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Quantum Dynamics in Lattice Models of Interacting Spins and Fermions

Tjark Heitmann

Fachbereich Physik, Universität Osnabrück, Barbarastr. 7, D-49076 Osnabrück, Germany

This cumulative dissertation is based on the publications [P1–P6], covering various aspects in
theoretical studies of isolated quantum many-body systems. The transport and relaxation dynamics
in quantum lattice models are studied with a particular focus on (i) the effect of a mass imbalance
between different particles on their relaxation dynamics as well as (ii) the influence of generic
perturbations on different reference dynamics. As for (i), the dynamics of two mutually interacting
fermionic particle species on a lattice are investigated for different mass ratios between the two
species [P4]. Numerical studies of density dynamics show that diffusive transport which is expected
for small mass imbalances persists also for moderate imbalances and becomes anomalous for stronger
imbalances. On the other hand, while transport is suppressed in the limit of infinite imbalance, i.e.,
if one particle species is immobile, this effective localization is shown to give way to anomalous
diffusion as soon as the heavy particle species gains a finite mobility. Regarding (ii), the effect of
perturbations on dynamics is investigated from the perspective of projection-operator techniques
[P6]. As a main result, it is demonstrated that simple exponential damping, which is expected
in the overwhelming majority of cases, may only occur for the density matrix in the interaction
picture. Within this approach, this simple damping carries over to the time dependence of standard
correlation functions only in certain cases. In particular, the possibility of nontrivial damping
in physically relevant perturbation scenarios is discussed. A considerable portion of this work is
concerned with the implementation of powerful numerical and (semi-)analytical tools to overcome
the enhanced computational complexity in numerical studies of quantum many-body systems. This
includes the concept of dynamical quantum typicality [P2, P3], numerical linked-cluster expansions
[P5], and projection-operator techniques, as well as the combined use of available symmetries [P1].
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I. INTRODUCTION

A central objective in modern physics is to compre-
hensively understand the properties of isolated quan-
tum many-body systems. Significant progress has been
made in the past from both the experimental and the
theoretical side, though many open questions concern-
ing nonequilibrium transport and equilibration dynam-
ics in closed quantum systems constitute an area of ac-
tive, ongoing research [7–14]. A common yet puzzling
observation in this context is that in many nonequilib-
rium settings, the quantum system relaxes to an equilib-
rium state that complies with the predictions of statisti-
cal mechanics. While the emergence of thermalization
in isolated quantum systems is not easily reconcilable
with the reversible nature of the unitary time evolution
[11, 12], significant progress in its explanation has been
made with the advent of new concepts like the eigenstate
thermalization hypothesis (ETH) [15–17] and typicality
of pure states [18–21]. The precise way in which a closed
quantum system relaxes to equilibrium is of interest as
well. Universal principles are particularly searched for
as a means to describe a system’s way to equilibrium re-
gardless of specific microscopic details [7, 22, 23]. For
example, a system might show diffusive transport on its
way to equilibrium, which, again, is commonly observed
in every-day macroscopic systems but not completely un-
derstood from the microscopic level [24].
There are known situations where transport is sup-

pressed in certain quantum systems, which then fail to
thermalize. For example, as first proposed by Anderson
in 1958, noninteracting particles in one dimension instead
localize in arbitrarily weak disorder potentials [25, 26]. It
is widely believed that, given strong enough disorder, lo-
calization is also possible in interacting quantum systems,
which is referred to as many-body localization (MBL)
[27–30]. An increased interest in this context lays on
the possibility of MBL in translationally invariant, i.e.
disorder-free, systems [27, 31–43].
Another important question in the context of quan-

tum many-body dynamics is how the dynamics of a given
system are affected in presence of a perturbation [15, 44–
48]. Here, a simple relation between perturbed and un-
perturbed dynamics, which (to some degree) universally
holds true in different perturbation scenarios and differ-
ent systems, is desirable. Based on random-matrix argu-
ments and typicality, such a relation is indeed expected
in the overwhelming majority of cases [46–48]. However,
it remains unclear how frequent and under which condi-
tions counterexamples to the typical behavior occur.
In general, theoretical studies of quantum many-body

systems are very challenging, both analytically and nu-
merically. Analytical solutions are typically impracti-
cal in strongly interacting quantum systems and, if at
all feasible, restricted to specific models and use cases.
On the other hand, numerical approaches, most notably
full exact diagonalization (ED), are notoriously limited
by the enhanced computational complexity that arises

with the exponential growth of the Hilbert-space dimen-
sion with system size. This, in turn, prompted the
development of sophisticated numerical techniques such
as, e.g., the density-matrix renormalization group algo-
rithm and other methods based on matrix product states
[49, 50]. The numerical studies in this work mostly rely
on the concept of quantum typicality [18–21, 51], in par-
ticular dynamical quantum typicality (DQT) [52, 53],
which essentially employs randomly drawn pure states
to accurately approximate ensemble averages. This is
also closely related to other random-state based tech-
niques [54–57]. The typicality concept proves particu-
larly versatile in combination with other numerical and
(semi-)analytical techniques, such as numerical linked-
cluster expansions [58] or projection-operator techniques.
In any case, an important factor in the efficient imple-
mentation of numerical methods is the utilization of avail-
able symmetries [59]. With this, the computational ef-
fort can be partitioned into smaller, manageable chunks,
though the general symmetry adaption technique can po-
tentially entail an additional layer of complexity if not
implemented with appropriate care.

Based on the publications [P1–P6], this work studies
transport and relaxation dynamics in quantum lattice
models as well as methodological aspects in theoretical
approaches to quantum many-body systems. First, the
effect of a mass imbalance between different particles on
their relaxation dynamics is studied in a setting compris-
ing two mutually interacting fermionic particle species
on a lattice [P4]. Numerical studies of density dynam-
ics in that setting show that diffusive transport persists
beyond the limit of small imbalances to moderate mass
imbalances and becomes anomalous for stronger imbal-
ances. On the other hand, while transport is suppressed
in the limit of infinite mass imbalance, i.e., if one parti-
cle species is immobile, this effective localization is shown
to give way to anomalous diffusion as soon as the heavy
particle species gains a finite mobility.
Second, the influence of generic perturbations on different
reference dynamics is investigated from the perspective of
projection-operator techniques [P6]. As a main result, it
is demonstrated that simple exponential damping, which
is expected in the overwhelming majority of cases, may
only occur for the density matrix in the interaction pic-
ture. Within this approach, this simple damping only
carries over to the time dependence of standard correla-
tion functions in certain cases. In particular, the possi-
bility of nontrivial damping in physically relevant pertur-
bation scenarios is discussed. A considerable portion of
this work is concerned with the implementation of power-
ful numerical and (semi-)analytical tools to overcome the
enhanced computational complexity in numerical studies
of quantum many-body systems. This includes the con-
cept of dynamical quantum typicality [P2, P3], numerical
linked-cluster expansions [P5], and projection-operator
techniques, as well as the combined use of available sym-
metries [P1].
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This work is structured as follows: Section II provides
the theoretical background that the publications [P1–P6]
rely on, including the introduction of relevant quantum
lattice models and different aspects in transport dynam-
ics as well as an overview of the employed numerical and
(semi-)analytical techniques. The main contents and re-
sults of the publications [P1–P6] are outlined in Sec. III
and summarized in Sec. IV. Some unpublished results
are included in App. A. While the list of references is
restricted to a number of roughly 100 works for conve-
nience, more relevant references can be found in the in-
dividual publications [P1–P6].

II. THEORETICAL BACKGROUND

This section provides an overview over the theoreti-
cal foundations that the publications [P1–P6] rely on.
This includes the definitions of different quantum lattice
models, (thermo-)dynamic quantum expectation values,
and important quantities and physical aspects in con-
nection with quantum transport. The section concludes
with a brief description of the employed numerical and
(semi-)analytical techniques.

A. Quantum Lattice Models

The works presented in this thesis study various ver-
sions of quantum lattice models, where the Hamilton op-
erator H is composed of local terms hr for each site r of
the given lattice,

H =
∑

r

hr . (1)

Every hr comprises the interaction terms that link site
r to other (typically neighboring) sites r′, using an ap-
propriate convention (e.g., r′ > r) to avoid duplicate
terms in H. The lattice geometries considered here in-
clude onedimensional chains, quasi-onedimensional lad-
ders, and square lattices, which are sketched in Fig. 1.
As will prove to be convenient later on, neighboring sites
on different legs of a ladder are labeled with the same r
and equipped with a secondary label, owing to the essen-
tially onedimensional structure. In all cases, additional
periodic boundary conditions may be applied, where op-
posite sites at the ends of the lattice are linked by inter-
actions as well.

Given a system of L lattice sites, the Hilbert space H
hosting all possible states of a quantum system is com-
posed of the local Hilbert spaces Hr on each site via a
tensor product,

H =

L⊗

r=1

Hr . (2)

(a)
hr

(b) hr

(c)

hr

Figure 1. Sketch of the lattice geometry for (a) chains, (b)
ladders, and (c) 2D square lattices. The interaction links asso-
ciated with one exemplary local Hamiltonian hr are indicated
in color.

Its dimension is given by the product of all local Hilbert-
space dimensions d,1

dimH =

L∏

r=1

dimHr = dL (3)

and thus grows exponentially with the system size L.

1. Quantum Spin Model

Moving forward to actual physical models, the sites of
a given lattice may for example be occupied by statio-
nary spins with spin quantum number s ∈ { 1

2 , 1,
3
2 , . . . }.

Each spin is represented by the corresponding spin vec-
tor operator sr = (sxr , s

y
r , s

z
r). Its components obey the

defining spin algebra,2 3

[
sjr, s

k
r′
]
= i δrr′ εjkl s

l
r , (4)

where δrr′ is the Kronecker delta, εjkl is the antisym-
metric Levi-Civita symbol, and j, k, l ∈ {x, y, z}. The
pertinent local Hilbert space on each site is spanned by,

1 We consider identical local dimensions in all models here. How-
ever, depending on the specific details of the quantum model
defined on the lattice, these local dimensions can in general vary
from site to site.

2 [A,B ] ≡ AB −BA is the commutator.
3 We set ℏ = 1 here and in the following.
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Figure 2. Exemplary sketch of a quantum spin chain with
nearest-neighbor interactions described by the local Heisen-
berg Hamiltonians (5).

e.g., the d = (2s+1) eigenstates |s,ms⟩ of the local szr op-
erators, labeled by the magnetization quantum number
ms ∈ {−s,−s+ 1, . . . , s− 1, s}.
The exchange interaction between the spins on sites r

and r′ is often described by the Heisenberg model, with
local Hamiltonians

hr =
∑

⟨r,r′⟩
Jrr′ (s

x
rs
x
r′ + syrs

y
r′ +∆szrs

z
r′) , (5)

parametrized by the exchange coupling constant Jrr′ and
anisotropy ∆ along the quantization axis. Alternatively,
Eq. (5) can be expressed in terms of the raising and low-
ering operators s±r = sxr ± isyr ,

4

hr =
∑

⟨r,r′⟩
Jrr′

[
1
2

(
s+r s

−
r′ + h.c.

)
+∆szrs

z
r′
]
. (6)

The corresponding commutation relations

[
szr , s

±
r′
]
= ±δrr′s±r (7)

[
s+r , s

−
r′
]
= 2 δrr′s

z
r (8)

can simplify the numerical treatment of the Hamiltonian.
In presence of an external (possibly site-dependent) mag-
netic field Br, the Hamiltonian is equipped with an ad-
ditional Zeeman term,

hZeeman
r = gµB sr ·Br (9)

with Bohr magneton µB and Landé factor g.

A related model, which may also be seen as a trimmed-
down version of the Heisenberg model, is the Ising model
with a transverse external magnetic field,

hr = −J


∑

⟨r,r′⟩
szrs

z
r′ + gsxr


 . (10)

This model will not play a central role in this thesis, but
it was primarily used as a test model in Pub. [P5] to
benchmark a numerical technique.

4 h.c. denotes the Hermitian conjugate.

t↓ t↑ t↓ t↑

U ′ U ′U ′ UU

↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑

Figure 3. Sketch of the extended Fermi-Hubbard chain: spin-
↑ and -↓ fermions with site-to-site hopping amplitudes t↓, t↑
and two-body interactions U and U ′.

2. Hubbard Model

Introducing another class of quantum lattice models,
the Hubbard model in its various flavors basically de-
scribes interacting fermionic or bosonic particles moving
from lattice site to lattice site. More specifically, this
thesis focuses mainly on the Fermi-Hubbard chain, where
spin-↑ and spin-↓ fermions move between the sites of a
onedimensional chain whilst subject to an on-site inter-
action. The corresponding local Hamiltonian reads

hr = −
∑

σ=↑,↓
tσ

(
c†r ,σcr+1,σ + h.c.

)
(11)

+U
(
nr,↑ − 1

2

) (
nr,↓ − 1

2

)
,

where tσ is the spin-dependent hopping amplitude and U
is the on-site interaction strength. The creation operator
c†r,σ creates a spin-σ particle at site r, whereas the anni-

hilation operator cr,σ annihilates a spin-σ particle at site

r. They fulfill the fermionic anticommutation relations,5

{
cr,σ, cr′,σ

}
= 0 (12)

and
{
cr,σ, c

†
r′,σ

}
= δrr′ , (13)

and define the local particle number operator
nr,σ = c†r,σcr,σ. The local Hilbert spaces on each
site are spanned by, e.g., the d = 4 eigenstates |nr,↑, nr,↓⟩
of the local particle number operators nr,σ with
eigenvalues nr,σ ∈ {0, 1}.
In addition to the on-site interaction, there may also

be an interaction between neighboring sites, described by
the additional terms

h′r = U ′∑

σ,σ′

(nr,σ − 1
2 )(nr+1,σ′ − 1

2 ) . (14)

This is also referred to as the extended Fermi-Hubbard
chain and is sketched in Fig. 3.

5 {A,B } ≡ AB +BA is the anticommutator.
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J2

J1

J ⋊⋉

J⊥

Figure 4. Sketch of a spin- 1
2

ladder with XXY Y -interactions
of strength J1, J2 along the legs and various ZZ-interactions
of strength J⊥ and J ⋊⋉ between the legs, as obtained by
a Jordan-Wigner transformation of the extended Fermi-
Hubbard model sketched in Fig. 3.

3. Jordan-Wigner Transformation

Though prima facie not necessarily obvious, the spin
models and the Fermi-Hubbard model introduced above
are not only structurally related, but in fact equivalent
by Jordan-Wigner transformation [60]. Using this trans-
formation, spin raising and lowering operators are trans-
formed to fermionic creation and annihilation operators
and vice versa. There are some technicalities involved
to ensure the correct commutation relations of the trans-
formed operators. For example, when equipped with an
additional phase factor, fermionic creation and annihila-
tion operators can be directly associated with the spin
raising and lowering operators,

c†r =
1
2 e

−iϕrs+r (15)

cr =
1
2 e

iϕrs−r ,

with

ϕr = π
∑

l<r

s+l s
−
l . (16)

Technical details aside, it is sufficient to keep the fol-
lowing correspondence in mind: local magnetizations in
the spin language translate to occupation numbers in the
Hubbard language,

nr = szr +
1

2
. (17)

With this, a onedimensional spin chain can be treated as
a chain of spinless fermions. The Fermi-Hubbard model
introduced in Eq. (11) is in turn equivalent to a spin lad-
der, where different legs of the latter are associated with
the different particle species of the former. For com-
pleteness, the corresponding local Hamiltonian for the
quantum spin ladder reads

hr = −
∑

k=1,2

2Jk

(
sxr,ks

x
r+1,k + syr ,ks

y
r+1,k

)
(18)

+ J⊥ s
z
r,1s

z
r,2

and, corresponding to the extension (14),

h′r = −
∑

k,k′

J ⋊⋉ s
z
r,ks

z
r+1,k′ , (19)

compare also the sketches in Fig. 4 and Fig. 3.
In the following, we will occasionally choose either one

of the Hubbard or the spin language when coming across
model-specific contexts, depending on the convenience
and the given physical scenario. While doing so, we can
always bear in mind that there are corresponding ana-
logue formulations in the respective other language.

4. Symmetries

The models introduced above exhibit several symme-
tries, formally defined by groups6 of operators S that
commute with the Hamiltonian,

[H,S ] = 0 , (20)

entailing corresponding conservation laws. These sym-
metries stem from the underlying lattice geometry and
from symmetry properties of the local exchange Hamil-
tonians.

T

Typical symmetries preserving
the lattice structure are point-
group symmetries like reflections
or discrete rotations. Addi-
tionally, given an infinite lattice
or periodic boundary conditions,
Hamiltonians of the form (1) are
invariant under lattice transla-
tions, which shift all sites simul-
taneously by one or multiple lat-
tice vectors. In the specific case
of a onedimensional lattice with L
sites and periodic boundary conditions, the correspond-
ing translation operator T generates the cyclic group CL
and

[
H, T l

]
= 0 (21)

with powers l = 0, . . . , L− 1.
Apart from lattice symmetries, notable examples for

exchange interaction symmetries can be found in the lo-
cal Heisenberg Hamiltonian (5). In the case of isotropic
interactions, ∆ = 1, the total spin operator S =

∑
r sr

commutes with the Hamiltonian,

[
H,S2

]
= 0 (22)

and is the generator of the associated continuous sym-
metry group SU(2) of rotations in spin space. For

6 Groups as in group theory.
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any anisotropy, ∆ ̸= 1, only the total magnetization
Sz =

∑
r s

z
r is conserved,

[H, Sz ] = 0 , (23)

and generates the corresponding symmetry group U(1) of
rotations around the z-axis. Translated into the language
of Hubbard models with the correspondence (17), this
symmetry corresponds to the particle number conserva-
tion. In fact, for the Fermi-Hubbard model described by
Eq. (11), particle numbers Nσ =

∑
r nr,σ for each spin σ

are conserved separately.
The general strategy for the utilization of symmetries

as well as specific examples will be discussed in Sec.
IID 6.

B. Physical Properties and Observables

The quantum state of a given system, which in general
may be a mixed state comprised of an ensemble of pure
states {|Ψk⟩} with probabilities pk, is described by the
density operator

ρ =
∑

k

pk |Ψk⟩ ⟨Ψk| , (24)

with Tr [ ρ ] = 1 and ρ† = ρ. For any operator A, the cor-
responding expectation value with respect to that state
is calculated as an ensemble average,

⟨A⟩ = Tr [ ρA ] . (25)

This simple expression lays the foundation for the cal-
culation of any thermodynamic or dynamic quantity, as
discussed in the following.

