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Abstract
This dissertation deals with the dynamics of interacting quantum and classical spin models
and the question of whether and to which degree the dynamics of these models agree with
each other.
For this purpose, XXZ models are studied on different lattice geometries of finite size,
ranging from one-dimensional chains and quasi-one-dimensional ladders to two-dimensional
square lattices. Particular attention is paid to the high-temperature analysis of the temporal
behavior of autocorrelation functions for both the local density of magnetization (spin)
and energy, which are closely related to transport properties of the considered models. Due
to the conservation of total energy and total magnetization, the dynamics of such densities
are expected to exhibit hydrodynamic behavior for long times, which manifests itself in
a power-law tail of the autocorrelation function in time. From a quantum mechanical
point of view, the calculation of these autocorrelation functions requires solving the linear
Schrödinger equation, while classically Hamilton’s equations of motion need to be solved.
An efficient numerical pure-state approach based on the concept of typicality enables
circumventing the costly numerical method of exact diagonalization and to treat quantum
autocorrelation functions with up to N = 36 lattice sites in total.
While, in full generality, a quantitative agreement between quantum and classical dy-
namics can not be expected, contrarily, based on large-scale numerical results, it is
demonstrated that the dynamics of the quantum S = 1/2 and classical spins coincide, not
only qualitatively, but even quantitatively, to a remarkably high level of accuracy for all
considered lattice geometries. The agreement particularly is found to be best in the case
of nonintegrable quantum models (quasi-one-dimensional and two-dimensional lattice),
but still satisfactory in the case of integrable chains, at least if transport properties are
not dominated by the extensive number of conservation laws.
Additionally, in the context of disordered spin chains, such an agreement of the dynamics
is found to hold even in the presence of small values of disorder, while at strong disorder
the agreement is pronounced most for larger spin quantum numbers.
Finally, it is shown that a putative many-body localization transition within the one-
dimensional spin chain is shifted to stronger values of disorder with increasing spin
quantum number. It is concluded that classical or semiclassical simulations might provide
a meaningful strategy to investigate the quantum dynamics of strongly interacting quantum
spin models, even if the spin quantum number is small and far from the classical limit.
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Introduction
Understanding and investigating the behavior of systems consisting of many degrees of
freedom is a notoriously difficult task. While, today, (quantum and classical) many-body
systems in (thermal) equilibrium are well understood according to the laws of textbook
statistical mechanics [4, 5], many-body systems out of equilibrium present a challenge in
modern experimental and theoretical physics.
From an experimental point of view, studies on nonequilibrium dynamics of quantum

many-body systems have recently experienced progress in the fields of ultracold quantum
gases (see, e.g., Refs. [6–10] and references therein), optical lattices [7, 11–14], and trapped
ions [15, 16]. Since ultracold quantum gases can be almost perfectly isolated from their
surroundings, they have become a tremendous and well-established experimental tool to
probe questions regarding, for example, condensed matter physics and allow for studying
these systems for comparatively long coherence times [17]. One the one hand, due to the
high degree of controllability and the development of sophisticated measurement techniques,
these systems present new opportunities to realize certain quantum many-body systems
experimentally, such as Heisenberg (spin) Hamiltonians [18–20]. On the other hand, they
enable the study of fermionic and bosonic gases [21–23] and, in particular, the analysis of
special states of matter such as Bose-Einstein condensates (see, e.g., Refs. [24, 25] and
references therein).
In addition, low-dimensional interacting quantum systems have been the subject of

many studies since these systems capture and explain magnetism of certain compounds in
nature on a microscopic level [26]. A notable class of materials that provide realizations of
low-dimensional quantum magnets are systems known as copper oxides (cuprates) [27–29],
which can essentially act as lattices consisting of spin-1/2 degrees of freedom in terms
of Cu2+-ions. In essence, such materials provide physical realizations of archetypical
low-dimensional spin-S systems. These include S = 1/2 [27–30] and S = 1 Heisenberg
chains as well as the two-leg ladders [29, 31], which can be realized by couplings between
separate S = 1/2 Heisenberg chains. Although the origin of magnetic properties of certain
materials is deeply rooted in quantum mechanical principles, even classical spin models
have attracted attention for the understanding of magnetism in spin systems [32–34]. In
this context, the notion of “classical spins” has to be understood as the classical limit
of a quantum spin model, characterized by simultaneously taking the limit of Planck’s
constant to zero (~→ 0) and the spin quantum number to infinity (S →∞) while keeping
the product ~

√
S(S + 1) constant [35].

Also inspired by the latest developments and advances in the field of experimental physics,
the interest of theoretical physics in understanding the dynamics of quantum many-body
systems being out of equilibrium has been extensively renewed and invigorated [cf. Refs. [20,
36–40] and references therein]. This is because quantum spin systems represent an
appropriate platform for testing intriguing theoretical concepts and providing access to
the investigation of long-standing questions of quantum thermalization [38, 41–44], which
is theoretically related to the eigenstate thermalization hypothesis (ETH) [42, 43, 45],
and phenomena in the context of many-body localization (MBL) [46–50]. Within these
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Introduction

concepts, the notion of integrability in both the classical and quantum realm plays a
significant role.

For classical systems, whose constituents evolve in time according to differential equations
known as Hamilton’s equations of motion, the concept of integrability is unambiguously
defined in terms of Liouville integrability [51]. In the spirit of Liouville integrability, a
classical system consisting of s degrees of freedom (i.e. the system possesses a 2s-dimensional
phase space) is considered integrable if it possesses s independent first integrals of motion
in involution [51]. As a result, the Hamilton’s equations of motion are explicitly solvable
by exploiting action-angle variables [51] while the solutions exhibit periodic motions on
invariant tori in phase space [52, 53]. In this case, the concept of ergodicity [54, 55], which
states that phase-space trajectories, in principle, can get arbitrarily close to any point of
the phase space for long times, is lacking [56]. The dynamics of such classical systems is
strongly restricted due to the presence of several conservation laws and cannot traverse
the full phase space. In this sense, integrable systems are referred to as nonergodic [54],
while the trajectories of more generic, nonintegrable classical systems can exhibit chaotic
behavior [57, 58] and the phase space is densely covered. In the context of classical chaos,
one diagnostic tool to detect it is related to deterministic randomness [57] and the notion
of Lyapunov exponents [57, 59], which measure the exponential distance between two
phase space points in the course of time.
For quantum systems, whose dynamics are described by the Schrödinger equation, a

commonly accepted definition of integrability is more delicate and remains a subject
of debate [56]. Due to the lack of a reasonable notion of phase space trajectories in
the quantum realm, a straightforward transfer of ergodicity is not possible [38, 48, 60].
Nevertheless, despite the lack of a well-defined notion of integrability, one way to delineate
integrability can be summarized by so-called Bethe ansatz-integrable models (see Refs. [61]
for introductory references, or, for a more comprehensive discussion, see [62, 63]).

In principle, Bethe ansatz-based techniques provide a strategy to obtain exact eigenstates
(and eigenvalues) of a certain class of one-dimensional quantum models by solving nonlin-
ear equations, known as Bethe ansatz equations [62–65]. Prototypical one-dimensional
integrable models which have been solved exactly by means of Bethe ansatz methods
include the isotropic [61] and anisotropic spin-1/2 Heisenberg model [66]. The Fermi-
Hubbard chain [62] has been solved as well. Beyond the originally formulated coordinate
Bethe ansatz [61, 67], ample literature has been published on advanced Bethe ansatz-like
methods such as the algebraic Bethe ansatz [68] and the quantum inverse scattering
method [69, 70]. Within the quantum inverse scattering method, the so-called Young-
Baxter equation [71, 72] has been found to define integrability for one-dimensional quantum
systems. Therefore, these quantum models are integrable if a so-called scattering matrix
(R-matrix), which is related to the model, obeys the Yang-Baxter equation [69, 71, 72].
Since integrable models, in principle, provide analytical results (exact eigenstates and
eigenvalues), they serve as theoretical cross-checking reference systems to ensure the
correctness and validity of approximate approaches.
A potential crossover from integrable to nonintegrable (chaotic, generic) quantum

systems is often described by means of the statistical properties of energy levels [73] of
a quantum system, specifically the spacing of consecutive energy levels of nonintegrable
systems follow a Wigner-Dyson distribution [74], while the energy levels of integrable
systems obey a Poissonian distribution [74]. Nonintegrable models, which are considered
in this thesis, mainly arise through examining (i) higher spin quantum numbers (S > 1/2)
or (ii) higher spatial dimensions (d > 1) or by (iii) adding some additional perturbations
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Introduction

to the system, which are expected to break all (nontrivial) conservation laws, such as
additional disorder terms.

Studies over recent decades have provided valuable information on transport properties
of certain physical models. On the one hand, integrable models play a decisive role due
to the fact that integrability can strongly impact their dynamics. Integrable models are
characterized by an extensive number of conservation laws which can lead to anomalous
thermalization [75, 76] and nondecaying currents, that is, ballistic transport (i.e. ideal trans-
port) [77–80]. Conversely, this means that diffusion generally cannot be expected within
these models. Moreover, due to an extensive number of conserved quantities, complete
decay of correlation functions can be slowed or prevented [77, 78]. For generic interacting
many-body systems in the high-temperature limit, a signature of diffusive transport is
manifested in a characteristic long-time decay of the autocorrelation function [81]

〈%i(t)%i(0)〉 ∝ t−d/2 ,

where d denotes spatial lattice dimensions and %i represents a local density. In the context
of the anisotropic one-dimensional Heisenberg spin-1/2 chain (XXZ model), at formally
infinite temperature, and independent of the anisotropy parameter ∆, energy transport is
purely ballistic and the energy current conserved [82]. In contrast, spin transport depends
on the actual value of ∆ [83–86]. For ∆ = 1 and S = 1/2, the correlation function
〈Szi (t)Szi (0)〉 ∝ t−α decays with an exponent α ≈ 2/3 for long times, which suggests
superdiffuisve spin transport within the Kardar-Parisi-Zhang (KPZ) universality class [86–
91]. For nonintegrable chains with S > 1/2, the situation is less clear. While it has been
suggested that superdiffusion might persist despite the absence of integrability [92, 93],
it has also been argued that α will eventually approach its diffusive value α = 1/2
asymptotically for larger system sizes and longer timescales [94]. Even for the classical
Heisenberg spin chain, the unambiguous detection of diffusion is known to be a delicate
problem [95–103]. Due to the lack of integrability, normal diffusion is said to be maintained
for both spin and energy [96, 100, 104–106]. However, there are also suggestions that the
dynamics are anomalous [95, 107, 108].
The clarification of this question is not only vital from a theoretical point of view

but also experimentally. Commonly performed experiments on, for example , nuclear
magnetic resonance (NMR) [109, 110] or muon spin resonance (µ SR) strive to measure
relaxation rates. Those relaxation rates can be described by certain spin autocorrelation
functions [81, 111, 112]. Moreover, superdiffusive spin dynamics (consistent with the
Kardar-Parisi-Zhang universality class) have been observed in experiments with KCuF3 in
the high-temperature regime [113]. In the field of NMR, it is well known that the dynamics
of classical spins commonly reproduces the behavior of systems with quantum spins,
including spin-1/2 [114]. Furthermore, ultracold atomic gases provide another opportunity
to investigate transport properties of many-body systems experimentally. In particular,
both the Fermi- and Bose-Hubbard model have been realized in optical lattices [10, 14]. In
addition, the XXZ model has been imitated in the context of ultracold quantum gases [20],
where spin transport has been observed to be superdiffusive for 0 < ∆ < 1, diffusive for
∆ = 1, and subdiffusive for ∆ > 1.

Novel experimental developments have also restored interest in the issue of thermalization
(or lack of thereof) in the context of isolated quantum systems. In the classical domain,
the notion of thermalization can be understood in terms of chaotic dynamics and the
ergodicity hypothesis [41]. The question of thermalization in classical systems can be
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Introduction

traced back to numerical investigations by Fermi, Pasta, Ulam, and Tsingou [115, 116]. In
the quantum domain, the understanding of thermalization is largely based on the eigenstate
thermalization hypothesis [42, 43], which enables an explanation of thermalization on
a microscopic level. Roughly speaking, ETH implies that the expectation values of
local observables in isolated quantum systems, which are initially prepared in an out-of-
equilibrium state, relax to long-time values that can be described using textbook statistical
mechanics ensembles [42–44]. Although a rigorous mathematical proof of the eigenstate
thermalization hypothesis is still lacking, it has been confirmed numerically for a variety
of systems [38, 44, 117].

There are well-known classes of quantum systems that are expected to violate the ETH,
namely (i) integrable systems [38] and (ii) many-body localized systems [48, 118]. While
the well-understood concept of Anderson localization [47, 119] states that noninteracting
particles are localized, even at arbitrarily small values of disorder, the concept of many-
body localization (MBL) serves as a “generalization” of Anderson localization by allowing
interactions in the model. The absence of thermalization within the many-body localized
phase has been attributed to the existence of an extensive number of locally conserved
quantities, so-called local integrals of motion [48, 120, 121]. Based on seminal works and
numerous subsequent works [122–128], many-body localization is today believed to be a
generic property of one-dimensional short-range lattice models with sufficiently strong
randomness [48, 50].

For generic one-dimensional disordered quantum models, at least two phases are expected:
(i) an ergodic phase at weak disorder strength where all eigenstates obey the ETH and
(ii) a localized phase at strong disorder where ETH is fully violated. Essentially, the MBL
phase is characterized by the fact that autocorrelation functions of local operators retain
memory of their initial states at long times [50] and nonequilibrium initial states will never
relax [125, 129]. In addition, great efforts have recently been made to put the phenomenon
of MBL into a broader perspective and to understand the dynamics of models which might
not be strictly localized but exhibit anomalously small relaxation rates and considerably
long equilibrium times [130]. While the occurrence of genuine MBL is not expected for
classical spin models, strong disorder has been demonstrated to cause a drastic reduction
of transport coefficients and anomalously slow relaxation [104, 131].
While analytical (exact) solutions for integrable quantum models are (in principle)

possible (Bethe ansatz), particularly the study of nonintegrable models requires the use
of mostly numerical techniques. Consequently, the development of efficient numerical
algorithms for these types of systems poses one of the most critical challenges within the field
of theoretical physics. Thanks to a number of eminent and efficient numerical algorithms
in recent decades, large-scale numerical studies have become possible for certain classes of
quantum lattice models. Apart from exact diagonalization techniques (see, e.g., Ref. [132],
which enable evaluation of the entire spectrum and all eigenstates of certain models,
variational methods such as density functional theory [133] and matrix product state
techniques and relatives [134, 135] have proven to be successful for ground state problems.
Furthermore, the development of novel theoretical concepts, such as typicality [136–140],
leads to the numerical approach of dynamical quantum typicality (DQT) (see Ref. [141] for
a comprehensive review) and further extended numerical techniques, for example numerical
linked-cluster expansions (see Refs. [142, 143] for comprehensive reviews).

By comparing the dynamics of quantum and classical spin systems to each other, likely
substantial differences will appear at very low temperatures, where quantum effects become
dominant. Nevertheless, a quantitative agreement between the dynamics of classical and
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quantum spin models cannot be expected in general, even at high temperatures, as
dealing with the high-temperature limit does not necessarily imply that all quantum
behavior is lost. On the one hand, the integrability of certain S = 1/2 quantum models is
essentially manifested in their dynamical behavior, even in the high-temperature limit.
On the other hand, the classical chain might lack integrability and, therefore, exhibit
significantly different dynamical behavior. Moreover, the lack of a classical counterpart in
the context of a potential onset of the phenomenon of many-body localization in strongly
disordered quantum models leads to the agreement between quantum and classical dynamics
becoming unlikely, since the onset of many-body localization represents a pure quantum
effect. Although various studies on the dynamics of classical and quantum spin lattices
(particularly on the XXZ Heisenberg model) have a long history [95–97, 100, 102, 104,
144, 145], less attention has been paid to a comparison of the dynamics in classical and
quantum spin lattice models both qualitatively and quantitatively [146–149]. While it
seems likely that quantum and classical systems grow more similar as the spin quantum
number increases, that is, starting with the most quantum case (S = 1/2) up to the
classical limit (S →∞), it remains a nontrivial question whether and to what level the
dynamics of both the quantum and classical spin system coincide.

The present dissertation explores the question of quantum versus classical dynamics in
spin models on different geometries by studying time-dependent autocorrelation functions
of local densities, which are intimately related to the transport properties of these models.

Thesis Outline
To provide a clear structure, this cumulative thesis is divided into four parts. The current
part (Pt.) has been dedicated to the introduction of this thesis. Afterwards, Pt. II
introduces the main theoretical concepts needed in the course of this thesis. To this end,
section (Sec.) 1 provides a brief overview of the basic concepts of classical mechanics,
while Sec. 2 deals with the basics of quantum mechanics. The subsequent section (Sec. 3)
describes the models considered in this thesis. In Sec. 3.1, the anisotropic quantum-
S Heisenberg model (XXZ model) is introduced on three different lattice geometries,
ranging from (i) one-dimensional chains and (ii) quasi-one-dimensional ladders to (iii)
two-dimensional square lattices. Furthermore, the relevant observables are described
in the subsequent section. Moreover, certain global symmetries of the XXZ chain are
highlighted. After turning to the classical XXZ model, the third section closes with
remarks on the notion of integrability in both the classical and quantum realm. Sec. 4
is dedicated to describing aspects of the theory of linear response as a commonly used
approach to study transport processes in many-body systems. In this context, diffusion in
many-body systems is described in greater detail. The section concludes with remarks on
dynamical linear response functions and the Kubo formula. While the previous sections
have exclusively considered disorder-free models, Sec. 5 discusses the disordered XXZ
model. The phenomena of many-body localization and equilibration (thermalization)
in many-body systems are explained, while, especially in the context of thermalization,
the eigenstate thermalization hypothesis is considered. To close the section, in Sec. 5.3,
transport properties of local densities in the presence of disorder are discussed. As the final
section of the second part, Sec. 6 provides an overview of certain numerical approaches
in the context of many-body systems. In particular, Sec. 6.1 deals with the numerical
technique of exact diagonalization followed by a description of the concept of dynamical
quantum typicality in Sec. 6.2. In this context, Sec. 6.3 deals with the propagation of
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pure states, while the section closes with the numerical approach of numerical linked
cluster expansion in Sec. 6.4. Based on the publications Refs. [R1–R3], the third part
(Pt. III) of this thesis provides a survey of the publications, which are (i) “Selected
applications of typicality to real-time dynamics of quantum many-body systems” ([R1]),
(ii) “Quantum versus classical dynamics in spin models: Chains, ladders, and square
lattices” ([R2]), and (iii) “Decay of spin-spin correlations in disordered quantum and
classical spin chains” ([R3]). The fourth part (Pt. IV) provides a brief summary of this
thesis and gives an outlook on future work beyond this thesis.
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1. Basics in Classical Mechanics
This section is concerned with the basic framework of classical mechanics according to
Hamilton’s formulation of classical mechanics. First, in Sec. 1.1 the concept of a phase
space is briefly described and in this context the notion of generalized coordinates and
momenta is outlined. To describe the time evolution of classical (many-body) systems,
Hamilton’s equations of motion are presented, which leads to the notion of Poisson
brackets. Subsequently, in Sec. 1.2 a probability-based description of statistical mechanics
is highlighted. In this context, the notion of phase space distribution functions as well as
their temporal evolution is presented. Finally, the ensemble expectation value of a classical
observable is pointed out. It is worth noting that this section is based on the Refs. [51, 52].

1.1. Phase Space and Time Evolution
Consider a classical system that consists of N identical (classical) pointlike particles.
These can be described according to the standard three-dimensional Euclidean space. A
classical microstate of the system is specified by s generalized (spatial) coordinates, denoted
by q(t) = (q1(t), q2(t), . . . , qs(t)), and their associated s conjugated momenta p(t) =
(p1(t), p2(t), . . . , ps(t)), which are both s-dimensional vectors. It is worth mentioning that
if the classical particles can move independently from each other in space, the system has
exactly s = 3N degrees of freedom. Nevertheless, in this thesis the more general case of
s 6= 3N degrees of freedom is considered.

