ of all three dynamics is relatively close to the mean value,
see Fig. 5. Inset: corresponding perturbed Lanczos coeffi-
cients.

The impression from these six exemplary curves is con-
firmed in Fig. 5, which shows histograms of deviations ϵ
of the fits from the respective perturbed dynamics. The
symbol Ω denotes the number of values ϵ within a bin
of size 5 · 10−4. There is a clear division between the
exponential cases (blue) and the Gaussian cases (red).
The deviations ϵ of the exponential decays are much
smaller than those of the Gaussian decays. In partic-
ular, the mean value ϵ̄e = 0.002 (indicated by a blue,
dashed line) in the exponential case is about twenty
times smaller than in the Gaussian case ϵ̄g = 0.042. For
a visualization of this comparison see Fig. 3 and Fig. 4,
whose exemplary curves feature values of ϵ close to the
respective mean values.
We have to be aware that this apparent stability of the
exponential may be due to the possibility that exponen-
tial decays are generally less affected by our constructed
perturbation than the Gaussian decays. To check this
possibility and to show that this is not the case, we
consider the quantifier σ, which measures the difference
between the perturbed and the unperturbed dynamics.
The inset of Fig. 5 depicts a scatter plot of all 1000
pairs (σi, ϵi). If one decay would be consistently less
affected than the other, a cluster of points to the left
[small values of σ] would emerge. This is evidently not
the case, as the distribution along the horizontal axis is
relatively similar for both decays. The existence of the
diagonal edge is expected, since there can be no fit that
is “farther away” from the perturbed dynamics than the
unperturbed dynamics itself, which is, of course, also an
eligible candidate for fitting.
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Figure 5. Histogram of the fit quality measure ϵ with a
bin size of 5 · 10−4. Dashed lines indicate respective mean
values. The stability of the exponential decay is evident. In
contrast, the Gaussian decay does not seem to be stable, as
the deviations ϵ become quite large. Inset: scatter plot of
all points (σi, ϵi). Both dynamics are equally affected by the
perturbation.

Thus, we conclude that exponential decays is indeed
stable with respect to perturbations [as in Eq. (10)]. In
contrast, Gaussian decays seem to be quite unstable.
This is the first main result of the paper at hand.

B. Damped oscillations: exponential vs. Gaussian

In the second round, we investigate and compare two
types of damped oscillations, one with an exponential
damping factor, the other with a Gaussian damping fac-
tor. As in the last section, first, two sets of Lanczos
coefficients need to be found that satisfy all four condi-
tions imposed in Sec. III B.
We again begin with the Gaussian case. The coefficients
bgdon [“gdo” = “Gaussian damped oscillation”] that cor-
respond to an oscillation damped by a Gaussian factor
a neither analytically known, nor can we make an edu-
cated guess. This only leaves the third method, in which
we “reverse-engineer” the coefficients from the dynam-
ics itself. To this end, we choose a particular correlation

function C(t) = e−t
2/8 cos(2t) and proceed as detailed

in App. A. This procedure allows us to obtain about
50 Lanczos coefficients. After that, the coefficients are
continued “by hand” in a manner that first, respects the
pattern exhibited by the coefficients so far, and second,
eventually becomes linear.
For the exponentially damped oscillation we can again
make an educated guess [method two] for the coefficients
bedon [“edo” = “exponentially damped oscillation”].
We set the first two coefficients b1, b2 to some values
(b1 = 2.0, b2 = 1.6), followed by a jump to larger coef-

0 20 40 60 80 100
0

2

4

6

8

Figure 6. Lanczos coefficients corresponding to an oscillation
damped by a Gaussian (red) and an oscillation damped by
an exponential (blue).

ficients bn≥3, which then grow in a linear fashion. The
slope is determined by and coincides with the slope in
the Gaussian case.
The unperturbed Lanczos coefficients and correspond-
ing correlation functions are depicted in Fig. 6 and
Fig. 7, respectively. The “reverse-engineered and con-
tinued by hand” coefficients bgdon indeed reproduce the

given correlation function C(t) = e−t
2/8 cos(2t). Fur-

ther, the guess for bedon yields a nice exponentially
damped curve, i.e., the fit ansatz with [A = 1.04,
µ = 0.57, ω = 2.19, ϕ = −0.32] nicely captures the dy-
namics. Therefore, condition one is satisfied for both
cases. The two sets of coefficients were designed to
eventually attain linear growth, thus condition two is