1. Thermodynamics

According to textbook quantum statistical mechanics,
the possible states of a system with fixed temperature T
are gathered in the canonical ensemble, represented by

ρβ =
e−βH

Zβ
(26)

with the partition function Zβ = Tr
[
e−βH

]
and inverse

temperature β = 1/kBT , where kB is the Boltzmann con-
stant. Inserted in Eq. (25), the temperature-dependent
expectation value of any thermodynamic observable A is
calculated via

⟨A⟩eq =
1

Zβ
Tr
[
e−βHA

]
. (27)

Common examples are the magnetization M(T ) =
−gµB ⟨Sz⟩eq in a spin system and the internal energy

U(T ) = ⟨H⟩eq, as well as their variances, known as mag-

netic susceptibility,

χ(T ) = (gµB)
2β
[
⟨(Sz)2⟩eq − ⟨Sz⟩2eq

]
, (28)

and the heat capacity,

C(T ) = kBβ
2
[
⟨H2⟩eq − ⟨H⟩2eq

]
. (29)

The expectation values ⟨•⟩eq above are labeled as equi-
librium expectation values, reflecting that the state ρβ is
time-independent by construction. The following part is
concerned with the dynamics of expectation values, e.g.,
in situations where the state ρ may evolve in time.

2. Dynamics

Starting from any initial state ρ(0), its subsequent time
evolution under the governing Hamiltonian is given by
the von-Neumann equation,

d
dtρ(t) = −i [H, ρ(t) ] , (30)

which is formally solved by

ρ(t) = e−iHtρ(0) eiHt . (31)

With that, the expectation value of an observable A ac-
quires a nontrivial time dependence for any state ρ that
does not commute with the Hamiltonian,

⟨A(t)⟩ = Tr [ ρ(t)A ] . (32)

A simple example for such a nonequilibrium state is an
eigenstate (or thermal state ρβ) of some different Hamil-
tonian H′, which is not an eigenstate of the Hamilto-
nian H generating the dynamics. Dynamical quantities
of particular interest in the context of transport in lattice
models are densities ϱr of some local charges qr,

ϱr(t) = ⟨qr(t)⟩ = Tr [ ρ(t) qr ] (33)

where the qr could, for example, involve local magneti-
zations szr in a spin model or local particle numbers nr,σ
in a Hubbard model.

The expressions above refer to the Schrödinger picture,
where the time dependence is a feature of the quantum
state while observables itself are time-independent. An-
other dynamical picture is considered in the context of
time-dependent equilibrium correlation functions of two
observables A, A′, reading

CAA′(t) ≡ ⟨A(t)A′⟩eq = Tr [ ρβ A(t)A′ ] . (34)

Here, the state is given by the canonical equilibrium en-
semble and thus stationary while observables evolve in
time according to the Heisenberg picture. However, in
the limit of high temperatures β → 0, these correlation
functions can still be constructed in the spirit of Eq. (32)
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by deploying special initial states of the form

ρ(0) ∝ e−β(H−ϵA) , (35)

which, in good approximation for β → 0 and βϵ > 0, can
be expanded as

ρ(0) ∝ 1 + βϵA . (36)

These states are in general time-dependent and the high-
temperature limit of the correlation function (34) can be
obtained as the expectation value of A′,

⟨A′(t)⟩ = Tr [ ρ(t)A′ ] (37)

∝ Tr [A(t)A′ ] ,

provided that Tr [A′ ] = 0.7 Note that, apart from the
context of thermodynamic quantities, we always consider
the limit of infinite temperatures, β → 0.

C. Transport and Relaxation

The main focus of this thesis is placed on transport and
relaxation dynamics in onedimensional quantum lattice
models. Key aspects in that regard will be introduced
in this section. A starting point for further reading on
the topic of transport in onedimensional quantum lattice
models is given by the comprehensive review article [14]
and references therein.

1. Quantum Lattice Transport Quantities

The notion of transport generally involves a conserved
quantity Q =

∑
r qr, composed of local terms on each

lattice site r,

[H, Q ] = 0 . (38)

Heisenberg’s equation of motion

d
dtqr = i [H, qr ] (39)

in combination with the lattice continuity equation

d
dtqr = j

(Q)
r−1 − j

(Q)
r (40)

induces the definition of the associated local current as

j(Q)
r = i [ qr, hr ] . (41)

7 Without loss of generality, any operator A′ can be shifted such
that Tr [A′ ] = 0.

From these local currents, the total current is again de-
fined as

J (Q) =
∑

r

j(Q)
r . (42)

Both the local charge terms and the associated current8

are conveniently studied to assess the transport behavior
in a given setting.

2. Phenomenology of Different Transport Types

There is a range of possible transport behaviors a sys-
tem could show, from insulation, where no charge is
transported at all, up to free conduction, where charge is
transported ballistically. In between, transport may be
best described by diffusion equations, where anomalous
sub- or superdiffusion constitute the transitional regions
to ballistic transport and insulating behavior.

No

Transport

Normal

Diffusion

Sub-

diffusion

Super-

diffusion

Ballistic

Transport

The transport properties of a system can be examined
based on the dynamics of the associated local densities,
i.e., the time-dependent expectation values of the local
charge terms ϱr(t) = ⟨qr(t)⟩. These densities show diffu-
sive transport, if they fulfill the lattice diffusion equation,

d
dtϱr(t) = D [ϱr−1(t)− 2ϱr(t) + ϱr+1(t)] (43)

with some diffusion constant D. First indications for dif-
fusive transport may be observed in the temporal growth
of the spatial width for some inhomogeneous density dis-
tribution,

Σ2(t) =

L∑

r=1

r2δϱr(t)−
[
L∑

r=1

rδϱr(t)

]2
, (44)

where we define δϱr(t) ∝ ϱr(t)− ϱeq with ϱeq = ⟨qr⟩eq
and normalization

∑
r δϱr(t) = 1 for all times t. In case

of diffusion, i.e., whenever Eq. (43) is fulfilled, the spatial
width grows proportional to the diffusion constant,

d
dtΣ

2(t) = 2D . (45)

8 As there will only be one transport quantity of interest at a time,
we drop the label for the current in the following for the sake of
clean notation.
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A similar but slightly more general relation can be
borrowed from the framework of linear response theory
(LRT), which describes the response of a transport quan-
tity to weak perturbations of the system. Here, the
growth of the spatial width is described as

d
dtΣ

2(t) = 2D(t) (46)

with a now time-dependent diffusion coefficient that can
be obtained from current-current correlation functions
[61],

D(t) =
β

χ

t∫

0

dt′
⟨J(t′)J⟩

L
. (47)

For high temperatures β → 0

χ

β
=

⟨Q2⟩ − ⟨Q⟩2
L

=
1

4
. (48)

It is worth mentioning that the above relation (47) can
actually be generalized to finite temperatures as well,
where the autocorrelation function ⟨J (t)J ⟩ is essentially
replaced by a Kubo scalar product [61–63]. Further, note
that the derivation of Eq. (47) in fact requires special
initial states that are constructed close to the canoni-
cal equilibrium state ρβ , where the inhomogeneous den-
sity distribution is incorporated via a weak perturbation
to the Hamiltonian. However, with the introduction of
quantum typicality in the upcoming Sec. IID 2, the de-
tails about the specific design of the initial states become
less important. The central requirement for Eq. (47) to
hold is that they feature some density distribution whose
support is sufficiently confined to the center of the lattice.

Interestingly, the relation (47) entails insights on dif-
ferent scaling behaviors of D(t) beyond standard diffu-
sion: First, owing to a mean free time where interac-
tions are still due to come into effect, there is always a
short initial period of ballistic transport with D(t) ∝ t,
due to the current remaining approximately constant.
Then, if after some time τ the autocorrelation function
⟨J (t)J ⟩ is decayed completely, normal diffusion sets in
with D(τ > t) ≈ const. If ⟨J (t)J ⟩ does not decay to
zero, for example due to some overlap of J with con-
served quantities [64, 65], the diffusion coefficient contin-
ues to grow in the long-time limit with ballistic scaling
D(t) ∝ t. Transferred to the spatial width (44), a scal-
ing according to Σ(t) ∝ tα is called ballistic for α = 1,
superdiffusive for 1/2 < α < 1, diffusive for α = 1/2, sub-
diffusive for 0 < α < 1/2, and insulating for α = 0.

In search of diffusive transport, the scaling analysis of
the spatial width can merely serve as an indication of its
existence, while a genuine confirmation can be achieved
by looking at the full density distribution. To this end,
consider an initial state featuring a sharp density peak

in the middle9 of the chain – on top of an equilibrium
background,

δϱr(0)

{
̸= 0 , r = L/2

= 0 , else
. (49)

For this initial condition, the lattice solution10 of Eq. (43)
can be well approximated by Gaussian profiles,

δϱr(t) =
1

Σ(t)
√
2π

exp

[
− (r − L/2)2

2Σ2(t)

]
. (50)

Thus, in case of standard diffusion, the initial density
peak is expected to broaden over time while keeping an
overall Gaussian shape. Its full spatial dependence is
described by a single parameter Σ(t) that can again be
obtained by Eq. (44) or from current-current correlation
functions via Eq. (47). The time domain where this holds
is naturally delimited by the time where a significant
share of the density distribution reaches the boundaries
of the system.

When transitioning to anomalous diffusion, the den-
sity profiles are expected to deviate from the Gaussian
shape. In the particular case of subdiffusion, the profiles
assume a more exponential shape, which to some extent
can be described as δϱr(t) ∝ exp [−γ|r − L/2|ν ] with a
decreasing exponent ν → 1.
Complementary to the real-space perspective, it is in-

structive to examine the density dynamics in momentum
space as well. The corresponding density modes are ob-
tained via a discrete Fourier transformation,

ϱq(t) =
1√
L

L∑

r=1

eiqrϱr(t) (51)

with the momentum q = 2πk/L and wave numbers
k = 0, 1, . . . , L− 1. Also by Fourier transformation, the
diffusion equation (43) is decoupled into rate equations
for the density modes ϱq(t),

d
dtϱq(t) = −q̃2Dϱq(t) , (52)

with q̃2 = 2(1− cos q). Consequently, diffusion mani-
fests itself in momentum space by exponentially decaying
modes

ϱq(t) ∝ e−q̃
2Dt . (53)

Note that this exponential decay can best be observed
for momenta q away from the vicinity of corresponding

9 For the sake of a clean notation, consider even L here. Otherwise,
to cover both even and odd system sizes, the middle of the chain
should be defined more carefully as ⌊L/2⌋.

10 The time dependence of each local density is given by δϱr(t) =
e−2DtIr−L/2(2Dt), where Ir(t) is the modified Bessel function
of first kind.
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characteristic real-space length scales l = 2π/q such as,
e.g., the mean free path.

3. Localization Effects in Transport Dynamics

A multitude of quantum systems has been reported
to show some form of transport, where initial nonequi-
librium distributions of associated local charges would
either relax to equilibrium by normal or anomalous dif-
fusion, or spread ballistically throughout the system (for
an overview see, e.g., Ref. [14] and references therein).
However, aside from these, there are systems that are in-
stead localized, exhibiting neither diffusive nor ballistic
transport. A particularly interesting mechanism produc-
ing localization was proposed by Anderson in 1958 [25]
and came to be known as Anderson localization. The
paradigmatic Anderson model comprises free particles on
a lattice subject to disorder, caused by a potential with
randomly varying strength from site to site. Specifically,
consider the model

HA = Hfree +Hdisorder , (54)

where noninteracting spinless fermions are described by
the term

Hfree = th
∑

r

(
c†rcr+1 + h.c.

)
(55)

and disorder is introduced by the potential term

Hdisorder =
∑

r

Wr nr (56)

with random field strengths Wr ∈ [−W,W ]. For any dis-
order strength W , the random energy landscape causes
the particles to localize near11 their initial location on
the lattice and thus transport of particle densities ϱr(t) =
⟨nr⟩ is suppressed. As before, let us consider an initial
state featuring a sharply peaked distribution of the densi-
ties ϱr(0) like in Eq. (49). After some short initial period
where the particles may locally adjust their positions,
they are stuck and not able to spread further on the lat-
tice. Accordingly, particle currents vanish, the spatial
width of the distribution remains at a constant value12

corresponding to the localization length, and the system
fails to equilibrate, forever retaining memory of its initial
state.

For strong enough disorder strength W , this effect is
expected to prevail even in presence of interactions, i.e.,

11 In the sense that the distance stays below the localization length.
12 In fact, for finite system sizes, the spatial width is always ex-

pected to saturate at a constant L-dependent value, see Pub [P4].

after introducing an additional term

Hint = U
∑

r

(
nr − 1

2

) (
nr+1 − 1

2

)
(57)

to the Hamiltonian (54). The corresponding topic of
many-body localization (MBL) has evolved into a vast
field of ongoing research from both the theoretical and
the experimental side [27, 28, 30]. One particular ques-
tion that grew in this context is whether MBL can be
realized in translationally invariant systems, particularly
in systems without disorder [27, 31–43]. Amongst other
candidates like frustrated systems [66] or flat band sys-
tems [66, 67] the Fermi-Hubbard model (11) with a mass
imbalance between spin-↑ and spin-↓ particles was stud-
ied in that respect [39, 43, 68]. This mass imbalance is
realized through spin-dependent hopping amplitudes tσ
in the Hamiltonian (11) and parametrized by the imbal-
ance ratio η = t↓/t↑ (with t↑ fixed), ranging from η = 0
for t↓ = 0 to η = 1 in the case t↓ = t↑. It is sug-
gested that, given a strong on-site interaction between
both particle species, the much heavier spin-↓ particles
might localize the lighter spin-↑ particles by means of
a dynamically induced effective disorder potential. This
suggestion stands to reason when looking at the limit of
infinite mass imbalance, η = 0, known as the Falicov-
Kimball limit [69, 70]. In this limit, i.e., when t↓ = 0,
the Hamiltonian (11) simplifies to

HFK =
∑

r

−t↑
(
c†r ,↑cr+1,↑ + h.c.

)
(58)

+U
(
nr,↑ − 1

2

) (
nr,↓ − 1

2

)
,

which leaves the occupation numbers nr,↓ as strictly con-
served quantities,

[H, nr,↓ ] = [nr,↓, nr′,↓ ] = 0 . (59)

Accordingly, the pertinent Hilbert space is decoupled
into 2L independent subspaces, each corresponding to
one particular configuration of the occupation numbers
{nr,↓}. Each of these configurations in turn serves as a
different realization of a random binary on-site potential
{±U/2 (nr,↑ − 1/2)} for the lighter particles. Hence, the
Falicov-Kimball limit effectively reproduces the single-
particle Anderson model for the spin-↑ particles. Allow-
ing a small mobility of the heavy particles, i.e., a small
but nonzero t↑ > 0, one might expect a similar behavior –
at least for small time scales on which the heavy particles
appear to be static to the light particles. The possibility
of the existence of localization for a finite imbalance ratio
is studied in, e.g., Refs. [39, 43, 68]. In the opposing limit
of equal masses, η = 1, initial nonequilibrium distribu-
tions are expected to decay by diffusion [71]. The density
dynamics in the mass-imbalanced Fermi-Hubbard model
are discussed in detail in Pub. [P4] for the full range of
imbalance ratios 0 ≤ η ≤ 1.
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4. Dynamics Under the Influence of Perturbations

Consider the dynamics of an observable A under some
Hamiltonian H0, which is perturbed by an operator V
with strength ε and thus changes to

H = H0 + εV . (60)

Understanding the effect of this perturbation on the dy-
namics of A is paramount to many theoretical investiga-
tions such as in, e.g., Refs. [15, 44–48]. A desirable out-
come would be a simple and universal relation between
perturbed and unperturbed dynamics. Indeed, this rela-
tion is in many cases expected to be given by a simple
exponential damping function, based on typicality and
random-matrix arguments [46–48]. For example, con-
sider the autocorrelation function ⟨A(t)A⟩. In case of
exponential damping, the relation between the perturbed
(ε > 0) and unperturbed (ε = 0) dynamics is of the sim-
ple form

⟨A(t)A⟩ε>0

⟨A(t)A⟩ε=0

= exp
[
−ε2γt

]
. (61)

To put this into the context of transport, the observable
A could for instance be the current J of some trans-
port quantity. Recalling the discussions in Sec. II C 2,
transport properties of the perturbed quantum system
can be directly inferred from the behavior of the corre-
sponding current autocorrelation functions ⟨J (t)J ⟩ε>0
by calculating the diffusion coefficient with Eq. (47). For
instance, let the current be conserved in the unperturbed
system, i.e., [J ,H0 ] = 0 and thus ⟨J (t)J ⟩ε=0 = const.,
which implies a ballistic scaling of the diffusion coef-
ficient, D(t) ∝ t. Assuming an exponential damping
of the form (61), the current autocorrelation function
⟨J (t)J ⟩ε>0 decays to zero and the diffusion coefficient
remains effectively constant after some time τ , i.e., dif-
fusion sets in with D(t > τ) = D. The decay time τ and
the final value of the diffusion constant D depend on the
damping rate γ and the perturbation strength ε.

Naturally, simple damping functions like the exponen-
tial damping described in Eq. (61) cannot be univer-
sally expected in every single instance, although their
enhanced immanent stability against generic perturba-
tions gives grounds to expect a certain prevalence of such
types of relaxation dynamics [44]. Specifically, it remains
unclear how frequent and under which conditions coun-
terexamples to the exponential damping occur. Pub. [P6]
studies the effect of perturbations on dynamics from the
perspective of projection-operator techniques, which will
be introduced in Sec. IID 5. In particular, the possibility
of nontrivial damping is discussed and illustrated with
numerical simulations in an exemplary physical model
(see also Sec. III [P6]).

D. Numerical and (Semi-)Analytical Toolkit

This section will provide an overview over all methods
that were used in the works presented in this thesis.