To proceed, the generalized coordinates q(t) and momenta p(t) span the 2s-dimensional
phase space Γ. Since the generalized coordinates and momenta are independent variables,
both can be summarized as a phase space vector πΓ(t) according to

πΓ(t) = (π1(t), π2(t), . . . , π2s(t))
= (q1(t), q2(t), . . . , qs(t), p1(t), p2(t), . . . , ps(t)) . (1.1)

As becomes apparent, every classical microstate corresponds to a certain point in phase
space Γ and, therefore, the state of the classical system is entirely determined by the phase
space vector (1.1). The set of phase space points, πΓ(t) = (q(t), p(t)), the system can
occupy over time, is called the phase space trajectory. For some given initial conditions,
namely

πΓ(0) = (q(0), p(0)) , (1.2)

the time evolution of the phase space vector πΓ(t) is unambiguously given in terms of the
Hamilton’s equations of motion. These are explicitly given by

dqi(t)
dt = ∂H(q(t),p(t))

∂pi
and dpi(t)

dt = −∂H(q(t),p(t))
∂qi

, i = 1, . . . , s , (1.3)

where H(q(t),p(t)) denotes the Hamilton function. In particular, for an isolated classical
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1. Basics in Classical Mechanics

system the Hamilton function cannot explicitly depend on time (i.e. ∂H/∂t = 0) and,
for some constraints, H(q,p) is identical to the total energy E of the system, that is,
H(q,p) = E. It is worth noting that Hamilton’s equations of motion (1.3) consist of a
set of 2s first-order differential equations for the s generalized coordinates and associated
momenta. As a result, Hamilton’s equations of motion depict the unique temporal evolution
of the coordinates and momenta, depending on a set of initial conditions. Therefore, the
phase space trajectory never intersects or represents a simply closed curve on phase
space. Furthermore, the phase space trajectory is bounded by the (2s− 1)-dimensional
hypersurface (energy surface) of the phase space, defined by means of the constraint
H(q,p) = E.
Apart from the Hamilton function, any other classical quantity can be written as a

function on phase space. To this end, an arbitrary classical quantity O is given by

O(πΓ(t), t) = O(q(t),p(t), t) , (1.4)

and evolves in time as

dO
dt =

∑
i

(
∂O

∂qi

dqi
dt + ∂O

∂pi

dpi
dt

)
+ ∂O

∂t
. (1.5)

Substituting Hamilton’s equations of motion (1.3) into the preceding equation, Eq. (1.5)
can be rewritten as

dO
dt =

∑
i

(
∂O

∂qi

∂H

∂pi
− ∂O

∂pi

∂H

∂qi

)
+ ∂O

∂t
= {O,H}+ ∂O

∂t
, (1.6)

where each of the functions have to be evaluated at the same point (q(t),p(t), t) in phase
space. Moreover, in the last step the Poisson bracket {•, •} have been used. To briefly
explain the notion of Poisson brackets, consider two arbitrary phase space functions
f = f(q(t),p(t)) and g = g(q(t),p(t)). The Poisson bracket for f and g is defined as
follows,

{f, g} ≡
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (1.7)

Without giving proofs, note that the Poisson bracket contains the mathematical properties
of bilinearity, that is, {µf1+νf2, g} = µ{f1, g}+ν{f2, g} for some real numbers µ and ν and
phase space functions f1, f2 and g. Moreover, the Poisson bracket obeys the antisymmetry
condition, that is, {f, g} = −{g, f}. In particular, due to mutual independence of the
phase space coordinates, the so-called fundamental Poisson brackets are given by the
following identities

{qj, qk} = {pj, pk} = 0 and {qj, pk} = δjk , (1.8)

where δjk denotes the Kronecker delta defined as

δjk =
1 , if j = k

0 , if j 6= k
. (1.9)

The properties of the fundamental Poisson brackets (1.8) can explicitly be shown by using
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1. Basics in Classical Mechanics

Eq. (1.7). Finally, Hamilton’s equations of motion (1.3) can be rewritten by means of the
Poisson bracket (1.7) as,

dqi
dt = {qi, H} and dpi

dt = {pi, H} , i = 1, . . . , s , (1.10)

where, the arguments of the phase space variables have been omitted for the sake of clarity.
For practical reasons, solving the equations of motion (1.3) strictly is in general not

possible for macroscopic systems, which consist of a large number of degrees of freedom
s. Although in an isolated system, the classical quantity O will not explicitly depend
on time, the state will change its position in phase space in the course of time, which
implies a change in the values of O. As a consequence, the idea of a pure deterministic
microscopic description of classical many-body systems has to be abandoned. Instead, it
is usual to turn to a macroscopic description, based on the probability of finding a system
in a respective microscopic state.

1.2. Classical Phase Space Distribution
Since in a classical many-body system the exact microstate at a time t is not “known”
exactly, a probability distribution on phase space, the phase space distribution function
ρΓ(q,p, t), is introduced. This distribution function depends on the generalized coordinates
q = (q1, q2, . . . , qs) and generalized momenta p = (p1, p2, . . . , ps) (and for nonequilibrium
situations additionally on time t). By definition, the phase space distribution function
ρΓ(q,p, t) is strictly nonnegative and normalized to unity, that is,

ρΓ(q,p, t) ≥ 0 , (1.11a)∫
Γ
ρΓ(q,p, t) d(2s) VΓ = 1 , (1.11b)

where the term ρΓ(q,p, t) d(2s) VΓ represents the probability of finding a microstate of the
system at time t in an infinitesimally small “volume” element d(2s)VΓ around a point (q, p)
in phase space Γ. Moreover, the integral in Eq. (1.11b) has to be performed over the
complete phase space and the phase space “volume” element d(2s) VΓ has to be understood
as a decomposition of infinitesimal small phase space volume elements according to

d(2s)VΓ ≡ dq1 dq2 . . . dqs dp1 dp2 . . . dps =
∏
i

dqi dpi , (1.12)

which is usually equipped with a normalization constant, but without loss of generality,
this constant is set to unity.

A central concept of statistical mechanics can be traced back to Gibbs and states that
describing a many-body system in a given macrostate refers to a large number of identical
systems that are in different microscopic states but share common macroscopic properties.
The total number of systems then forms a statistical ensemble.

It is worth pointing out that the time evolution of the phase space density ρΓ(q,p, t) is
given by the so-called Liouville equation,

d
dtρΓ = ∂ρΓ

∂t
+ {ρΓ, H} = 0 , (1.13)
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where Eq. (1.6) has been exploited and {•, •} denotes the Poisson bracket given in Eq. (1.7).
A precise derivation of the Liouville equation is not provided here. Nevertheless, it is
worth noting that this equation can be derived by exploiting both (i) the s-dimensional
divergence theorem and (ii) assuming that the phase space probability density ρΓ(q,p, t)
obeys a s-dimensional continuity equation. As becomes apparent, the space phase density
vanishes along a phase space trajectory. This statement is known as the Liouville theorem.
It is worth to briefly comment on the Liouville equation (1.13). By means of the so-called
classical Liouville operator ıLcm, Eq. (1.13) is rewritten as

∂ρΓ

∂t
+ ıLcm[ρΓ] = 0 , (1.14)

where ıLcm is defined as

ıLcm[•] ≡
∑
i

(
∂H

∂pi

∂ [•]
∂qi
− ∂H

∂qi

∂ [•]
∂pi

)
= {•, H} . (1.15)

For an isolated classical system, the classical Liouville operator is time independent
(similar to the Hamilton function). Thus, Eq. (1.13) can be formally integrated, yielding
the following solution:

ρΓ(q,p, t) = e−ıLcmtρΓ(q,p, t = 0) , (1.16)

with the initial phase space density ρΓ(q,p, 0) at t = 0. With the previously mentioned con-
siderations, the ensemble expectation value of any classical observable O(t) = O(q(t),p(t))
can be expressed in terms of the phase space distribution function ρΓ(q,p, t) according to

〈O(t)〉 =

∫
Γ
O(q(t),p(t)) ρΓ(q(t),p(t), t) d(2s)VΓ∫

Γ
ρΓ(q(t),p(t), t) d(2s)VΓ

, (1.17)

which leads to

〈O(t)〉 =
∫

Γ
O(q(t),p(t)) ρΓ(q(t),p(t), t) d(2s)VΓ , (1.18)

by using the normalization condition given in (1.11b). Moreover, the variance can be
defined in terms of Eq. (1.18) as

σ2
O(t) = 〈O(t)2〉 − 〈O(t)〉2 . (1.19)

It is worth pointing out that in particular, by choosing O = H, the conservation of energy
is essentially recovered due to the vanishing of the Poisson bracket (i.e. {H,H} = 0). On
a more general level, conserved quantities are described in greater detail in the context
of (classical) integrability (see Sec. 3.3.1). In the course of this thesis, the description
of classical many-body systems will play an important role. In the context of classical
spin systems (see Sec. 3.2), Hamilton’s equations of motion [cf. Eq. (1.3)] will govern the
dynamics of classical spin variables. Moreover, in the context of classical integrability (see
Sec. 3.3.1), the Poisson bracket [cf. Eq. (1.7)] will provide integrals of motion.
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This section is referred to the basic framework of quantum mechanics. Sec. 2.1 briefly
explains the notion of pure states and their time evolution governed by the Schrödinger
equation, which is subsequently solved by the unitary time-evolution operator. In this
context, the time evolution of expectation values is described. For later purposes, the time
evolution of pure states and expectation values is also presented in the energy eigenbasis
of some Hamiltonian. Moreover, Sec. 2.2 deals with the concept of density matrices, which
enables the description of pure and mixed states. In this context, Sec. 2.2.1 is dedicated
to the von-Neumann equation. Furthermore, the canonical ensemble is described. While
the quantities given in Sec. 2.1 are exclusively formulated according to the Schrödinger
representation of quantum mechanics, the following sections refer to additional types of
representations, namely the (i) Heisenberg and (ii) interaction representation. The section
concludes with correlation functions, which provide one possibility to study dynamical
properties of many-body systems.
It is worth noting that this section is based on the Refs. [150, 151].

2.1. Pure States
According to the Schrödinger representation of quantum mechanics, a pure quantum state
is represented by a time-dependent state vector |ψ(t)〉, which is an element of a potentially
high-dimensional Hilbert space H . Observables are represented by Hermitian operators
O acting on H and, unlike the states, the operators are constant in time. The notion of
a pure state means that the quantum system under consideration is in a precisely defined
state, i.e. the system is found with a probability of w = 1 in the state |ψ〉.

2.1.1. Schrödinger Equation
The time evolution of a pure state |ψ(t)〉 is fully determined in terms of the Schrödinger
equation,

ı
d
dt |ψ(t)〉 = H |ψ(t)〉 , (2.1)

where ı denotes the imaginary unit and H represents a time-independent Hamiltonian of
the quantum system. Usually, Eq. (2.1) contains the Planck constant ~, but from this
point on and for the rest of this thesis the Planck constant is set to unity, that is, ~ ≡ 1.
For a time-independent Hamiltonian H, the Schrödinger equation (2.1) is a linear

differential equation of first order with constant coefficients. The Schrödinger equation is
formally solved in terms of the so-called unitary time-evolution operator U (t, t0), which
maps the state |ψ(t0)〉, at some initial time t0, linearly to the state |ψ(t)〉, evaluated at
some later time t > t0,

|ψ(t)〉 = U (t, t0) |ψ(t0)〉 , (2.2)
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with U(t0, t0) = 1D for t→ t0 and 1D has to be understood as the identity operator with
regard to some D-dimensional Hilbert space H . To respect the linearity of quantum
mechanics, the time-evolution operator has to be linear for each reference point in time,
which is reflected by the property of transitivity,

U(t2, t1)U(t1, t0) = U(t2, t0) , (2.3)

for some points in time t0, t1 and t2. The notion of unitarity can be traced back to the
fact that the norm of the states remains invariant under time evolution which can formally
be expressed as

U †(t, t0)U(t, t0) = U(t, t0)U †(t, t0) = 1D , (2.4)

where U †(t, t0) represents the Hermitian conjugated operator of U (t, t0). Substituting the
state |ψ(t)〉 in Eq. (2.2) into the Schrödinger equation (2.1), leads to an equation for the
unitary time-evolution operator of the following form:

ı
∂

∂t
U (t, t0) = HU (t, t0) . (2.5)

Since the Hamiltonian is assumed to be time-independent, the preceding operator equa-
tion (2.5) is solved by explicit integration, which leads to

U (t, t0) = e−ıH(t−t0) . (2.6)

As becomes apparent, the full time evolution of the state |ψ(t)〉 can be absorbed into
an exponential operator. It should be mentioned that if the Hamiltonian becomes time-
dependent, that is, H → H(t), the time-evolution operator U(t, t0) is given by the Dyson
series [152]

U(t, t0) = 1− ı
∫ t

t0
H(t1) dt1 + (−ı)2

∫ t

t0

[∫ t1

t0
H(t1)H(t2) dt2

]
dt1 + · · · . (2.7)

By means of the time-ordering operator T , which orders each product of Hamiltonians
in the Dyson series expansion (2.7) with increasing time arguments from right to left,
Eq. (2.7) can be rewritten as

U (t, t0) = T
[
exp

(
−ı
∫ t

t0
H(v) dv

)]
, (2.8)

for t ≥ t0. Considering an operator O (conjugated to an observable) according to the
Schrödinger representation, the expectation value 〈O(t)〉 of O is defined by the state vector
|ψ(t)〉 as follows:

〈O(t)〉 ≡ 〈ψ(t)|O|ψ(t)〉 . (2.9)

The time derivative of Eq. (2.9) can explicitly be derived by means of Eq. (2.1), which
leads to the expression

ı
d
dt〈ψ(t)|O|ψ(t)〉 = 〈ψ(t)| [O,H] |ψ(t)〉 , (2.10)
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where the brackets [•, •] indicate the commutator, which is defined for two general operators,
say O and O′, as

[O,O′] ≡ OO′ −O′O . (2.11)

It is worth mentioning that if the operator O explicitly depends on time, O → O(t), then
Eq. (2.10) would require an additional term of the form 〈ψ(t)|∂O(t)/∂t|ψ(t)〉. Moreover, a
natural implication of Eq. (2.10) is that if the operator O commutes with the Hamiltonian
H, the right hand side strictly vanishes and hence the expectation value turns out to
be time-independent. In other words, Eq. (2.10) states that the expectation values of
observables, which commute with the Hamiltonian, are constants of motion of the quantum
system under consideration.

2.1.2. Time Evolution in Energy Eigenbasis
The time evolution of the state |ψ(t)〉 in the Schrödinger representation takes on a rather
simple form in the so-called energy eigenbasis. To this end, the state |ψ(t)〉 is decomposed in
terms of the system’s energy eigenstates, denoted by {|n〉}, and the associated (potentially
degenerated) energy eigenvalues {En}. The eigenvalues and eigenstates are obtained by
solving the eigenvalue equation

H |n〉 = En |n〉 , (2.12)

which is the stationary Schrödinger equation. An initial state |ψ(t0)〉 evolves in time
according to

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 =
∑
n

cn(t0) e−ı(t−t0)En |n〉 . (2.13)

The complex expansion coefficients are given by cn(t0) = 〈n|ψ(t0)〉 and represent the
overlap between the initial state |ψ(t0)〉 and the eigenstates |n〉. Regarding Eq. (2.13), the
probability, denoted by wn, of finding the quantum system in an energy eigenstate |n〉 is
given by the square value of the coefficients (i.e. wn = |cn|2), and remains constant over
time. As a consequence, the probability of encountering a quantum system in a certain
eigenstate depends entirely on the initial conditions. Moreover, the expectation value in
the Schrödinger representation from (2.9) can also be represented in terms of the energy
eigenbasis. Thus, by using Eq. (2.13), the expectation value can be written as

〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉 =
∑
n,m

c∗m(t0) cn(t0) eı(Em−En)(t−t0)Omn , (2.14)

where Omn ≡ 〈m|O|n〉 are the matrix elements of O in the eigenbasis of the Hamiltonian
H and the asterisk of c∗m(t0) represents the complex conjugated coefficients of cm(t0). To
shorten notion, the arguments of the coefficients are omitted in the following. Without
loss of generality, the preceding equation (2.14) can further be decomposed into two
independent parts, namely the diagonal and off-diagonal part,

〈O(t)〉 =
∑
n

|cn|2Onn +
∑
m6=n

c∗m cn eı(Em−En)(t−t0)Omn . (2.15)
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While the diagonal part ∑n |cn|2Onn remains time-independent, the off-diagonal part
carries the time dependence in the case of nondegenerate energy eigenvalues. If, however,
all energy eigenvalues are degenerate, the off-diagonal part contains time-independent
contributions.

The formulation of quantum states and expectation values of operators in terms of the
energy eigenbasis [cf. Eq. (2.15)], will particularly be useful in the context of the concepts
of equilibration and thermalization (see Sec. 5.2) as well as in the framework of numerical
approaches such as exact diagonalization (see Sec. 6.1) in the course of this thesis.

2.2. Density Matrices
The concept of density matrices allows to describe quantum systems that are in a precisely
defined state, but also quantum systems whose state is only known statistically, and,
therefore, provides the possibility to explain physical situations with both mixed and pure
states.

The so-called mixed states can be considered as a collection of pure states |ψ1〉 , . . . , |ψn〉,
which are independently prepared and weighted by the respective probability w1, . . . , wn.
The density matrix ρ for such a statistical mixture is given by

ρ =
∑
n

wnPn =
∑
n

wn |ψn〉 〈ψn| with wn ≥ 0 and
∑
n

wn = 1 , (2.16)

where the states |ψn〉 are normalized to unity, but do not necessarily have to be orthogonal
to each other. Moreover, the term Pn = |ψn〉 〈ψn| denotes a projection operator, which
projects an arbitrary state on the n-th state. The entire information of the system is
included in the density matrix. If the matrix elements of ρ are written as ρmn = 〈ϕm|ρ|ϕn〉
for an arbitrary orthonormal basis {|ϕn〉} of a Hilbert space, then on the one hand the
off-diagonal matrix elements, ρmn with m 6= n, denote the so-called coherences and give
information about quantum correlations between the states |ϕn〉 and |ϕm〉. On the other
hand the diagonal matrix elements, ρnn, are referred to populations and provide information
about the probability to find the system in state |ϕn〉.
Similar to classical statistical mechanics, where the expectation value of a classical

observable O has been defined as the integral over the phase space attached by an associated
density function (see Sec. 1.2), the expectation value of a quantum mechanical observable
O is given by the weighted sum of the expectation values in terms of pure states:

tr [ρO] =
∑
m

〈ϕm|ρO|ϕm〉 =
∑
m,n

wn 〈ψn|O|ϕm〉〈ϕm|ψn〉

=
∑
n

wn 〈ψn|O|ψn〉 = 〈O〉 , (2.17)

where the closure relation, ∑m |ϕm〉 〈ϕm| = 1D for a set of orthonormal basis states {|ϕm〉}
of a Hilbert space H , has been used and 1D again denotes the identity operator related
to a D-dimensional Hilbert space H . Moreover, the trace of an operator O′ is generally
defined by

tr [O′] =
∑
m

〈ϕm|O′|ϕm〉 , (2.18)

with respect to some complete set of orthonormal states {|ϕm〉} of a Hilbert space. Due to
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the representation-independence of the trace, any complete set of basis states can be used
to evaluate the expectation value (2.17). To obtain physical reasonable density matrices,
that is, real-valued and nonnegative probabilities, the density matrix ρ has to be both,
Hermitian (ρ = ρ†) and positive (ρ ≥ 0). The density matrix ρ is normalized to

tr [ρ] =
∑
m,n

wn 〈ϕm|ψn〉〈ψn|ϕm〉 =
∑
n

wn 〈ψn|ψn〉 = 1 , (2.19)

which follows from Eq. (2.16). For reasons of completeness, a pure quantum state (i.e.
wn = 1) is captured by the density matrix formalism by

ρ = |ψ〉 〈ψ| . (2.20)

To conclude the properties of a density matrix, pure and mixed quantum states can be
distinguished by means of the inequality

tr
[
ρ2
]
≤ 1 , (2.21)

where equality is fulfilled if and only if the density matrix ρ describes a pure quantum
state. Conversely, for a statistical mixture of several quantum states the inequality (2.21)
yields, tr [ρ2] < 1.

2.2.1. Von-Neumann Equation
If the considered system is in a mixed state and this state depends on time, the corre-
sponding density matrix ρ(t) can be written, similar to Eq. (2.16), as

ρ(t) =
∑
n

wn |ψn(t)〉 〈ψn(t)| , (2.22)

where the time evolution of each individual pure state |ψn(t)〉 of the statistical mixture of
states contributes to the time evolution of the entire density matrix. Since each pure state
|ψn(t)〉 evolves unitarily in time according to the Schrödinger equation (2.1), the density
matrix ρ(t) evolves in time according to

d
dtρ(t) = −ı

∑
n

wn
[

(H |ψn(t)〉) 〈ψn(t)| − |ψn(t)〉 (〈ψn(t)|H)
]

= −ı [H, ρ(t)] . (2.23)

This equation is known as the von-Neumann equation and can be deduced by inserting the
complex conjugated Schrödinger equation and using the fact that the probabilities wn are
constant in time. It is worth pointing out that ρ(t) in Eq. (2.23) represents the density
matrix in the Schrödinger representation, and for the case of pure states (i.e. ρ(t) =
|ψ(t)〉 〈ψ(t)|), the von-Neumann equation (2.23) reduces to the Schrödinger equation (2.1).
Owing to the fact that the von-Neumann equation is a first order differential equation, a
formal solution is given in terms of the time-evolution operator U (t, t0) [cf. Eq. (2.6)] and
some initial condition ρ(t0) according to

ρ(t) = U(t, t0) ρ(t0)U †(t, t0) = e−ıH(t−t0) ρ(t0) eıH(t−t0) . (2.24)
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To emphasize the resemblance of the von-Neumann equation and the classical Liouville
equation [cf. Eq. (1.13)], the von-Neumann equation can be written analogously in terms
of the so-called quantum Liouville superoperator ıLqm:

d
dtρ(t) = −ıLqm [ρ(t)] , (2.25)

with ıLqm[•] ≡ −ı [•,H]. The notion of a superoperator is intended to illustrate that the
action of Lqm on an operator generates another operator. Finally, in terms of the quantum
Liouville superoperator, a solution of Eq. (2.25) can formally be written as

ρ(t) = exp (−ı(t− t0)Lqm) ρ(t0) , (2.26)

for some initial condition ρ(t0).

2.2.2. Time Evolution in Energy Eigenbasis
Similar to Sec. 2.1.2, where the time evolution of the state vector |ψ(t)〉 in terms of energy
eigenstates has been shown, the time evolution of the density matrix ρ(t) can also be
decomposed in terms of energy eigenstates. The density matrix in (2.24) with the matrix
elements ρmn(t) = 〈m|ρ(t)|n〉 yields

ρnn(t) = ρnn(t0) and ρmn(t) = ρmn(t0) e−ı(Em−En)(t−t0) for m 6= n . (2.27)

The preceding expression shows that the populations in the energy eigenbasis are constant
in time, while the coherences of the system oscillate.

2.2.3. Canonical Ensemble
The quantum canonical ensemble illustrates the behavior of a quantum system which is in
thermal contact with a heat bath. For the canonical ensemble, the density matrix ρβ is
given by

ρβ = 1
Zβ

e−βH = e−βH
tr [e−βH] , (2.28)

where the normalization factor Zβ denotes the canonical partition function at inverse
temperature β = 1/T and the Boltzmann constant kB is set to unity, that is, kB ≡ 1
for the rest of this thesis. For (quantum) ensembles at equilibrium, the von-Neumann
equation (2.23) implies that the density matrix is time-independent. Additionally, the
density matrix ρβ can be expanded in terms of a complete set of eigenstates {|n〉} and
associated eigenvalues {En} of the Hamiltonian H according to

ρβ = 1
Zβ

∑
n

e−βEn |n〉 〈n| , (2.29)

where the partition function Zβ can analogously expanded as

Zβ = tr
[
e−βH

]
=
∑
n

〈n|e−βH|n〉 =
∑
n

e−βEn . (2.30)
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Eventually, the canonical expectation value 〈O〉 of some observable O can be written for
the density matrix given in (2.28) as

〈O〉 = tr [ρβ O] = 1
Zβ

tr
[
e−βHO

]
= 1
Zβ

∑
n

e−βEn〈n|O|n〉 , (2.31)

by exploiting both, the definition of the trace from Eq. (2.18) and the canonical density
matrix ρβ from (2.28).
In particular, the canonical ensemble plays a major role in the context of correlation

functions in the further course of this thesis. Within the framework of linear response theory,
time-dependent correlation functions occur and are evaluated at canonical equilibrium
according to the density matrix (2.28).