0 5 10 15

0.0

0.5

-0.5

1.0

Figure 7. Unperturbed correlation functions C(t) calculated
from the respective Lanczos coefficients. Dashed curves indi-
cate a fit of an exponentially damped oscillation (cyan) and

the oscillation damped by a Gaussian e−t2/8 cos(2t) (black).
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Figure 8. Three exemplary correlation functions originating
from the perturbed Lanczos coefficients b̃edon . Dashed, black
lines indicate 4-parametric fits of exponentially damped os-
cillations. The quantifier ϵ of all three dynamics is relatively
close to the mean value, see Fig. 10. The perturbation not
only changes the decay constant, but also the frequency. In-
set: corresponding perturbed Lanczos coefficients.

fulfilled. It is evident from Fig. 7 that both dynamics
decay on similar time scales, rendering condition three
satisfied. Lastly, the quantity q(bgdon , bedon ) practically
equals unity. Thus, all four conditions are met.
Next, we switch on the perturbation and set
λ = 0.1. Exemplary perturbed dynamics are dis-
played in Fig. 8 and Fig. 9, respectively. The per-
turbed dynamics are fitted with the 4-parametric
ansatz C(t) = Ae−µt cos(ωt− ϕ) in the exponential and

C(t) = Ae−µt
2

cos(ωt− ϕ) in the Gaussian case.

0 5 10 15

0.0

0.5

-0.5

1.0

0 10 20 30 40 50
0
1
2
3
4
5

Figure 9. Three exemplary correlation functions originating
from the perturbed Lanczos coefficients b̃gdon . Dashed, black
lines indicate 4-parametric fits of oscillations damped by a
Gaussian. The quantifier ϵ of all three dynamics is relatively
close to the mean value, see Fig. 10. Inset: corresponding
perturbed Lanczos coefficients.
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Figure 10. Histogram of the fit quality measure ϵ with a bin
size of 5 · 10−4. Dashed lines indicate respective mean val-
ues. The stability of the exponentially damped oscillations
is evident. In contrast, the Gaussian counterpart does not
seem to be stable, as the deviations ϵ become quite large.
Inset: scatter plot of all points (σi, ϵi). Both dynamics are
more or less equally affected by the perturbation.

While the perturbed coefficients in the exponential case
still lead to correlation functions that are within the
class of exponentially damped oscillations [with differ-
ent decay constants µ and frequencies ω], the same can
not be said for the Gaussian case, where the perturbed
dynamics decay too slowly and can not by captured by
the fit ansatz above.
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Figure 11. Three exemplary dynamics originating from per-
turbed Lanczos coefficients b̃en. The perturbation consists
of uncorrelated random numbers, i.e., Nf = d in Eq. (10).
The exponential decay is completely destroyed and the cor-
relation function does not seem to equilibrate at all. Inset:
corresponding perturbed Lanczos coefficients.
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The impression from the six exemplary curves is con-
firmed in Fig. 10, which displays histograms of the quan-
tifier ϵ. Again, the division into two distinct peaks is
evident. The respective mean values ϵgdo = 0.026 and
ϵedo = 0.006 are indicated as dashed, vertical lines and
differ by a factor of about five. For a visualization of
what these values mean for the fit quality, see Fig. 8
and Fig. 9, whose curves feature values of ϵ close to
the respective mean values. Thus, we conclude that the
exponentially damped dynamics are quite stable and,
in particular, more stable than the oscillations damped
by a Gaussian. The disparity between the two is not as
strong as for the decays in the previous section [however,
different values of λ may not be directly comparable.]
The inset of Fig. 10 again shows a scatter plot of all
points (σi, ϵi). The blue cluster of dots is a little more
concentrated to small values of σ, indicating that the ex-
ponentially damped oscillations are a little less altered
by the perturbation than their Gaussian counterpart.
However, the marginal distribution over σ is still less
partitioned into two peaks than the one over ϵ [which
is the data in the histogram itself]. Hence, the stability
of exponentially damped oscillations is still due to the
nature of the dynamics and not due to a smaller effect
of the perturbation on the dynamics.
We conclude that exponentially damped oscillations are
stable with respect to perturbations [as in Eq. (10)]. In
contrast, oscillations damped by a Gaussian seem to be
quite unstable. This is the second main result of the
paper at hand.
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Figure 12. Histogram of the fit quality measure ϵ with a
bin size of 5 · 10−3. Dashed lines indicate respective mean
values. For both oscillating cases the deviations ϵ are quite
large. Thus, both relaxation dynamics are unstable with
respect to the perturbation including all wave lengths. Inset:
scatter plot of all points (σi, ϵi). Points accumulate along
the diagonal edge indicating that the respective dynamics
are heavily altered due to the perturbation.

