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A B S T R A C T

Grasslands cover 40% of the earth’s land area and provide numerous valuable ecosys-
tem services. However, climate change, global land use change and increasing inten-
sive anthropogenic interventions make grasslands to one of the most endangered
ecosystem types in the world. Effective protection in the future requires a funda-
mental understanding of the dynamics of grasslands and their major drivers. Field
experiments have been conducted for impact analyses, for example, with different
management intensities, plant community composition and altered climatic conditions.
Complementary, ecological models allow to extend the analysis to long-term effects of
changes as well as to a deeper understanding of the underlying ecological processes.
In this thesis, an individual-based grassland model and network science were applied
to understand the community structure and dynamics emerging from individual
plant interactions – in relation to plant traits, ecological processes, environmental and
anthropogenic impacts, and the small-scale spatial distribution of plants.

In the first study, an individual-based process-oriented grassland model was param-
eterized to simulate field data of a local biodiversity experiment using the concept
of plant functional types. The influence of various functional plant traits and ecologi-
cal processes on grassland productivity and functional composition were analyzed.
Different functional plant traits showed partly contrasting effects on plant growth.
With regard to the modeled ecological processes, competition for space between plants
affected grassland productivity more than shading of plants.

In the second study, the parameterized grassland model was used to analyze the
impact of functional diversity, mowing frequency and air temperature on ecological
processes that lead to changes in grassland productivity. The model reproduced the
increase of biomass yields with functional diversity as observed in the field experiment.
Modeled plant competition for space showed to be the dominant process and was
responsible for an increase in biomass yields in more frequently mown grasslands.

In the third study, an approach to generate a regionally transferable parameterization
of the grassland model is presented. The impact of management, environment and
climate change on productivity and functional composition of grasslands was analyzed
within a German-wide scenario analysis. Management intensity had more influence
on grassland productivity than environmental factors and correlations of productivity
with environmental factors become stronger in less managed grasslands. Climate
change showed to have only a minor influence on simulated vegetation attributes.

In the fourth study, network science was applied to forest megaplots to quantify the
spatial neighborhood structure of species-rich ecosystems. Networks at the individual-
tree and tree-species levels revealed similar structures at three investigated forest
sites. Tropical tree species coexisted in small-scale networks and only up to 51% of all
possible connections between species pairs were realized. A null community analysis
showed that details on the tree position and tree size have no major influence on the
network structures identified.

In summary, this thesis presents the development of advanced methods and analysis
tools as well as their application to vegetation ecosystems with high diversity. Thereby,
complex structures and dynamics of ecological systems could be systematically ex-
plored by combining ecological models with extensive field measurements.
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Z U S A M M E N FA S S U N G

Grünland umfasst etwa 40% der Erdfläche und liefert zahlreiche wichtige Ökosystem-
leistungen. Klimawandel, globale Landnutzungsänderungen und eine zunehmend
intensive Bewirtschaftung machen Grünland jedoch zu einem der am stärksten ge-
fährdeten Ökosystemtypen der Welt. Zum wirksamen Schutz von Grünlandschaften,
auch in Zukunft, ist ein grundlegendes Verständnis der Dynamik von Grünland und
seiner Einflussfaktoren erforderlich. Feldexperimente untersuchen wie verschiedene
Faktoren das Ökosystem beeinflussen (z.B. die Bewirtschaftungsintensität, die Zu-
sammensetzung der Pflanzengemeinschaft oder veränderte klimatische Bedingungen).
Ergänzend dazu ermöglichen ökologische Modelle auch langfristige Auswirkungen
solcher Einflussfaktoren zu analysieren sowie ein tiefgehendes Verständnis der zu-
grunde liegenden ökologischen Prozesse zu erhalten. In dieser Arbeit wurde ein
individuenbasiertes Grünlandmodell und Netzwerktheorie eingesetzt, um zu verste-
hen, wie Interaktionen zwischen einzelnen Pflanzen auf die Struktur und Dynamik
von artenreichen Pflanzengemeinschaften wirken - bezüglich Pflanzenmerkmalen,
ökologischen Prozessen, Umweltbedingungen und anthropogenen Einflüssen sowie
der räumlichen Anordnung einzelner Pflanzen.

In der ersten Studie wurde ein individuenbasiertes, prozessorientiertes Grünland-
modell anhand von Felddaten eines lokalen Biodiversitätsexperiment parametrisiert
und der Einfluss funktionaler Pflanzenmerkmale und ökologischer Prozesse auf das
Grünland analysiert. Verschiedene Pflanzenmerkmale zeigten teilweise gegensätzliche
Auswirkungen auf das Pflanzenwachstum. Raumkonkurrenz zwischen Pflanzen be-
einflusste die Produktivität des Grünlands stärker als Beschattung von Pflanzen. In
der zweiten Studie wurde das parametrisierte Grünlandmodell verwendet, um den
Einfluss von funktioneller Diversität, Mahdhäufigkeit und Lufttemperatur auf öko-
logische Prozesse zu analysieren. Das Modell reproduzierte den im Feldexperiment
beobachteten Anstieg der Biomasseerträge mit steigender funktioneller Diversität. Die
Raumkonkurrenz zwischen Pflanzen zeigte sich als dominanter Prozess im Modell. Sie
bewirkte einen Anstieg der simulierten Biomasseerträge mit erhöhter Mahdhäufigkeit.
In der dritten Studie wurde eine regional übertragbare Parametrisierung des Grün-
landmodells entwickelt. Anhand einer deutschlandweiten Szenarioanalyse wurde der
Einfluss von Bewirtschaftung, Umweltfaktoren und Klimawandel auf das Grünland
untersucht. Die Bewirtschaftungsintensität beeinflusste die Produktivität stärker als
Umweltfaktoren. Klimawandel bewirkte nur kleine Veränderungen im Grünland.
In der vierten Studie wurde Netzwerktheorie auf großflächige Waldinventuren von
Megaplots angewandt, um räumliche Nachbarschaftsstrukturen von artenreichen
Ökosystemen zu quantifizieren. Netzwerke auf Einzelbaum- und Baumarten-Ebene
zeigten an drei untersuchten Waldstandorten ähnliche Strukturen. Tropische Baumar-
ten koexistierten in Small-World-Netzwerken mit nur bis zu 51% aller möglichen
paarweisen Verbindungen.

Zusammenfassend wurden in dieser Arbeit weiterentwickelte Methoden und Ana-
lysewerkzeuge sowie deren Anwendung auf Vegetationsökosysteme mit hohem Ar-
tenreichtum vorgestellt. Die Kombination ökologischer Modelle mit umfangreichen
Feldmessungen erlaubte dabei eine systematische Analyse der komplexen Strukturen
und Dynamik ökologischer Systeme.
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I N T R O D U C T I O N
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introduction

1.1 grassland and its relevance

1.1.1 Definition, classification and distribution of grasslands

Grassland covers 40% of the earth’s land surface (corresponding to 52.5 million
km2) and occurs on each continent, most commonly in semi-arid zones (White,
Murray, et al., 2000, Sala, Vivanco, et al., 2013). Its natural emergence is mainly
determined by climate (mean annual temperature between 0 °C and 25 °C and annual
precipitation between 150 and 1200 mm (Whittaker, 1975)), but also other factors
such as disturbances by fire, the soil texture and the seasonality of precipitation
can determine the occurrence and regional distribution of grasslands (Sala, Vivanco,
et al., 2013). There exists a wide spectrum of grassland definitions (Dixon et al., 2014).
One common definition describes grasslands as “terrestrial ecosystems dominated by
herbaceous and shrub vegetation and maintained by fire, grazing, drought and/or
freezing temperatures” (White, Murray, et al., 2000). Another definition for grassland
by the UNESCO describes it as “land covered with herbaceous plants with less than
10 percent tree and shrub cover” (White, 1983). Grasslands are typically classified into
two main types: temperate grasslands and savannas. Savannas are defined as “closed
grass or other predominantly herbaceous vegetation with scattered or widely spaced
woody plants” (Fosberg, 1961). They occur mainly in tropical and subtropical regions
and are subject to rainfall variations from year to year and wildfires in the dry season.
Temperate grasslands, covering up to 10% of the earth’s land surface (13 million
km2) (White, Murray, et al., 2000, Dixon et al., 2014), in contrast to savannas, occur
in temperate regions, are almost treeless, and exposed to seasonal climate variations
(Choler, 2015).

In Europe, grassland covers about 8% of the total European land surface (corre-
sponding to 2.5 million km2) (Fig. 1.1) (Smit et al., 2008, FAOSTAT, 2019). The climatic
conditions where grassland occurs range from semi-arid conditions in south-east
Spain to humid conditions prevailing in north and north-west of Europe (Silva et al.,
2008). The majority is temperate grassland, that can be further distinguished into
natural, “semi-natural” and agriculturally improved grasslands (Bengtsson, Bullock et
al. 2019). Natural grasslands mainly emerge by natural processes related to climate,
fire and wildlife grazing without any anthropogenic influences (Bengtsson et al., 2019).
Semi-natural grasslands are created and maintained depending upon human activities
(e.g., livestock grazing or mowing) but their plant species pool and environmental
conditions are given by nature (Silva et al., 2008). Thus, natural and semi-natural
grasslands emerge from site-specific biotic and abiotic conditions and are composed
of regional species pools (Dixon et al., 2014). Agriculturally improved grasslands are
primarily built by humans via sowing agricultural varieties or non-native plant species
and are usually intensively managed for agricultural reasons such as the production
of hay or silage (Bengtsson et al., 2019).

In Germany, 47,500 km2 is covered by permanent grassland (grassland that persists
for at least five years (EU, 2013)), which corresponds to almost 30% of the total
agricultural area and can be found in each federal state (FAOSTAT, 2019, Griffiths
et al., 2020). Most grassland area can be found in Bavaria, Lower Saxony and Baden-
Wuerttemberg (DESTATIS, 2020). Of this area, 40% is meadow (used for cutting), 55%
is pasture (used for grazing and cutting), and less than 5% is low-yielding permanent
grassland (not used for agriculture, e.g., nature conservation areas, areas in sparse
forests or grassland areas with fruit trees) (DESTATIS, 2020).
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Figure 1.1: Grasslands in Europe. Green areas in the land cover map correspond to grassland.
The map is based on LUCAS (Land Use/Cover Area frame Survey) and Landsat-8
data of 2015 from Pflugmacher et al. (2018). Pictures show common grasslands in
Scotland (top left), Spain (bottom left) and Germany (top right) (©Melanie Schmid).

1.1.2 Biodiversity in grasslands

Biodiversity describes the variety of living organisms within an ecosystem (Assess-
ment, 2005) and can be assessed on different scales (i.e., genetic, population/species
and community/ecosystem scale) (Redford and Richter, 1999). In grassland research,
often the species scale is considered, as species diversity has shown to highly impact
grassland dynamics and functioning such as stability. Species diversity can be distin-
guished into species richness, species composition and species abundance. Thereby,
species richness corresponds to the number of species that can be found within the
ecosystem, while species composition expresses the identity of the species present
in the community. Species abundance corresponds to the relative representation of
species in the ecosystem and can be measured by the number of individuals or pro-
portional aboveground biomass per species. Additionally, a common approach in
grassland research is to group plants with similar functional traits into plant functional
types (Dyer et al., 2001, Schellberg and Pontes, 2012). Based on this approach, the
functional richness, functional composition and the abundance of plant functional
types in the grassland community can also be considered.

In semi-natural grasslands, up to 89 indigenous plant species per m² can be found
(Heinz et al., 2020). This high species richness is comparable to tropical forests and
thus gives semi-natural grasslands a high nature conservation value (Heinz et al.,
2020). In temperate Europe, species diversity of grasslands evolved continuously over
millions of years by speciation, extinction and migration of species from other biomes
(Pärtel et al., 2005, Hejcman, Hejcmanová, et al., 2013). At smaller spatial scales, plant
diversity in grasslands is often constrained by the regional plant species pool, which is
a set of survivable species created through evolutionary processes (Pärtel et al., 2005).

Grasslands harbor not only numerous plant species, but also the survival of many
animals depends directly or indirectly on the persistence of grassland areas. In
Germany, 70 to 80% of more than 45,000 animal species, especially insects (Nickel,
2003) and butterflies (Swaay et al., 2006), inhabit such open biotopes like grasslands
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(Gerowitt et al., 2013). Biodiversity in grasslands, among plants and other trophic
levels, influences various other ecosystem functions and services directly and indirectly,
which makes it an important topic in scientific research and for society (Turnbull et al.,
2016).

1.1.3 Grassland management

The persistence of the vast majority of grasslands in Europe depends on anthropogenic
management. Grassland management encompasses either mowing on meadows,
grazing on pastures or a combination of both, with different intensities regarding
frequency, mowing technique as well as stocking rate and duration. Fertilizer can
be applied to offer enough nutrients for the plants (e.g., nitrogen and phosphorus).
Cutting off plants through livestock grazing, regular mowing or a combination of both
prevents afforestation and hence controls the successional change of the ecosystem
(Isselstein et al., 2005, Pärtel et al., 2005). Further, regular low-intensity cutting is
required to promote biodiversity in grasslands as light availability increases and
nutrients are depleted (Oelmann et al., 2009). This offers plant species that are adapted,
for example, to low nutrient levels and high light availability, to coexist with more
competitive plant species that would otherwise dominate the grassland community
(Knop et al., 2006).

There exists huge variation in management regimes depending, for example, on
environmental conditions. Extensive management means little anthropogenic impact
on natural grassland dynamics by mowing events (one to two events per year) and
fertilization (no fertilizer or only moderate amounts) (BfN, 2014). This management
is often conducted in areas with undesirable conditions such as low soil fertility
(Pywell et al., 2002). In contrast, intensive management comprises up to eight mowing
events per year and the application of larger amounts of fertilizer (Tallowin and
Jefferson, 1999). In extensively managed grasslands a high biodiversity can generally
be found, whereas intensive management often leads to the dominance of only a few
plant species and less animal species (Marriott et al., 2004, D’Aniello et al., 2011). In
addition, the cutting height can also influence the provided ecosystem services of
grasslands (Zhang et al., 2015). Overall, management can strongly affect ecosystem
functions and services in grasslands. Management intensification can lead to desired
changes (e.g., higher yields) but often at the cost of other important ecosystem services
(Taube et al., 2014, Sollenberger et al., 2019).

1.1.4 Goods and services provided by grasslands

Semi-natural grasslands belong to one of the most important ecosystems, as they
provide various other ecosystem services besides the conservation of biodiversity. An-
thropogenic management and biodiversity itself thereby affect the provided ecosystem
services of grasslands.

1.1.4.1 Sequestration and storage of carbon

Grasslands store about 34% of the global carbon stock in terrestrial ecosystems, which
is only 5% less than the amount that forests store (Silva et al., 2008, Ghosh and
Mahanta, 2014). Thereby, the soil of grasslands constitutes the dominant carbon stock.
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Plants sequester carbon dioxide (CO2) via photosynthesis from the atmosphere. Of
this captured carbon, parts are released again to the atmosphere as gaseous carbon
emissions through plant respiration, while the remaining captured carbon retains
in the plant’s living above- and belowground tissue. Another part of the organic
carbon converts to soil organic matter and also partly releases to the atmosphere
when plant parts die and are decomposed (Jones and Donnelly, 2004, Ghosh and
Mahanta, 2014). Carbon storage in grasslands primarily happens through the growth
and decomposition of plant roots, which is a cyclical process in perennial species, and
especially occurs when plants are defoliated by grazing or mowing. Cutting a plant
firstly reduces also root growth and causes relatively more parts of root biomass to die
because the remaining plant leaves can no longer photosynthesize enough energy to
support the entire root system of the plant. During a break in defoliation, the growth
of the leaves and roots of the plants can recover again (Ghosh and Mahanta, 2014).
With proper management, perennial plants can live and reproduce for many years
in a continuous cycle of cutting, root death, and regeneration, thereby adding large
amounts of carbon to the soil (Ghosh and Mahanta, 2014).

The amount of carbon that temperate grasslands can store varies greatly and
depends on various factors such as the soil type, management and biodiversity
(Conant et al., 2001, Jones and Donnelly, 2004, Soussana, Loiseau, et al., 2004, De
Deyn et al., 2011, McSherry and Ritchie, 2013, Schierhorn et al., 2013, Yang, Tilman,
et al., 2019). Conversion of forests or cropland to grasslands results in more carbon
sequestered in soil organic matter (Hönigová et al., 2012). Furthermore, conversion of
cropland to managed grasslands leads to more soil organic carbon sequestration than
natural recovery of grassland from abandoned cropland (Li et al., 2018). However,
anthropogenic management can also switch grasslands from carbon sinks to sources
of greenhouse gases, dependent on management intensity and regional climatic
conditions (Abdalla et al., 2018). For instance, low or moderate grazing rates, especially
in warm and humid regions, have shown to increase soil organic carbon stocks and
hence build carbon sinks. In turn, high grazing rates in cold and humid regions or in
regions with low precipitation can result in lower carbon stocks and carbon sources
compared to unmanaged grasslands (Abdalla et al., 2018, Sollenberger et al., 2019).
Generally, intensively managed grasslands show an increased net ecosystem exchange
and are often considered as a carbon dioxide sink (Ammann et al., 2007, Schmitt et al.,
2010, Hörtnagl et al., 2018, Sollenberger et al., 2019), while nitrous oxide (N2O) and
methane (CH4) emissions also increase due to organic fertilizer and manure from
livestock (Hörtnagl et al., 2018, Sollenberger et al., 2019). Also, climate change can
contribute to an increased carbon sequestration in soil organic matter due to increased
carbon dioxide and nitrogen deposition (Jones and Donnelly, 2004, Chang, Ciais,
Gasser, et al., 2021).

1.1.4.2 Food, foraging and livestock

Globally, the demand for agricultural products is increasing as human population
grows, which has resulted in more than a doubling of domestic ruminants (from 1.4
billion to 3.4 billion) in the last century (Chang, Ciais, Gasser, et al., 2021). Cattles,
sheep and goats offer meat and dairy products besides wool and leather. Worldwide,
nearly 50% of the forage used for such livestock is provided by grasslands (Herrero
et al., 2013). Forage quality and yield is substantially influenced by biodiversity and
management (Tallowin and Jefferson, 1999, Schaub, Finger, et al., 2020). Semi-natural
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species-rich grasslands thereby offer significantly lower forage yield and quality
than intensively managed grasslands (Tallowin and Jefferson, 1999, Isselstein et al.,
2005), which in turn can provide largely increased biomass yields and forage quality
(Isselstein et al., 2005, Schaub, Finger, et al., 2020).

1.1.4.3 Cultural aspects and other ecosystem services

Extensive grasslands with a high biodiversity can have a positive impact on human
well-being including spiritual, aesthetic, educational and other cultural values (WRI,
2005, Tribot et al., 2018). In addition, grasslands with extensive use and traditional
management (e.g., the use of dung instead of liquid manure) can preserve biodiversity
and are considered as cultural heritage in some regions (e.g., in the Swiss Alps)
(Fischer, Rudmann-Maurer, et al., 2008, Bengtsson et al., 2019). Furthermore, botanical
gardens often engage for the conservation of rare or endangered grassland species
(e.g., the botanical garden of the University of Marburg) (BMEL, 2017).

Many other ecosystem services are directly and indirectly supported by semi-natural
grasslands, such as the provision of food (e.g., flowering habitat for bees and honey
production), raw materials (e.g., for bioenergy production) and genetic resources (e.g.,
for medical purposes) (Hönigová et al., 2012). Regulating services comprise besides
climate regulation by carbon sequestration and storage also the improvement of air
quality, regulation of water flows, prevention of soil erosion, promotion of pollination,
and the maintenance of soil fertility by grasslands (Bazzoffi, 2009, Cerdan et al., 2010,
Hönigová et al., 2012, Bengtsson et al., 2019, Sollenberger et al., 2019).

1.1.5 Threats of and future changes in grasslands

Grasslands are among the most vulnerable ecosystem types in the world in terms of
human impacts (Sala, Chapin, et al., 2000). Compared to other ecosystems, grasslands
are particularly sensitive to the impacts of drivers on biodiversity and are located in
parts of the world where ecosystems will be most affected by human activities (Sala,
Chapin, et al., 2000).

The greatest threat is global land use change (Sala, Vivanco, et al., 2013). Grassland
areas with ideal environmental conditions, favorable climate and soil, are often con-
verted into cropland (White, Murray, et al., 2000, Sala, Vivanco, et al., 2013, Taube
et al., 2014, IPBES et al., 2019). Since 1992, the global area covered by temperate
grassland has declined by 2.5% (IPBES et al., 2019). The change of land cover and land
use is mainly driven by an increasing food demand, human population growth, and
the generally higher profitability (Silva et al., 2008, Taube et al., 2014). Besides the
conversion into croplands, semi-natural grasslands disappear through management
intensification and abandonment of agricultural land use, for example, the latter at
sites with unfavorable environmental conditions (Isselstein et al., 2005, Gellrich et al.,
2007, Aune et al., 2018). However, the continuation and intensity of management is
crucial for the preservation and maintenance of grasslands and its biodiversity, and
for the prevention of afforestation (Tallowin and Jefferson, 1999, Marriott et al., 2004).

Climate change is the second greatest threat to biodiversity in grasslands (Silva et al.,
2008, Sala, Vivanco, et al., 2013). Global warming, more frequent and intense weather
events, fires, floods and droughts associated with climate change impact many aspects
of grassland biodiversity, for example, the regional species distribution, phenology
and community structure (Walter et al., 2012, IPBES et al., 2019). For instance, rising
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temperatures have already led to an earlier timing of spring events and have shifted
the ranges of plant and animal species toward the north as well as uphill (Silva et al.,
2008).

Increased nitrogen deposition resulting from agricultural intensification and in-
creased burning of fossil fuels by traffic and industry is the third greatest threat of
biodiversity and other ecosystem functions of semi-natural grasslands (Silva et al.,
2008, Stevens et al., 2010, Sala, Vivanco, et al., 2013). Enriched nitrogen soil content
can lead to an increased plant growth and thus, can increase plant shading and
competition for other resources. Such changed conditions are considered to result in a
reduced number of species that can coexist (Hautier et al., 2009).

Furthermore, invasion by non-native exotic species induced by climate change,
increased atmospheric carbon dioxide, nitrogen deposition and altered disturbances
impacts ecosystem functions and services of grasslands and hence presents also
considerable threats to grasslands (Ehrenfeld, 2010, Runyon et al., 2012, Teixeira et al.,
2020).

In Germany, the area of permanent meadows and pastures decreased continuously
from 1966 to 2013 (from 6.9 million ha to 4.6 million ha) and slightly increased to 4.75
million ha within the last years (FAOSTAT, 2019). As a result of political regulations,
requirements to preserve grasslands have come into force in some German federal
states (NABU, 2014). Agricultural farms in these states can generally continue to
cultivate grasslands, given that they establish new grassland fields elsewhere on arable
land (NABU, 2014). In addition, species-rich grasslands are more and more intensified
in Germany besides conversion, afforestation, abandonment and overbuilding (NABU,
2014). Land use intensification and conversion affected the endangerment of almost
80% of the grassland habitat types listed in the German federal list of endangered
biotopes (BfN, 2014). Grassland was converted to agricultural land for the production
of, for example, maize as high-energy fodder for cattle and of energy crops for the
production of biogas (BfN, 2014). Increasing grassland intensification, for example,
overgrazing, is a further major threat in the Alps speeding up erosion rates (Hönigová
et al., 2012).

Globally, the protection of temperate grassland is still low compared to other ma-
jor terrestrial biomes (only 4%) (Hoekstra et al., 2005, Henwood, 2010). Hence, new
strategies have to be found to conserve biodiversity and maintain other important
ecosystem services of semi-natural grasslands. Besides the creation of nature reserves,
a proper management might lead to high yields and simultaneously to the conser-
vation of plants and animals (Dijk, 1991, WallisDeVries et al., 2002). For that, one
fundamental task is to gain a deep knowledge on grassland dynamics – for example,
how community dynamics emerge from the interactions of individual plants in man-
aged grasslands or its influence by specific management regimes and environmental
conditions. To answer such questions, scientific research thereby benefits from the
combination of ecological modeling with knowledge gained from extensive field
studies and experiments.

1.2 analyzing vegetation structure , processes and interactions

Global change due to climate warming and human impacts makes it imperative to
investigate how valuable ecosystems such as grasslands are changing in terms of
ecosystem functions and services. The required basis for such an assessment can be
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provided by an in-depth analysis of the ecosystem vegetation structure and dynamics
and their underlying processes and interactions.

1.2.1 Environmental factors affecting ecosystems

Plant species composition and plant growth in grassland ecosystems is influenced by
multiple environmental components comprising biotic factors, abiotic factors such
as soil and climate, and anthropogenic intervention like management actions (Borer,
Grace, et al., 2017).

Abiotic environmental factors are nonliving aspects that influence ecological pro-
cesses in grasslands and include factors related to soil and climate, for example,
intensity of radiation, air temperature and soil water availability (Fig. 1.2). These fac-
tors can correlate with each other and can have various effects on grassland dynamics,
which in turn can also feed back to the environment. For instance, a high intensity of
radiation is associated with an increase of the near-surface air temperature, which can
increase plant transpiration. This increased transpiration results in the closure of leave
stomata and thus, in the restriction of plant photosynthesis (Bat-Oyun et al., 2012).
Conversely, grassland and its growth can affect climatic factors, for example, through
surface albedo (Wang and Davidson, 2007). Growth and the development of plants
can be dependent on several of such abiotic factors. Thereby, the limiting factor that
determines plant growth is often considered the one that is at the minimum (Liebig’s
law of the minimum (Sinclair, 1999)).

Figure 1.2: Interactions between vegetation community structure and dynamics, biotic factors,
abiotic factors, anthropogenic actions climate change and ecosystem services.

Furthermore, biotic factors in terms of living organisms (e.g., plants and microbes)
and their interactions influence the structure and dynamics of grasslands. Soil microbes
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can substantially increase grassland productivity by, for example, reducing plant dis-
eases (Schnitzer et al., 2011). According to plant-plant interactions and to Lotka &
Volterra, different plant species are supposed to coexist if intraspecific competition (i.e.,
competition between plants of the same species) is stronger than interspecific competi-
tion (i.e., competition between plants of different species) (Silvertown, 2004). Moreover,
each plant species matches to specific biotic and abiotic environmental conditions –
its so-called ecological niche (Polechová and Storch, 2019). Interspecific competition
and intraspecific optimization can lead to niche differentiation to guarantee species
coexistence over the course of evolution (Polechová and Storch, 2019). Overlapping
niches can be narrowed over time within plant communities to shape differences by
selection and phenotypic plasticity (Meilhac et al., 2020). These two mechanisms also
allow plants to adapt to changing environmental conditions (Grenier et al., 2016).
Thereby, trade-offs in plant traits and resource use prevent optimal adaptation to the
environment, i.e., the emergence of a dominant “super-species”.

Anthropogenic actions can cause substantial changes in abiotic and biotic factors
and thus in the biotope as a whole (Borer, Grace, et al., 2017, Simons et al., 2017). For
example, mowing or fertilizing can change the entire vegetation structure by changing
light conditions or increasing the nutrient availability in soil in such a way that certain
plants can no longer exist (Endels et al., 2007, Cleland and Harpole, 2010).

The interplay and importance of different environmental factors and anthropogenic
actions influencing grassland structure and dynamics are still not well understood but
crucial to derive predictions on, for example, biodiversity and grassland productivity
under future global and climate change and to derive recommendations for mitiga-
tion and future management. For that, a detailed understanding of how ecological
processes in grasslands are connected to environmental factors and anthropogenic
actions is essential.

1.2.2 Field studies and their importance

The fast growth and manageable size of grasslands make it easy to analyze vegetation
dynamics in field experiments. Field experiments are set up to investigate and validate
ecological hypothesis, theories and other aspects of grasslands. One major topic
addresses the question how biodiversity is related to grassland productivity and other
ecosystem services (Hector, Schmid, et al., 1999, Tilman, Reich, et al., 2001, Adler
et al., 2011, Tilman, Isbell, et al., 2014). Other topics for which field experiments
of grasslands are set up relate to coexistence theory (Silvertown, 2004) and plant
strategies (Grime, 1974). Also, experimental studies analyze grassland community
responses to elevated carbon dioxide concentrations and other environmental changes
driven by climate change (White, Carlyle, et al., 2012, Lei et al., 2016), and the impact
of different management scenarios (Weigelt, Weisser, et al., 2009).

Field experiments are conducted at different spatial and temporal scales. The
Nutrient Network (NutNet, www.nutnet.org) is a project that comprises more than
100 sites with a standardized experimental design distributed over the entire world
and exists already for more than a decade (Borer, Grace, et al., 2017). It is used to
deal with the question how nutrient excesses influence biodiversity and productivity
of grasslands. Similarly, the International Drought-Net (IDE, www.drought-net.org),
started in 2014, comprises more than 100 sites around the world where a controlled
design is used to simulate different dimensions of drought (Knapp, Avolio, et al.,
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2017). The project was initiated to study the sensitivity of terrestrial ecosystems
to climate change, i.e., more frequent and severe drought events. Further globally
distributed, coordinated experiments are, for example, the Herbaceous Diversity
Network (HerbDivNet, www.herbdivnet.wordpress.com) and the Disturbance and
Resources Across Global Grasslands Network (DRAGNet, www.nutnet.org/dragnet).
Other experiments are running rather locally over long periods of time to investigate
long-term effects of changing impact factors (Lepš, 2014).

In Germany, regionally and locally established field experiments partially participate
in the global networks. Two regional long-term German projects are (1) TERENO
(Terrestrial Environmental Observations) (Bogena et al., 2016), which comprise four
observatories for research studies on climate change and global change impacts, and
(2) the Biodiversity Exploratories (Fischer, Bossdorf, et al., 2010), which comprise three
different observatories across Germany established to analyze feedbacks between land
use, biodiversity and ecosystem processes. In total, 34 long-term field experiments
(minimum duration of 20 years) exist in Germany for the investigation of sustainable
soil use and yield of grasslands (Grosse et al., 2020). One of the longest running
biodiversity experiment, established in 2002, is the Jena Experiment (Weisser et al.,
2017). Other local field experiments are, for example, the Global Change Experimental
Facility (GCEF) (Schädler et al., 2019) and the University of Giessen Free-Air Carbon
dioxide Enrichment study (GiFACE) (Jäger et al., 2003).

A common experimental design and setup is to establish replicates of small grass-
land plots (e.g., each with a size of 20 m2) with varied plant compositions (e.g., in
the Jena Experiment (Weisser et al., 2017)), management (e.g., in the Park Grass Ex-
periment (Silvertown et al., 2006)) or manipulated environmental factors (e.g., in the
Global Change Experimental Facility (GCEF) (Schädler et al., 2019)), and control plots
with no modification for comparison. Vegetation measurements in field experiments
often include aboveground biomass (in terms of yield), vegetation cover, vegetation
height and leaf area index, either from the entire grassland community or from in-
dividual plant species, and at different time intervals (e.g., twice a year or prior to a
mowing event). Soil properties such as soil moisture and nutrient contents are also
often recorded (e.g., Volk et al., 2000, Carlyle et al., 2011). In contrast to experiments
belonging to globally coordinated networks, measurements of local field experiments
are often conducted with different methodologies (e.g., different techniques, spatial
and temporal scales) and thus can also include variations in accuracy, frequency and
effort (White, Carlyle, et al., 2012).

Field studies can provide huge amounts of data and are thus the basis for the
majority of grassland research. However, based on field studies, it is still a challenge
to disentangle the impact and importance of different treatments or variations in
environmental factors and to analyze the validity of results on different spatial and
temporal scales. For instance, a long-term grassland experiment established to investi-
gate the impact of different management intensities on different scales revealed that
the impact of management intensity on species richness depend on the combination
of both, mowing frequencies and fertilization amounts, and lead to varying effects
at different temporal and spatial scales (Lepš, 2014). To resolve this, for example,
the challenge remains that either different field sites or even several plots at one
field site can additionally differ in several other factors (e.g., regional or small-scale
heterogeneous environmental conditions), and thus a high number of replications
and further experiments would be necessary to disentangle the influence of multiple
individual factors and their combinations. Field experiments of grasslands are thus
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primarily limited in space (and factorial study design), which makes it difficult to
assess, for example, short- and long-term consequences of global change drivers for
grasslands over larger spatial scales. In addition, long-term field data on the effects
of climate change, particularly long-term changes in weather variables rather than
increased atmospheric carbon dioxide, on grassland biodiversity and productivity
are also still scarce (Oijen et al., 2018). Further, only the response of the vegetation to
variations in manipulated factors can be measured, but the underlying process-based
causes of these responses are often derived by statistical analyses based on specific
assumptions (e.g., structural equation modeling (Grace, Anderson, et al., 2016)).

Besides the conventional methods to observe grassland dynamics, like field measure-
ments, also other monitoring techniques such as remote sensing are more and more
used to observe grassland dynamics (Liu, Cheng, et al., 2017, Schwieder et al., 2020).
For example, remote optical sensors of satellites offer the ability to acquire information
over large areas with little expense. Optical measurements allow to detect grassland
cover and assess information on the greenness, vitality and density of grasslands
(Pflugmacher et al., 2019, Preidl et al., 2020, Reinermann et al., 2020). These can be
used to gain knowledge about the productivity and management of grasslands, for
example, by the detection of cutting dates (Griffiths et al., 2020, Lobert et al., 2021).

1.2.3 Ecological modeling

Ecological modeling is an important tool to receive knowledge about the impact of
different factors in environmental systems and thus, to overcome empirical limitations
described in the previous section. Therefore, ecological models are used in combination
with and complementary to field studies of grasslands.

A model is classically defined as a simplified abstract representation of a complex
system. Models are used in ecology for a variety of purposes including the explanation
of patterns observed in empirical data, making predictions on system development
and guiding research (Jackson et al., 2000). Thereby, models can be deterministic or
stochastic, static or dynamic and empirical or mechanistic (Thornley, 2001). While
some model types evaluate only observation data using a particular method (e.g.,
statistical modeling like linear regression analysis), other model types such as process-
based models integrate field data for model calibration and validation. Thus, ecological
models often build on and depend on measurements in the field.

With the establishment of field experiments of grasslands, such as the grassland
biodiversity experiment at Cedar Creek (Tilman, Knops, et al., 1997, Tilman, Reich,
et al., 2001), models on grassland dynamics gained more and more popularity and
relevance for scientists. Today, there exists extensive literature on grassland modeling
ranging from empirical models to process-based models to integrated models (Oijen
et al., 2018). Nevertheless, currently existing grassland models still fail in some aspects,
for example, in reproducing the lower resistance of grasslands with lower biodiversity
to climate change as observed in field studies, highlighting the ongoing need for
further model development of grassland dynamics (Tilman and Downing, 1994, Oijen
et al., 2018).

1.2.3.1 Mechanistic models

In mechanistic models, vegetation growth is driven by mathematical equations describ-
ing physiological processes such as photosynthesis or respiration. Mechanistic models
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have been developed for different temporal and spatial scales and can strongly vary in
the degree of details regarding the modeled underlying processes. Some mechanistic
models describe ecosystem processes at the community level (e.g., Dusseux et al.,
2015), some models represent populations and distinguish between different plant
species or plant functional types (e.g., Schapendonk et al., 1998, Thornley, 1998, Ma,
Lardy, et al., 2015, and some models simulate the growth of each individual plant (e.g.,
Soussana, Maire, et al., 2012, Taubert, Frank, et al., 2012). The degree of complexity and
focus of the model is thereby related to the aim of the study. In grassland modeling,
models can be used (i) to estimate water, carbon or other greenhouse gas fluxes in
grasslands at regional or global scales (Bondeau et al., 2007, Ma, Lardy, et al., 2015,
Chang, Ciais, Gasser, et al., 2021), (ii) to analyze changes in vegetation attributes (Chen
et al., 1996) or (iii) focus on appropriate future farm-level management in the face
of climate change (Dusseux et al., 2015), while some models also focus explicitly on
detailed soil processes such as soil temperature, soil moisture and nutrient content
(Parton, Morgan, et al., 2007). Individual-based models are particularly suited for
analyzing competition processes between plants and the role of different plant traits
and their effect on grassland structures and attributes at the community level, such as
functional composition or productivity (Soussana, Maire, et al., 2012, Taubert, Hetzer,
et al., 2020a). However, individual-based models can be difficult to parameterize for
larger heterogenous regions or species-rich grasslands because they may require a
multitude of input parameters.

In order to make reliable statements with a model, sufficient field data are re-
quired for parameterization, and their availability often determines the chosen model
complexity. Values of model input parameters, such as morphological plant traits of
different species, are either obtained from direct plant measurements or require model
calibration by comparing measured vegetation attributes to the model output. Many
field studies provide time series of various vegetation attributes (e.g., aboveground
biomass, leaf area index, or soil moisture). On the one hand, these data provide an
excellent basis for estimating model parameters, specifically for model calibration
using optimization algorithms and for model validation to assess model performance.
On the other hand, the large amount of data can also pose a challenge for model
parameterization, as the applied optimization to fit each observation becomes more
complex.

Advantages of mechanistic models include the opportunity to analyze systems on
different organizational levels (e.g., individual plants, species populations, community
level or the entire ecosystem) to get a deep understanding of the role and interplay
of plant traits, ecological processes and environmental factors. Sensitivity analyses,
for example, allow to change input parameters (e.g., plant traits) to investigate their
impact on vegetation dynamics and attributes (Saltelli, Aleksankina, et al., 2019).
Robustness analyses allow to switch on and off or to modify entire processes (such
as plant shading) to explore how the system depends on or reacts to such variations
(Grimm and Berger, 2016). In addition, scenario analyses provide the opportunity to
systematically change environmental factors (such as air temperature or management
regime) to examine the dependence of community dynamics on such factors. Hence,
mechanistic models are suited to analyze and understand in detail how ecological
systems such as grasslands depend on certain plant traits, processes or factors, with
much less effort compared to empirical studies in the field. Furthermore, additional
vegetation attributes, for example, complementary to field measurements at the local
scale, can be derived from process-based models, which also allow their large-scale
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estimation for entire regions based on developed regionalization concepts (Rödig et al.,
2017).

Statistical methods commonly applied to measured field data, such as linear re-
gression or structural equation modeling, can also be applied to model simulation
results, for example, to relate statistically analyzed and explained empirical patterns
to detected mechanisms and factors from process-based model simulations (Bai et al.,
2007, Grace, Anderson, et al., 2016). In addition, advanced machine learning methods
are more and more applied in scientific research. For example, decision trees are used
in combination with process-based models and remote sensing to predict changes
in aboveground biomass in tropical forests (Knapp, Fischer, et al., 2018) or are used
for sensitivity analysis to determine the influence of different parameters in a model
(Moulin, Perasso, and Gillet, 2018).

1.2.3.2 Network science

Another important methodological field is network science, which has been applied for
various purposes in ecology (Poisot et al., 2016). Networks can be used to analyze the
structure of dependencies, interactions or connections between different components
in large complex systems. These models persist of nodes, the elements of the system,
and edges that mark relations between the elements of the system. In ecology, nodes
can be single individuals, species or communities, and edges can refer to dependencies
or interactions between them. For instance, food webs (Montoya and Solé, 2002) or net-
works of plants and animal pollinators (Basilio et al., 2006) can be used to understand
the performance of the system as a whole, like its resistance to perturbations, which
can provoke extinction of species. Moreover, with respect to spatial networks, nodes
can represent habitat patches and edges can refer to connections such as dispersal
pathways – a model system that allows to analyze the dynamics of spatially explicit
metapopulations in landscapes crucial for biodiversity conservation (Urban and Keitt,
2001, Moilanen, 2011). The mapping of complex ecological systems to networks and
their evaluation makes them comparable to other systems. Network science revealed
that common patterns such as the small world property (Watts and Strogatz, 1998)
or scale freedom (Barabási, 2016) can be found in networks of systems across a wide
variety of disciplines (Cancho and Solé, 2001, Liljeros et al., 2001, Eguíluz et al., 2005,
Proulx et al., 2005).

In terms of vegetation ecosystems, connections that indicate potential interactions
between individual plants can be represented and measured using network science.
This requires spatial positions and interaction diameters of each plant. Such extensive
data are available and regularly recorded, for example, in large field inventories of
tropical rainforests. Protocols of CTFS-ForestGEO mega plots provide positions of
thousands of trees growing on 25 to 50 ha forest plots, including further attributes
like tree species and stem diameter at breast height for each tree (Condit, 1998). This
data base represents a fundamental source of data on which spatial networks can be
created using individual tree sizes and proximities.

1.3 objectives of this thesis

The main objective of the thesis is to gain a deeper understanding by means of
modeling on the effects of plant-plant interactions and the respective influence of
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plant traits, spatial structure, as well as abiotic and anthropogenic factors that lead to
vegetation attributes and dynamics observed in field studies of vegetation systems.