2.3. Other Types of Representation
While in the previous sections quantities have been treated exclusively within the Schrödinger
representation, the following two sections refer to both, (i) the Heisenberg and (ii) the
interaction representation.

2.3.1. Heisenberg Representation
In contrast to the Schrödinger representation, where the time evolution of the density
matrix (pure states) is governed by the von-Neumann equation (Schrödinger equation),
the so-called Heisenberg representation provides a different yet equivalent description of
the dynamics of quantum mechanics.

According to the Heisenberg representation, the time dependence of the density matrix
is transferred to the operators. For some initial time t0, it is supposed that the density
matrices in both the Schrödinger and Heisenberg representation agree with each other (i.e.
ρ(t0) = ρH(t0)). Note that in order to distinguish between the different representations, the
density matrices and operators with respect to the Heisenberg representation are labelled
by the subscript “H”.
A relation between operators in the Schrödinger representation O and those in the

Heisenberg representation OH(t) is given by the transformation

OH(t) = U †(t, t0)OU (t, t0) . (2.32)

As becomes apparent from Eq. (2.32), by exploiting the properties of the unitary time-
evolution operator (see Sec. 2.1), Schrödinger and Heisenberg representation coincide in
the limit t→ t0. The expectation values for both representations have to coincide, which
implies

〈O(t)〉 = tr [ρ(t)O] = tr [ρH(t0)OH(t)] . (2.33)

For a given operator in the Heisenberg representation, the time evolution is governed by
Heisenberg’s equation of motion

d
dtOH(t) = ı [HH,OH(t)] , (2.34)
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which can be derived from Eq. (2.32) by taking the time derivative of both sides. The
operator OH(t) has to be understood as stated in Eq. (2.32). It is worth considering limiting
cases: If the Schrödinger operator O depends explicitly on time and if the system under
consideration is isolated, the Heisenberg’s equation of motion (2.34) adds an additional
term, (∂O(t)/∂t)H, which has to be understood according to the transformation (2.32).

2.3.2. Interaction Representation
It should be emphasized that operators with respect to the interaction representation are
labelled by the subscript “I”.

Within the interaction representation, the Hamiltonian of a quantum system is divided
into an unperturbed part H0 and a perturbation part H′. The total Hamiltonian H thus
reads

H = H0 +H′ , (2.35)

where the exact form of the parts H0 and H′ depends on the underlying physical problem.
It is instructive to define two different unitary time-evolution operators for the evolution
of operators and states, respectively:

U0(t, t0) = e−ıH0(t−t0) , (2.36)

and

UI(t, t0) ≡ U †0(t, t0)U(t, t0) , (2.37)

where U(t, t0) evolves the total Hamiltonian H [cf. Eq. (2.6)]. An operator according to
the interaction representation is defined by

OI(t) ≡ U †0(t, t0)OU0(t, t0) , (2.38)

where O is an operator within the Schrödinger representation. Similarly, the density
matrix within the interaction representation is given by

ρI(t) ≡ UI(t, t0) ρ(t0)U †I (t, t0) . (2.39)

Then, according to Eq. (2.33), the expectation value can be written as

〈O(t)〉 = tr [O ρ(t)] = tr
[
U †0(t, t0)OU0(t, t0)UI(t, t0)ρ(t0)U †I (t, t0)

]
= tr [OI(t) ρI(t)] . (2.40)

Again, it is worth considering limiting cases. On the one hand, for H0 = 0, the Schrödinger
representation is recovered, since the total Hamiltonian coincides with the perturbation
part. This implies the equivalence of UI(t, t0) and U (t, t0). On the other hand, for a
vanishing perturbation term (i.e. H′ = 0), the unitary time-evolution operator of H0
equals U (t, t0) and thus UI(t, t0) = 1D.

Apart from many applications of the Heisenberg and interaction representation, in this
thesis both are mainly used within linear response theory (LRT) which considers the
response of a physical system to an additional perturbation within a Hamiltonian.
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2.4. Correlation Functions

2.4.1. Two-Point Correlation Functions
The time-dependent correlation function between two observables, say O(t) and O′(t′),
evaluated at times t and t′, is defined by

Cβ
OO′(t, t′) ≡ 〈O(t)O′(t′)〉 = tr [ρβ O(t)O′(t′)] , (2.41)

where the (canonical) density matrix is denoted by ρβ = exp (−βH) /Zβ and Zβ represents
the (canonical) partition function at inverse temperature β = 1/T (see Sec. 2.2.3). Notably,
the time dependence of the operators O(t) and O′(t′) has to be understood with respect
to the Heisenberg representation. In particular, for O = O′, Eq. (2.41) turns into

Cβ
OO(t, t′) = 〈O(t)O(t′)〉 = tr [ρβ O(t)O(t′)] , (2.42)

and is known as the autocorrelation function. A special case arises by taking the limit
of formally infinite temperatures (i.e. β → 0). In that case the autocorrelation function
takes on the form

C(t, t′) ≡ lim
β→0

Cβ
OO(t, t′) = tr [O(t)O(t′)]

D
, (2.43)

where D = dim(H ) denotes the dimension of the Hilbert space H . The preceding
expression follows from exp (−βH) /Zβ → 1/D in the limit β → 0.

In the course of this thesis, the operators O(t) and O′(t′) are identified as operators of
local densities %r and %r′ , acting on different (local) lattice sites r and r′. In this context,
the corresponding time-dependent density-density correlation function is denoted by

Cβ
r,r′(t, t′) ≡ 〈%r(t) %r′(t′)〉 = tr [ρβ %r(t) %r′(t′)] , (2.44)

or in the limiting case of formally infinite temperature [cf. Eq. (2.43)] as

Cr,r′(t, t′) = lim
β→0

Cβ
r,r′(t, t′) . (2.45)

2.4.2. Time Evolution in Energy Eigenbasis
The two-point correlation function given in (2.41) can be written in terms of the system’s
energy eigenbasis by inserting complete sets of eigenstates {|m〉} and {|n〉} according to

〈O(t)O′〉 =
∑
n,m

e−βEn

Zβ
eı(En−Em)t 〈m|O|n〉〈n|O′|m〉 . (2.46)

In the preceding equation both t′ = 0 and O′ ≡ O′(0) have been chosen. If the observables
are equal (i.e. O′ = O), Eq. (2.46) turns into

〈O(t)O〉 =
∑
n,m

e−βEn

Zβ
eı(En−Em)t |〈n|O|m〉|2 . (2.47)

A decomposition into an energy eigenbasis, as given in Eq. (2.47), is useful in the context
of certain numerical methods, such as exact diagonalization. Once all eigenvalues and
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eigenstates have been found, the correlation function can in principle be calculated for
arbitrarily long times. Exact diagonalization will be discussed in more detail in the course
of this thesis (see Sec. 6).
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3. Models
Sec. 3 is dedicated to present the models under consideration. To this end, Sec. 3.1 describes
the anisotropic quantum Heisenberg model (XXZ model). The considered observables are
explained in Sec. 3.1.1. While Sec. 3.1.2 deals with the one-dimensional case in greater
detail, in Sec. 3.2 the classical counterpart of the quantum Heisenberg model is presented.
Sec. 3 closes with remarks on both classical and quantum integrability.

3.1. Quantum Heisenberg Spin Model
One of the most studied models within a variety of low-dimensional quantum lattice
models is the anisotropic Heisenberg spin-S model. While in the course of this thesis the
spin quantum number S takes on specific values (see e.g., Pt. III), first, S is kept general.

The anisotropic Heisenberg spin-S model is here formulated on a subclass of rectangular
lattices, which consist of N = Lx × Ly lattice sites in total, where Lx and Ly are the
lattice extension in x and y direction, respectively. Then, the exact lattice geometry
depends on the specific choice of Lx and Ly. This thesis is mainly focussed on three
different lattice geometries, namely the (i) one-dimensional chain (N = Lx × 1), the (ii)
quasi-one-dimensional two-leg ladder (N = Lx × 2) and the (iii) two-dimensional square
lattice (N = Lx × Ly with Lx = Ly). It is worth noting that periodic boundary conditions
(PBC) are imposed on each of the considered models within this thesis. In Fig. 3.1 (a) -
(c), the different lattice geometries are illustrated.

To proceed, the Hamiltonian of the anisotropic Heisenberg spin-S model can be written
as

HXXZ =
∑
〈r,r′〉

Jr,r′ hr,r′ , (3.1)

where the sum runs over all bonds 〈r, r′〉 of nearest-neighboring sites r = (i, j) and
r′ = (i′, j′). The exchange couplings Jr,r′ act between the lattice sites r and r′ and set
the energy scale. Moreover, the couplings can be considered as either antiferromagnetic
(Jr,r′ > 0) or ferromagnetic (Jr,r′ < 0). Unless otherwise stated, the exchange coupling is
set antiferromagnetic and constant (Jr,r′ = 1) throughout this thesis.
The local term hr,r′ within the Hamiltonian (3.1) explicitly reads

hr,r′ = (SxrSxr′ + SyrS
y
r′ + ∆SzrSzr′) , (3.2)

where ∆ parametrizes the anisotropy in z direction and the components Sµr with µ =
{x, y, z} describe three-dimensional spin-S operators acting locally at lattice site r. In
addition, they obey the fundamental SU(2)-algebra commutation relation [153] given by

[Sµr , Sνr′ ] = ı δrr′ εµνλ S
λ
r , (3.3)

where δrr′ again is the Kronecker delta [cf. Eq. (1.9)] and εµνλ denotes the totally antisym-

29



3. Models

metric Levi-Civita tensor. This tensor is defined as

εµνλ =


+1, if (µ, ν, λ) is an even permutation of (1, 2, 3)
−1, if (µ, ν, λ) is an odd permutation of (1, 2, 3)
0, otherwise

. (3.4)

Notably, the Einstein summation convention, that is, over indices that occur twice is
summed, is used throughout this thesis.

3.1.1. Observables
This thesis focusses on the dynamics of time-dependent local densities %r(t) at lattice
site r = (i, j), which can be either magnetization or energy. To study the dynamics
of such local densities, time-dependent density-density correlation functions Cβ

r,r′(t) are
considered (see Sec. 2.4.1). Unless otherwise stated, the term %r(t) refers to both local
densities.

Recall from Sec. 2.4 that the correlation functions Cβ
r,r′(t) for some local density %r are

defined as

Cβ
r,r′(t) = 〈%r(t) %r′〉 =

tr
[
e−βHXXZ %r(t) %r′

]
Zβ

. (3.5)

The time argument of %r(t) has to be understood according to the Heisenberg representa-
tion (see Sec. 2.3.1) and %r = %r(t = 0). As this thesis mainly considers the specific case
of formally infinite temperature (i.e. β → 0), the correlation function (3.5) turns into

Cr,r′(t) = tr [%r(t) %r′ ]
D

, (3.6)

where D = (2S + 1)N again denotes the Hilbert-space dimension, for example, D = 2N for
S = 1/2. To proceed, it is instructive to define the local densities for the lattice geometries
(i) - (iii), whose specific definition depends on the lattice geometry. First, consider the
local density of magnetization %(M)

r = %
(M)
i,j . While such a definition is not unique and

depends on the chosen unit cell, a natural definition of %(M)
i,j can be given by

%
(M)
i,j =


Szi,1 , for Lx × 1
Szi,1 + Szi,2 , for Lx × 2
Szi,j , for Lx × Ly

. (3.7)

In addition, consider the local density of energy %(E)
r = %

(E)
i,j . For a one-dimensional chain

(N = Lx × 1), the local density of energy is defined on a single bond according to

%
(E)
i,j = Jh(i,1),(i+1,1) . (3.8)

For the quasi-one-dimensional two-leg ladder (N = Lx × 2), this is defined on a plaquette
which consists of one bond for each leg and two rungs,

%
(E)
i,j = J

[
h(i,1),(i+1,1) + h(i,2),(i+1,2)

]
+ J

2
[
h(i,1),(i,2) + h(i+1,1),(i+1,2)

]
. (3.9)
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Finally, for the two-dimensional square lattice (N = Lx × Ly with Lx = Ly), the local
energy reads

%
(E)
i,j = J

2
[
h(i−1,j),(i,j) + h(i,j),(i+1,j)

]
+ J

2
[
h(i,j−1),(i,j) + h(i,j),(i,j+1)

]
. (3.10)

Although in general the couplings can be labelled differently, namely J⊥ for the coupling on
the rungs and J|| for the coupling along the legs, throughout this thesis J ≡ J⊥ = J|| holds.
To illustrate the definitions of the previously mentioned local densities, see Fig. 3.1 (d) - (i).
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Figure 3.1.: Overview of the different models and observables. Top row (geometries):
(a) One-dimensional chain, (b) quasi-one-dimensional two-leg ladder and (c)
two-dimensional square lattice. Middle row: local magnetizations (d)− (f)
and bottom row: local energies (g)− (i).

The study of (density-density) correlation functions Cr,r′(t) can provide information on
certain transport properties. In the course of this thesis, the dynamics of such correlation
functions is addressed in greater detail (see e.g., Sec. 4.2). Apart from studying correlation
functions of local densities, another approach to analyze transport properties is related to
the study of current-current correlation functions, briefly discussed in Sec. 4.4. For more
details the reader is referred to Ref. [81].
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3.1.2. One-dimensional Heisenberg Spin Model
Geometrically, the anisotropic one-dimensional spin-S Heisenberg model (XXZ model) is
recovered from (3.1) by setting Ly = 1. The (Lx × Ly) lattice is therefore reduced to a
one-dimensional chain and the Hamiltonian (3.1) simplifies to

H(1d)
XXZ

= J
∑
i

(
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi Szi+1

)
, (3.11)

where the parameters, that is, the coupling constant J and the anisotropy parameter ∆
are the same as stated in Sec. 3.1. The lattice geometry is essentially transferred to a ring
of N lattice sites due to imposing periodic boundary conditions (i.e. Sµ1 = SµN+1). For
the sake of illustration, within this section, spin-1/2 degrees of freedom are considered.
Especially in this case, the components of the spin-1/2 operator Sµi can be expressed in
terms of the Pauli matrices, Sµi = σµi /2, which are explicitly given by the following set of
(2× 2) matrices

σxi =
(

0 1
1 0

)
, σyi =

(
0 −ı
ı 0

)
, σzi =

(
1 0
0 −1

)
. (3.12)

These matrices satisfy the following commutation relations in the spirit of Eq. (3.3):[
σµi , σ

ν
j

]
= 2ı δij εµνλ σλi . (3.13)

Conventionally, by defining the raising- and lowering spin-operators S±i ≡ Sxi ± ıS
y
i , which

formally satisfy the commutation relations[
Szi , S

±
j

]
= ±δijS±j ,

[
S+
i , S

−
j

]
= 2δijSzj ,

[
S±i , S

±
j

]
= 0 , (3.14)

the Hamiltonian (3.11) can be rewritten in terms of raising and lowering operators as

H(1d)
XXZ

= J
∑
i

[1
2
(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ ∆Szi Szi+1

]
. (3.15)

To proceed, formally each lattice site is associated with a local two-dimensional complex
Hilbert space Hi = C2, i = 1, 2, . . . , N . As a consequence the global Hilbert space H is
given by the tensor product over all local complex Hilbert spaces according to

H =
⊗
i

Hi = H1 ⊗H2 ⊗ · · · ⊗HN . (3.16)

Bearing in mind that the local Hilbert space is two-dimensional, the global Hilbert space
is 2N -dimensional for S = 1/2. For a spin-S quantum number, the dimension of the
total Hilbert space is D = (2S + 1)N . Accordingly, a basis for the local vector space is
essentially written in terms of basis states corresponding to the eigenstates of Szi , which
only can take the eigenvalues ±1/2, with the corresponding eigenstates |· · · ↑i · · ·〉 (spin
up) and |· · · ↓i · · ·〉 (spin down) at lattice site i. These eigenstates can be represented by
two-dimensional orthogonal real vectors

|↑i〉 =
(

1
0

)
i

and |↓i〉 =
(

0
1

)
i

. (3.17)
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As a consequence, the raising and lowering operators S±i act on a state with an up or
down spin at lattice site i as follows:

S+
i |· · · ↓i · · ·〉 = |· · · ↑i · · ·〉 , S+

i |· · · ↑i · · ·〉 = 0, (3.18a)
S−i |· · · ↑i · · ·〉 = |· · · ↓i · · ·〉 , S−i |· · · ↓i · · ·〉 = 0 . (3.18b)

The operators Szi act on these states according to,

Szi |· · · ↓i · · ·〉 = −1
2 |· · · ↓i · · ·〉 , Szi |· · · ↑i · · ·〉 = 1

2 |· · · ↑i · · ·〉 . (3.18c)

A basis of the global Hilbert space is generated by using the product states in terms of
these eigenstates:

|Sz1 Sz2 · · · SzN〉 =
⊗
i

|Szi 〉 = |Sz1〉 ⊗ |Sz2〉 ⊗ · · · ⊗ |SzN〉 with Szi ∈ {|↑i〉 , |↓i〉} . (3.19)

In the spirit of Eq. (3.16), the spin-1/2 operators act nontrivially on the i-th Hilbert space,

Sµi = 12 ⊗ 12 ⊗ · · ·︸ ︷︷ ︸
i−1

⊗1
2σ

µ ⊗ 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸
N−i

, (3.20)

where 12 represents a (2× 2)-dimensional identity matrix. In the case of S = 1/2 degrees
of freedom, there exists a mapping from the spin-1/2 operators to fermionic creation and
annihilation operators, accomplished by the Jordan-Wigner transformation (see Sec. 3.1.4).

3.1.3. Symmetries of the XXZ Chain
Operators O that commute with the Hamiltonian H of a respective quantum model feature
essentially two significant properties: (i) these operators represent physically conserved
quantities (see Sec. 2.1.1) and (ii) common eigenstates of the system’s Hamiltonian H and
O can be found [81, 154]. From a more general perspective, symmetries of a system are
related to conserved quantities by the Noether theorem [155]. For more details the reader
is referred to Refs. [154, 156].

The one-dimensional XXZ spin-1/2 model conserves the total magnetization in z direc-
tion, that is, the Hamiltonian (3.11) is invariant under rotations around the z-axis. The
operator of total magnetization Sz is defined as the sum of local magnetization operators
Szi at lattice site i,

Sz =
∑
i

Szi . (3.21)

Exploiting the commutation relations (3.14), it can be straightforwardly shown that the
commutator of the Hamiltonian (3.15) (or alternatively Hamiltonian (3.11)) and the
total magnetization operator (3.21) vanishes. This symmetry is also referred to U(1)
symmetry [153]. As a result, the conservation of total magnetization in z direction implies
that the system’s Hamiltonian matrix can be decomposed into (N + 1) independent
subspaces (blocks). Each of the subspaces corresponds to a number M , with 0 ≤M ≤ N

33



3. Models

of up-spins [154]. The dimension of a single subspace Dsubsp. is determined by

Dsubsp. =
(
N

M

)
= N !
M !(N −M)! . (3.22)

Furthermore, it is worth mentioning that in the isotropic case (∆ = 1), the total spin
S ≡ ∑i Si, where Si = (Sxi , S

y
i , S

z
i ), is conserved, since the Hamiltonian (3.15) commutes

with S2. This symmetry is also known as SU(2) symmetry [153].
Since the considered model is imposed by PBC, the Hamiltonian remains invariant

under translations in space. This symmetry implies the conservation of momentum. The
translation symmetry is conveyed by an unitary operator, the so-called translation operator
T [157]. This operator formally shifts the spin cyclically one lattice site to the “right”
according to

T |Sz1 , Sz2 , . . . , SzN−1, S
z
N〉 = |SzN , Sz1 , Sz2 , . . . , SzN−1〉 . (3.23)

By applying the translation operator N times, the original state is returned, which leads
to the condition T N = 1. The eigenstates |ϕ(k)〉 of T can be constructed by [157]

|ϕ(k)〉 = 1√
N

∑
i

e−ıkiT i |ϕ〉 , (3.24)

for an arbitrary state |ϕ〉, that is,

T |ϕ(k)〉 = eık |ϕ(k)〉 , (3.25)

where eık are the eigenvalues of the translation operator T and the momenta k must
satisfy k = 2πn/N and n = 0, 1, 2, . . . , (N − 1). Using these states, the Hamiltonian H
decomposes into smaller matrix blocks that can be further diagonalized. For more details
on translational invariance, the reader is referred to Ref. [157].
In addition to the symmetries mentioned previously, it is worth emphasizing that the

XXZ Hamiltonian respects further symmetries, for example, the Hamiltonian is invariant
under reflection [154]. Further symmetries will not be considered in detail in this thesis.
Instead, the reader is referred to Refs. [154, 156, 157].

Exploiting certain symmetries plays a decisive role in the context of numerical techniques,
such as exact diagonalization (see Sec. 6.1). Due to exploiting symmetries, the full Hilbert
space can be decomposed into a direct sum of subspaces, which have a fixed quantum
number. This subsequently leads to the reduction of required computational resources.
For a more detailed explanation of exact diagonalization, the reader is referred to Sec. 6.1.
Additionally, by taking local symmetries into account, the model can be investigated with
respect to integrability or nonintegrability (see Sec. 3.3).