C. Pathological perturbations

In this section, we lift the restriction imposed on the vn
earlier, which was that frequencies were cut atNf ≈ d/3.
Instead, we include all frequencies in the construction
of the perturbation, which amounts to setting Nf = d.
This case simply corresponds to adding uncorrelated
random numbers to the unperturbed coefficients bn.
Otherwise, the strategy is pursued in the same man-
ner as above.
Three exemplary dynamics for exponential decays are
depicted in Fig. 11 [for conciseness, we refrain from
showing more exemplary data for the other cases]. As is
evident, the exponential decay is completely absent and
replaced by quite irregular dynamics, which do not seem
to reach an equilibrium [Neq is set as large as possible
[18] in these cases]. These curves hint at the presence of
localization effects, which prevent the “particle” [in the
tight-binding picture] to leave the first site.
A histogram of the Gaussian vs. exponential data can
be viewed in Fig. 12. The mean values read ϵ̄g = 0.15
in the Gaussian case and ϵ̄e = 0.12 in the exponential
case, which is some orders of magnitude larger than be-
fore when shorter wavelengths were excluded. Further,
the accumulation of points along the diagonal in the
inset suggests that the curves no longer resemble their
original form, which is expected judging from Fig. 11.
The histogram for the oscillating cases is displayed in
Fig. 13. The mean deviations read ϵ̄gdo = 0.035 and
ϵ̄edo = 0.025. These values are comparable to the Gaus-
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Figure 13. Histogram of the fit quality measure ϵ with a bin
size of 5·10−4. Dashed lines indicate respective mean values.
For both the exponential and the Gaussian case the devia-
tions ϵ are extremely large. Thus, both relaxation dynamics
are unstable with respect to the perturbation including all
wave lengths. Inset: scatter plot of all points (σi, ϵi). Points
accumulate along the diagonal edge indicating that the re-
spective dynamics are heavily altered due to the perturba-
tion.
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sian case in Fig. 10. However, since the quantifier ϵ
measures more or less the deviation “per time step”, the
comparison of values ϵ̄ between dynamics that do and
do not equilibrate can be void of meaning. In practice,
judging from all figures displaying exemplary curves, a
value ϵ of about one percent corresponds to fits that
“look good to the eye”.
Based on these observations, we specify a property of
perturbations that lead to non-generic or pathologi-
cal dynamics. Namely, a perturbation is “untypical”,
if it gives rise to Lanczos coefficients that vary non-
smoothly, i.e., there is no minimal correlation length
within the coefficients. Again, what this means on the
level of Hermitian matrices is difficult to assess and be-
yond the scope of this work. This is the third main
result of the paper at hand.

V. CONCLUSION

In this paper, we performed numerical experiments
to probe the stability of two classes of relaxation
dynamics. The first class consisted of exponentially
damped oscillations, which also includes exponential
decays. The second class was chosen as a Gaussian
counterpart to the first class, i.e., including Gaussian
decays and oscillations damped by a Gaussian.
The whole strategy was formulated in the framework of
the recursion method, in particular, the perturbations
were constructed as an alteration of the Lanczos coef-
ficients. Unperturbed coefficients bn and perturbation
vn were chosen to satisfy certain physically motivated
conditions.
The first main message of the paper at hand is that
the exponential class of dynamics is relatively stable
under the considered perturbations. In contrast, the
Gaussian counterpart is found to be quite unstable.
These findings confirm and extent upon previous results
based on random matrices [8], which did not comply
with the operator growth hypothesis.
We want to emphasize that within this work the main
focus should be put on the stability of the former
class of relaxation dynamics, as these are ubiquitous in
nature, examples are given at the beginning of Sec. IV.
The investigation of the latter class should just be
taken as an exemplary comparison. In fact, the choice
of a Gaussian counterpart to the first class is quite
arbitrary. Any number of relaxation dynamics could
have been investigated instead.
The second main message of the paper at hand concerns
the nature of the perturbations themselves. Not only,
but also in the context of the works on “typicality of
perturbations” [9–11], it could be interesting to find
properties of perturbations that lead to non-generic,
“pathological” dynamics. Here, we identified such a
criterion, namely that the perturbation should yield