From chapter to chapter, the spatial scale of the respective investigations and
the considered interactions and influencing factors on vegetation dynamics increase
(Fig. 1.3). Regarding temperate grasslands, Chapter 2 starts with the investigation of
modeled plant-plant interactions for a local grassland experiment considering plant
traits and different small-scale competition processes between plants. Chapter 3 then
deals with a follow-up simulation study on the impact of anthropogenic actions (i.e.,
mowing frequency). In Chapter 4, the effect of regional differences in environmental
factors and grassland management are modeled and analyzed based on German-wide
field experiments. Lastly, in Chapter 5, tree-connection patterns within large tropical
forest plots across different continents are analyzed in terms of network science.

Subsequent chapters address thereby the following main questions:

Chapter 2: Which plant traits and ecological processes are responsible for the structure
and dynamics observed in temperate grasslands?

Chapter 3: Why and how do different anthropogenic management regimes and
climate warming alter vegetation attributes of temperate grasslands?

Chapter 4: How do site-specific environmental factors and climate change alter
grassland productivity and the proportion of herbs?

Chapter 5: Are there general patterns in the spatial connections of trees in tropical
forests?

Figure 1.3: Content of the chapters of this thesis. Each chapter analyzes the influence of
different biotic and abiotic factors on ecosystem attributes and dynamics. In Chap-
ters 2 to 4, temperate grasslands are simulated and analyzed by means of an
individual-based process-oriented simulation model. In Chapter 5, tropical forests
are analyzed by means of network science.

Within this thesis, the main focus is on temperate grasslands, while the analysis of
the fifth chapter is conducted with data of tropical forests. In the following Chapters 2
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to 4 temperate grasslands are simulated using an individual-based process-oriented
grassland model. For that, Chapter 2 describes the parameterization of a local field
biodiversity experiment in Central Germany and evaluates its performance considering
different vegetation attributes. Moreover, this chapter deals with the influences of
specific plant traits and of shading and competition for space within plants and their
effects on productivity and the abundances of plant functional types. In Chapter 3,
anthropogenic and climate impacts, in terms of different mowing frequencies and
air temperature increase, are analyzed on the simulated vegetation processes and
structure. For testing whether those results apply also to other grassland sites and
with the consideration of soil interactions, Chapter 4 presents a developed approach
of a regional transferable model parameterization which takes also site-differences
in soil type, climate conditions and regional species pool into account. With this
generically parameterized grassland model, the importance of environmental factors
and management intensity and the impact of climate change are analyzed considering
several representative grassland sites across Germany. Finally, in Chapter 5, spatial tree
and tree species locations within tropical forests at different field sites are compared
by means of network theory. Thereby, the impact of tree location, tree size and tree
species on the analyzed network measures in three tropical forest megaplots are
analyzed. Chapter 6 summarizes the findings, discusses methodological aspects, gives
an outlook on future developments and provides a final conclusion.

In summary, main objectives of this thesis are: 1) development of a local-scale and
a regionally transferable parameterization of an individual-based simulation model
(accounting for plant diversity) for managed grasslands; 2) exploration of how plant
traits, ecological processes and environmental conditions affect vegetation attributes
such as productivity and abundances of plant functional types; 3) understanding and
projecting how anthropogenic management and climate change can alter ecological
processes and vegetation attributes at the community level (e.g., productivity at short-
and long-term scales); and 4) application of network science to tropical forests in order
to assess the importance of the spatial distribution of plants in species-rich ecosystems.
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influences of traits and processes on productivity and functional

composition in grasslands

2.1 abstract

Grasslands are an important habitat for many plant species whose functional diversity
and composition influences ecosystem functioning and services. Despite several field
studies, still uncertainties remain about the interplay of species traits and ecosystem
processes that lead to the functional diversity observed in grasslands. Here, we
used an individual-based process-oriented model to simulate a biodiversity field
experiment located in Central Europe. With the focus on plant functional types (PFT),
the simulation model well reproduced vegetation attributes of grassland communities
at different diversity levels (of up to four PFTs of grasses, small herbs, tall herbs and
legumes). To understand how plant traits and competition between plants affects the
functional composition of grasslands, we tested in a simulation study the impact of
different ecosystem processes and detected sensitive plant traits. According to our
model results, competition for space affects community productivity stronger than
competition for light. While some traits increase and strengthen the growth of plants,
other functional traits make plants stronger through advantages in demographic
processes. Our model-based findings can be substantiated by several independent
field studies in terms of relative yield, plant density, plant biomass and life span of
plant functional types. The methods and analyses shown here represent a promising
step for the development of grassland models to investigate the complex structures
and dynamics of temperate grasslands in complement to field studies.

2.2 introduction

More than a third of the European agricultural area is covered by grassland (Smit
et al., 2008). Temperate grasslands provide a wide range of ecosystem services (Sala
and Paruelo, 1997, Lemaire et al., 2011) and an important habitat for many plant
species (Wilson et al., 2012). Increased anthropogenic interventions already have
caused species loss and an altered functional composition in grasslands (Socher et al.,
2012, Bernhardt-Römermann et al., 2011, Niu et al., 2014). For example, intensive
management (high mowing and fertilizing frequencies) has led to increased biomass
yields (Schaub, Finger, et al., 2020) by shifting species composition towards fast-
growing acquisitive plant species. This may be at the expense of other ecosystem
services such as stability (Allan et al., 2015, Schäfer et al., 2019, Tilman and Downing,
1994). In order to propose recommendations for future management of grasslands (e.g.
adapted regimes or establishment of protected areas), it is necessary to understand the
relationship between the biotic and abiotic components of the ecosystem (like species
composition, soil, climate) and anthropogenic interventions.

For this purpose, field experiments offer, amongst others, the possibility to investi-
gate the dynamics of different species compositions in grasslands. Various experiments
have dealt with the relationship between productivity and biodiversity with different
results (Adler et al., 2011, Wang, Cadotte, et al., 2019, Mittelbach et al., 2001), but
only few of them also considered functional diversity (Díaz and Cabido, 2001). For
instance, an experiment at Cedar Creek (Minnesota, USA) revealed that not only
species diversity but also functional diversity and functional composition have a major
impact on ecosystem processes such as productivity, plant nitrogen (Tilman, Knops,
et al., 1997) and soil carbon and nitrogen (Fornara and Tilman, 2008). European-wide
projects (e.g. BIODEPTH (Spehn et al., 2005)) showed that herbs and legumes are
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significant determinants of productivity (Hector, Schmid, et al., 1999). Experiments
in Germany (Jena Biodiversity Experiment (Roscher, Schumacher, Baade, et al., 2004,
Weisser et al., 2017)) with manipulated plant diversity and functional composition
discovered that functional diversity has a positive effect not only on species diver-
sity but also on community biomass (Marquard, Weigelt, Temperton, et al., 2009).
Roscher, Schumacher, Gubsch, et al. (2012) further emphasized in this experiment
that functional composition explains variation in community biomass to a greater
extent than species richness. Field studies dealing also with land-use (e.g. Biodiversity
Exploratories (Fischer, Bossdorf, et al., 2010)) showed that indirect land-use effects,
mediated by biodiversity loss and shifts in functional composition, play a central role
for multiple ecosystem services (Allan et al., 2015).

Besides field experiments, simulation models can be used to investigate and under-
stand vegetation dynamics. Models can benefit from field experiments as measurement
data can help to describe mechanisms and thus can serve as an excellent basis for the
parameterization of the model. In particular, experiments manipulating biodiversity
in a controlled design (such as the Jena Biodiversity Experiment) are well suited for
this purpose since the combination of different monocultures and mixtures of species
allows to analyze plant interactions in grasslands.

Grassland models have been developed for different purposes (Thornley, 1998,
Taubert, Frank, et al., 2012, Ross et al., 1972, Moulin, Perasso, and Gillet, 2018, Johst,
Drechsler, Mewes, et al., 2015, May et al., 2009). For the integration of different
species into a model, it is common to use the concept of classifying species into
plant functional types (PFT), since average functional properties are often sufficient
to describe certain ecosystem functions (Lavorel et al., 1997, Roscher, Schumacher,
Lipowsky, et al., 2018, Díaz and Cabido, 1997). Thereby, a PFT can be considered
as a representative of a group of species with similar ecological and morphological
traits. For instance, a population-based model used the concept of PFTs to predict the
accumulation rate of forage under different management practices for a variety of
plant communities (Duru et al., 2009).

Parameterizing PFTs, however, can be challenging, since field measurements often
focus on populations of specific plant species. Grouping of species to PFTs and the
determination of their traits (or model parameters) requires an understanding how
modeled processes, PFT traits and the resulting simulated community dynamics
interplay. In addition, simulation models are simplified representations of reality.
Different degrees of detail in the description of processes are dependent on a detailed
knowledge of species traits, which are not always measurable in the field and there-
fore require inverse parameterization of the model. Due to this, grassland models
often focus on simulating a few measurable vegetation attributes at the population
or community level (Moulin, Perasso, and Gillet, 2018, Duru et al., 2009), but the
simulated dynamics still can include uncertainties about the underlying mechanisms
at the individual plant level (e.g. a certain community biomass might be achieved by
a few large plants or numerous small plants). Individual-based simulation models
allow a closer and more extensive look on vegetation attributes at the community,
population and individual plant level and enable to discover the impact of species
traits on individual plant growth, inter- and intraspecific plant interactions and the
resulting community dynamics.

Here, we test the individual-based process-oriented grassland model GRASSMIND
for simulating the dynamics of different species mixtures using the concept of PFTs
based on field measurements of the Jena Biodiversity Experiment located in Central
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Europe, (Roscher, Schumacher, Baade, et al., 2004, Weisser et al., 2017). Field mea-
surements of monocultures and mixtures in this field experiment include several
vegetation attributes at the same time (aboveground biomass (AGB), leaf area index
(LAI), vegetation height and cover), observed at the community and partly at the
species level. We use measurements from different plots of different species diversity
(monocultures and multi-species mixtures) aggregated according to four PFTs (grasses,
small herbs, tall herbs and legumes) to represent functional diversity. Measured plant
traits are only available for a few PFT traits (or model parameter). Remaining PFT
traits therefore require inverse model parameterization in such a way that the four
measured vegetation attributes (for four plots of one PFT and one mixture of PFTs)
can be reproduced by consistent simulation results. Based on the model, we want to
gain a deeper insight into key processes and plant traits that influence productivity
and the functional composition in grasslands (here, proportional biomass of plant
functional types). To put it more precisely, we want to answer the following questions:

1. Can we parameterize an individual-based grassland model for a biodiversity
experiment based on four PFTs?

2. Which vegetation attributes of the community can be described best by the
simulation model for grasslands of different functional diversities?

3. Which are the most influencing plant traits and processes regarding functional
composition?

For this, we first inversely parameterized field plots consisting of one PFT only,
transferred the parameters to a 4-PFT mixture and then tested this model parameteri-
zation for field plots of 2- and 3-PFT mixtures. By a robustness and sensitivity analysis
we thereafter identified the impact of plant competition (for light and space) as well
as different plant traits on functional composition.

2.3 materials and methods

2.3.1 The model – GRASSMIND

GRASSMIND is a process-oriented grassland model which has the advantage of
simulating each single plant on a daily basis. Since the model includes many detailed
processes, we describe here only the most relevant processes for our study. Main
processes are the photosynthesis, respiration, reproduction and mortality of individual
plants. A detailed description of the GRASSMIND model can be found in Taubert,
Hetzer, et al. (2020b), Taubert, Hetzer, et al. (2020a) and under www.formind.org/

downloads. Note that in this study, we assume unlimited water and nitrogen supply for
each plant in the model (therefore belowground processes in soil such as competition
for water and nitrogen are excluded).

At the individual level, plants are established as seedlings and then grow in height
and width based on the net primary productivity (NPP) calculated from photosyn-
thesis and respiration. Individual plants may differ in their traits (PFT-specific model
parameters) which affect plant growth. For example, physiological traits that influence
photosynthesis are, amongst others, specific leaf area (SLA) and leaf life span (LLS).
Plant growth is modeled according to a species-specific constant ratio (hw) of an
individual plant’s height to its width (or lateral extent). A mowing event causes all
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plants to be shortened to a certain height (e.g. to 10 cm) while maintaining the width
of the plants (cut biomass is assumed to be removed). Subsequently, plants grow only
in height until the PFT-specific ratio (hw) is reached again.

At the community level, plant growth can be limited due to shading by other plants
(asymmetric competition for light). Competition for light is modeled implicitly for all
plants (on a 1 m² plot). Tall plants shade smaller ones, which affects photosynthesis
and can reduce growth. More precisely, the global radiation I0 is reduced from the
top to the floor in height layers (1 cm width) taking into account the leaf area LAIi
contributed by individual plants in each height layer i (Monsi and Saeki, 2005):

IS = I0 · e−(∑i>S LAIi) (2.1)

As a result, the global radiation is increasingly attenuated towards the lower end of
the plot. The plant height determines which height layer S a plant can reach and
thus, the irradiance the plant can receive. We evaluate a plant’s light limitation with
the light reduction factor RL = 1 − IS/I0. Further influencing factors of plant growth
include daily abiotic variables (like air temperature, global radiation and day length).
Competition for space prevents too many plants growing into a simulated plot. This
density-dependent mortality reduces plant density N (number of plants on the plot) if
community cover exceeds plot area. If so, the number Ncrowd [1/d] of dying plants is

Ncrowd = N ∗
(︃

1 − 1
CC

)︃
, (2.2)

where CC is the fraction of vegetation cover in the plot [-] (ranging between 0 and 1).
Similarly, we assess space limitation by a competition factor RS = 1 − 1

CC .
Generally, light competition affects mainly the vertical community structure and

space competition the horizontal grassland structure.
Reproduction is modeled by a PFT-specific seed ingrowth. This daily ingrowth

encompasses also the constant incoming seed rain from the surrounding landscape.
Simulated seed ingrowth starts from bare ground with the date of sowing the grassland.
After a PFT-specific time (agerep), growing seedlings turn into adult plants. Some plant
characteristics then change, for instance, the allocation (allocshoot, investing partly
energy in seed production) and the intrinsic mortality rate of plants (mseed to mbasic).

Mortality of plants is included as stochastic events. Both mortality processes, base
mortality and mortality due to space competition, select plants at random that die
with their biomass being transferred to the litter pool. The random selection of dying
plants can have a large impact on model results, as dead plants disappear immediately.
For example, the death of the highest plant can lead to an immediate drastic decrease
in vegetation height if it is by far the only large plant present in the community.
In contrast, the death of a small plant usually does not cause markedly changes in
vegetation attributes of a grassland community. To account for stochastic effects in our
analyses, we calculated the average of results over ten simulation runs (corresponding
to an area of 10 m², see A.2 Supplementary Results for effects of larger areas).

Simulation results of the model include daily vegetation attributes. We used the
community and PFT-specific aboveground biomass (AGB) by summing up the AGB
of all plants (or the AGB of plants belonging to a certain PFT). Leaf area index (LAI)
is derived by calculating the leaf area from aboveground total AGB and the constant
specific leaf area of a plant (PFT-specific model parameter). As vegetation height we
used the height of the highest plant within the community. To obtain green vegetation
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cover (i.e. coverage by living plant parts) the sum of all plants’ cover was multiplied
by the ratio of green LAI to total LAI.

2.3.2 Field data – the Jena Experiment

As reference data for our model, we used measurements from the Jena Biodiversity
Experiment. The Jena Experiment is one of the longest-running biodiversity exper-
iments in Europe (Weigelt, Marquard, et al., 2010, Weisser et al., 2017). The main
experiment, established in 2002, consists of 82 grassland plots (20 x 20 m²) with up
to 60 different species (Roscher, Schumacher, Baade, et al., 2004). It is located near
Jena, Germany (50°55´N, 11°35´E), close to the river Saale. The climate measurements
(see A.1 Supplementary Methods for details) show a mean temperature of 9.6°C and a
mean annual precipitation of 539.6 mm (from 2002 to 2008). The field site was formerly
used as arable land and therefore the soil type Eutric Fluvisol was highly fertilized in
recent decades (Roscher, Temperton, et al., 2009, Fischer, Leimer, et al., 2019). Besides
two mowing events per year (cutting height of 10 cm), regular weeding was carried
out in spring and summer. Bi-annual field measurements include AGB and vegetation
cover per species as well as the community LAI and vegetation height over seven
consecutive years (2002 to 2008).

2.3.3 Parameterization of the model – Species grouping, inverse parameterization, validation,
evaluation

2.3.3.1 Species grouping

For the parameterization of the model for the Jena Experiment we used plant func-
tional types (PFTs). Roscher, Schumacher, Baade, et al. (2004) classified the existing
species into four groups based on a multivariate cluster analysis of ecological and
morphological traits. Hence, we parameterized four PFTs, which are trait-averaged
typical representatives of grasses, small herbs, tall herbs and legumes including typical
species occurring in Central Europe.

2.3.3.2 Parameterization

We used publicly available data over seven consecutive years (2002-2008) from the
Jena Biodiversity Experiment (Heisse et al., 2007, Weigelt, Marquard, et al., 2010).
Climate data were taken from two facilities in Jena and included daily air temperature,
irradiance and day length. For details on the preparation of the climate data see A.1
Supplementary Methods.

The field data was used as follows: on each field plot, the AGB per species above 3
cm height, leaf area index (LAI), vegetation height and vegetation cover per species
were measured bi-annually from 2003 to 2008, and once in 2002 (82 plots in total,
(Weigelt, Marquard, et al., 2010)). We grouped the field plots according to their
plant functional types (grasses (G), small herbs (S), tall herb (T) and legumes (L))
and functional diversity level (plots only of one PFT: G (9 plots), S (8 plots), T (9
plots) or L (8 plots); and the 4-PFT mixture: GSTL (16 plots)) and averaged each
vegetation attribute for each measurement date. For AGB and vegetation cover also
PFT proportions of each plot were available (except for one measurement in 2004). For
missing proportions in 2004, we assumed the average AGB proportions of all other
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available AGB measurements in the respective plot. Since weeding (or the invasion
of unknown species) is not considered in our model, but is carried out in the field
plots, we corrected vegetation cover of the target species proportionally (i.e. sum of
cover of target species, bare ground and dead material excluding weed cover equals
100 %). The calculated correction factors were also applied to measured AGB values
(to exclude weed AGB). As a result, we obtained one time-series for each vegetation
attribute (of the community and partly PFT-specific) per field plot for each single PFT
(G, S, T, L) and the 4-PFT plot (GSTL).

To parameterize the grassland model GRASSMIND, 17 parameters for each PFT
had to be specified. Six parameters per PFT were taken from field measurements
and literature (Table A.1). The remaining parameters were determined by inverse
parameterization (Table A.1).

The inverse parameterization of the grassland model comprised two steps (Fig.
A.1). First, we inversely parameterized each PFT separately in 1-PFT plots (G, S, T, L).
Second, we combined these four estimated parameter sets in the mixture of four PFTs
(GSTL) and corrected only one parameter per PFT (i.e. the ingrowth of seeds Nseed)
by inverse parameterization. The corrected values of Nseed were then also used in the
parameter sets of 1-PFT plots (first step) when comparing simulation results and field
measurements.

As reference data for the inverse parameterization, we used the measured vegetation
attributes (for measurement dates see A.1 Supplementary Methods). A simulation
run was performed over all seven years (2002 to 2008) and began on the day the field
experiment was sown (in the field: 11 to 16 May 2002 (Weisser et al., 2017), in the
model: 16 May 2002). Mowing height and mowing dates in the model correspond to
those of the experiment (for exact dates see A.1 Supplementary Methods).

For further details on the parameterization, validation and evaluation see A.1
Supplementary Methods.

2.3.3.3 Robustness analysis

The advantage of process-based models is the possibility to switch on or off different
processes. In this way, it is possible to analyze the effects of certain processes on model
results – each process alone as well as their interaction (Ellner et al., 2019).

In this study, the role of competition for light and space has been analyzed. For this,
the model’s starting conditions, settings and parameter values remained similar to
those used in the parameterization. Then, in addition to the standard run in which
competition for light and space was switched on, we performed (a) a mode where
competition for light was switched off and competition for space remained activated,
(b) a mode where competition for space was switched off and competition for light
remained activated, and (c) a mode where both competition processes were not
activated.

Thereby switching off space competition means that plants do no longer die because
of limited space on a plot (Ncrowd = 0 for all time steps, see equation (2.2)). Thus,
plants can unlimitedly overlap which in turn causes an increase in light competition.
On the other site, switching off light competition means that plants do not shade
each other anymore. Hence, small plants that grow below taller ones also receive the
full daily global radiation, so their photosynthesis is not limited due to reduced light
availability (IS = I0 for all height layers S and time steps, see equation (2.1)). This can
cause an increase of space competition as plants grow faster.
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To compare the different modes and detect which process has a high influence on
the vegetation dynamics, we analyzed changes in the simulated vegetation attributes.
For the calculation of plant density (number of plants per m²), mean values were taken
over the measurement dates of AGB (see A.1 Supplementary Methods).

2.3.3.4 Sensitivity analysis

A global sensitivity analysis was conducted to analyze the influence of various model
parameters. For this, the Morris method allowed to investigate the effect of changes
in a plant trait on simulated vegetation attributes (for details see A.1 Supplementary
Methods)(Morris, 1991).

2.4 results

We analyzed vegetation attributes within the measured field plots and compared them
with our simulations. Afterwards results of the robustness and sensitivity analysis are
shown.

2.4.1 Field data description

Measured vegetation attributes showed large differences between the 1-PFT plots (Fig.
1A). Legumes were the most productive with on average twice as much aboveground
biomass (AGB) and a 50 % higher leaf area index (LAI) but only slightly higher
vegetation height and vegetation cover compared to grasses. Grasses had the second
highest productivity. However, they were comparable to tall herbs (for AGB and LAI),
and differed with regard to a larger height and a smaller degree of vegetation cover
than tall herbs. Small herbs showed the lowest values - their AGB was only one fourth
of legumes’ AGB.

The grassland with four PFTs was on average less productive than plots of only
legumes (average AGB of approx. 370 g/m² per measurement in 4-PFT mixture
compared to the average AGB of approx. 385 g/m² in legume plots). Vegetation height
and LAI were similar to those of the legume plot but cover of green leaves was higher
in the mixture plot. Within the mixture, legumes were the dominant PFT with the
highest biomass proportion (41 %).

Vegetation cover was similar between 1-PFT plots (70 to 81 %) as well as within the
PFT proportions of the 4-PFT mixture (20 to 24 % per PFT). Variation of AGB between
plots consisting of different species and richness levels was low in plots of small herbs
and high in plots of legumes (Fig. A.2).

2.4.2 Simulation results

The grassland model could well reproduce the field measurements. Simulation and
field measurements agreed in all vegetation attributes for each 1-PFT plot (averaged
over time, Fig. 2.1B). Simulated AGB (average over 13 time points) deviated by a
maximum of 6 % from mean measurements within the 1-PFT plots. AGB of the
4-PFT mixture was underestimated by 19 % in the model. Like in the field, simulated
legumes were the most productive 1-PFT plot and dominate in the mixture. Although
they showed a total biomass of only 2 % below the measurement in the field mixture
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(150 g/m²), legumes in the simulations were much stronger than other PFTs (AGB
proportion) compared to the observations (50 % in the simulation to 41 % in the
measurements). AGB of other PFTs was underestimated in the simulated mixture (up
to 54 % less AGB than in observations). The range of temporal variations of vegetation
attributes in the simulation was mostly similar to the measured range of temporal
variations (Fig. 2.1A-B).

Figure 2.1: Comparison of field measurements and simulation results in plots of one plant
functional type (PFT) and in the 4-PFT mixture. (A) Field data of the Jena Biodiver-
sity Experiment – mean measurements of aboveground biomass (AGB), vegetation
height, leaf area index (LAI) und green cover in 1-PFT plots and the 4-PFT mixture
from 2002 to 2008 and (B) corresponding simulation results. Black lines show the
standard deviation of temporal measurements (in the mixture regarding commu-
nity vegetation attributes, see A.1 Supplementary Methods for measurement dates).
In (B), the bar of simulated vegetation height (daily maximum height averaged over
measurement dates) in the 4-PFT mixture show no proportions but the total height
values of each plant functional type. For one missing measurement of proportional
AGB in 2004 we assumed the average proportions of the existing measurements. (C)
Yearly aggregated patterns of measured (black dots) and simulated (colored dots)
AGB and their minimum and maximum values within the plots and simulation
runs (black lines and shaded polygons).

Time-series of vegetation attributes were also in good agreement between simula-
tions and field measurements (Figs. 2.1C and A.1). Surprisingly, both showed nearly
equal temporal patterns for each vegetation attribute, although only the total sum
over seven years was used for model calibration (Figs. A.2, A.3).
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Overall, simulated vegetation cover and LAI showed small deviations from field
measurements (average deviation of 6 % each with respect to mean community
attributes over all measurements; averaged NRMSE = 0.16 (vegetation cover), averaged
NRMSE = 0.52 (LAI); Fig. 2.1, Table A.3).

Validation of the parameterized grassland model was done by using independent
data on grassland plots consisting of two and three PFTs. All simulated grasslands
resulted in a slight to moderate underestimation and only one 2-PFT mixture (small
herbs and legumes) showed an overestimation of AGB in the simulation results
(Fig. A.4A). Again, legumes were often dominant with high AGB proportion in the
simulated and measured mixtures and were partly overestimated by the model in two
of the five mixtures in which legumes occurred (Fig. A.4B).

The validation analysis revealed that vegetation cover was the best fitted attribute
of the simulation model (10.3 % deviation on average over all measurements and
plots), though vegetation height was estimated slightly better in total than LAI (14.4
and 14.5 % deviation, see also Table A.4 for statistical measures including each
measurement).

2.4.3 Relationships to plant functional type richness

For our analyses, we used averaged measured vegetation attributes over the years
2002 to 2008. By doing this, we found a higher productivity in plots of legumes than in
functional mixtures, which at first sight seems to contradict previous studies Marquard,
Weigelt, Temperton, et al., 2009. However, by calculating annual averages of all plots
with a certain number of PFTs (one to four), we received a similar relationship in
the simulations: the community AGB increased with higher PFT richness (Fig. A.5A).
Our simulations reproduced this gradient well, but with a smaller slope (Fig. A.5A).
Furthermore, annual averages of LAI also increased with PFT-richness, but opposite
trends were detected for vegetation height and vegetation cover (Fig. A.5B-D).

2.4.4 Mean relative yield, mean relative plant biomass and mean relative plant density

We compared simulated AGB in grasslands of one PFT with its proportion in all
mixtures (of 2 to 4 PFTs), defined as mean relative yield (RYI). Grasses and small
herbs showed on average underyielding (RYI < 1, e.g., RYI = 0.6 for grasses), while
tall herbs and legumes produced proportionally more AGB in mixtures (RYI > 1, e.g.,
RYI = 1.2 for tall herbs, Table A.5). Furthermore, legumes were the only plants that
increased on average in mean plant biomass (AGB per plant) and simultaneously in
mean plant density (number of plants per m²) considering all mixtures (RBI > 1 and
RDI > 1, similarly calculated as RYI, Table A.5). A stronger decrease of plant density
(e.g. a lower RDI) from 1-PFT plots to mixtures while having a high RYI could be
compensated by an increase in plant biomass (RBI) and thus, the establishment of
taller plants, as is the case for tall herbs (RDI = 0.5, RBI = 3.4). PFTs with taller
plants and larger plant AGB were more likely to shade other plants (also of other
PFTs) which in turn could suffer from a lower light availability.
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2.4.5 Impact of light and space competition on productivity and functional composition

To understand the importance of different processes for plant growth in plots consist-
ing of one and four PFTs, the model could be used to analyze the impact of competition
for light and space between plants. Overall, both processes affected productivity, but
in different directions and dimensions within the plots. Competition for space caused
much stronger changes in vegetation attributes than competition for light.

Between plots of one PFT, vegetation attributes were changed to different extents
and with different causes by competition (Fig. 2.2A). In terms of AGB and vegetation
cover, small herbs and legumes changed most whereas for vegetation height tall herbs
were the most sensitive to space limitation. Less AGB and vegetation height with no
light competition (Fig. 2.2A) was caused by an increased density of (smaller) plants
(due to an increased mortality of few larger plants) and thus, higher vegetation cover.
No space competition caused opposing effects in vegetation height whose decrease
(e.g. in grasses) was the result of slower plant growth due to permanently strong
light competition. An increase in vegetation height was related to a much lower plant
density, so that only a few tall plants survived suffering less from light competition.
This was observed for tall herbs, which indicated space competition to be the dominant
process limiting their growth. Changes in the analyzed competition factors supported
that competition for space is dominant in plots of grasses, tall herbs and legumes,
whereas competition for light is dominant in plots of small herbs and the 4-PFT
mixture (for details see A.2 Supplementary Results and Fig. A.6).

In grasslands with four PFTs, switching off light competition led to an AGB decrease
of about 6 %, whereas no space competition between plants resulted in almost 40 times
higher values. The other four attributes (LAI, vegetation height and green cover, plant
density) were similarly affected (Fig. A.7). Within the mixture, changes of all vegetation
attributes were mainly driven by changes of legumes’ attributes. Interestingly, only
the height of legumes increased immensely when space competition was switched off
while that of grasses, small herbs and tall herbs decreased (Fig. 2.2B). This indicated
that legumes prevent the growth of other PFTs and space competition made them less
competitive. However, although competition for light and space reduced the growth
of legumes and partially increased the productivity of other PFTs, the proportion of
legumes always remained by far the highest (50 % with no light competition and 85 %
with no space competition).

2.4.6 Impact of plant traits on productivity and functional composition

Plant traits with most impact on vegetation attributes were identified by a sensitivity
analysis (see Methods for details). For 1-PFT plots, two geometric plant traits (height-
width ratio of plants hw and specific leaf area SLA), two physiological traits (light
extinction coefficient k and slope of the light response curve α) and one demographic
trait (mortality of seedlings mseed) caused the largest absolute changes in AGB (Fig.
A.6A). Higher values of hw and α resulted clearly in an increase of biomass, whereas
higher values of mseed and k resulted in a decrease (Fig. 2.3A). The effect of these
parameters on the simulation results was linear and additive (large mean and low
standard deviation of elementary effect, lying outside the wedge of grey lines in the
figure (Morris, 1991, Ruano et al., 2011)). On the other hand, a higher SLA could lead
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Figure 2.2: Impact of light and space competition on vegetation attributes in (A) plots of one
plant functional type (PFT) and in (B) the 4-PFT mixture.Aboveground biomass
(AGB), leaf area index (LAI), vegetation height, green vegetation cover and plant
density were analyzed. Bluish bars show simulation results with light and space
competition, yellowish bars with no light competition and reddish bars with no
space competition of grasses (G), small herbs (S), tall herbs (T) and legumes (L).
Values correspond to the mean value over the time-series of the corresponding
vegetation attribute. Note that the axes of ABG, LAI and green vegetation cover are
logarithmic. For results with no light and no space limitation and variation within
the simulation runs see Fig. A.10.

to higher or lower AGB values (on average negative), because of interactions with
other plant parameters or due to nonlinear effects.

To find out which traits affect the dominance of legumes, we varied trait parameters
of legumes in the 4-PFT mixture. Two physiological traits (k and α), one demographic
(mseed) and one geometric trait (hw) belonged to the most influential traits of legumes
concerning their AGB proportion (Fig. A.6B). Now, instead of SLA, two further
demographic legume traits (seed ingrowth (Nseed) and germination rate of seeds
(germ%)) were also relevant. The parameters k, α, mseed and hw affected change in
AGB of legumes similarly, except for hw whose higher values led in the mixture to
a reduced AGB of legumes (Fig. 2.3B). The AGB of small herbs was least affected
by changes in legume traits (low elementary effect; Fig. 2.3B). The reduced AGB of
legumes due to its increased trait values of mseed and hw increased AGB of the other
PFTs. With α, Nseed and germ% contrary results were observed – increased trait values
of legumes led to more AGB of legumes and to less AGB of the other PFTs. The
legume trait k had the weakest effect on the other PFTs (an increased value only led to
a slightly higher AGB for grasses and small herbs and to a slightly lower AGB for tall
herbs).

The analysis outlined diverse effects of traits on AGB of the different PFTs. Higher
values of hw, α, SLA and germ% and lower values of mseed and k strengthened gen-
erally the productivity in plots of one PFT and weakened in the 4-PFT mixture the
productivity of PFTs other than legumes due to increased competition. In turn, Nseed
only made legumes more competitive in the 4-PFT mixture but did not considerably
affect the productivity of 1-PFT plots. Despite the clear trend for the above-mentioned
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parameters (except for SLA, see Methods and Fig. 2.3), for almost none of the traits
the mean elementary effect µ (of a varied trait on AGB) equaled the absolute mean el-
ementary effect µ∗. This means that changes in trait parameter values in one direction
increased or decreased the AGB depending on values of other parameters.

Figure 2.3: Results of the global sensitivity analysis (Morris method). Mean elementary effects
(µ) on (A) aboveground biomass in a plot of one plant functional type (PFT) and
on (B) aboveground biomass per PFT in a 4-PFT mixture (grasses, small herbs, tall
herbs and legumes) and their standard deviations (σ). The grey lines correspond
to µ = ±2SEM (see Methods for details). Labels are based on names of trait
parameters in the model description of GRASSMIND (Taubert, Hetzer, et al.,
2020a) (see Table A.1). Non-influential parameters are not labeled. In (B) only trait
parameters of legumes were varied.

2.5 discussion

By using field measurements from a local biodiversity experiment, we showed that
it is possible to simulate the growth and dynamics of grasslands with an individual-
based model. We were able to cover four different vegetation attributes: aboveground
biomass (AGB, in total and per PFT) and vegetation cover (in total and per PFT) as
well as vegetation height and leaf area index (LAI). Model results revealed good fits
(compared to field measurements) for plots of one PFT but showed an underestimation
of vegetation attributes in mixtures (2 to 4 PFTs). Nevertheless, simulations also
reproduced the observed positive relationship between productivity and PFT-richness.
Annual dynamics of vegetation attributes matched well those measured in the field
although only mean vegetation attributes over all years were used for calibration (Fig.
A.2).

The parameterized grassland model enabled us to analyze the relative importance
of specific processes and plant traits on the functional composition in grasslands.
Competition for space had a much stronger impact on grassland AGB than competition
for light. Increasing space competition led to a decreasing proportion of legumes and
increased grasses, small herbs and tall herbs. Nevertheless, legumes always remained
the dominant PFT.
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A global sensitivity analysis revealed key trait parameters of different processes –
geometry, productivity and reproduction of plants – with high influence on AGB in
grasslands. Some traits differed in their sensitivity between plots of one PFT (with only
intraspecific interactions between plants) and more PFTs (with additional interspecific
interactions between plants). Some traits had a high impact on functional composition
by generally increasing the growth of plants, while other traits made a PFT more
competitive through advantages in demographic processes.

2.5.1 Understanding the functional composition - trait and process influences in the model

With a sensitivity analysis we obtained information on relevant plant traits that
influence AGB and functional composition. A global sensitivity analysis enables to
detect global trends, nonlinearity and interactions with other trait parameters in
contrast to a local sensitivity analysis, for which changes of only one parameter are
analyzed. Locally, changing one trait parameter can have opposite effects depending
on the strengths of other processes. For example, if plants grow more in height than in
width, it can result in more community AGB as there is more space for other plants.
At the same time, however, larger plants increase light competition. This affects not
only the growth of smaller plants through shading, but also the productivity of the
plant itself through stronger self-shading. Thus, a global sensitivity analysis allowed
us to explore, in the case of two interacting processes, which one is dominating when
varying one specific trait.

The robustness analysis indicated that different processes dominated with respect
to plant growth and interactions. Competition for light and space affected the PFTs
differently (e.g. largest impacts on AGB of dominant legumes in the mixture). By
the analysis of mean relative yield, mean plant biomass and mean plant density the
individual-based model further allowed us to understand the mechanisms that led to
the strength of legumes in mixtures. Extended model analysis on the trait variation
of all four PFTs at the same time might reveal additional insights on the competitive
advantages of each PFT in comparison to the other ones in the mixture.

2.5.2 Comparison to field study results – plant densities and plant sizes

Plant density (the number of plants per m²) and mean biomass per plant for each PFT
have many similarities when comparing our simulation results to those from field
measurements of the Jena Experiment (Marquard, Weigelt, Roscher, et al., 2009). In
the field, tall herbs generally produced large but few plants while grasses produced
small but numerous plants, which is consistent with our model results (Table A.5).
Marquard, Weigelt, Roscher, et al. (2009) revealed that legumes were often among the
overyielding species, and grasses tend to underyield in mixtures which is also visible
in our model results (Table A.5). Additionally, the discussed linkage between mean
relative yield and mean relative density (if RYI > 1 then RDI > 1) as well as between
mean relative yield and mean relative size (if RYI < 1 then RBI < 1) (Marquard,
Weigelt, Roscher, et al., 2009) can be observed also in our simulation results (with
the exception of tall herbs showing a RYI = 1.2 and a RDI = 0.5, Table A.5). An
additional result of Marquard, Weigelt, Roscher, et al. (2009) has been that grassland
biomass is positively related to plant density and to AGB per plant, and plant AGB
increases with plant density. In our simulation, we obtained similar trends (Fig. A.9).
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In the study of Marquard, Weigelt, Roscher, et al. (2009), plant density ranged approx.
between 100 and 10,000 plants per m² and plant AGB ranged between about 0.1 g
and 10 g (plots of different species richness, measured in May 2006), whereas our
simulations showed a narrower range (100 to 500 plants per m² and 0.3 g to 2.2 g per
plant, mean values over dates of AGB measurement, see A.1 Supplementary Methods).

We found further similarities of our simulations with an independent field study
investigating life spans of plants of different PFTs (Lauenroth and Adler, 2008)(for
details see A.2 Supplementary Results).

2.5.3 Limitations of individual-based grassland models, possible enhancements and perspec-
tives

In this study, we demonstrated that an individual-based grassland model is able to
simulate aggregated measured vegetation dynamics by including only a few abiotic
variables (daily air temperature, irradiance and day length). Competition between
plants focused on aboveground resources like light and space as we excluded informa-
tion on precipitation and plant-soil interactions. We assumed sufficient water supply
due to the field experiment’s closeness to a river and sufficient nitrogen availabil-
ity due to former land use (Roscher, Temperton, et al., 2009, Fischer, Leimer, et al.,
2019). Strikingly, competition for light and space was sufficient to reproduce not only
measured vegetation dynamics but also the positive relationship between functional
richness and productivity (and its variation within each diversity level; with a less
pronounced slope in the model compared to observations; Fig. A.5). At other sites,
however, soil resource dynamics might influence community structure and functional
composition stronger (Spehn et al., 2002, Pirhofer-Walzl et al., 2012, Fay et al., 2015).
In this case, it is possible to couple grassland models with established soil models
(e.g., DayCent (Parton, Hartman, et al., 1998)).

Although the vegetation attributes in plots of 1 PFT can be reproduced accurately
by the model, larger deviations occur in the mixtures of different PFTs (Figs. 2.1,
A.2). This can be due to different reasons. For example, species-specific influence
of air temperature on plant productivity (Fig. A.5) or trait plasticity is currently
not included in the model. However, plants could change their growth strategies,
and thus their traits in response to management, climate, interactions with other
plants and plant age (Abakumova et al., 2016, Lipowsky et al., 2015, Valladares et al.,
2007). Further analyses and development in the modeling of interaction processes
and their parameterization can provide additional insights, but also require specific
measurements and experiments as well as suitable measures to compare them with
individual-based models (e.g., measures describing the strengths of interaction and
competition between plants (Burns and Strauss, 2012, Kraft et al., 2015).

With regard to the approach of grouping species to plant functional types, we were
able to aggregate field observations to average plots of the assigned PFT. Derived
attributes can thus be interpreted as dominant traits of the PFT. Species richness
and composition as well as intraspecific trait variation within PFTs can also impact
community productivity and functional composition (Marquard, Weigelt, Roscher,
et al., 2009, Marquard, Weigelt, Temperton, et al., 2009, Moulin, Perasso, and Gillet,
2018, Tilman, Knops, et al., 1997, Buchmann et al., 2018). Combining trait distributions
and grassland modeling allows to add trait variation to PFTs. Based on our sensitivity
analysis, parameters with low influence (such as seed biomass or leaf life span)
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could remain constant at an average value while only trait parameters with higher
influence on vegetation attributes could be varied among plants (e.g. by adding
random fluctuations to traits of new seedlings). By this, not only interspecific diversity
but also intraspecific diversity within the community (e.g., Crawford et al., 2019)
which includes phenotypic and genetic variation (Wellstein et al., 2013, Garnier et al.,
2007) could be considered. Thereby, plants could adapt to changing environmental
conditions (due to higher mortality of individuals with poor suitability) which can
enable to analyze intraspecific trait-environment relationships within habitats.