3.1.4. Jordan-Wigner Transformation
The Jordan-Wigner transformation states that there exists a mapping between the spin-1/2
degrees of freedom and those of spinless fermions. To be more precise, the spin-1/2 operators
and their algebraic properties can be mapped onto fermionic creation and annihilation
operators and their algebra [158]. To begin with, the set of spin-1/2 lowering and raising
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operators (i.e. S±i ) and Szi can expressed in terms of the Pauli matrices [cf. Eq. (3.12)] as

σ±i = 1
2(σxi ± ıσ

y
i ) , (3.26)

which obey commutation relations at different lattice sites i and j [cf. Eq. (3.14)]. Moreover,
these operators satisfy anticommutation relations on the same lattice site i, that is,

{σ+
i , σ

−
i } = 1 . (3.27)

The correct fermionic commutation relations have to be satisfied at all lattice sites.
This can be achieved by the following transformation, known as the Jordan-Wigner
transformation [158]:

σ−i → ci e−ıφi , (3.28a)
σ+
i → c†i eıφi , (3.28b)
σzi → 2ni − 1 with ni = c†ici , (3.28c)

where the phase factor φi [158] essentially counts the number of spin-up operators to the
left of lattice site i and is defined according to

φi ≡ π
∑
k<i

nk = π
∑
k<i

c†kck . (3.29)

By means of the phase factor, the fermionic operators c†i and ci fulfil anticommutation
relations

{c†i , cj} = δij . (3.30)

Since these operators do not contain genuine spin degrees of freedom, they are known as
spinless fermionic operators. In particular, the operator c†i creates a spinless fermion at
lattice site i while ci annihilates a spinless fermion at lattice site i. Finally, based on the
transformations given above, the Hamiltonian from (3.11) can be rewritten as

H(1d)
JW = J

∑
i

[1
2
(
c†ici+1 + c†i+1ci

)
+ ∆

(
ni −

1
2

)(
ni+1 −

1
2

)]
, (3.31)

where the first term denotes the nearest-neighbor hopping of spinless fermions, while
the second term represents nearest-neighbor interaction with an overall strength ∆. The
expression in (3.31) therefore shows the correspondence of the one-dimensional anisotropic
Heisenberg model to spinless fermions on a one-dimensional lattice.
While on the one hand the spin operators are transformed into spinless fermions by

the Jordan-Wigner transformation, the Holstein-Primakoff transformation [159] on the
other hand enables a fully bosonic perspective by replacing the spin operators by bosonic
creation and annihilation operators.
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3.2. Classical Heisenberg Spin Model
The classical XXZ model can be acquired from the quantum XXZ model by taking the
limit of both, the Planck constant ~→ 0 and the spin quantum number S →∞, subjected
to the constraint that ~

√
S(S + 1) is kept constant [160]. Based on these limits, the

dynamics of the classical spin XXZ model is generated by the Hamilton function (see
Sec. 1), which serves as the classical counterpart to the quantum Hamiltonian (3.11). The
Hamiltonian changes to

HXXZ → HXXZ . (3.32)

In the classical limit, the quantum spin-S operators turn into classical three-dimensional
real spin-vectors Sr subjected to unit norm (i.e. ||Sr|| = 1). To determine the dynamics
of the classical spin variables Sr(t), first it is instructive to define a Poisson bracket (see
Sec. 1.1) on the corresponding phase space ΓS, which is given by the set of all possible
classical states for each considered model. The Poisson bracket [51] reads as

{Sµr , Sνr′} = δrr′ εµνλ S
λ
r , (3.33)

and acts as a natural counterpart of the quantum mechanical commutation relations in
Eq. (3.3). According to textbook classical mechanics and by means of Eq. (1.3), the time
evolution of the spin vectors Sr is governed by Hamilton’s equations of motion,

d
dtSr = ∂HXXZ

∂Sr
× Sr , (3.34)

which form a set of coupled differential equations and describe the precession of a spin
around a local magnetic field resulting from the interaction with the neighboring spins.
For a detailed derivation of Eq. (3.34), see, e.g., Refs. [117, 145]. Importantly, it is worth
noting that the norm is preserved over the time evolution of the classical spin vectors.

Notably, there exists an equivalent formulation of classical spins according to canonical
coordinates. For the sake of simplification, consider the one-dimensional case here. Due to
the fact that the norm of the classical spin vectors is conserved in time, the associated
classical phase space ΓS is restricted to the surface of a sphere with unit radius [161]. As
a consequence, the classical spins Si can be parametrized by spherical coordinates,

(Sxi , S
y
i , S

z
i )→ ||Si|| (sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)) . (3.35)

Accordingly, canonical coordinates are given by

(qi, pi) = (ωi, zi) = (φi, cos(θi)) , (3.36)

where ωi ∈ [0, 2π] and zi ∈ [−1, 1] [144, 162]. In terms of the canonical coordinates, the
three-dimensional spin vectors can be written as

Si =


√

1− z2
i cos(ωi)√

1− z2
i sin(ωi)
zi

 . (3.37)

Since the choice of these coordinates is not unique, other types can be found in, e.g.,
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Refs. [161, 163]. In terms of the set of canonical coordinates, the canonical equations of
motion are given by [162]

d
dtzi =

{
zi, H

(1d)
XXZ

(ω, z)
}

= − ∂

∂ωi
H(1d)

XXZ
, (3.38a)

d
dtωi =

{
ωi, H

(1d)
XXZ

(ω, z)
}

= ∂

∂zi
H(1d)

XXZ
. (3.38b)

To close this section, it is worth emphasizing that the symmetries described in Sec. 3.1.3
remain valid also in the domain of classical spins. Moreover, the infinite-temperature
density-density correlation function can be obtained in the classical case by taking 〈•〉
from the quantum domain [cf. Eq. (3.5)] as an average over classical trajectories in phase
space,

C(t) ≈ 1
R

∑
r

%r(t) %r(0) , (3.39)

where the initial configuration %r(0) is drawn randomly for each realization and R is chosen
large (i.e. R� 1), to reduce statistical fluctuations.

3.3. Remarks on Integrability
This section is dedicated as a brief overview of integrability in both, the classical and
quantum domain. It is worth pointing out that this section should not be understood as
an all-encompassing introduction to integrability, instead this section remarks on some
aspects of integrability in both domains.

3.3.1. Classical Integrability
In the context of classical mechanics, integrability is described in terms of so-called
Liouville integrability [51]. Following Liouville integrability, a classical Hamiltonian system
is considered integrable if it has as many independent conserved quantities (integrals of
motion), Q = (Q1, Q2 , . . . , Qs), in involution, as degrees of freedom s,

{Qi, Qj} = {Qi, H} = 0 , for i, j = 1, . . . , s , (3.40)

where H = H(q,p) denotes the Hamilton function depending on the generalized coordi-
nates q = (q1, q2, . . . , qs) and momenta p = (p1, p2, . . . , ps) (see Sec. 1). As a result, the
Liouville-Arnold theorem [51] implies that Hamilton’s equations of motion [cf. Eq. (1.3)]
are solvable by quadratures, which refers to the fact that the resulting differential equa-
tions can be solved explicitly by exploiting action-angle variables [51]. The solutions of
the corresponding differential equations therefore exhibit (quasi-) periodic windings on
so-called invariant tori [51, 58], embedded into the 2s-dimensional phase space Γ [51].
Based on that, integrable classical models are often known to exhibit nonchaotic (regular)
dynamics [38, 79]. Contrasted to integrable systems are so-called nonintegrable systems,
which can exhibit chaotic dynamics. In this context, a diagnostic tool to identify classical
chaos refers to the exponential sensitivity of phase space trajectories to infinitesimal per-
turbations on some initial conditions of the system. In other words, chaotic dynamics can
occur if phase space trajectories that are initially close to each other, diverge exponentially
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fast from each other in the course of time [57]. A quantity that reflects the sensitivity of
phase space trajectories is the so-called Lyapunov exponent Λ [57, 164]. This exponent
essentially evaluates the (exponential) distance of two points in time and enables to identify
(most likely) chaotic dynamics [162, 165]. Classical systems that retain a strictly positive
Lyapunov exponent (Λ > 0), are known as chaotic systems. In this sense, Lyapunov
exponents serve as a quantity to distinguish between integrable and nonintegrable systems.

In the context of the classical XXZ spin chain, generalized coordinates (and momenta)
have been established in Sec. 3.2. Furthermore, Hamilton’s equations of motion, governing
the time evolution of classical spin variables, have been presented in Eq. (3.34), and
form a set of coupled differential equations, which are nonintegrable by means of the
Liouville-Arnold theorem [51, 165]. Therefore, only for trivial initial conditions analytical
solutions are possible [145]. Thus, the one-dimensional classical XXZ chain exhibits chaotic
dynamics [164].

3.3.2. Bethe Ansatz methods
While in the classical domain integrability is defined precisely according to the Liouville
integrability (as previously explained), a commonly accepted definition of integrability in
the quantum domain is absent and still a subject of debates nowadays [56]. Reasons for
that are manifold but can essentially be traced back to the fact that both the Liouville-
Arnold theorem and the notion of chaos, as used to define integrability in the classical
domain, cannot straightforwardly be transferred to the quantum domain. This is caused
by the linearity of the Schrödinger equation, which implies that exponentially deviating
trajectories for the wave functions can not occur [38]. Thus, the tools to distinguish
integrable (nonchaotic) from nonintegrable (chaotic) classical systems, such as Lyapunov
exponents become somehow meaningless in the quantum domain [38, 166].
To begin with, in the thermodynamic limit, for any quantum system described by a

Hamiltonian H, an infinite set of mutually commuting operators can be found, which
additionally commute with the Hamiltonian [167] (for example consider projection operators
P ≡ |n〉 〈n| on individual eigenstates |n〉 of the Hamiltonian). This definition alone is
not sufficient. There is still an infinite number of conserved quantities required that are
“nontrivial”.

A commonly used notion of quantum integrable models is related to the “exact solvability”
of quantum models. In this sense, a specific subclass of quantum integrable models is related
to quantum models that are solvable in terms of so-called Bethe ansatz techniques [61, 63,
168]. Although the study of Bethe ansatz methods is not a central element of this thesis,
it is worth commenting briefly on such techniques.
Bethe ansatz techniques do not have to resort to perturbation methods to determine

physical properties of, for example, strongly interacting quantum systems. Instead, for
the application of Bethe ansatz methods, no further approximations or assumptions are
needed. Physical properties can be computed exactly.

In essence, the main idea of Bethe ansatz techniques is that the exact energy eigenstates
can essentially be written in terms of scattering states of quasi-particles [63], that is, the
eigenstates can be characterized by a set of quantum numbers corresponding to quasi-
particles, which represent fundamental excitations of the model under consideration. This
gives direct access to the energy spectrum of the respective model and, in addition, its
thermodynamic properties [81]. Within the so-called coordinate Bethe ansatz [61, 69, 169]
the many-body wave function can be constructed, and the problem of determining the
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spectrum of the model’s Hamiltonian H is reduced to solve a set of nonlinear coupled
algebraic equations [62]. These equations are known as the Bethe ansatz equations and give
rise to complex numbers {λi}, parametrizing the eigenstates. This leads to a substantial
reduction of the problem’s complexity. To be more precise, the complexity is mitigated
from exponential to polynomial [62].
Another, more modern approach of Bethe ansatz techniques is related to the so-called

algebraic Bethe ansatz [67], which is part of the quantum inverse scattering method [69].
This method essentially combines Bethe ansatz techniques and classical inverse scattering
transforms [170], which is related to solving classical integrable partial differential equa-
tions [171]. In this context, systems are considered integrable if they fulfil the so-called
Yang-Baxter equation [71, 72], which provides direct access to conservation laws and certain
correlation functions [69] based on transfer- and R-matrix-methods [81].

Paradigmatic one-dimensional lattice quantum models, which have been solved exactly
by Bethe ansatz methods are both, the XXX chain [61] and the XXZ chain for arbitrary
∆ [66], as well as the Fermi-Hubbard chain [62].

3.3.3. Energy Level Statistics
A widely used diagnostic to identify integrability is based on spectral properties, namely
the statistics of energy level spacings [122, 172, 173]. To be more precise, the quantity
of interest is the probability distribution P (s) of energy level spacings s = Em+1 − Em
(normalized to the average level spacing) of consecutive energy eigenvalues Em+1 and Em
for an ordered set of eigenvalues E1 < E2 · · · < ED. These distributions exhibit distinct
shapes, where the exact shape essentially depends on the integrability or nonintegrability
of the model.

In essence, the energy levels of integrable quantum systems are expected to be independent
from each other, and follow the so-called Poissonian distribution [73, 74, 166] given by

PP(s) = e−s . (3.41)

In contrast, for nonintegrable (chaotic) quantum systems (obeying time-reversal property),
the energy levels follow a Wigner-Dyson distribution PWD(s), as predicted by the theory
of random matrices [172–174]. This distribution is given by

PWD(s) = πs

2 e−πs2/4 . (3.42)

A crucial difference between the two distributions (3.41) and (3.42) mentioned above is
rooted in the different behavior in the limit s→ 0. On the one hand the eigenvalues of
nonintegrable (chaotic) systems have the characteristic of level repulsion, i.e. PWD(s)→ 0
for s→ 0. On the other hand in the case of integrable systems, level repulsion does not
exist and crossings are not prohibited. This can be further used as an a diagnostic of
quantum nonintegrable (chaotic) systems.
With regard to the (integrable) one-dimensional quantum XXZ spin-1/2 model, it has

been shown that the level distribution P (s) follows a Poisson distribution. By adding an
additional integrability-breaking term (for example an additional anisotropy parameter
∆′ 6= 0), the model has been shown to cross over to a Wigner-Dyson distribution [166, 175].
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Apart from investigating the probability distribution itself, a further (dimensionless)
quantity to analyze the distribution is given by themean ratio of adjacent level spacings [122,
123],

〈r〉 =
〈

min{sm, sm+1}
max{sm, sm+1}

〉
= 1
K

∑
m

min{sm, sm+1}
max{sm, sm+1}

, (3.43)

where the average is examined over a subspace of the Hilbert space, with K ≈ D. On the
one hand, Wigner-Dyson distributions exhibit a value of 〈r〉WD ≈ 0.53, while on the other
hand, a Poissonian distribution displays a value of 〈r〉P ≈ 0.39 [122, 123]. In the context
of disordered models (see Sec. 5), this quantity is revisited again.
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Transport

Sec. 4 deals with linear response theory (LRT), which can be used for spatially inhomoge-
neous nonequilibrium densities, based on Sec. 4.1. In addition, in Sec. 4.2, the dynamics of
local densities are discussed for a specific nonequilibrium state. In this context, diffusion
on one-dimensional lattices is described in Sec. 4.3. This section concludes with some
remarks on dynamical response functions and the associated Kubo formula in Sec. 4.4.

4.1. Static Response to a Static Force
LRT can be regarded as a perturbative expansion of an equilibrium state of a physical
system [5, 176]. While this Sec. is focussed on static responses for quantum systems, it is
worth noting that the framework can be applied to classical systems as well.

As a kind of standard situation, a physical system is considered in a thermal equilibrium
state. The aim is to evaluate the response of the system to an external perturbation. This
perturbation can be static (i.e. constant in time) or dynamical (i.e. time dependent).
Importantly, the perturbation is assumed to be small, such that it is reasonable to consider
only terms being linear in the perturbation expansion.

Considering an unperturbed quantum system described by a Hamiltonian H0, which is
affected by a perturbation (external force) V , the Hamiltonian H0 is consequently extended
by a perturbation-dependent part such that the total Hamiltonian H takes the form

H = H0 + λV , (4.1)

where λ is a constant and denotes the overall strength of the perturbation. Further, another
operator O and its expectation value in response to the applied perturbation is considered.
Following LRT [5, 177], a linear relation between the small external perturbation and the
subsequent response of the system results in the expectation value 〈∆O〉. The difference
is denoted by

〈∆O〉 = 〈O〉λ − 〈O〉0 , (4.2)

with the expectation values

〈O〉λ = tr [ρλO] and 〈O〉0 = tr [ρ0O] , (4.3)

where 〈O〉λ (〈O〉0) denotes the expectation value of the operator O in the presence
(absence) of the applied external field in Eq. (4.1). The corresponding density matrices,
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ρλ and ρ0, read

ρ0 = e−βH0

tr [e−βH0 ] , (4.4a)

ρλ = e−βH
tr [e−βH] = e−β(H0+λV)

tr [e−β(H0+λV)] , (4.4b)

where ρλ refers to the total Hamiltonian H given in Eq. (4.1), while ρ0 refers to the
unperturbed part H0. To evaluate the expression given in (4.2), a useful formula for
exponentiating two arbitrary noncommuting operators A and B is given by [5]

e−β(A+B) = e−βA
[
1−

∫ β

0
eηA B e−η(A+B) dη

]
, (4.5)

which can be shown by multiplying both sides by exp (−βA) and subsequently taking the
derivative with respect to β. Assuming B to be small, the exponential term exp (−η(A+ B))
in Eq. (4.5) can be replaced by exp (−ηA ) within the integral. As a result, the density
matrix ρλ in Eq. (4.4b) is written in linear order of λ as

e−β(H0+λV)

tr [e−β(H0+λV)] = ρ0

[
1− λ

∫ β

0
dη eηH0 ∆V e−ηH0 + λ2 . . .

]
, (4.6)

with ∆V = V − 〈V〉0 and by exploiting Eq. (4.5). To proceed, bearing in mind that the
perturbation is assumed to be small, the expectation value 〈∆O〉 depends linearly on the
perturbation. As a consequence, the difference according to the expectation value reads

〈∆O〉 = 〈O〉λ − 〈O〉0 ≡ χλ , (4.7)

where the linear response constant χ denotes the static isothermal susceptibility [5, 81].
The difference in Eq. (4.7) can further be rewritten in terms of the Kubo correlation
function [5, 178], which is defined for two operators A′ and B′ as

KA′B′(t) ≡
1
β

∫ β

0
〈A′ B′(t+ ıη)〉 dη . (4.8)

where the brackets 〈•〉 represent the canonical ensemble average 〈•〉 = tr [ρβ •], with
ρβ = exp (−βH) /Zβ. Notably, in the case of formally infinite temperature (i.e. β → 0),
the Kubo correlation function turns into a standard correlation function [5, 81],

KA′B′(t)→ 〈A′ B′(t)〉 . (4.9)

According to the Kubo correlation function, the static isothermal susceptibility χ can be
rewritten as

χ = βK∆O∆V(0) , (4.10)

where K∆O∆V(0) denotes the Kubo correlation function (4.8) at t = 0.
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4.2. Dynamics of Local Densities
The dynamics of local densities can result in response to a static force, as previously
explained. To this end, the dynamics of time-dependent expectation values at lattice site i
can be studied. A common approach to studying transport is to investigate the dynamics
of local densities. To this end, an initial state can be prepared as a nonequilibrium state
ρ 6= ρeq. Subsequently, the dynamics of the expectation values of such local densities are
investigated [81]. To be more precise, consider the deviation of the local densities %i from
their average at equilibrium 〈%i〉eq, that is,

∆%i = %i − 〈%i〉eq , (4.11)

and examine the dynamics of expectation values [81, 179]

〈∆%i(t)〉 = tr [ρ(t) ∆%i] , (4.12)

where the density matrix ρ(t) evolves unitarily in time according to ρ(t) = e−ıHt ρ(0) eıHt (see
Sec. 2.2.1). To relate LRT to the dynamics of local densities, the system is affected by a
static force, in correspondence to Sec. 4.1. To proceed, consider the following initial state
ρ, which is sufficiently close to the equilibrium state ρeq [81],

ρ = e−β(H0−λ
∑

i
fi %i)

Zλ
, (4.13)

where, again, the overall strength of the static perturbation is denoted by λ and the
operator V has been replaced by ∑i fi %i. Moreover, the partition function is denoted by
Zλ = tr [exp (−β(H0 − λ

∑
i fi %i))]. Following Eq. (4.6), the density matrix (4.13) can be

expanded in λ as

ρ = ρeq

(
1 + λ

∫ β

0
dη

∑
i

fi eηH0 ∆%i e−ηH0 + λ2 · · ·
)
. (4.14)

Given the assumption that the parameter λ is small, the expansion can be truncated to
linear order. Thus, the expectation values 〈∆%i(t)〉 can be written as

〈∆%i(t)〉 = λβ
∑
j

fj K∆%j∆%i
(t) , (4.15)

with K∆%j∆%i
(t) being the Kubo correlation function, given in Eq. (4.8).

4.3. Diffusion in Lattice Systems
Possible types of transport can range from no transport at all (insulator) to ballistic
transport which corresponds to ideal conduction. In between there may exist diffusion as
well as anomalous diffusion, that is, subdiffusion and superdiffusion.

On a one-dimensional lattice, the dynamics of 〈∆%i(t)〉 are said to be diffusive if they
obey a discrete diffusion equation of the form [180, 181]

d
dt〈∆%i(t)〉 = Ddiff [〈∆%i−1(t)〉 − 2〈∆%i(t)〉+ 〈∆%i+1(t)〉] , (4.16)
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where Ddiff is the time- and space-independent diffusion coefficient [81]. The lattice
diffusion equation (4.16) is related to the continuous diffusion equation with the Laplace
operator ∇2 = ∑

i ∂
2/∂x2

i [81]. For instance, by applying a finite difference approximation
to the Laplace operator, the lattice diffusion equation can be derived. Of course, by
discretizing the Laplace operator, a lattice diffusion equation can be deduced for higher
spatial dimensions d > 1. Nevertheless, the one-dimensional lattice diffusion equation is
considered here. From a physical point of view, diffusion of a physical observable is a
statistical relaxation process in which an initially nonequilibrium distribution spreads out
through the system over time [81].