1. Exact Diagonalization

The most straightforward yet powerful numerical ap-
proach to quantum physics is to solve the stationary
Schrödinger equation,

H |Ψ⟩ = E |Ψ⟩ , (62)

directly by numerical exact diagonalization (ED) of the
matrix representation of the Hamiltonian H. The ob-
tained eigenstates |n⟩ and corresponding energy eigen-
values En fulfill the eigenvalue equation

H |n⟩ = En |n⟩ . (63)

With knowledge of the full eigensystem of H, the trace
operation in the calculation of expectation values as de-
scribed in Sec. II B can be conveniently carried out in
the energy eigenbasis. This greatly reduces the compu-
tational complexity in the calculation of both thermody-
namic and dynamic quantities. In particular, Eq. (27)
reduces to a simple sum over the eigenstates,

⟨A⟩eq =
1

Zβ
Tr
[
e−βH A

]
(64)

=

(∑

n

⟨n| A |n⟩︸ ︷︷ ︸
Ann

e−βEn

)/(∑

n

e−βEn

)

where the Ann are the diagonal matrix elements of A in
the energy eigenbasis. Similarly, Eq. (32) takes on the
form

⟨A(t)⟩ = Tr [ ρ(t)A ] (65)

=
∑

n,m

⟨n| ρ(0) |m⟩︸ ︷︷ ︸
ρnm

⟨m| A |n⟩︸ ︷︷ ︸
Amn

ei(En−Em)t .

Certainly, while the above calculations on its own are
very inexpensive, ED itself is in turn very demanding
and (mainly for its memory requirements) only feasible
for matrix sizes of about 105 × 105 or less on customary
workstations. Still, not least due to its reliability and
unbiasedness, ED remains an important tool for, e.g.,
benchmarks of other approximate techniques.

2. Quantum Typicality

One important tool harnessed in most of the work here
is the concept of quantum typicality, which will be briefly
introduced in the following. A more in-depth review of
this technique is covered by Pub. [P2], which can be read
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supplementary to this section. The central statement of
typicality is that a single pure quantum state can imitate
the full statistical ensemble or, in other words, that the
expectation values of typical pure states are very close
to the expectation values of the ensemble [18–21, 51, 72].
Simply put, typicality allows to replace the trace in the
canonical ensemble average (27) by a scalar product in-
volving a single pure state |ϕβ⟩,

Tr [ ρβ A ] = ⟨ϕβ | A |ϕβ⟩+ ϵ , (66)

with

|ϕβ⟩ =
√
ρβ |ϕ⟩√

⟨ϕ| ρβ |ϕ⟩
. (67)

Compared to the trace operation over all eigenstates of
the system, the computational cost of this trace estima-
tion is greatly reduced. The so-called typical reference
state |ϕ⟩ is constructed as a random superposition of
states |k⟩ in any arbitrary orthonormal basis,

|ϕ⟩ =
dL∑

k=1

ck |k⟩ , (68)

where the complex coefficients ck are randomly drawn
from a distribution which is invariant under all unitary
transformations in the Hilbert space (Haar measure) [52,
73]. In practice, the real and imaginary parts of these
coefficients can be drawn independently from a standard
normal distribution, though other distributions work as
well [54, 57, 74].
Importantly, the statistical error ϵ = ϵ(|ϕ⟩) arising in

Eq. (66) has zero mean and a standard deviation that is
bounded from above,13

σ(ϵ) < O
(

1√
Zeff

)
, (69)

where the partition function Zeff = Tr
[
e−β(H−E0)

]
with

ground-state energy E0 embodies the effective Hilbert-
space dimension for finite temperatures. In the limit of
high temperatures, limβ→0 Zeff = dL. As a consequence,
ϵ decreases exponentially with increasing system size L,
which renders the approximation (66) close to exact al-
ready for moderate system sizes. This exponential de-
crease of ϵ is expected to slow down for finite tempera-
tures β > 0. To further reduce the typicality error, the
calculation can additionally be averaged over multiple
random states. More details on typicality errors can be
found in, e.g., Refs. [57, 75–77]. The finite-size scaling
and temperature dependence of typicality errors is the

13 Assuming that A is a local operator (or a low-degree polynomial
in system size as, e.g., a sum of L local operators).

main focus of the work published in Ref. [P3], which will
be introduced in Sec. III [P3].

The typicality concept can be extended to the calcula-
tion of dynamical quantities as well and is referred to as
dynamical quantum typicality (DQT) in this context. It
essentially states that if two pure states feature the same
expectation value at some point in time, they will most
likely continue to do so after some arbitrarily long time
evolution [52, 53]. For example, time-dependent correla-
tion functions like those introduced in Eq. (34) can by
calculated as

⟨A(t)A′⟩eq = Tr [ ρβ A(t)A′ ] (70)

= ⟨φβ(t)| A |ϕβ(t)⟩+ ϵ

using the two auxiliary pure states

|φβ(t)⟩ = e−iHtA′ |ϕβ⟩ (71)

and |ϕβ(t)⟩ = e−iHt |ϕβ⟩ .

The time evolution of these pure states can be efficiently
obtained by iterative forward propagation, which will be
discussed in the next section.

Overall, typicality has proven to be a powerful and ver-
satile tool for the numerical treatment of various prob-
lems and systems, with basically the only prerequisite be-
ing the large (effective) Hilbert-space dimension. Recent
work even describe possible applications of typicality in
the context of noisy intermediate-scale quantum (NISQ)
devices [57, 78].

3. Pure-State Propagation

Due to DQT, the principal computational cost in the
study of many-body quantum dynamics can be essen-
tially reduced to the time evolution of pure states. The
latter is described by the time-dependent Schrödinger
equation,

∂
∂t |ψ(t)⟩ = −iH |ψ(t)⟩ , (72)

which is solved by employing the time-evolution operator
U(t) = e−iHt,

|ψ(t)⟩ = e−iHt |ψ(0)⟩ . (73)

Numerically, this time evolution is discretized into small
time steps δt and thus achieved by an iterative forward
propagation with respect to U(δt). There is a variety
of methods available to efficiently evaluate the action
of U(δt) on |ψ⟩ by approximation, including Chebyshev
polynomials [79–82], Krylov-space techniques [83], and
Trotter decompositions [84, 85]. Here, we mainly use a
fourth-order Runge-Kutta scheme [86, 87], which essen-
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tially is a Taylor expansion of U(δt) to fourth order,

|ψ(t+ δt)⟩ = e−iHδt |ψ(t⟩ (74)

≈
4∑

k=0

(−iHδt)k
k!

|ψ(t)⟩ .

All methods above operate on the basis of repetitive
matrix-vector multiplications and thus benefit from the
sparse matrix structure of generic Hamiltonians with few-
body interactions. In particular, the greatly reduced
memory requirement for the matrix storage pushes the
limit of accessible system sizes substantially beyond the
scope of ED. In memory-critical applications, the ma-
trix elements could even be calculated on the fly without
saving them in memory.

In analogy to the evolution in real time, the finite-
temperature state

|ψβ⟩ = e−βH/2 |ψ⟩ (75)

is obtained by means of an iterative forward propagation
in small steps of the inverse temperature β. Since this
imaginary-time evolution does not conserve the norm of
the state, corresponding countermeasures might be nec-
essary to ensure sufficient accuracy in the numerics.

4. Numerical Linked-Cluster Expansion

In the framework of numerical linked-cluster expan-
sions (NLCE) [88, 89], the per-site value of an extensive
quantity on an infinite lattice can be expanded as a sum
over its respective weights Wc calculated on all linked
(sub-)clusters c,

lim
L→∞

⟨X(t)⟩ =
∑

c

LcWc(t) . (76)

The multiplicity factor Lc above accounts for topologi-
cally, symmetrically, or otherwise computationally equiv-
alent clusters and avoids redundant calculations in clus-
ters yielding the same weight. For each cluster c, its
weight is calculated via an inclusion-exclusion principle,

Wc(t) = ⟨X(t)⟩(c) −
∑

s⊂c
Ws(t) , (77)

where the weights of all subclusters s ⊂ c are subtracted

from the finite-size value of the desired quantity ⟨X(t)⟩(c)
calculated on cluster c. Limited by the available compu-
tational resources, the expansion in Eq. (76) has to be
truncated to a maximum cluster size cmax. Due to this
truncation, the NLCE yields reliable results up to a cer-
tain maximum time, which increases with the maximum

cluster size cmax included in the expansion [58, 90, 91].14

Here, DQT proves itself particularly useful to treat clus-
ter sizes as large as possible. Since NLCE can be sensitive
to small statistical errors in the DQT results, additional
averaging over multiple random states might be neces-
sary.

For onedimensional lattices, the only linked subclus-
ters of the lattice are open-boundary chains of different
lengths with multiplicity factor Lc = 1. After applica-
tion of Eq. (77), the truncated expansion reduces to the
simple expression

cmax∑

c=2

Wc(t) = ⟨X(t)⟩(cmax) − ⟨X(t)⟩(cmax−1)
, (78)

i.e., the thermodynamic limit of ⟨X(t)⟩ can be approx-
imated by taking the difference of the corresponding
finite-size values on the two largest clusters with cmax

and cmax − 1.

Beyond onedimensional systems, the NLCE approach
quickly gets more demanding; not solely because of the
rapidly increasing cluster sizes to treat, but rather due to
the immense combinatorial task of identifying all linked
clusters in higher dimensions. Therefore, it may be worth
to make use of the freedom to choose different expan-
sion types, i.e., to reorganize the sum in Eq. (76) to cut
away certain types of subclusters with the truncation.
For example, in two dimensions, the expansion may be
restricted exclusively to rectangular clusters. This way,
the variety in subclusters to take into account in the cal-
culation of the weightW(x,y) of one particular rectangular
cluster c = (x, y) of L = xy sites is greatly reduced and
leaves the manageable expression [93]

W(x,y)(t) = ⟨X(t)⟩(x,y) (79)

−
x∑

x′=1

y∑

y′=1

x′y′<xy

(x− x′ + 1)(y − y′ + 1)W(x′,y′) .

Taking into account the numbers of possible translations
for a particular finite rectangular cluster on an infinite
square lattice conveniently yields the corresponding mul-
tiplicity factor Lc = 1 in the expansion (76) in rectangu-
lar clusters. This expansion type has been successfully
used in the past for entanglement studies [94] and is cen-
tral to Pub. [P5], where it is applied to study quantum
quench dynamics in the transverse-field Ising model (10),
see also Sec. III [P5].

14 NLCEs are also commonly used to calculate thermodynamic
quantities. Here, the convergence of the truncated expansion
is improved to lower temperatures with increasing cmax [89, 92].
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5. Time-Convolutionless Projection Operator Technique

The time-convolutionless (TCL) projection-operator
technique is applied in a perturbation scenario where a
system described by the Hamiltonian H0 is perturbed by
some operator V with strength ε,

H = H0 + εV . (80)

The core concept is to obtain the reduced dynamics of the
system by projecting its density matrix onto the relevant
degrees of freedom. This is achieved with the projection
operator P defined by

P ρ(t) =
1

dL
+

⟨Aρ(t)⟩
⟨A2⟩ A , (81)

where A represents some observable of interest.15 The
TCL formalism then yields a time-local differential equa-
tion for the time evolution of the projected density matrix
in the interaction picture [96, 97],

∂
∂tPρI(t) = G(t)PρI(t) + I(t) (1− P) ρ(0) (82)

with ρI(t) = eiH0te−iHtρ(0)eiHte−iH0t. By choosing the
initial state ρ(0) to be in the span of 1 and A, the in-
homogeneity on the right hand side of Eq. (82) vanishes
due to Pρ(0) = ρ(0). Additionally, the time-dependent
part of the projected density matrix in Eq. (81) can be
related to certain types of correlation functions. In the
Schrödinger picture, this is just the familiar autocorrela-
tion function of A,

C(t) = ⟨Aρ(t)⟩ ∝ ⟨A(t)A⟩ . (83)

In the interaction picture, the related correlation function
has a more complicated time dependence,

CI(t) = ⟨AρI(t)⟩ ∝ ⟨A(t)AI(t)⟩ . (84)

Continuing with Eq. (82), the generator G(t) is expanded
in powers of the perturbation strength,

G(t) =
∞∑

k=1

εkGk(t) , G2k−1 = 0 , (85)

where odd orders usually vanish, as in all cases considered
here. Thus, to lowest order,

∂
∂tPρI(t) = ε2G2(t)PρI(t) , (86)

15 This projection can be extended to additional observables by
adding

∑
i

(
⟨Aiρ(t)⟩ / ⟨A2

i ⟩
)
Ai. All operators {1,A,Ai} partic-

ipating in the projection are without loss of generality assumed to
be orthogonal under the trace operation, ⟨A⟩ = ⟨Ai⟩ = ⟨AAi⟩ =
⟨AiAj ̸=i⟩ = 0 [95].

where

G2(t) = ε2
t∫

0

dt′ PL(t)L(t′)P (87)

with the Liouvillian superoperator L(t) • = −i[VI(t), •]
and VI(t) = eiH0t V(0) e−iH0t. This leads to a rate equa-
tion for the time evolution of Eq. (84) in the interaction
picture,

∂
∂t ⟨A(t)AI(t)⟩ = −ε2 γ2(t) ⟨A(t)AI(t)⟩ , (88)

where the corresponding time-dependent damping rate
γ2(t) is calculated from

γ2(t) =

t∫

0

dτ k2(τ) (89)

with the second-order kernel k2(τ),

k2(τ) =
⟨i[A,VI(τ)]i[A,VI]⟩

⟨A2⟩ . (90)

If the kernel decays and stays zero after some time τ ′,
k2(τ > τ ′) = 0, the damping rate assumes a constant
value, γ2(τ > τ ′) = const., afterwards.

Finally, Eq. (88) is solved by an exponential decay of
the correlation function ⟨A(t)AI(t)⟩,

⟨A(t)AI(t)⟩
⟨A2⟩ = exp

[
− ε2

t∫

0

dt′ γ2(t
′)
]
. (91)

Consequently, with knowledge of the kernel k2 and the
reference dynamics with respect to the unperturbed H0,
the dynamics for different perturbation strengths ε can
be produced without much effort. In contrast, calculating
the correlation functions ⟨A(t)AI(t)⟩ directly for various
values of ε would require substantially more work. If we
were to employ DQT, the calculation could be done in
analogy to Eq. (70),

⟨A(t)AI(t)⟩ =
⟨ϕ(t)| A |φ(t)⟩

⟨ϕ|ϕ⟩ + ϵ (92)

with the auxiliary pure states

|ϕ(t)⟩ = e−iHt eiH0t |ϕ⟩ (93)

and |φ(t)⟩ = e−iHt eiH0tA |ϕ⟩

using the typical state (68). Numerically calculating the
time dependence of these states is considerably more de-
manding compared to Eq. (70), since each time step in-
volves an additional backwards propagation with respect
to the reference Hamiltonian H0.

The TCL technique is typically used in situations
where the observable of interest is conserved under the
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reference Hamiltonian, i.e., when [A,H0 ] = 0. In
this case, since AI(t) = A, the exponential damping in
Eq. (91) carries over to the standard autocorrelation
function ⟨A(t)A⟩. For small enough time scales, this is
still reasonable to assume in situations where A may not
be conserved under H0, but shows sufficiently slow dy-
namics, i.e., [A,H0 ] ≈ 0. Additionally, the expression
for the damping kernel k2(t) in Eq. (90) can be simpli-
fied and calculated with DQT in analogy to Eq. (70),

k2(t) ∝ ⟨KI(t)K⟩ = ⟨ϕ(t)| K |φ(t)⟩
⟨ϕ|ϕ⟩ + ϵ . (94)

We define K = [A,V ] and KI(t) = eiH0tKe−iH0t and use
the two auxiliary states

|ϕ(t)⟩ = e−iH0t |ϕ⟩ (95)

and |φ(t)⟩ = e−iH0tK |ϕ⟩

where |ϕ⟩ again is the typical state (68). When A is not
conserved under the reference Hamiltonian, i.e., when
[A,H0 ] ̸= 0, the damping kernel can still by obtained
with DQT in a similar fashion. With some rearrange-
ments of the commutators in Eq. (90) and a different set
of auxiliary states,

|ϕ(t)⟩ = e−iHot |ϕ⟩ (96)

and |φ(t)⟩ = e−iH0t [A, [V,A ] ] |ϕ⟩ ,

we find

k2(t) ∝ ⟨[A,VI(t) ] [A,V ]⟩ (97)

=
⟨ϕ(t)| V |φ(t)⟩

⟨ϕ|ϕ⟩ + ϵ .

From a numerical point of view, this formulation is es-
pecially handy if the perturbation V is diagonal in the
employed working basis.
Let us conclude this introduction of the TCL technique

with a short remark on the roles of the correlation func-
tions in Eqs. (83) and (84). Naturally, the interest is pri-
marily on the standard autocorrelation function ⟨A(t)A⟩,
which is why TCL is usually employed in situations where
[A,H0 ] ≈ 0. Otherwise, in cases where [A,H0 ] ̸= 0,
the corresponding correlation function ⟨A(t)AI(t)⟩ yields
no immediate information on the more physical quan-
tity ⟨A(t)A⟩. However, from a conceptional point of
view, it still does provide interesting insights into the
damping mechanism in that scenario, see Pub. [P6] and
Sec. III [P6] for more information.

6. Symmetry-Adapting Procedure

Any numerical treatment of quantum many-body sys-
tems, regardless of its particular nature, is in one way
or another ultimately limited by the exponential growth
of the underlying Hilbert-space dimension. To alleviate
this, one often resorts to the use of symmetries like those
discussed in Sec. IIA 4 in order to push the limit of com-
putationally available system sizes. The basic underly-
ing strategy here is to carry out calculations in smaller
symmetry-invariant subspaces of the Hilbert space by
transforming to a symmetry-adapted basis. With this
transformation, the Hamiltonian matrix is brought to a
block diagonal form (sketched below), where each block
is assigned to a different value of a conserved quantum
number Q and can be treated independently.