The use of a process-oriented model allows to investigate the influence of additional
factors on vegetation dynamics. For instance, mowing frequencies or air temperature
could be varied in order to conduct theoretical experiments that may not be feasible
in the field (Völler et al., 2017, Gilhaus et al., 2017). Although field sites can differ
in environmental factors, models provide the opportunity to analyze their effects
separately and jointly, and in different intensities. In addition, models enable to an-
alyze underlying processes structuring communities which are difficult to measure
experimentally, such as the importance of competition for light versus space. Field
measurements on the light climate and leaf area density in distinct height layers in a
grassland mixture as well as mean characteristics of different PFTs could support such
a model-based analysis. Such studies can build a first step towards deriving param-
eterizations that are regionally transferable. For this, abiotic factors such as climate
and soil, and also management regimes differ regionally while traits of PFTs should
remain unchanged. However, it is still an open question whether feedbacks between
environmental changes and species traits need to be considered. Field experiments
can support such future model developments. At the same time, confronting different
modeling approaches with similar research questions can enable to identify decisive
mechanistic processes, model strengths and model weaknesses. Then in turn, models
can provide suggestions and recommendations for future field experiments as well as
for the management or conservation of grassland communities.

2.6 conclusion

In summary, our results show that an individual-based and process-oriented sim-
ulation model can reproduce aggregated dynamics of four vegetation attributes in
grasslands. Not only the dynamics of plots along a gradient of functional diversity
(with plant functional types of grasses, small herbs, tall herbs and legumes) can be
simulated, but also the positive effect of functional richness on grassland productiv-
ity. Model analyses showed that competition for space has a stronger influence on
functional composition than competition for light. Moreover, we identified specific
traits that can make a plant functional type more productive and more competi-
tive in mixtures. The methods and analyses shown represent a promising step for
the development of grassland models and how to apply them to complement field
experiments.

2.7 data availability

The data of the Jena experiment used for the calibration can be obtained from http:

//esapubs.org/archive/ecol/E091/066/metadata.htm. A detailed description of the
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3.1 abstract

Grasslands represent an important ecosystem type as they provide numerous ecosys-
tem services. Field studies have shown that temperate grasslands with high diversity
can be highly productive. Management and changing environmental conditions can
impact the diversity-productivity relationship. However, the specific mechanisms and
role of biodiversity, environmental factors or anthropogenic interventions that lead to
changes in productivity are not well understood. Here, we used the individual-based
grassland model GRASSMIND parameterized for a field biodiversity experiment to
analyze changes in the diversity-productivity relationship when varying the mow-
ing frequency and increasing air temperature. Our results revealed that the positive
diversity-productivity relationship persists with varied mowing frequency and tem-
perature increase, with an increased proportion of herbs in more frequently mown
grasslands. Using the model, we further investigated quantitatively how different
processes (e.g., plant shading) affect grassland dynamics and productivity under
varied mowing frequencies and air temperature. Although aboveground net primary
productivity decreased in more frequently mown grasslands, biomass yields increased
due to an even stronger decrease in space-dependent plant mortality. Plant mortality
(intrinsic and by crowding) caused more biomass losses than caused by shading
between plants or by a reduced productivity due to temperature increase. This study
revealed how models, complementary to field experiments, can be used to analyze
and quantify the importance of mechanisms and the role of environmental factors in
grassland dynamics.

3.2 introduction

Grasslands are a worldwide occurring ecosystem type (Smit et al., 2008) and can
include a high species richness (e.g. 89 plant species per m²) (Wilson et al., 2012).
The biodiversity of grasslands is known to be linked to various ecosystem functions,
such as resilience, robustness and also productivity (Hector, Hautier, et al., 2010). In
terms of productivity, plant diversity can be considered as important as grassland
management (Schaub, Buchmann, et al., 2020, Schaub, Finger, et al., 2020).

The relationship between biodiversity and grassland productivity (‘diversity-
productivity relationship’) has already been analyzed in multiple field studies. Trends
of the analyzed relationships thereby differ between experiments with manipulated
levels of plant diversity and observational studies where the diversity emerges from
natural and anthropogenic processes (Van Oijen et al., 2020). Experiments with manip-
ulated species richness, for example, revealed that more plant diversity is connected
with higher productivity (Hector, Schmid, et al., 1999, Weisser et al., 2017, Nyfeler
et al., 2009, Schmid, 2002, Van Oijen et al., 2020). In contrast, in field observations
species richness affects and responds to grassland productivity at the same time and
thus, can show different patterns of diversity-productivity relations (Grace, Michael
Anderson, et al., 2007, Grace, Anderson, et al., 2016, Mittelbach et al., 2001, Schmid,
2002, Van Oijen et al., 2020). High productivity values were thereby mostly associated
with low species richness in intensively managed grasslands (Van Oijen et al., 2020),
while natural grasslands showed only minor impacts of plant diversity on productivity
(Grace, Michael Anderson, et al., 2007). In addition, explicit differences in management
regime (in terms of frequency or intensity) can also result in contrasting effects (Yin
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et al., 2017, Weigelt, Weisser, et al., 2009, Walter et al., 2012). Depending on the ex-
perimental field site, increasing mowing frequency either caused higher productivity
values irrespective of species richness or functional group richness (Weigelt, Weisser,
et al., 2009), or caused marginally higher or lower productivity values related to the
timing of mowing events (Walter et al., 2012), or even caused lower productivity values
with reduced effects in more diverse grasslands (Yin et al., 2017).

Besides management, other environmental factors such as soil properties (Fay et al.,
2015), climatic conditions, and the regional species pool and composition (Hector,
Bazeley-White, et al., 2002) can play a role for the impact of plant diversity on
productivity. For example, increased air temperature at different extensively managed
experimental field sites led to lower (De Boeck et al., 2007), equal or higher productivity
(Grant et al., 2017, Cowles et al., 2016) of grasslands, with significant effects of species
diversity (De Boeck et al., 2007, Cowles et al., 2016). Grasslands under drought, which
include besides warming also less precipitation, showed in turn equal to less biomass
production, depending on management intensity (Vogel et al., 2012, Kahmen et al.,
2005, Craine, Nippert, et al., 2012).

To gain a generalized understanding of how management intensity and environ-
mental changes affect grassland diversity and productivity, a systematic analysis of
single effects of the influencing factors - environment, management, plant diversity
and vegetation dynamics, as well as their interplay and feedbacks is necessary. In
combination with field experiments and observations, modeling allows expanding and
thus complementing knowledge on the relative importance of different influencing
factors for grassland dynamics. Grace, Anderson, et al. (2016) used structural equation
modeling to identify important influencing factors on species richness and productiv-
ity based on observational grassland data around the world. For instance, they found
that shading between plants is strongly tied to aboveground biomass and shading
controls species richness on the plot-scale. To understand the detailed responsible
mechanisms and to quantify the magnitude of influence of different factors, the use of
process-based simulation models can be beneficial.

Process-based grassland models investigated, so far, the impact of different manage-
ment with respect to mowing intensity and climate change (Kipling et al., 2016, Oijen
et al., 2018). They often focused on consequences for other trophic levels, e.g., animals
(Johst, Drechsler, Thomas, et al., 2006, Green et al., 1997), or on changes in grassland
productivity (Rodriguez et al., 1999, Moulin, Perasso, Calanca, et al., 2021, Schippers
and Joenje, 2002, Soussana, Maire, et al., 2012), but the detailed mechanisms in plant
growth responsible for the varying results were not analyzed. Moreover, the models
were mostly population-based and focused on modeling aboveground biomass (Duru
et al., 2009, Schippers and Joenje, 2002); only few considered also explicit dynamics
of other vegetation attributes such as functional composition or vegetation height
(Moulin, Perasso, and Gillet, 2018). As a result, mowing events were often defined as
the removal or as the retention of a certain amount of aboveground biomass (Schippers
and Joenje, 2002, Rolinski et al., 2018, Puche et al., 2019, Schaphoff et al., 2018, Chang,
Viovy, et al., 2013). For instance, Moulin, Perasso, Calanca, et al. (2021) examined the
dynamics of functional composition under different management scenarios, consider-
ing mowing events as the removal of a certain proportion of each species, coupled to
a species’ mature plant height (i.e., maximum plant height). However, especially for
mowing, the daily development of the height of each individual plant, and thus the
explicit frequency of large and small plants per occurring species in the community
on the day of mowing can play an important role. Individual-based models offer
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the possibility to track, among others, also the dynamics of plant height structure
per species in grasslands. This allows to explicitly model mowing events defined by
mowing height, and to analyze its impact (and feedback) on the size growth of each
plant.

Here, we use an individual-based process-oriented model, parameterized for a field
biodiversity experiment in Central Europe in which plant diversity is systematically
manipulated and analyzed in terms of its effect on grassland productivity. The param-
eterized model already reproduces well the observed diversity-productivity relation
for the diversity range of four plant functional types (Schmid, Huth, et al., 2021).
Given this starting point, we investigated the following questions in this simulation
study:

1. How do mowing frequency and air temperature influence the diver-
sity–productivity relationship in grasslands?

2. How do demographic processes, plant shading and crowding as well as air
temperature affect grassland dynamics?

3. Does mowing frequency change the relative abundances of plant functional
types in grasslands?

We focused in our study on functional diversity by using plant functional types
(PFTs). Each mixture of different functional richness (number of PFTs) was simulated in
combination with different annual mowing frequencies (zero to five) and an increased
air temperature (one and two degrees). Thereby, relative abundance of the considered
PFTs could change in response to the modified climatic condition and management
regime. On the example of the 4-PFT mixture, we systematically analyzed how the
underlying vegetation processes that act on the individual plant level in the model
led to differences in grassland productivity and abundances of plant functional types
under the varied anthropogenic and environmental conditions. In order to take a first
step in disentangling effects of environmental and management change, we focused
here only on mowing frequencies (in terms of management) and air temperature
increase (in terms of environmental change).

3.3 methods

3.3.1 The grassland model

We used here the individual-based grassland model GRASSMIND. The model is
process-oriented and simulates the growth of individual plants on a daily basis. Main
processes include plant photosynthesis, respiration, reproduction and mortality. Since
the GRASSMIND model consists of many different processes, we describe here only
those relevant for our study. A detailed description of the GRASSMIND model can
be found in (Taubert, Hetzer, et al., 2020a), (Taubert, Hetzer, et al., 2020b) and under
www.formind.org/downloads. Note that in this study, belowground processes in soil
such as competition for water and nitrogen are excluded (assumption that soil water
and nitrogen do not limit plant growth; see also (Schmid, Huth, et al., 2021)). In order
to take a first step in disentangling effects of environmental and management change,
we constrained our modeling study to vegetation processes acting aboveground only
(e.g., plant shoot growth and mortality, shading of plants and crowding). By this,
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effects of changes in precipitation or soil resource dynamics (e.g., soil water and
nitrogen content) on the dynamics of grasslands were excluded in this study first,
but allow for extended impact analyses in follow-up studies (e.g., accounting also for
effects of drought or fertilization regimes).

At the individual level, plants are established as seedlings and then grow in height
and width based on a fraction of net primary productivity (ANPP [gODM/d]), which
is calculated from the balance of photosynthesis (GPPact [gODM/d]) and respiration
(R [gODM/d]) multiplied by the allocation rate to shoots allocshoot:

ANPP = allocshoot ∗ (GPPact − R) (3.3)

whereby respiration is divided into cost for maintenance and plant growth:

R = Rmain + Rgrowth (3.4)

Individual plants may differ in their traits (PFT-specific model parameters) which
affect plant growth. Plant growth is modeled according to a PFT-specific constant ratio
of an individual plant’s height to its width (or lateral extent). A mowing event causes
all plants to be shortened to a certain height (e.g., to 10 cm) while maintaining the
width of the plants (mown biomass is assumed to be removed). Subsequently, plants
grow only in height until the PFT-specific ratio is reached again.

Reproduction is modeled by a PFT-specific seed ingrowth. This daily ingrowth
encompasses the constant incoming seed rain from the surrounding landscape. Simu-
lated seed ingrowth starts from bare ground with the date of sowing the grassland and
is repeated each day. The amount of incoming seeds remains constant on each day, but
seeds are constrained dependent on the available bare ground (reduction proportional
to PFT-specific seed rain). Those (constrained) incoming seeds can germinate after a
PFT-specific emergence time (dependent on a PFT-specific germination rate constant
over time). After a PFT-specific time, growing seedlings turn into adult plants. Some
plant characteristics then change, for instance, the allocation (allocshoot, investing partly
energy in seed production) and the intrinsic mortality rate of plants (mseed to mbasic).

Different limitation factors influence vegetation growth in the model (Fig. 3.1). At
the community level, competition for space (crowding) prevents too many plants
growing into a simulated plot. This density-dependent mortality reduces plant density
(number of plants on the plot) if community cover exceeds plot area. Plant growth
can be limited due to shading by other plants (asymmetric competition for light,
modeled implicitly for all plants on a 1 m2 plot). Tall plants shade smaller ones, which
affects photosynthesis and can reduce growth. More precisely, the global radiation I0

[µmolphoton/m²/s] is reduced in horizontal layers (1 cm width) taking into account the
total leaf area LAIi [-] of all individuals in each height layer i to gain the irradiance IS
[µmolphoton/m2/s] of the height layer S (Monsi and Saeki, 2005):

IS = I0 · e−(∑i>S LAIi) (3.5)

As a result, light intensity is reduced towards the ground of the plot. Plant height
determines the height layer S a plant can reach and thus, the available irradiance of
the plant. Light limitation is measured with the light reduction factor RL = IS/I0.

Light reduction is considered in the calculation of the potential gross primary pro-
ductivity GPPpot [gODM/d] of each individual. GPPpot is modeled via photosynthesis,
and depends on different parameters such as the PFT-specific initial slope of the
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light response curve and the PFT-specific light extinction coefficient, as well as on
plant-relating attributes such as the incoming irradiance on the leaf surface, the leaf
area and the area of lateral extent of the plant.

Air temperature has an influence on plant photosynthesis and respiration. Potential
gross primary productivity GPPpot can be reduced by a temperature-dependent factor
RT ∈ [0, 1]:

GPPact = RT ∗ GPPpot (3.6)

and maintenance respiration Rmain [gODM/d] and growth respiration Rgrowth [gODM/d]
can be reduced or increased by a temperature-dependent factor fT ∈ [0, ∞):

Rmain = fT ∗ rm ∗ B (3.7)

Rgrowth = rg (GPPact − Rmain) (3.8)

whereby rm [1/d] is a constant maintenance respiration rate, B [gODM/m²] is the
biomass of plant root and green shoot, rg [-] is a constant parameter for growth
respiratory costs and GPPact [gODM/d] is the actual gross primary productivity. A
temperature below 25◦C causes a decrease in maintenance respiration Rmain and a
temperature above 25◦C causes an increase.

Both, gross primary productivity and maintenance respiration, change with air
temperatures, whereby gross primary productivity has its optimum at a temperature
greater than or equal to 10 ◦C (Schippers and Kropff, 2001). Further abiotic variables
(such as global radiation and day length) also influence plant growth.

Mortality of plants is included as stochastic events. Both mortality processes, intrin-
sic mortality and mortality by crowding, select plants at random to die. The intrinsic
(PFT-specific) mortality rate can affect a plant at each day during its lifetime. Crowding
mortality, instead, is only triggered if overall vegetation cover exceeds the simulated
area (here one m2). Note that, although each plant has generally the same chance
to die due to crowding, smaller plants are more likely to die due to their higher
frequency compared to larger plants (skewed plant size distribution).

To account for stochastic effects in our analyses, we calculated the average of results
over twenty simulation runs (corresponding to an area of 20 m2).

3.3.2 Model settings

In this study we used four plant functional types (PFTs) for representing functional
diversity. Thereby, the traits of a PFT correspond to typical representatives of either
grasses, small herbs, tall herbs or legumes (Roscher, Schumacher, Baade, et al., 2004).
The parameterization of the PFTs is based on field measurements of the Jena Biodiver-
sity Experiment in Central Europe (50◦55´N, 11◦35´E) (see Weigelt, Marquard, et al.,
2010, Schmid, Huth, et al., 2021 for details). Plant species in the experiment were
assigned to one of the four respective PFTs (Roscher, Schumacher, Baade, et al., 2004)
and the originally set-up grassland plots (each 20 x 20 m²) with different levels of plant
species-richness (from monocultures to multi-species mixtures) collapsed into average
plots consisting of (a) only one of the four PFTs, (b) all four PFTs and (c) different
combinations of two or three of the respective PFTs. The aggregated grassland plots
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Figure 3.1: Model processes relevant for biomass dynamics in the model. Processes outside
the green framed area take place on the community level, whereas processes inside
happen for each individual plant. Orange boxes indicate competition processes
leading to limiting growth. For a detailed description of variables and equations
see Methods and www.formind.org/downloads.

of different functional diversities from (a) and (b) were then used to parameterize
the grassland model in a stepwise manner (first, each average plot of one PFT, and
second, the average plot including all four PFTs). The second step was only required
for recalibration of the seed ingrowth per PFT and did not change any of the other
PFT-specific model parameters calibrated before. The average 2-PFT and 3-PFT mixture
plots were used for model validation. For model parameterization, calibration as well
as validation, mean vegetation attributes over the entire measurement period from
2002 to 2008 were considered (Schmid, Huth, et al., 2021). Final parameter values of
each of the four PFTs are shown in Table B.1. Methodological details of the calibration
and a comparison of observed and calibrated grassland dynamics (in terms of different
vegetation attributes and functional composition) are provided in Schmid, Huth, et al.
(2021).

The model simulations started on the day of sowing (16th of May, 2002) and ended
six years later on 31st of December. We simulated mixtures of all possible PFT com-
binations (of functional richness 1 to 4). In the model, the functional richness and
diversity remained throughout the entire simulation time, and only the proportions of
PFTs were variable.

The management regime in the first two simulation years corresponds to the setting
in Schmid, Huth, et al. (2021) (first year mowing on 5th of July and 10th of September,
second year mowing on 10th of June 10 and 10th of September). Climate data were
taken from a weather station located near the Jena Experiment. To prevent different
climatic conditions between years from influencing our results, climate data of 2002
were used for each year (average temperature T = 10.3◦C).

Temperature and mowing frequency were then varied from the third simulation
year onwards (both described in the next section).
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3.3.3 Scenario analysis

In the scenario analysis we investigated a range of annual mowing events for differ-
ent temperatures. Those were applied for five consecutive years after two years of
simulation with the same management and climate.

For the varied climate we considered three scenarios: (i) the daily temperature
remained the same as in the first two years, (ii) temperature was increased by one
degree on every day (T = 11.3◦C) and (iii) temperature was increased by two degrees
on every day (T = 12.3◦C) while other climatic variables remained the same. For each
climate scenario, management was altered according to Table 3.1. The dates of the
varied mowing frequency (one to five times per year) were distributed evenly within
each year (Table 3.1). Note that the dates for the scenario of two annual mowing events
in our simulation study slightly differed from those mowing dates done in the Jena
Experiment and used in a previous simulation study (Schmid, Huth, et al., 2021).
Additionally, we simulated a management scenario with no mowing events from year
3 to 7.

Table 3.1: Dates of varied mowing frequency. Mowing dates were applied for five years after
two years of simulation with the same management.

Mowing
frequency

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

1 10th

2 10th 10th

3 10th 10th 10th

4 10th 10th 10th 10th

5 10th 10th 10th 10th 10th

3.3.4 Evaluation of model output

The model output includes daily vegetation attributes of each plant. For our analysis,
we considered different vegetation attributes over a period of five years (between 1st

of March and 31st of October, 245 days per year, of the simulation years 3 to 7). We
used the community and PFT-specific aboveground biomass (AGB) by summing up
the AGB of all plants or the AGB of plants belonging to a certain PFT. AGB on day t
results from AGB of the previous day, aboveground net primary productivity ANPP,
the aboveground biomass of ingrowing seedlings (AGBseedling) and plant mortality
(AGBmortintrinsic and AGBmortcrowding) (see also Fig. 3.1):

AGB (t) = AGB (t − 1)+ ANPP+ AGBseedling − AGBmortintrinsic − AGBmortcrowding (3.9)

Total biomass change ∆AGB corresponds to the change of AGB at day t:

∆AGB(t) = AGB (t)− AGB(t − 1) (3.10)

We analyzed weekly and annual changes in total biomass by first, aggregating
simulated daily values to weeks and years (using averages) and second, calculating
changes based on these average values using equation (3.10).
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Besides the total aboveground biomass, we also looked at the mown biomass, which
corresponds to a fraction of the aboveground biomass above mowing height (here
10 cm). Leaf area index (LAI) is derived by calculating the leaf area from aboveground
total AGB and the constant specific leaf area of a plant (PFT-specific model parameter).
As vegetation height, we used the height of the highest plant within the community.
To assess the abundances of PFTs, we regarded aboveground biomass proportions.

3.3.5 Analysis of influencing processes

To assess the impact of different influencing processes on the grassland dynamics,
we analyzed which amounts of biomass would have grown without certain limiting
processes on a day, respectively. For that, we computed (i) the ANPP that was produced
in the standard setting, (ii) the AGB that got lost by crowding, (iii) the ANPP that
would have been produced without shading between plants, (iv) the ANPP that
would have resulted if there had been no temperature effects on photosynthesis (see
equation (3.6), RT = 1) and (v) the ANPP that would have resulted if there had been
no temperature effects on respiration (see equation (3.7), fT = 1) (Fig. 3.1, see also
Table B.2). For each single day, the effect of a missing influencing process was always
calculated based on the vegetation of the standard setting on the previous day, which
means that for (iii) to (v), the effect of the missing process on one day had no influence
on the result of the next day. Furthermore, a missing process had no impact on other
(following) processes in the model (Table B.2). For instance, regarding the effect of
shading, we do not consider a changed respiration that would have followed, but
consider only the biomass that got lost due to less light availability.

3.4 results

3.4.1 Impacts of mowing frequency and air temperature on the diversity-productivity rela-
tionship

Overall, a higher mowing frequency led to increased mown biomass in the plots
(Fig. 3.2, green dots and lines, Fig. B.1). For different mowing frequencies, plots of
four PFTs showed the highest amount of mown biomass per year (up to 50% more
than average plots of one PFT), while average plots of two and three PFTs were partly
less productive than plots of one PFT. Nevertheless, we observed a positive trend with
increasing functional group richness for all mowing frequencies. Functional group
richness gained more influence on productivity with increasing mowing frequency, as
the slope of trend lines in the relationship got steeper (on average 11 g/m2yr more
productivity per functional richness level when mowing once per year, and 53 g/m2yr
more productivity per functional richness level when mowing five times per year).
A deeper analysis revealed that some low-diversity PFT compositions decreased
productivity with increasing mowing frequency (1-PFT plot of grasses, and 2-PFT plot
of grasses and small herbs, Fig. B.2). Productivity of PFT-mixtures strongly varied
depending on their plant functional composition (Fig. B.2). Thereby, they mostly
showed a dominance of PFTs that are highly productive in the corresponding 1-PFT
plots (e.g., legumes, Fig. B.3).

With increasing air temperature, trends in the diversity-productivity relationships
(in terms of functional richness) under different mowing frequencies still remained

43



impact of mowing frequency and temperature on productivity of temperate

grasslands

positive in our modeling study (Fig. 3.2, yellow and red dots and lines). Increased
temperatures led to an overall increase of mown biomass (Fig. 3.2). Thereby, a 1°C
increase of temperature affected a 5% increase in mown biomass, while a 2°C increase
resulted in 10% more mown biomass (averages over all mowing frequencies and
functional group richness levels). Remarkably, the higher the mowing frequency and
the lower the functional group richness, the less change appeared according to biomass
yield (Fig. 3.2) and other vegetation attributes (Table B.3).

Figure 3.2: Impact of mowing frequency and air temperature on the diversity-productivity
relationship. Productivity refers to the mean annual mown biomass (aboveground
biomass above 10 cm height, mean over five simulation years), functional group
richness refers to the number of plant functional types in the grassland. Daily
temperature was increased by 0°C (blue color), 1°C (yellow color) or 2°C (red color),
respectively. See Fig. B.1 for direct comparison of different mowing frequencies
with no increased air temperature.

3.4.2 Causes for changes in productivity

To find an explanation for increased biomass yields with higher mowing frequen-
cies and temperature increase, we analyzed the annual development of vegetation
attributes and the influence of different model processes on each attribute with focus
on the mixture of four PFTs.

3.4.2.1 Annual development of AGB and ANPP in extensively managed grasslands

When grasslands were mown once per year, simulations of annual aboveground
biomass (AGB) showed more or less logistic growth until the mowing event affected
a drastic decrease of AGB (Fig. 3.3A). Also, aboveground net primary productivity
(ANPP) increased until the mid of the year, and decreased thereafter, whereby again
the mowing event affected an abrupt change (Fig. 3.3B). Similar patterns were observed
in simulated leaf area index and vegetation height (Fig. B.4A). In contrast, plant density
decreased slightly until mid-year and remained stable thereafter, indicating an increase
in average plant size (Fig. B.4A).

In the first months of the year, low temperatures (Fig. 3.3C) prevented a fast growth
of plants which is reflected in a small increase of vegetation biomass and ANPP
(Fig. 3.3A-B). As air temperatures became higher, plants accelerated in growth as
especially taller plants increased their photosynthetic productivity (Fig. 3.3C). However,
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self-shading and mutual shading of plants (which increases with plant height) slowed
down plant productivity again. Both, plant mortality by crowding and the intrinsic
plant mortality, showed to have a greater influence on grassland productivity than
the establishment of seedlings, shading between plants or temperature effects on
photosynthesis and respiration (Fig. 3.3B-C). During the year, temperature decreased
respiration costs and hence, increased grassland productivity in the model. These
respiration-related biomass gains exceeded biomass losses due to temperature effects
on plant photosynthesis at the end of the vegetation period. The mowing event caused
less shading between plants, less plant mortality and increased seedling establishment
(Fig. 3.3B-C).

3.4.2.2 Changes in influencing processes at different mowing frequencies

With higher mowing frequencies, plants became smaller which resulted in a decreasing
ANPP (Figs. 3.4A-B, B.4B, Tables B.3, B.4). With this, shading of taller plants slightly
decreased and biomass losses and gains due to temperature effects on photosynthesis
and respiration became smaller (Fig. 3.4C, Table B.4). Since the modelled plants grew
only in height after mowing and not in width anymore (until they had reached their
previous height-width ratio again), biomass losses due to plant mortality by crowding
decreased, while the impact of intrinsic mortality remained equal (Fig. 3.4B). As the
decrease of biomass losses (crowding mortality and intrinsic mortality) was stronger
than the decrease of biomass gain (ANPP and new seedlings) (Fig. 3.4B), higher
mowing frequencies led in total to an increase in total annual AGB change and mown
biomass (Fig. 3.4B).

3.4.2.3 Changes in influencing processes at different air temperatures

In the 4-PFT mixture, a 2°C increase in air temperature resulted in an increase of
total AGB of grasslands for low mowing frequencies (up to 31% more) and remained
similar for five mowing events per year (1% less) compared to no increase in temper-
ature (Fig. B.6 and Table B.3). Main reasons for the increase of AGB at low mowing
frequencies were a higher ANPP due to higher LAI, a weaker effect of temperature on
photosynthesis (less loss compared to photosynthesis without temperature impact)
and a stronger effect of temperature on respiration (more biomass gain compared to
respiration without temperature impact), and less intrinsic plant mortality (Tables B.3
and B.4). However, ANPP loss due to shading slightly increased as plants grew taller
in the simulations. Mowing grasslands more often led to reduced AGB and LAI
and thus, the positive effect of an increased air temperature on photosynthesis was
mitigated (Tables B.3 and B.4).

3.4.3 Changes in abundances of plant functional types in grasslands

To get an impression whether and how different mowing frequencies change grassland
diversity, we looked at abundances of different PFTs in the simulations. Different
mowing frequencies resulted in small changes in the relative abundances of PFTs in
the grassland mixture of four PFTs. The proportion of grasses in total AGB decreased
with increasing mowing frequency from 22% (no mowing) to 15% (five times per
year), thus herbs proportionally increased (Fig. 3.4A, Table B.5). Within the herbs,
AGB was dominated by legumes (39-57% of total biomass). When more frequently
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Figure 3.3: Annual courses of vegetation attributes in the grassland mixture of four plant
functional types with one mowing event per year (marked by the gray dotted
line). Vegetation attributes are weekly means and correspond to averages over the
vegetation periods of five simulation years. In (A) the annual developments of
aboveground biomass (AGB) is shown. In (B) total biomass changes (red line) and
the leading influence of different processes in the model are shown. In (C) the
colored areas show the amount of aboveground biomass that would have been
additionally produced without activating certain processes in the grassland model
(shading and temperature effects on plant photosynthesis and respiration, see
Methods). For annual courses of further vegetation attributes see Fig. B.4A.
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Figure 3.4: Influence of different mowing frequencies (4-PFT mixture). Annual aggregations
were taken over the vegetation periods of five simulation years. (A) shows annual
mean aboveground biomass (AGB) for different mowing frequencies of the total
community (black dots) and of different plant functional types (colored dots).
In (B) average annual sums of aboveground net primary productivity (ANPP),
biomass gain due to new plants, biomass loss due to intrinsic mortality and by
crowding are shown. The difference of those gains and losses corresponds to the
total annual biomass change (red line). The black line is the average of the annual
total mown biomass. In (C) colored bars show the amount of biomass that would
have been produced without activating certain processes in the model (shading
and temperature effects on photosynthesis or respiration, see Methods). For annual
courses of AGB and changes in further vegetation attributes see Figs. B.6 and B.4B.
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mown, grasslands showed a decrease in the proportion of legumes and an increase in
the proportion of small and tall herbs. Small herbs always maintained a low biomass
proportion with 9-16%. When considering only mown biomass (at mowing dates
above 10 cm height) the results slightly differed (see B.1 Supplementary Results and
Fig. B.7).

Quantitatively, higher mowing frequencies led to a decrease in the AGB of legumes
and grasses, an increase in the AGB of tall herbs and no remarkable changes in small
herbs (Fig. 3.4A). LAI and vegetation height showed similar trends, while plant density
remained stable regardless of mowing frequency (Fig. B.5).

Generally, the PFTs showed different growth strategies in the mixture. Tall herbs
and legumes had highest ANPP, whereas small herbs produced the highest amount of
seedling biomass among the PFTs, especially in the beginning of the growth period
(Figs. 3.5A-B, B.8). However, small herbs also had, together with tall herbs, high
biomasses losses due to intrinsic mortality (Fig. 3.5A), which is certainly connected
to their low plant densities (Fig. B.5). Remarkably, ANPP of legumes was still high,
although they had high losses due to shading and temperature effects (Fig. 3.5B).

An impact of different mowing frequencies was visible in ANPP and crowding
mortality of the PFTs (Fig. 3.5A). Higher mowing frequencies led to less ANPP and
crowding mortality of grasses and legumes, but increased productivity of tall herbs.
The decreasing impact of shading between plants with higher mowing frequency was
visible in all PFTs (Fig. 3.5B). In contrast, temperature effects increased for tall herbs,
decreased for grasses and legumes and remained stable for small herbs (Fig. 3.5B).

Increased air temperature caused only minor changes in relative abundances of PFTs
in the modeled grassland (Fig. B.7B and Table B.5). Overall, legumes and small herbs
became slightly more dominant, which was mainly at the expense of the biomass
proportion of tall herbs (i.e., by maximum 9 percentage points). For example, the
proportion of legumes increased from 53% to 62% in the scenario of two mowing
events per year, or the proportion of tall herbs decreased from 31% to 22% in the
scenario of four mowing events per year).

3.5 discussion

In this study, we used an individual-based process-oriented model parameterized
for a local field biodiversity experiment to investigate the effect of different mowing
frequencies and air temperature on the productivity and the abundances of plant
functional types in temperate grasslands. We studied in detail the role of different
influencing processes and temperature on vegetation productivity and revealed the
following insights: (i) The positive diversity-productivity relationship persisted with
increasing mowing frequency, with an increased proportion of herbs in more fre-
quently mown grasslands. Although higher mowing frequencies led to a lower overall
aboveground net primary productivity, biomass yields increased. Effects of increased
air temperature were greatest in grasslands with high functional richness and low
mowing frequency. (ii) Among the vegetation processes considered, plant mortality
(intrinsic and by crowding) had the greatest impact, and shading between plants the
least impact on grassland productivity in diverse mixtures. (iii) The analyzed diverse
grassland mixture was dominated by herbs, especially by legumes. The proportion
of grasses and legumes decreased in the model simulations under more frequent
mowing.
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Figure 3.5: Influence of different mowing frequencies on PFT-specific grassland dynamics
(plant functional types: grasses, small herbs, tall herbs and legumes) in the 4-
PFT mixture. (A) Impacts on aboveground biomass gains and losses (biomass of
new plants, aboveground net primary productivity (ANPP), intrinsic mortality
and mortality by crowding) and (B) impacts on the strength of limiting processes
affecting ANPP (by shading and temperature effects).

3.5.1 Impacts of mowing frequency and air temperature on the diversity-productivity rela-
tionship

The increase of biomass yields with diversity and under more frequent mowing (or
when temperature rises) was also observed in field experiments in which the level
of plant diversity has been manipulated (Weigelt, Weisser, et al., 2009, Cowles et al.,
2016). Our model results indicate that the positive diversity-productivity relationships
may be driven by the dominance of PFTs in the mixtures, that strongly increase
productivity with mowing frequency. Higher mowing frequencies allow fast-growing
plants (e.g., tall herbs) to regrow more often before reaching its saturation at the
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maximum height, thus making them more productive and dominant. More frequently
mown grasslands not only achieved higher biomass yields in our model simulations,
but also showed less reaction to temperature increase. In modeled grasslands with
low mowing frequency, air temperature stimulated vegetation growth. In contrast,
vegetation growth did not change remarkably at high mowing frequencies as overall
less aboveground biomass and shorter recovery times between mowing events resulted
in a lower plant photosynthesis and thus, less stimulation by increased temperature.

The conducted analysis of changes in management regime and temperature increase
and its impacts on the diversity-productivity relationship can be extended. Some stud-
ies already emphasized that, besides plant diversity and air temperature, the effects of
management can also interact with other local and regional environmental conditions
(e.g., soil conditions or precipitation). This complex interplay of management and
various site-specific environmental factors makes it difficult to give general recom-
mendations, for example for increasing biodiversity in grasslands (Gilhaus et al., 2017,
Michaud, Plantureux, Amiaud, et al., 2012). In order to progress insight, process-based
models can be applied for systematic variations of multiple environmental factors for
analyzing separate and combined effects and disentangling their overall impact on
grassland growth (e.g., extension of this study to additional changes in precipitation
and fertilization and the resulting soil resource dynamics) – by this, supporting the
synthesis of biodiversity effects on grassland productivity along an environmental
gradient (Wang, Cadotte, et al., 2019).

3.5.2 Quantifying effects of different processes on vegetation growth

The effects of different processes on growth, such as shading between plants or the
influence of temperature, are difficult to measure and to quantify in field experiments.
For instance, measuring light availability using a light meter (Borer, Seabloom, et al.,
2014) or determining temperature on different vegetation heights by using a sensor
network (Schädler et al., 2019) are costly, but can indirectly provide information about
plant size structure and corresponding plant interactions, e.g., shading within the
grassland. Although controlled experiments (Roscher, Kutsch, et al., 2011) can offer
more insight on such plant interactions and vegetation processes, it still remains
difficult in the field to disentangle and directly measure individual plants. This,
however, would be required to estimate how different plant species are vertically
distributed in the size structure of grasslands (especially in species-rich semi-natural
grasslands) and to understand which effect comes into play for plant growth and to
what extent.

Our study is a well example of how models can be used to gain a deeper under-
standing of vegetation dynamics in complementing field studies. Specifically, our
simulation analysis revealed that plant mortality has a major impact on vegetation
dynamics. Model parameters of the responsible processes, namely intrinsic mortality
and mortality by crowding, have therefore been quantified using inverse calibration
methods due to lack of observation data (Schmid, Huth, et al., 2021). Thereby, cali-
brated demographic model parameters on plant mortality and seed ingrowth might
mediate each other in our simulations and could be responsible for the observed high
impact of plant mortality by crowding and high ANPP (i.e., high turnover of small
seedlings). Sensitivity analyses of previous simulation studies using the GRASSMIND
model already detected a strong influence of parameters regarding plant geome-
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try, photosynthesis and demography (Schmid, Huth, et al., 2021, Hetzer et al., 2021,
Taubert, Hetzer, et al., 2020a), but also with high (non-linear) interactions to other
model parameters. Thus, future observations of field studies that explicitly measure
plant mortality rates or plant life spans, and plant densities (Lauenroth and Adler,
2008, Hovenden et al., 2017, Wilcox et al., 2020) could support a robust estimation
of such model parameters. Nevertheless, plant mortality can have multiple reasons
(e.g., age- or stress-related) underpinning the need for detailed field experiments and
measurements under various (controlled) conditions.

The here determined influences of different vegetation processes and air temperature
are based on model simulations. Analyzing those influences using other similar
mechanistic models could validate our results. For instance, the model of Schippers,
Groenendael, et al. (2001) did not include the removal of plants due to crowding, but by
an intrinsic mortality or external disturbance events (like mowing, which lets a certain
percentage of adult plants die). In other models, intrinsic plant mortality depends
on air temperature (Soussana, Maire, et al., 2012) or on annual growth efficiencies
(Schaphoff et al., 2018). Such model inter-comparisons (e.g., Bugmann et al., 2019)
can not only help to assess the sensitivity of different model formulation for similar
vegetation processes, but also support the development of up- and downscaling
approaches between models of different complexity and level of detail. For example,
statistical relations between plant density and aggregated grassland attributes at the
community level can be derived from individual-based models (including variations
of environmental factors) and can support the formulation of density-dependent plant
mortality in less detailed models.

3.5.3 Changes in relative abundances of plant functional types in grasslands

Increased abundances of fast-growing acquisitive species are known to occur with
intensive management (i.e., high mowing frequencies) (Allan et al., 2015). Like in
our simulation results, experimental field studies showed an increase in herbs and
a decrease in grasses when grassland was mown once per year compared to no
mowing (Maron and Jefferies, 2001) and temperature increase had only minor effects
on the functional composition of grasslands (Grant et al., 2017). Note that grassland
intensification often combines frequent mowing with fertilization whereby fertilization
amounts can change functional species composition in an opposite direction than
presented in this simulation study (in which plant growth was only limited by shading
or crowding but not limited by soil resources).

3.5.4 Possible model extensions

Our study provides possible extensions in several directions. In our analysis, we
only considered fixed mowing dates and a constant mowing height. Shifting mowing
dates within a year or changing mowing height could result in different outcomes
of vegetation dynamics. For example, the day of the first mowing event within a
year is known to influence species diversity, composition and hence also productivity
(Socher et al., 2012, Knop et al., 2006). Earlier first mowing events can promote lower
species richness and higher proportions of grasses (Socher et al., 2012). The mowing
dates in our study are rather theoretical, as we chose evenly distributed dates over a
year independent from the developmental stage of particularly selected grassland at-
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tributes. In contrast, agri-environmental management often provide recommendations
to preserve biodiversity of plants and animals (Kleijn, Baquero, et al., 2006, Kleijn,
Schekkerman, et al., 2010, Tälle et al., 2018, Johst, Drechsler, Mewes, et al., 2015, Green
et al., 1997). For instance, temporal heterogeneity of mowing events is required for
conserving multiple grassland species in the landscape (Johst, Drechsler, Mewes, et al.,
2015). In future studies, mowing events can be modeled as a function of the climatic
condition (e.g., triggered when reaching specific thresholds of aboveground biomass).
In addition to mowing, the model can be extended to simulate additional disturbances
such as grazing (Thornley, 1998, López-Mársico et al., 2015), or extreme events (e.g.,
drought or flooding).

Furthermore, we focused our study on aboveground processes. Plant-soil interac-
tions were not included in this analysis, which corresponds to the assumption of no
limitations in water and nutrient supply. Soil interactions are, however, especially
interesting when simulating increased temperatures, which can also result in a de-
creased water availability as potential evaporation increases (Wetherald and Manabe,
1995, Bates et al., 2008). The here presented simple approach is useful to study the
influence of temperature only on vegetation, i.e., it represents a scenario in which
soil could be watered (and cooled down) at rising temperature. Field studies investi-
gating the impact of climate change often include both, increased temperature and
less precipitation (Schädler et al., 2019, Hossain and Beierkuhnlein, 2018) or only
consider less precipitation (drought) (Craine, Nippert, et al., 2012, Loik et al., 2019).
An experimental study indicated that both changes of the environment, temperature
and soil water, can have different influences on grassland growth (Hoeppner and
Dukes, 2012). In field observations, biomass of herbs increased under warming with
ambient precipitation conditions, but decreased with a combination of warming and
doubled precipitation (Hoeppner and Dukes, 2012). Further, semi-natural grasslands
often include a considerable number of drought-tolerant species (Craine, Ocheltree,
et al., 2013), which are important components determining their resilience.