Lanczos coefficients whose minimal correlation length
is still above some threshold value.
As is evident from Fig. 11, including short correlations
seems to lead to unorthodox dynamics. The displayed
curves do not seem to reach an equilibrium, at least on
the available time scale. Rather, localization-like effects
are introduced, which cause some part of the wave
function to remain on the first site. On the other hand,
sufficiently smooth coefficients alter the relaxation
dynamics in a “controlled yet non-trivial” manner.
Perturbations in various numerical investigations based
in random matrices [8, 9] as well as spin lattice models
[22, 23] seem to naturally possess the above specified
property. Hence, a more systematic investigation on
the existence of a minimal correlation length in the
coefficients for realistic setups could be a possible
prospect for future research.
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Appendix A: Reverse-engineering bn from C(t)

In this section, we present the procedure to reverse-
engineer the Lanczos coefficients bn from a given cor-
relation function C(t). The idea is to employ the Lanc-
zos algorithm from Sec. II, but on the level of spectral
functions Φ(ω) rather than on the level of observables
|O). The inner product of operators turns into an inner
product of functions, i.e.,

(Φ1|Φ2) =

∫
Φ⋆1(ω)Φ2(ω) dω . (A1)

Further, the application of the Liouvillian L to an oper-
ator O corresponds to a multiplication of the respective
function in Fourier space with −ω [since the commuta-
tor with H corresponds to a time derivative, which is
equivalent to a multiplication with iω in Fourier space],

L|O) → −ωΦ(ω) . (A2)

In practice, we choose a specific correlation function
C(t) and calculate its Fourier transform Φ(ω). The ini-

tial “seed” function is set to the (normalized)
√

Φ(ω).
Then, the Lanczos algorithm operates as laid out in
Sec. II. In this manner, about 50 coefficients can be
obtained before numerical instabilities become too pro-
nounced.
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Appendix B: Link to spectral width

The eigenvalue equation for the Hamiltonian reads
H|Ei⟩ = Ei|Ei⟩, where Ei and |Ei⟩ denote eigenvalues
and eigenstates, respectively. The corresponding eigen-
value equation for the Liouvillian superoperator is given
by LMβ = EβMβ with eigenvalues Eβ(i,j) = Ei − Ej
and eigenoperators Mβ(i,j) = |Ei⟩⟨Ej |. Without loss of
generality, we can set Tr[H] =

∑
iEi = 0. Further, we

denote the dimension of the Hilbert space by dH, i.e.,
d2
H = d. Then we have∑

n

b2n =
1

2
Tr[L2] =

1

2

∑
i,j

(Ei − Ej)
2 (B1)

=
1

2

∑
i,j

(E2
i − 2EiEj + E2

j )

=
dH
2

(∑
i

E2
i +

∑
j

E2
j

)
= dHTr[H2]

Thus, we see that the quantity in question is indeed
linked to the spectral width of the Hamiltonian.

Appendix C: Scaling with perturbation strength

Consider a Hamiltonian H = H0 + λV consisting of
an unperturbed part H0 and a perturbation λV with
Tr[H0V] = 0. For the spectral variance of H it holds
true that

Tr[H2] = Tr[H2
0] + λ2Tr[V2] . (C1)

On the other hand, with the particular choice of pertur-
bation in Eq. (9), we get that∑

n

b̃2n =
∑
n

(bn + λvn)
2 (C2)

=
∑
n

(b2n + 2λbnvn + λ2v2n)

≈
∑
n

b2n + λ2
∑
n

v2n .

The term 2λbnvn is negligible due to the specific choice
of vn. Recalling the relation in Eq. (B1), we see from
Eq. (C2) that the scaling in Eq. (9) reproduces the scal-
ing in Eq. (C1) and is therefore appropriate.
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