H

H(Q)

H(Q)

H(Q)

Some symmetries can be conveniently employed by
simply choosing an appropriate orthonormal basis from
the start, as is the case for the continuous spin-rotational
U(1) and SU(2) symmetries in the Heisenberg spin model
introduced in Sec. II A 4. For example, given a spin-s
chain of length L, the product basis

BU(1) =
{

|m1, . . . ,mL ⟩
∣∣∣mr ∈ {−s, . . . , s}

}
(98)

is constructed from all eigenstates |mr⟩ of the local szr
operators.16 This is also the eigenbasis of the total Sz op-
erator and therefore already adapted to the correspond-
ing U(1) symmetry by design. The block diagonal form
of H is thus conveniently achieved by sorting the states
|m1, . . . ,mL ⟩ according to their total magnetic quantum
number M =

∑
rmr. Corresponding subspace dimen-

sions dimH(M) can be found in a combinatorial manner.
A symmetrized basis with respect to the SU(2) sym-

metry can be formed from the eigenstates of the associ-
ated total spin operator S2,

BSU(2) =
{
|αSM ⟩

}
, (99)

which is an eigenbasis of Sz as well, since U(1) is a sub-
group of SU(2). Sorting the states |αSM ⟩ with respect
to the total spin quantum number S and additionally by
M then splits the block diagonal form of H into even
smaller blocks, compared to using BU(1). Furthermore,

16 For the sake of a cleaner notation, the spin quantum number s
is dropped here.
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invoking the Wigner-Eckart theorem, the matrix blocks
are actually independent of M and it suffices to consider
only the subspaces with, e.g., S =M . The basis states in
BSU(2) are constructed by coupling all L spins according
to some arbitrary but fixed coupling scheme. Here, α con-
tains the (possibly different) local spin quantum numbers
sr, arranged with an additional set of intermediate spin
quantum numbers S̄i, to encode the coupling scheme and
to distinguish different states of the basis. For instance,
the basis states corresponding to four successively cou-
pled spins read |αSM ⟩ = | (((s1, s2)S̄1, s3)S̄2, s4)SM ⟩.
The set of possible intermediate spin quantum num-
bers is determined by the well-known fundamental spin
coupling rule, where two spins s and s′ are coupled to
S̄ ∈ {|s − s′|, |s − s′| + 1, . . . , s + s′}. It should be men-
tioned that implementing the matrix representation of
the Heisenberg spin Hamiltonian with respect to the ba-
sis BU(1) using the form Eq. (6) is a straightforward task,
while in the basis BSU(2) some extra work is required.
Specifically, the Hamiltonian has to be expressed in terms
of irreducible tensor operators that are connected to com-
pound tensors according to the same coupling scheme as
the states |αSM ⟩ (see Ref. [98] and references therein).
In principle, a change of basis between BU(1) and BSU(2)

can be achieved with the help of a transformation matrix
comprised of a multitude of Clebsch-Gordan coefficients.

Other symmetries, like the discrete lattice symmetries
mentioned in Sec. II A 4, may involve a more complicated
symmetry adapting procedure, although it can be stated
in a very general manner. A universal understanding
of this procedure requires a little detour into the realm
of group and representation theory, which is narrowed
down to the theoretical minimum below. Let G be a
discrete group of symmetry operations g commuting with
the Hamiltonian H,

[H,D(g) ] = 0 ∀g ∈ G . (100)

D(g) denotes the operator associated with the symme-
try operation g acting on the same Hilbert space as the
Hamiltonian H. As a central result from group theory,
the representation of D(g) with respect to any orthonor-
mal basis {|Ψi⟩ | i = 1, . . . , dL} is in general reducible,
meaning that it can be simultaneously block-diagonalized
for all g. In other words, the Hilbert space H can be
decomposed into smaller subspaces H(k) that are invari-
ant under all symmetry transformations contained in G.
Here, k labels different irreducible representations (ir-
reps) of G. Amongst other properties, their dimensions
dk as well as their characters17 Γ(k)(g) associated with
each group element g are completely known for any fi-

nite group. The corresponding basis states |Ψ(k)
i ⟩ can be

17 The character of an irrep is a complex number and given by its
trace.

obtained by applying the symmetry projection operator

P(k) =
dk
|G|

∑

g∈G
Γ(k)(g)D(g) (101)

to the initial basis states |Ψi⟩, where |G| is the order
of the group and Γ denotes the complex conjugate of Γ.
Importantly, with Eq. (100), the matrix representation
of H transforms into the same block-diagonal shape as

for the D(g) when using the symmetrized basis |Ψ(k)
i ⟩.

The simplest example for the symmetry projection
(101) is the (anti-)symmetrization of any two-particle
wave function Ψ(x1, x2) to obtain

Ψ±(x1, x2) = 1
2 [Ψ(x1, x2)±Ψ(x2, x1)] , (102)

which are eigenstates of the operator S exchanging the
two particles,

SΨ±(x1, x2) = ±Ψ±(x2, x1) . (103)

The underlying symmetry group here is the cyclic group
of order two, Z2, with dk = 1 and characters Γ(k)(g) =
±1.

Another commonly used symmetry is the translational
symmetry of lattice systems with periodic boundary con-
ditions, generated by the operator T that shifts each site
r → r + 1. The characters of the associated symmetry
group CL are given by the L-th roots of unity

Γ(k)(T l) = e
2πikl
L (104)

with k, l = 0, . . . , L − 1. With this, the projection oper-
ator

P(k)
CL

=
1

L

L−1∑

l=0

Γ(k)(T l) T l (105)

yields the symmetrized basis states for L invariant sub-
spaces of approximately equal dimension [99].

In principle, the exploitation of symmetries by means
of the projection operator (101) is very straightforward
from a mathematical point of view. However, the actual
numerical implementation may get quite challenging with
various hurdles and subtleties emerging along the way to
potentially obstruct the benefits of the symmetry reduc-
tion. For instance, the action of the projection operator
(101) on the states of a given basis set may be very com-
plicated and difficult to handle numerically. Publication
[P1] is exclusively dedicated to one particular example,
where the spin-rotational symmetry and the translational
symmetry of isotropic spin systems are combined, see also
Sec. III [P1].
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III. GUIDE TO PUBLICATIONS

This section gives an overview over the work that
has been published in Refs. [P1–P6] and a brief discus-
sion of the results presented therein. Refs. [P1–P3, P5]
focus on rather methodological aspects such as details
of the quantum typicality approach, symmetry adap-
tation and NLCE studies in two dimensions. With a
stronger link to physical questions in the broader con-
text of transport dynamics in quantum lattice models,
Refs. [P4] and [P6] came about in the context of local-
ization and perturbation effects on dynamics, as outlined
in Secs. II C 3 and IIC 4.

[P1]. Combined Use of Translational and
Spin-Rotational Invariance for Spin Systems

The work published in Pub. [P1] originated in the
pre-PhD phase and addresses the simultaneous utiliza-
tion of two available symmetries. Specifically, the spin-
rotational SU(2) symmetry is used in combination with
the translational symmetry CL to enable the complete
exact diagonalization of comparatively large isotropic
Heisenberg spin rings. To this end, the SU(2)-invariant
basis BSU(2) described in Sec. IID 6 serves as a start-
ing point and is adapted to the translational symmetry
CL by application of the corresponding symmetry pro-
jection operator (105). As indicated earlier, the applica-
tion of the symmetry projection to the states of BSU(2),
though mathematically straightforward, entails some in-
tricacies in the practical implementation. The main dif-
ficulty here is that the translated states T l |αSM ⟩ aris-
ing in the projection generally belong to different basis
sets B′

SU(2) since the defining coupling scheme is changed

by each translation. For example, considering the state
|αSM ⟩ = | (((s1, s2)S̄1, s3)S̄2, s4)SM ⟩, one translation
yields T |αSM ⟩ = | (((s2, s3)S̄′

1, s4)S̄
′
2, s1)SM ⟩. In or-

der to proceed with the translated states, they have to
be expressed in terms of the basis states in the original
coupling scheme,

T l |αSM⟩ =
∑

α′

|α′SM⟩ ⟨α′SM | T l |αSM⟩ .

This is a crucial difference compared to the basis BU(1),
where each translated state yields just another state from
the same basis set,

T |m1, . . . ,mL−1,mL ⟩ = |m2, . . . ,mL,m1 ⟩ .

For that reason, translational symmetries are very com-
monly applied in the basis BU(1), whereas BSU(2) is rarely
used in combination with any point-group symmetries
(see, e.g., Ref. [98] and references therein), if at all. The
computational cost of the symmetry adaption in the ba-
sis BSU(2) strongly depends on the complexity of the

so-called recoupling coefficients ⟨α′SM | T l |αSM⟩ and

could potentially exceed the cost of just using the original
basis BSU(2) without any additional symmetries. The key
for a beneficial combination of CL and SU(2) is to find
a coupling scheme that itself obeys the given real-space
symmetry as closely as possible and therefore produces
simple recoupling coefficients. For small point groups
containing just a few reflections and or rotations, like
D2 and D4, this can easily be achieved. However, the
more symmetries are taken into account, the more diffi-
cult it gets to find a suitable coupling scheme. For CL
(as well as presumably other symmetry groups), a suited
coupling scheme was found to be one comprising a hier-
archical structure with equally sized groups of coupled
(intermediate) spins on each level. The respective group
sizes should be as small as possible and are thus given by
the prime factors of the system size L. Combined with
the right arrangement of the original spins in the cou-
pling tree, the coupling scheme is only locally affected by
a translation of all sites (see exemplary sketch below).
This effect is the strongest for system sizes containing
small prime factors, with the ideal case being L = 2n

with n ∈ {2, 3, 4, . . . }.

S

1 5 9 3 7 11 2 6 10 4 8 12

S

2 6 10 4 8 12 3 7 11 5 9 1

The publication also includes some illustrating numer-
ical results, showing energy spectra as well as thermody-
namic observables obtained from the exact diagonaliza-
tion of comparably large spin systems.

It is worth pointing out some possible future directions
where the results in Pub. [P1] could be employed, par-
ticularly in combination with other concepts discussed in
this thesis. Recalling the introduction of quantum typi-
cality in Sec. IID 2, the typical reference states (68) can
be constructed in any orthonormal basis, including the
symmetry adapted basis BSU(2). Of course, to really ben-
efit from the corresponding symmetry reduction, the ob-
servable of interest should possess the same symmetries
as those incorporated in the symmetrized basis. Possible
choices include energy currents or thermodynamic quan-
tities such as heat capacity or magnetic susceptibility.
Regarding the latter, other typicality-based techniques
such as the finite-temperature Lanczos method (FTLM)
could also be employed in the symmetrized basis BSU(2).
Either way, the sparseness of the matrix blocks of H is
the key to go far beyond the treatable system sizes in ED.
Then again, the sparseness heavily depends on the cou-
pling scheme chosen for BSU(2) (with and without addi-
tional point-group symmetries), see App. A 1 for a short
demonstration. Lastly, any use case mentioned above
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can potentially be combined with NLCE. Here, the use
of lattice symmetries is very restricted, which in turn fa-
vors the higher spin-space symmetry SU(2) against U(1).

[P2]. Selected Applications of Typicality to
Real-Time Dynamics of Quantum Many-Body

Systems

Pub. [P2] essentially presents a reference guide to se-
lected applications of the quantum typicality concept and
can therefore be read in tandem with the brief introduc-
tion in Sec. IID 2. In particular, Pub. [P2] provides a
detailed overview of implications of DQT for the calcu-
lation of the density of states (DOS) as well as dynam-
ical quantities such as, e.g., time-dependent equilibrium
correlation functions and far-from-equilibrium dynamics
with possibly non-stationary Hamiltonians. Addition-
ally, the versatility of DQT in combination with other
(numerical or analytical) techniques is described by the
example of NLCE (see also Sec. IID 4) and TCL (see
also Sec. IID 5). Key aspects are demonstrated based on
specific examples and accompanied by illustrative figures
and plots showing data from previous publications.

[P3]. Finite-Size Scaling of Typicality-Based
Estimates

Recalling the introduction of the typicality concept in
Sec. IID 2, the canonical expectation value (27) of a given
observable can be approximated by a single random state
according to Eq. (66). The accuracy of this approxi-
mation is assessed on basis of Eq. (69), i.e., an upper
bound for the standard deviation σ(ϵ) of the statistical
error that arises during the random-state approximation
of the trace. Similar estimates also exist for other closely
related techniques that all rely on some kind of random-
state based approach [57, 75, 76, 100]. In Pub. [P3], the
accuracy of typicality-based estimates is probed numeri-
cally with a focus on (i) the full probability distribution
of random-vector expectation values, as well as (ii) the
full temperature dependence of corresponding standard
deviations. As a testing ground, the magnetic suscepti-
bility χ(T ) [cf. Eq. (28)] and the heat capacity C(T ) [cf.
Eq. (29)] are considered in various quantum spin systems.
In the first part of Pub. [P3], the probability distribu-

tions of random-vector expectation values are studied in
the isotropic spin-1/2 Heisenberg chain (5) for different
chain lengths L ≤ 20 and inverse temperatures βJ = 0
and βJ = 1. To this end, a large sample of estimates

⟨r| A e−βH |r⟩
1
R

∑R
r=1 ⟨r| e−βH |r⟩

is obtained from R ∼ 104 − 106 different random states
|r⟩ and subsequently collected in histograms. Starting
in the high-temperature limit βJ = 0, the resulting dis-
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Figure 5. Exemplary plot of expectation-value distribu-
tions for the magnetic susceptibility at different temperatures
adapted from Pub. [P3].

tributions are well described by Gaussian functions over
several orders of magnitude, in line with Ref. [77]. Com-
paring the distributions for different system sizes L, the
width of these Gaussians (i.e., the standard deviation)
evidently decreases with the square root of the Hilbert-
space dimension dL, in accordance with Eq. (69). Switch-
ing to finite temperature βJ = 1, a similar picture is ob-
served, while the width of the distributions is generally
larger and some asymmetry is visible for the broader dis-
tributions. Additionally, the standard deviation scales
slower with system size L, due to the smaller effective
Hilbert-space dimension Zeff < dL.

In the second part of Pub. [P3], the temperature
dependence of the standard deviation σ(ϵ) is studied
for various quantum spin models, including spin- 12 and

spin-1 Heisenberg chains, critical spin- 12 delta chains,

as well as cuboctahedra with spins s = 3
2 , 2, and 5

2 .
A Krylov-space expansion is used to treat considerably
larger system sizes, which in turn yield much narrower
expectation value distributions. The results show the
expected scaling of σ(ϵ) ∝ 1/

√Zeff for sufficiently high
temperatures. For very low temperatures, the scaling of
the standard deviation becomes more complicated and
depends on the specific model and observable under con-
sideration. This fact notwithstanding, the trace estima-
tion by random vectors is shown to provide very accurate
approximations for thermodynamic observables and can,
in any case, be improved by averaging over multiple in-
dependent random vectors.
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[P4]. Density Dynamics in the Mass-Imbalanced
Hubbard Chain

In the context of Sec. II C 3, the mass-imbalanced ver-
sion of the Fermi-Hubbard model (11) with imbalance
η = t↓/t↑ between the hopping amplitudes was intro-
duced as a candidate for a translationally invariant quan-
tum many-body system featuring localization. Pub. [P4]
studies how this mass imbalance affects the equilibration
dynamics of the lighter spin-↑ particles by inspecting the
dynamics of local densities

pr,↑(t) = ⟨ψ(t)|nr,↑ |ψ(t)⟩ ,

from the time evolution of pure states featuring a sharply
peaked density profile at time t = 0. In particular, the
initial states are prepared via the projection

|ψ(0)⟩ ∝ nL/2,↑ |ϕ⟩ ,

where the state |ϕ⟩ is constructed as the typical random
state (68). With this choice of |ψ⟩, the initial profile
of the local densities pr,↑ takes a peaked shape, simi-
lar to Eq. (49). Additionally, with typicality arguments,
the obtained dynamics can be related to spatio-temporal
equilibrium correlation functions,

pr,↑(t)− peq. =2 ⟨(nL/2,↑ − peq.)[nr,↑(t)− peq.]⟩+ ϵ .

Using an efficient pure-state propagation scheme for the
time evolution (cf. Sec. IID 3) in combination with avail-
able symmetries, systems with sizes of up to L = 15
are simulated for various imbalance ratios 0 ≤ η ≤ 1.
The obtained data is assessed from multiple perspectives,
such as the shape of the full density distributions for fixed
times, the scaling of the corresponding spatial width, as
well as the decay of density modes in momentum space
(cf. Sec. II C 2).

Starting in the Falicov-Kimball limit, η = 0, the im-
mobile spin-↓ particles are expected to act as a static
disorder potential18 for the spin-↑ particles, as outlined
in Sec. II C 3. Indeed, in accordance with the anticipated
Anderson localization, the initial density peak broadens
just a little but stays concentrated around the center
of the chain, while the spatial width remains constant
at a value that corresponds to the Anderson localiza-
tion length. In contrast, in the opposing limit of equal
masses, η = 1, we see clean signatures of diffusion as
also reported in Ref. [71]. In particular, the density pro-

18 On a side note, let us explore some interesting numerical im-
plications of the Falicov-Kimball limit: In principle, we could
make use of the occupation number conservation in this limit
and decouple the computation into 2L independent subspaces.
However, in not doing so, we automatically average over all pos-
sible disorder realizations encoded in the superposition of all 2L

configurations of spin-↓ particles, which may be seen as a digital
quantum simulation of the random potential [101].
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Figure 6. Exemplary plot of density profiles for different times
and mass-imbalance ratios adapted from Pub. [P4].

files for fixed times t are very well described by Gaus-
sian functions [cf. Eq. (50)], where the corresponding
width Σ(t) is obtained via Eq. (44). The spatial width
in turn shows a diffusive scaling Σ(t) ∝

√
t. Addition-

ally, a discrete Fourier transformation of the real-space
density data according to Eq. (51) reveals exponentially
decaying density modes in momentum space in line with
Eq. (53). Away from the balanced limit, diffusive trans-
port can still be observed for moderate imbalance ratios
η ≳ 0.6, though first indications of a shift to anomalous
diffusion become noticeable. A slight slowdown in the
equilibration dynamics is apparent, hinting at a shift to
anomalous diffusion with increasing imbalance. Indeed,
moving to stronger imbalance ratios η ≲ 0.6, the anoma-
lous diffusion becomes more pronounced and manifests in
an exponential shape of the density profiles and subdif-
fusive scaling of the spatial width, as well as significantly
slower decaying density modes. However, for any finite
imbalance ratio η > 0, the behavior is clearly distinct
from the localizing case η = 0, as seen in a direct com-
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parison of the dynamics of the central density pL/2,↑(t),
the spatial width Σ(t), and the density mode pq,↑(t) with
q = 2π/L. For very small η, the corresponding curves
may agree with the localizing limit η = 0 for some short
time period, but they all separate and slowly start to
equilibrate eventually. As discussed in more detail in
Pub. [P4], this separation time can be interpreted as an
η-dependent “lifetime” of the effective Anderson insula-
tor, i.e., a time scale on which the heavy spin-↓ particles
appear to be static to the spin-↑ particles. This lifetime
is found to grow fast with decreasing η, but remain finite
for any η > 0. Consequently, anomalous diffusion ulti-
mately impedes localization for any finite mobility t↓ > 0.
This is in line with the results of Refs. [39, 43, 68] and in
particular Ref. [102], where the mass-imbalanced Fermi-
Hubbard model was recently probed experimentally.