Simulation models can serve as an important tool to analyze the influence of
different environmental settings. As demonstrated in this study, extrinsic factors (like
mowing frequency and air temperature) and functional diversity (e.g., mixtures of any
combination of plant functional types) can be rapidly varied in simulation models and
analyzed over long time periods. Despite this, also the influence of intrinsic factors
on grassland dynamics can be tested with models, like the variation, adaptation or
evolution of plant traits or the role of plant and population plasticity (Schmid, Huth,
et al., 2021, Maire et al., 2013). For example, management and plant interactions can
alter growth strategies of plants. Trait variation in response to growth conditions
under different species richness levels, community compositions and management
scenarios has already been observed in the field (Roscher, Schumacher, Gubsch,
et al., 2018, Silveira Pontes et al., 2010) and has also shown to be necessary in an
individual-centered vegetation model simulating trends in productivity (Maire et al.,
2013). Including trait distributions instead of fixed trait values might enhance the
adaption of the plant community to certain environmental influences.

3.6 conclusion

In summary, the individual-based grassland model applied here enabled us to quantify
the impact of different climatic and management scenarios on vegetation attributes like
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productivity or abundances of plant functional types. It further allowed us to identify
the importance and change of different processes and factors influencing vegetation
dynamics. Our simulation study demonstrates how models, complementary to field
experiments, can help to understand vegetation growth and its responses to human
impacts and climate change.
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4.1 abstract

Temperate grasslands are important ecosystems as they provide various ecosystem
services (e.g., biodiversity and biomass production). Environmental conditions and
management intensity affect productivity plant functional composition and relative
abundances of plant functional types in grasslands; however, the importance of
different factors and quantitative impacts are still largely unexplored. Here, we used
an individual-based grassland model and created a generic regionally transferable
parameterization by accounting for six different grassland observational sites along a
gradient of climatic, management and soil conditions for calibration and validation. In
a scenario analysis for 24 representative regions across Germany, we then analyzed how
grassland productivity and the biomass proportion of herbs depend on management
intensity and various environmental factors in combination with climate change.
The model-based scenario analysis revealed that intensive management generally
leads to high grassland productivity and low herb proportions. Correlations with
environmental factors decreased with management intensity (i.e., mowing frequency
and fertilization amount). Precipitation and irradiance belonged to the most influential
environmental factors. Climate change had only a minor influence on the analyzed
vegetation attributes. Our study shows how process-based grassland models can be
used to gain a general understanding of how environmental factors and anthropogenic
interventions impact grassland dynamics – knowledge which is especially crucial with
regard to climate change.

4.2 introduction

Natural and semi-natural grasslands can be home for more than 80 different plant
species (WallisDeVries et al., 2002). Biodiversity (e.g., species richness or functional
richness of species grouped to plant functional types (PFTs), the composition and
relative abundances of species or plant functional types) can vary in grasslands,
depending on management intensity and environmental factors (e.g., soil type and
climatic conditions) which all together interact with ecosystem functions such as
productivity. On the one hand, intensive management of high mowing frequencies
and fertilization leads mostly to more productive grasslands with less diversity and
altered functional composition and abundances of PFTs (Plantureux et al., 2005, Socher
et al., 2012, Allan et al., 2015). The application of fertilizer can lead to the absence of
legumes and the dominance of highly productive tall-growing grasses (Gałka et al.,
2005, Hejcman, Klaudisová, et al., 2007) which can prevent the establishment of other
plant species due to increased competition for light and hence lead to low species
diversity (Maron and Jefferies, 2001, Hejcman, Klaudisová, et al., 2007, Boch et al.,
2021). On the other hand, abandonment of grasslands can lead to loss of diversity and
shifts in functional composition as the conservation of plant species is mainly driven
by extensive management (Maron and Jefferies, 2001, Moog et al., 2002). Extensive
management gives plants more access to light due to regular mowing events. That
enhances seedling germination and, e.g., the establishment of different herb species
and therefore promotes diversity (Foster and Gross, 1998, Maron and Jefferies, 2001).
Management intensity, functional richness, composition and abundances of PFTs can
have a strong impact on ecosystem functions and services like ecosystem stability,
carbon storage or the cultural value of grasslands (Tilman, Knops, et al., 1997, Allan
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et al., 2015, Weisser et al., 2017). For that, finding an appropriate management that
maintains and restores a high level of diversity in grasslands is crucial (Plantureux
et al., 2005).

Field studies showed that the effects of management are substantially influenced by
local and regional abiotic conditions (e.g., soil properties or weather), and the interplay
of management and site-specific environmental factors makes it difficult to formulate
general recommendations specifically for increasing biodiversity in grasslands (Adler
et al., 2011, Michaud, Plantureux, Amiaud, et al., 2012, Socher et al., 2012, Fraser, Pither,
et al., 2015, Gilhaus et al., 2017, Mayel et al., 2021). Management and environmental
conditions affect plant functional composition and relative abundances of PFTs, and all
together determine grassland productivity (which in turn can change plant functional
composition and relative abundances). In a local field experiment, management
intensity partly mitigated or amplified the impact of weather conditions and plant
diversity on productivity, whereby intermediate management maximized biomass
yields (Bernhardt-Römermann et al., 2011). Observations of permanent grasslands
from different region types in France revealed that vegetation characteristics including
functional composition and weather conditions explained up to 40% of productivity
variability (Michaud, Plantureux, Pottier, et al., 2015).

Environmental changes, like climate change and resulting drought events, can
alter the dynamics of grasslands (Korell et al., 2021). In order to maintain ecosystem
functions like stability during drought events, plant diversity plays an important role
for mitigation (Frank and McNaughton, 1991, Isbell et al., 2011, Craine, Ocheltree,
et al., 2013). Hence, it is crucial to understand how different environmental factors
contribute quantitatively under certain management to grassland diversity, in terms
of functional composition and relative abundances of PFTs, at different sites.

Simulation models allow to analyze the interplay of plant diversity, environmental
factors, management and vegetation dynamics with regard to climate change (Kipling
et al., 2016, Oijen et al., 2018). Process-based simulation models are particularly helpful
to determine the impact of different external influences on grassland dynamics. When
modeling different grassland regions, site-specific model parameterizations of plant
traits are often created by calibration with local field measurements (Schmid, Huth,
et al., 2021). However, these locally derived parameter sets, which are only valid for
a certain location with fixed environmental conditions, could lead to inconsistencies
and uncertainties when simulating the local site under environmental conditions
of different regions (e.g., weather and soil type) and analyzing their influence on
mechanisms like plant growth. Following a regional modeling approach, the creation
of a multi-site common parameter set that simulates site-specific vegetation dynamics
only by exchanging environmental conditions and management can overcome this
limitation (Chang, Viovy, et al., 2013, Ma, Lardy, et al., 2015). Such a generic, regional
transferable model parameterization further allows to project grassland dynamics
for sites with so far (partly) missing observations of specific vegetation attributes.
More generally valid conclusions can be drawn about how environmental factors and
management impact grassland dynamics with regard to climate change. This, in turn,
can be used in the future to provide regional management recommendations, e.g., to
preserve biodiversity.

Here, we used the individual-based process-oriented model GRASSMIND to create
a regional parameterization for investigating grassland dynamics in Germany with
regard to the following questions:
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1. Is it possible to create a generic, regional transferable parameterization of GRASS-
MIND for grasslands in Germany?

2. How do site-specific environmental factors such as soil properties and weather
variables influence productivity and the proportion of herbs (in terms of above-
ground biomass) under different management intensity?

3. How does climate change influence grassland attributes and the proportion of
herbs?

We created a generic parameterization of the model using grassland measurements
of six field sites which allowed to apply one set of growth characteristics (of four
PFTs) to locations at different regions across Germany with differences in grassland
dynamics, only driven by environmental conditions and management. Secondly, in a
scenario analysis by simulating 24 representative locations across Germany differing
in their environment in combination with a gradient of management scenarios, the
model enabled us to investigate the importance and relative effects of management
intensity, soil and climatic conditions on grassland productivity and the proportion
of herbs. This analysis also included the consideration of various climate change
scenarios (i.e., RCP scenarios) and their impact on changes in grassland dynamics.

4.3 materials and methods

4.3.1 The grassland model GRASSMIND

4.3.1.1 Model description

We used the individual-based grassland model GRASSMIND. The model is process-
oriented and simulates the growth of individual plants on a daily basis. Main pro-
cesses include plant photosynthesis, respiration, reproduction and mortality. Since
the GRASSMIND model consists of many different processes, we describe here only
those relevant for our study. A detailed description of the GRASSMIND model can
be found in (Taubert, Hetzer, et al., 2020a, Taubert, Hetzer, et al., 2020b) and under
www.formind.org/downloads. Details of the modeled belowground processes in soil,
such as competition for water and nitrogen, are explained in Supplementary Methods
and Fig. C.1.

At the individual level, plants are established as seedlings and then grow in height
and width based on the balance of photosynthesis and respiration. For expressing
diversity in the model, different species or plant functional types (groups of species,
PFTs) can be simulated. Individual plants may differ in their traits (species-specific
or PFT-specific model parameters) which affect several processes. For example, the
growth of a plant is influenced by a PFT-specific constant ratio of the plant’s height to
its width (or lateral extent).

Reproduction is modeled only by a PFT-specific seed ingrowth which represents a
daily constant seed rain from the surrounding landscape. The simulation starts with
bare ground, and the seed application starts with the sowing date, which is repeated
every following day, whereby the establishment of seedlings depends on available
bare soil. After a PFT-specific time, growing seedlings turn into adult plants. Some
plant characteristics then change, for instance, the allocation rates and the intrinsic
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mortality rate of plants. Note that only perennial plants are modeled in this study
(maximum life span of an individual plant was set to 20 years).

Different limitation factors influence vegetation growth in the model. At the commu-
nity level, competition for space prevents too many plants growing within a simulated
plot. This density-dependent mortality reduces plant density (number of plants on the
plot) if community cover exceeds plot area (1 m²). Tall plants shade smaller ones by
reducing the available irradiance (asymmetric competition for light, weighted by 1/9
of the plot area), which affects photosynthesis and can reduce growth.

Mortality of plants is included as stochastic events. Both mortality processes, intrin-
sic mortality and mortality due to space competition, select plants at random that die
with their biomass being transferred to the litter pool. To account for stochastic effects
in our analyses, we calculated the average of results over multiple simulation runs.

4.3.1.2 Impact of soil and weather in the model

Site-specific factors such as weather and soil type influence the growth of the vegetation
in the model. All factors can limit the net primary production (NPP) of individual
plants. Thereby air temperature, daylength and global radiation impact directly the
amount of photosynthesis and respiration of each individual plant.

For instance, air temperature has an influence on both, plant photosynthesis and
respiration. A temperature below 25°C causes a decrease in respiration and a temper-
ature above 25°C causes an increase, whereby photosynthesis has its optimum at a
temperature greater than or equal to 10°C (Schippers and Kropff, 2001). Details on the
influence of other abiotic variables (such as global radiation and daylength) on the
growth of individual plants can be found under www.formind.org/downloads.

In contrast, plants compete belowground for soil water (depending on precipitation)
and soil nitrogen. Both, insufficient water and nitrogen availability can lead to reduced
plant growth, expressed by reduction factors in the model (ratio of supply to demand,
ranging between zero and one). Thereby, water and nitrogen demand are calculated
dependent from the potential (non-reduced) NPP. The growth of legumes is not
limited by insufficient nitrogen availability, but they have to provide each time step
a proportion of their NPP for symbiosis with rhizobia bacteria. Water reduction is
determined before nitrogen reduction. Soil was modeled using 20 horizontal layers
with two meter depth in total (10 cm depth each layer). For a detailed description of
the modeled soil processes see C.1 Supplementary Methods and Fig. C.1.

4.3.1.3 Impact of management in the model

Two management events are implemented in the model: the conduction of a mowing
event and the addition of fertilizer to the soil. Both management events take place on
predefined days. A mowing event affects a cut of all plants to a predefined height (if
the plant’s height is greater) while maintaining the width of the plants (mown biomass
is assumed to be removed). Thereafter, cut plants grow only in height, until they have
reached their previous height-width ratio again (PFT-specific trait). Fertilization causes
an increase of available nitrogen for plants which could favor the growth of especially
non-legume plants.
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4.3.1.4 Typical model output

The model output comprises daily vegetation attributes of each individual plant
belonging to a certain PFT. Typical vegetation attributes are, e.g., aboveground biomass,
leaf area index and vegetation cover. The attributes can be aggregated to the population
level (e.g., aboveground biomass of each PFT) or to the community level (aggregation
of all existing individuals).

4.3.2 Generic parameterization of the model

Instead of simulating each plant species we used the approach of PFTs (Schellberg
and Pontes, 2012). For that, existing species were classified in groups oriented on the
multivariate cluster analysis of Roscher, Schumacher, Baade, et al. (2004). Based on
18 functional traits the latter distinguished between grasses, small herbs, tall herbs
and legumes. Hence, we parameterized trait-averaged typical representatives of those
groups describing common plants occurring in Germany.

In the first part of our study, we created a generic, regional transferable parame-
terization of the grassland model. This parameterization contained fixed plant traits
of the four PFTs and should simulate measured vegetation attributes of different
grassland sites in Germany by only exchanging management, climatic conditions
and soil properties (Table C.1). For gaining the generic parameterization of the four
PFTs, we initially used the parameter values received in a previous study based on a
local field experiment (Schmid, Huth, et al., 2021). We then recalibrated parameters
that were sensitive in a global sensitivity analysis (Schmid, Huth, et al., 2021) and
parameters that were related to soil interactions. For that, three grasslands in Germany
differing in management and environmental conditions were considered (two different
land use types from the Global Change Experimental Facility (GCEF) (Schädler et al.,
2019) and one site from the University of Giessen long-term Free Air Carbon dioxide
Enrichment Experiment (GiFACE) (Jäger et al., 2003), Fig. 4.1A). Besides the environ-
mental conditions, also one plant parameter (PFT-specific constant seed ingrowth,
encompassing incoming seeds from the surrounding and the reproduction by existing
plants) were site-specific. Validation was conducted using three further temperate
grassland sites in Germany (regions of the Biodiversity Exploratories: SEG, HEG and
AEG (Fischer, Bossdorf, et al., 2010), Fig. 4.1A) with seed ingrowth parameter value
of GiFACE. See C.1 Supplementary Methods and Tables C.2-C.4 for details on the
different sites and vegetation measurements used.

At each site, the model simulated an area of 10 m² to account for stochasticity. All
simulations began with bare soil and sowing seeds. For the simulation of the sites at
GiFACE and the Biodiversity Exploratories we included a spin-up time before the first
measurement in the field as these are permanent grasslands with no available sowing
dates. See C.1 Supplementary Methods for details on the calibration and validation.

4.3.3 Scenario analysis

4.3.3.1 Simulation settings

With the scenario analysis, we investigated how environmental factors, management
and climate change influence grassland productivity and the proportion of herbs
in the model. Thereby, productivity refers to the mean annual sum of aboveground
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biomass that exists one day before a mowing event on the plot, respectively. The mean
proportion of herbs corresponds to the fraction of the PFTs small herbs, tall herbs and
legumes in total aboveground biomass on these days. The average over several years
was taken to gain one value for the productivity and one value of the proportion of
herbs for one specific scenario. We used the proportion of herbs as a simple measure
for diversity in the grasslands in our analysis.

We divided the scenario analysis into two parts: (i) the analysis of ambient grass-
lands, with ambient climatic conditions on 24 different locations representing different
natural areas in Germany (Fig. 4.1B, for details see C.1 Supplementary Methods, Table
C.5-C.6) and varied management intensity at each location (1-5, for details see C.1
Supplementary Methods and Table C.7) and (ii) the analysis of future grasslands, re-
garding the same regions and respective management variations, now also considering
climate change scenarios.

Climate data and simulation time periods differed between both parts of the sce-
narios. For the analysis of ambient grasslands, we used measured climate data at all
considered locations (see C.1 Supplementary Methods). Simulations of 20 m² started in
year 1990 (sowing date 16th of May) and run until 2019. The first two simulation years
were considered as transient states for the establishment of the plant community and
were not included in the evaluation of the proportions of herbs (in total we considered
an average productivity and proportion of herbs over 28 years).

For the analysis of future grasslands, we used simulated climate data at all consid-
ered locations (for details see C.1 Supplementary Methods). We used three different
RCP-scenarios (RCP2.6, RCP4.5, RCP8.5) simulated by six different climate models
(Table C.8). Simulations of 20 m² plots also started in year 1990 (sowing date 16th

of May) and ended in 2099. We then compared the time period 1990-2019 to the
time period 2070-2099 by analyzing the change in grassland productivity and the
proportion of herbs (change of attributes in two time periods of 30 years, respectively).

4.3.3.2 Impact of management and environmental factors

To analyze the relative impact of management and environmental factors on vegetation
attributes we used random forest models. These models can be applied for non-linear
relationships between predictors and model output. We used the method of conditional
inference forests that provides unbiased variable selection in the individual trees since
predictor variables varied in their scales (Hothorn et al., 2004, Strobl, Boulesteix,
Zeileis, et al., 2007). Predictor variables in the model comprised six soil variables
(saturated conductivity, porosity, permanent wilting point, clay content, silt content,
sand content), five weather variables (temperature, precipitation, irradiance, potential
evapotranspiration (daily means over entire simulation time, respectively) and latitude
(proxy for variation in daylength)) and the discrete variable “management intensity”
(ranging from 1 to 5). Two random forest models were set up to predict (i) the
productivity of the grassland and (ii) the proportion of herbs (in terms of biomass).
After training the model with a training set of 80 random samples, model performance
was tested on 40 test samples (data comprised in total five management intensities x 24
grassland locations). Then, variable importance was measured by permutations of the
variables, using a conditional permutation scheme to account for correlations between
predictor variables (Strobl, Boulesteix, Kneib, et al., 2008). The analysis was conducted
in R (version 4.0.5, Team, 2019) with the party package (version 1.3-7, Strobl, Hothorn,
et al., 2009).
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Figure 4.1: Map with (A) sites used for calibration (green) and validation (purple) of the
grassland model and (B) 24 grassland locations used for the scenario analyses.
Monthly precipitation sums are marked with blue bars and the annual cycle
of monthly mean temperatures is shown in red. At GCEF, plots with different
management intensity (extensive and intensive management) were considered.

Regression was done by constructing 500 conditional inference trees with six features
tried at each tree split using the cforest() function. For all other hyperparameters of
cforest() default settings were used. We received an accuracy of R2 = 0.86 and rmse =
183 g/m²yr for the productivity on the test set (training set: R2 = 0.854, rmse = 182
g/m2yr) and an accuracy of R2 = 0.741 and rmse = 0.06 for the biomass proportion of
herbs on the test set (training set: R2 = 0.814, rmse = 0.05) (Fig. C.2).

To determine the importance of different environmental variables, conditional
variable importance was conducted which follows the permutation principle of the
“mean decrease in accuracy” importance in random forests (Strobl, Boulesteix, Kneib,
et al., 2008). “Mean decrease in accuracy” importance scores are the differences in the
prediction accuracy of the random forest before and after permuting the predictor
variable. Predictor variables were permutated in each tree following the conditional
permutation scheme which adjusts for correlations between predictor variables (Strobl,
Boulesteix, Kneib, et al., 2008) (see Fig. C.3 for correlations between predictor variables).
We used the default settings of the varimp() function with conditional permutation in
the party package.

Linear correlations between the predictor variables were tested by computing
Pearson’s correlation coefficients (Fig. C.3). Additionally, linear correlations between
vegetation attributes and predictor variables were tested for each management sce-
nario (Fig. C.4). For the most important variables, we used simple linear regressions
to complement the complex random forest models and get insights on preferred
environmental conditions.
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4.4 results

4.4.1 Generic model parameterization

The calibration for a generic parameterization of the grassland model resulted in good
agreements of various vegetation attributes (Fig. 4.2A, Tables C.9-C.10). Within the
three field plots used for calibration (GCEF intensive, GCEF extensive and GiFACE),
the best fitted attribute was total vegetation cover with a slight mean overestimation in
the model (12%), followed by total aboveground biomass with a mean underestimation
of 32% in the model across all sites. Vegetation height was underestimated by 58% on
average at GCEF intensive and GiFACE. Leaf area index agreed well at GiFACE (7%
less), was underestimated at GCEF intensive (42% less) and overestimated at GCEF
extensive (21% more). Regarding the abundances of PFTs, management intensity at
GCEF had only a minor impact in the model (Fig. 4.2A). For instance, the biomass
proportion of grasses in intensively managed grassland was as high as in extensively
managed grassland (87%), but total aboveground biomass and vegetation cover in
grasslands differed.

The comparisons of the grassland plots used for validation show similar results
(Fig. 4.2B). Simulation of vegetation cover and proportions of PFTs agreed very well
with field measurements at SEG18 and differed by a maximum of 46% from the mean
measurement at the other sites. The amount of total aboveground biomass agreed at
HEG26 and was underestimated at the other two sites (AEG50 and SEG18). As at the
sites used for calibration, vegetation height was also underestimated at the sites used
for validation.

4.4.2 Germany-wide scenario analysis

4.4.2.1 Impact of management intensity

With higher management intensity grassland productivity increased and the pro-
portion of herbs decreased (Fig. 4.3). Management intensity had more impact on
productivity compared to environmental factors. Increasing management intensity
from 1 to 5 caused on average an increase of 900 g/m²yr (from 510 g/m²yr to 1420
g/m²yr), whereas for a certain management intensity productivity varied on average
by 700 g/m²yr among the locations (mean of total range over all management intensi-
ties, Fig. 4.3A). Regarding the simulated proportion of herbs, management intensity
and environmental factors revealed similar impacts (maximal variation of about 21%
among management intensities and locations, Fig. 4.3B). However, when looking at
mean aboveground biomass over all days one day before a mowing event, respectively
(instead of productivity corresponding to the annual sum of biomass one day before
the mowing events) management intensity and environmental factors have almost
equal impacts (average increase of 225 g/m² by management intensity versus average
variation of 263 g/m² among locations, Fig. C.5).

4.4.2.2 Impact of climate change scenarios

Climate change generally caused an increase in grassland productivity (Fig. 4.3C).
The more intensively grasslands are managed, the greater the change in productivity
and the greater also the differences between RCP scenarios (with RCP4.5 always
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Figure 4.2: Comparison of field measurements and simulation results at different sites in
Germany used for the (A) calibration and (B) validation of the grassland model
GRASSMIND. Bars correspond to the mean attribute over all measurement days,
respectively. Black error bars show the temporal variation in the measurements.
At sites used for validation, tall herbs correspond to all herbs in the plots (no
differentiation between small and tall herbs).

showing highest productivity change). The biomass proportion of herbs increased
due to climate change only for intermediate management intensities, and otherwise
remained stable (Fig. 4.3D), whereby the simulations with different RCP scenarios
scarcely differed. The biggest change between the two considered time periods (1990-
2019 and 2070-2099) was 180 g/m²yr in productivity and 6 percentage points in the
biomass proportion of herbs, indicating a small effect of climate change in the model.

4.4.2.3 Impact of environmental variables

We used conditional inference forests to assess the conditional importance of manage-
ment intensity and environmental variables on grassland productivity and biomass
proportion of herbs. For important variables we applied linear regression to ana-
lyze trends and quantitative impacts. Within the constructed forests, management
intensity had the highest effect on the grassland attributes (Fig. 4.4A). Regarding
grassland productivity under ambient climatic conditions, only precipitation and
saturated conductivity in soil (KS) showed high importance, whereby locations with
high precipitation and low KS in soil revealed more productive grasslands (Fig. 4.5A).
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Figure 4.3: Impact of management intensity on (A) grassland productivity and (B) biomass
proportion of herbs in the model. Black dots depict the different locations in
Germany, blue dots are means over all locations. Changes in (C) productivity and
(D) the biomass proportion of herbs due to climate change. Grassland attributes in
the time periods 1990-2019 and 2070-2099 were compared. Dots show means over
the 24 locations in Germany.

Intensive management strengthened the impacts as the slopes of regression lines
increased. For the change in grassland productivity under future climate conditions,
air temperature, irradiance, precipitation and latitude belonged to the most important
variables. Temperature showed a weakly negative, significant linear correlation only
for the highest analyzed management intensity (Figs. 4.5C and C.4B). In turn, we
observe a strong positive correlation for irradiance and a strong negative correlation
for latitude with the change in productivity for lower management intensities (note
that irradiance and latitude are strongly positively correlated to each other, Fig. C.3).

For the biomass proportion of herbs under ambient climate, irradiance and potential
evapotranspiration (PET) belonged to the most important variables (Fig. 4.4B), which
are both also significantly correlated to each other (Fig. C.3). Both have a positive
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effect on the proportion of herbs, especially in extensively managed grasslands (Fig.
4.5B). The change in biomass proportion of herbs under future climate was, besides
irradiance and PET, also influenced by precipitation and latitude. The positive effect
of precipitation was visible for almost all management intensities, whereby the effects
from the other variables were only significant in extensively managed grasslands.

Overall, environmental variables affecting aboveground growth limitations (e.g.,
temperature, irradiance, latitude) showed similar importance as variables affecting
belowground limitations due to, e.g., limited water content (e.g., precipitation, PET,
KS).

The correlation analyses revealed that fewer environmental variables were signifi-
cantly correlated with grassland productivity and the biomass proportion of herbs
in intensively managed grasslands, except for productivity under ambient climatic
environmental conditions, where the number of significantly correlated variables
remained almost equal for all management intensities (Fig. C.4). Remarkably, locations
with high annual precipitation showed the greatest grassland productivity, though at
these locations productivity was again reduced by climate change in the future.

4.5 discussion

In this study, we took a first step towards a generic, regional transferable parameteriza-
tion of an individual-based grassland model and analyzed the impact of management
and environmental factors on grassland attributes. The model results showed moder-
ate to good agreements to field measurements of aboveground biomass production,
leaf area index, vegetation cover, vegetation height and abundances of PFTs (in terms
of proportional biomass and cover) for six differently managed and located grasslands
in Germany. A followed scenario analysis of 24 simulated locations representing
different natural areas in Germany revealed a higher impact of management than
environmental factors on grassland productivity and herb proportion (in terms of
biomass). Within the environmental factors, climatic variables (e.g., precipitation and
irradiance) showed higher importance in comparison to soil properties in the model
(e.g., saturated conductivity and silt content). The importance of environmental factors
decreased with more intensive management. Similar results occurred for scenarios
including climate change, whereby climate change had only a minor overall influence
on simulated vegetation attributes in the grassland model.

4.5.1 Parameterization of the model and possible model adaptations

Although the individual-based process-oriented model reduces complex interactions
in grasslands by, e.g., the use of plant functional types with static plant traits, good
agreements of model simulations with observation were received for most of the
observed vegetation attributes. Accounting for several vegetation attributes in the
calibration process (e.g., vegetation height, cover and biomass) instead of only using
attributes related to productivity (e.g., PaSim (Ma, Lardy, et al., 2015)) made the model
parameterization challenging. Comparing the grassland sites used for calibration of
the model, it is noticeable that the simulated relative abundances of PFTs in GCEF
are quite consistent for both management scenarios (intensive and extensive). A key
determinant of the abundance of a PFT could be the seed ingrowth, which is assumed
to be equal for both plots at GCEF (of different management types), and similar
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Figure 4.4: Importance of different variables in the conditional inference forests for (A) pro-
ductivity and (B) the biomass proportion of herbs of the simulated grasslands.
The panels on the top show the importance for the ambient vegetation attributes
(1990-2019), the panels on the bottom for the change in the vegetation attributes
due to climate change (difference 1990-2019 and 2070-2099, RCP4.5). Note that
the absolute values of the scores should not be interpreted (Strobl, Boulesteix
et al. 2008). Abbreviations: PET – potential evapotranspiration, KS – saturated
conductivity in soil, PWP – permanent wilting point.

to GiFACE at the sites used for validation (sites of Biodiversity Exploratories). The
constant seed ingrowth, which encompasses both, the reproduction by mother plants
and the income of seeds from the surrounding landscape, might reduce complexity of
grassland processes too much, as recruitment capacity can vary between PFTs over the
year (e.g., after droughts (Zeiter et al., 2016)) and with different management intensity
(depending on existing plants). Further, in a drought field experiment recruitment
capacity of different PFTs mainly explained changed community composition after
re-colonization (Stampfli and Zeiter, 2004).

Another concept that might improve our first basic regional approach is to vary
model parameters, i.e., PFT-specific plant traits, at different sites in relation to envi-
ronmental factors as certain plant traits might adopt to the environment. For instance,
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Figure 4.5: Linear regressions between environmental variables and (A) productivity, (B)
biomass proportion of herbs, (C) change in productivity and (D) change in biomass
proportion of herbs for different management intensities. Dots depict the different
locations of the scenario analysis. The changes in (C) and (D) correspond to
differences due to climate change (difference 1990-2019 and 2070-2099, RCP4.5)
in the simulation model. Only important environmental variables (Fig. 4.4) and
significant (p-value < 0.1, Fig. C.4) correlations are shown.

highly sensitive parameters such as the seed ingrowth or intrinsic mortality of plants
(Schmid, Huth, et al., 2021) could be used to find correlations with environmental
variables at different sites (Rödig et al., 2017) or management intensity (Chang, Viovy,
et al., 2013). Phenology of plants is not included in the model, but the date of flowering
seemed to be important in an analysis of Michaud, Plantureux, Amiaud, et al. (2012),
as mowing could substantially influence the production of seeds. Correlating seed
ingrowth with the timing of management events or adding further processes could
integrate this fact in the simulation model.

Overall, discrepancies (especially in cover) in our model results should not be over-
evaluated, as uncertainties exist in field measurements. For instance, slightly varied
measuring methods were used at the different study sites, e.g., distances to the edge
of the grassland plots (Knop et al., 2006), and grassland plot sizes differed. Using
field experiments with consistent methodology over different sites (both with different
environmental conditions and with regard to climate change) would be beneficial for
more reliable model parameterization ((White, Carlyle, et al., 2012), e.g., coordinated
field experiments like HerbDivNet (Fraser, Jentsch, et al., 2014), the Nutrient Network
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(Borer, Harpole, et al., 2014) or the BIODEPTH experiment (Minns et al., 2001)). In our
modeling analysis, we related simulated grassland attributes to the field measurements
at the respective dates of each measurement to make our modeling results comparable
to field studies. However, different ways of aggregation could play a role in the overall
results and trends identified (e.g., whether vegetation attributes are considered at
dates one day prior to mowing or mean vegetation attributes over the entire growing
season).

In this basic modeling approach, the static traits of the PFTs prevent plants from
adapting their morphology and physiology to environmental changes (Völler et al.,
2017, Weisser et al., 2017). Frequent mowing events can induce, e.g., a changed height-
width ratio or plants with deeper roots might occur after more frequent drought
events caused by climate change (Walter et al., 2012, Zeiter et al., 2016, Liu, Mi, et al.,
2018, Kirschbaum et al., 2021). This trait plasticity, which could also be interpreted
as a changed species composition within a PFT, could be reached by the use of trait
distributions. Such plant trait distributions were already used in Dynamic Global
Vegetation Models (Pavlick et al., 2013, Scheiter et al., 2013, Sakschewski et al., 2016),
mostly with focus on trees in forests.

Moreover, trait distributions could also be used to express species richness within
our four modeled PFTs. Grassland productivity has also been shown to be connected
to species richness in multiple field studies (Mittelbach et al., 2001). The relation
depends on different environmental parameters as investigated by the population-
based simulation model DynaGram (Moulin, Perasso, and Gillet, 2018). In the model,
species richness was expressed by up to 21 species in different simulation versions,
whereby species could become extinct during the simulation time. In our modeling
study, species richness is represented only by four PFTs that were always present in
our scenario analysis only differing in their respective proportions.

4.5.2 Impact of management and environment on productivity and abundances of plant
functional types

The conclusions received by our Germany-wide scenario analysis show similarities
to existing field studies that investigated the impact of management and environ-
mental factors. A study of Michaud, Plantureux, Amiaud, et al. (2012) revealed that
management, weather and soil properties together affect plant functional composition
of permanent grasslands in France. Management belonged to the most important
factors determining productivity and the abundances of PFTs (based on the biomass
proportion of herbs) in our model, whereby productivity monotonously increased with
management intensity. This is in contrast to many field studies, that showed a peak of
productivity for intermediate management, i.e., two mowing events per year (Weigelt,
Weisser, et al., 2009, Bernhardt-Römermann et al., 2011, Boch et al., 2021). Besides
management, precipitation was one of the environmental factors with high importance
and leaded to higher productivity in intensively managed grassland, which was also
observed in field experiments (Knapp and Smith, 2001, Bernhardt-Römermann et al.,
2011, Byrne et al., 2017).

The impact of environmental factors on grassland attributes was also analyzed
in comparable simulation studies using other process-based simulation models. In
these modeling studies, soil water (besides nutrient availability) belonged to the major
limiting environmental factors of productivity (Moulin, Perasso, and Gillet, 2018).
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Comparing results of our study with those of a previous study (using the model
GRASSMIND with the assumption of optimal water and nutrient supply), manage-
ment intensity resulted in contradictory effects on the proportion of herbs (Schmid et
al., under review) which highlights the major impact of soil dynamics on grassland
attributes. The availability of other nutrients than nitrogen can limit grassland pro-
ductivity (Fay et al., 2015). Further, soil biodiversity has shown to influence multiple
ecosystem functions such as productivity and functional composition (Wagg et al.,
2014) whereby their relation depends on climate and environmental conditions (Jing
et al., 2015). More detailed soil processes and properties, e.g., belowground biodiver-
sity, can also be included in the GRASSMIND model by coupling a more complex soil
model in future studies (Sándor et al., 2017).

Due to warming induced by climate change, meta-analyses concluded that grassland
productivity is expected to increase if soil water availability is not limiting (Dellar et al.,
2018, Wang, Quesada, et al., 2019), similar to what we received with the GRASSMIND
model in this and in a previous study (with the assumption of no water limitation)
(Schmid et al., under review). The increasing productivity in the model GRASSMIND
might be related to higher temperature and increased precipitation in the future
scenarios. Also other mechanistic population-based models such as ORCHIDEE-GM
predicted increased grassland productivity for Europe, mainly caused by rising CO2
(Chang, Ciais, Viovy, et al., 2017). The model LandscapeDNDC predicted strongly
increased, only slightly increased or even decreased productivity depending on the
management strategy (Petersen et al., 2021). In addition to fixed management dates,
the models also considered dynamic management adopted to grassland productivity
that can prospectively also be included in the GRASSMIND model.

Regarding the effect of climate change on the abundance of PFTs, our simulation
results show agreements to field studies, namely an increase in the proportion of
herbs and especially legumes (Soussana and Lüscher, 2007). These findings are again
explained by an elevated atmospheric CO2 concentration in field experiments, that is
not accounted for in our model. However, management and seasonal climatic effects
on plant communities can be stronger than effects of elevated CO2 concentration
(Lüscher et al., 2005). Also the simulation model CoSMo predicted a changed plant
composition in grasslands caused by increasing temperatures (Confalonieri, 2014).

Many analyses concluded that the impact of climate change on productivity depends
on grassland biodiversity (e.g., stability and resilience) (Hector, Hautier, et al., 2010).
In field experiments, single species with specific functional traits might compensate
the loss of unsuitable species to changed environmental conditions which leads to
higher stability (Cardinale et al., 2007). The limited representation of biodiversity with
four PFTs in our model approach might prevent this behavior in the simulations of this
study. Again, the approach of trait distributions (which allow for plant adaptation to
changed environmental conditions (Lavergne et al., 2010) and the expression of species
richness within a plant functional type) could be used to receive the increasing stability
with biodiversity in the model. However, the creation of a regional parameterization
using this approach can be very challenging, as trade-offs between functional traits
have to be determined. Moreover, biodiversity in terms of species richness was not
the focus of our study and seemed to have a poor effect on productivity in managed
grasslands (Assaf et al., 2011).
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4.5.3 Conclusion

In conclusion, our study shows how process-based grassland models can be used
to gain a general understanding of how environmental factors and anthropogenic
interventions impact grassland dynamics. It presents a basic approach for creating a
regional transferable parameterization which can be extended by a larger data base
of field measurements and model adaptations. In perspective, such modeling results
can be used to determine how management and environmental conditions should be
chosen to mitigate the effects of climate change on productivity, functional composition
and the abundances of plant functional types. This approach can further be used as
a basis for the analysis of changes in biodiversity-productivity relationship along an
environmental gradient to maintain biodiversity in grasslands (Wang, Quesada, et al.,
2019).

4.6 data availability

Weather data at the field site of GCEF were provided by the UFZ: "Meteorological data
of Bad Lauchstädt, Helmholtz Centre for Environmental Research - UFZ, Department
of Soil System Science"

Weather data at the field sites of the Biodiversity Exploratories and at the locations
of the scenario analysis and the different climate change scenarios were received
from the German national meteorological service (Deutscher Wetterdienst, DWD)
(national climate database of the Climate Data Center (CDC): https://opendata.dwd.
de/climate_environment/).

Vegetation and soil measurements at the sites of the Biodiversity Exploratories were
received from:

• Prati, Daniel; Stephanie Socher; Steffen Boch; Jörg Müller; Markus Fischer (2017):
Vegetation Records for Grassland EPs in 2008, Header Data without Species
Identities. Version 2. Biodiversity Exploratories Information System. Dataset.
https://www.bexis.uni-jena.de/ddm/data/Showdata/5400

• Prati, Daniel; Stephanie Socher; Steffen Boch; Joerg Mueller; Markus Fischer
(2017): Vegetation Records for Grassland EPs in 2009, Header Data without
Species Identities. Version 2. Biodiversity Exploratories Information System.
Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/6340

• Schmitt, Barbara; Daniel Prati; Markus Fischer; Stefan Blaser (2017): Vegetation
Records for Grassland EPs in 2010, Header Data without Species Identities.
Version 2. Biodiversity Exploratories Information System. Dataset. https://www.
bexis.uni-jena.de/ddm/data/Showdata/13486

• Schmitt, Barbara; Daniel Prati; Markus Fischer (2017): Measurement of biomass
(2010, all grassland EPs). Version 2. Biodiversity Exploratories Information Sys-
tem. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/12706

• Schmitt, Barbara; Daniel Prati; Markus Fischer (2018): Vegetation Records for
Grassland EPs in 2011, Header Data without Species Identities. Version 2.
Biodiversity Exploratories Information System. Dataset. https://www.bexis.
uni-jena.de/ddm/data/Showdata/14326
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• Schmitt, Barbara; Daniel Prati; Markus Fischer; Judith Minker (2018): Measure-
ment of biomass (2011, all grassland EPs). Version 3. Biodiversity Explorato-
ries Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/
Showdata/14346

• Schmitt, Barbara; Markus Fischer (2018): Vegetation Records for Grassland
EPs in 2012, Header Data without Species Identities. Version 2. Biodiversity
Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/
ddm/data/Showdata/15588

• Schmitt, Barbara; Daniel Prati; Markus Fischer (2018): Vegetation Records for
Grassland EPs in 2013, Header Data without Species Identities. Version 4.
Biodiversity Exploratories Information System. Dataset. https://www.bexis.
uni-jena.de/ddm/data/Showdata/16826

• Prati, Daniel; Markus Fischer; Judith Minker; Barbara Schmitt (2018): Measure-
ment of biomass (2013, all grassland EPs). Version 2. Biodiversity Explorato-
ries Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/
Showdata/16786

• Schöning, Ingo; Emily Solly; Theresa Klötzing; Susan Trumbore; Marion
Schrumpf (2018): MinSoil 2011 - Soil Bulk Density and Carbon and Nitro-
gen stocks. Version 4. Biodiversity Exploratories Information System. Dataset.
https://www.bexis.uni-jena.de/ddm/data/Showdata/17086
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5.1 abstract

Network analysis is an important tool to analyze the structure of complex systems
such as tropical forests. Here, we infer spatial proximity networks in tropical forests
by using network science. First, we focus on tree neighborhoods to derive spatial tree
networks from forest inventory data. In a second step, we construct species networks to
describe the potential for interactions between species. We find remarkably similar tree
and species networks among tropical forests in Panama, Sri Lanka and Taiwan. Across
these sites only 32 to 51 % of all possible connections between species pairs were
realized in the species networks. The species networks show the common small-world
property and constant node degree distributions not yet described and explained by
network science. Our application of network analysis to forest ecology provides a new
approach in biodiversity research to quantify spatial neighborhood structures for better
understanding interactions between tree species. Our analyses show that details of tree
positions and sizes have no important influence on the detected network structures.
This suggests existence of simple principles underlying the complex interactions in
tropical forests.