For the lattice diffusion equation (4.16), a specific solution for an initial local injection
at lattice site j, provided by 〈∆%i=j(0)〉 6= 0 and 〈∆%i 6=j(0)〉 = 0, is given by [81, 175]

〈∆%i(t)〉 = exp (−2Ddiff t) B(i−j)(2Ddiff t) , (4.17)

where B(i−j)(t) denotes the modified Bessel function of first kind and of order (i− j) [81].
The lattice solution (4.17) can be well approximated by the corresponding continuum
solution [81]

〈∆%i(t)〉 = 1√
2πΣ(t)

exp
− (i− j)2

2Σ2(t)

 . (4.18)

That is, for diffusive behavior, the initial density peak is broadens in time, while the
Gaussian form is maintained over time. The width of the Gaussian in Eq. (4.18) corresponds
to the spatial variance for some inhomogeneous density distribution that can be obtained
by

Σ2(t) =
∑
i

i2〈∆%i(t)〉 −
[∑

i

i 〈∆%i(t)〉
]2

, (4.19)

with the normalization condition ∑i ∆%i(t) = 1. As a first signature of diffusive transport,
the temporal growth of the spatial variance Σ2(t) can be investigated [81, 182]. If the
dynamics are diffusive for all times, the spatial variance (4.19) satisfies the following
relation [179]:

d
dtΣ

2(t) = 2Ddiff . (4.20)

Finally, consider the specific initial state ρ in Eq. (4.13), with the coefficients fi=j 6= 0
and fi 6=j = 0. If λ is small, the expectation values can be written in terms of the Kubo
correlation function as [81]

〈∆%i(t)〉 ∝ λβK∆%j∆%i
(t) , (4.21)

where Ddiff again denotes a time- and space-independent diffusion coefficient as given in
Eq. (4.16). For this thesis the most important quantity is the correlation function of local
densities at formally infinite temperature (see Sec. 2.4), given by

Ci,j(t) = 〈%i(t) %j〉 , (4.22)
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which turns into the equal-site correlation function C(t) = Ci,i(t) due to the choice of
periodic boundary conditions. In this context, the emergence of hydrodynamics reflects
itself in terms of a power-law tail [81], that is,

C(t) ∝ t−α . (4.23)

In particular, in the case of normal diffusive transport on one-dimensional lattices, com-
bining Eqs. (4.18) and (4.20) leads to a distinct power-law decay,

C(t) ∝ t−1/2 . (4.24)

To address higher lattice dimensions d > 1 (see Fig. 3.1), the exponent becomes explicitly
dimension-dependent, that is, α→ α(d). In this context, while α = d/2 corresponds to
normal diffusive transport, which is caused by an extension of Eq. (4.18) to d dimensions,
two other cases are given by an exponent α < d/2 (subdiffusion) and α > d/2 (superdiffu-
sion). Moreover, ballistic transport is indicated by α = d. Notably, equal-site correlation
functions are discussed in greater detail in e.g., Pt. III, Sec. A - Sec. C.
Although it is not a central part of the present thesis, for the sake of completeness,

diffusion in the space of lattice momenta is briefly discussed. To this end, the lattice Fourier
transformation of 〈∆%i(t)〉 in one dimension leads to the representation in momentum
space,

〈∆%q(t)〉 = 1√
N

∑
i

eıqi 〈∆%i(t)〉 , (4.25)

with the (discrete) lattice momenta q = 2πk/N , where k runs from k = 0, . . . , (N − 1). In-
serting the preceding equation into the lattice diffusion equation in real space [cf. Eq. (4.16)]
leads to the diffusion equation in momentum space [81],

d
dt〈∆%q(t)〉 = −q̃2Ddiff 〈∆%q(t)〉 , (4.26)

with the abbreviation q̃2 = 2− 2 cos(q). Notably, in the limit of sufficiently small values of
q, the approximation q̃2 ≈ q2 holds. The solution of the diffusion equation in momentum
space yields

〈∆%q(t)〉 ∝ exp
(
−q̃2Ddiff t

)
. (4.27)

A further Fourier transformation from the time domain to the frequency domain,

〈∆%q(ω)〉 =
∫ ∞

0
eıωt 〈∆%q(t)〉 dt , (4.28)

provides information about the structure factors, which are not explicated here. Further
information can be found in Ref. [81].

4.4. Remarks on the Kubo Formula
Returning to the variance Σ2(t) given in Eq. (4.19), its scaling behavior provides information
about the overall width of the density profile discussed above. In particular, with a scaling
according to Σ(t) ∝ tα, the following cases can be distinguished: (i) ballistic transport
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corresponds to α = 1, (ii) 1/2 < α < 1 indicates superdiffusive transport, (iii) α = 1/2 is
called diffusive, (iv) 0 < α < 1/2 subdiffusive, and (v) α = 0 is related to insulating.

Within the framework of LRT, the spatial variance Σ2(t) can be related to autocorrelation
functions of currents. The relation can be deduced if the initial state ρ is “close enough”
to the equilibrium state ρeq (see Sec. 4.1). Following Sec. 4.1, and considering the initial
state given in Eq. (4.13), the spatial width is described by [179, 183, 184]

d
dtΣ

2(t) = 2Ddiff(t) , (4.29)

where the diffusion coefficient becomes time dependent (in contrast to Eq. (4.20), where
the diffusion coefficient is time independent). The time-dependent diffusion coefficient
Ddiff(t) is related to the Kubo correlation function [cf. Eq. (4.8)] according to [81]

Ddiff(t) = β

χ

∫ t

0
KJ (Q)J (Q)(t′) dt′ . (4.30)

Considering the limit of formally infinite temperature, the preceding equation reduces to

Ddiff(t) = β

χN

∫ t

0
〈J (Q)(t′)J (Q)〉 dt′ , (4.31)

where χ again denotes the static susceptibility, N is the system size and 〈J (Q)(t)J (Q)〉
represents a current-current correlation function [179] for the total current J (Q)(t) of some
conserved quantity Q. The total current is defined as the sum of local currents j(Q)

i (t),
that is,

J (Q)(t) =
∑
i

j
(Q)
i (t) , (4.32)

at lattice sites i. Thus, within the framework of LRT [5], nonequilibrium properties of some
physical system are explicitly related to correlation functions, evaluated in equilibrium. In
this context, transport coefficients can be obtained in terms of such correlation functions,
via the so-called Kubo formula [5, 81].

Although it is not a central part of this thesis, it is worth noting that the definition of
the local current j(Q)

i follows from the requirement that such local currents fulfil a lattice
continuity equation [78]. By combining the continuity equation with Heisenberg’s equation
of motion (see Sec. 2.3.1), an explicit form of the local (and total) currents can be deduced.
For detailed information on currents, see, e.g., Ref. [81]. Instead of dealing with the scaling
behavior of the variance Σ2(t), one can consider the time-dependent diffusion coefficient
Ddiff(t) to gain insights into different types of transport and, moreover, into the respective
time scales [81].
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This section is dedicated to disordered systems. In particular, as a paradigmatic model,
the disordered one-dimensional Heisenberg spin model is presented in Sec. 5.1. Moreover,
Sec. 5.2 remarks on both equilibration and thermalization. In this context, the eigen-
state thermalization hypothesis, which essentially describes a microscopic mechanism of
thermalization in quantum systems, is discussed. Finally, Sec. 5.3 discusses the temporal
behavior of the correlation function.

5.1. Paradigmatic Model for Many-Body
Localization

The one-dimensional anisotropic Heisenberg model, which has been presented in Sec. 3.1.2,
is extended by an additional parameter that gives rise to disorder in the model. The
Hamiltonian of this model reads

HW = J
∑
i

(
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi Szi+1

)
+
∑
i

hiS
z
i , (5.1)

where hi denotes on-site magnetic fields, which are randomly drawn from a uniform distri-
bution, hi ∈ [−W,W ], where W ≥ 0 sets the overall magnitude of disorder. Importantly,
for the special case of S = 1/2, through a Jordan-Wigner transformation (see Sec. 3.1.4),
the Hamiltonian from (5.1) can be mapped onto a one-dimensional model of interacting
spinless fermions in a random on-site potential µi. The Hamiltonian then reads

HJW = J
∑
i

[
1
2
(
c†ici+1 + c†i+1ci

)
+ V

∑
i

(
ni −

1
2

)(
ni+1 −

1
2

)]
+
∑
i

µi

(
ni −

1
2

)
,

(5.2)

where ni represents the occupation number operator, given by ni = c†ici, in full analogy to
Sec. 3.1.4. For the special case of vanishing disorder (W = 0) the model is integrable in
terms of Bethe ansatz methods (see Sec. 3.3), while for W 6= 0, the model is nonintegrable.
Comparing (5.1) to (5.2), it becomes apparent that the parameter ∆ has been substituted
by V = ∆ and denotes, in the context of Hamiltonian (5.2), the strength of particle-
particle interactions between neighboring sites. Moreover, the on-site potentials µi = hi
are also drawn randomly from a uniform distribution in the interval µi ∈ [−W,W ]. The
conservation of total magnetization with respect to the spin Hamiltonian (5.1) corresponds
to the conservation of the total number of particles in the model (5.2).

While the most commonly studied distribution of disorder is the one considered here, it
is worth noting that a frequently investigated distribution is the quasi-periodic distribution,
given by hi = |W | cos(2πpi), where p denotes an irrational number. Such a distribution
provides the study of the so-called Aubry-André model [185].
Returning to the Hamiltonian (5.2), for vanishing interaction strength V = 0, the model
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turns into a model of noninteracting fermions in a random potential, which essentially leads
to the Anderson localization [47, 119]. In what follows, the issue of Anderson localization
in one-dimensional systems is considered briefly. For the limiting case of vanishing disorder
(W → 0), the Hamiltonian (5.2) features lattice solutions in terms of Bloch states (plane
waves) [186]. In contrast, for a nonvanishing magnitude of disorder W 6= 0, wave functions
become localized around a region i′ and decay exponentially away from that region, such
that the overall shape of the wave function scales as ∝ exp (−|i− i′|/ξloc), where ξloc
denotes the localization length. As becomes apparent, the eigenstates are not distributed
over the entire space but, instead, are exponentially bounded to individual areas of the
system.
A natural extension of the topic of Anderson localization is the subject of many-body

localization (MBL) (for reviews, see Refs. [48, 50, 187]). Like Anderson localization, the
phenomenon of many-body localization is based on the presence of disorder in the model
but with an additional nonzero interaction term. In this context, the model described
by the Hamiltonian (5.1) with ∆ = 1 and S = 1/2 (or its Jordan-Wigner transformed
version (5.2)) has become an archetypal model to study MBL [123, 126, 188–193]. This
model is believed to undergo a transition from an ergodic (thermal) phase at small to
intermediate disorder (W < W∗) into a nonergodic (localized) phase at strong disorder
(W > W∗) at a critical disorder strength W∗ ≈ 3.5 (see, e.g., Refs. [123, 126]). Notably,
larger values have also been found [194, 195].

At sufficiently low disorder, the eigenstates satisfy the eigenstate thermalization hypoth-
esis (ETH). In contrast, the localized phase is characterized, for example, by a breakdown
of the ETH, therefore, thermalization does not occur [38, 187]. The situation is schemati-
cally illustrated in Fig. 5.1. Moreover, the phenomenology of the localized phase can be
understood in terms of an emergent set of local integrals of motion [49, 120, 121, 196].

Although many-body localization is a subject of exhaustive theoretical [46, 123, 126, 197–
199] and experimental [13, 200, 201] investigations, several aspects of a putative MBL
phase transition are not yet fully understood or are still under discussion [202]. Moreover,
the existence of genuine MBL has been questioned [203, 204].
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Figure 5.1.: Schematic illustration of the phase diagram of the disordered Heisenberg chain,
that is, Hamiltonian (5.1) with ∆ = 1. The ergodic phase is separated from
the localized phase. The horizontal axis represents the total magnitude of the
disorder strength W while, vertically, some energy density ε is shown. The
illustration is based on [126].
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A common method used to distinguish the ergodic from the localized phase is based on
spectral statistics (see Sec. 3.3). It has been found that in the ergodic phase, the probability
distribution P (s) of adjacent level spacings s follows a Wigner-Dyson distribution PWD(s).
In contrast, the localized phase is characterized by level statistics following a Poissonian
distribution PP(s). In this context, it is instructive to consider the ratio of consecutive level
spacings [122, 123]. The average 〈r〉 changes from an ergodic phase (〈r〉WD ≈ 0.54 [123])
to a localized phase (〈r〉P ≈ 0.39 [123]). Therefore, the value of 〈r〉 provides one way to
distinguish the ergodic from the localized phase.

5.2. Remarks on Equilibration and Thermalization

5.2.1. Equilibration
The process of equilibration refers the question of whether and how an isolated system,
which has been initially prepared at a nonequilibrium expectation value of some observable
and subsequently evolves unitarily in time, reaches a (stable) value [205] and remains close
to this value for almost all times [39, 206]. Whether a system reaches a stable value for
long times depends on the precise details of the underlying model (for instance, initial
state properties or the respective Hamiltonian).

To describe equilibration in quantum many-body systems, consider an isolated system,
described by a Hamiltonian H. Initially, the quantum system is assumed to be prepared
in a pure state |ψ(0)〉. Following Sec. 2.1.2, the initial state |ψ(0)〉 can be evolved in
time by applying the unitary time-evolution operator U(t) according to the Schrödinger
representation,

|ψ(t)〉 = e−ıHt |ψ(0)〉 =
∑
n

cn e−ıEnt |n〉 , (5.3)

where, again, {|n〉} denotes a set of energy eigenstates of H with the associated eigenvalues
{En}, and the complex expansion coefficients are given by cn = 〈n|ψ(0)〉. Recall that the
probability wn of finding the quantum system in a given quantum eigenstate |n〉, given by
wn = |cn|2, is entirely determined by the initial states. Moreover, the initial state |ψ(0)〉
has an average energy Ē = 〈ψ(0)|H|ψ(0)〉 = ∑

n |cn|2En, with the eigenvalues {En} and
energy fluctuations δE

δE =
√
〈ψ(0)|H2|ψ(0)〉 − 〈ψ(0)|H|ψ(0)〉 =

√
〈ψ(0)|H2|ψ(0)〉 − Ē2 . (5.4)

Following Sec. 2.1.2, the expectation value 〈O(t)〉 for some given observable O can be
written in terms of energy eigenstates {|n〉},

〈O(t)〉 =
∑
n

|cn|2Onn +
∑
m 6=n

c∗mcn eı(Em−En)tOmn , (5.5)

with the matrix elements Omn = 〈m|O|n〉 in the eigenbasis of H. In the context of
the equilibration process, one conceptually determines the long-time average O of the
expectation value [39, 207],

O ≡ lim
τ→∞

1
τ

∫ τ

0
〈O(t)〉 dt = lim

τ→∞

1
τ

∫ τ

0
〈ψ(t)|O|ψ(t)〉 dt , (5.6)
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where the average is determined over the interval [0, τ ], followed by a subsequent normal-
ization to the length of the interval. Inserting Eq. (5.5) into Eq. (5.6) leads to

O = lim
τ→∞

1
τ

∫ τ

0

(∑
n

|cn|2Onn +
∑
m 6=n

c∗mcn eı(Em−En)tOmn
)

dt . (5.7)

By performing this integral explicitly and taking the limit of long times, τ → ∞, it
becomes apparent that the off-diagonal matrix elements Omn average out over time due to
oscillations with different frequencies (assuming the absence of degeneracies in the energy
spectrum). The diagonal part remains time independent by integrating over t. As a result,
the long-time average of the expectation value finally becomes

O =
∑
n

|cn|2Onn = tr [ρdiagO] = 〈O〉diag , (5.8)

where ρdiag denotes the density matrix of the so-called diagonal ensemble [44]. In other
words, the density matrix is diagonal in the energy eigenbasis. This density matrix is
explicitly given by

ρdiag =
∑
n

|cn|2 |n〉 〈n| . (5.9)

Thus, ρdiag contains information on the initial state in terms of |cn|2. If the expectation
value of O stays close to its long-time average, the observable O is said to equilibrate.

5.2.2. Thermalization
From a perspective of classical mechanics, the concept of thermalization is related to the
ergodicity hypothesis [54, 55], which essentially states that trajectories can get arbitrarily
close to any point of the phase space for long times [45, 118]. Such a notion of thermalization
cannot straightforwardly be transferred to the quantum domain because the description of
quantum systems is based on Hilbert spaces, where the dynamics is unitary in terms of
the Schrödinger equation. Thus, the notion of trajectories in phase space is “meaningless”
in a sense [38].

To describe thermalization processes at the level of (individual) eigenstates of quantum
systems, a revealing framework is based on the eigenstate thermalization hypothesis
(ETH) [38, 42–44, 48]. This hypothesis implies that the expectation values of local
observables in isolated quantum systems converge to time-independent values, represented
in terms of textbook statistical mechanics ensembles [44]. With regard to Eqs. (5.7)
and (5.8), it becomes apparent that the initial state is distinctly defined by |cn|2. To
ensure that a thermal expectation value is reached by a local observable, the long-time
value O in Eq. (5.9) has to coincide with the expectation value of the observables in the
microcanonical ensemble Omc at the corresponding energy density,

Omc = 1
NĒ

∑
m

Omm , (5.10)

where the normalization factor NĒ is the number of eigenstates |m〉 within the energy
window

[
Ē − δE, Ē + δE

]
. If the system thermalizes, the long-time average (value) O has

to coincide with the expectation value of the microcanonical ensemble Omc [cf. Eq. (5.10)].
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The ETH can be formulated for the matrix elements Omn = 〈m|O|n〉 of a local observable
O in the energy eigenbasis of H according to the ansatz [207, 208]

Omn = gO(Ē) δmn + e−S(Ē)/2 fO(Ē, ω)Rmn , (5.11)

where |n〉 and |m〉 are again eigenstates of the Hamiltonian H, the average value of the
energy is denoted by Ē = (Em +En)/2 and ω = Em −En represents the energy difference.
Moreover, S(Ē) denotes the thermodynamic entropy, evaluated at energy Ē. The functions
gO(Ē) and fO(Ē, ω) are smooth functions of their arguments [209, 210] and especially the
function gO(Ē) coincides with the expectation value of the microcanonical ensemble at
energy Ē, that is, Omc(Ē) [38, 211, 212]. The second term in Eq. (5.11) implies that the
off-diagonal matrix elements are exponentially small in system size (since the entropy is an
extensive quantity). The generally complex random numbers Rmn(= R∗nm) are drawn from
a Gaussian distribution with zero mean and unit variance, that is, R2

mn = 1 for real-valued
random numbers and |Rmn|2 = 1 for complex numbers.

Moreover, since the diagonal matrix elements are smooth functions of their arguments,
the term Omm in Eq. (5.8) can be written in front of the sum, implying O = Omc, provided
by the normalization condition ∑n |cn|2 = 1 [38].
Finally, by exploiting the ETH ansatz (5.11), the fluctuations σ2

O of the dynamics of
〈O(t)〉 around the long-time average can be obtained as [38]

σ2
O = lim

τ→∞

1
τ

∫ τ

0

[
〈O(t)〉2 −O2] dt

= lim
τ→∞

1
τ

∫ τ

0
dt
∑
m6=n

∑
p 6=q

[
OmnOpqc∗mcnc∗pcq eı[(Em−En)−(Eq−Ep)]t −O2] (5.12)

=
∑

m,n 6=m
|cm|2 |cn|2 |Omn|2 ≤ max|Omn|2

∑
m,n

|cm|2 |cn|2 = max|Omn|2 ∝ e−S(Ē) ,

which essentially implies that the fluctuations of the expectation value 〈O(t)〉 are exponen-
tially small in system size, since exp(−S(Ē)) typically increases exponentially in system
size.
While it has been demonstrated that an ansatz as given in Eq. (5.11) is sufficient to

guarantee the occurrence of thermalization [207], it remains unknown whether this ansatz
is also a necessary condition for thermalization to occur [38]. It is worth noting that
although a rigorous mathematical proof for ETH is currently missing, ETH has been
verified numerically in many nonintegrable quantum models [36, 38, 44, 166, 209, 213–217].

A class of systems that fails to thermalize and, therefore, does not fulfil the ETH
ansatz (5.11) are integrable systems, which possess an extensive set of nontrivial conserved
quantities. This is caused by the fact that under unitary time evolution, integrable systems
do not lose their memory of the initial states for all times [218, 219]. Therefore, such
conserved quantities can prevent the system from thermalizing [36, 214, 220, 221], which
has been observed experimentally as well (see, e.g., Ref. [8]). Another class of systems that
violate the ETH are disordered systems, which are believed to exhibit a transition between
a thermal (ergodic) phase for low to intermediate disorder to a many-body localized
(nonergodic) phase for strong disorder (see Sec. 5.1). While the ETH holds in the thermal
phase, it breaks down in the many-body localized phase [48, 50, 222].
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5.3. Transport of Densities
To study the transport of local densities in the presence of disorder, the “bare” equal-site
correlation function considered in Sec. 4.2 has to be modified, since the results depend on
the individual configuration of the randomly drawn magnetic fields hi. In this context, the
central quantity of interest is the disorder-averaged correlation function C(t) evaluated at
formally infinite temperature (β → 0),

C(t) = 1
Mh

Mh∑
h=1

C(t) , (5.13)

where the “bare” correlation function C(t) is calculated for different configurations of the
randomly drawn magnetic fields hi, and Mh represents a large number of independent
realizations. The correlation function C(t) is expected to exhibit a power-law decay,

C(t) ∝ t−α , (5.14)

where the exponent α enables the identification of different types of transport (see Sec. 4.3).
In the ergodic phase, the correlation function (5.13) is expected to show slower hy-
drodynamic behavior, which manifests itself in a power-law decay with α < 1/2. In
one-dimensional systems, an exponent of α = 1/2 in Eq. (5.14) refers to conventional
diffusive transport. In particular, for the disordered one-dimensional Heisenberg spin
model with S = 1/2, there is some numerical evidence for the occurrence of subdiffusive
transport in the regime of low to intermediate disorder below the localization transi-
tion [129, 223–230]. The subdiffusive regime is reflected by an anomalously slow relaxation
of the correlation function C(t) with an exponent of α < 1/2. While subdiffusive transport
is suggested even at very small disorder [227, 230], a transition to normal diffusion is
stated in Ref. [223, 224] at moderate disorder. For much longer times, the correlation
function will approach a constant saturation value which scales as ∝ 1/N [231], where N
denotes the system size.

In contrast, the decay of the correlation function is significantly slower in the localized
phase compared to the ergodic regime. At long times, the correlation function C(t) reaches
a nonzero value [193, 232] (or for a finite system > 1/N). Such a saturation value at
long times indicates that the system retains information about the initial conditions [226].
In that sense, the correlation function C(t) can be used as a probe for the many-body
localized phase transition [233]. Moreover, in the case of classical spins, strong disorder has
been demonstrated to cause a drastic reduction of transport coefficients and anomalously
slow relaxation [104, 131]. Nevertheless, for classical spin models, the occurrence of genuine
MBL is not expected [104, 234].