[P5]. Quantum Quench Dynamics in the
Transverse-Field Ising Model: A Numerical
Expansion in Linked Rectangular Clusters

In Pub. [P5], the NLCE approach (cf. Sec. IID 4)
is employed to study quantum quench dynamics in the
transverse field Ising model (10) for different lattice ge-
ometries in one and two dimensions. Here, the physical
scenario serves primarily as a test environment to eval-
uate the performance of the NLCE technique. In par-
ticular, an expansion comprising only rectangular clus-
ters [cf. Eq. (79)] is tested in the twodimensional square
lattice, where the time scales numerically attainable by
other computational approaches are still comparatively
short. The dynamics are obtained from the time evolu-
tion of initial states that are fully aligned in either the x-
or the z-direction, |ψ(0)⟩ = |↑⟩ and |ψ(0)⟩ = |→⟩. These
states are each eigenstates of the Ising Hamiltonian for
either one of the limits g = 0 and g → ∞, respectively.
The dynamics of the transverse and longitudinal magne-
tization

⟨X(t)⟩ = 1

L

∑

r

⟨ψ(t)| sxr |ψ(t)⟩

and ⟨Z(t)⟩ = 1

L

∑

r

⟨ψ(t)| szr |ψ(t)⟩

are studied for different finite values of g, where the states
|↑⟩ and |→⟩ are no longer eigenstates of H and acquire a
nontrivial time dependence. In order to simulate cluster
sizes as large as possible while at the same time achiev-
ing sufficiently accurate results, the time evolution of the
states |ψ(t)⟩ is obtained by means of an efficient pure-
state propagation via Chebyshev polynomials.
Starting in one dimension with the exactly solv-

able Ising chain, the NLCE is readily performed us-
ing Eq. (78). The obtained dynamics are compared to
direct simulations of finite chains with open and peri-
odic boundary conditions and additionally benchmarked
against analytical results. As an intermediate step to-

wards two dimensions, quasi-onedimensional two- and
three-leg ladders are studied, where the NLCE is still
obtained by Eq. (78) using ladders of different lengths.
Lastly, for the twodimensional square lattice, the NLCE
is carried out in rectangular clusters following Eq. (79).
In addition to the comparison to direct simulations of
finite systems, the NLCE results are compared to other
numerical results from relevant literature. In general,
the data reveals good convergence times of the NLCE
that gradually increase with the maximum chain length
cmax. In most cases, NLCE yields a better convergence
to the thermodynamic limit than any direct simulations
of finite systems, particularly when finite-size effects are
comparatively strong. When applied to twodimensional
lattices, NLCE is shown to be competitive to other state-
of-the-art numerical methods. Additionally, the practical
advantage of using the rectangular expansion is demon-
strated in a direct comparison to a “full” NLCE compris-
ing all (including nonrectangular) clusters.

[P6]. Nontrivial Damping of Quantum Many-Body
Dynamics

As discussed in Sec. II C 4, the perturbation of a given
Hamiltonian is often expected to give rise to an ex-
ponential damping of the dynamics governed by that
Hamiltonian. Pub. [P6] studies the effect of perturba-
tions on time-dependent correlation functions from the
perspective of the TCL projection-operator technique
(cf. Sec. IID 5). Within this framework, the first part
of Pub. [P6] establishes the main result: perturbation-
induced exponential damping may only emerge for the
time-dependent part of the density matrix in the interac-
tion picture, but not necessarily in the Schrödinger pic-
ture. As also evident from the descriptions in Sec. IID 5,
the time-dependent part C(t) of the projected density
matrix is a central quantity within the TCL approach.
The latter is innately formulated in the interaction pic-
ture and predicts an exponential damping of CI(t) in the
lowest-order contribution of an expansion in the pertur-
bation strength ε. Relating C(t) and CI(t) to different
kinds of correlation functions,

C(t) ∝ ⟨A(t)A⟩
and CI(t) ∝ ⟨A(t)AI(t)⟩ ,

the exponential damping can be equivalently expected
for ⟨A(t)AI(t)⟩,

⟨A(t)AI(t)⟩
⟨A2⟩ = exp

[
− ε2

t∫

0

dt′ γ2(t
′)
]
,

but not necessarily for the “standard” correlation func-
tion ⟨A(t)A⟩. Only if the observable A commutes with
H0, i.e., if C(t) = CI(t), the TCL prediction carries over
to ⟨A(t)A⟩. However, in general, the Schrödinger and
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Figure 7. Exemplary plot of a nontrivial relation between per-
turbed and unperturbed dynamics adapted from Pub. [P6].

the interaction picture are not the same,19

⟨A(t)A⟩ε>0

⟨A(t)A⟩ε=0

̸= ⟨A(t)AI(t)⟩
⟨A2⟩ .

In particular, the relation between perturbed and unper-
turbed dynamics in the Schrödinger picture may be far
from trivial when the dynamics in the unperturbed sys-
tem possesses rich features.
The second part of Pub. [P6] provides illustrating re-

sults from numerical simulations of charge transport in
the extended Fermi-Hubbard chain [cf. Eqs. (11)+(14)].
For two different perturbation scenarios, time-dependent
correlation functions of the charge current A ≡ J are cal-
culated for different perturbation strengths ε using DQT
[cf. Eqs. (70)+(92)]. In order to compare the DQT re-
sults to the lowest-order TCL prediction, the correspond-
ing time-dependent kernel k2(t) is calculated according
to Eq. (97) to obtain the damping rate γ2(t). While the
DQT data is obtained for system sizes of up to L = 16,
the behavior of the TCL damping rate γ2(t) in the limit
L → ∞ can be extrapolated from the finite-size scaling
of the kernel k2(t).
First, a noninteracting reference Hamiltonian H0 is

considered, where the charge current is conserved,

[J ,H0 ] = 0 ⇒ C(t) = CI(t) .

Additional particle-particle interactions then act as a
perturbation which leads to the decay of the current auto-
correlation function ⟨J (t)J ⟩ = ⟨J (t)JI(t)⟩. This decay
gets faster with increasing ε while changing from expo-
nential to Gaussian relaxation for stronger ε, in line with
the lowest-order TCL prediction. A direct comparison of
the DQT and the TCL results shows a remarkably good
agreement over a wide range of perturbation strengths,
where small deviations might be either related to residual
finite-size effects in the DQT data or missing higher-order
corrections in the TCL results.

In the second perturbation scenario, a strongly inter-
acting reference Hamiltonian is considered, where J is
not conserved,

[J ,H0 ] ̸= 0 ⇒ C(t) ̸= CI(t) ,

and the unperturbed dynamics of ⟨J (t)J ⟩ instead ex-
hibits strong oscillations. Perturbed by additional
nearest-neighbor interactions, frequencies and zero cross-
ings of these oscillations vary with the perturbation
strength ε. The corresponding ratio between perturbed
and unperturbed dynamics is thus highly nontrivial, as
also shown in Fig. 7. Conversely, in the interaction pic-
ture, the behavior of the correlation function ⟨J (t)JI(t)⟩
for different perturbation strengths is comparable to
the one observed in the first perturbation scenario and
matches the lowest-order TCL prediction. The DQT re-
sults agree well with the TCL results, albeit with stronger
finite-size effects inherited from the reference dynam-
ics. Owing to the considerably higher computational cost
in calculating the more complicated correlation function
⟨J (t)JI(t)⟩, the DQT and the TCL data is compared for
a smaller system size L = 12.

The results in Pub. [P6] suggest various future direc-
tions of research, including further testing of similar per-
turbation scenarios in a wider selection of models. In par-
ticular, the possibility of nontrivial damping in other sce-
narios, e.g., induced by random perturbations, as well as
the influence of integrability (of the unperturbed Hamil-
tonian) remain to be explored in detail.

19 Note that, in the context of this publication, the distinction be-
tween Schrödinger picture and interaction picture always refers

to the time dependence of the projected density matrix.
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IV. SUMMARY AND CONCLUSION

The publications [P1–P6] have addressed various as-
pects in theoretical studies of isolated quantum many-
body systems. Different topics have been studied in
the broader context of transport and relaxation dynam-
ics in quantum lattice systems. First, the alteration
of relaxation dynamics induced by a mass imbalance
between interacting particle species was investigated in
Pub. [P4]. Numerical studies of density dynamics in the
mass-imbalanced Fermi-Hubbard chain have shown that
diffusive transport persists beyond the limit of small im-
balances to moderate imbalances and becomes anoma-
lous for stronger imbalances. On the other hand, while
transport is suppressed in the limit of infinite mass im-
balance (i.e., if one particle species is immobile), this ef-
fective localization has been shown to give way to anoma-
lous diffusion as soon as the heavy particles gain a finite
mobility.
Second, the way in which generic perturbations affect
given reference dynamics was investigated from the per-
spective of projection-operator techniques in Pub. [P6].
As a main result, it was shown that simple exponential
damping, which is expected in the overwhelming major-
ity of cases, may only occur for the density matrix in
the interaction picture. Within this approach, this sim-
ple damping only carries over to the time dependence of
standard correlation functions in certain cases. In par-
ticular, it was demonstrated that nontrivial damping can
occur in physically relevant perturbation scenarios.
A considerable portion of this work concerned method-

ological aspects in the implementation of powerful nu-
merical and (semi-)analytical tools to overcome the en-
hanced computational complexity in numerical studies
of quantum many-body systems. The concept of typ-
icality was harnessed in most of the numerical studies
and in the focus of Pubs. [P2] and [P3]. It also proved
versatile in combination with other approaches such as
numerical linked-cluster expansions and projection oper-
ator techniques. Numerical linked-cluster expansions in
two dimensions were in the focus of Pub. [P5]. The uti-
lization of available symmetries played an important role
throughout the work and was improved in Pub. [P1] for
specific use cases.
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Appendix A: Unpublished Results

1. Sparse-Matrix Techniques in the
SU(2)-Symmetric Spin-Coupling Basis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 8. Successive coupling scheme of 16 spins in ascending
order. The connecting paths between interacting spins for two
exemplary local Hamiltonians h4 = s4 · s5 and h12 = s12 · s13
are highlighted in color. Red color indicates the relevant in-
termediate spin quantum numbers on each path.

The sparse matrix structure of generic few-body
Hamiltonians is crucial for the efficiency of numerical
methods that rely on repetitive matrix-vector multipli-
cations. When using the SU(2) symmetry of isotropic
spin Hamiltonians [cf. Eq. (5)], the corresponding matrix
structure of H depends heavily on the chosen coupling
scheme in the spin-coupling basis BSU(2) (cf. Sec. IID 6).
A detailed description of the selection rules for non-
vanishing matrix elements of H in BSU(2) would re-
quire an in-depth analysis of the underlying formalism
(see Ref. [98] and references therein) and goes beyond
the scope of this short outline. Let us rather formu-
late a rule of thumb for nonvanishing matrix elements
⟨αSM |H |α′SM⟩ on the basis of the coupling scheme

Figure 9. Each panel shows the matrix structure corre-
sponding to one of the local terms hr = sr · sr+1 of the
isotropic Heisenberg Hamiltonian (5) with L = 16 in the
(S = 4)-subspace, represented in the basis BSU(2) using the
coupling scheme depicted in Fig. 8. The bottom right panel
corresponds to the term h16 = s16 · s1.

8 9 10 7 11 6 12 5 13 4 14 3 15 2 16 1

Figure 10. Successive coupling scheme of 16 spins in adapted
order. In analogy to Fig. 8, connecting paths for local Hamil-
tonians h6, h3, and in particular h16 are highlighted in color.

and illustrate it with two examples. To begin with, re-
call that each state |αSM⟩ in the basis BSU(2) is uniquely
defined through the set of intermediate spin quantum
numbers S̄i encoded in α. For any local Hamiltonian
hr = sr · sr+1, the only quantum numbers S̄i that are
allowed to differ between two states |αSM⟩ and |α′SM⟩
such that ⟨αSM |hr |α′SM⟩ ≠ 0 are those crossed by the
connecting path between the interacting spins in the cou-
pling tree. The shorter these connecting paths are (i.e.,
the less intermediate spins are crossed by each path),
the less nonvanishing matrix elements arise. To illus-
trate this, two exemplary coupling schemes are shown in
Figs. 8 and 10. The corresponding matrix plots are shown
in Figs. 9 and 11 for each individual local Hamiltonian
hr. In the first coupling scheme, most paths involve only
one relevant intermediate spin S̄i, which reflects itself in
very few nonvanishing off-diagonal elements in the cor-
responding matrix plots. However, the path connecting
the spins s1 and s16 crosses every single S̄i, which in
turn results in a rather dense matrix structure. In com-
parison, the second coupling scheme yields similar sparse
matrix structures for every hr, including h16, since every
connecting path in the coupling scheme involves at most
two intermediate spin quantum numbers.

Figure 11. Same data as in Fig. 9, but for the coupling scheme
depicted in Fig. 10.
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All graphics were created using PGF/TikZ.
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[23] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Lin-
nemann, C.-M. Schmied, J. Berges, T. Gasenzer, and
M. K. Oberthaler, Observation of universal dynamics in
a spinor Bose gas far from equilibrium, Nature 563, 217
(2018).

[24] M. Buchanan, Heated debate in different dimensions,
Nat. Phys. 1, 71 (2005).

[25] P. W. Anderson, Absence of Diffusion in Certain Ran-
dom Lattices, Phys. Rev. 109, 1492 (1958).

[26] E. Abrahams, P. W. Anderson, D. C. Licciardello, and
T. V. Ramakrishnan, Scaling theory of localization: Ab-
sence of quantum diffusion in two dimensions, Phys.
Rev. Lett. 42, 673 (1979).

[27] E. Altman and R. Vosk, Universal Dynamics and Renor-
malization in Many-Body-Localized Systems, Annu. Rev.
Condens. Matter Phys. 6, 383 (2015).

[28] R. M. Nandkishore and D. A. Huse, Many-Body Local-
ization and Thermalization in Quantum Statistical Me-
chanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).

[29] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Luschen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Observation of many-body localization of inter-
acting fermions in a quasirandom optical lattice, Science
349, 842 (2015).

[30] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Col-
loquium : Many-body localization, thermalization, and
entanglement, Rev. Mod. Phys. 91, 021001 (2019).

[31] G. Carleo, F. Becca, M. Schiró, and M. Fabrizio, Local-
ization and Glassy Dynamics Of Many-Body Quantum
Systems, Sci. Rep. 2, 243 (2012).

[32] W. De Roeck and F. Huveneers, Scenario for delocaliza-
tion in translation-invariant systems, Phys. Rev. B 90,
165137 (2014).

[33] W. De Roeck and F. Huveneers, in From Part. Syst. to
Partial Differ. Equations II , edited by P. Gonçalves and
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Exact diagonalization and other numerical studies of quantum spin systems are notoriously lim-
ited by the exponential growth of the Hilbert space dimension with system size. A common and
well-known practice to reduce this increasing computational effort is to take advantage of the trans-
lational symmetry CN in periodic systems. This represents a rather simple yet elegant application of
the group theoretical symmetry projection operator technique. For isotropic exchange interactions,
the spin-rotational symmetry SU(2) can be used, where the Hamiltonian matrix is block-structured
according to the total spin- and magnetization quantum numbers. Rewriting the Heisenberg Hamil-
tonian in terms of irreducible tensor operators allows for an efficient and highly parallelizable imple-
mentation to calculate its matrix elements recursively in the spin-coupling basis. When combining
both CN and SU(2), mathematically, the symmetry projection technique leads to ready-to-use for-
mulas. However, the evaluation of these formulas is very demanding in both computation time and
memory consumption, problems which are said to outweigh the benefits of the symmetry reduced
matrix shape. We show a way to minimize the computational effort for selected systems and present
the largest numerically accessible cases.

I. INTRODUCTION

A typical system that possesses both spin-rotational as
well as translational symmetry is a Heisenberg spin ring
[1–19] which models, e.g., certain magnetic molecules or
chains with the following Hamiltonian, where periodic
boundary conditions are applied,

H∼ = −2J

N∑

i=1

s⃗∼i · s⃗∼i+1 , s⃗∼N+1 ≡ s⃗∼1 . (1)

The dot-product between the spin vector operators en-
sures spin rotational symmetry, since dot-products do not
change upon simultaneous rotations of both vectors. The
same value J of interactions between adjacent neighbors
gives rise to translational invariance, since the spin ring
can be collectively moved by one spacing without chang-
ing the Hamiltonian.
Both symmetries can be employed for various pur-

poses. One is of course the perception of fundamental
properties without even evaluating the energy spectrum:
the energy eigenvalues form multiplets, i.e. total spin S
and its magnetic quantum number M are good quantum
numbers. The same holds for the momentum quantum
number k = 0, . . . N−1, that also explains certain degen-
eracies, namely between k and N−k [7, 20–24]. Together
with the notion of bipartiteness these quantum numbers
can be assigned to, for instance, the ground state, again
without diagonalizing the Hamiltonian [25–27].
The other application is the reduction of dimensional-

ity when diagonalizing the Hamiltonian. This is achieved
by block-structuring the Hamiltonian matrix according
to the available quantum numbers, or in the language

∗ tjark.heitmann@uos.de
† jschnack@uni-bielefeld.de

of group theory, the available irreducible representations.
This powerful tool, that is heavily used in exact diagonal-
ization studies, is the topic of this investigation. In order
to guide the reader to the achievements and problems
of combining full spin-rotational symmetry with transla-
tional symmetry, we present important precursors first.

For spin problems, where at least the total magneti-
zation M is a good quantum number, i.e. [H∼ , S∼

z] = 0,

one can subdivide the full Hilbert space H into the direct
sum of all eigenspaces H(M) of S∼

z

H =

+Smax⊕

M=−Smax

H(M) . (2)

This is easily achieved by sorting the product basis
states |m1,m2, . . . ,mN ⟩ according to their total mag-

netic quantum numberM =
∑N
i=1mi, which yields basis

states |m1,m2, . . . ,mN ;M⟩ in each orthogonal subspace
H(M) [28]. This scheme is employed in many popu-
lar codes for exact and approximate diagonalization, as
for instance, by means of Density Matrix Renormaliza-
tion Group (DMRG), compare, e.g., the ALPS package
[29, 30].