5.2 introduction

Tropical forests are ecosystems of global relevance. Besides their important role in the
global carbon cycle (Le Quéré et al., 2016, Bonan, 2008), they are known for their high
species richness (Wright, 2002). Several hundreds of tree species, often with similar
resource requirements, are able to coexist at a local scale over centuries (John et al.,
2007, Uriarte, Condit, et al., 2004). To better understand the mechanisms that allow for
coexistence of tree species in tropical forests, a closer examination of tree interactions is
essential (Levine et al., 2017) as the species interaction structure is closely linked to the
dynamics and structure of the forest community. Various approaches – ranging from
theoretical (Chesson, 2000a, Chesson, 2000b) over statistical (Clark, Dietze, et al., 2007,
Uriarte, Swenson, et al., 2010, Volkov et al., 2009) and pattern-based (Wiegand, Huth,
et al., 2012, Wang, Wiegand, Hao, et al., 2010, Wang, Wiegand, Kraft, et al., 2016) to
mechanistic modeling (Tilman, 1994, Hubbell, 2001, Lotka, 1925, Volterra, 1926) – have
been used to describe interactions between individual trees and species in ecosystems.
Trees compete for light, space or nutrients within their local neighborhoods (Lorimer
and Krug, 1983, Berger and Hildenbrandt, 2000, Uriarte, Canham, et al., 2004, Bella,
1971) and thus tend to interact primarily with nearby neighbors. Thus, the spatial
proximity network of trees contains key information on the potential of trees to
interact.

Long-term monitoring plots (e.g., of the CTFS–ForestGEO network (Hubbell, Condit,
et al., 2005, Condit, 1998, Hubbell, Foster, et al., 1999, Anderson-Teixeira et al., 2015))
facilitate the in-depth analysis of the interaction structure in tropical forests. Besides
tree species and stem diameter, also the position of trees within the forest plot is
recorded, which allows to study individual trees in their local neighborhoods. We
follow here the long tradition of distance-dependent analyses of species interactions in
forests mediated by neighborhood competition for nutrients, space or light (Lorimer
and Krug, 1983, Berger and Hildenbrandt, 2000, Uriarte, Canham, et al., 2004, Bella,
1971). A potentially powerful and natural approach to analyze proximity and potential
interactions between neighboring trees in such data sets is network analysis that has
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already been applied in numerous disciplines such as computer science (Albert et al.,
1999), sociology and psychology (Cancho and Solé, 2001, Newman, 2001, Liljeros et al.,
2001), neurosciences (Eguíluz et al., 2005) and ecology (Proulx et al., 2005, Montoya,
Pimm, et al., 2006, Bansal et al., 2007). Fuller et al. (2008) conducted network analyses
for small plots in a tropical forest to assess the impact of tree size on the species
composition of its neighborhood in the understory. Here, we apply network analysis for
the first time to CTFS–ForestGEO mega plots (25-50ha), using all trees with diameter
at breast height (dbh) larger than 10 cm for the analysis of the spatial proximity
networks of trees and tree species to assess the potential for species interactions.

In network analysis, systems are characterized by nodes (here, trees or species) and
edges (which represent connections between nodes). Thus, for a tropical forest we can
construct a spatial tree network by analyzing the overlapping of the ‘interaction zone’
of individual trees, given as a multiple of their crown size derived from allometric
relationships. Symmetric neighborhood interactions (e.g., competition for space or
nutrients) result in undirected networks where an interaction occurs if the interaction
zones of two trees overlap. In contrast, suppression of trees due to asymmetric
competition (e.g., competition for light) leads to directed networks where an edge
links the larger ‘overtopping’ tree with the smaller ‘overtopped’ one. However, our
focus here is on the non-spatial species networks that are constructed on top of the
marked tree networks (with the mark “species”) by combining trees (nodes) of the
same species. With this approach a species pair is connected if the interaction zones
of at least one pair (or a larger number of pairs) of trees overlap. For example, while
point pattern approaches (Wiegand, Huth, et al., 2012, Wang, Wiegand, Hao, et al.,
2010, Wang, Wiegand, Kraft, et al., 2016) to quantify species interactions rely on
mean neighborhood densities, here we focus on proximity of individuals which is the
precondition for interactions to occur. The tree and species networks should capture
essential features of the interaction structure in tropical forests, given that competition
for space and light are main driving forces of forest structure and dynamics (Pretzsch,
2009, Shugart, 1984, Taubert, Jahn, et al., 2015, Farrior et al., 2016).

Of special biological interest is the node degree distribution Ps(k) of the species
network that tells us in detail how many connections (k) the different species maintain
with other species. However, it is difficult to derive a priori biological hypotheses on
the shape of Ps(k) because the species network emerges from the marked spatial tree
network in possibly complex ways through the interacting effects of the distribution
of species abundances, tree sizes, and the small-scale placement of trees. Frequently
encountered network structures include scale-free networks that show a power law
node degree distribution (Barabási, 2016). Such networks show typically few nodes (i.e.,
species) with many connections to other species, many nodes with few connections
and maintain its structural attributes independently of network size. Another property
of numerous real-world networks is the ‘small-world’ attribute, which means that
there is always a short connection between two randomly chosen nodes (i.e. species),
although most nodes are not connected to each other (Watts and Strogatz, 1998).

By applying network analysis to trees in tropical forests, fundamental questions can
be raised: 1. Which type of network structures emerge in tropical forests? 2. Which
attributes of the forest drive the observed network properties (species abundance,
species identity, tree size, and spatial location)? To answer these questions, we trans-
lated forest inventory data into proximity networks of trees and species from three
large tropical forest sites in Panama, Sri Lanka and Taiwan. The results will help us to
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better understand the factors that govern the interaction structure of tropical forests
and thereby its assembly and dynamics.

5.3 results

For each forest we constructed networks of trees (with individual trees as nodes,
Fig. 5.1a-c) and species (with tree species as nodes, see Methods and Fig. D.1 for
details). In the following we present mostly results of undirected networks (for results
of the directed networks see D.2 Supplementary Results). Tree networks were about
factor 50 to 250 larger than their corresponding species network (Table 5.1, Fig. 5.1d-e).
The main component (largest connected part) of the tree network at the 50-ha plot
of Barro Colorado Island (BCI) in Panama included 20730 out of 20735 trees (nodes)
which means that almost all trees of the forest were connected (in the following the
term ‘network’ refers to the main component). Similarly, all nodes of the species
network build one component.

5.3.1 Basic characteristics of the tree networks

Tree networks represent spatial (or geometric) networks which are well known in
the literature (Dall and Christensen, 2002, Barthélemy, 2011, Gilbert, 1961). However,
in contrast to two-dimensional random geometric networks, where all circles have
equal radii and random positions (Dall and Christensen, 2002), our tree networks
consider different disk sizes (interaction zones) depending on tree crown sizes. A tree
individual at the BCI plot was connected on average with approximately ⟨k⟩ = 9.6
other trees (i.e. the average node degree ⟨k⟩; Table 5.1). Hence, network density D
was low (D ≈ 0.001 is the observed number of connections divided by the maximal
possible number of connections). Almost two thirds of all trees that were connected
with a specific tree were also connected with each other (C = 0.631 is the clustering
coefficient describing the local connectivity, which is close to the value of C = 0.587
for random geometric networks (Barthélemy, 2011)). The shortest path between two
randomly selected trees passed on average 22.6 other trees (average path length L)
and no pair of trees required more than 56 other trees to pass (network diameter d)
(Table D.1). Most network characteristics (i.e. D, C, L and d) were similar between all
three tropical sites (Tables 5.1, Table D.1). However, tree networks at Sinharaja (Sri
Lanka) and Fushan (Taiwan) showed almost the double number of nodes compared
to BCI (i.e. they hosted more trees per 25 ha; Table 5.1). As the mean radius of the
interactions zones was similar among all three forests (Fig. D.2), the higher tree density
at Fushan and Sinharaja led also to higher average node degrees ⟨k⟩. Note that the
tree size and the species abundance distributions of the three forests were different
(Fig. D.2).

5.3.2 Node degree distribution of the tree networks

We found similar patterns of the node degree distribution Pt(k) in the tree networks
regardless of the tropical forest site considered. They can be described well by Gamma
distributions with a pronounced peak at low node degrees of k = 7 (BCI) and k = 14
(Sinharaja and Fushan), followed by a decaying tail (Fig. 5.2a). By assigning either
shade-tolerance or light-demanding attributes to each tree individual (node in the
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Figure 5.1: Visualization of the spatial tree networks for the tropical forest plots of (A) BCI in
Panama, (B) Sinharaja in Sri Lanka and c Fushan in Taiwan. The positions of the
visualized nodes correspond to the spatial positions of the trees. Connections in
the networks are represented by adjacency matrices: in (D) for the tree network
and in (E) for the species network (50ha plot). Rows and columns show existing
nodes. Nodes are ordered in the tree network by their interaction zone (tree rank
shows low values for the tree with the smallest zone to high rank values for the
tree with the tallest zone). In the species network nodes are ordered by their
abundance (observed number of trees of a species; species rank shows low values
for the species with lowest abundance to high values for the species with highest
abundance). A blue dot reflects an existing connection (edge) between a pair of
trees or species (the specific node in the row and the node in the column). The
small panels along the y-axis show the node degrees of d individual trees and
(E) species. The adjacency matrices of symmetric connections are symmetric. The
adjacency matrix of the tree network reveals 0.5 % existing tree connections, while
the adjacency matrix of the species network shows that 38 % species connections
of all possible connections (edges) occur at BCI. In e the red rectangle highlights
that the 50 most abundant species all interact with each other.

tree network; classification based on (Knapp, Fischer, et al., 2018)), we found that the
proportion of light-demanding trees increased with increasing node degree (Fig. 5.2c).

The node degree distributions Pt(k) showed similarities to that known from random
geometric networks (with a constant distance threshold between two nodes (Dall and
Christensen, 2002)). However, the distributions of the three forests were somewhat
more fat-tailed (Figs. D.1, D.3), probably due to large trees with many connections.
Indeed, larger trees (with larger interaction zones) had a substantially higher node
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degree and interacted mainly with individual trees having high node degrees as well
(Fig. 5.1d, Fig. D.4).

Figure 5.2: Node degree distributions of the networks and classification of node degrees.
(A) The node degree distribution of the tree networks Pt(k) with ⟨k⟩ = 9.6, 19.2,
18.3 and kmax = 83, 136, 88 for BCI (left 25-ha subplot), Sinharaja and Fushan,
respectively. (B) The node degree distribution of the species networks Ps,cum(k)
(cumulative distribution) with ⟨k⟩ = 65, 65, 37 for BCI (left 25-ha subplot), Sinharaja
and Fushan, respectively. (C) Node degrees of the tree network are classified
according to shade-tolerant (blue) and light-demanding (yellow) trees (forest site
at BCI, entire 50-ha plot).

5.3.3 Node degree distribution of the species networks

Only 32 to 51 % of all species pairs were connected at the three tropical sites (i.e.
network density D; Table 5.1) when assuming conservatively that a species connection
existed if at least one pair of trees was connected. These figures dropped substantially
when requiring up to ten connected pairs for defining a species connection, but
stabilized afterwards at roughly 15 % for BCI (Table D.2). The forest with the lowest
number of species (Fushan) showed the highest amount of connections (51 %), but still
half of all possible species connections were missing. Most other characteristics of the
species networks were remarkably similar among the three tropical forests (Table 5.1,
Table D.1).

The node degree distributions Ps(k) of the species networks showed for all three
forests the same shape: the Ps(k)’s were evenly distributed, as indicated by an almost
linear decline of their respective cumulative frequencies Ps,cum(k) (Fig. 5.2b). This
result is surprising because, to the best of our knowledge, constant node degree
distributions have not yet been described and explained by network science (see e.g.,
Albert et al., 1999, Cancho and Solé, 2001, Newman, 2001, Liljeros et al., 2001, Eguíluz
et al., 2005, Proulx et al., 2005, Montoya, Pimm, et al., 2006, Bansal et al., 2007, Amaral
et al., 2000). There is also no a priori reason that the node degree distributions should
be structurally similar among forests. The forests show very different species richness,
species abundance distributions and ecological characteristics that were crucial for the
construction of the networks (see D.1 Supplementary Methods, Fig. D.2).

Figure 5.1e gives insight into the connection structure of species at BCI based upon
their abundance (adjacency matrices). As expected, more abundant species had a
substantially higher node degree (see also Fig. D.5) and connected mainly to species
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Table 5.1: Network characteristics of tree and species networks at three tropical forest sites.
To obtain comparable network characteristics among plots we report here results
from the left 25-ha subplot of BCI. The characteristics of the other 25-ha subplot
and entire 50-ha plot of BCI are similar (see Table D.1, Fig. D.14). For the results of
directed networks see Table D.10.

Local connectivity Global connectivity

Forest site N ⟨k⟩ D C CER L LER Type

Tree
network

BCI 10161 9.6 0.00095 0.631 22.6

Sinharaja 17015 19.2 0.00113 0.635 21.3

Fushan 17647 18.3 0.00104 0.630 22.6

Species
network

BCI 208 65.4 0.316 0.772 0.314 1.69 1.68 SW

Sinharaja 177 64.7 0.368 0.810 0.367 1.64 1.63 SW

Fushan 75 37.4 0.506 0.856 0.513 1.50 1.49 SW

N: number of nodes, ⟨k⟩: mean node degree, D: network density, C: clustering coefficient, L: average
path length, SW: small-world property. *Clustering coefficient and average path length of random graphs
following the Erdős–Rényi (ER) model of the same size (CER and LER) for testing the small-world
property. See (Watts and Strogatz, 1998) and 5.5 Methods for definition of the small-world property.

having high node degrees as well. Focusing on the 50 most abundant species reveals
that all of them connected with each other (Fig. 5.1e). In contrast, the adjacency matrix
of the directed species network (Fig. D.4) shows that some species exist (a few of
them even with low abundance) which compete asymmetrically with almost all other
species (herein referred to as ‘overshadow’).

5.3.4 Small-world property

Geometric networks such as the here presented tree networks are known a priori not
to be small-world (Dall and Christensen, 2002, Watts, 2003). In contrast, the species
networks of the three forest sites are small-world networks. In agreement with the
definition of the small-world property, they have approximately the same average
path length L and higher clustering coefficients C than random networks of the same
size (Watts and Strogatz, 1998) (Table 5.1, see Methods). This result was robust against
more restrictive criteria for occurrence of a connection between two species (e.g., at
least eight instead of a single pair of trees must be connected; Table D.2). Thus, the
small-world phenomenon can be observed in tropical forests between species, but not
between trees.

Clearly, the species networks are not scale free as they show uniform node degree
distributions. Neither a different plot size nor species-specific deviations of interaction
zones influenced these conclusions (D.2 Supplementary Results). For the analysis of
tree networks see D.2 Supplementary Results.

5.3.5 Which factors drive network structures

To determine the degree to which small-scale spatial neighborhood effects influence the
observed network properties, we assembled four different types of null communities
(Wiegand, Uriarte, et al., 2017, Wiegand, May, et al., 2017) that randomize certain
elements of the observed data. Differences in network properties emerging in the null
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communities hint to an important role of the randomized elements in structuring
the tree community. Our null communities include (i) relocating trees to random
positions in the plot (Complete Spatial Randomness - CSR null community), (ii)
randomly shuffling the species identity among trees (Random Labeling – RL null
community), (iii) using a fixed tree size for all trees (Equal interaction Diameter –
ED null community) and (iv) combining CSR and ED to obtain a random geometric
network (RGN null community) (see Methods and Table D.3).

All null communities of the three forests showed species network characteristics
that resembled their observed characteristics very closely, including the small-world
property (Table 5.1, Table D.4), but only with moderate departures due to spatial
effects (e.g., intraspecific aggregation and interspecific co-occurrence) present in the
observed communities and not in the null communities (Table D.4, Fig.D.6). The
randomized communities tended to be slightly more connected with larger mean
(⟨k⟩) and maximal (kmax) node degrees, larger clustering coefficients C and smaller
average path lengths L. Interestingly, even the null community based on a random
geometric network (RGN) showed only minor deviations from the observed networks,
with similarities to the RL communities.

The null communities also approximated the characteristics of the tree networks
(Table D.5), but not as closely as the characteristics of the species networks. Especially
the ED and RGN null communities (with constant tree size) showed larger differences
to the observed node degree distributions that were more fat-tailed (Fig. D.6).

5.4 discussion

In this study, we applied network science to tropical forests by developing a new
methodology that translates the size and spatial position of trees into a tree network
that measures potential neighborhood interactions between tree individuals by its
proximity, and aggregates the tree network into a species network. Our network
approach quantifies the complex spatial neighborhood structures occurring in forest
communities for better understanding the determinants of interactions among tree
individuals and among tree species.

Our first question focused on the types of network structures that develop in
tropical forests. We found remarkably similar network structures among forests. One
tree was on average connected with ten to twenty other trees. A few tall trees were
connected with even more than a hundred other trees. The node degree distributions
of all three tree networks followed Gamma distributions, similar to the network of
contacts between neighboring linguistic groups (Capitán et al., 2015). The species
networks showed the small-world property with evenly distributed node degree
distributions across the three different forest sites; a pattern not described before
in network science. The similar structures of the tree and species networks of the
analyzed forests (Fig. 5.2a-b) and the temporal constancy of network characteristics
(over up to 30 years of observations, Fig. D.7) let us hypothesize that the type of
networks found here are typical for tropical forests in general.

Only 32 to 51 % of all potential pairwise connections between tree species were
realized in our most conservative estimates (Table D.2), which means that not all
tree species have the opportunity to interact with each other in the forests simply
because they do not meet each other. This result is in agreement with previous studies
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assessing species interaction strength in tropical forests based on the principle of
maximum entropy, stochastic dynamics and spatial point pattern analysis (e.g., Volkov
et al., 2009, Wiegand, Huth, et al., 2012, Lieberman and Lieberman, 2007).

Interestingly, the Fushan forest with highest tree density and the lowest number of
species showed the highest proportion of species pair connections. We can explain
this finding on the basis of the results of our null model analyses, which showed
that the species abundance distribution drives most characteristics of the species
network (Table D.4). Fushan had the lowest proportion of rare species (Fig. D.2),
species with higher abundance tended to have a higher node degree k (Fig. 5.1e,
Fig. D.5), and therefore a higher proportion of the species pairs were connected at
Fushan. Nevertheless, 50 species had less than 100 individuals at Fushan, which
explains that still half of the species pairs are not connected.

The lower number of species and the lower proportion of rare species at Fushan
have predictable influences on the other network properties of the species networks.
First, it causes a higher network density D at Fushan, compared to that of BCI and
Sinharaja. Additionally, the number N of species influences the mean node degree ⟨k⟩
(see equation (5.14) in 5.5 Methods) which is lower at Fushan compared with the two
other forests. The maximal node degree kmax is more strongly driven by the number
of species since the most connected species is connected to almost all other species.
Still, the local clustering coefficient C shows relatively little variation among forests,
with a tendency to be higher in forests with lower number of species.

Additionally, species that interact only with few others are as frequent as species that
interact with nearly all other species. The observed constant node degree distribution
of the species networks is a very particular distribution that differs from the power
laws and peaked distributions usually observed in network science46. We suspect
that this non-standard network type together with the small-world architecture reflect
a combination of constraints in forests and a biologically optimal way of species
assembly. Potential constraints include tree packing38 due to tree architecture together
with competition for space and mechanism such as stochastic population dynamics
that can generate the typical species abundance distributions of tropical forests with
many rare and a few abundant species (McGill et al., 2007). The constant node
degree distribution is an intriguing pattern, and the consequences of such particular
interaction structures for community stability need to be explored. Clearly, the number
and type of interactions strongly influences community dynamics and stability, and
fewer and weaker interactions can imply more stability (May, 1973, May, 2001, May,
1971, Mccann, 2000). Although previous methods required to focus on abundant
tree species (Volkov et al., 2009) or on the understory (Fuller et al., 2008), we point
here to missing interactions that might be highly relevant for understanding species
coexistence.

Additional information can be obtained by the distribution of out-degrees
(‘shadow indices’) and in-degrees (‘overshadow indices’) (Figs. D.8, D.9, see
Methods for details). We found that some species, not necessarily those with the
highest abundance, overshadowed many other species. Pioneer species are less
likely to be shaded compared to shade-tolerant tree species, but tend to shade
other trees (Fig. D.9). One further feature, especially of the BCI forest, is that
the network of light demanding trees fragmented into some 500 isolated compo-
nents, probably re-colonized canopy gaps (Hubbell, Foster, et al., 1999), whereas
the network of shade-tolerant trees consisted basically of one large component (Fig. ??).
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Secondly, we investigated which properties of the forest drive the observed network
properties. Shuffling species identity among trees, assigning random positions to
trees, or setting a constant tree size for all trees resulted in the persistence of the
basic characteristics of the species networks, including the small-world property. For
example, shuffling the species identities among trees removes species aggregation
and the species-specific size distribution and allows each species in principle to have
large trees with many connections to other trees. Randomizing tree positions removes
effects of species aggregation and small-scale species interactions. Nevertheless,
almost all null communities resulted only in a slightly higher network density and
average node degree of the species network (Table D.4). These results suggest that
species abundances (together with mean tree size) are the main biological ingredients
that determine the overall structure of the species proximity networks (see also
Fig. 5.1e, Figs. D.5, D.11), whereas spatial small-scale patterns of tree placement
and tree sizes had only a minor influence on the structure of the species networks
(Table D.4, Fig. D.6). However, small-scale patterns of tree placement and tree
sizes together with the niche overlap between species are important drivers of the
performance (e.g., survival, growth) of individual trees (e.g., Uriarte, Swenson, et al.,
2010, Wiegand, Uriarte, et al., 2017, Fortunel et al., 2016). It is interesting that these
effects do not scale up into patterns of the species networks. Thus, it should be
possible in principle to derive fundamental aspects of the proximity networks of
tropical forests without spatially explicit information of tree positions, only based
on species abundance and tree size distributions. This is good news for ecological
theory because it tells us that fundamental aspects of forest structure do not depend
too much on the idiosyncrasies of the particular local spatial structure.

In this study, we laid an essential foundation for the connection of forest ecology and
network science. Our study contributes to the question of determining the interaction
structure in ecosystems (e.g., Volkov et al., 2009, Wiegand, Huth, et al., 2012, Wang,
Wiegand, Hao, et al., 2010) by taking advantage of powerful methods developed
in network science. Tree network analysis thereby allows an in-depth mapping of
proximity of trees and tree species. The strong similarities in network structures
among different tropical forests is an intriguing pattern that calls for explanation and
suggests existence of simple principles structuring fundamental aspects of tropical
forests. Perspective applications of our approach further allows to support progress in
tropical forest ecology, for example by understanding spread patterns of tree diseases
(e.g., Lambert et al., 2018) or the general impact of forest disturbances (e.g., logging,
forest fires, or droughts). Linking network science and ecology has a large potential to
understand species coexistence and forest ecosystems’ resilience in a globally changing
world.

5.5 methods

5.5.1 Study sites and tree geometry

We included three field inventories of old-growth tropical forests located on Barro
Colorado Island (BCI, Panama), Sinharaja (Sri Lanka) and Fushan (Taiwan) that have
plot sizes of 50 ha, 25 ha and 25 ha, respectively (Losos and Leigh, 2004). To enable a
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better comparison of the larger BCI plot with the other sites, we considered in some
analyses only the left 25-ha subplot of the BCI plot.

All three plots belong to the CTFS-ForestGEO network (Anderson-Teixeira et al.,
2015) of long-term forest dynamics research sites where all trees are measured in
diameter at breast height (dbh) are identified to species, mapped, and recensused
every five years according to a standardized protocol detailed in Condit (1998). The
books Su et al. (2007) and Gunatilleke et al. (2004) provide further specific detail about
the inventories at Fushan and Sinharaja, respectively. In the main analysis, we used the
data of the 2010 census of BCI (Condit et al., 2019), the 2001 census of Sinharaja and
the 2013/2014 census of Fushan. To check the generality of our results, we analyzed
the node degree distribution of additional censuses of these sites (Fig. D.7). To derive
tree height h(dbh) in m, we used the allometric relationship (dbh in cm):

h(dbh) = h1 · dbhh2 (5.11)

The parameters h1 and h2 in equation (5.11) were derived from independent datasets
(Bohlman and O’Brien, 2006, Kohyama et al., 2003, see D.1 Supplementary Methods
for details). We used for our main analyses the same parameters h1 and h2 for all
individual trees, independent on species identity. For building the tree and species
network, we examined only trees with stem diameters ≥ 10 cm and main stems (in
case of multiple stems per tree).

5.5.2 The network analysis

For building the networks, we considered trees as planar disks located at a certain
height in a three-dimensional space. The positions of the disks are given by the x-
and y-coordinates of the trees, and the z-coordinate is equal to the height of the tree
(Fig. D.1, equation (5.11)). The dimension (or diameter) of a disk dint in m, which
represents the interaction zone of a tree, is related to the measured stem diameter dbh
in cm by the allometric relationship (see Figs. D.1, D.8, Table D.6 for details):

dint(dbh) = f · i1 · dbhi2 (5.12)

with parameters i1 and i2 derived from tree crown measurements in the field
(Bohlman and O’Brien, 2006, Kohyama et al., 2003) and f being a proportionality
factor (see D.1 Supplementary Methods, Fig. D.12, Table D.7 for a sensitivity analysis
of the factor f ). Again, we used the same parameters f , i1 and i2 for all individual
trees.

We tested the sensitivity of the constructed networks to species-specific variations
of the parameters in the allometric relationships for tree crowns and tree heights
(equations (5.11) and (5.12)). Details and results can be found in D.1 Supplementary
Methods, Fig. D.13, and Tables D.8 and D.9.

5.5.3 Constructing tree networks (TN)

For the construction of the tree network (TN), we used all trees which are present
within the forest plot as nodes. A network can be either undirected or directed. To
construct an undirected tree network, we neglected tree height (height of the disks)
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and if the interaction zones of two trees (disks) overlap, the corresponding trees were
linked through an edge (connection).

In a directed tree network, tree heights are decisive for the direction of the con-
nections (edges). Therefore, we analyzed the forest from a top view and considered
shading of each tree (disk) by the interaction zone of larger trees (overtopping disks).
Larger trees (higher disks) always have larger interaction zones due to larger tree
crowns (granted by the assumed tree allometries, equation (5.11) and (5.12)). Hence, if
the interaction zones of two trees (disks) overlap, a directed edge links the larger tree
with the smaller one (Fig. D.1). If two trees with the same size (or height) overlap, a
random direction of the connecting edge is chosen.

The node degree distribution Pt(k) of the tree network quantifies the proportion
of nodes with a given node degree k (number of connected edges to the node). For
a directed tree network, we obtain two different node degrees for each tree (node):
the in-degree and the out-degree. As a result, two separate node degree distributions
can be calculated. The out-degree of one node reflects the number of trees which are
overlapped (or shaded) by the respective tree. The in-degree of one node reflects the
number of trees who are overlapping (or shading) the respective tree. The in- and
out-degrees can be interpreted as competition indices. We refer to the out-degree as
‘shadow index’ and to the in-degree as ‘overshadow index’ (Fig. D.8).

The constructed tree networks are geometric networks as their connections arise
from geometric rules. However, as we assume different interaction radii (depending
on the tree size), the analyzed tree networks differ from classical geometric networks
(Barthélemy, 2011).

5.5.4 Constructing species networks (SN)

In the tree species network nodes represent all tree species that occur at the tropical
forest plot. The species network is obtained from the marked tree network (where
the mark represents a species identity) by condensing all nodes of trees which belong
to the same species into one species node. That means, at least one overlap between
two trees of different species identity results in an edge (connection) in the species
network. Again, undirected and directed species networks can be built (Fig. D.1). If
some tree of species A overlaps with trees of species B and vice versa, the emerging
species network includes two directed connection (edges) between species A and B
(one edge from A to B and the other edge from B to A). Note that the species networks
do not belong to spatial networks as their construction does not depend on space
anymore. More precisely, species networks (SN) emerge from marked spatial tree
networks (TN) by aggregation methods using the additional information of the marks.

5.5.5 Network characteristics

We used several measures to describe the properties of the analyzed networks. The
size of the network is in general expressed by the number of nodes N and the number
of edges E. The density D of the network is built upon those values by dividing the
number of existing edges by the maximum possible number of edges in the network:

D =
2

N(N − 1)
E (5.13)
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whereby factor 2 arises for undirected networks, but is dropped for directed net-
works. The network density is the species network is of special interest because it
gives the proportion of species that are connected.

The average node degree ⟨k⟩ can be computed by:

⟨k⟩ = 1
N

N

∑
i=1

ki =
2E
N

(5.14)

where ki is the number of edges of node i and factor 2 is dropped again for directed
networks. The average node degree is the average number of trees a tree is connected
with (tree network), or the average number of other species a species is connected
with (species network).

The average path length L is a global property of the network and indicates the
mean of the shortest path lengths dij between all pairs i − j of nodes of the network65:

L =
2

N(N − 1) ∑
i≥j

dij (5.15)

whereby factor 2 drops again for directed networks. The longest shortest path length
d = max(dij) is defined as the diameter d of the network66. The average path length L
is used to test for the small-world property of a network.

The clustering coefficient C is a local property of the network and computed
according to Watts and Strogatz (Watts and Strogatz, 1998) as the average of the local
clustering coefficients Ci of all nodes i as:

C =
1
N

N

∑
i=1

Ci (5.16)

where Ci is estimated in analogy to the density D of the network as Ci = (2ei)/(ki(ki −
1)) with ki being the number of neighbors of node i, ei the number of existing edges
between the neighbors of node i, and ki(ki˘1) being the maximum possible edges
between them. Factor 2 drops again for directed networks. For nodes with a node
degree of ki = 1, we defined their local clustering coefficient as Ci = 0. The clustering
coefficient is of special interest for local topology of the tree network, because it gives
information on the degree of connections among trees that are connected to a specific
tree. For the influence of plot size on network characteristics see D.2 Supplementary
Results.

5.5.6 Testing for the small-world property of the species networks

For testing the small-world property (Cancho and Solé, 2001, Watts and Strogatz, 1998,
Montoya and Solé, 2002), we constructed random graphs that had the same number
of nodes and edges as the observed species networks (Erdős and Rényi, 1959), and
compared the clustering coefficient C and average path length L of the random graphs
with those observed. The random graphs were constructed with the Erdős–Rényi (ER)
model (Erdős and Rényi, 1959). A random graph has a node degree distribution that
follows a Poisson distribution with expected value being the observed average node
degree ⟨k⟩. Furthermore, it generally shows a small average path length L and a low
clustering coefficient C = ⟨k⟩/N.

Small-word networks are networks with properties ranging between regular net-
works and random graphs (Watts and Strogatz, 1998). They follow two independent
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structural features, namely their clustering coefficients are higher than that of a
corresponding random graph, while their average path lengths are similar.

In addition to the small-world property, networks can also be ‘scale-free’ if they
show a power law node degree distribution. Here, we tested only tree networks for
the scale-free property (see D.2 Supplementary Results for details) as the constant
node degree distribution of the species networks clearly rejects this property.

5.5.7 Construction and analysis of null communities

We constructed four types of null communities by randomizing one or several of the
following elements of the census data: (i) tree positions, (ii) species identities, (iii) tree
size distribution (species-specific), but we maintained the observed species abundance
distribution (see Table D.3 for details).

First, in the Complete Spatial Randomness (CSR) null community (Wiegand, Uriarte,
et al., 2017), trees were assigned new positions within the forest plot (randomly and
evenly distributed). This null model removed the observed species aggregation and
co-occurrence patterns, while maintaining the observed identities and the species
abundance and species-specific size distributions.

Second, in the Random Labeling (RL) null community, only the existing species
identities were randomly redistributed among the trees while keeping the spatial
positions of trees, the species abundances and the tree size distribution within the plot.
This null model removed the observed species aggregation and co-occurrence patterns
as well as the species-specific size distributions, while maintaining the observed
species abundances and the overall size distribution.

Third, in the Equal interaction Diameter (ED) null community the observed variable
tree sizes were replaced by the constant mean tree size. This null model removed only
the observed species-specific size distributions, while maintaining all other properties
of the data.

Finally, the Random Geometric Network (RGN) null community combines the CSR
and ED null communities by replacing tree sizes by a mean value and by randomizing
tree locations.
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synthesis and outlook

6.1 main results

Grasslands are valuable ecosystems as they provide numerous ecosystem services.
Among others, grasslands support the security of the world’s food supply and show
potential to mitigate negative consequences of climate change. However, climate
change, global land use change and increasing intensive anthropogenic interventions
make grassland to one of the most endangered ecosystem types in the world and
point to the urgent need for their protection. To effectively protect grasslands in the
future, a fundamental understanding of grassland dynamics and its major drivers is of
utmost importance. For this, the influence of external factors and their changes, such
as management intensification or climate change, on grassland dynamics have to be
assessed both quantitatively and in relation to intrinsic processes, and also at different
organizational levels (entire ecosystem, grassland community, species populations
and individual plants). In this context, various field experiments have been conducted
worldwide for an impact analysis, for example with different management intensi-
ties, plant community composition and modified climate variables. Complementary,
ecological models enable to extend the analysis towards long-term effects of changes
as well as towards a deeper understanding of the underlying ecological processes.
In this thesis, an individual-based process-oriented grassland model and network
science were used to understand the community dynamics emerging from individual
plant interactions in two representative ecosystem types (temperate grasslands and
tropical forests) – in relation to plant traits, ecological processes, environmental and
anthropogenic conditions and the small-scale spatial distributions of plants.

The following objectives were addressed in this thesis: 1) development of a local-
scale and a regionally transferable parameterization of an individual-based simulation
model (accounting for plant diversity) for managed grasslands; 2) exploration of
how plant traits, ecological processes and environmental conditions affect vegeta-
tion attributes such as productivity and abundances of plant functional types; 3)
understanding and projecting how anthropogenic management and climate change
can alter ecological processes and vegetation attributes at the community level (e.g.,
productivity at short- and long-term scales); and 4) application of network science to
tropical forests in order to assess the importance of the spatial distribution of plants in
species-rich ecosystems. The following sections summarize and discuss key findings
of each objective.

6.1.1 Local-scale and regionally transferable model parameterizations

In this thesis two parameterizations of the grassland model (GRASSMIND) were
developed: i) a local-scale parameterization for a field biodiversity experiment located
in Central Germany, whereby plant species diversity was represented by four plant
functional types (PFTs) and optimal soil conditions were assumed (i.e., sufficient soil
water and nutrient supply for plant growth) (Chapter 2), and ii) a generic regionally
transferable parameterization of the four PFTs by accounting for six different grassland
sites in Germany along a gradient of climatic, management and soil conditions
(Chapter 4). The focus of the local-scale model parameterization was to accurately
represent functional diversity in grasslands in the simulation model based on field
experimental plots with varying levels of functional composition and richness. For
calibration, a two-step approach was devised: first, all morphological plant traits of
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the four PFTs were determined separately based on field plots including plant species
of one PFT only to cover interactions between plants of the same PFT, and second,
one trait per PFT was updated were updated based on field plots with higher PFT
richness to account for interactions between plants of different PFTs in grassland
communities. Complementary, the generic regionally transferable parameterization
was then focused to account for different environmental conditions and management
regimes typical across Germany. Three of the six included grassland sites were used
at the same time for model calibration of the plant trait parameters while the other
field sites were used for validation.

For both concepts of the model parameterization, the calibration was done us-
ing optimization algorithms (Lehmann and Huth, 2015). The corresponding model
simulations resulted in moderate to good agreements with the measured vegetation
attributes, although aggregated objective functions were used for calibration (i.e., aver-
ages over time instead of the time series of measured vegetation attributes). However,
deviations between measurements and simulations still existed in some vegetation
attributes, especially regarding the generic regionally transferable parameterization.
Simulations based on the local-scale parameterization showed a mean deviation of
8% from the measured vegetation attributes (mean over deviations for aboveground
biomass, vegetation height, leaf area index and vegetation cover of the total com-
munity, at plots used for calibration). Simulations based on the generic regionally
transferable parameterization deviated by around 29% from field measurements of the
three grassland sites used for calibration. These differences in deviations between both
concepts of model parameterization can be traced back to the number of considered
factors influencing vegetation dynamics (i.e., local vs. regionally different climate, soil
type and management regime) but also to the measurement protocols of the grass-
land sites. Field data varied between 1 to 15 measurements per year with differing
measurement methods for the grassland sites included in the regionally transferable
parameterization. In contrast, measured information used for the local-scale parame-
terization followed a consistent protocol aligned with the management regime (e.g.,
two measurements per year prior to mowing).

6.1.2 Impact of plant traits, ecological processes and environmental conditions on vegetation
attributes

Both, the local-scale and regionally transferable parameterization were the basis for
obtaining a deeper process understanding of the modeled grassland ecosystems
and for investigating the impact of environmental change on grasslands. Therefore, a
variety of methods were used ranging from global sensitivity analyses and a robustness
analysis in Chapter 2 and a process analysis in Chapter 3 (each based on the local-scale
parameterization), to an extended analysis on the importance of regionally differing
environmental factors by applying a machine learning model in Chapter 4 (based on
the regionally transferable parameterization). The analyses focused on exploring the
impacts of plant traits, plant competition, ecosystem processes and environmental
conditions on grassland productivity, functional composition and relative abundances
of PFTs.

Regarding plant traits, our analysis revealed that no single plant trait parameter of
the grassland model but rather multiple trait parameters (and their interactions) had
a large influence on aboveground biomass. Some traits increased and strengthened
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the growth of plants (e.g., height-width ratio and specific leaf area), while other
traits made plants stronger through advantages in demographic processes (e.g., seed
ingrowth and germination rate of seeds) (Chapter 2). Plant traits included in this
analysis were restricted to those traits related to aboveground plant processes (e.g.,
photosynthesis or plant mortality). Traits related to belowground processes (e.g., plant
rooting depth for determining access to soil resources) were not considered as an
optimal soil water and nutrient supply was assumed at the grassland site (local-scale
parameterization).

Regarding plant competition and ecosystem processes, plant mortality had a
stronger impact on vegetation attributes of grasslands compared to shading between
plants (Chapters 2 and 3). Plant mortality was thereby induced by aboveground com-
petition for space (crowding) and an intrinsic plant mortality rate in the model while
shading between plants rather affected the photosynthesis and respiration of plants in
the model. Belowground competition for soil water and nutrients were neglected in
the analyses as adequate water and nutrient supply was assumed at the considered
grassland site (local-scale parameterization).

Regarding environmental conditions, only a few of the considered factors had
a large importance for the modeled vegetation attributes (based on the regionally
transferable parameterization and including belowground soil and plant processes
and related plant traits in the model, Chapter 4). Precipitation and saturated con-
ductivity had both a high importance for grassland productivity, while irradiance
and potential evapotranspiration were more important for the biomass proportion of
herbs in grasslands. Air temperature had a rather low influence compared to other
environmental factors and ecological processes (Chapters 3 and 4).

6.1.3 Impact of management and climate change on ecological processes and vegetation
attributes

Scenarios reflecting different management intensities were used to assess the impact of
anthropogenic management on different ecological processes and vegetation attributes
of grasslands (Chapters 3 and 4). More intensive management (in terms of mowing
and fertilization frequency as well as fertilizer amount) led to a higher productivity (es-
pecially in grasslands with high plant functional diversity). A detailed process analysis
thereby revealed that rather a decreasing plant mortality by crowding was responsible
for the higher biomass yields (instead of an increased net primary productivity). More
frequently mown grasslands showed an increase of herbs when assuming optimal soil
conditions and no belowground plant competition (based on the local-scale parameter-
ization) (Chapter 3) and a decrease of herbs when integrating different soil properties,
belowground plant competition and fertilization in management regimes (based on
the regionally transferable parameterization) (Chapter 4). For the latter, correlations
with environmental factors further decreased with management intensity.

Impacts of climate change were analyzed with the grassland model by simulating
an increase in air temperature (Chapter 3) and based on different RCP scenarios
(Chapter 4). Both impact analyses resulted in slight increases of grassland productivity
and changes in the abundances of PFTs. The magnitude of climate change impacts
was thereby dependent on plant functional diversity and management intensity. Based
on the local-scale parameterization (assuming optimal soil conditions), more intensive
management (i.e., higher mowing frequencies) led to smaller effects of warming on
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grassland productivity (Chapter 3). In turn, simulations of climate change impacts
based on RCP scenarios using the regionally transferable parameterization (accounting
also for soil dynamics) led to stronger effects of climate change on productivity for
more intensive management (i.e., mowing and fertilization) (Chapter 4). In terms of
abundances of PFTs, both impact analyses came to similar results, namely smaller
changes in more intensively managed grasslands than in extensively managed grass-
lands.

Compared to management, climate change had only little effect on the analyzed
vegetation attributes in grasslands. Among the environmental factors, climatic vari-
ables (e.g., precipitation and irradiance) showed higher importance for productivity
and proportion of herbs in the grassland model than soil properties (e.g., saturated
conductivity and silt content) (Chapter 4).

6.1.4 Assessment of spatial proximities and community structures of plants in ecosystems

In this thesis, also network science was applied to real-world ecosystems in order to
assess spatial proximities and community structures of plants (Chapter 5). This was
conducted on the example of tropical forests using data of three forest megaplots
located on different continents. Measures of network science allowed to quantify
potential neighborhood interactions between trees and tree species and to compare
the spatial structure of tree and tree species positions among the three analyzed forest
sites. Network structures and the analyzed corresponding network measures of the
three sites were remarkably similar. A creation of different null communities (e.g.,
assigning new random tree positions) revealed that neither the tree positions nor the
tree sizes had an influence on the detected network structures. The study revealed
that network science has a large potential to better understand interactions between
plants and plant species.