Additionally, in the context of disordered models, a frequently considered quantity is the
self-averaging property [235, 236] of a disordered system. The self-averaging property refers
to the fact that by increasing the system size N , increasingly fewer disorder realizations are
needed to correctly represent the ensemble. With respect to the correlation function, the
system is called self-averaging [236] if the ratio between the variance and square of mean
value vanishes as the system size increases. The relative variance R(t) of sample-to-sample
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fluctuations is given by [236, 237]

R(t) = C(t)2 − C(t)2

C(t)2 . (5.15)

To test whether the correlation function is self-averaging, not only in equilibrium but over
the entire time evolution of C(t), the relative variance is time dependent. In general, to
capture various types of self-averaging, the asymptotic dependence of the relative variance
R(t), displayed by [235]

R(t) ∝ N−ν , (5.16)

is considered. In this context, a system is said to be (i) nonself-averaging if R(t) becomes
constant (ν = 0) in the limit N → ∞ and (ii) self-averaging if R(t) decays to zero for
N → ∞ [235]. Beyond this distinction, self-averaging systems are further categorized
into weak and strong self-averaging systems. While the latter case is associated with an
exponent ν = 1, weak self-averaging goes along with a slower power-law decay (0 < ν < 1).

The issues discussed in this section are continued in Pt. (III), where Eqs. (5.15) and (5.16)
become crucial in studying the self-averaging property of the disordered Heisenberg model
from Sec. 5.1.

53



6. Numerical Approaches to
Quantum Many-Body Systems

Sec. 6 is dedicated to present numerical approaches to the study of quantum many-body
systems. To this end, Sec. 6.1 deals with exact diagonalization, while the ensuing section
presents the Lanczos method. Following the concept of typicality, Sec. 6.2 outlines the
numerical approach of dynamical quantum typicality. In that context, the propagation of
pure states is presented in Sec. 6.3 by means of (i) the fourth-order Runge-Kutta method,
(ii) the Suzuki-Trotter decomposition and (iii) Chebyshev polynomials. To conclude,
Sec. 6.4 deals with the numerical linked cluster expansion.

It is worth mentioning that the numerical approaches presented within this section are
not all-encompassing by any means. There exist significantly more numerical methods to
study quantum many-body systems, for example, density matrix renormalization group
techniques and relatives [134, 135]. These are not considered in this thesis.

6.1. Exact Diagonalization
Numerical approaches that aim to solve (at least partially) eigenvalue equations (eigenvalue
problems) up to machine accuracy refer to so-called exact diagonalization (ED) methods.
In this context, the most intuitive and at the same time most memory- and time-consuming
approach is known as full diagonalization. Moreover, for cases where merely the properties
of ground states (low-lying eigenstates) of the physical system are of interest, iterative
diagonalization approaches provide results with almost machine precision in many cases.

6.1.1. Full Diagonalization
The numerical method of full diagonalization [132, 157, 238] is presumably the most
intuitive approach to tackle quantum many-body systems numerically. The basic idea of
full diagonalization is to represent the system’s Hamiltonian H as a matrix, which has
subsequently to be diagonalized. The full diagonalization of H provides the knowledge of
the entire (energy) spectrum {En} and the corresponding set of eigenstates {|n〉}. This
enables, in principle, the calculation of all static and dynamic properties of a quantum
many-body system.
Usual full diagonalization routines determine the (energy) eigenvalues and eigenstates

explicitly by calculating the roots of the characteristic polynomial P(En) of degree D, and
subsequently obtaining the corresponding eigenstates by solving the resulting system of
linear equations numerically. Due to the potentially huge complexity of the characteristic
polynomial for large matrices (notably, there exists no exact solution for D > 4 [239]),
most full diagonalization routines use the approach of generating iteratively a unitary
transformation U that diagonalizes the Hamiltonian matrix by

H → U †HU . (6.1)
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More general, the strategy is to construct the matrix U iteratively by

H → U †1 HU1 → U †2 U
†
1 HU1 U2 → · · · , (6.2)

until the matrix takes on a diagonal form, where the columns of the matrix U = U1 U2 U3 · · ·
contain the eigenstates of the Hamiltonian H.

In practice, the method of full diagonalization is restricted to rather small system sizes,
due to the exponential growth of the Hilbert-space dimension D. For example, for a
spin-1/2 system the Hilbert-space dimension is D = 2N for N lattice sites. Thus, the
associated Hamiltonian matrix is (2N × 2N)-dimensional, which has to be diagonalized
numerically. This fact poses a major problem for full diagonalization routines due to the
huge computational effort and memory requirements. Even for not too large system sizes,
the memory requirements eventually become prohibitive. To reduce memory requirements,
model-dependent symmetries can be exploited to transform the Hamiltonian matrix into
a block-diagonal form (see, e.g., Ref. [157]). The resulting blocks belong to (spin) states
with different conserved quantum numbers which are associated with the symmetries (see
Sec. 3.1.3). As becomes apparent, the advantage of exploiting symmetries is that each
of the blocks can be diagonalized separately, leading to a substantial reduction of the
computational effort.
For the sake of illustration, consider the numerical calculation of density-density-

correlation functions (i.e. 〈%i(t)%i〉). To apply full diagonalization, the main idea is
to expand the correlation function in terms of the Hamiltonian’s eigenstates {|n〉} and the
corresponding eigenvalues {En} [cf. Eq. (2.47)],

〈%i(t)%i〉 =
tr
[
e−βH%i(t)%i

]
Zβ

=
∑
n,m

e−βEn

Zβ
|〈n|%i|m〉|2 eı(En−Em)t , (6.3)

where the partition function Zβ is written as Zβ = ∑
n exp(−βEn). It is worth pointing

out that in particular for disordered systems (see Sec. 5), exact (full) diagonalization
becomes rather costly already for N ≈ 14 lattice sites [231]. This is essentially based on
two arguments: (i) the translational invariance is broken due to the presence of disorder-
perturbing terms and (ii) it has to be averaged over a large number of instances of random
potentials [231]. Because only systems with rather small lattice sizes can be treated,
it is difficult to describe physical quantities correctly in the thermodynamics limit (i.e.
N →∞).
Nevertheless, despite the computational limitations, exact diagonalization routines

are not useless by any means, at least for checking results calculated by alternative
sophisticated numerical techniques. It is worth commenting briefly on some system sizes
which have been reached by exact (full) diagonalization for the one-dimensional Heisenberg
spin-1/2 model. By exploiting translational invariance (see Sec. 3.1.3), the one-dimensional
Heisenberg spin-1/2 Hamiltonian has been numerically diagonalized for a system size of
N ≈ 20 lattice sites [157]. A previous study [240] has accessed N ≈ 24 lattice sites by
using exact diagonalization for the same spin model.

6.1.2. Lanczos Method
The Lanczos method [241] is essentially an iterative diagonalization method and is com-
monly used to study quantum many-body systems. This method is particularly appropriate
if only the system’s ground states and low-lying excited states are of interest. The central
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idea of the Lanczos method is to construct a special basis, in which the Hamiltonian H has
tridiagonal structure. Once having generated this matrix representation of H, the ground
state can be computed by standard numerical recipes. The corresponding tridiagonal
matrix is determined iteratively. For this purpose, consider an arbitrary normalized vector,
say |u0〉 with ||u0|| = 1, which is represented in the many-body basis |n〉 of the system.
The only condition imposed on this vector is that it is not orthogonal to the ground state
of the Hamiltonian. That means that the overlap of the actual system’s ground state
|ψ0〉 and the initially chosen vector |u0〉 has to be nonzero. This condition is most likely
fulfilled if the entries of the initial vector |u0〉 are drawn at random.
Next, the vector |u1〉 is constructed. This vector is determined by applying the Hamil-

tonian H to the initial state |u0〉 and subtracting the projection onto the initial vector,
which results in

|u1〉 = H |u0〉 −
〈u0|H|u0〉
〈u0|u0〉

|u0〉 , (6.4)

and obeys the orthogonality condition, 〈u0|u1〉 = 0. Moreover, another vector is constructed
according to

|u2〉 = H |u1〉 −
〈u1|H|u1〉
〈u1|u1〉

|u1〉 −
〈u1|u1〉
〈u0|u0〉

|u0〉 , (6.5)

which also satisfies the orthogonality condition, that is, 〈u1|u2〉 = 〈u0|u2〉 = 0. A
generalization of this scheme can be achieved by defining an orthogonal basis recursively,

|un+1〉 = H |un〉 − an |un〉 − b2
n |un−1〉 , (6.6)

where the coefficients an and bn are explicitly given by

an = 〈un|H|un〉
〈un|un〉

and b2
n = 〈un|un〉
〈un−1|un−1〉

, (6.7)

with b0 = 0 and |u−1〉 = 0. The Hamiltonian matrix H can subsequently be written in the
following tridiagonal matrix [157]

H′n =



a0 b1 0 0 . . . 0
b1 a1 b2 0 . . . 0
0 b2 a2 b3 0 0
0 0 . . . . . . . . . ...
... ... ... . . . . . . bn
0 . . . . . . 0 bn an


, (6.8)

which can be diagonalized by standard numerical methods [242]. The diagonalization
of H′n provides the eigenvalues {E0, E1, . . . , En} and eigenstates {|ψ0〉 , |ψ1〉 , . . . , |ψn〉},
formulated in the basis of Lanczos basis vectors |un〉. Upon increasing the recursion
number, the eigenvalues of the matrix H′n converge to those of the genuine Hamiltonian
matrix H and its eigenstates are eventually expanded in terms of the Lanczos basis vectors
|un〉. To acquire the desired eigenstates in the genuine many-body basis |n〉, a basis
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transformation can be performed as follows

|ψm〉 =
∑
n,j

cj〈n|uj〉 |n〉 =
∑
j

cj |uj〉 . (6.9)

The main advantage of the Lanczos method relies on the fact that the matrix H′n can be
generated by a rather small number of iterations, particularly if the matrix is given as a
sparse matrix and merely the non-zero matrix elements have to be examined. Especially,
in situations when one is dealing with large matrices it is also advantageous that only
three vectors (|un〉 , |un−1〉 , |un+1〉) need to be stored at once [157].

6.2. Dynamical Quantum Typicality
The concept of quantum typicality [138, 139, 243] states that even a single pure quantum
state, drawn at random from a high-dimensional Hilbert space, is sufficient to imitate
the entire statistical ensemble. To be more precise, expectation values of typical pure
states are close to the expectation value of the statistical ensemble [136–140, 244–247]. A
detailed presentation of the concept of static and dynamical quantum typicality can be
found in Refs. [137, 247]. For pragmatic purposes and as a numerical tool, the concept
of dynamical quantum typicality essentially relies on replacing the trace over the entire
many-body basis by a scalar product, which only contains a single (typical) pure state.
As a central quantity in this thesis, consider the density-density correlation function

Cβ
i,j(t). The expectation value 〈%i(t)%j〉, encoded in the correlation function Cβ

i,j(t), can be
rewritten by exploiting the the concept of typicality as [245, 248]

Cβ
i,j(t) = tr [ρβ %i(t) %j]

Zβ
= 〈ψβ(t)|%i|ϕβ(t)〉
〈ψβ(0)|ψβ(0)〉 + ε(|ψ〉) , (6.10)

where the auxiliary states, |ϕβ(t)〉 and |ψβ(t)〉, can be time- and temperature-dependent.
Explicitly, these states are given by

|ϕβ(t)〉 = e−ıHt %j e−βH/2 |ψ〉 , |ψβ(t)〉 = e−ıHt e−βH/2 |ψ〉 , (6.11)

for some Hamiltonian H. The (reference) random pure state |ψ〉 from Eq. (6.10) is drawn
from the unitarily invariant Haar measure [244],

|ψ〉 =
∑
k

ck |k〉 =
∑
k

(ak + ıbk) |k〉 . (6.12)

The coefficients ak and bk both are drawn randomly from a Gaussian probability distribution
with zero mean and unit variance. In fact, other types of probability distributions have
also been discussed [249, 250]. Moreover, the states |k〉 denote a complete set of orthogonal
basis states spanning the Hilbert space H with dimension D = dim(H ). It is worth
noting that these basis states can be any orthogonal basis, for example, the common
eigenbasis of symmetries [81]. While the statistical error ε(|ψ〉) within the typicality
approximation (6.10) depends on the specific realization of the random (pure) state |ψ〉,
the standard deviation σ(ε) of the statistical error scales as σ(ε) ∝ 1/

√
Deff , with Deff

being the effective dimension Deff = tr [exp (−β(H− E0))] and E0 denotes the ground-
state energy of the Hamiltonian H [141, 251]. Importantly, in the limiting case of formally
infinite temperature (β → 0), the effective dimension Deff converges to the Hilbert-space
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dimension D. As a consequence, increasing the number of degrees of freedom (e.g. the
number of lattice sites N) of a certain quantum many-body system, leads to an exponential
improvement of the accuracy and in the thermodynamic limitN →∞ the formal expression
in Eq. (6.10) becomes exact.
A simplification is possible at the limit of formally infinite temperature (β → 0). In

this case the density-density correlation function Ci,j(t) can be evaluated by means of just
one auxiliary state |ψ̃(t)〉 [252–255]. As a result, the density-density correlation function
Ci,j(t) can be rewritten in terms of |ψ̃(t)〉 as,

Ci,j(t) = 〈ψ̃(t)|%i|ψ̃(t)〉+ ε(|ψ〉) , (6.13)

where |ψ〉 denotes a (reference) random pure state as stated in Eq. (6.12) and it has been
used that the trace of %i vanishes (i.e. tr [%i] = 0) [92]. The initial state |ψ̃(0)〉 is given by

|ψ̃(0)〉 =

√
%j + λ√
〈ψ|ψ〉

|ψ〉 , (6.14)

where the constant λ is chosen such that the term (%j +λ) has nonnegative eigenvalues and
the full time-dependent state is |ψ̃(t)〉 = exp (−ıHt) |ψ̃(0)〉. It is crucial, that the square
root of the operator in Eq. (6.13) can be carried out. In the case of local magnetization
(local Szi operators), the Ising basis can be chosen, where the basis states are depicted as
follows {|↑1↓2↓3 · · ·〉 , |↓1↑2↓3 · · ·〉 , |↓1↓2↑3 · · ·〉 , · · · }. In the case of local energy, the task
is feasible and requires a local basis transformation, involving a few lattice sites.

To conclude this section, the spatio-temporal correlation functions for both (local) spin
and (local) energy densities have been determined for a quasi-one-dimensional two-leg
ladder (with S = 1/2), for a total system size of up to N = 20 × 2 lattice sites [90].
Moreover, in Ref. [R1] further (selected) applications of the concept of dynamical quantum
typicality can be found. The reader is referred to Pt. III, Sec. A.

6.3. Pure-State Propagation
From a numerical point of view, the central advantage of the typicality-based approxima-
tions in Eqs. (6.10) and (6.13) relies on the fact that one can work with pure states instead
of dealing with the full density matrices. The action of the matrix exponential can be
effectively obtained without having to resort to exact diagonalization methods (see Sec. 6.1).
This fact leads to a substantial reduction of the required computational resources, due to
the possibility to generate time and temperature dependencies of pure states efficiently.
The full time (and temperature) dependence emerges as a property of pure states and
can therefore be evaluated by iteratively solving the Schrödinger equation in real and
imaginary time, respectively [81, 247].

Apart from that, dynamical quantum typicality can be implemented rather memory effi-
ciently, which ensures to study dynamical properties of quantum many-body systems with
Hilbert-space dimensions significantly larger compared to standard exact diagonalization.
Moreover, there are no conceptual limitations on the reachable time scales.

In particular, the full time evolution of the state |ψβ(0)〉 given in Eq. (6.11) is generated
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by the action of the matrix exponential on the initial state,

|ψβ(t)〉 = e−ıHt |ψβ(0)〉 . (6.15)

The time evolution can be subdivided into a product of consecutive discrete time steps
δt = t/M :

|ψβ(t)〉 = e−ıHt |ψβ(0)〉 =
(
e−ıHδt

)M
|ψβ(0)〉 , (6.16)

where the discrete time step δt is chosen sufficiently small. There exists a variety of numer-
ical methods to accurately approximate the action of the matrix exponential exp (−ıHδt)
without the necessity of exact diagonalization routines.

6.3.1. Fourth-Order Runge-Kutta Method
A rather straightforward numerical method is given by the fourth-order Runge-Kutta
(RK4) method [256, 257]. According to the RK4 method, the time-evolution operator is
approximated as [245, 258]

|ψβ(t+ δt)〉 ≈ |ψβ(t)〉+
∑
n

|kn〉 , (6.17)

where the auxiliary states |kn〉 are constructed as follows [245, 258]

|kn〉 = −ıHδt
n

|kn−1〉 , (6.18)

with |k0〉 = |ψβ(t)〉 and the error of the approximation (6.17) scales as O(δt5). Notably,
the RK4 scheme in Eqs. (6.17) and (6.18) is equivalent to a Taylor expansion of the
exponential exp (−ıHt) up to fourth order. Moreover, although it is not needed for the
purposes of this thesis, in complete analogy to the (pure) state propagation in real time, a
potential temperature dependence of the state |ψβ(t)〉 can be generated by a time evolution
in small imaginary time steps (ıδβ).
It is worth emphasizing that the RK4 method, has additionally been used to solve

the classical (nonlinear) Hamilton’s equations of motion for classical spin variables (see,
Refs. [R2, R3]).

6.3.2. Suzuki-Trotter Decomposition
The Suzuki-Trotter decomposition is based on the decomposition of the (unitary) expo-
nential operator, to generate unitary approximations to the matrix exponential [259].
To this end, consider the unitary time-evolution operator U(t, t0) = exp (−ıH(t− t0)).
For the sake of simplicity, t0 is set to zero. Thus, by using Suzuki-Trotter product
formula [260, 261], the time evolution-operator is essentially decomposed as

U(t) = e−ıHt = e−ı(H1+H2+...+Hm)t = lim
n→∞

(∏
i

e
−ıtHi

n

)n
, (6.19)

where the (total) Hamiltonian H is subdivided into a sum of “sub-Hamiltonians” Hi, by
H = ∑

iHi. In practice, the right hand side of Eq. (6.19) is determined for a finite value
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of n. In particular, the second-order approximation Ũ2(δt) [262, 263] is given by

Ũ2(δt) = e−ıδtHi/2 . . . e−ıδtH1/2e−ıδtH1/2 . . . e−ıδtHi/2 . (6.20)

This approximation is bounded from above by [263]∥∥∥U(δt)− Ũ2(δt)
∥∥∥� c δt3 , (6.21)

where c is a positive constant. Another approximation that is useful in practice is the
fourth- order approximation [262],

U4(δt) = U2(a δt)U2(a δt)U2((1− 4a)δt)U2(a δt)U2(a δt) , (6.22)

with the constant a = 1/(4 − 41/3) [263]. Similar to the bound of the second order
approximation in Eq. (6.21), this approximation is bounded by∥∥∥U(δt)− Ũ4(δt)

∥∥∥� c′ δt4 , (6.23)

with the constant c′ > 0. For practical purposes and in the context of the one-dimensional
Heisenberg spin-1/2 model (see Sec. 3.1.2), the Hamiltonian can be decomposed according
to the so-called XYZ decomposition, where the Hamiltonian is subdivided into its spatial
components x, y and z of the spin operators, this is,

H =
∑
n

Hn = Hx +Hy +Hz , (6.24)

where the terms Hx,y and Hz are explicitly given by

Hx,y = J
∑
i

Sx,yi Sx,yi+1 and Hz = J∆
∑
i

Szi S
z
i+1 . (6.25)

When choosing the eigenstates of Sz as the computational basis, the matrix representation
of exp (−ıδtHz) is diagonal. This leads to a phase shift when applying to a basis state.
By choosing an efficient basis rotation (rotation matrix) into the eigenstates of the Sx,y
operators, the operators exp (−ıδtHx) and exp (−ıδtHy), respectively, act in the same way
as exp (−ıδtHz) [175, 263].