To marry the S∼
z-symmetry with translational symme-

try is again rather easy since the irreducible representa-
tions of the translations can be constructed analytically
starting from states |m1,m2, . . . ,mN ;M⟩. If T∼ denotes

a translation of the chain by one site, i.e. the generating
group operation of the translation group CN , then

|m1,m2, . . . ,mN ;M,k⟩ ∝ (3)
N−1∑

ν=0

(
ei2πk/NT∼

)ν
|m1,m2, . . . ,mN ;M⟩

is both an eigenstate of S∼
z and T∼ with eigenvalues M

and exp(−i2πk/N), respectively, k = 0, . . . N − 1 being
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the shift quantum number (lattice momentum). After
considering that cyclic permutations of m1,m2, . . . ,mN

yield the same |m1,m2, . . . ,mN ;M,k⟩ and that some
patterns m1,m2, . . . ,mN with additional symmetry do
contribute only to certain k, one can set up a very straight
forward generation of the basis states in the subspaces
H(M,k), whose dimensions are about 1/Nth of the re-
spective dimensions of H(M) [7, 31–34]. This scheme is
also used in many programs, among which spinpack is a
freely available one [35]. Application in DMRG seems
to be restricted since matrix-product states are con-
structed according to positions of spins, therefore each
state breaks translational invariance. Nevertheless, very
recently ideas have been developed how to incorporate
translational symmetry into DMRG [36].
Then, what is the problem with the combination of full

spin-rotational symmetry and translational symmetry?
The paper is organized as follows. In Section II we

recapitulate how spin rotational and translational sym-
metry can be applied simultaneously and discuss the nu-
merical implications. Thereafter in Section III we present
some of the largest numerically exact calculations for spin
rings followed by a discussion in Section IV.

II. SPIN-ROTATIONAL AND
TRANSLATIONAL SYMMETRY

The major obstacle when combining spin-rotational
and translational symmetry is given by the fact, that

a translated eigenstate of S⃗∼
2 in general does not belong

to the same basis set as the original state, in contrast
to the basis {|m1,m2, . . . ,mN ;M⟩}, where translations
yield just another member of the same basis set. In order
to understand this better, we quickly repeat how spin-
rotational symmetry – SU(2) – can be realized. This is
done by means of spin coupling according to some arbi-
trary coupling scheme. The basis states

|s1, s2, S12, s3, S123, . . . , sN , S,M⟩ (4)

are e.g. generated by sequential coupling of spins along

the chain. They are by construction eigenstates of S⃗∼
2

and S∼
z. If the Hamiltonian is then written in terms of

irreducible tensor operators that are connected to com-
pound tensors according to the same coupling scheme,
matrix elements of the Hamiltonian can be easily evalu-
ated by recursive decoupling. A detailed description of
this powerful method can be found in references [37–44].
The computer program MAGPACK, that completely diag-
onalizes the Heisenberg Hamiltonian using SU(2) sym-
metry, is freely available [45]. Also for DMRG SU(2)
codes have been developed [46–51]. In other fields such
as nuclear physics this method was also adapted to model
finite Fermi systems such as nuclei [52] as was the case
for Hubbard models, where one can actually exploit two
SU(2) symmetries [53–56]. Solutions for models with
SU(N) symmetry work along similar lines [46, 57–60].

s

S

s s s

S

12

123

S

1 2 3 4

T
~

12

123

s s s s2 3 4 1

S

J

J

Figure 1. (Color online) Coupling schemes can be represented
as coupling trees. The original sequential coupling (l.h.s.) is
transformed into a sequential coupling that starts with the
spin at position 2 (r.h.s.). The intermediate spins are labeled
with a different letter to denote the different coupling scheme,
although they acquire the original value, i.e. J12 = S12.

The construction of a new basis that is in addition
an eigenbasis of the translation operator T∼ involves the

projection operator already introduced in (3),

|α, S,M, k⟩ ∝
N−1∑

ν=0

(
ei2πk/NT∼

)ν
|α, S,M⟩ . (5)

Here α is now a short-hand notation for the full coupling
scheme s1, s2, S12, s3, S123, . . . , sN . To be used as a basis,
the states |α, S,M, k⟩ still need to be orthonormalized.
The application of T∼ in (5) generates a plethora of new

states that belong to different coupling schemes, i.e. to
different basis sets. Figure 1 demonstrates the action
of T∼ on a coupling scheme of a ring of four spins. The

translation of all spins by one unit modifies the whole
coupling scheme, which is in stark contrast to the action
on product states |m1,m2, . . . ,mN ⟩, where only a new
member of the same basis set is produced.

In order to evaluate matrix elements of the Hamilto-
nian each state T∼

ν |α, S,M⟩ has to be represented in the

original basis, i.e.

T∼
ν |α, S,M⟩ =
∑

α′

|α′, S,M⟩⟨α′, S,M |T∼
ν |α, S,M⟩ . (6)

Thanks to symmetry this needs to be done only
for e.g. M = S, but it nevertheless involves a
huge number of so-called recoupling coefficients
⟨α′, S,M = S|T∼

ν |α, S,M = S⟩. Graph-theoretical

methods can be used to evaluate these coefficients
[43, 44, 61, 62], which contain Wigner-6J symbols, phase
factors, square roots as well as possibly summations over
additional indices. The composition of these coefficients
is crucial for the computational costs of not only their
calculation but also the time and memory efficiency of
the whole basis symmetrization. Defining an equivalence
relation

|α′, S,M⟩ ∼= |α, S,M⟩
⇔ ∃ν : ⟨α′, S,M |T∼

ν |α, S,M⟩ ≠ 0 (7)
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enables to distinguish orthogonal sets of projected states
which can be orthonormalized separately. The num-
ber and size of these sets is closely related to the com-
plexity of the recoupling coefficients, where simple co-
efficients lead to many small sets. In the worst case,
where all states are equivalent, orthonormalization be-
comes cumbersome and one needs to store an order of
[dim(H(S,M = S))]

2
/N basis coefficients. This prevents

a general use even for relatively small systems.

The complexity of the recoupling coefficients depends
on several circumstances, in particular the used point
group and the employed coupling scheme [43, 44]. The
relevant question is therefore, whether coupling schemes
exist that are substantially less demanding than others.
In an earlier publication it could be shown that if one
chooses compatible point groups and coupling schemes,
only phase factors appear in the recoupling coefficients
[21]. Since especially low-symmetry groups such as D2

or D4 often allow for the construction of an appropri-
ate coupling scheme [63–65], we wonder whether also the
group of translations CN can be combined with a clever
coupling scheme.

The mentioned graph-theoretical methods [43, 44, 61,
62] help to understand what one is looking for: recou-
pling coefficients without summations over additional in-
dices and with as few as possible Wigner symbols and
square roots. The ultimate goal – no sums, no sym-
bols, no square roots – can be achieved for chain lengths
of N = 2n, n = 2, 3, 4, . . . . Then the recoupling coeffi-
cients can be evaluated in the graph-theoretical frame-
work by spin exchange processes as depicted in Fig. 2.
Such processes generate only a phase, as for example in
⟨s1s2S | s2s1S⟩ = (−1)S−s1−s2 . For the example shown
on the r.h.s. of Fig. 2 this yields (M = S omitted)

⟨s1, s3, S13, s2, s4, S24, S | s2, s4, J13, s3, s1, J24, S⟩
= (−1)J24−s3−s1(−1)S−J13−J24δS13J24δS24J13

= (−1)S−J13−s3−s1δS13J24δS24J13 . (8)

For chain lengths that are not powers of two, it turns
out that a universal coupling strategy is to

”
prime fac-

torize“ the coupling scheme, i.e. the chain length. N = 6
for instance would be coded as 2·3, and so on. The recou-
pling coefficients contain more and more Wigner symbols

s s s s
1 4

T
~

S S2413

S

3 2
s s s

2413

S

14 32
s

J J

Figure 2. (Color online) Optimal coupling scheme for chain
lengths of N = 2n (l.h.s.). The translated scheme (r.h.s.)
can be transformed back into the old coupling scheme by spin
exchange operations on the coupling graph, leading to a very
simple recoupling coefficient.

as well as square roots the larger the prime factors pi are.
The maximum number of symbols per coefficient is given

Figure 3. (Color online) Spectra and observables for an anti-
ferromagnetic Heisenberg ring with N = 24, s = 1/2: energy
spectrum vs total spin S, the same spectrum but now vs k,
the magnetization vs the applied field B for various tempera-
tures as well as the specific heat vs temperature T for various
external fields (top to bottom).
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Figure 4. (Color online) Spectra and observables for an an-
tiferromagnetic Heisenberg ring with N = 16, s = 1: energy
spectrum vs k as well as the specific heat vs temperature T
for various external fields (top to bottom).

by

NWigner-6J =

Nprimes∑

i=1

(pi − 2) ·
Nprimes∑

j=i+1

pj . (9)

N = 2n fits into this scheme as the optimal case, since
only the smallest possible prime factors appear. This
finding explains why a combination of spin-rotational and
translational symmetry is not easily possible for the ma-
jority of system sizes – it turns into a prohibitive numer-
ical effort to evaluate a massive number of recoupling
coefficients.

III. NUMERICAL RESULTS

Finally we would like to present some of the largest
cases one can actually solve nowadays. We choose
Heisenberg spin rings with antiferromagnetic nearest-
neighbor interaction as examples.
The first example shows spectra and magnetic ob-

servables for a spin ring with N = 24 sites of spins
s = 1/2. The dimension of the total Hilbert space is
dim(H) = 16, 777, 216, which can be subdivided into sub-
spaces H(S,M = S, k) as outlined above. In particular,
24 = 2 ∗ 2 ∗ 2 ∗ 3. The dimension of the largest subspace
H(S,M = S, k) is 27, 275; it occurs for S = 2 and even
k ̸= 0, 12. Figure 3 shows from top to bottom the energy
spectrum vs total spin S, the same spectrum but now vs

Figure 5. (Color online) Specific heat vs temperature T for
various external fields for an antiferromagnetic Heisenberg
ring with N = 8, s = 5.

k, the magnetization vs the applied field B for various
temperatures as well as the specific heat vs temperature
T for various external fields. The figures merely serve
as visual proofs of the feasibility of the program than
as sources for specific curves. Readers interested in the
spectra or specific functions are welcome to contact the
authors.

The second example presents the results for a spin ring
of N = 16 sites of spins s = 1. In this case the total di-
mension assumes a value of dim(H) = 43, 046, 721, which
reduces to 59, 143 for the largest subspace H(S,M =
S, k) occurring for S = 3 and odd k. Figure 4 depicts
the energy spectrum vs k as well as the specific heat vs
temperature T for various external fields.
The final example of our selection deals with a ficti-

tious spin ring of N = 8 spins with single-spin quantum
number s = 5. Its main purpose is to demonstrate that
the combined use of spin-rotational as well as transla-
tional symmetry allows to reduce the staggering dimen-
sion of the full Hilbert space of dim(H) = 214, 358, 881 to
a rather moderate size of the largest subspace H(S,M =
S, k) of 77, 970 which occurs for S = 9 and odd k. Fig-
ure 5 shows the specific heat vs temperature T for various
external fields calculated from all 214,358,881 levels.

IV. DISCUSSION AND CONCLUSIONS

The outlined method provides a valuable tool in cases
where a complete and numerically exact diagonalization
of a large spin system provides additional benefits com-
pared to approximate methods. The knowledge of exact
quantum numbers such as S, M , and k provides such
benefits for instance in spectroscopic experiments as, for
instance, inelastic neutron scattering (INS), where selec-
tion rules can be inferred [66–68].

The method also complements other existing exact
methods, in particular Bethe ansatz methods. These
work for isotropic nearest-neighbor interactions of arbi-
trary spin s [69–73], but only for certain linear combina-
tions of powers of s⃗∼i · s⃗∼i+1. The most general isotropic
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nearest-neighbor interaction for spin s is of the form
ps( s⃗∼i · s⃗∼i+1), where ps denotes a polynomial of degree

2s. For s = 1/2 the polynomial is simply the propor-
tional function, which means that the Heisenberg spin-
1/2 chain is integrable by Bethe ansatz. For spin-1 chains
the polynomial turns out as p1(x) = x±x2 or p1(x) = x2,
which means that certain bilinear/biquadratic chains can
be solved by Bethe ansatz [74]. Generally, the Bethe
ansatz is not applicable to Heisenberg chains with only
bilinear terms for s > 1

2 . Here (and in many other cases)
our diagonalization scheme provides the exact spectra
and eigenfunctions, albeit for periodic chains of restricted
lengths.

Although the theoretical calculations appear straight
forward, we showed that in many cases a vast number
of recoupling coefficients is generated which in the worst
cases yields dim(H(S,M = S)) coefficients for each of the
dim(H(S,M = S))/N states belonging to an irreducible
representation (S,M, k). This renders a practical use im-
possible. Nevertheless, we could also outline, for which
system sizes a combined use of spin-rotational and trans-

lational symmetry is feasible. It then delivers numerically
exact results for both spectra as well as observables.

Very recent numerical studies show that the range of
applicability of the method can be extended, at least
somewhat, by using DN combined with parity instead
of CN symmetry [75]. Complex valued basis coefficients
and matrix elements can thereby be avoided at the cost
of additional symmetry operations. This way, a complete
diagonalization of a spin ring with N = 27 and s = 1/2
becomes possible, for instance.
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Rev. B 77, 094420 (2008).

[34] J. Richter and J. Schulenburg, Eur. Phys. J. B 73, 117
(2010).

[35] J. Schulenburg, spinpack 2.56 (Magdeburg University,
2017).

[36] V. Zauner-Stauber, L. Vanderstraeten, J. Haegeman,
I. P. McCulloch, and F. Verstraete, Phys. Rev. B 97,
235155 (2018).

[37] D. Gatteschi and L. Pardi, Gazz. Chim. Ital. 123, 231
(1993).

[38] J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coron-
ado, and B. S. Tsukerblat, Inorg. Chem. 38, 6081 (1999).

[39] A. Bencini and D. Gatteschi, Electron Paramagnetic Res-
onance of Exchange Coupled Systems (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1990).

[40] B. S. Tsukerblat, Group Theory in Chemistry and Spec-
troscopy: A Simple Guide to Advanced Usage, 2nd ed.
(Dover Publications, Mineola, New York, 2006).

[41] B. Tsukerblat, Inorg. Chim. Acta 361, 3746 (2008).
[42] A. S. Boyarchenkov, I. G. Bostrem, and A. S. Ovchin-

nikov, Phys. Rev. B 76, 224410 (2007).
[43] R. Schnalle and J. Schnack, Phys. Rev. B 79, 104419

(2009).
[44] R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29,

403 (2010).
[45] J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coron-

ado, and B. S. Tsukerblat, J. Comput. Chem. 22, 985
(2001).

[46] I. P. McCulloch and M. Gulácsi, Europhys. Lett. 57, 852
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H. U. Güdel, G. A. Timco, E. J. L. McInnes, G. Amoretti,
R. E. P. Winpenny, and P. Santini, Nat. Phys. 8, 906
(2012).

[68] A. Furrer and O. Waldmann, Rev. Mod. Phys. 85, 367
(2013).

[69] P. P. Kulish, N. Y. Reshetikhin, and E. K. Sklyanin,
Lett. Math. Phys. 5, 393 (1981).

[70] L. Takhtajan, Phys. Lett. A 87, 479 (1982).
[71] H. Babujian, Nucl. Phys. B 215, 317 (1983).
[72] A. Tsvelick, Nucl. Phys. B 305, 675 (1988).
[73] H. Frahm, N.-C. Yu, and M. Fowler, Nucl. Phys. B 336,

396 (1990).
[74] S. R. Manmana, A. M. Läuchli, F. H. L. Essler, and
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Selected Applications of Typicality to Real-Time Dynamics of Quantum Many-Body
Systems

Tjark Heitmann ,∗ Jonas Richter , Dennis Schubert, and Robin Steinigeweg †
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Loosely speaking, the concept of quantum typicality refers to the fact that a single pure state can
imitate the full statistical ensemble. This fact has given rise to a rather simple but remarkably use-
ful numerical approach to simulate the dynamics of quantum many-body systems, called dynamical
quantum typicality (DQT). In this paper, we give a brief overview of selected applications of DQT,
where particular emphasis is given to questions on transport and thermalization in low-dimensional
lattice systems like chains or ladders of interacting spins or fermions. For these systems, we discuss
that DQT provides an efficient means to obtain time-dependent equilibrium correlation functions
for comparatively large Hilbert-space dimensions and long time scales, allowing the quantitative ex-
traction of transport coefficients within the framework of, e.g., linear response theory. Furthermore,
it is discussed that DQT can also be used to study the far-from-equilibrium dynamics resulting
from sudden quench scenarios, where the initial state is a thermal Gibbs state of the pre-quench
Hamiltonian. Eventually, we summarize a few combinations of DQT with other approaches such as
numerical linked cluster expansions or projection operator techniques. In this way, we demonstrate
the versatility of DQT.

I. INTRODUCTION

Unraveling the dynamics of isolated quantum many-
body systems is a central objective of modern experimen-
tal and theoretical physics. On the one hand, new exper-
imental platforms composed of cold atoms or trapped
ions have opened the door to perform quantum simula-
tions with a high amount of control over Hamiltonian
parameters and initial conditions [1, 2]. On the other
hand, there has been substantial progress from the the-
oretical side to understand (i) experimental observations
and (ii) long-standing questions about the fundamentals
of statistical mechanics [3–7]. One such question is how
to reconcile the emergence of thermodynamic behavior
with the unitary time evolution of isolated quantum sys-
tems, i.e., to explain whether and in which way an iso-
lated system relaxes towards a stationary long-time state
which agrees with the predictions from standard statis-
tical mechanics. Another similarly intriguing question in
this context is to explain the onset of conventional hydro-
dynamic transport, i.e., diffusion, from truly microscopic
principles [8–10]. The numerical analysis of thermaliza-
tion and transport in isolated quantum many-body sys-
tems is at the heart of this paper.
Generally, the theoretical analysis of quantum many-

body dynamics is notoriously difficult. Given a quantum
system H and an arbitrary nonequilibrium state ρ(0),
universal concepts to describe the resulting dynamics are
rare [11–13], and one is usually required to solve the mi-
croscopic equation of motion for the density matrix ρ(t),
i.e., the von-Neumann equation

d

dt
ρ(t) = −i[H, ρ(t)] (1)

∗ tjark.heitmann@uos.de
† rsteinig@uos.de

(ℏ = 1) which, in the case of a pure state ρ(t) =
|ψ(t)⟩ ⟨ψ(t)|, reduces to the Schrödinger equation

d

dt
|ψ(t)⟩ = −iH |ψ(t)⟩ . (2)

While the presence of strong interactions often prohibits
any analytical solution, numerical studies of Eq. (2) are
plagued by the exponential growth of the Hilbert space
upon increasing the number of degrees of freedom. More-
over, since thermalization and transport can potentially
be very slow processes, the necessity to study long time
scales adds another layer of complexity.