6.2 limitations in the studies and perspectives for future research

The methods and results presented in this thesis show some limitations which point to
potential future extensions of the research studies in various directions. The following
sections discuss those limitations and provide perspectives for future research with
respect to (i) model parameterization, (ii) model analyses and (iii) model extensions
and applications.

6.2.1 Model parameterization

Directly measured plant traits and time-series measurements of several vegetation
attributes were available from field studies and used for the parameterization of
the grassland model GRASSMIND (Taubert, Hetzer, et al., 2020b). However, the
parameterization of such an individual-based grassland model, which combines matter
fluxes (e.g., carbon fluxes by photosynthesis and respiration) with plant diversity,
was still challenging when compared to other model types (e.g., population-based
models) or other ecosystems (e.g., forests). A large set of trait parameters describing
characteristics of individual plants for each PFT had to be determined (in total 17
parameters per PFT for the local-scale parameterization excluding soil processes, and
27 parameters per PFT for the regionally transferable parameterization including soil
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processes). Such information at the individual plant level is more demanding and
time-consuming to measure in dense grasslands compared to, for example, forest
ecosystems (where single trees can be recorded (Condit et al., 2019) and is not required
for models of reduced complexity (like population-based models, e.g., Siehoff et al.,
2011).

Further, the resolution of available field measurements for model calibration and
validation was rather scarce (in time and with respect to different organizational levels
(e.g., community, population and individual plant level), site locations, plant diversity
levels and management regimes). The additional aggregation of field measurements
over time (e.g., aboveground biomass, leaf area index and vegetation height) in the
objective function used for model calibration resulted in an even lower required ac-
curacy when simulating the considered attributes, but still reproduced the temporal
patterns of the measurements. Future calibrations, however, could benefit from higher
temporal resolution of field observations, as uncertainties in single field measurements
(e.g., measurement errors or day-specific external influences) can be reduced and the
accuracy of model processes can be verified. Not only a higher temporal resolution,
but also more detailed measurements at the individual plant level would be beneficial
for model calibration (Taubert, Hetzer, et al., 2020b). For instance, besides community
attributes and species-specific biomass and cover, also species-specific plant height
or plant density could be sampled from the field (Marquard, Weigelt, Roscher, et al.,
2009). However, more information could also pose a challenge for model calibration
because not all vegetation attributes can be fitted equally well at the same time (see
Chapter 3, (Taubert, Hetzer, et al., 2020b)) and overfitting could occur (Hawkins, 2004,
Clark, Ann Turnbull, et al., 2020). To cover several grassland types and locations
through a regional parameterization, observational data of networks such as the Nutri-
ent Network (www.nutnet.org) or the Drought-Network (www.drought-net.org) with
consistent measurement protocols across multiple grassland sites could be used for fu-
ture model parameterizations. Moreover, field experiments excluding certain processes
or environmental factors could be useful to parameterize grassland communities. For
example, experiments measuring growth of individual plants without any competition
can be used, as standalone plants can also be simulated in the individual-based model
(Hetzer et al., 2021). Again, a larger data base with higher resolution of observations
could be a greater challenge for robust model calibration.

Besides, other optimization methods than used in this thesis, like approximate
Bayesian computation, could be tested for model calibration (Reichert and Omlin,
1997, Hartig et al., 2012). The optimization algorithms used (dynamically dimensioned
search algorithm and adaptive simulated annealing) only provide a parameter set
for which the objective function reaches a (local) minimum. Approximate Bayesian
computation would also provide uncertainty areas of each parameter (Hartig et al.,
2012).

Major discrepancies with measured field data could indicate that either processes
are missing or processes already included should be adjusted in further model devel-
opments. For example, the abundances of PFTs in grasslands simulated in Chapter 3
showed an inadequate response to different management intensities (at the GCEF
site with intensive and extensive management). However, according to the princi-
ple of parsimony (Reichert and Omlin, 1997, Coelho et al., 2019), a model should
be kept as simple as possible. In this context, it may be possible to reduce model
complexity elsewhere for other objectives. For example, future analyses could test
whether a “mean-species” approach would be sufficient for simulating large-scale
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grasslands (thereby immensely reducing the number of model parameters). Such a
parameterization might be sufficient to analyze productivity at different grassland
sites, but information in terms of plant diversity would get lost. The approach of PFTs
used in this thesis, in turn, incorporated this aspect; however, the adaptation of plant
traits to changing environmental conditions is not yet possible in the GRASSMIND
model with this approach. Future model development might account for specific traits
within each PFT to be adjusted according to site-specific conditions or incorporates
the concept of trait distributions. By this, the distribution of plant traits, rather than
species of functional groups, is modeled, allowing adaptation of plant traits to a
changing environment (e.g., due to more intensive management or climate change).
However, for both knowledge on the respective response functions of specific traits
to the environment and on trade-offs between plant traits is required (Mitchell and
Bakker, 2016).

6.2.2 Model analyses

The analyses conducted in this thesis show a selection of possible methodologies
applied to the individual-based process-oriented grassland model GRASSMIND and
related to network science with the purposes to explore the sensitivity and importance
of plant traits, plant and species interactions and ecological processes in vegetation
ecosystems. The following section describes further potential analyses in an extended
context.

The sensitivity and robustness analysis as well as the scenario analyses in Chapters 2
and 3 are based on the local-scale model parameterization that assumes optimal soil
conditions (no limitations in soil water or nutrient availability). Soil resource dynamics
and plant-soil interactions were excluded in this model parameterization because
vegetation growth was not shown to be limited by soil resources in the measured data
used for parameterization (local grassland site). This complexity reduction enabled
to obtain a detailed understanding of the ecological processes acting aboveground in
grasslands. Future studies revisiting the objectives of Chapter 2 and 3 may account
for variable soil resource dynamics and supply, for example by applying the same
methods (global sensitivity analysis, robustness analysis, process analysis) using the
regionally transferable parameterization from Chapter 4. Knowledge already gained
before, such as the sensitivity of plant trait parameters influencing aboveground
grassland dynamics, can then be extended to soil-related plant parameters influencing
plant-soil interactions (e.g., plant rooting depth or soil water demand). Other methods
than the Morris method applied in this thesis might therefore be more informative,
for example, the Sobol method, which allows to also quantitatively determine the
influence of parameters in addition to the order of sensitivity and nonlinear effects
(Saltelli, Tarantola, et al., 1999, Saltelli, Aleksankina, et al., 2019). Furthermore, the
process analysis presented in Chapter 3 (with focus on plant shading or the influence
of air temperature) could be extended to additional processes like limitations in soil
water and nitrogen availability for plant growth and grassland productivity. Both
methodologies applied to the regionally transferable parameterization and scenario
analysis framework of Chapter 4 have the potential to provide more insights on the
vulnerability of extensively and intensively managed grasslands under climate change.

The analyses presented in this thesis mainly focused on the productivity at the
community-level and population-level (i.e., biomass proportions of different PFT pop-
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ulations). More in-depth analysis, for example, following the development of a single
plant within a grassland community (surrounded by conspecific or heterospecific
plants) could be compared to the growth of a standalone plant with no inter- or in-
traspecific competition to analyze interaction strengths and the role of different plant
traits (Taubert, Hetzer, et al., 2020a), plant size structures (Hara, 1988, Schwinning and
Weiner, 1998) as well as other plant-specific vegetation attributes such as plant ages
(Lauenroth and Adler, 2008). Such simulations would allow for an investigation of the
relative importance of competition for plant growth (e.g., root and shoot competition
(Kiær et al., 2013)), identification of differences in plant traits that favor coexistence
(Kraft et al., 2015), plant invasions (Vilà and Weiner, 2004) or plant survival (Lauenroth
and Adler, 2008).

The analysis presented in Chapter 5, specifically applying network science to forest
megaplots, can also be extended. Interaction strengths, for example, measured by the
overlapping crown area of larger trees, could be used to represent weighted network
edges between trees and tree species. Connections between tree species would then
be represented not only by the number of adjacencies to trees of other species, but
also by the strength of interaction, for example, in terms of shading or competition for
space. In this way, interactions between trees and tree species can also be measured
quantitatively and could provide insights on whether individual trees or tree species
play a key role by suppressing the growth of many other trees or tree species standing
nearby or not. Integrating network science into mechanistic individual-based models
(e.g., the forest model FORMIND, (Fischer, Bohn, et al., 2016)) could further provide
the opportunity to simulate and analyze dynamic network structures and to estimate
interaction strengths by additional simulated measures (e.g., soil water competition
between trees). Thereby, forest megaplots, which are censused over several decades,
provide an extensive and informative basis for such a dynamic network model and
analysis (Condit, 1998).

6.2.3 Model extensions and applications

Further development of the grassland model GRASSMIND opens up opportunities
for model application in various directions of future research.

Firstly, phenology could be extended in the model, for example, by distinguishing
between vegetative reproduction (via rhizomes or stolons) of plants and sexual repro-
duction of flowering plants (including the date of flowering) (Yang and Kim, 2016,
Klinerová et al., 2018). The date of flowering is specifically decisive with regard to
plant reproduction after mowing events (Michaud, Plantureux, Amiaud, et al., 2012).

Secondly, the model could also consider variations in the date of management
events besides the management intensity (e.g., mowing frequency). The timing of
specific management regimes plays a decisive role regarding the impact on different
ecosystem services, for example, the conservation of species richness, and depends on
site-specific factors (Eriksson et al., 2015, Johst, Drechsler, Mewes, et al., 2015, Leins et
al., 2021). For instance, mowing during the reproductive period (flowering and fruiting
period) can lead to reduced genetic diversity and reproduction, whereas mowing
before this period enhances reproductive success (Bissels et al., 2006, Nakahama et al.,
2016). Further, birds are affected by management dates and intensity as they use
this habitat for breeding and feeding (Chamberlain et al., 2000, Benton et al., 2002,
Marriott et al., 2004). Instead of setting fixed dates (and intensities) prior to the model
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simulation, flexible management regimes could be designed, which are aligned with
current day-specific conditions and are particularly needed with respect to climate
change. Therefore, concepts for dynamic management regimes have to be developed
and tested, for example, by implementing management rules related to actual plant
development influenced by air temperature and soil moisture (Chang, Ciais, Viovy,
et al., 2017, Petersen et al., 2021).

Thirdly, management regimes could be extended in the model towards pastures
and mown pastures (Ma, Derner, et al., 2019). The GRASSMIND model so far focuses
on meadows. Grazing could prospectively be integrated into the model to investigate
the importance of vegetation processes and the influence of environmental factors also
for pastures and to explore differences between meadows and pastures (e.g. whether
plant mortality and management also dominate vegetation dynamics, Chapters 2 and
3).

Fourthly, the network analysis performed in Chapter 5 could also be applied to
grassland ecosystems. Compared to forest inventory data, observation data on the
spatial position of plants in grassland communities are rare and were not available for
an analysis in this thesis. Monitoring individual plants in grasslands is challenging
because measurements could destroy the root system, and the definition and iden-
tification of individual plants in grasslands is difficult (Lauenroth and Adler, 2008).
Individual-based models such as the GRASSMIND model, which are parameterized
based on field measurements, can be used to simulate plant size distributions and
potential plant positions explicitly and can thus provide information for network
analyses. Analyzing grasslands by network science allows to quantify spatial plant
and plant species proximities and to detect changes in spatial structures (e.g., caused
by mowing or climate change).

Fifthly, grassland ecosystems at other sites in Europe and worldwide could be
modeled and simulated by the grassland model GRASSMIND in the future, which,
however, may require the integration of additional processes in the model. Besides
testing GRASSMIND for simulating semi-arid grasslands, whose growth is primarily
determined by more frequent but small rainfall events (Heisler-White et al., 2008,
Cherwin and Knapp, 2012), fire events can be incorporated into the model (Aragón
et al., 2006). Simulating grasslands in the US requires a mechanistically adaptation
of plant photosynthesis for C4 grasses (Chen et al., 1996) and grasslands in alpine
regions can be exposed to landslides (Tasser et al., 2003). Such extended model
applications would allow to compare grassland dynamics and the importance of
different environmental and anthropogenic factors among these different grassland
ecosystems.

Lastly, large-scale simulations of grassland dynamics by the GRASSMIND model,
for example, of all grassland areas within Germany, can be feasible in the future
by further improving the developed regionally transferable parameterization and by
integrating remote sensing information on land cover (Griffiths et al., 2020, Preidl
et al., 2020). Such large-scale application of GRASSMIND to Germany could allow,
among others, to identify potential risks of plant diversity loss and related declines of
ecosystem services under scenarios of future climate change combined with different
management regimes.
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6.3 vision

This thesis has laid a foundation for analyzing, understanding and predicting veg-
etation dynamics and interactions using an individual-based grassland model and
network science.

Ecological models have a great potential to predict shifts in vegetation dynamics due
to environmental change. This aspect makes them prospectively an important tool for
decision support of farmers and policy makers. Farmers can benefit from information
systems (especially the connection of process-based models with remote sensing)
which can forecast vegetation dynamics for a local grassland site with high temporal
resolution and which can provide management recommendations to increase profits
while still managing the land sustainably. A main worldwide challenge is sustainable
intensification, which means raising productivity while reducing environmental im-
pacts (Taube et al., 2014). Therefore, the preservation of biodiversity (flora and fauna)
and the protection of grassland areas are important issues in politics (e.g., supported
through subsidies to change farmer behavior in desirable directions). In this context,
process-based grassland modeling (such as presented in this thesis) could support
in future the identification of suitable grassland sites (in relation to environmental
conditions) for corresponding appropriate management regimes, also under projected
climate change.

The scope of recommendations that ecological models can provide to farmers and
policy makers is not limited to vegetation dynamics. Coupling vegetation models such
as the grassland model GRASSMIND with other mechanistic models, for example,
hydrological models (e.g., Samaniego et al., 2010), economic or socioeconomic agent-
based models regarding policy instruments and subsidies (e.g., Ziv et al., 2020) or
models on animal movement (e.g., Leins et al., 2021), could expand potential applica-
tions in order to tackle a variety of environmental and societal challenges. Coupling
multiple models can provide a system for simulating ecological and socioeconomic
dynamics to produce high-resolution forecasts for the conservation of multifunctional
landscapes. However, consideration should always be given to the extent to which a
larger model system complexity can provide an advantage for the respective research
question and corresponding analysis.

The ability to assess the consequences of policy decisions and management actions
through modeling would enable biodiversity conservation, food security, and targeted
mitigation of negative impacts by climate change on the Earth system. This is essen-
tial to prevent major environmental disasters such as floods and droughts and the
associated consequences such as poverty and famine.
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A P P E N D I X O F C H A P T E R 2 :
I N F L U E N C E S O F T R A I T S A N D P R O C E S S E S O N P R O D U C T I V I T Y
A N D F U N C T I O N A L C O M P O S I T I O N I N G R A S S L A N D S :
A M O D E L I N G S T U D Y

a.1 supplementary methods

a.1.1 Preparation of climate data

Daily climatic conditions were received from two weather stations located near the
experiment. Data from January 2004 onwards were supplied by the weather station of
the Max Planck Institute (MPI) for Biogeochemistry in Jena, Germany. Missing climate
data for the years 2002 and 2003 were substituted by data from the weather station of
the University of Applied Science Jena (FH Jena). Gaps of missing data at three days
were filled with the mean value of the previous and following day. Day length was
calculated based on the latitude (Forsythe et al., 1995).

a.1.2 Dates of mowing and vegetation measurements

The grassland model used the same mowing and vegetation measurement dates as
carried out in the field. Both was done twice per year (mowing: early June and early
September, aboveground biomass (AGB) harvest: prior to mowing events (Weisser
et al., 2017, Weigelt, Marquard, et al., 2010)) so that we set the following dates:
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Year Date Mowing
events

Vegetation measurements

AGB, vege-
tation cover,
plant density*

AGB propor-
tions in mix-
tures

Leaf area in-
dex (LAI)

Vegetation
height

2002 05.07. x

05.09. x x x

10.09. x

2003 09.06. x x x

10.06. x

08.09. x x x x

10.09. x

2004 08.06. x x x x

10.06. x

07.09. x x

10.09. x

2005, 08.06. x x x x

2007 10.06. x

07.09. x x x x

10.09. x

2006 08.07. x x x x

10.07. x

07.09. x x x x

10.09. x

2008 07.06. x x x x

10.06. x

06.09. x x x x

10.09. x

*Dates of plant density are only used for the analysis of model results and do not correspond to
measurements in the field.

a.1.3 Details on parameterization

The inverse parameterization was done with an optimization tool, using two algorithms (each with
maximum 10,000 evaluations) (Lehmann and Huth, 2015). In the first step, we used the dynamically
dimensioned search algorithm to minimize our goal function that included the mean absolute percentage
errors of the four summed vegetation attributes (AGB, LAI, vegetation height and vegetation cover) in
plots of one PFT:

C1PFT =
1
4

4

∑
i=1

⃓⃓
∑t xi,t − ∑t x̂i,t

⃓⃓
∑t x̂i,t

(A.17)

where xi,t are simulated and x̂i,t are measured values which are summed for each vegetation attribute
i over all measurement points at time t. To prevent that too many small and only one tall plant
establishes in our model (which would cause large jumps in vegetation attributes if a tall plant randomly
dies), we included a condition. We considered time intervals between mowing events or the turn of
the year (since at the turn of the year in our model brown biomass is immediately transferred to the
litter). In each time interval, we summed up the negative changes in vegetation height (due to random
death of the tallest plant) and considered the time interval with the largest negative height change. If
the amount of this change in height was greater than one third of the total height change in this time
interval (maximum height minus minimum height), the set of parameters was not considered in the
inverse parameterization. After checking our results of the inverse parameterization for plausibility, we
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introduced further restrictions, namely a maximum plant density (maximum number of plants on the
plot, for grasses 4000 plants, for small herbs and legumes 2500 plants and for tall herbs 1000 plants) and
reran the algorithm.

In the second step, we inversely estimated parameters of the mixture consisting of four PFTs. We used
the adaptive simulated annealing algorithm to minimize the extended goal function C4PFT of community
attributes by including the functional proportions of AGB and vegetation cover:

C4PFT =
1
6

⎛⎝ 4

∑
i=1

⃓⃓
∑t xi,t − ∑t x̂i,t

⃓⃓
∑t x̂i,t

+
1
4

4

∑
PFT=1

⃓⃓⃓
∑t bPFT,t − ∑t b̂PFT,t

⃓⃓⃓
∑t b̂PFT,t

+
1
4

4

∑
PFT=1

|∑t cPFT,t − ∑t ĉPFT,t|
∑t ĉPFT,t

⎞⎠
(A.18)

where bPFT,t stands for the simulated proportional AGB of a PFT, cPFT,t stands for the simulated
proportional cover of a PFT and xi,t are community vegetation attributes (AGB, LAI, vegetation height
and vegetation cover) at time t. Respective variables with hat denote the corresponding measured data,
whereby the first year of measurement was excluded.

The corrected values of Nseed determined in the second step showed no major changes in the
simulation results of 1-PFT plots.

a.1.4 Validation

The validation of the model parameterization was done by using independent additional data from
the field experiment. This data comprised plots consisting of two and three PFTs. Analogous to the
parameterization, we prepared the field data by aggregating vegetation attributes (four combinations in
2-PFT mixtures: GS, GT, SL, TL, aggregations over five field plots each, and four combinations in 3-PFT
mixtures: GST, GSL, GTL, STL, three field plots each). By using the same simulation settings as described
in the parameterization section (in terms of climate, starting conditions and simulation time) and the
previously determined parameter sets for each PFT, we simulated mixtures of each PFT combination and
compared simulation results with the respective field observations (see next paragraph on evaluation).

a.1.5 Evaluation

To evaluate the accuracy of our simulation results (parameterization and validation), we calculated in
addition to graphical comparisons three statistical criteria: the mean absolute percentage error (MAPE),
the normalized root mean square error (NRMSE) and sample Pearson’s correlation coefficient (rSM) for
each vegetation attribute i, including each field measurement:

MAPE =
1
n

n

∑
i=1

⃓⃓⃓⃓
Mi − Si

Mi

⃓⃓⃓⃓
(A.19)

NRMSE =

√︂
∑n

i=1 (Mi − Si)
2

M
(A.20)

rSM =
∑n

i=1
(︁
Si − S

)︁ (︁
Mi − M

)︁√︂
∑n

i=1
(︁
Si − S

)︁2
√︂

∑n
i=1

(︁
Mi − M

)︁2
(A.21)

where Si and Mi are the i-th simulated and measured values, S and M are the means of simulated and
measured values and n is the number of data points.

a.1.6 Sensitivity analysis

In the Morris method, elementary effects EEi(x) describe the effect that the change of a model input
parameter value xi (e.g. SLA) has on the simulation result y (e.g. AGB). We used the function morris()
of the package ‘sensitivity’ in R (version 1.16.1) (Iooss et al., 2020). Elementary effects of each model
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parameter were calculated using the one-factor-at-a-time (OAT) method, i.e. only one parameter xi was
varied at a time (Morris, 1991):

EEi(x) =
y (x1, x2, . . . , xi + ∆, . . . , xk)− y(x)

∆
(A.22)

Each input parameter had eight possible realizations within its range (see Table S2). The variation
of one parameter in one step was ∆ = 5

7 (max (range (xi)) − min (range (xi)), respectively (with jump
over five realizations in one step, see (Iooss et al., 2020) for details). Elementary effects were calculated r
times for random trajectories through the parameter space. To identify the number of trajectories needed,
we used the method proposed by Menberg et al. (2016). Then, for each parameter i we determined the
mean elementary effect µ, the standard deviation σ and the mean absolute effect µ∗ (Morris, 1991):

µi =
∑r

n=1 EEn (x)
r

(A.23)

σi =

√︄
1
r

r

∑
n=1

(EEn (x)− µi)
2 (A.24)

µ∗
i =

∑r
n=1 |EEn (x)|

r
(A.25)

Thereby, parameters with low mean elementary effect µ and low standard deviation σ are considered
unimportant. The effect of parameters lying outside of a wedge built by µ = ±2SEM (with SEM = σ/

√
r)

in the µ − σ figure is expected to be linear and additive, while the effect of parameters inside the wedge
indicates dependence on values of other parameters or non-linearity. The output y is most sensitive to
parameters with high µ∗ (Campolongo et al., 2007).

We have tested the sensitivity of 16 trait parameters of the model (see Table S2). Thereby, we considered
as output y the AGB in a 1-PFT plot and PFT-proportional AGB in the 4-PFT mixture (whereby only trait
parameters of legumes were varied), averaged over measurement dates, respectively. We used r = 200
trajectories.

a.1.7 Calculation of mean relative yield

Similar to the study by Marquard et al. (2009), we determined mean relative yields (RYI) for each plant
functional type (PFT). Instead of species richness, we considered only plant functional group richness in
our formula:

RYI =
1
Ni

∑ (RYi ∗ #PFTs) (A.26)

where Ni is the number of mixtures including PFT i, #PFTs is the total number of PFTs in the respective
mixture and RYi is the relative yield (here, aboveground biomass (AGB)) of PFT i:

RYi =
AGB o f PFT i in mixture

AGB o f PFT i in plot o f 1 PFT
(A.27)

Thereby, RYI > 0 represents overyielding which means that a PFT is more productive in mixtures than
in the 1-PFT plot. Conversely, RYI < 0 indicates underyielding, meaning that the PFT is more productive
in 1-PFT plots than in mixtures. Analogous to RYI, mean relative plant biomass (RBI, excluding the
factor #PFTs) and mean relative density (RDI) was computed (Marquard, Weigelt, Temperton, et al.,
2009).

104



A.2 supplementary results

a.2 supplementary results

a.2.1 Impact of stochasticity on the simulation

We tested for differences between 10 and 100 simulation runs. We observed only on average 12% of
deviations between 10 and 100 simulation runs in the AGB of 1-PFT and 4-PFT plots (maximum 18.5%)
and a mean deviation of 11% in LAI, of 12% in vegetation height and of 1% in vegetation cover.

a.2.2 Changes of competition factors in the robustness analysis

It is expected that competition for space increases if competition for light is deactivated. However, this is
not the case for small herbs and the 4-PFT mixture (Fig. A.6) which indicates that competition for light
influences their dynamics stronger than competition for space. The same applies to the light reduction
factor when competition for space is deactivated. As expected, the light reduction factor increases for
small herbs and for the mixture, but decreases in the other plots. Hence, competition for space seems to
be the dominant process for grasses and legumes in the 1-PFT plots.

The factors influence productivity in different dimensions. This can also be seen in the plots of small
herbs and the mixture: although the light reduction factor increases (in case of no competition for space)
productivity still increases (Fig. 2).

In the mixture, the light reduction factors of the PFTs show the same direction of change as in the
1-PFT plots, with the exception of grasses, whose light reduction factor now also increases in case of no
competition for space. This may be related to the high plant density of grasses, and the overall lower
vegetation height compared to tall herbs and legumes (Fig. 2).

Note that the values of the competition factors strongly depend on plant density and the size
distribution of plants (e.g., in terms of height or width). Here, both factors show arithmetic means over
all plants and simulated days.

a.2.3 Comparison to field studies - Life spans

Annual measurements of perennial plants in Kansas, USA, revealed maximum lifetimes of 3 to 39 years
(Lauenroth and Adler, 2008), whereas compared to our model results we observed a maximum lifetime
of only about 3 years (Fig. A.11). Herbs tend to have on average a much shorter life span than grasses
((Lauenroth and Adler, 2008); 3 to 25 years for forbs and 5 to 39 years for grasses). This is consistent with
our model results as life spans of the PFTs in the modeled mixture ranges from one day to 3.1 years for
grasses and to 1.9 years for forbs (mean of maximal life spans over small herbs, tall herbs and legumes).
Note that it is often challenging to identify individual plants in grasslands, which is why Lauenroth
and Adler (2008) defines genets and grass polygons (overlapping grass plants share one identity) as one
plant each.
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a.3 supplementary figures

Figure A.1: Flow chart showing the steps of the inverse parameterization of the model.
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A.3 supplementary figures

Figure A.2: Annual means of field measurements (black) in comparison to corresponding
simulation results (colored) in plots of one plant functional type (PFT) and the 4-
PFT plot. Black lines and shaded polygons show maximum and minimum annual
values within the field plots and simulation runs. The normalized root mean square
errors (NRMSE) were calculated using the annual aggregated measurements (seven
data points).

Figure A.3: Field measurements (black) in comparison to corresponding simulation results
(colored) in plots of one plant functional type (PFT) and the 4-PFT plot. Black lines
and shaded polygons show maximum and minimum values within the field plots
and simulation runs (spatial variation).
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Figure A.4: Validation results of the model parameterization. (A) Mean measured vegetation
community attributes in different plots of the Jena Main Experiment (green) and
corresponding simulated attributes (orange). The letters show the occurring plant
functional types (PFTs) in the plots (G: grasses, S: small herbs, T: tall herbs, L:
legumes). In (B) mean proportional aboveground biomass (AGB) of the PFTs in
2-PFT and 3-PFT mixtures are shown in a 1:1 plot.
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A.3 supplementary figures

Figure A.5: Vegetation patterns of different plant functional type (PFT) richness in years
2002 to 2008. In (A) aboveground biomass (AGB) of measurement dates per year
was summed up (two per year in 2003-2008, one measurement only in 2002),
in (B)-(D) averages over the measurements per year were taken, of the field
measurements and the associated simulation results, respectively. Grey lines show
linear regressions.
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Figure A.6: Space competition factor RS and light reduction factor RL of the simulated (A)
1-PFT plots of grasses (G), small herbs (S), tall herbs (T) and legumes (L) and the
4-PFT mixture (M) and (B) PFT proportions in the mixture in different scenarios
(the standard setting with competition for light and space, and respectively no
competition for light or space). Note that RS is averaged over all days of the seven
simulation days (the same for all plant on one day) and RL is averaged over all
days and all plants in the plot (larger for smaller plants). Note that for the scenario
of no space and no light competition, both factors are zero.
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Figure A.7: Impact of light and space limitation on vegetation community attributes in the
mixture of four plant functional types. Bluish bars show simulation outputs with
light and space limitation, yellowish bars with no light limitation and reddish bars
with no space limitation. Values correspond to the mean value over the measure-
ment dates (see A.1 Supplementary Methods) averaged over ten simulation runs.
Note that the axes of ABG, LAI and green vegetation cover are logarithmic.

Figure A.8: Absolute elementary effects µ∗ on aboveground biomass (A) in a plot of one
plant functional type (PFT) and (B) in a mixture of four PFTs. In (B) only the trait
parameters of legumes were varied, but affected also changes in the aboveground
attributes of the remaining PFTs. Non-influential parameters are not labeled.
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Figure A.9: Relationship between (A) plant density and community aboveground biomass
(AGB), (B) plant biomass and community AGB and (C) plant density and AGB
per plant. Points correspond to mean values at dates of AGB measurement (see
A.1 Supplementary Methods) of four simulated plots of one plant functional type
(PFT), four simulated plots of two PFTs, four simulated plots of three PFTs and
one simulated plot of four PFTs. Blue lines show linear regressions. Note that all
axes are logarithmic.

Figure A.10: Impact of light and space competition on vegetation attributes in (A) plots of one
plant functional type (PFT) and in (B) the 4-PFT mixture. Aboveground biomass
(AGB), leaf area index (LAI), vegetation height, green vegetation cover and plant
density were analyzed. Bluish bars show simulation results with light and space
competition, yellowish bars with no light competition and reddish bars with no
space competition of grasses (G), small herbs (S), tall herbs (T) and legumes (L).
Values correspond to the mean value over the time-series of the corresponding
vegetation attribute. Black lines indicate maximum and minimum values in the
simulation runs (spatial variation). Note that the axes of ABG, LAI and green
vegetation cover are logarithmic.
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Figure A.11: Life spans of plants of different plant functional types in the 4-PFT mixture.
Individual plants that established on 10 m² are shown.
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a.4 supplementary tables

Table A.1: Parameter values of the grassland model. 11 parameters were inversely param-
eterized relating to model processes of plant reproduction, mortality, geometry
and production. For detailed descriptions of the parameters and processes in the
model see Taubert, Hetzer, et al. (2020a). Means over species belonging to one plant
functional type were taken from measurements of the Jena experiment in Heisse
et al. (2007).

Process Parameter Shortcut Grass Small
herbs

Tall
herbs

Legumes Source

Reproduction Global ingrowth of
seeds [1/day]

Nseed 3,215 4,809 659 2,241 inversely param-
eterized

Reproduction age
[yrs]

agerep 0.59 0.09 0.48 0.32 inversely param-
eterized

Seed biomass
[gODM]

Bseed 1.38 0.88 1.75 5.68 (Heisse et al.,
2007)

Germination rate of
seeds [-]

germ% 0.66 0.75 0.62 0.78 (Heisse et al.,
2007)

Seedling mortality
[1/yr]

mseed 9.0 68.6 13.9 15.1 inversely param-
eterized

Mortality Mature mortality
[1/yr]

mbasic 0.03 0.03 4.01 0.03 inversely param-
eterized

Leaf life span [days] LLS 90 42 33 114 inversely param-
eterized

Root life span [days] RLS 709 241 241 709 (Tjoelker et al.,
2005)
and estimated

Geometry Height-width ratio
[-]

hw 1.2 0.4 0.7 0.9 inversely param-
eterized

Specific leaf area
of a single plant
[cm²/gODM]

SLA 63.12 100.98 81.61 72.16 inversely param-
eterized

Shoot correction fac-
tor [t/m³]

f s 0.0011 0.0008 0.0012 0.0014 inversely param-
eterized

Shoot-root ratio [-] sr 2.35 4.05 3.99 13.01 (Heisse et al.,
2007)

Production Max. leaf gross
photosynthesis
[µmolCO2/m²/s]

pmax 14.47 17.51 29.69 24.22 inversely param-
eterized

Initial slope of
light response curve
[µmolCO2/µmolphoton]

α 0.30 0.10 0.24 0.07 inversely param-
eterized

Light extinction co-
efficient of leaves [-]

k 0.215 0.7 0.26 0.5 estimated,
(Thornley and
France, 2007)

Allocation rate (frac-
tion of NPP) to
shoot growth [-]

allocshoot 0.79 0.44 0.89 0.71 inversely param-
eterized

Energy investment
in rhizobia (fraction
of NPP) [-]

rhiz% 0 0 0 0.2 (Minchin et al.,
1981)
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Table A.2: Ranges of input trait parameters in the Morris Method and the corresponding
output values (including output range; other parameters were set to mean values
within their ranges) in model simulations with one plant functional type.

Process Parameter Shortcut Input
range

Output
vegetation
attribute

Lower
output

Upper
output

Output
range

Reproduction Global ingrowth
of seeds [1/day]

Nseed 0 – 3,000 AGB [g/m²]
Height [m]
LAI []
Cover []

0
0.00
0.00
0.00

289
0.32
75.67
0.95

289
0.32
75.67
0.95

Reproduction
age [yrs]

agerep 0.04 –
0.99

AGB [g/m²]
Height [m]
LAI []
Cover []

1,645
0.49
281.42
0.68

242
0.32
59.81
0.69

1,402
0.17
221.62
0.00

Seed biomass
[gODM]

Bseed 0.1 – 10 AGB [g/m²]
Height [m]
LAI []
Cover []

242
0.32
59.81
0.69

242
0.32
59.81
0.69

0
0.00
0.00
0.00

Germination
rate of seeds [-]

germ% 0.01 –
0.99

AGB [g/m²]
Height [m]
LAI []
Cover []

19
0.24
3.91
0.03

287
0.32
75.35
0.95

268
0.08
71.44
0.92

Seedling mortal-
ity [%/yr]

mseed 5 – 90 AGB [g/m²]
Height [m]
LAI []
Cover []

1,810
0.55
301.75
0.68

79
0.19
23.26
0.34

1,730
0.36
278.49
0.34

Mortality Mature mortal-
ity [1/yr]

mbasic 0 – 10 AGB [g/m²]
Height [m]
LAI []
Cover []

242
0.32
59.81
0.69

242
0.32
59.81
0.69

0
0.00
0.00
0.00

Leaf life span
[days]

LLS 30 – 150 AGB [g/m²]
Height [m]
LAI []
Cover []

244
0.32
59.98
0.60

242
0.31
59.77
0.70

1
0.00
0.21
0.10

Root life span
[days]

RLS 100 –
1,000

AGB [g/m²]
Height [m]
LAI []
Cover []

242
0.32
59.81
0.68

242
0.32
59.81
0.69

0
0.00
0.01
0.00

Geometry Height-width ra-
tio [-]

hw 0.1 – 8.5 AGB [g/m²]
Height [m]
LAI []
Cover []

324
0.08
86.52
1.14

131
0.35
28.67
0.26

193
0.27
57.85
0.88

Specific leaf area
of a single plant
[cm²/gODM]

SLA 30.00 –
3,000.00

AGB [g/m²]
Height [m]
LAI []
Cover []

18
0.10
0.27
0.32

153
0.29
82.64
0.55

135
0.19
82.37
0.23

Shoot correction
factor [t/m³]

f s 0.001 –
0.1

AGB [g/m²]
Height [m]
LAI []
Cover []

402
0.84
66.42
1.09

4
0.04
139.56
0.22

398
0.80
73.15
0.87

Shoot-root ratio
[-]

sr 1 – 20 AGB [g/m²]
Height [m]
LAI []
Cover []

131
0.20
39.30
0.57

251
0.32
61.30
0.69

119
0.12
22.00
0.12
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Production Max. leaf gross
photosynthesis
[µmolCO2/m²/s]

pmax 5 – 60 AGB [g/m²]
Height [m]
LAI []
Cover []

71
0.14
26.94
0.48

272
0.37
64.16
0.69

201
0.23
37.23
0.21

Initial slope
of light re-
sponse curve
[µmolCO2/µmolphoton]

α 0.01 – 0.6 AGB [g/m²]
Height [m]
LAI []
Cover []

6
0.05
9.79
0.26

340
0.38
76.81
0.75

335
0.33
67.02
0.49

Light extinction
coefficient of
leaves [-]

k 0.1 – 0.9 AGB [g/m²]
Height [m]
LAI []
Cover []

782
0.51
151.48
0.99

142
0.24
40.42
0.56

640
0.26
111.06
0.43

Allocation rate
(fraction of NPP)
to shoot growth
[-]

allocshoot 0.3 – 0.99 AGB [g/m²]
Height [m]
LAI []
Cover []

242
0.32
59.81
0.69

242
0.32
59.81
0.69

0
0.00
0.00
0.00

Table A.3: Values of evaluation criteria (mean absolute percentage error MAPE, normalized
root mean square error NRMSE, sample Pearson’s correlation coefficient rMS) in
plots of one plant functional type (PFT) and in the 4-PFT plot (PFTs: grasses (G),
small herbs (S), tall herbs (T) and legumes (L)). Criteria are calculated based on
biannual measurements of the vegetation attributes.

Vegetation
attribute

Statistical
measure

1-PFT plot 4-PFT plot Community
mean

G S T L Total G S T L

Above- MAPE 0.80 0.82 0.79 0.80 0.65 0.90 0.56 0.98 1.27 0.77

ground NRMSE 1.03 1.14 0.58 0.60 0.66 0.94 0.83 0.94 0.86 0.80

biomass rMS -0.29 -0.71 0.39 -0.07 -0.48 -0.30 0.06 -0.17 -0.26 -0.23

Leaf area MAPE 0.76 0.84 0.64 0.70 0.44 - - - - 0.68

index NRMSE 0.54 0.97 0.30 0.31 0.50 - - - - 0.52

rMS -0.06 -0.50 0.34 -0.09 -0.35 - - - - -0.13

Vegetation MAPE 1.57 3.46 1.96 1.39 0.35 - - - - 1.75

height NRMSE 0.57 0.88 0.56 0.37 0.48 - - - - 0.57

rMS -0.08 -0.60 -0.34 -0.23 -0.18 - - - - -0.29

Green MAPE 0.75 0.81 0.69 0.79 0.17 0.21 0.29 0.48 0.44 0.64

vegetation NRMSE 0.15 0.18 0.09 0.22 0.19 0.23 0.33 0.58 0.45 0.16

cover rMS 0.49 0.43 0.46 0.38 0.49 0.68 0.68 0.07 -0.29 0.45
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Table A.4: Values of evaluation criteria (mean absolute percentage error MAPE, normalized
root mean square error NRMSE, sample Pearson’s correlation coefficient rMS) in
mixtures of two and three plant functional types (PFTs: grasses (G), small herbs
(S), tall herbs (T) and legumes (L)). Criteria are calculated based on biannual
measurements of the vegetation attributes.

Vegetation
attribute

Statistical
measure

2-PFT mixtures 3-PFT mixtures Mean

GS GT SL TL GST GSL GTL STL

Above- MAPE 1.29 0.85 1.27 0.37 0.61 0.67 0.59 0.54 0.77

ground NRMSE 1.09 0.74 0.99 0.52 0.76 0.61 0.72 0.69 0.77

biomass rMS -0.55 -0.18 -0.50 0.13 -0.09 -0.19 0.09 -0.50 -0.22

Leaf area MAPE 0.81 0.38 0.57 0.35 0.41 0.41 0.45 0.30 0.46

index NRMSE 0.77 0.47 0.65 0.45 0.52 0.42 0.58 0.46 0.54

rMS -0.32 -0.12 -0.43 0.25 -0.29 -0.11 0.27 -0.05 -0.10

Vegetation MAPE 0.64 0.44 0.61 0.31 0.41 0.58 0.37 0.37 0.47

height NRMSE 0.66 0.51 0.56 0.47 0.57 0.47 0.47 0.49 0.53

rMS -0.13 -0.40 -0.20 -0.23 -0.39 -0.07 0.00 -0.36 -0.22

Green MAPE 0.17 0.12 0.17 0.09 0.13 0.18 0.18 0.18 0.15

vegetation NRMSE 0.20 0.14 0.20 0.11 0.17 0.20 0.18 0.21 0.18

cover rMS 0.31 0.13 0.32 0.32 -0.02 0.43 0.27 -0.03 0.22

Table A.5: Plant density, mean biomass per plant on plots of one plant functional type (PFT)
and on the 4-PFT mixture (PFTs: grasses, small herbs, tall herbs and legumes),
and mean relative yields RYI, mean relative AGB per plant RBI and mean relative
densities RDI including all mixtures (2-PFT mixtures, 3-PFT mixtures and the 4-PFT
mixture, see A.1 Supplementary Methods for formula). Means were taken over
plants present at the dates of aboveground biomass measurements (AGB; see A.1
Supplementary Methods).