6.3.3. Chebyshev Polynomials
The Chebyshev polynomial approach is based on the numerical approximation of the matrix
exponential by Chebyshev polynomials [259, 264–266]. Before considering explicitly the
Chebyshev polynomials as a numerical approach, it is worth pointing out some remarks
on the general scheme for expanding arbitrary functions in orthogonal polynomials.
To this end, consider two (integrable) real-valued functions h(x) and g(x). A scalar

product on a finite interval [a1, a2] is defined by

〈h(x)|g(x)〉 =
∫ a2

a1
h(x) g(x)w(x) dx , (6.26)

with w(x) being the so-called weight function. There exists a complete set of some
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polynomials pk(x) satisfying an orthogonality relation, namely

〈pk(x)|pm(x)〉 = δkm . (6.27)

This fact implies that a given smooth and continuous function h(x) can be expressed in a
series of the polynomials pk(x) by

h(x) =
∑
k

ck pk(x) , (6.28)

where the expansion coefficients ck are determined by ck = 〈pk|h〉. While in principle
every class of orthogonal polynomials can be used for such an expansion, it turns out that
especially the Chebyshev polynomials are very good for the vast majority of (physical)
applications. The advantage of using Chebyshev polynomials relies on the fact that
the associated series displays excellent convergence properties. To be more precise, the
Chebyshev polynomials Tn of first kind are defined by the following recursion relation [267]

Tn+1(x) = 2xTn(x)− Tn−1(x) , (6.29)

supplemented by T0(x) = 1 and T1(x) = x. Following Eq. (6.26), on a closed interval
I = [−1, 1] the Chebyshev polynomials are orthogonal with respect to the following scalar
product

〈Tk(x)|Tl(x)〉 = 1
π

∫ 1

−1
Tk(x) ·Tl(x) 1√

1− x2
dx = δkl(1 + δn0)

2 . (6.30)

A given function r(x) on this interval can be expanded according to the Chebyshev
polynomials as follows

r(x) =
[
µ0 + 2

∑
m

µm Tm(x)
]
, (6.31)

where the series has to be understood as an infinite series and the expansion coefficients
(moments) µm are given by the integral

µm =
∫ 1

−1
r(x)Tm(x) dx . (6.32)

The method of Chebyshev polynomial expansion is essentially based on the Eqs. (6.31)
and (6.32). While the Chebyshev polynomials are defined on a finite interval I = [−1, 1],
the physical quantities of interest are given in terms of eigenvalues En of a matrix,
associated to a Hamiltonian H. To adapt the (eigenvalue) spectrum to the interval I, a
linear transformation (rescaling) is performed according to [267, 268]

H̃ = 1
a

(H− b1) , (6.33)

where the parameters a and b are given by

a = Emax − Emin

2− ε , b = Emax + Emin

2 , (6.34)

with Emin (Emax) representing the smallest (largest) energy eigenvalue of H and the factor
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ε can be fixed [268]. Notably, Emin and Emax can be evaluated by means of Lanczos
techniques (see Sec. 6.1.2).
As a result, the time evolution of a state |ψ(t)〉 (or more precisely, the time-evolution

operator U(t)) can be approximated in terms of Chebyshev polynomials by

U(t) = e−ı(aH̃+b)t = e−ıbt
[
c0 + 2

∑
k

ck Tk(H̃)
]
, (6.35)

by using the rescaled Hamiltonian in Eq. (6.33). Moreover, the expansion coefficients ck
are evaluated by means of Eq. (6.32)

ck = 1
π

∫ 1

−1

e−ıaxt Tk(x)√
1− x2

dx = (−ı)k Jk(at) , (6.36)

where Jk(at) denotes the first kind Bessel function of order k [267], evaluated at (at). For
practical purposes, the sum in Eq. (6.35) is truncated after a finite sequence of terms, such
that an approximation for the time-evolution operator U(t) in k-th order reads as follows

U(t) |ψ(0)〉 ≈ Uk(t) |ψ(0)〉 = c0 |w0〉+ 2
∑
k

ck |wk(H̃)〉 . (6.37)

The vectors |wk(H̃)〉 are given recursively by applying the rescaled Hamiltonian. By
identifying the vector |w0〉 with the initial state |ψ(0)〉 (i.e. |w0〉 = |ψ(0)〉), and |w1〉 =
H̃ |w0〉, respectively, the other vectors are generated by a recursion relation

|wk+1〉 = 2H̃ |wk〉 − |wk−1〉 , (6.38)

for k ≥ 1. In essence, the time evolution of the pure state |ψ(t)〉 is based on the evaluation
of matrix-vector products, provided by Eqs. (6.37) and (6.38).
To conclude, it is worth noting that both Trotter decompositions (see Sec. 6.3.2) and

Chebyshev polynomial expansions (see Sec. 6.3.3) are used in the massively parallelized
simulations on the supercomputer “JUWELS” (at Forschungszentrum Jülich, Institute
for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC)) in the context of
Ref. [R2].

6.4. Numerical Linked Cluster Expansion
The main idea of numerical linked cluster expansion (NLCE) [142, 143, 269] is that the
per-site value of an extensive quantity on an infinite lattice can be expanded in terms
of respective weights on all linked (sub-)lattices that can be embedded in the entire
lattice [270].

Here, particular emphasis is given to the physical applications of NLCE in the context
of correlation functions in one-dimensional quantum systems. To this end, a NLCE scheme
is essentially given by the following expression

〈O(t)O〉
N

=
∑
c

LcWc(t) , (6.39)

where Wc denotes the weight of a cluster c with multiplicity Lc. Moreover, the general
operators O(t) can, for example, be chosen as the current operator [90]. To avoid redundant
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computations, the multiplicity factor, which is divided by the total number of lattice
sites, accounts for all clusters, which are symmetrically or topologically related to one
representative cluster and, therefore, yield the same weight. The weight of each cluster is
evaluated by the so-called inclusion-exclusion principle

Wc(t) = 〈O(t)O〉(c) −
∑
s⊂c

Ws(t) , (6.40)

where the weights of all embedded clusters s are subtracted from 〈O(t)O〉(c) evaluated
on the cluster c. Since the maximum treatable cluster size is limited by the available
computational resources, the sum in Eq. (6.39) has to be truncated to a maximum size
C ≡ cmax. For one-dimensional models, this truncated sum reduces to the difference of the
correlation functions of the two largest open-boundary chains with lengths C and (C − 1).
The latter implies,

C∑
c=2

Wc(t) = 〈O(t)O〉(C) − 〈O(t)O〉(C−1) . (6.41)

As shown in Ref. [90], this rather simple formula can have a better convergence towards
the thermodynamic limit than a standard finite-size scaling at effectively equal compu-
tational cost. For the one-dimensional Heisenberg spin-1/2 model the current-current
autocorrelation function in the thermodynamic limit has been studied [90]. When studying
thermodynamic quantities, using larger cluster sizes similarly improves the convergence of
the expansion down to lower temperatures [143, 271]. The numerical method of NLCE is
part of Ref. [R1], but will not be revisited again in Pt. III.
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7. Publications
The main purpose of Pt. III and Sec. 7 is to give an overview of the publications given
in Refs. [R1–R3], and to outline the central results. To this end, Sec. A deals with
several applications of the concept of dynamical quantum typicality to quantum many-
body systems. Moreover, in Sec. B quantum and classical spin dynamics on various
low-dimensional lattice geometries are presented and finally Sec. C deals with the question
of the dynamics of quantum and classical spin chains subjected to random potentials
(disorder).

A. Selected Applications of Typicality to Real-Time
Dynamics of Quantum Many-Body Systems

Ref. [R1] is a review and deals with the versatility of a numerical approach, based on
dynamical quantum typicality (DQT) (see Sec. 6.2). More precisely, in Ref. [R1] various
applications of the concept of quantum typicality in the context of investigating the
dynamics of quantum many-body systems are discussed.
In particular, in Ref. [R1] it is described how (i) pure states in combination with a

forward propagation in real time can be used to determine the (local) density of states
of some Hamiltonian H with eigenvalues En [141, 272], (ii) DQT provides an efficient
means to obtain time-dependent equilibrium correlation functions for comparatively large
Hilbert-space dimensions and long time scales and (iii) quantum typicality can be applied
to study far-from-equilibrium dynamics. Moreover, DQT is discussed in combination with
other (numerical) approaches, either (iv) to improve the convergence of the method of
numerical linked cluster expansion (NLCE) (see Sec. 6.4) or (v) to obtain so-called memory
kernels, which play a major role in the context of projection operator techniques [151, 273–
275]. Because of the variety of applications given in Ref. [R1], a detailed description of
the topics (i) and (v) is omitted here. Instead, this section focusses on the issues (ii) and
(iii) in greater detail. Notably, the method of NLCE has already been described in Pt. II,
Sec. 6.4.

To begin with, recall the central idea of the concept of quantum typicality (see Sec. 6.2).
For practical applications, the notion of typicality states that the trace over the (many-
body) basis can be replaced by a scalar product with respect to a single pure quantum
state. This pure state can imitate the full statistical (quantum) ensemble. First, quantum
typicality is considered in the context of time-dependent (equilibrium) correlation functions,
which can occur within LRT. Such equilibrium correlation functions (see Sec. 2) are given
by

Cβ
OO′(t) = 〈O(t)O′〉 = tr [ρβ O(t)O′] , (7.1)

for operators O and O′, where the time-dependent operator O(t) has to be understood with
respect to the Heisenberg representation. The (canonical) density matrix at equilibrium
is denoted by ρβ = exp (−βH) /Zβ and the partition function Zβ is represented by
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Zβ = tr [exp (−βH)]. Exploiting the concept of (quantum) typicality (see Sec. 6.2), it is
demonstrated that Eq. (7.1) can be rewritten as

〈O(t)O′〉 = 〈ψβ(t)|O|ϕβ(t)〉
〈ψβ(0)|ψβ(0)〉 + ε(|ψ〉) , (7.2)

where the trace tr [•] from Eq. (7.1) is replaced by a scalar product 〈ψ| • |ψ〉 of a pure
quantum state |ψ〉. The reference pure state |ψ〉 is drawn from the unitarily invariant
Haar measure and is given by

|ψ〉 =
∑
k

ck |k〉 =
∑
k

(ak + ıbk) |k〉 , (7.3)

where |k〉 denotes a set of orthogonal basis states of the D-dimensional Hilbert space. The
coefficients ak and bk are drawn from a Gaussian distribution with zero mean and unit
variance and the standard deviation of the statistical error ε(|ψ〉) scales as σ ∝ 1/

√
Deff

with Deff being the effective Hilbert-space dimension (see Sec. 6.2). Moreover, the auxiliary
states |ϕβ(t)〉 and |ψβ(t)〉 in Eq. (7.2) are explicitly represented by

|ϕβ(t)〉 = e−ıHtO′√ρβ |ψ〉 and |ψβ(t)〉 = e−ıHt√ρβ |ψ〉 . (7.4)

A main advantage of the typicality-based approach (7.2) relies on the fact that the operators
O and O′ do not longer carry any time (and temperature) dependence. Instead, the full
time (and temperature) dependence emerges as a property of pure states and can be
evaluated by iteratively solving the Schrödinger equation in real and imaginary time,
respectively [81, 247]. From a numerical point of view, this is provided by several iterator
schemes (see Sec. 6.3). As a result, on the one hand the potentially demanding numerical
method of exact diagonalization (see Sec. 6.1) can be circumvented. On the other hand
there is no need to store full matrices leading to substantially reduced computational
requirements.

As a central quantity of interest in Ref. [R1] (and this thesis), time-dependent density-
density correlation functions Cβ

i,j(t) = 〈%i(t)%j〉 for some local density %i and %j , respectively,
are discussed in the context of quantum typicality. The calculation of such correlation
functions,

Cβ
i,j(t) = 〈%i(t)%j〉 = tr [ρβ %i(t)%j] , (7.5)

substantially simplifies when considering the limit of formally infinite temperature (i.e.
β → 0). In this specific case the correlation function can be rewritten as,

Ci,j(t) = 〈ψ̃(t)|%i|ψ̃(t)〉+ ε(|ψ〉) , (7.6)

where an initial pure state |ψ̃(t = 0)〉 = |ψ̃(0)〉 is given by

|ψ̃(0)〉 =

√
%j + λ√
〈ψ|ψ〉

|ψ〉 , (7.7)

with |ψ〉 being, again, drawn randomly and λ represents a constant, such that (%j + λ) has
nonnegative eigenvalues. As becomes apparent, it is possible to evaluate the density-density
correlation function (7.6) just from one auxiliary state, while a calculation according to

66



7. Publications

Eq. (7.2) would include two auxiliary states that have to be evolved in time. As a special
case of Eq. (7.6), the equal-site spin-spin correlation function,

C(t) = Ci,i(t) = 〈Szi (t)Szi 〉 , (7.8)

at lattice site i = N/2 for the spin-1/2 XXZ chain is discussed in Ref. [R1]. Bear in mind
that in this thesis the one-dimensional XXZ model has N = Lx×1 lattice sites in total (see
Sec. 3).
In particular, the correlation function in (7.8) is considered for two different lengths,

namely N = 14 and N = 28 (see Fig. 7.1). In this context, for two independently drawn
pure states |ψ1〉 and |ψ2〉, the accuracy of the DQT approximation is demonstrated. With
regard to Fig. 7.1, while the DQT data closely follows the results obtained from exact
diagonalization at N = 14, the residual statistical fluctuations almost disappear completely
for a system size of N = 28 lattice sites. While in Ref. [R1] it is only reported on the
accuracy of the quantum typicality approach in the context of the equal-site correlation
function for the XXZ chain, additional comparisons between data extracted from a DQT
approach and exact ensemble averages are available (see, e.g., Refs. [217, 245]).
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(a) N = 14
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(b) N = 28
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Figure 7.1.: Equal-site spin-spin correlation function CN/2,N/2(t) for the one-dimensional
S = 1/2 XXZ chain for ∆ = 1 and with either (a) N = 14 and (b) N = 28
lattice sites in total. Full diagonalization data are compared to DQT data for
two different random states |ψ1〉 and |ψ2〉 in (a). While full diagonalization
becomes unfeasible for N = 28, the statistical fluctuations of the typical-
ity approach become negligible for this system size. Data is adapted from
Ref. [247].

In addition to the equal-site spin-spin correlation function (7.8), the full time-space profile
Ci,j(t) = 〈Szi (t)Szj 〉 at j = N/2 for a spin-1/2 chain with next-nearest neighbor interactions
of length N = 36 is considered [175]. Especially for the local density of magnetization,
and in the limit of formally infinite temperature (β → 0) different lattice sites are initially
(t = 0) uncorrelated and correlations start to built up for longer times t > 0. Thus, the
initially realized δ peak spreads over the whole system. This is illustrated by the numerical
results shown in Fig. 7.2 (a), see below.

Similar to the XXZ spin-1/2 chain, the quasi-one-dimensional two-leg ladder (see Sec. 3)
is discussed, where the coupling constants, J|| and J⊥, represent either the coupling on
the legs (J||) or on the rungs (J⊥). Notably, Ref. [R1] is focussed on J|| = J⊥ = 1 and
N = 20 × 2 = 40 lattice sites in total [252]. For this model, particularly the full time-
space profile Ci,j(t) with j = N/2, for local spin (see Fig. 7.2 (b)) are considered, which
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has been calculated by means of DQT. As becomes apparent from Fig. 7.2, the profile
of the spin density is described by Gaussians. Such a Gaussian-shaped density profile
can be interpreted as a clear signature of spin diffusion in the limit of formally infinite
temperature (see Sec. 4.3) in this and other models [86, 175, 182, 231, 276].

Moreover, Ref. [R1] reports that DQT has been used to study density-density correlation
functions in other models. In particular, clean Gaussian profiles have been found in various
parameter regimes, even for integrable models such as the spin-1/2 chain [182] or the
Fermi-Hubbard model [276]. Beside those models, other classes of (nonintegrable) models
such as the spin-1 XXZ chain [92] and disordered models [R3] are listed.
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Figure 7.2.: (a) Time-space density plot of the spin-spin correlation function Ci,N/2(t) in
the limit of formally infinite temperature β → 0 for the XXZ spin-1/2 chain of
N = 36 lattice sites and nearest neighbor ∆ = 1.5 and next-nearest neighbor
∆′ = 1.5 coupling. (b) Ci,N/2(t) at fixed times t = 0 (δ peak) t = 1, 2, 4
(arrow), for a spin-1/2 quasi-one-dimensional two-leg ladder of total size of
N = 20× 2 = 40 in the limit of formally infinite temperatures. The dashed
lines indicate Gaussian fits to the data. Data is adapted from [252].

As another application of quantum typicality, a nonequilibrium scenario in isolated quantum
systems is described in Ref. [R1]. A common nonequilibrium setup is given as follows.
Consider a quantum system that is initially prepared in a so-called Gibbs state with respect
to some initial Hamiltonian H0, imposed by an initial density matrix ρ(t = 0) = ρ(0),

ρ(0) = e−βH0

Z0
, (7.9)

where Z0 = tr [exp(−βH0)] denotes the partition function with respect to the initial
Hamiltonian H0. Subsequently, a so-called quantum quench [277] is considered, where
the initial Hamiltonian H0 is changed to some other Hamiltonian, say H1. The scenario
is illustrated in Fig. 7.3, see below. Then, the system is in a nonequilibrium state and
the system evolves unitarily in time according to the Hamiltonian H1 with respect to the
von-Neumann equation [cf. Eq. (2.23)],

ρ(t) = e−ıH1t ρ(0) eıH1t . (7.10)

The Hamiltonian H1 can for instance be generated by adding (or removing) some (weak
or strong) static force of strength η to the (initial) Hamiltonian H0 (see Sec. 4). As a
consequence, the total Hamiltonian H1 reads

H1 = H0 ± ηO , (7.11)
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with O being a operator, conjugated to the static force [231, 253, 253, 278]. The resulting
dynamics of the expectation value of the operator O is denoted by

〈O(t)〉 = tr [ρ(t)O] . (7.12)

In principle, the evaluation of this expression requires exact (full) diagonalization of both
Hamiltonians H0 and H1. By preparing a typical pure state with the randomly chosen
reference state |ψ〉,

|ψ(0)〉 = e−βH0/2 |ψ〉√
〈ψ|e−βH0|ψ〉

, (7.13)

the density matrix ρ(0) from above can be imitated and exact diagonalization can be
circumvented. Thus, by using the typicality-approach, both the imaginary-time evolution
with respect to the Hamiltonian H0 and the real-time evolution with respect to H1 can be
performed by exploiting the techniques of pure-state propagation (see Sec. 6.3). Finally,
this leads to the time dependent expectation value 〈O(t)〉, which can be rewritten as

〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉+ ε(|ψ〉) , (7.14)

with the pure state |ψ(t)〉 = exp (−ıH0t) |ψ(0)〉 and the initial state given in (7.13). It
is worth pointing out that the protocol above can be modified by additional changes of
the Hamiltonian in time. A static force (see Sec. 4.1) switched on at time t = 0 can,
for instance, be removed again at some later time t > 0. Even for such protocols, the
additional efforts of the DQT approximation are minor compared to full diagonalization.

H0 H1

time t
t = 0

ρ(0) = e−βH0
tr[e−βH0] ρ(t) = e−ıH1 t ρ(0) eıH1 t

Figure 7.3.: Sketch of the nonequilibrium scenario. The system starts in a Gibbs state
ρ(0) with respect to some initial Hamiltonian H0. For times t > 0, the system
evolves unitarily according to some other Hamiltonian H1 and to ρ(t).
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B. Quantum versus Classical Dynamics in Spin
Models: Chains, Ladders, and Square Lattices

In Ref. [R2] a qualitative and quantitative comparison between quantum and classical
spin models is presented. While it seems likely quantum and classical systems become
akin to each other as the spin quantum number S increases from S = 1/2, 1, . . . towards
the classical limit S → ∞, it remains a generally nontrivial question whether and to
which level the dynamics of quantum and classical spins coincide with each other for small
quantum spin numbers S.
This question is tackled by considering the anisotropic Heisenberg model on three

different lattice geometries, namely (i) the one-dimensional chain, (ii) the quasi-one-
dimensional two-leg ladder and (iii) the two-dimensional square lattice (see Fig. 3.1).
Each of these lattices is equipped with periodic boundary conditions. Recall, that the
Hamiltonian (see Sec. 3) reads,

HXXZ = J
∑
〈r,r′〉

hr,r′ , (7.15)

where the sum runs over all bonds of nearest-neighboring lattice sites r and r′ and the
model’s parameter as well as the local terms hr,r′ have been presented in Sec. 3.1.

The one-dimensional spin-1/2 Heisenberg model is integrable by means of Bethe ansatz
methods for any anisotropy value ∆ (see Sec. 3.3.2). By contrast, even the one-dimensional
classical spin Heisenberg model is nonintegrable with respect to the Liouville-Arnold
theorem and behaves chaotic (see Sec. 3.3.1). More generally, the integrability is broken for
each model with either S > 1/2 or d > 1, where d denotes the (spatial) lattice dimension.
As the physical quantity of interest the dynamics of a local density %r(t) of either

magnetization or energy is studied (see Sec. 3.1.1). Each of the quantities correspond
to a globally conserved quantity, that is, the total magnetization or the total energy.
From a quantum mechanical point of view, this fact is reflected by the vanishing of the
commutation relations (see Sec. 3.1.3), while classically the commutation relations have
to be replaced by the Poisson bracket (see Sec. 3.2). The time-dependent equal-site
(density-density) correlation functions C(t) = Cr,r′=r(t) for the lattice geometries (i) - (iii)
are investigated in the limit of formally infinite temperatures (β → 0). In this limiting
case, the equal-site correlation function is given by (see Sec. 2.4.1),

C(t) = 〈%r(t)%r(0)〉 =


tr [%r(t)%r(0)] /D for S = 1/2

1/R ∑
r [%r(t)%r(0)] for S →∞

. (7.16)

On the one hand, in the quantum case (S = 1/2), the equal-site correlation function is
given by the trace of the local densities divided by the Hilbert-space dimension D (see
Sec. 3.1). On the other hand, in the classical case (S = ∞), the correlation function is
given as an average over a large number (i.e. R� 1) of trajectories in phase space, where
the initial configurations %r(0) are drawn randomly for each realization r (see Sec. 3.2).
To ensure a fair comparison between the dynamics of a quantum and classical spin

model, the time axis is rescaled t → tS̃, to account for the different length of quantum
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and classical spins,

S̃ =


√
S(S + 1) for quantum spin S

1 for classical spin S
, (7.17)

where the actual value of S̃ depends on the spin quantum number S. This rescaling plays
a more important role in Ref. [R3], while Ref. [R2] is exclusively restricted to S = 1/2.

With regard to the time-dependent correlation function C(t), it has been reported about
solving the equations of motion to determine the time evolution. Quantum mechanically,
the time evolution is governed by the linear Schrödinger equation (see Sec. 2.1), whereas
the classical spin variables evolve in time according to the nonlinear Hamilton’s equations
of motion (see Sec. 3.2). Hamilton’s equations of motion have been solved numerically by
means of a RK4 scheme with a small time step δt (see Sec. 6). With regard to Eq. (7.16), an
average over many samples R� 1 has been used in order to reduce statistical fluctuations.
In contrast to the quantum case, the memory requirements for the classical spins do not
scale exponentially, but only linearly in system size N . This fact enabled the possibility to
reach much larger system sizes (for example N = 1024 lattice sites in total) and long times,
compared to the quantum spin model. Since in Ref. [R2] the limiting case of formally
infinite temperature has been considered, the quantum equal-site correlation function
enables applying dynamical quantum typicality on the basis of just one auxiliary state (see
Sec. 6.2 and Ref. [R1]),

C(t) = 〈ψ̃(t)|%r|ψ̃(t)〉+ ε(|ψ〉) , (7.18)

where |ψ〉 is again a random (pure) state [cf. Eq. (6.12)] and the initial state |ψ̃(0)〉 is
given by

|ψ̃(0)〉 =
√
%r + λ |ψ〉√
〈ψ|ψ〉

, (7.19)

where λ denotes again a constant such that (%r + λ) has nonnegative eigenvalues. The
central Tadvantage of the typicality approximation Eq. (7.18) relies on the fact that the
time dependence appears as a property of (pure) states. As a consequence, only one state
has to be evolved in time by using an iterative forward propagation in real time (see
Sec. 6.3),

|ψ̃(t+ δt)〉 = e−ıHXXZδt |ψ̃(t)〉 , (7.20)

with a small discrete time step δt � J . To perform the action of the matrix exponen-
tial in Eq. (7.20), (i) Trotter decompositions methods and (ii) Chebyshev-polynomial
expansions (see Sec. 6.3.3 and Sec. 6.3.2) have been used. The fact that the matrix-vector
multiplications, required in these methods, can be carried out efficiently with respect to
memory, gives access to treat quantum systems with up to N = 36 lattice sites in total.
In fact, this is beyond the range of exact diagonalization. To ensure a fair comparison
with the quantum case, also classical spin systems with fewer lattice sites N ≤ 36 have
been studied in Ref. [R2].