Of course, for situations close to equilibrium, e.g., a
system being weakly perturbed by an external force, lin-
ear response theory provides a successful framework to
describe the system’s response in terms of dynamical cor-
relation functions evaluated exactly at equilibrium [14].
However, analogous to Eqs. (1) and (2), the calculation of
such time-dependent correlation functions for large sys-
tem sizes and long time scales is a severe challenge in
practice.

Despite these difficulties, significant progress has been
made over the years thanks to the augmented avail-
ability of computational resources and the development
of sophisticated numerical techniques. Especially for
one-dimensional systems the time-dependent density ma-
trix renormalization group (tDMRG), including related
methods based on matrix product states, provides a pow-
erful approach to dynamical properties in the thermody-
namic limit (for reviews, see [15, 16]). However, due to
the inevitable build-up of entanglement, this approach is
limited in the time scales which can be reached in simu-
lations.

In the present paper, the focus is on another useful
numerical approach to the dynamics of quantum many-
body systems, which is based on the concept of dynam-
ical quantum typicality (DQT) [17, 18]. In a nutshell,
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DQT means that “the vast majority of all pure states
featuring a common expectation value of some generic
observable at a given time will yield very similar expec-
tation values of the same observable at any later time”
[17]. In fact, the idea of using random vectors has a long
and fruitful history [19–26]. By virtue of an iterative for-
ward propagation of these vectors in real or imaginary
time, dependencies on time and temperature can be ob-
tained. Since DQT can be implemented rather memory
efficiently, it is possible to study dynamical properties of
quantum many-body systems with Hilbert-space dimen-
sions significantly larger compared to standard exact di-
agonalization (ED). Moreover, there are no conceptual
limitations on the reachable time scales.
It is worth pointing out that DQT can not only be used

to obtain time-dependent properties [27–29] or spectral
functions [22, 30–32] but also static properties such as
the density of states [33] or thermodynamic quantities
[34–37]. However, it is the aim of this paper to discuss
the usefulness and versatility of DQT especially in the
context of thermalization and transport.
This paper is structured as follows. In Sec. II, we give

a brief introduction to the concept of typicality and also
elaborate on the differences between typicality and the
eigenstate thermalization hypothesis. In Sec. III, we dis-
cuss various applications of typicality to the dynamics
of quantum many-body systems. Finally, we summarize
and conclude in Sec. IV, where we also provide an outlook
on further applications of DQT.

II. WHAT IS TYPICALITY?

Loosely speaking, the notion of typicality means that
even a single pure quantum state can imitate the full sta-
tistical ensemble, or, more precisely, expectation values
of typical pure states are close to the expectation value
of the statistical ensemble [20, 23–26]. While typicality
has been put forward as an important insight to explain
the emergence of thermodynamic behavior (see e.g. Ref.
[23] for an overview), let us here focus on the practical
consequences of typicality. In particular, let us consider
the, e.g., canonical equilibrium expectation value ⟨A⟩eq
of some (quasi-local) operator A defined as

⟨A⟩eq =
Tr[Ae−βH]

Z =
Tr[e−βH/2Ae−βH/2]

Z , (3)

where Z = Tr [exp(−βH)] is the canonical partition func-
tion, β = 1/T (kB = 1) is the inverse temperature, and
we have used the cyclic invariance of the trace. Exploit-
ing typicality, it is possible to rewrite ⟨A⟩eq according
to

⟨A⟩eq =
⟨ψβ |A |ψβ⟩
⟨ψβ |ψβ⟩

+ ϵ , (4)

where we have introduced the abbreviation |ψβ⟩ =

e−βH/2 |ψ⟩, which is sometimes referred to as thermal

pure quantum state [36]. The reference pure state |ψ⟩
is drawn at random from the full Hilbert space with fi-
nite dimension d according to the unitary invariant Haar
measure [17], i.e.,

|ψ⟩ =
d∑

k=1

(ak + ibk) |k⟩ , (5)

where the coefficients ak and bk are drawn from a Gaus-
sian distribution with zero mean (other types of random-
ness have been suggested as well [19, 38]), and the pure
states |k⟩ denote orthogonal basis states of the Hilbert
space. (Note that |ψ⟩ is almost maximally entangled
[39, 40].) Importantly, the variance of the statistical error
ϵ = ϵ(|ψ⟩) of the approximation (4) scales as σ ∝ 1/

√
deff,

where deff = Tr[exp(−β(H−E0))] is the effective dimen-
sion of the Hilbert space with E0 being the ground-state
energy of H. Here we assume that A is a local operator
(or a low-degree polynomial in system size), which ap-
plies to all examples discussed in this paper. For more
details on error bounds see, e.g., Refs. [18, 36]. For em-
pirical estimates, see, e.g., Ref. [41]. Thus, deff is essen-
tially the number of thermally occupied states and, for
β = 0, we have deff = d. As a consequence, increasing the
number of degrees of freedom of a quantum many-body
system, e.g., the number of lattice sites L, leads to an
exponential improvement of the accuracy (the higher the
temperature, the faster), and Eq. (4) becomes exact in
the thermodynamic limit L→ ∞.

The typicality approximation (4) has proven to be
very useful to calculate equilibrium quantities of quan-
tum many-body systems such as the specific heat, en-
tropy, or magnetic susceptibility [34–37, 41]. For the
purpose of this review, however, it is most important to
note that typicality is not just restricted to equilibrium
properties, but also extends to the real-time dynamics
of quantum expectation values [17, 27–29, 42–44]. This
dynamical version of typicality forms the basis of the nu-
merical approach to time-dependent correlation functions
and out-of-equilibrium dynamics more generally, which is
discussed in Sec. III.

Let us briefly discuss the relationship between typical-
ity and the eigenstate thermalization hypothesis (ETH)
[45–47]. The ETH states that the expectation values of
local observables evaluated within individual eigenstates
|n⟩ of generic (nonintegrable) Hamiltonians coincide with
the microcanonical ensemble average at the correspond-
ing energy density,

Ann = ⟨n|A |n⟩ = Amc(E) . (6)

While this fact (i.e. pure states can approximate ensem-
ble expectation values) appears similar to our discussion
of typicality in the context of Eq. (4), let us stress that
typicality and ETH are two distinct concepts. On the one
hand, while the ETH is assumed to hold for a variety of
few-body operators and nonintegrable models [5, 48–55],
a rigorous proof for its validity is still absent. On the
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other hand, typicality is no assumption and essentially
requires the largeness of the effective Hilbert-space di-
mension. This difference becomes particularly clear from
the following point of view: since the distribution of the
ak and bk in Eq. (5) is invariant under any unitary trans-
formation, the state |ψ⟩ is a random superposition also in
the eigenbasis ofH (whereas the ETH just refers to single
eigenstates). Due to this randomness, Eq. (4) holds even
in cases where the ETH breaks down, i.e., where the ex-
pectation values of observables exhibit strong eigenstate-
to-eigenstate fluctuations.
Since typicality is independent of the validity of the

ETH, it can be used in integrable or many-body localized
models, where the ETH is expected to be violated [56–
59]. As a side remark, typicality can also be used to test
the ETH [60].
Eventually, let us emphasize that the choice of the spe-

cific basis |k⟩ in Eq. (5) is arbitrary. Therefore, the ran-
dom state |ψ⟩ can be conveniently constructed in the
working basis which is used to set up the Hamiltonian
and all other observables. For instance, when working
with spin-1/2 systems, a common choice is the so-called
Ising basis, i.e., the states |k⟩ then denote the 2L differ-
ent combinations of ↑ and ↓. Naturally, it is possible to
combine DQT with the use of symmetries [61], where a
random state is then drawn independently within each
subsector.

III. DQT AS A NUMERICAL TOOL

We now discuss the use of dynamical quantum typical-
ity as a numerical method. To begin with, we discuss in
Sec. IIIA the iterative forward propagation of pure states
in large Hilbert spaces. Afterwards, as a first applica-
tion, we demonstrate in Sec. III B how typicality can be
used to study the (local) density of states. In Sec. III C,
we then show how DQT can be used to evaluate equilib-
rium correlation functions within the framework of linear
response theory. Sec. IIID is concerned with the out-of-
equilibrium dynamics in certain quantum-quench scenar-
ios. Eventually, in Sec. III E, we discuss how DQT can be
combined with other approaches such as numerical linked
cluster expansions or projection operator techniques.

A. Pure-state propagation

From a numerical point of view, a central advantage of
the typicality approach comes from the fact that one can
work with pure states instead of having to deal with full
density matrices. This fact leads to a substantial reduc-
tion of the memory requirements, since it is possible to
efficiently generate time and temperature dependencies
of pure states. (Note that, while it is always possible to
purify a density matrix, the DQT approach in contrast
does not require to square the Hilbert-space dimension
[62].)

Specifically, let us consider the pure state |ψβ⟩ =

e−βH/2 |ψ⟩ introduced in Eq. (4). The time evolution
of |ψβ⟩ is given by |ψβ(t)⟩ = e−iHt |ψβ⟩. The full evo-
lution up to time t can be subdivided into a product of
consecutive steps,

|ψβ(t)⟩ =
(
e−iHδt

)N |ψβ⟩ , (7)

where δt = t/N is a discrete time step. If δt is cho-
sen sufficiently small, there is a variety of methods to
accurately evaluate the action of the matrix exponen-
tial e−iHδt without diagonalization of H. A particularly
simple approach in this context is a fourth-order Runge-
Kutta (RK4) scheme, where the time evolution is approx-
imated as [28, 29],

|ψβ(t+ δt)⟩ ≈ |ψβ(t)⟩+
4∑

k=1

|fk⟩ . (8)

The four auxiliary states |f1⟩ - |f4⟩ are constructed ac-
cording to [28, 29],

|fk⟩ =
−iHδt
k

|fk−1⟩ , |f0⟩ = |ψβ(t)⟩ , (9)

and the error of the approximation (8) scales as O(δt5).
Note that the RK4 scheme in Eqs. (8) and (9) is equiva-
lent to a Taylor expansion of the exponential e−iHδt up
to fourth order. Note further that, in complete analogy
to the propagation in real time, the temperature depen-
dence of |ψβ⟩ can be generated by an evolution in small
imaginary time steps iδβ.

Apart from RK4, other common and more sophisti-
cated methods to propagate pure states without diag-
onalization are, e.g., Trotter decompositions [34, 63],
Krylov subspace techniques [64], as well as Chebyshev
polynomial expansions [65–69]. A unifying property of
all these methods and RK4 is the necessity to calcu-
late matrix-vector products, i.e., to evaluate the action
of the Hamiltonian H onto pure states. Importantly,
such matrix-vector multiplications can be carried out rel-
atively memory efficiently thanks to the sparse matrix
structure of H in models with short-range interactions
such as nearest-neighbor couplings. As a consequence, it
is possible to numerically treat comparatively large sys-
tem sizes, i.e., with huge Hilbert-space dimensions far
beyond the range of exact diagonalization.

B. Calculating the (local) density of states

As a first useful application, let us describe how pure
states, in combination with a forward propagation in real
time, can be used to evaluate the (local) density of states
[33]. To begin with, we note that the density of states of
some Hamiltonian H with eigenvalues En can be written
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as

Ω(E) =
∑

n

δ(E − En) (10)

=
1

2π

∞∫

−∞

eitE Tr[e−iHt] dt , (11)

where we have used the definition of the δ function. In
the spirit of Eq. (4), we can approximate the trace in Eq.
(11) by a scalar product with a randomly drawn pure
state |ψ⟩,

Tr[e−iHt] ∝ ⟨ψ| e−iHt |ψ⟩ = ⟨ψ|ψ(t)⟩ , (12)

such that Eq. (11) can be approximated as

Ω(E) ∝
∫ +tmax

−tmax

eitE ⟨ψ|ψ(t)⟩dt , (13)

where ⟨ψ(0)|ψ(−t)⟩ = ⟨ψ(0)|ψ(t)⟩∗, and tmax is the max-
imum time to which |ψ(t)⟩ is evolved. Due to this cutoff
time, the resulting energy resolution of Ω(E) is given by
∆E = π/tmax. Thus, the density of states of some Hamil-
tonian H can be obtained from the Fourier transform of
the survival probability ⟨ψ|ψ(t)⟩ of a random pure state
[33].

In fact, the relation (13) turns out to be useful for any

arbitrary pure state |ψ̃⟩ (which is not necessarily drawn

at random). The local density of states P (E) of |ψ̃⟩, i.e.,
the spectral distribution of |ψ̃⟩, is then defined as

P (E) =
∑

n

| ⟨n|ψ̃⟩ |2 δ(E − En) , (14)

where |n⟩ are the eigenvectors of H with corresponding
eigenvalues En. Analogous to Eq. (13), P (E) can be writ-
ten as the Fourier transform of the survival probability
of |ψ̃⟩ [33, 70],

P (E) ∝
∫ +tmax

−tmax

eitE ⟨ψ̃|ψ̃(t)⟩dt . (15)

Relying on the forward propagation of pure states dis-
cussed in Sec. III A, it is thus possible to access Ω(E)
and P (E). Note that Eqs. (13) and (15) only provide
the overall shape (within the resolution ∆E) of Ω(E)
and P (E), while single eigenstates are difficult to resolve
[71, 72].

As an example, let us consider the spin-1/2 XXZ chain,

H = J

L∑

ℓ=1

(
Sxℓ S

x
ℓ+1 + Syℓ S

y
ℓ+1 +∆SzℓS

z
ℓ+1

)
, (16)

where Sαℓ , α ∈ {x, y, z} are the components of the corre-
sponding spin-1/2 operators at the site ℓ, L is the num-
ber of lattice sites, J = 1 describes the antiferromagnetic
coupling constant, and ∆ > 0 is the anisotropy in the z-

0

0.2

0.4

−10 −5 0 5 10

Ω
(E

),

P
(E

)

E

∝ Ω(E), |ψ1〉
∝ Ω(E), |ψ2〉
∝ P (E) of |ψ3〉

Figure 1. (Color online) Density of states Ω(E) of a spin-1/2
XXZ chain with ∆ = 1.5 and L = 24 sites, obtained from two
independently drawn random states |ψ1⟩ and |ψ2⟩. The local
density of states P (E) is shown for a nonrandom state |ψ3⟩.
Data is adapted from [71].

direction. In Fig. 1, the density of states Ω(E) is shown
for the XXZ chain (16) with L = 24 and ∆ = 1.5, ob-
tained via Eq. (13) with two independently drawn ran-
dom states |ψ1⟩ and |ψ2⟩. As can be seen in Fig. 1, Ω(E)
has a broad and Gaussian shape. Moreover, Ω(E) is es-
sentially the same for the two random states, which con-
firms the accuracy of the typicality approach. In addi-
tion, we show P (E) for a nonrandom state |ψ3⟩, which is
sharply peaked at the borders of the spectrum [71].

C. Time-dependent equilibrium correlation
functions

Let us now turn to quantum many-body dynamics
within the framework of linear response theory (LRT).
Within LRT, central quantities of interest are time-
dependent correlation functions CAB(t) of two operators
A and B evaluated in equilibrium,

CAB(t) = ⟨A(t)B⟩eq =
Tr
[
A(t)Be−βH

]

Z , (17)

where Z is again the canonical partition function as de-
fined in Eq. (3), and A(t) is the time-evolved operator
in the Heisenberg picture. Analogous to Eq. (4), CAB(t)
can be rewritten according to [27–29],

⟨A(t)B⟩eq ≈ ⟨ψβ(t)|A|φβ(t)⟩
⟨ψβ(0)|ψβ(0)⟩

, (18)

where we have introduced two auxiliary pure states,

|φβ(t)⟩ = e−iHtBe−βH/2 |ψ⟩ , (19)

|ψβ(t)⟩ = e−iHte−βH/2 |ψ⟩ , (20)

and |ψ⟩ is a random state drawn from the full Hilbert
space, cf. Eq. (5). Importantly, in contrast to Eq. (17),
the time (and temperature) argument in Eq. (18) is now
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Figure 2. (Color online) Current autocorrelation function
Cjj(t) at β = 0 for the spin-1/2 XXZ chain with ∆ = 1, ob-
tained by DQT for L = 33 sites. The calculation is done for
two independently drawn states (from the symmetry subsec-
tor with momentum k = 0). Data is adapted from Ref. [74].

a property of the pure states and not of the operators
anymore. According to, e.g., Eq. (8), |φβ(t)⟩ and |ψβ(t)⟩
can be evolved in real (and imaginary) time.

In the context of transport, an interesting quantity is
the current autocorrelation function Cjj(t), which is de-
fined according to Eq. (17) with A = B = j, where j is
the current operator. Note that the Fourier transform of
Cjj(t) is related to the conductivity via the Kubo formula
[14, 73].

For concreteness, let us (again) consider the XXZ chain
(16). In this case, the spin current operator j takes on
the form [73],

j = J

L∑

ℓ=1

(
Sxℓ S

y
ℓ+1 − Syℓ S

x
ℓ+1

)
. (21)

In Refs. [29, 74], Cjj(t) was studied by means of DQT
for the XXZ chain with particular focus on infinite tem-
perature β = 0. This infinite-temperature current au-
tocorrelation function is exemplarily shown in Fig. 2 for
∆ = 1 and L = 33. To demonstrate the smallness of the
statistical error of DQT, we show results obtained from
two independently drawn random states. As can be seen
in Fig. 2, both curves coincide very well with each other
for this choice of β and L, even in the semi-logarithmic
plot used. (For further numerical data of Cjj(t) see also
Fig. 8 below.)

In addition to the XXZ chain, DQT has been used
to study Cjj(t) for a variety of other low-dimensional
systems, such as spin chains with next-nearest neighbor
interactions [71] and with spin quantum number S > 1/2
[59], spin ladders [75–77] (also for energy currents), as
well as Fermi-Hubbard chains [78]. The possibility to
calculate Cjj(t) by means of DQT for large systems and
long time scales has proven to be very useful to extract
transport coefficients, including (the finite-size scaling of)
dc conductivities, diffusion constants, and Drude weights,
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(b) L = 28

C
L
/
2
,L

/
2
(t
)

DQT, 1. state

DQT, 2. state

ED

C
L
/
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)

time t

DQT, 1. state

DQT, 2. state

Figure 3. (Color online) Equal-site spin-spin correlation func-
tion CL/2,L/2(t) for spin-1/2 XXZ chains (∆ = 1) with (a)
L = 14 sites and (b) L = 28 sites. For L = 14, exact di-
agonalization is compared to DQT for two different random
pure states. While ED is unfeasible for L = 28, the statistical
fluctuations of the typicality approximation become negligi-
ble for this system size. Data is adapted from Ref. [79].

for integrable and nonintegrable models [29, 56, 59, 71,
74–78].