# PFTs on plot Grasses Small herbs Tall herbs Legumes

Plant density (number 1 PFT 422 92 161 221

of plants per m²) 4 PFTs 119 22 9 52

AGB per plant [g] 1 PFT 0.547 1.068 1.274 1.730

4 PFTs 0.445 1.094 8.549 2.819

Mean relative yield RYI 2-4 PFTs 0.648 0.933 1.206 1.154

Mean relative size RBI 2-4 PFTs 0.835 0.665 3.402 1.506

Mean relative density
RDI

2-4 PFTs 1.386 0.951 0.455 1.258
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O F T E M P E R AT E G R A S S L A N D S – E X P L A N AT I O N S R E C E I V E D B Y A N
I N D I V I D UA L - B A S E D M O D E L

b.1 supplementary results

b.1.1 Changes of PFT proportions in mown biomass with different mowing frequencies

Mown biomass (AGB above 10 cm height at mowing dates) showed a slightly different functional
composition than total AGB. Compared to total AGB, the proportion of grasses is greater when mown
once per year, und smaller for the other mowing frequencies (Fig. B.7A, Table B.4). Small herbs showed
overall smaller proportions in mown biomass und tall herbs increased in their proportion (especially for
high mowing frequencies). The proportion of tall herbs became even higher than the one of legumes
when mown four or five times per year. A 2°C increase in temperature caused similar changes in relative
abundances of PFTs as observed in total AGB (Fig. B.7B).

b.2 supplementary figures

Figure B.1: Impact of mowing frequency on the diversity-productivity relationship. Productiv-
ity refers to the mean annual mown biomass (aboveground biomass above 10 cm
height, mean over five simulation years), functional group richness refers to the
number of plant functional types in the grassland (no air temperature increase).
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Figure B.2: Mown biomass of the plant functional type (PFT) combinations at different mowing
frequencies (no air temperature increase). Abbreviations: G – grasses, S – small
herbs, T – tall herbs, L – legumes..
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B.2 supplementary figures

Figure B.3: PFT proportions in mean annually mown biomass of all PFT combinations with
different mowing frequencies and air temperature increase. In each panel all
PFT combinations at different levels of functional group richness were simulated
(from left to right): the first four bars denote each 1-PFT simulation, next six bars
denote the 2-PFT mixtures, next four bars show the 3-PFT mixture and the last bar
represents the 4-PFT mixture.
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Figure B.4: Vegetation attributes in the mixture of four plant functional types over time and
with different mowing frequencies. (A) Development of leaf area index (LAI),
vegetation height and plant density with one mowing event per year (marked
by the grey dotted line) are shown. Vegetation attributes are weekly means and
correspond to averages over the vegetation periods of five simulation years. (B)
shows annual mean LAI, vegetation height and plant density for different mowing
frequencies.
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B.2 supplementary figures

Figure B.5: Influences of different mowing frequencies on PFT-specific vegetation attributes in
the 4-PFT mixture. Annual aggregations were taken over the vegetation periods
from five simulation years.
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Figure B.6: Aboveground biomass (AGB) in the mixture of four plant functional types over
time for different mowing frequencies and air temperature increase. Grey dotted
lines mark each mowing event. Weekly means of averages over the vegetation
periods of five simulation years are shown.
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Figure B.7: Influences of different mowing frequencies on the relative and absolute abundances
of plant functional types (PFTs) in mown biomass (aboveground biomass above
10 cm height) with (A) ambient climatic conditions and (B) with an increased
temperature of 2°C in the 4-PFT mixture. Mown biomass corresponds to the
average biomass amount removed per mowing event. Numbers are percentages of
the total amount.

Figure B.8: Different productivity sources and losses of the PFTs in the 4-PFT mixture with
one mowing event per year (marked by the gray dotted line). Mean courses over a
year (averages were taken over simulation years 3 to 7, weekly means).
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b.3 supplementary tables

Table B.1: Parameter values of the grassland model GRASSMIND. For detailed descriptions of
the parameters and processes in the model see Taubert, Hetzer, et al. (2020a). For a
detailed description of the parameterization of the model see Schmid, Huth, et al.
(2021).

Process Parameter Shortcut Grass Small
herbs

Tall herbs Legumes

Reproduction Global ingrowth of
seeds [1/day]

Nseed 3,215 4,809 659 2,241

Reproduction age [yrs] agerep 0.59 0.09 0.48 0.32

Seed biomass [gODM] Bseed 1.38 0.88 1.75 5.68

Germination rate of
seeds [-]

germ% 0.66 0.75 0.62 0.78

Seedling mortality
[1/yr]

mseed 9.0 68.6 13.9 15.1

Mortality Mature mortality [1/yr] mbasic 0.03 0.03 4.01 0.03

Leaf life span [days] LLS 90 42 33 114

Root life span [days] RLS 709 241 241 709

Geometry Height-width ratio [-] hw 1.2 0.4 0.7 0.9

Specific leaf area
of a single plant
[cm²/gODM]

SLA 63.12 100.98 81.61 72.16

Shoot correction factor
[t/m³]

fs 0.0011 0.0008 0.0012 0.0014

Shoot-root ratio [-] sr 2.35 4.05 3.99 13.01

Production Max. leaf gross
photosynthesis
[µmolCO2/m²/s]

pmax 14.47 17.51 29.69 24.22

Initial slope of light
response curve
[µmolCO2/µmolphoton]

α 0.30 0.10 0.24 0.07

Light extinction coeffi-
cient of leaves [-]

k 0.215 0.7 0.26 0.5

Allocation rate (fraction
of NPP) to shoot growth
[-]

allocshoot 0.79 0.44 0.89 0.71

Energy investment in
rhizobia (fraction of
NPP) [-]

rhiz% 0 0 0 0.2
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Table B.2: Different scenarios for the analysis of influencing processes on aboveground net
primary productivity (ANPP). Changes in equations of the model. In all scenarios,
the actual gross primary production of the standard setting GPPstandard

act was used
for the calculation of the growth respiration Rgrowth.

Scenario ANPP = allocshoot ∗
(︂

GPPact − (Rmain + Rgrowth)
)︂

GPPact Rmain Rgrowth

Standard GPPstandard
act = RT ∗ GPPpot rm ∗ fT ∗ B rg

(︂
GPPstandard

act − rm ∗ fT ∗ B
)︂

with RL = IS/I0

No space competition RT ∗ GPPpot rm ∗ fT ∗ B rg

(︂
GPPstandard

act − rm ∗ fT ∗ B
)︂

with RL = IS/I0

No shading RT ∗ GPPpot rm ∗ fT ∗ B rg

(︂
GPPstandard

act − rm ∗ fT ∗ B
)︂

with RL = 1

No temperature effect 1 ∗ GPPpot rm ∗ fT ∗ B rg

(︂
GPPstandard

act − rm ∗ fT ∗ B
)︂

on photosynthesis with RL = IS/I0

No temperature effect RT ∗ GPPpot rm ∗ 1 ∗ B rg

(︂
GPPstandard

act − rm ∗ 1 ∗ B
)︂

on respiration with RL = IS/I0

Table B.3: Vegetation attributes of the 4-PFT mixture for different scenarios. Averages were
taken over the vegetation periods from five simulation years. Abbreviations: AGB –
aboveground biomass, LAI – leaf area index.

Temperature
increase

Mowing
frequency

AGB [g/m²] LAI [-] Height [m] Plant density
[/m²]

0◦C 0 307.8 1.28 0.31 341

1 216.8 0.84 0.25 345

2 193.1 0.74 0.24 344

3 166.9 0.59 0.22 351

4 161.5 0.57 0.20 368

5 152.6 0.51 0.19 361

2◦C 0 366.6 1.57 0.35 304

1 284.1 1.27 0.30 271

2 216.5 0.89 0.26 303

3 174.7 0.62 0.23 327

4 166.4 0.58 0.21 331

5 151.5 0.51 0.19 339
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Table B.4: Productivity measures of the 4-PFT mixture for different scenarios (all in g/m²yr).
Annual sums were taken over the vegetation periods from five simulation years. Ab-
breviations: ANPP – aboveground net primary productivity, phot – photosynthesis,
resp – respiration.

Temperature
increase

Mowing
frequency

ANPP Seedling
biomass

Intrinsic
mortal-
ity

Mortality
by crow-
ding

ANPP
loss by
shading

ANPP
loss due
to temp
(phot)

ANPP
loss due
to temp
(resp)

0◦C 0 1931.9 242.7 898.6 948.0 25.6 106.9 -314.3

1 1681.3 233.4 905.3 488.5 17.2 90.9 -546.3

2 1625.9 237.9 875.4 490.7 13.8 82.1 -452.7

3 1530.9 240.6 913.1 277.3 10.5 81.8 -306.2

4 1602.4 252.7 952.7 353.8 9.4 76.7 -196.9

5 1528.5 247.4 899.4 273.8 8.7 79.0 -239.3

2◦C 0 2086.2 225.0 770.5 1213.0 31.8 62.6 -313.5

1 1769.8 190.2 655.6 668.8 24.5 53.0 -534.9

2 1661.6 205.3 797.8 462.2 16.5 45.3 -650.0

3 1570.0 224.2 851.6 336.6 11.3 43.2 -275.4

4 1491.6 224.3 865.9 301.4 10.7 40.7 -290.3

5 1441.2 231.8 867.2 238.8 8.7 40.1 -348.0

Table B.5: Percentual proportions of plant functional types in aboveground biomass of the
4-PFT mixture for different scenarios.

Temperature
increase

Mowing
frequency

Grasses Small herbs Tall herbs Legumes

0◦C 0 0.22 0.09 0.12 0.57

1 0.19 0.11 0.17 0.53

2 0.17 0.12 0.20 0.51

3 0.16 0.14 0.22 0.47

4 0.15 0.16 0.31 0.39

5 0.15 0.15 0.29 0.40

2◦C 0 0.24 0.09 0.10 0.58

1 0.16 0.12 0.10 0.62

2 0.15 0.12 0.17 0.57

3 0.15 0.15 0.23 0.47

4 0.15 0.15 0.22 0.47

5 0.15 0.17 0.24 0.44
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CA P P E N D I X O F C H A P T E R 4 :
I M PA C T O F M A N A G E M E N T, E N V I R O N M E N T A N D C L I M AT E C H A N G E O N
P R O D U C T I V I T Y A N D T H E P R O P O RT I O N O F H E R B S I N G R A S S L A N D S : A
S I M U L AT I O N S T U D Y A C R O S S G E R M A N Y

c.1 supplementary methods

c.1.1 Soil module in GRASSMIND

The soil module used in this study consists of carbon-nitrogen dynamics and soil water dynamics and is
operated on a daily time scale. The modeled carbon-nitrogen dynamics were used from the CENTURY
model version 4.0 (weekly dynamics scaled to daily dynamics with parameter adaptions according to the
DAYCENT model version 4.5, (Parton, Hartman, et al., 1998, Parton, Stewart, et al., 1988). For modeling
the soil water dynamics, processes were adopted from different soil models: CENTURY (Parton, Scurlock,
et al., 1993), DAYCENT (Parton, Hartman, et al., 1998), BOWET (Mirschel et al., 1995) and CANDY
(Franko et al., 1995). The following subsections describe the modeled soil water processes in detail with
an overview shown in Fig. C.1. Plant-soil interactions (nitrogen and water uptake by plants) are described
in the GRASSMIND model description provided under https://formind.org/downloads/.

c.1.1.1 Snow

Two snow pools are considered according to the CENTURY model: a solid snow pool and a liquid snow
pool. Given daily measurements, precipitation is converted to solid snow if air temperature is below
or equal to 0 °C, and subsequently accumulated in the solid snow pool (process 1 in Fig. C.1). If air
temperature rises above 0 °C, the solid snow pool starts to melt and is partly or completely transferred to
the liquid snow pool (amount dependent on air temperature and available solid snow, process 2 in Fig.
C.1)(Parton, Hartman, et al., 1998). Under such temperature conditions, daily precipitation is not freezing
and either added to the liquid snow pool (in case of a non-empty solid snow still exists in the snow pool;
process 3 in Fig. C.1) or added to the liquid water flux (which is able to percolate into soil). If non-empty,
some amount of the liquid snow pool is transferred to the liquid water flux (the content of the liquid
snow pool should not exceed 5% of the water stored in the solid snow pool; process 4 in Fig. C.1). Water
stored in the solid snow pool and the liquid snow pool partly sublimates each day (processes 5 and 6 in
Fig. C.1), whereby the maximum amount sublimating is 0.87 times the daily potential evapotranspiration
and proportionally subtracted from both pools.

c.1.1.2 Interception and aboveground runoff

If the solid snow pool is empty and air temperature is above 0 °C, the daily input of precipitation can be
intercepted by the vegetation (process 7 in Fig. C.1). Intercepted water partly evaporates if it exceeds 1.3
times of the daily potential evapotranspiration (Mirschel et al., 1995). Some amount of the remaining
water goes into the aboveground runoff (process 9 in Fig. C.1). Thus, liquid water flux WFl [mm/d] in
soil corresponds to:

WFI = P − I − Ra (C.28)

with P being the daily precipitation, I the interception and Ra being the aboveground surface runoff
(processes 7 and 9 in Fig. C.1).

c.1.1.3 Vertical runoff

Precipitation minus interception and aboveground runoff (processes 7 and 9 in Fig. C.1) or the melted
liquid snow (process 4 in Fig. C.1) is added from top to bottom to the soil. Therefore, the soil profile
is divided into 20 vertical water layers, each 10 cm thick (2 m depth in total). The amount of water
transferred from one soil layer down to the next layer is determined by layer-specific soil properties such
as field capacity and saturated conductivity (process 10 in Fig. C.1). Remaining water in the lowest soil
layer is considered as belowground runoff.

129

https://formind.org/downloads/


appendix c

c.1.1.4 Evapotranspiration

The soil water content in each soil layer is reduced by plant water uptake (here equivalent to plant
transpiration) and evaporation. Soil evaporation thereby occurs only in the upper four soil layers (process
12, Fig. C.1)(Mirschel et al., 1995). As restriction, soil water content cannot fall below the layer-specific
permanent wilting point (process 11, Fig. C.1).

c.1.2 Study sites for reference data for the generic parameterization of the grassland model

For the calibration and validation of the model, we used field measurements of five different field sites
in Germany. At one of those sites, two different management regimes (intensive and extensive) were
conducted resulting in six different grassland field plots considered.

c.1.2.1 Sites used for model calibration

The Global Change Experimental Facility (GCEF) was established in 2014 to investigate how climate
change influences ecosystem services of different land-use types (Schädler et al., 2019). Different land
use types were established on ten blocks of five plots each (26x24 m) under ambient and future climate
conditions (five replicates for each type and condition). We used measurements of ten plots consisting
of intensive and extensive grassland under ambient climate conditions (five plots, respectively). The
field site is located in Bad Lauchstädt, Saxony-Anhalt, Germany (51°23’30 N, 11°52’49 E, 116 m a.s.l.)
and shows a relatively low mean annual precipitation of 454 mm and a mean temperature of 10.5°C
(2013–2017). The present soil type is highly fertile Chernozem and the field site is a former arable field.
The five plots of intensive grassland were mown four times and fertilized three to four times per year
(except for 2014). In the five extensive grassland plots, only moderate mowing (two events per year) was
conducted and no fertilizer was applied.

The University of Giessen long-term Free Air Carbon dioxide Enrichment Experiment (GiFACE)
studies the response of a semi-natural grassland to elevated CO2 since 1998 and is located near Giessen,
Hesse, Germany (50°32’ N, 8°41’3 E) (Jäger et al., 2003). With a mean temperature of 9.2°C and a mean
annual rainfall of 554 mm (from 1995 to 2000), the site is colder and wetter than GCEF. The field has been
managed as a meadow and fertilized with 50-80 kg N / (ha a) for at least 50 years. The soil is a Fluvic
Gleysol with a texture of sandy clay loam over a clay layer. Three control rings with no enrichment of
CO2 included 10.3 m² harvest area each which consisted of up to almost 60 species and were mown
twice per year and once fertilized in spring.

c.1.2.2 Sites used for model validation

The Biodiversity Exploratories are a large-scale long-term project to investigate the impact of land use on
biodiversity and the modifying role of biodiversity change for land-use effects on ecosystem processes
(Fischer, Bossdorf, et al., 2010). They comprise standardized field plots in three geographical regions
of Germany with diverse management types and intensities in grassland and forest. We selected one
experimental plot (50 x 50 m) from each region: one located in Schorfheide-Chorin (SEG) in North-eastern
Germany (53°08’24 N, 13°52’48 E, BE SEG18), one located in Hainich-Dün (HEG) in Central Germany
(51°16’48 N, 10°22’12 E, BE HEG26) and one located in Schwäbische Alb (AEG) in South-western
Germany (48°24’36 N, 9°28’12 E, BE AEG50). The sites differ in their environmental conditions and
management intensity. In the considered time period, SEG was the warmest and driest site (mean
temperature 9.3 °C, mean annual precipitation 564 mm), AEG was the coldest and wettest site (7.4 °C,
935 mm) and HEG was in between (8.6 °C, 703 mm). In AEG, the soil types Cambisols and Leptosols
were dominant in the selected experimental grassland plots. In HEG, Cambisols, Vertic Stagnosols and a
few Stagnic Vertisols were chosen and in SEG, the characteristic soil type was mostly Cambisol.

c.1.3 Data preparation

c.1.3.1 Vegetation attributes

As reference data for the calibration and validation of the grassland model, temporal observation patterns
of vegetation attributes were acquired.

At the GCEF, all vegetation patterns are averages over five replicate plots of intensively (plotcodes
1-5, 3-3, 5-2, 8-1, 10-4) and extensively (plots 1-1, 3-4, 5-5, 8-3, 10-2) managed grassland, respectively
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(Schädler et al., 2019). Measured data was available from 2015 to 2017 in different temporal resolutions.
Aboveground biomass was measured four times per year in the intensive and twice per year in the
extensive grassland. Leaf area index (LAI) was measured about 15 times per year in both grassland
types. Vegetation height was measured four times per year in the intensive grassland. Vegetation cover
was measured three to four times in the intensive grassland and two times in the extensive grassland.
For biomass and vegetation cover, species-specific data was available which were aggregated into four
PFTs (grasses, small herbs, tall herbs, legumes) by taking sums over the species belonging to a PFT. We
took the summed up biomass over species-specific biomasses as total biomass (as the amounts differed
between the measurements).

At GiFACE, we used measurements over four consecutive years (1997-2000) (plotcode K2) from the
Department of Plant Ecology, Justus-Liebig-University Gießen (Jäger et al., 2003). Aboveground biomass,
vegetation height and vegetation cover were measured twice per year in spring and summer from 1997
to 2000. For vegetation cover, also species-specific measurements were taken. LAI was measured 15 to 22
times per year from 1998 to 2000.

From the Biodiversity Exploratories, we used measurements from 2008-2013 of the region Schorfheide
Chorin (plotcode ID SEG18), from 2008-2013 of the region Hainich Dün (plotcode ID HEG26,) and from
2009-2013 of the region Schwäbische Alb (plotcode ID AEG50) (Fischer, Bossdorf, et al., 2010). At all
sites, aboveground biomass, vegetation height and vegetation cover were measured once per year in
spring. For cover, PFT-specific measurements were available.

All sites included in this study were mown and partly fertilized in the considered time periods, and
no grazing took place. An overview of available measurements and detailed management is given in
Table C.2.

c.1.3.2 Soil, weather and management data

In GCEF, the available measurement data for block 3 from the initial soil survey were complemented
with soil data from Altermann et al. (2005) for the model simulations (Tables C.3 and C.4). Weather data
was provided by the Department of Soil System Science at the UFZ. Potential evapotranspiration was
computed according to the extended formula of Blaney-Criddle with parameters a = -1.55 and b = 0.96
(Weiss et al., 2019).

In GiFACE, soil texture was taken from measurements of the experimental control ring A2 (Jäger
et al., 2003). Based on the texture, we classified the soil as loam and received missing soil properties
of field capacity, permanent wilting point and porosity from Maidment (1993), as no depth-specific
measurements were available. Weather measurements by the Department of Plant Ecology, Justus-
Liebig-University Gießen included daily precipitation, mean temperature and irradiance. Daylength was
computed according to Forsythe et al. (1995). Potential evapotranspiration was computed according to
Turc with parameters a = 0.31, b = 2.094 (Diouf et al., 2016). Management data were provided by the
Department of Plant Ecology, Justus-Liebig-University Gießen.

From the Biodiversity Exploratories, we used the experimental plots AEG50, HEG25 and SEG18.
Soil texture was estimated based on the soil classification using BOART1000OB Version 2.0 (TRIANET
Soil n.d.) (HEG26: Ut3, SEG18: SI3, AEG50: Ut3). Saturated hydraulic conductivity was computed
according to Saxton et al. (1986). Porosity was computed out of the measured bulk density (Maidment,
1993). Field capacity and permanent wilting point were taken from Maidment (1993) based on the
soil classification. Measured weather was received from near weather stations provided in the national
climate database by the Climate Data Center (CDC) of the German national meteorological service
(Deutscher Wetterdienst, DWD) (https://opendata.dwd.de/climate_environment/) (AEG50: station ID
3402 Münsingen-Apfelstetten, HEG25: station ID 2925 Leinefelde, SEG18: station ID 164 Angermünde).
These included the daily precipitation, mean daily temperature, sunshine duration and air humidity in
the considered time periods, respectively. Daylength was computed according to Forsythe et al. (1995).
For the computation of daily global irradiance, the approach of Angström was used with parameters
a = 0.25, b = 0.5 based on Julian day, latitude, sunshine duration and daylength (Şen, 1998). Potential
evapotranspiration was computed according to Turc with parameters a = 0.31, b = 2.094 (Diouf et al.,
2016). Management data were received from Vogt et al. (2019).

Starting values for relative water content [-] and mineral nitrogen content [g/m²] in soil were initially
set to 1 for each soil layer. For a summary of soil parameter values used in the model see Tables C.3 and
C.4.
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c.1.3.3 Calibration and validation

For the parameterization, the model parameters were initially set to values of a parameter set received in
a previous study for a local biodiversity experiment in Central Germany (Schmid, Huth, et al., 2021).
To obtain a generic, regionally transferable parameterization, we selected 15 plant parameters with
either high sensitivity on vegetation attributes in the model or correspondence to soil interactions and
recalibrated them for each of the four PFTs (Table C.1). Thereby, only the parameters for the global
ingrowth of seeds were site-specific. Calibration was done by using the dynamically dimensioned search
algorithm within an optimization tool (Lehmann and Huth, 2015) with 10 simulation runs per plot
(corresponds to 10 m²) per step.

All three study sites (GCEF_ext, GCEF_int and GiFACE) were considered simultaneously by including
the differences of simulation results from field measurements of vegetation attributes over all three
measured plots in the objective function CTotal of the optimization algorithm:

CTotal = CGCEF_ext + CGCEF_int + CGiFACE (C.29)

For each study site, we considered all available measurements of aboveground biomass (AGB), leaf
area index (LAI), vegetation height and cover within the selected time spans (Table C.2). Hence, the
specific objective functions were:

CGCEF_ext =
3

∑
i=1

⃓⃓
∑t xi,t − ∑t x̂i,t

⃓⃓
∑t x̂i,t

+
∑4

PFT=1

⃓⃓⃓
∑t bPFT,t − ∑t b̂PFT,t

⃓⃓⃓
∑4

PFT=1 ∑t b̂PFT,t
+

∑4
PFT=1 |∑t cPFT,t − ∑t ĉPFT,t|

∑4
PFT=1 ∑t ĉPFT,t

(C.30)

CGCEF_int =
4

∑
i=1

⃓⃓
∑t xi,t − ∑t x̂i,t

⃓⃓
∑t x̂i,t

+
∑4

PFT=1

⃓⃓⃓
∑t bPFT,t − ∑t b̂PFT,t

⃓⃓⃓
∑4

PFT=1 ∑t b̂PFT,t
+

∑4
PFT=1 |∑t cPFT,t − ∑t ĉPFT,t|

∑4
PFT=1 ∑t ĉPFT,t

(C.31)

CGiFACE =
4

∑
i=1

⃓⃓
∑t xi,t − ∑t x̂i,t

⃓⃓
∑t x̂i,t

+
∑4

PFT=1 |∑t cPFT,t − ∑t ĉPFT,t|
∑4

PFT=1 ∑t ĉPFT,t
(C.32)

where bPFT,t stands for the simulated proportional AGB of a PFT, cPFT,t stands for the simulated
proportional cover of a PFT and xi,t are community vegetation attributes (total AGB, LAI, total vegetation
cover and vegetation height) at time t. Respective variables with hat denote the corresponding measured
data.

The validation of the resulting regional parameterization was done using field measurements of
three further grassland sites in Germany. Like in the calibration step, deviations between simulated
and measured grassland attributes were calculated for validation as described in the objective functions
above.

For values of the objective function of the final parameter set see Table C.11.

c.1.3.4 Scenario analysis: Grassland regions in Germany

We used 24 locations representing different soil regions and natural areas in Germany in order to ensure
a sufficient national representativeness (determined based on a natural area map and BÜK200 in Filipiak
et al. (2022)). Five locations are distributed in the northern part, nine locations in the middle part and ten
locations in the southern part of Germany (Fig. 4.1B). All locations were continuously used as grassland.
Each soil region in Germany was represented by two locations. SeeFilipiak et al. (2022) for details.

Soil textures (silt, clay, sand), bulk densities and soil horizon thicknesses of the 24 representative
locations were received from the soil map BÜK200 (BGR, 2018). Therein, texture and bulk density were
provided as classes with an upper and lower delimiter, in accordance to the classification system of
the KA5 soil mapping guideline used across Germany (Sponagel, 2005). Quantitative input values for
the model were acquired by using the median of the upper and lower delimiter of a given interval.
Initial relative water content [-] and mineral nitrogen content [g/m²] were again assumed to be 1 at the
beginning of simulations. Field capacity [V%] and permanent wilting point [V%] were determined based
on soil texture and bulk density (Wessolek et al., 2009). Soil porosity [V%] was calculated from bulk
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density (Maidment, 1993) and particle density was assumed to be 2.6 g/cm³, based on the predominance
of quartz in soil minerals. Saturated conductivity [mm/d] was computed according to (Saxton et al.,
1986).

Measured climate data was received from weather stations provided in the national climate database
by the Climate Data Center (CDC) of the German national meteorological service (Deutscher Wetterdienst,
DWD) (https://opendata.dwd.de/climate_environment/). These included daily precipitation, mean
daily air temperature, sunshine duration and air humidity from 1990 to 2019. Daylength was computed
according to Forsythe et al. (1995). For the computation of daily global irradiance, the approach of
Angström was used with parameters a = 0.19 and b = 0.55 (Şen, 1998. Potential evapotranspiration
was computed according to Turc (1961) (Diouf et al., 2016) with a correction factor of 1.1 (DVWK, 1996)
and correction for values from November to February according to Turc/Inovav with differentiation for
temperatures (KLIWA, 2008).

Since measured climate data was not available for the entire time span at the locations Grünow (station
ID 1869) and Weimar-Schöndorf (station ID 5424), we completed time gaps with data of Angermuende
(station ID 164) and Jena (station ID 2444), respectively. Gaps in specific climate factors (especially air
humidity, precipitation and sunshine duration; small time periods of 1 to 9 days) were filled by specific
routines at the DWD.

c.1.3.5 Management scenarios

We used five different management scenarios representing different management intensities. The number
of mowing and fertilization events per year and the amount of applied fertilizer per year increased
with management intensity (Table C.7). The specific dates of mowing and fertilization events and
fertilization amounts were determined by analyzing the real management of the 24 locations and the
German Fertilizer Ordinance (DüV – Düngeverordnung – (DüV, 2017), number of cuts and dates detected
by remote sensing (Griffiths et al., 2020, Filipiak et al., 2022). According to the real management, all
24 locations were mowed no more than three times per year, with only one location having three cuts in
a year. Thus, real management (or near-real management) is represented by management intensity 1-3,
while the remaining scenarios represent an intensification of use. We assumed a mowing height of 10 cm
for each mowing event in the simulation model.

Management dates remained static for the climate change scenarios.

c.1.3.6 Climate change scenarios

We used three different climate change scenarios (RCP2.6, RCP4.5 and RCP8.5) to evaluate the impact of
climate change (Moss et al., 2010). For each scenario, climate projections of only six different models
were used (Table C.8) from the reference ensemble (same model projections for each scenario), provided
by the German national meteorological service (Deutscher Wetterdienst, DWD) (Brienen et al., 2020).
Hence, we conducted six simulations per RCP scenario per location and management scenario. The
simulation output (productivity and biomass proportion of herbs) was then averaged over the six models
for the respective RCP scenario and location. In leap years, the day with the date 29th of February was
excluded in the simulation.

The simulated climate data included daily precipitation, mean daily air temperature and global
irradiance that were directly used as input for the grassland model. Daily potential evapotranspiration
was computed based on the method of Hargereaves and Samni using extraterrestrial radiation, maximal
temperature, minimal temperature and mean temperature per day (Hargreaves and Samani, 1985). The
required extraterrestrial radiation was computed according to Iqbal (1983). Daylength was computed
according to Forsythe et al. (1995).
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c.2 supplementary figures

Figure C.1: Soil water processes included in the simulation model. The numbers of the pro-
cesses correspond to the order in which the processes take place in the model. The
different colors of the arrows indicate from which soil model processes were taken.
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Figure C.2: Results of the conditional inference forests predicting productivity and the propor-
tion of herbs in biomass of the simulated grasslands.

Figure C.3: Pearson correlation coefficients between different environmental variables of the 24
representative grassland sites across Germany. Color denotes the sign and degree
of the relations. Asterisks denote statistical significance of the coefficient (***:
p < 0.001, **: p < 0.01 and *: p < 0.05). N = 24 samples were used. Abbreviations:
PET – potential evapotranspiration, KS – saturated conductivity in soil, PWP –
permanent wilting point.
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Figure C.4: Pearson correlation coefficients between productivity (Prod) and biomass propor-
tion of herbs (Hprop) and different environmental variables for different man-
agement intensities (1-5). (A) shows correlation to the total vegetation attributes,
(B) shows correlations to the changes in the correlation attributes. Color denotes
the sign and degree of the relations. Asterisks denote statistical significance of
the coefficient (****: p < 0.001, ***: p < 0.01, **: p < 0.05 and *: p < 0.1). N = 24
samples were used for each management intensity. Abbreviations: PET – potential
evapotranspiration, KS – saturated conductivity in soil, PWP – permanent wilting
point.

Figure C.5: Impact of management intensity on (A) grassland biomass and (B) productivity of
herbs in the model. Grassland biomass corresponds to mean aboveground biomass
on day before a mowing event. Black dots depict the different sites in Germany,
blue dots are means over all sites.
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c.3 supplementary tables

Table C.1: Parameter values of the final generic parameterization of the grassland model
GRASSMIND.

Process Parameter Shortcut Grass Small
herbs

Tall herbs Legumes Reference

Repro-
duction

Global ingrowth of
seeds* [1/day]

Nseed 361
(3,353)

753
(3,543)

3,755
(1,695)

2346
(1776)

calibrated

Reproduction age
[yrs]

agerep 0.27 0.17 0.45 0.40 calibrated

Seed biomass
[gODM]

Bseed 1.38 0.88 1.75 5.68 Heisse et
al. (2007)

Germination rate of
seeds [-]

germ% 0.79 0.39 0.87 0.72 Heisse et
al. (2007)
and
calibrated

Seedling mortality
[1/yr]

mseed 31.2 58.6 31.9 23.0 calibrated

Mortality Mature mortality
[1/yr]

mbasic 0.03 0.03 4.01 0.03 Schmid,
Huth, et al.
(2021)

Leaf life span [days] LLS 90 42 33 114 Schmid,
Huth, et al.
(2021)

Root life span [days] RLS 159 311 130 741 Tjoelker
et al.
(2005) and
calibrated

Plant life span [yrs] life 20 20 20 20 Predefined

Geometry Height-width ratio
[-]

hw 0.5 3.1 3.4 5.7 calibrated

Specific leaf area
of a single plant
[cm²/gODM]

SLA 111.79 47.25 51.50 83.14 calibrated

Shoot correction fac-
tor [tODM/m³]

f s 0.0014 0.0061 0.0014 0.0034 calibrated

Shoot-root ratio [-] sr 16.09 2.72 6.07 15.91 (Heisse et
al. (2007))
and
calibrated

Produc-
tion

Max. leaf gross
photosynthesis
[µmolCO2 /m²/s]

pmax 14.47 17.51 29.69 24.22 Schmid,
Huth, et al.
(2021)

Initial slope of
light response curve
[µmolCO2 /µmolphoton]

α 0.18 0.37 0.38 0.59 calibrated

Light extinction co-
efficient of leaves [-]

k 0.215 0.7 0.26 0.5 Thornley
and France
(2007) and
estimated

Transmission coeffi-
cient of leaves [-]

m 0.1 0.1 0.1 0.1 Thornley
and France
(2007)
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Maintenance respi-
ration rate [1/day]

rm 0.02 0.02 0.02 0.02 Amthor
(1984)

Fraction of gross
productivity at-
tributed to respi-
ratory costs for
growth [-]

rg 0.2 0.2 0.2 0.2 Fixed

Allocation rate (frac-
tion of NPP) to
shoot growth [-]

allocshoot 0.79 0.44 0.89 0.71 Schmid,
Huth, et al.
(2021)

Energy investment
in rhizobia (fraction
of NPP) [-]

rhiz% 0 0 0 0.17 Minchin et
al. (1981)

Soil Water use efficiency
[gODM/kgH2O]

wue 14.6 4.5 10.6 12.4 calibrated

C-N ratio of green
material [-]

CNgreen 5.7 17.9 0.4 36.2 calibrated

C-N ration of brown
material [-]

CNbrown 74.3 79.6 44.1 40.0 calibrated

Shoot biomass
– rooting depth
relation parameters
[-]

r1 / r2 5.881 /
0.336

4.804 /
0.379

5.212 /
0.371

4.414 /
0.313

calibrated

Specific root length
[m/gODM]

SRL 360,965,518 365,914,781 248,684,774 183,212,952 calibrated

*Value corresponds to ingrowth received for the site GiFACE, value for GCEF is shown in brackets.
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Table C.2: Available measurements of the used grasslands sites for the calibration and valida-
tion of the grassland model.

GCEF, ex-
tensive

GCEF, in-
tensive

GiFACE BE HEG26 BE SEG18 BE AEG50

Measured AGB x x x x x x

community LAI x x x

vegetation Height x x x x x

attributes Cover x x x x x x

Measured AGB x x

PFT-
specific
vegetation
attributes

Cover x x x x x x

Simulation time
span for calibra-
tion

2014 - 2017 2013 - 2017 1995 - 2000 2006-2013 2006-2013 2008-2013

Spin up time*
[yrs]

0 0 2 2 2 1

Date of sowing † 04.03.2014 24.09.2013 NA –
15.05.1995
in the
model

NA –
15.05.2006
in the
model

NA –
15.05.2006
in the
model

NA –
14.05.2008
in the
model

Mowing events
per year

2 4 2 1-2 2 2

Mowing height
[cm]

5 5 10 4 10 7

Fertilization
events per year

0 3-4 1 0 0 1

Mean fertilization
amount per year
(kg N / ha)

- 232.5 40 - - 58

*Spin up time corresponds to additional simulation years in permanent grasslands prior to the time span
with available field measurements for calibration. †If no sowing date was available (permanent
grasslands) we assumed the 15th May as sowing date in the spin up time

Table C.3: Soil texture at different field sites used for the calibration and validation of the
grassland model. Values marked with (M) were measured at the site, values marked
with (R1) were taken from (TRIANET Soil n.d.) based on the soil type received
by the soil map BOART1000OB Version 2.0 and marks with (R2) were taken from
Altermann et al. (2005).

GCEF GiFACE BE HEG26 BE SEG18 BE AEG50

Silt content [%] 56 (M, R2) 40 (M) 76 (R1) 25 (R1) 76 (R1)

Clay content [%] 14 (M, R2) 28 (M) 14 (R1) 10 (R1) 14 (R1)

Sand content [%] 30 (M, R2) 32 (M) 10 (R1) 65 (R1) 10 (R1)
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Table C.4: Soil properties at different sites used for the calibration and validation of the
grassland model. The mark (M) means that the value was measured in the field, (C)
denotes calculations using pedotransfer functions (Maidment, 1993, Saxton et al.,
1986), (A) represents a model assumption, and values marked with (R1) were taken
from Maidment (1993) and with (R2) from Altermann et al. (2005).

Site Soil
depth
[m]

Field capacity
[V%]

Permanent
wilting point
[V%]

Porosity [V%] Saturated
hydraulic
conductivity
[mm/d]

GCEF 0.0 – 0.3
0.3 – 0.5
0.5 – 0.6
0.6 – 1.3
1.3 – 1.7
1.7 – 2.0

38.4 (R2)
38.5 (R2)
37.7 (R2)
38.2 (R2)
15.6 (R2)
20.2 (R2)

15.5 (R2)
15.1 (R2)
15.0 (R2)
9.5 (R2)
7.0 (R2)
8.4 (R2)

48.46 (R2, C)
49.05 (R2, C)
50.75 (R2, C)
46.82 (R2, C)
31.95 (R2, C)
35.36 (R2, C)

604 (R2)
280 (R2)
277 (R2)
108 (R2)
1243 (R2)
625 (R2)

GiFACE 0.0 – 2.0 27.0 (R1) 12.0 (R1) 46.00 (R1) 317 (R1)

BE HEG26 0.0 – 2.0 33.0 (R1) 13.0 (R1) 72.10 (C) 386 (C)

BE SEG18 0.0 – 2.0 12.5 (R1) 5.5 (R1) 47.40 (C) 244 (C)

BE AEG50 0.0 – 2.0 33.0 (R1) 13.0 (R1) 71.20 (C) 386 (C)
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Table C.5: Climate stations of Germany’s national meteorological service (DWD) and coordi-
nates of the 24 locations used for the Germany-wide scenario analysis.

DWD climate station Coordinates of the simulation site
(UTM)

Station
ID

City Latitude Longitude

1 4625 Schwerin 5981232.791 600632.6635

2 1869 Grünow 5925692.302 838739.8694

3 4745 Soltau 5850022.054 561354.6638

4 1766 Münster/Osnabrück 5745383.778 408576.8236

5 691 Bremen 5905259.737 458924.1372

6 1975 Hamburg-Fuhlsbüttel 5944929.404 530520.4968

7 2928 Leipzig-Holzhausen 5668108.189 726361.7216

8 198 Artern 5666391.157 654474.1205

9 5424 Weimar-Schöndorf 5643160.975 659905.5265

10 2925 Leinefelde 5686619.661 587667.7663

11 2261 Hof 5597247.988 664123.618

12 2667 Köln-Bonn 5601235.436 396621.051

13 3287 Michelstadt-Vielbrunn 5557178.958 534909.6763

14 5440 Weißenburg-Emetzheim 5447302.341 635079.6951

15 282 Bamberg 5528471.917 664595.09

16 2700 Kösching 5412865.008 680353.7853

17 2812 Lahr 5341255.83 447780.0085

18 5397 Weiden 5494562.014 744560.497

19 5629 Wittenberg 5749759.486 737313.01

20 3379 München-Stadt 5326602.602 696929.7147

21 232 Augsburg 5372124.357 675712.8542

22 73 Aldersbach-Kriestorf 5375855.28 785682.9702

23 4261 Rosenheim 5285367.136 722233.555

24 3366 Mühldorf 5298301.368 780954.5959
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Table C.6: Soil properties of the different sites used for the Germany-wide scenario analysis.
Silt / clay /
sand [%]

Soil depth
[m]

Field capac-
ity [V%]

Permanent
wilting
point [V%]

Porosity
[V%]

Saturated
hydraulic
conductiv-
ity [mm/d]

1 26 / 19 / 55 0.0 – 0.4
0.4 – 0.7
0.7 – 2.0

23
25
26

10
16
15

42.3
26.9
34.6

244
632
636

2 34 / 18 / 47 0.0 – 0.3
0.3 – 0.4
0.4 – 0.8
0.8 – 2.0

21
22
26
27

8
10
16
16

42.3
34.6
26.9
34.6

114
244
632
634

3 13 / 3 / 84 0.0 – 0.6
0.6 – 2.0

24
12

7
3

42.3
34.6

37
11

4 31 / 36 / 33 0.0 – 0.7
0.7 – 1.2
1.2 – 2.0

24
25
34

13
16
29

34.6
26.9
34.6

417
938
1094

5 58 / 40 / 2 0.0 – 0.2
0.2 – 2.0

36
33

24
23

42.3
34.6

1012
1012

6 58 / 40 / 2 0.0 – 0.2
0.2 – 2.0

36
33

24
23

42.3
34.6

1012
1012

7 46 / 13 / 41 0.0 – 0.2
0.2 – 0.9
0.9 – 1.4
1.4 – 2.0

29
27
30
19

11
11
19
8

42.3
34.6
34.6
34.6

332
332
675
114

8 46 / 27 / 27 0.0 – 0.6
0.6 – 0.7
0.7 – 1.0
1.0 – 2.0

33
31
27
30

17
17
11
21

42.3
34.6
34.6
34.6

629
639
332
938

9 45 / 53 / 2 0.0 – 0.3
0.3 – 2.0

33
34

23
29

34.6
34.6

1012
1094

10 42 / 53 / 5 0.0 – 0.3
0.3 – 2.0

31
34

24
29

34.6
34.6

1004
1094

11 43 / 15 / 43 0.0 – 0.3
0.3 – 0.9
0.9 – 1.2
1.2 – 2.0

27
30
25
20

11
19
12
10

34.6
34.6
26.9
26.9

332
675
336
244

12 60 / 14 / 26 0.0 – 0.1
0.1 – 0.5
0.5 – 2.0

31
30
27

14
19
11

42.3
34.6
34.6

404
675
332

13 19 / 7 / 73 0.0 – 0.3
0.3 – 0.5
0.5 – 2.0

23
22
19

10
10
8

42.3
34.6
34.6

244
244
114

14 33 / 23 / 44 0.0 – 0.3
0.3 – 0.6
0.6 – 2.0

21
19
26

8
8
20

42.3
34.6
26.9

114
114
856

15 25 / 69 / 6 0.0 – 0.3
0.3 – 0.4
0.4 – 2.0

33
34
41

23
29
34

34.6
34.6
42.3

1012
1094
1046

16 34 / 28 / 38 0.0 – 0.4
0.4 – 0.8
0.8 – 2.0

30
28
30

11
16
21

50.0
34.6
34.6

332
632
938
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17 24 / 13 / 62 0.0 – 0.2
0.2 – 0.6
0.6 – 2.0

27
26
22

15
15
10

42.3
34.6
34.6

636
636
244

18 19 / 4 / 77 0.0 – 0.3
0.3 – 0.6
0.6 – 0.8
0.8 – 2.0

23
23
20
18

12
10
5
5

50.0
42.3
42.3
34.6

114
244
10
10

19 23 / 19 / 58 0.0 – 0.6
0.6 – 1.3
1.3 – 2.0

25
26
24

13
15
15

42.3
34.6
26.9

417
636
636

20 35 / 9 / 56 0.0 – 0.2
0.2 – 0.4
0.4 – 2.0

30
31
22

16
24
7

42.3
34.6
34.6

632
1004
37

21 31 / 15 / 54 0.0 – 0.3
0.3 – 0.9
0.9 – 1.0
1.0 – 2.0

28
27
24
22

16
16
13
10

34.6
34.6
34.6
34.6

632
634
417
243

22 59 / 35 / 6 0.0 – 0.2
0.2 – 0.4
0.4 – 1.2
1.2 – 2.0

28
31
33
31

10
24
23
20

34.6
34.6
34.6
34.6

856
1004
1012
860

23 44 / 4 / 52 0.0 – 0.1
0.1 – 2.0

24
24

7
7

42.3
34.6

37
36

24 53 / 42 / 5 0.0 – 0.1
0.1 – 0.3
0.3 – 0.5
0.5 – 2.0

35
33
39
30

24
24
30
22

50.0
42.3
42.3
34.6

1004
1004
1094
1012

Table C.7: Management regimes used for the scenario analysis.