In both the classical and the quantum case, the time evolution of the equal-site correlation
function C(t) follows from the underlying microscopic equations of motion, and depends
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on the specific model and its parameters. Due to the conservation of total energy and
magnetization, it is generally expected that the dynamics of local densities acquire a
hydrodynamic behavior at long time scales. With regard to the equal-site correlation
function, the emergence of hydrodynamics is reflected in terms of a power-law decay,

C(t) ∝ t−α , (7.21)

where α = α(d) depends on the spatial lattice dimension d. As described in Sec. 4.3,
a dimensionality-dependent exponent α = α(d) = d/2 corresponds to normal diffusive
transport, that is, α = 1/2 in one-dimensional or quasi-one-dimensional systems, and
α = 1 for the two-dimensional square lattice. Moreover, anomalous superdiffusion and
subdiffusion go along with an exponent α > d/2 and α < d/2, respectively, while ballistic
transport is indicated by α = d. In any finite system, caused by the saturation value
C(t → ∞) > 0, diffusion breaks down for long time scales. To illustrate the situation,
Fig. 7.4 from Ref. [R2] shows a hydrodynamic power-law tail at intermediate times with
an exponent α = 2/3, which suggests superdiffusive transport.
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Figure 7.4.: Decay of the equal-site correlation function C(M)(t) in the quantum (S = 1/2)
and classical case (S =∞) at the isotropic point (∆ = 1) shown in a log.-log.
plot. The expected long-time value C(M)(t → ∞) = 1/Lx as well as the
power-law decay ∝ t−α with α = 2/3 is shown. Classical data for a much
larger Lx = 1024 lattice sites are depicted.

The results presented in Ref. [R2] show that the dynamics of local magnetization in the
infinite-temperature limit in the one-dimensional chain (Lx = 32) for both quantum and
classical spins coincide to a high degree of accuracy (on small and large time scales) for both
the isotropic point ∆ = 1 and ∆ = 1.5. In particular, superdiffusive behavior (α = 2/3)
at the isotropic point is found (see Fig. 7.4). This is well established in the quantum
realm, see for example Ref. [279], and is consistent with previous studies which report that
the dynamics of local magnetization is described by the Kardar-Parisi-Zhang universality
class [88, 89, 91, 94]. In the classical case, spin transport is quite controversial [96, 97].
For ∆ = 1.5, it is shown that the exponent changes to α = 1/2, which indicates a

diffusive decay. This is well-known to occur in the regime ∆ > 1, even in the integrable
quantum model. While for the latter cases the dynamics coincided very well, for ∆ = 0.5
the overall agreement between the quantum and classical dynamics is worse. On the
one hand it is demonstrated that the classical dynamics is diffusive (α = 1/2), while
on the other hand quantum dynamics have to be ballistic, which is indicated by α = 1
in the thermodynamic limit and has been proven rigorously using quasi-local conserved
charges [280, 281]. Thus, in such cases, where the quantum dynamics is dominated by
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the extensive set of conservation laws, the correspondence between quantum and classical
dynamics necessarily has to break down.
By considering spatially higher dimensional lattices with d > 1 (see cases (ii) and (iii)

above), the model’s integrability is broken. This nonintegrable situation is certainly more
generic and might be seen as a fair test bed for the comparison between the dynamics
in models with S = 1/2 and classical spins. In particular, for the quasi-one-dimensional
two-leg ladder, it is pointed out that the dynamics of the quantum S = 1/2 spins are well
captured by the dynamics of the classical spins for all anisotropies (∆ = 0.5 , 1.0 , 1.5), not
only on a qualitative, but even on a quantitative level to high accuracy. As expected, the
equal-site correlation function exhibits diffusive behavior, with α = 1/2. For the square
lattice, a good agreement between the dynamics of quantum and classical spins has been
found. As expected the dimensionality-dependent exponent is given by α = 1.

To ensure that the agreement of quantum and classical dynamics is not only restricted
to one observable (local magnetization), in addition, the equal-site correlation function
for local energies is studied in Ref. [R2]. This case is exclusively focussed on a fixed
anisotropy parameter (∆ = 1) and the impact of different lattice geometries has been
studied. Especially for the quasi-one-dimensional two-leg ladder and the two-dimensional
square lattice the dynamics of the quantum spin-1/2 are well captured by the dynamics
of the classical spins. However, substantial differences have been identified for the one-
dimensional model. These differences are rather natural, since energy dynamics is ballistic
(α = 1) for the quantum spin-1/2 model, caused by integrability.

The classical spin chain exhibits diffusive (α = 1/2) energy transport instead. How-
ever, this disagreement constitutes a counterexample to our typical observation that the
decay of quantum and classical density-density correlations agree both qualitatively and
quantitatively.
Therefore, based on the findings in Ref. [R2], it has been concluded that classical or

semiclassical (hybrid) simulations might provide a meaningful strategy to investigate the
quantum dynamics of strongly interacting quantum spin models, even if S is small and far
away from the classical limit.
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C. Decay of Spin-Spin Correlations in Disordered
Quantum and Classical Spin Chains

This section gives an overview of Ref. [R3], where a comparison between the real-time
dynamics of equal-site correlation functions for quantum and classical disordered spin
models is presented. In contrast to Ref. [R2] (see Sec. B), Ref. [R3] is focussed on studying
the disordered one-dimensional Heisenberg model (see Sec. 5.1). While Ref. [R2] deals with
the specific spin quantum number S = 1/2, in Ref. [R3] additionally small spin quantum
numbers (S ≥ 1/2) are considered and compared to classical spins (S →∞). As before,
the question is addressed whether and to which degree the dynamics of the quantum and
classical Heisenberg model coincide, qualitatively and quantitatively, but contrarily to
Ref. [R2], here in the presence of disorder.
In addition, the question to what extent the phenomenon of many-body localization

occurs in the considered model, upon increasing the spin quantum number S towards
the classical limit S →∞ is discussed. While it is believed that many-body localization
is a purely quantum phenomenon, the quantum spins become increasingly akin to their
classical counterparts with increasing S (see Sec. 3.2). Moreover, on the one hand, the
spin-1/2 model is believed to undergo a transition from an ergodic to a many-body localized
regime above a critical disorder strength W∗ ≈ 3.5 (see Sec. 5.1). On the other hand, the
occurrence of many-body localization is not expected in classical spin systems, although
strong disorder has been shown to cause anomalously slow relaxation.

Recall from Sec. 5.1 that the Hamiltonian of the disordered one-dimensional Heisenberg
spin model reads,

HW = J
∑
i

(
Sxi S

x
i+1 + Syi S

y
i+1 + Szi S

z
i+1

)
+
∑
i

hiS
z
i , (7.22)

where hi denotes on-site magnetic fields, which are randomly drawn from a uniform
distribution, that is, hi ∈ [−W,W ], where W ≥ 0 sets the overall magnitude of disorder.
Regarding integrability, for vanishing disorder W = 0 and S = 1/2 the model is integrable
in terms of the Bethe ansatz (see Sec. 3.3.2). In contrast, in presence of disorder W 6= 0,
or for S > 1/2 the integrability is broken. As pointed out before in Sec. B, integrability as
such does not necessarily rule out that quantum and classical transport properties can
agree with each other. For instance, as previously discussed in Ref. [R2], both the quantum
and classical chain exhibit diffusive spin transport above the isotropic point (∆ > 1).

As the main quantity of interest, in Ref. [R3] the disorder-averaged equal-site correlation
function C(t) is studied in the limit of formally infinite temperature (i.e. β → 0). Recall
that this correlation function is given by (see Sec. 5.3)

C(t) = 1
Mh

Mh∑
h=1

C(t) , (7.23)

where the “bare” equal-site correlation function C(t) is defined as previously defined (see,
e.g., Sec. B). Notably, as a standard approach in the context of disordered models, C(t) is
averaged over Mh different random configurations of the magnetic fields hi. As opposed to
Sec. B (Ref. [R2]), here, exclusively the local density of magnetization is considered, while,
as previously stated [cf. Eq. (7.17)], the time axis is rescaled by S̃ to take the length of the
different quantum and classical spins into account (see Sec. B). Furthermore, an effective
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disorder Weff is introduced according to

Weff =


W/

√
S(S + 1) for quantum spin S

W for classical spin S
. (7.24)

Concerning the dynamics of the classical spins, the nonlinear classical Hamilton’s equations
of motion (see Sec. 3.2) are solved by employing a RK4 scheme with a small time step δt.
While calculations in Ref. [R3] for the classical spin chain have been limited to N ≤ 200
and t ≤ 1000, following the arguments given in Sec. B, compared to the quantum case,
classical spin chains can be treated for comparatively huge systems and long times with
significantly less computational resources.

As also described in Sec. A (Ref. [R1]) and Sec. B (Ref. [R2]), the numerical calculations
for the quantum case have been performed by using the concept of dynamical quantum
typicality (see Sec. 6.2). Taking again advantage of the infinite-temperature limit leads to
a similar expression for the equal-site correlation function as stated in Eq. (7.18), that is,

C(t) = 〈ψ̃(0)|Szi |ψ̃(0)〉+ ε(|ψ〉) . (7.25)

The initial state |ψ̃(0)〉 can be prepared similar to Eq. (7.19) with the substitutions
%r → Szi and λ → S, with S = 1/2, 1, 3/2. The time evolution of the pure state |ψ̃(t)〉
can again be efficiently generated by iteratively solving the real-time Schrödinger equation
with the methods stated previously in Sec. A and Sec. B. As a result, system sizes beyond
the range of standard exact diagonalization have been reached (see Sec. 6.1). In particular,
in Ref. [R3] systems sizes up to N = 14 for S = 3/2 have been treated.
It is worth mentioning, that the typicality approach in Eq. (7.25) is independent of

the validity of the ETH (see Sec. 5.2.2) and solely relies on the largeness of the Hilbert
space. The DQT approach, therefore, enables accurate calculations in strongly disordered
models which undergo a many-body localization transition [192], where the ETH fails (see
Sec. 5.3).
Independent of the typicality relation in Eq. (7.25), each side of this relation can be

interpreted as a certain type of imperfect “echo protocol” [282]. In this context the
right-hand side of Eq. (7.2) can be rewritten as

〈ψ̃(0)|eıHWt Szi e−ıHWtψ̃(0)〉 , (7.26)

which means that after evolving the out-of-equilibrium initial state |ψ̃(0)〉 for some time t,
a “perturbation” is applied in form of the operator Szi . Subsequently, the perturbed state
is evaluated backward in time and the overlap between the the initial state |ψ̃(0)〉 and the
resulting state exp (ıHWt)Szi exp (−ıHWt) |ψ̃(0)〉 is measured.

Concerning the dynamics of the disorder-averaged equal-site correlation function, C(t)
is expected to exhibit a slower hydrodynamic behavior (compared to the disorder-free
model) in the ergodic phase (see Sec. 5.3). This fact is reflected by a power-law decay of
C(t) according to,

C(t) ∝ t−α , with α < 1/2 . (7.27)

There exists numerical evidence for the existence of a subdiffusive phase in the regime
of low to intermediate disorder below the localization transition [129, 223–225]. This
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subdiffusive regime is reflected by an exponent α < 1/2. Since a finite spin chain of length
N is assumed, for longer times the initially prepared spin excitation spreads out to the
whole system. The equal-site correlation function C(t) saturates to a constant nonzero
long-time value (i.e. C(t) ∝ 1/N) for long times [231]. Conversely, the localized regime is
characterized by a significantly slower decay of the equal-site correlation function and, for
long times, the correlation function C(t) saturates to a value > 1/N in a finite system.

Ref. [R3] is focussed on different values of effective disorder (i.e. Weff ≈ 0.58, 1.15, 2.31
and Weff ≈ 5.77). First, regarding the comparison between the dynamics of C(t) for
the quantum and classical model, on the one hand it is found that for vanishing and
small values of (effective) disorder (Weff = 0, Weff . 1.15), the dynamics of C(t) is almost
independent of the spin quantum number S and agrees with the classical case S → ∞,
evaluated at the same effective disorder Weff . On the other hand, for stronger values
of the (effective) disorder (Weff . 5.77), the findings show that this agreement at least
partially breaks down (see Fig. 7.5). Especially, the dynamics of S = 1/2 deviates from the
dynamics of S ≥ 1 and the classical case and, exhibit distinctly slower dynamics, which is
consistent with subdiffusive transport in this parameter regime. In particular, a very good
agreement between the quantum S = 3/2 and classical spin dynamics, even in the case of
strong (effective) disorder (Weff = 5.77), is shown. The situation for all cases of effective
disorder is illustrated in Fig. 7.5.
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Figure 7.5.: Equal-site correlation function 3C(t)/S̃2 versus the rescaled time tS̃ for
different spin quantum numbers S = 1/2, 1, 3/2 and the classical spins
S =∞. Data is shown for different values of effective disorder (a) Weff ≈ 0.58,
(b) Weff ≈ 1.15, (c) Weff ≈ 2.31 and (d) Weff ≈ 5.77. In all cases the system
size is Lx = 12.

Apart from that, it is demonstrated that the spin-1/2 model appears to be localized at
strong disorder (Weff ≈ 5.77), while for S ≥ 1 as well as the classical spins, this does no
seem to be the case, since they have a nonzero slope and continue to decay at long times.

76



7. Publications

Furthermore, the findings for the dynamics of C(t) are consistent with the behavior of the
analysis of the mean ratio 〈r〉 of adjacent level spacings (see Sec. 3.3.3). Recall that this
quantity is given by

〈r〉 =
〈

min{sm, sm+1}
max{sm, sm+1}

〉
, (7.28)

with sm = |Em+1−Em| being the energy-ordered eigenvalues of the disordered Hamiltonian
HW [cf. (7.22)]. The brackets denote both averaging over energy levels and additionally
over different realizations of disorder. In particular, it is found that the transition of
〈r〉 from Wigner-Dyson (〈r〉WD ≈ 0.53) towards Poissonian level statistics (〈r〉P ≈ 0.39)
appears at increased disorder values upon increasing the spin quantum number S (see
Fig. 7.6). Combining the results from the comparison of the dynamics of the quantum
and classical spins and as well by analyzing the statistics of energy-level spacings, it is
speculated that many-body localization eventually occurs also in models with S = 1 and
S = 3/2.
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Figure 7.6.: Mean ratio 〈r〉 of adjacent level spacings for the model (7.22) with S =
1/2, 1, 3/2 (arrow) as a function of (a) “bare” disorder strength W and (b)
effective disorder Weff = W/S̃. The green lines indicate the value for Wigner-
Dyson (〈r〉WD ≈ 0.53) and Poisson distribution (〈r〉P ≈ 0.39). In all cases the
system size is Lx = 8.

Apart from the results mentioned above, the self-averaging property of the correlation
function C(t) (see Sec. 5.3) is analyzed. Recall that a physical quantity of a disordered
system is called self-averaging if its relative variance R(t), that is, the ratio between its
variance for disordered realizations and the square of its mean, decreases upon increasing
the system size N (see Sec. 5.3). For the case that self-averaging holds with increasing
system size, the number of samples can be reduced. To this end, the relative variance
R(t) of sample-to-sample fluctuations specifically for S = 1/2 is analyzed. It is outlined
that the expectation, i.e. for vanishing disorder the relative variance R(t) is strictly zero (
due to the absence of disorder), could not have been confirmed. This can be traced back
to the numerical calculations by means of typicality in Ref. [R3]. The nonzero data of
R(t), therefore, can be interpreted as the accuracy of the used typicality approximation.
Thus, in the context of Eq. (5.15) in Sec. 5.3, the “super”-self-averaging property of the
equal-site correlation function C(t) is pointed out [236]. For finite values of disorder, it is
shown that R(t) decreases exponentially with N for short times, while for longer times
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this scaling breaks down. While for short times the correlation function is shown to be
self-averaging which is consistent with recent results, for longer times, this self-averaging is
much weaker, or breaks down (see Fig. 7.7). A power-law scaling according to R(t) ∝ N−ν ,
with ν ∈ (0, 1] has not been ruled out in [R3].
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Figure 7.7.: Relative variance R(t) of sample-to-sample fluctuations [cf. Eq. (5.15)] in a
logarithmic plot for S = 1/2 chains with different system sizes N = 12, . . . , 20
(arrows) and disorder strengths (a) W = 0, (b) W = 0.5 and (c) W = 5.
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8. Summary and Outlook
The present dissertation has addressed the dynamics of interacting quantum and classical
spin models based on the publications [R1–R3]. Particular attention has been paid to the
question of whether and to which degree the dynamics of these models agree with each
other.
To this end, XXZ models have been studied on different lattice geometries of finite

size, ranging from one-dimensional chains and quasi-one-dimensional ladders towards
two-dimensional square lattices. Particular emphasis has been placed on the analysis of
time-dependent autocorrelation functions of local densities for both the local density of
magnetization (spin) and energy in the limit of formally infinite temperature. Due to
the conservation of total energy and total magnetization, the dynamics of such densities
are expected to exhibit hydrodynamic behavior for long times, which manifests itself in
a power-law tail of the autocorrelation function in time. From a quantum mechanical
perspective, the calculation of these autocorrelation functions required solving the linear
Schrödinger equation, while, from a classical point of view, Hamilton’s equations of motion
were solved. Based on the concept of typicality, an efficient numerical pure-state approach
enabled to circumvent the costly numerical method of exact diagonalization and to treat
quantum autocorrelation functions with up to N = 36 lattice sites in total.
While, in full generality, a quantitative agreement between quantum and classical

dynamics could not have been expected, contrarily, based on the results of large-scale
numerical simulations, it was demonstrated that the dynamics of the quantum S = 1/2
and classical spin models coincided, not only qualitatively but even quantitatively, to
a remarkably high level of accuracy for all considered lattice geometries. In particular,
in the case of nonintegrable quantum models, that is, the quasi-one-dimensional ladder
and two-dimensional lattice, the agreement was found to be best. Nevertheless, also in
integrable models, the agreement remained satisfactory, at least in cases where transport
was not ballistic due to the extensive set of conservation laws. Additionally, it was noted
that, for the spin chain, such an agreement of the dynamics held even in the presence of
small values of disorder, while, at strong disorder, the agreement was most pronounced for
high spin quantum numbers.

Finally, this research has demonstrated that a putative many-body localization transition
within the one-dimensional spin chain shifts to stronger values of disorder with increasing
spin quantum number. This leads to the conclusion that classical or semi-classical
simulations could offer a meaningful strategy to investigate the quantum dynamics of
strongly interacting quantum spin models, even if the spin quantum number is small and
far from the classical limit.
The findings of this dissertation raise a variety of intriguing questions which provide

the basis for future work. The scope of the results of this dissertation is limited by
the fact that the focus was solely on the comparison between quantum and classical
spin dynamics for the observables of local magnetization and energy. For this reason,
further studies could aim to extend the current findings by examining the question of
whether a similar agreement between the dynamics of quantum and classical spins can be
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observed for observables beyond local densities or other out-of-equilibrium quantities apart
from the (equal-site) correlation functions C(t). For instance, examining the full space
profiles at fixed times Ci,j(t) = 〈%i(t)%j〉 for i 6= j with j → N/2 would be interesting
for future research. Some progress is currently being made towards investigating such
profiles regarding a correspondence between classical spin models and the (extended)
Fermi-Hubbard model, which can be mapped to a quantum spin-1/2 ladder model (see
Sec. 3) via Jordan-Wigner transformation (see Sec. 3.1.4). Initial results are displayed
in Fig. 8.1. Further numerical and analytical efforts in future research are required.
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Figure 8.1.: (a1)-(c2) Magnetization profiles in the XXZ spin chain with anisotropy ∆ = 1.5
and Lx = 36, sampled over R initial states. (d) Time-dependent spatial width
Σ(t) as obtained by Eq. (4.19). Dashed and solid lines indicate scaling tα for
α = 1 and 1/2.

Another aspect of this research is worth highlighting: Although the results are promising
and support a correspondence of the dynamics of quantum and classical spin models,
the calculations within this dissertation were performed in the limit of formally infinite
temperature, where quantum effects are less pronounced. A natural next step would
be to elucidate whether and how far an agreement between the dynamics of quantum
and classical spins can be validated by passing over to finite temperatures, i.e. β > 0,
or very low temperatures, i.e. β → ∞, where quantum effects are significantly more
pronounced. Nevertheless, it is clear that there should be some energy scale, where the
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specific excitations of a given quantum model become (more) relevant and likely cause
large differences from the classical counterpart. In this context, an additional interesting
question is whether the observed signatures of diffusion even persist at lower (finite)
temperature.

Following the research according to Ref. [R3], future studies should explore the dynamics
of quantum and classical spins in the presence of disorder for higher spatial lattice
geometries d > 1. While it is widely accepted that especially the one-dimensional quantum
model undergoes a many-body localization transition, the situation for higher dimensional
lattices is far less clear today [200, 283–285]. In terms of future studies on those disordered
models, it is necessary to extend the current results of this dissertation by clarifying the
occurrence of a potential many-body localization transition and evaluating the exact value
of critical disorder W∗ in models with d > 1. This could be an interesting avenue of future
analytical and numerical research.
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