Management intensity
(Number of mowing
and fertilization events
per year)

Mowing dates Fertilization dates Amounts of applied
fertilizer [kg N/ha]

1 01.08. 01.04. 55

2 01.06., 01.09. 01.04., 15.06. 65, 35

3 01.05., 01.07, 01.09. 15.03., 15.05., 15.07. 125, 32.5, 32.5

4 15.04., 15.06., 01.08.,
01.10.

01.03., 01.05., 01.07.,
15.08.

165, 40, 20, 20

5 01.04., 15.05., 01.07.,
15.08., 15.10.

01.03., 15.04., 01.06.,
15.07., 01.09.

210, 25, 25, 25, 25

Table C.8: Climate projections used for the scenario analyses. [rcp] has to be replaced by
“rcp26”, “rcp45” and “rcp85” for the corresponding RCP scenario.

Climate projections ICHEC-EC-EARTH_[rcp]_r12i1p1_CLMcom-CCLM4-8-17_v1
ICHEC-EC-EARTH_[rcp]_r12i1p1_KNMI-RACMO22E_v1
ICHEC-EC-EARTH_[rcp]_r12i1p1_SMHI-RCA4_v1
ICHEC-EC-EARTH_[rcp]_r3i1p1_DMI-HIRHAM5_v1
MPI-M-MPI-ESM-LR_[rcp]_r1i1p1_MPI-CSC-REMO2009_v1
MPI-M-MPI-ESM-LR_[rcp]_r2i1p1_MPI-CSC-REMO2009_v1
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Table C.9: Comparison of vegetation attributes observed in the field and simulated at experi-
mental sites used for model calibration and validation. The values given correspond
to an averaged measurement over the measurement days.

Study site Attribute Observation Simulation

GCEF intensive Biomass [g/m²] 315.0 138.1

Leaf area index [-] 3.07 1.80

Vegetation height [cm] 31.6 15.5

Vegetation cover [-] 0.98 1.01

GCEF extensive Biomass [g/m²] 400.8 247.6

Leaf area index [-] 1.50 1.82

Vegetation cover [-] 0.93 1.05

GiFACE Biomass [g/m²] 351.7 347.1

Leaf area index [-] 3.74 3.46

Vegetation height [cm] 81.9 29.6

Vegetation cover [-] 0.82 1.00

AEG50 Biomass [g/m²] 418.1 174.3

Vegetation height [cm] 43.1 16.7

Vegetation cover [-] 1.53 1.05

HEG26 Biomass [g/m²] 199.0 200.1

Vegetation height [cm] 35.8 24.4

Vegetation cover [-] 0.70 1.02

SEG18 Biomass [g/m²] 345.2 126.1

Vegetation height [cm] 40.3 19.1

Vegetation cover [-] 0.98 1.01

Table C.10: Comparison of herb proportion in field observations and simulation results at
experimental sites used for model calibration and validation. Herbs correspond to
the PFTs small herbs, tall herbs and legumes.

Study site Attribute Observation [%] Simulation [%]

GCEF intensive Aboveground biomass 0.24 13.23

Vegetation cover 1.15 2.89

GCEF extensive Aboveground biomass 53.56 13.04

Vegetation cover 72.91 2.80

GiFACE Vegetation cover 37.23 23.88

AEG50 Vegetation cover 32.27 27.71

HEG26 Vegetation cover 11.68 28.94

SEG18 Vegetation cover 25.37 24.78
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Table C.11: Values of the objective function at sites used for calibration and validation. Values
of the total objective function CTotal and values of different terms of the objective
function corresponding to community vegetation attributes xi,t (first term), propor-
tional biomass of the PFTs bPFT,t (second term) and the proportional cover of the
PFTs cPFT,t (third term).

Study site Total objec-
tive function
CTotal

Community
vegetation
attributes xi,t

Proportional
biomass
bPFT ,t

Proportional
cover cPFT ,t

GCEF intensive 1.87 1.12 0.62 0.13

GCEF extensive 2.42 0.50 0.54 1.38

GiFACE 0.56 0.11 NA 0.45

AEG50 2.11 1.27 0.40 0.44

HEG26 2.84 1.54 0.99 0.31

SEG18 1.56 1.02 0.40 0.14
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d.1 supplementary methods

d.1.1 Geographic conditions of the study sites

The investigated study sites are located in Panama (Barro Colorado Island), Sri Lanka (Sinharaja) and
Taiwan (Fushan). All forests are old-growth forests (Tsai et al., 2015, Losos and Leigh, 2004). BCI has
an annual rainfall of 2551 mm with a severe dry season from December to April or May (Losos and
Leigh, 2004). The average diurnal temperature maximum is 31.1°C, the minimum 23.2°C. The plot is
mostly located on a 140 m above sea level plateau including gentle slopes on the fringes. Unusually
severe droughts associated with El Niño events (such as those in 1983 and 1998) are the most important
natural disturbance that can provoke high tree mortalities and subsequent canopy openings3.

Sinharaja is with 5016 mm/year rainier than BCI, due to the missing distinct dry season. With 24.7°C
as the average diurnal temperature maximum and 20.4°C as the minimum it is colder and has less
temperature fluctuations. The 25 ha plot lies between 424 and 575 m above sea level and encompasses a
central valley bounded by two slopes.

In Fushan, the annual rainfall is with 4271 mm/year between BCI and Sinharaja (Su et al., 2007). Due
to monsoons and typhoons it is cool and rainy in winter and warm and humid in summer. This results in
an average temperature of 18.2°C. The plot has a hill in the western part and a small creek traversing the
eastern and southern parts. The woody plant community at the Fushan plot is subject to frequent natural
disturbances primarily driven by typhoon induced flooding, landslides, soil-erosion, and wind-induced
branch damage1.

d.1.2 Sensitivity to allometric relationships of the networks

For each tree individual, we chose equal allometric relationships for calculating tree crown diameter and
tree height, regardless of species identities. To assess the influence of possible variations among different
species, we conducted analyses in which we put noise on (i) tree crown diameters (interaction zones) and
on (ii) tree heights (see 5.5 Methods, equation (5.11) and (5.12)). For each species, we therefore multiplied
uniformly distributed factors ε1, ε2 within a certain range (e.g., between 0.8 and 1.2 for 20 % noise extent)
to the parameters of the allometric relationships (for (i): i1 and i2, for (ii): h1 and h2, see Table D.6):

dε
int(dbh) = f · (i1 · ε1) · dbh(i2·ε2) (D.33)

hε(dbh) = (h1 · ε1) · dbh(h2·ε2) (D.34)

As the mean interaction diameter (dε
int) differed with increasing noise, we corrected the calculated

values by a linear shift (−(dε
int − dint)) to obtain in total a mean interaction diameter equal to that of

the network without noise (dint). Note that analysis (ii) affected only the directed networks, as tree
heights are not relevant for the undirected networks of the main manuscript. Both analyses revealed that
deviations of tree crown diameters and tree heights from the initial allometric relationships have only
minor impact on the resulting tree networks and species networks (Tables D.8 and D.9, Fig. D.13).

d.1.3 Sensitivity analysis of the interaction zone

The interaction zone (diameter of the tree disk) is assumed to be proportional to the tree crown diameter
which is related to the stem diameter of a tree (e.g., (Bohlman and O’Brien, 2006), see 5.5 Methods for
details). The proportionality factor f is derived as 1.5, for which all trees (nodes) in the network are
connected (e.g., at BCI). Due to the changing insolation angle of the sun during the day and the lateral
root expansion an interaction zone larger than 1 (i.e. identical to the tree crown projection area) seems to
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be reasonable (Schenk and Jackson, 2002). A factor of 1 would result in a tree network with more than
700 components that means a forest network with many isolated tree clusters independent from each
other. Figure D.12 shows that the shape of the node degree distribution Pt(k) of the tree network and the
cumulative distribution Ps,cum(k) of the species network are not influenced by the selection of different
proportionality factors. In addition, there are only minor changes in the relation between the clustering
coefficient C and the average path length L (Table D.7). Consequently, the small-world behavior of the
species interaction network does not depend on the size of the chosen interaction zone.

d.1.4 Testing the scale-free property

Scale-free networks are characterized by a node degree distribution which follows a power law. To test
for this behavior, we fit a power law with exponential cut-off to the logarithmic binned frequencies of
node degrees and compared it to a power-law distribution. For the truncated power-law fit we conduct
the method proposed by Barabási (2016) to find the fitting parameters kmin, kcut and γ:

p(k) =
(1/kcut)1−λ

Γ(1 − λ, kmin/kcut)
k−γe−k/kcut (D.35)

This includes the combination of a maximal log-likelihood function to estimate γ with fixed kmin
and kcut and the identification of kmin and kcut for which the Kolmogorov-Smirnov statistic is minimal.
We set a minimum of five binned data points as a condition for the fitting range and compute the
root-mean-square error (RSME). To compare the fit with a power law we use the following fitting
function with the same kmin value

p(k) =
γ − 1
kmin

(k/kmin)
−γ (D.36)

and analyze the likelihood ratio and Vuong test.

d.1.5 Software used for the analyses

Different software was used for this study. The construction of all networks and calculation of network
measures was done in C++ (Embarcadero RAD Studio XE5). With Matlab we created the network
visualizations and adjacency matrices (Fig. 5.1 and Figs. D.4, ??). The truncated power-law fit and
analysis was done with the Matlab packages of Virkar and Clauset (2014). For plotting the results we
used Matlab, R and Microsoft Excel.

d.2 supplementary results

d.2.1 Results of the directed networks

By construction, the average node degree ⟨k⟩ and network density D of the directed tree networks
correspond to half of the values in the undirected case. Concerning the in-degrees (‘overshadow indices’)
we obtain a clustering coefficient of C ≈ 0.35 and for the out-degrees (‘shadow indices’) a coefficient
of C ≈ 0.16, which was similar for all forest sites. The outgoing node degree distributions decrease
monotonically because there are many small trees that overshadow only few other trees while a few
large trees overshadow many small trees (Fig. D.9a). Consequently, the proportion of shade-tolerant
species tend to decline at the BCI forest with increasing out-degree (Fig. D.9c). In contrast, the incoming
node degree distributions rather follow Poisson distributions (Fig. D.9b).

Note that a maximum value of 0.5 for the clustering coefficient C results from the fact that the directed
tree network is acyclic. The difference between the values for the out-degrees and in-degrees can be
explained by the typically decaying tree size distribution of undisturbed forests (Muller-Landau et al.,
2006, Enquist and Niklas, 2001). The ‘deeper’ we look into the forest from above, the more smaller trees
and thus, with smaller interaction zones occur. By this, more nodes with an out-degree of kout = 1 or 0
and with a local clustering coefficient Ci = 0 are detected (concerning the ‘shadow index’) which results
in a lower global clustering coefficient C.

Considering the species networks, there is no functional relation between the average node degrees of
the undirected and the directed networks. The directed species network shows an average node degree
of ⟨k⟩ = 57.55 at BCI (50 ha), at Sinharaja ⟨k⟩ = 49.21 and at Fushan ⟨k⟩ = 31.27. For the directed species
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networks, we obtain a clustering coefficient lying between C = 0.66 and C = 0.74 for the out-degrees
(‘shadow index’) and between C = 0.72 and C = 0.86 with regard to the in-degrees (‘overshadow index’).

d.2.2 Node degree distribution of the tree networks

As expected for node degree distributions that resemble Gamma (or log-normal) distributions, the
analyzed tree networks can be considered as thin tailed but not scale-free (Barabási, 2016). An additional
analysis showed that a power law with exponential cut-off approximates the degree distribution better
than a power-law distribution (Fig. D.3), similar to observations in other geometric networks (e.g.,
Provero, 2002, Herrmann et al., 2003).

Over 30 years, the tree data inventory of BCI shows on average a tree mortality of 11.6 % and around
11.4 % tree recruits in every five years (standard deviations s = 0.009 and s = 0.015, respectively).
Nevertheless, there is no significant change in the node degree distributions (Fig. D.7).

d.2.3 Influence of plot size on network characteristics

When plot size was changed (from 50 ha to 25 ha), most network characteristics remained unchanged in
the example of BCI.

Some global network properties of the tree network scale in a predictable way with plot size: the
number N of nodes (i.e., trees) is proportional to plot size and also the number E of edges since
connections between nodes are local. As a consequence, network density D scales proportionally to
1/plot size (see equation (3) in Methods). However, local neighborhood properties such as the mean
node degree ⟨k⟩, maximal node degree kmax, node degree distribution and clustering coefficient C are
independent from plot size (Tables D.1 and D.2, Fig. D.14a), although the probability is higher to find
a node with a higher degree in plots of larger size. The average path length L and the diameter d of
a network scales approximately with the increase of the maximal possible distance among points, as
shown in Table D.1.

The scaling with plot size of characteristics of the species network that is constructed on top of the
tree network is difficult to predict, except for the number of nodes N that scales with the species-area
relationship. A doubling of plot size caused only a slight increase in network size (the number of nodes N
and edges E, Tables D.1 and D.2) and in node degrees (⟨k⟩, kmax and node degree distribution). However,
the shape of the node degree distribution remained constant (Fig. D.14b). More connections between the
species resulted in a slightly lower average path length L and a slightly higher clustering coefficient C
(Table D.1). The characteristics that change with plot size do not affect our general conclusions about the
small-world and scale-free property in the networks of tree individuals and of tree species.
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d.3 supplementary figures

Figure D.1: Construction of proximity networks for forests. (A) Visualization of the approach
used for the network analysis. Relevant parameters like the tree position, height
and interaction diameter of the tree are recorded in forest inventories or derived
from measured stem diameters and allometries (see Methods for details). (B)
Construction of the directed tree and species networks. Disks show interaction
zones of trees from a top view perspective. Numbers in the disks identify single
trees and letters their tree species. (C) In the directed tree network, two trees
(numbered nodes) are linked from the higher to the lower tree if their interaction
zones (disks) overlap. (D) The species network arises by aggregating tree nodes in
the directed tree network (C) which belong to the same species (letters A, B, C, D).
The edges of undirected networks have no directions.

Figure D.2: Tree size distribution (diameter at breast height, DBH) and species abundances at
all three study sites (BCI 25 ha, left side). Mean tree sizes are DBH = 223 mm (BCI,
left side), DBH = 226 mm (Sinharaja) and DBH = 215 mm (Fushan). Mean species
abundances are 49 (BCI, left side), 96 (Sinharaja) and 235 (Fushan).
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Figure D.3: Power-law fit with exponential cut-off (kmin = 16, kcut = 48 and γ = 3.408,
RMSE = 3.08e − 04) to the logarithmically binned frequencies of node degrees
Pt(k) in the tree network at BCI (50 ha). The truncated power law with exponential
cut-off fits the node degrees significantly better than a power-law with same
starting value kmin (likelihood ratio = -4.52, Vuong test, p = 0.0335, see D.1
Supplementary Methods for details). For graphical purposes only, frequencies are
normalized (with regard to network size and bin width of node degrees).

Figure D.4: Adjacency matrices of the directed tree and species network for BCI (50 ha). The
rows and columns stand for the existing trees or species (nodes). Each blue dot
represents a directed connection between a pair of trees or species. Consequently,
the number of dots in one row represents the out-degree (‘shadow index’) of
the concerning node. Nodes in the tree network in (A) are ordered by tree sizes
starting from the smallest tree (low tree rank). Nodes in the species network in
(B) are ordered by their species abundance starting from the species with lowest
number of trees (low species rank). The small panels along the y-axis show the
node degrees of (A) individual trees and (B) species.
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Figure D.5: Relation of species abundance to existing node degrees in the species network at
BCI (50 ha, year 2010).

Figure D.6: Node degree distributions of the tree networks Pt(k) and the species networks
Ps,cum(k) (cumulative distributions) for BCI (25 ha, left side), Sinharaja and Fushan
(Obs) and their related null communities (ED – Equal Diameter, CSR – Complete
Special Randomness, RGN – Random Geometric Network, RL – Random Labeling),
respectively. The curves of the null communities are averages of 19 simulations. In
the tree networks node degrees are cut at k = 40 or k = 60.
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Figure D.7: Temporal variations in node degree distributions Pt(k) of the tree networks at
(A) BCI (50 ha), (B) BCI, left side (25 ha), (C) BCI, right side (25 ha) censused
in years 1981 to 1983, and every five years from 1985 to 2010, at (D) Sinharaja
censused in years 1994 to 1996 and 2001 to 2002 and at (E) Fushan censused in
years 2003 to 2005, 2008 to 2009 and 2013 to 2014. For graphical purposes node
degrees have been cut at k = 100.
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Figure D.8: Out-degree (‘shadow index’) and in-degree (‘overshadow index’) derived for the
directed tree network. Green horizontal bars represent single trees in the forest
(side view). Orange and blue areas visualize the interaction zones of the tallest
tree and one of the smallest trees. Arrows show the directed connections for both
focal trees (always going from the top to the bottom). The out-degree of the focal
tree on the left side is eight (and its in-degree is zero), while the in-degree of the
tree on the right side is four (and its out-degree is zero).

Figure D.9: Node degree distributions Pt(k) of the directed tree networks (A) reflecting the
out-degrees kout (‘shadow index’) and (B) the in-degrees kin (‘overshadow index’)
at different tropical forest sites (BCI of 50 ha, Sinharaja and Fushan of 25 ha,
respectively). In (C) and (D) node degrees at BCI are divided into proportions of
shade-tolerant (blue) and light-demanding species (yellow).
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Figure D.10: Visualization of (A) network of pioneer trees (light-demanding trees) and (B) net-
work of climax trees (shade-tolerant trees) at BCI (50 ha) censused in year 2010.
The tree network in (A) includes 2269 trees (nodes) and 511 components (connec-
tions of trees isolated from others), while the tree network in (B) consists of 18466
climax trees and 40 components (the largest component contains 18383 trees).
The positions of the visualized nodes correspond to the spatial positions of the
trees at the forest site.

Figure D.11: Node degree distributions of (A) the tree networks Pt(k) and (B) the species
networks Ps,cum(k) (cumulative distribution) for BCI (25 ha, left side) in compari-
son to networks of ED null communities (Equal interaction Diameter) with tree
interaction zones that are equal to the mean interaction zone (red line, interac-
tion diameter dint = 20.7 m), lower than the mean interaction zone (purple line,
dint = 15.9 m) and higher than the mean interaction zone (orange line, dint = 25.3
m). In (A) node degrees are cut at k = 40 for graphical aspects.
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Figure D.12: (A) Node degree distributions Pt(k) of the tree network and (B) cumulative node
degree distributions Ps,cum(k) of the species network at BCI (50 ha) with different
proportionality factors f for deriving the size of interaction zones of trees.
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Figure D.13: Node degree distributions with noisy interaction zones and tree heights at BCI (50
ha). In (A) and (B) noise was added to parameters of the allometric relationship
for the interaction zones per tree species of (A) undirected tree networks and
(B) undirected species networks. In (C)-(F) noise was added to parameters of
the allometric relationship for tree heights of (C)-(D) directed tree networks
(out-degrees and in-degrees) and (E)-(F) directed species networks (out-degrees
and in-degrees).
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Figure D.14: Node degree distributions of (A) the tree networks Pt(k) and (B) the species
networks Ps,cum(k) (cumulative distribution) for BCI (50 ha), left side of BCI
(25 ha), right side of BCI (25 ha), Sinharaja (25 ha) and Fushan (25 ha), respectively.
In a node degrees are cut at k = 60.
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Table D.1: Summary of undirected tree and species networks for three different forest sites
(BCI, Sinharaja, Fushan). Different plot sizes and locations at BCI.

Forest site
Plot size

(ha)
N E D ⟨k⟩ kmax C L d

Tree
network

BCI (left + right side) 50 20730 104795 0.00049 10.1 98 0.633 31.6 86

BCI, left side 25 10161 48961 0.00095 9.6 83 0.631 22.6 56

BCI, right side 25 10567 55419 0.00099 10.5 98 0.637 20.6 58

Sinharaja 25 17015 163266 0.00113 19.2 136 0.635 21.3 53

Fushan 25 17647 161285 0.00104 18.3 88 0.630 22.6 58

Species
network

BCI (left + right side) 50 222 9201 0.375 82.9 203 0.80 1.6 3

BCI, left side 25 208 6799 0.316 65.4 184 0.77 1.7 3

BCI, right side 25 198 6522 0.334 65.9 174 0.78 1.7 3

Sinharaja 25 177 5727 0.368 64.7 157 0.81 1.6 3

Fushan 25 75 1404 0.506 37.4 71 0.86 1.5 3

N: number of trees or species (nodes), E: number of connections (edges), D: network density,
⟨k⟩: average node degree, kmax: maximal node degree, C: clustering coefficient, L: average path length,
d: diameter of the network.

Table D.2: Results for the species network in BCI (50 ha) assuming different edge thresholds.

Minimum number Number Local connectivity Global connectivity

of interacting trees of ⟨k⟩ D C ∗CER L ∗LER
for an edge nodes (N)

1 222 83 0.374 0.799 0.3757 1.64 1.63

2 212 58 0.274 0.807 0.276 1.76 1.72

4 185 42 0.227 0.826 0.227 1.80 1.77

6 174 33 0.190 0.821 0.190 1.85 1.81

8 159 29 0.182 0.801 0.186 1.87 1.82

10 146 26 0.178 0.808 0.183 1.87 1.83

20 110 19 0.173 0.815 0.169 1.84 1.85

30 94 14 0.149 0.762 0.151 1.90 1.94

40 78 13 0.167 0.796 0.148 1.85 1.92

50 69 11 0.159 0.773 0.170 1.87 1.95

Trees of a species must interact with a minimum number of trees of another species for being considered
as interacting. With increasing minimum number the network size N and average node degree ⟨k⟩
becomes smaller, while the clustering coefficient C, average path length L and especially small world
property remains unchanged.
∗CER and LER: clustering coefficient and average path length of random graphs following the ER model
of the same network size.
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Table D.3: Properties of the analyzed null communities.

Null community Remains unchanged Changes

CSR – Complete Spatial

Randomness

Species identities
Tree positions are spread evenly

distributed on plot
Tree size distribution

Species abundances

RL – Random Labeling
Tree positions

Species identities are randomly

relabeled
Tree size distribution

Species abundances

ED – Equal interaction

Diameter

Tree positions
Tree sizes are set equal to the

mean tree size
Species identities

Species abundances

RGN – Random Geometric

Network

(Species identities)

Species abundances

Tree positions are spread evenly

distributed on plot

Tree sizes are set equal to the

mean tree size

Table D.4: Comparison between the characteristics of the species networks at three tropical
forest sites (size 25 ha) and of analyzed null communities.

N E D ⟨k⟩ kmax C L d CER LER

BCI

(left side)

Observation 208 6799 0.3158 65.4 184 0.772 1.69 3 0.314 1.7

ED 208 6638 0.3083 63.8 189 0.775 1.70 3 0.307 1.7

CSR 208 7365 0.3423 70.8 189 0.793 1.66 3 0.343 1.7

RGN 208 7202 0.3323 69.0 198 0.789 1.67 3 0.334 1.7

RL 208 7022 0.3262 67.5 194 0.791 1.68 3 0.325 1.7

Sinharaja Observation 177 5727 0.3677 64.7 157 0.810 1.64 3 0.367 1.6

ED 177 5939 0.3813 67.1 162 0.807 1.63 3 0.382 1.6

CSR 177 6550 0.4205 74.0 173 0.843 1.58 3 0.421 1.6

RGN 177 6717 0.4313 75.9 173 0.841 1.57 3 0.433 1.6

RL 177 6751 0.4334 76.2 172 0.842 1.57 3 0.432 1.6

Fushan Observation 75 1404 0.5059 37.4 71 0.856 1.50 3 0.513 1.5

ED 75 1470 0.5297 39.2 70 0.854 1.47 3 0.533 1.5

CSR 75 1480 0.5332 39.5 69 0.862 1.47 2 0.534 1.5

RGN 75 1555 0.5602 41.5 73 0.862 1.44 2 0.560 1.4

RL 75 1575 0.5677 42.0 73 0.863 1.43 2 0.565 1.4

CSR (complete spatial randomness) and RL (random labeling) are null communities affecting random
tree positions (CSR) and random shuffling of existing species identities among trees (RL). ED (Equal
Diameters) are null communities with equal interaction diameters (mean over observed interaction
diameters) and RGN (Random geometric network) combines CSR and ED (averages of 19 simulations).
All networks show the small-world property. N: number of nodes, E: number of edges, D: network
density, ⟨k⟩: mean node degree, kmax: maximal node degree, C: clustering coefficient, L: average path
length, d: diameter of the network, CER and LER: clustering coefficient and average path length of
random graphs following the ER model of the same size.
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Table D.5: Comparison between characteristics of tree networks at three tropical forest sites
(size 25 ha) and of related null communities.

N E D ⟨k⟩ kmax C L d

BCI

(left side)

Observation 10161 48961 0.0010 9.6 83 0.631 22.6 56

ED 10163 48962 0.0010 9.6 26 0.566 39.1 102

CSR 10149 50727 0.0010 10.0 85 0.652 23.2 61

RGN 10607 54722 0.0010 10.3 24 0.587 38.8 103

Sinharaja

Observation 17015 163266 0.0011 19.2 136 0.635 21.3 53

ED 17016 163856 0.0011 19.3 39 0.588 33.4 88

CSR 17034 158505 0.0011 18.6 132 0.642 20.5 54

RGN 17034 158487 0.0011 18.6 37 0.593 33.3 89

Fushan

Observation 17647 161285 0.0010 18.3 88 0.630 22.6 58

ED 17646 171714 0.0011 19.5 47 0.592 34.9 98

CSR 17649 145337 0.0009 16.5 106 0.636 22.9 60

RGN 17649 144860 0.0009 16.4 35 0.592 36.6 98

ED (Equal Diameters) are null communities with equal interaction diameters (mean over observed
interaction diameters) and CSR (complete spatial randomness) are null communities affecting random
tree positions. RGN (Random geometric network) combines ED and CSR (averages of 19 simulations).
N: number of nodes, E: number of edges, D: network density, ⟨k⟩: mean node degree, kmax: maximal
node degree, C: clustering coefficient, L: average path length, d: diameter of the network.

Table D.6: Parameters of the allometric relationships to derive tree height and tree crown
diameter (interaction zone) from stem diameter dbh (equation (5.11) and (5.12)) for
each forest site (Su et al., 2007, Kohyama et al., 2003).

Tree height allometry Tree crown diameter allometry

h1 h2 i1 i2

BCI 2.74 0.60 0.37 0.67

Sinharaja 2.78 0.69 0.40 0.66

Fushan 2.74 0.60 0.37 0.67

Table D.7: Results of network analysis assuming different proportionality factors f .

Proportionality factor f N E D C L

Tree network
1.0-fold amount 18285 41648 0.00025 0.567 84.37

1.5-fold amount 20730 104795 0.00049 0.633 31.61

2.0-fold amount 20735 188905 0.00088 0.641 19.54

Species network
1.0-fold amount 222 6724 0.274 0.763 1.76

1.5-fold amount 222 9201 0.375 0.799 1.63

2.0-fold amount 222 11052 0.451 0.816 1.55

N: number of trees or species (nodes), E: number of connections (edges), D: network density,
C: clustering coefficient, L: average path length.
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Table D.8: Results of network analysis assuming different noise extents on the interaction
zones of tree individuals in BCI (50 ha).

Noise

extent
N E D ⟨k⟩ kmax C L d dint dshifted

Tree

network

± 0 % 20730 104795 0.00049 10.1 98 0.633 31.6 86 8.56 8.56

± 10 % 20724 106175 0.00049 10.2 142 0.642 28.5 76 8.38 8.56

± 20 % 20720 111002 0.00052 10.7 179 0.666 22.4 62 8.74 8.56

± 30 % 20719 118562 0.00055 11.4 179 0.696 19.8 54 8.56 8.56

Species

network

± 0 % 222 9201 0.375 82.9 203 0.80 1.6 3 8.56 8.56

± 10 % 222 9254 0.377 83.4 200 0.80 1.6 3 8.38 8.56

± 20 % 222 9610 0.392 86.6 198 0.80 1.6 3 8.74 8.56

± 30 % 222 8779 0.358 79.1 209 0.81 1.6 3 8.56 8.56

N: number of nodes, E: number of edges, D: network density, ⟨k⟩: mean node degree, kmax: maximal
node degree, C: clustering coefficient, L: average path length, d: diameter of the network, dint: mean
interaction diameter of trees before linear shift [m], dshifted: mean interaction diameter of trees after
linear shift [m].

Table D.9: Results of network analysis assuming different noise extents on the height of tree
individuals in BCI (50 ha).

Noise

extent
N E D ⟨k⟩ kmax,in kmax,out Cin Cout

Tree

network

± 0 % 20730 104795 0.00024 5.1 16 98 0.350 0.132

± 10 % 20730 104795 0.00024 5.1 16 98 0.347 0.136

± 20 % 20730 104795 0.00024 5.1 18 98 0.340 0.144

± 30 % 20730 104795 0.00024 5.1 25 98 0.326 0.159

Species

network

± 0 % 222 12536 0.256 56.5 189 179 0.704 0.660

± 10 % 222 12200 0.249 55.0 181 173 0.684 0.656

± 20 % 222 11824 0.241 53.3 189 172 0.671 0.596

± 30 % 222 12536 0.256 56.5 189 179 0.704 0.660

N: number of trees or species (nodes), E: number of connections (edges), D: network density,
⟨k⟩: average node degree, kmax,in/kmax,out: maximal node degrees of the directed networks,
Cin/Cout: clustering coefficients of the directed networks. Subscripted characters denote network
attributes with regard to the in-degrees (‘overshadow indices’) and out-degrees (‘shadow indices’).
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Table D.10: Summary of directed tree and species networks for three different forest sites (BCI,
Sinharaja, Fushan). Different plot sizes and locations at BCI.

Forest site N E D ⟨k⟩ kmax,in kmax,out Cin Cout

Tree

network

BCI (left+right side) 20730 104795 0.00024 5.1 16 98 0.350 0.132

BCI, left side 10161 48961 0.00047 4.8 16 83 0.346 0.131

BCI, right side 10567 55419 0.00050 5.2 16 98 0.354 0.133

Sinharaja 17015 163266 0.00056 9.6 26 136 0.356 0.181

Fushan 17647 161285 0.00052 9.1 29 88 0.347 0.188

Species

network

BCI (left+right side) 222 12776 0.260 57.5 188 184 0.716 0.659

BCI, left side 208 9153 0.213 44.0 169 155 0.662 0.635

BCI, right side 198 8662 0.222 43.7 166 156 0.653 0.618

Sinharaja 177 8710 0.280 49.2 142 147 0.780 0.712

Fushan 75 2340 0.422 31.2 60 69 0.860 0.745

N: number of trees or species (nodes), E: number of connections (edges), D: network density,
⟨k⟩: average node degree, kmax,in/kmax,out: maximal node degrees of the directed networks,
Cin/Cout: clustering coefficients of the directed networks. Subscripted characters denote network
attributes with regard to the in-degrees (‘overshadow indices’) and out-degrees (‘shadow indices’).
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Erdős, P and Rényi, A (1959). “On random graphs I.” In: Publicationes Mathematicae (Debrecen)
6, pp. 290–297.

Eriksson, O, Bolmgren, K, Westin, A, and Lennartsson, T (2015). “Historic hay cutting dates
from Sweden 1873–1951 and their implications for conservation management of species-
rich meadows.” In: Biological Conservation 184, pp. 100–107. issn: 0006-3207. doi: https:
//doi.org/10.1016/j.biocon.2015.01.012.

EU (2013). “Regulation (EU) No 1307/2013 of the European Parliament and of the Council of
17 December 2013 establishing rules for direct payments to farmers under support schemes
within the framework of the common agricultural policy and repealing Council Regulation
(EC) No 637/2008 and Council Regulation (EC) No 73/2009.” In: Official Journal of the
European Union 56, pp. 608–670. issn: 1977-0677. doi: 10.3000/19770677.L_2013.347.eng.

FAOSTAT (2019). Food and Agriculture Organization Corporate Statistical Database. Online
Database.

Farrior, C, Bohlman, S, Hubbell, S, and Pacala, S (2016). “Dominance of the suppressed:
Power-law size structure in tropical forests.” In: Science 351.6269, pp. 155–157. doi: http:
//dx.doi.org/10.1126/science.aad0592.

Fay, PA et al. (2015). “Grassland productivity limited by multiple nutrients.” In: Nature Plants
1.7, p. 15080. issn: 2055-0278. doi: 10.1038/nplants.2015.80.

Filipiak, M, Gabriel, D, and Kuka, K (2022). “Simulation-based assessment of the carbon
sequestration potential as a result of climate change scenarios and management practices in
representative grasslands across Germany.” In: in preparation.

Fischer, C, Leimer, S, Roscher, C, Ravenek, J, Kroon, H de, Kreutziger, Y, Baade, J, Bessler, H,
Eisenhauer, N, Weigelt, A, Mommer, L, Lange, M, Gleixner, G, Wilcke, W, Schroder, B, and
Hildebrandt, A (2019). “Plant species richness and functional groups have different effects
on soil water content in a decade-long grassland experiment.” In: Journal of Ecology 107.1,
pp. 127–141. issn: 0022-0477. doi: 10.1111/1365-2745.13046.

Fischer, M, Bossdorf, O, Gockel, S, Hansel, F, Hemp, A, Hessenmoller, D, Korte, G, Nieschulze,
J, Pfeiffer, S, Prati, D, Renner, S, Schoning, I, Schumacher, U, Wells, K, Buscot, F, Kalko, E,
Linsenmair, K, Schulze, E, and Weisser, W (2010). “Implementing large-scale and long-term

174

https://doi.org/10.1007/s13593-015-0295-0
https://doi.org/10.1007/s13593-015-0295-0
https://doi.org/10.1103/PhysRevLett.94.018102
https://doi.org/10.1103/PhysRevLett.94.018102
https://doi.org/10.1146/annurev-ecolsys-102209-144650
https://doi.org/10.1146/annurev-ecolsys-102209-144650
https://doi.org/10.1111/ele.13159
https://doi.org/https://doi.org/10.1111/j.1654-109X.2007.tb00434.x
https://doi.org/https://doi.org/10.1111/j.1654-109X.2007.tb00434.x
https://doi.org/https://doi.org/10.1016/j.biocon.2015.01.012
https://doi.org/https://doi.org/10.1016/j.biocon.2015.01.012
https://doi.org/10.3000/19770677.L_2013.347.eng
https://doi.org/http://dx.doi.org/10.1126/science.aad0592
https://doi.org/http://dx.doi.org/10.1126/science.aad0592
https://doi.org/10.1038/nplants.2015.80
https://doi.org/10.1111/1365-2745.13046


bibliography

functional biodiversity research: The biodiversity exploratories.” In: Basic and Applied Ecology
11.6, pp. 473–485. issn: 1439-1791. doi: http://dx.doi.org/10.1016/j.baae.2010.07.009.

Fischer, M, Rudmann-Maurer, K, Weyand, A, and Stöcklin, J (2008). “Agricultural land use
and biodiversity in the Alps.” In: Mountain Research and Development 28.2, pp. 148–155. doi:
https://doi.org/10.1659/mrd.0964.

Fischer, R, Bohn, F, Dantas de Paula, M, Dislich, C, Groeneveld, J, Gutiérrez, A, Kazmierczak,
M, Knapp, N, Lehmann, S, Paulick, S, Pütz, S, Rödig, E, Taubert, F, Köhler, P, and Huth, A
(2016). “Lessons learned from applying a forest gap model to understand ecosystem and
carbon dynamics of complex tropical forests.” In: Ecological Modelling 326, pp. 124–133. issn:
0304-3800. doi: http://dx.doi.org/10.1016/j.ecolmodel.2015.11.018.

Fornara, DA and Tilman, D (2008). “Plant functional composition influences rates of soil
carbon and nitrogen accumulation.” In: Journal of Ecology 96.2, pp. 314–322. issn: 0022-0477.
doi: 10.1111/j.1365-2745.2007.01345.x.

Forsythe, WC, Rykiel, EJ, Stahl, RS, Wu, HI, and Schoolfield, RM (1995). “A model comparison
for daylength as a function of latitude and day of year.” In: Ecological Modelling 80.1, pp. 87–
95. issn: 0304-3800. doi: 10.1016/0304-3800(94)00034-f.

Fortunel, C, Valencia, R, Wright, SJ, Garwood, NC, and Kraft, NJB (2016). “Functional trait
differences influence neighbourhood interactions in a hyperdiverse Amazonian forest.” In:
Ecology Letters 19.9, pp. 1062–1070. issn: 1461-023X. doi: 10.1111/ele.12642.

Fosberg, FR (1961). “A classification of vegetation for general purposes.” In: Tropical Ecology 2,
pp. 1–28.

Foster, BL and Gross, KL (1998). “Species richness in a successional grassland: Effects of
nitrogen enrichment and plant litter.” In: Ecology 79.8, pp. 2593–2602. issn: 0012-9658. doi:
https://doi.org/10.1890/0012-9658(1998)079[2593:SRIASG]2.0.CO;2.

Frank, DA and McNaughton, SJ (1991). “Stability increases with diversity in plant communities:
Empirical evidence from the 1988 Yellowstone drought.” In: Oikos 62.3, pp. 360–362. issn:
00301299, 16000706. doi: 10.2307/3545501.

Franko, U, Oelschlägel, B, and Schenk, S (1995). “Simulation of temperature, water and
nitrogen dynamics using the model CANDY.” In: Ecological Modelling 81.1-3, pp. 213–222.
issn: 0304-3800. doi: http://dx.doi.org/10.1016/0304-3800(94)00172-E.

Fraser, LH, Jentsch, A, and Sternberg, M (2014). “What drives plant species diversity? A global
distributed test of the unimodal relationship between herbaceous species richness and
plant biomass.” In: Journal of Vegetation Science 25.5, pp. 1160–1166. issn: 1100-9233. doi:
https://doi.org/10.1111/jvs.12167.

Fraser, LH, Pither, J, et al. (2015). “Worldwide evidence of a unimodal relationship between
productivity and plant species richness.” In: Science 349.6245, pp. 302–305. doi: 10.1126/
science.aab3916.

Fuller, MM, Wagner, A, and Enquist, BJ (2008). “Using network analysis to characterize forest
structure.” In: Natural Resource Modeling 21.2, pp. 225–247. issn: 0890-8575.
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