Another interesting quantity in the context of trans-
port are the spatio-temporal correlation functions Cℓ,ℓ′(t)
of, e.g., spin, which are defined according to Eq. (17) with
A = Szℓ and B = Szℓ′ ,

Cℓ,ℓ′(t) = ⟨Szℓ (t)Szℓ′⟩eq . (22)

While a calculation of Cℓ,ℓ′(t) can be done according to
Eq. (18), a simplification is possible at infinite temper-
ature β = 0. Namely, at β = 0, one can introduce the
pure state [77]

|ψ′(0)⟩ =
√
Szℓ′ + c |ψ⟩√

⟨ψ|ψ⟩
, (23)

where |ψ⟩ is again drawn randomly according to Eq. (5),
and the constant c is chosen such that Szℓ + c has non-
negative eigenvalues. Using Eq. (23), one finds

Cℓ,ℓ′(t) ≈ ⟨ψ′(t)|Szℓ |ψ′(t)⟩ . (24)

Thus, it is possible to calculate Cℓ,ℓ′(t) just from one
auxiliary state [59], in contrast to the current autocor-
relations Cjj(t), where two states have to be evolved in
time, cf. Eqs. (19) and (20).

As an example, the equal-site spin-spin correlation
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Figure 4. (Color online) Time-space plot of the infinite-
temperature spin-spin correlation function Cℓ,L/2(t) =
⟨Sz

ℓ (t)Sz
L/2⟩eq for a spin-1/2 XXZ chain of length L = 36,

nearest neighbor (∆ = 1.5) and next-nearest neighbor (∆′ =
1.5) coupling. Data is adapted from Ref. [71].

function CL/2,L/2(t) at lattice site ℓ = L/2 is shown in
Fig. 3 for spin-1/2 XXZ chains with two different lengths
L = 14 and L = 28 [79]. (Note that due to periodic
boundary conditions, the specific lattice site ℓ is arbi-
trary.) As a demonstration of the accuracy of the DQT
approach, the calculation is done for two independently
drawn pure states |ψ⟩. While the DQT data closely fol-
lows the exact result at L = 14, the residual statisti-
cal fluctuations disappear almost completely for L = 28.
Note that while we have chosen the XXZ chain to demon-
strate the accuracy of DQT for Cjj(t) [Fig. 2] and for
CL/2,L/2(t) [Fig. 3], similar curves can be obtained for
other models and observables as well. For additional
comparisons between DQT data and exact ensemble av-
erages, see, e.g., Refs. [29, 60].

As another example, the full time-space profile
Cℓ,L/2(t) is shown in Fig. 4 for a spin-1/2 XXZ chain
with next-nearest neighbor interactions and L = 36 sites
[71]. While at β = 0 different lattice sites are uncorre-
lated at t = 0, correlations start to build up for t > 0.

A very similar example is shown in Fig. 5, where the
spatio-temporal correlations for spin and energy densities
are depicted at fixed times. Yet, the model is a spin-1/2
Heisenberg ladder,

H = J∥

L∑

l=1

2∑

k=1

Sl,k · Sl+1,k + J⊥

L∑

l=1

Sl,1 · Sl,2 , (25)

where J∥ (J⊥) denotes the coupling on the legs (rungs).
The data in Fig. 5 are obtained for J∥ = J⊥ = 1 and
L = 20, i.e., 40 lattice sites in total [77]. For all times
shown in Fig. 5, one finds that the profiles Cℓ,L/2(t) are
convincingly described by Gaussians, which illustrates
once again the high accuracy of the DQT approach in
the semi-logarithmic plot used. Such a Gaussian spread-
ing has been interpreted as a clear signature of high-
temperature spin and energy diffusion in this and other
models [57, 59, 71, 80, 81].
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/
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(t
)

(a) Spin

t = 1, 2, 4

C
ℓ,
L
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2
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)

site ℓ

(b) Energy

Figure 5. (Color online) Spin-spin correlation function
Cℓ,L/2(t) at fixed times, t = 0 (δ peak) and t = 1, 2, 4 (ar-
row), for a spin-1/2 Heisenberg ladder of length L = 20 (i.e.
40 lattice sites), at high temperatures β = 0. Dashed lines
are Gaussian fits to the data. Panel (a) shows spin densities,
while panel (b) shows local energies. Data is adapted from
Ref. [77].

In addition, DQT has been used to obtain spatio-
temporal correlation functions Cℓ,ℓ′(t) in a number of
other models. Remarkably, clean Gaussian profiles have
been found in various parameter regimes, even for inte-
grable models such as the spin-1/2 XXZ chain [57] or
the one-dimensional Fermi-Hubbard model [80]. Other
classes of models which have been studied in this way
include the spin-1 XXZ chain [59] as well as spin models
with quenched disorder [59, 82].

D. Applications to far-from-equilibrium dynamics

Nonequilibrium scenarios in isolated quantum systems
can be induced via explicitly time-dependent Hamilto-
nians or, e.g., by means of quantum quenches [83]. For
instance, the system can be initially in an eigenstate of
some Hamiltonian H1 while the subsequent dynamics are
governed by a different Hamiltonian H2.

Here, we discuss an alternative type of quench, where
the system starts in a Gibbs state with respect to (w.r.t.)
some initial Hamiltonian H1 (see Fig. 6),

ρ(0) =
e−βH1

Z . (26)

We then consider a quantum quench, where H1 is
changed to some other Hamiltonian H2. The system
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time tβ = 1/T
t = 0

Figure 6. (Color online) Sketch of the quench protocol. The
system starts in a Gibbs state with respect to some ini-
tial Hamiltonian H1. For times t > 0, the system evolves
unitarily according to some other Hamiltonian H2 as per
ρ(t) = e−iH2t ρ(0) eiH2t. This protocol can also be modi-
fied by switching back to the original Hamiltonian H1 (shown
in the upper branch on the right hand side) or by further
changes of the Hamiltonian in time.

then is in a nonequilibrium state and evolves unitarily
according to the new Hamiltonian,

ρ(t) = e−iH2t ρ(0) eiH2t . (27)

The post-quench Hamiltonian can, for instance, be cre-
ated by adding or removing a static (weak or strong)
force of strength ϵ to the initial Hamiltonian, i.e., H2 =
H1± ϵA, where the operator A is conjugated to the force
[13, 58, 84, 85]. The resulting expectation value dynamics
of, e.g., the operator A is given by

⟨A(t)⟩ = Tr [ ρ(t)A ] , (28)

and its evaluation in principle requires complete diago-
nalization of both H1 and H2. As before, this diagonal-
ization can be circumvented by preparing a typical pure
state [13, 43, 58, 84, 85],

|Ψ(0)⟩ = e−βH1/2 |ψ⟩√
⟨ψ| e−βH1 |ψ⟩

, (29)

which mimics the density matrix (26), and the reference
state |ψ⟩ is again randomly drawn from the full Hilbert
space, cf. Eq. (5). Both the imaginary-time evolution
w.r.t. H1 and the real-time evolution w.r.t. H2 can be
done following Sec. IIIA. In this way, one gets

⟨A(t)⟩ ≈ ⟨Ψ(t)|A |Ψ(t)⟩ . (30)

It is worth pointing out that the (simple) quench proto-
col above can be modified by additional changes of the
Hamiltonian in time. A static force switched on at time
t = 0 can, for instance, be removed again at some later
time t > 0, see also Fig. 6. Even for such protocols,
the additional efforts of the DQT approach are minor
compared to ED, where the diagonalization of multiple
Hamiltonians has to be carried out.

0

0.01

0.02

0 10 20 30 40 50

L = 16

〈j
(t
)〉/

L

time t

±δj(t)
DQT

ED

Figure 7. (Color online) Out-of-equilibrium dynamics of the
spin current j in the spin-1/2 XXZ chain with ∆ = 0.5 and
L = 16, starting from a thermal state with β = 1. For times
0 < t < 5, an external force acts on the system, which gives
rise to an additional term ∝ j within the Hamiltonian. Re-
sults from the typicality approach are compared to exact di-
agonalization. DQT data are averaged over N = 100 random
initial states and the shaded area indicates the standard de-
viation. Data is adapted from Ref. [44].

In Fig. 7, the nonequilibrium dynamics ⟨j(t)⟩ of the
spin current is exemplarily depicted for a XXZ chain
which is initially prepared in a thermal state at the finite
temperature β = 1 (see caption of Fig. 7 and Ref. [44]
for a more detailed description of the protocol). Here,
the accuracy of the DQT approach is demonstrated by
comparing to data obtained by exact diagonalization.

E. DQT and its extensions

In addition to the direct applications discussed above,
DQT also is a useful tool to “boost” other (numerical
or analytical) techniques, which can profit from accurate
data for large system sizes. Two examples of such tech-
niques, which have recently been combined with DQT,
are numerical linked-cluster expansions (NLCE) and pro-
jection operator techniques.

1. NLCE

The key feature used in NLCE is the fact that the per-
site value of an extensive quantity on an infinite lattice
can be expanded in terms of its respective weights on all
linked (sub-)clusters that can be embedded in the lat-
tice. While NLCE is described in detail and generality
in [86, 87], this section focuses on practical aspects of
NLCE, particularly on its combination with DQT to cal-
culate, e.g., current-current correlation functions of one-
dimensional systems. The starting point of a correspond-
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ing NLCE is the expression

⟨j(t)j⟩eq
L

=
∑

c

LcWc(t) , (31)

whereWc is the weight of a cluster c with multiplicity Lc.
To avoid redundant computations, the multiplicity factor
(divided by the total number of lattice sites) accounts
for all clusters, which are symmetrically or topologically
related to one representative cluster and therefore yield
the same weight. The weight of each cluster is evaluated
by the inclusion-exclusion principle

Wc(t) = ⟨j(t)j⟩(c)eq −
∑

s⊂c
Ws(t) , (32)

where the weights of all embedded clusters s are sub-

tracted from ⟨j(t)j⟩(c)eq evaluated on the cluster c.

Since the maximum treatable cluster size is naturally
limited by the available computational resources, the sum
in Eq. (31) has to be truncated to a maximum size cmax.
In one dimension, this truncated sum reduces to the dif-
ference of the autocorrelation functions of the two largest
open-boundary chains with length cmax and cmax−1, i.e.,

cmax∑

c=2

Wc(t) = ⟨j(t)j⟩(cmax)
eq − ⟨j(t)j⟩(cmax−1)

eq . (33)

As demonstrated in Ref. [88], this rather simple formula
can have a better convergence towards the thermody-
namic limit than a standard finite-size scaling at effec-
tively equal computational cost.

As shown in Fig. 8, the current autocorrelation func-
tion for the spin-1/2 Heisenberg chain directly obtained
by DQT for a large system with L = 36 still exhibits
notable finite-size effects for times t > 20, whereas cor-
responding DQT+NLCE data is already converged for
these times. Due to the truncation to a maximum clus-
ter size cmax, however, the expansion eventually breaks
down and only yields reliable results up to a maximum
time, which increases with cmax [88–90]. For the specific
example in Fig. 8, this maximum time is tmax ∼ 40 for
the maximum cluster size cmax = 39 calculated.

When studying thermodynamic quantities, for which
the NLCE was originally introduced, using larger cluster
sizes similarly improves the convergence of the expan-
sion down to lower temperatures [87, 91]. Either way, it
is thus desirable to access cluster sizes as large as possi-
ble and DQT can be used to evaluate the contributions of
clusters beyond the range of ED. Since the difference in
Eq. (33) could be sensitive to small statistical errors, it
might be recommended to average the DQT results over
multiple random pure states, in particular in higher di-
mensions, where the NLCE expression is not just a single
difference.

0.001

0.01

0.1

0 10 20 30 40 50

onvergene

cmax〈j
(t
)j
〉 eq

/
L

time t

DQT + NLCE

DQT, L = 36

Figure 8. (Color online) Current-current correlation func-
tion ⟨j(t)j⟩eq/L in the XXZ chain (∆ = 1) at β = 0.
Dashed line indicates data obtained by DQT for L = 36
and periodic boundary conditions. Solid lines are obtained
by the combination of DQT and NLCE for expansion orders
cmax = 18, 32, 34, 36, 38, 39 (arrow). Data is adapted from
Refs. [88, 92].

2. Projection operator techniques

The DQT approach can also be used in the con-
text of projection operator techniques, e.g., the so-called
time-convolutionless (TCL) projection operator method.
These techniques can be applied to situations where a
closed quantum system with Hamiltonian H0 is per-
turbed by an operator V with strength λ, such that the
total Hamiltonian takes on the form

H = H0 + λV . (34)

In this setting, one then chooses a suitable projection on
the relevant degrees of freedom to obtain a systematic
perturbation expansion for the reduced dynamics. Again,
we refer to [92–95] for a detailed description of the TCL
method and do not discuss it here in full generality.

Choosing a simple projection onto A only and consid-
ering the specific initial conditions ρ(0) ∼ A yields in
second order of the perturbation [92, 95]

⟨A(t)⟩H = ⟨A(t)⟩H0
exp

[
−λ2

∫ t

0

dt′γ2(t
′)

]
, (35)

where the second-order damping rate γ2(t) is given by

γ2(t) = −
∫ t

0

Tr{[A,VI(t
′) ] [A,V ]}

⟨A2⟩ dt′ (36)

and the index I indicates operators in the interaction pic-
ture.

The calculation of Eq. (36) can be conveniently done
using typical states and becomes especially simple in the
case where the observable of interest is conserved un-
der the unperturbed Hamiltonian, i.e., [A,H0 ] = 0. By
defining K = [A,V ] and KI(t) = eiH0tK e−iH0t, the nu-
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Figure 9. (Color online) Current-current correlation function
for spin-1/2 XX ladders (J∥ = 1) with different interchain cou-
plings J⊥ (shifted for better visibility). Symbols denote exact
data obtained by DQT for length L = 14, i.e., 28 spins in
total. The solid lines indicate the prediction from the (second
order) TCL projection operator method, cf. Eq. (35). Data is
adapted from Ref. [92].

merator of Eq. (36) can be calculated as,

Tr[KI(t)K] ∝ ⟨ψ(t)| K |φ(t)⟩ , (37)

with the auxiliary states

|ψ(t)⟩ = e−iH0t |ψ⟩ (38)

|φ(t)⟩ = e−iH0tK |ψ⟩ . (39)

In [92], the quality of the second-order prediction (35)
was numerically studied for the example of the current
autocorrelation functions ⟨j(t)j⟩eq in spin-1/2 ladder sys-
tems, where the interactions on the rungs of the ladder
are treated as a perturbation to the otherwise uncoupled
legs. As depicted in Fig. 9, the second-order prediction
agrees convincingly with exact data obtained by DQT for
different strengths of the perturbation.

IV. CONCLUSION

To summarize, we have discussed several applications
of dynamical quantum typicality and its usefulness as a
numerical approach to the real-time dynamics of quan-
tum many-body systems. The main idea of this typicality
approach is to approximate ensemble expectation values
via single pure states which are randomly drawn from a
high-dimensional Hilbert space. In particular, time (tem-
perature) dependencies of expectation values can be ob-
tained by iteratively solving the Schrödinger equation in
real (imaginary) time, e.g., by means of Runge-Kutta

schemes or more sophisticated methods.
First, we have described that DQT can be used to

study the (local) density of states as well as equilib-
rium correlation functions for long time scales and com-
paratively large system sizes beyond the range of stan-
dard exact diagonalization. Especially in the context of
transport, the calculation of current autocorrelations and
density-density correlations by means of DQT is possi-
ble. Furthermore, we have outlined that DQT is suitable
to investigate also the far-from-equilibrium dynamics re-
sulting from certain quench protocols. For instance, an
initial Gibbs state is properly imitated by a typical pure
state and nonequilibrium conditions are induced by re-
moving or adding an external force. Eventually, we have
discussed that DQT can additionally be combined with
other approaches. As one example, we have shown that
the convergence of numerical linked-cluster expansions
can be improved by evaluating the contributions of larger
clusters by means of DQT. As another example, we have
discussed that DQT allows to compute memory kernels
which arise in projection operator methods such as the
TCL technique.

While this paper has illustrated the usefulness of DQT
for selected applications in the context of transport and
thermalization, we should stress that there certainly are
other applications of DQT which have not been men-
tioned by us. One such application, as done in, e.g., [96],
is the spreading of quantum information measured by
so-called out-of-time-ordered correlators (OTOCs) of the
form [97],

C(t) =
Tr[A(t)BA(t)B]

d
, (40)

where the operators A and B are, for instance, local mag-
netization densities Szℓ at two different lattice sites. Sim-
ilar to the correlation functions discussed in Eq. (17),
the OTOC in Eq. (40) can be approximated as the
overlap C(t) ≈ ⟨ψ2(t)|ψ1(t)⟩ of the two auxiliary states
|ψ1(t)⟩ = A(t)B |ψ⟩ and |ψ2(t)⟩ = BA(t) |ψ⟩, where |ψ⟩
is again a Haar-random state [96].

In conclusion, the concept of dynamical quantum typ-
icality offers a rather simple yet remarkably useful ap-
proach to study the real-time dynamics of quantum
many-body systems. It is our hope that the examples
discussed in this paper motivate its application in other
areas as well.
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[12] S. Erne, R. Bücker, T. Gasenzer, J. Berges, and
J. Schmiedmayer, Nature 563, 225 (2018).

[13] J. Richter and R. Steinigeweg, Phys. Rev. E 99, 012114
(2019).

[14] R. Kubo, M. Toda, and N. Hashitsume, Statistical
Physics II , 2nd ed., Springer Series in Solid-State Sci-
ences, Vol. 31 (Springer Berlin Heidelberg, 1991).
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According to the concept of typicality, an ensemble average can be accurately approximated by
an expectation value with respect to a single pure state drawn at random from a high-dimensional
Hilbert space. This random-vector approximation, or trace estimator, provides a powerful approach
to, e.g., thermodynamic quantities for systems with large Hilbert-space sizes, which usually cannot
be treated exactly, analytically or numerically. Here, we discuss the finite-size scaling of the accu-
racy of such trace estimators from two perspectives. First, we study the full probability distribution
of random-vector expectation values and, second, the full temperature dependence of the standard
deviation. With the help of numerical examples, we find pronounced Gaussian probability distribu-
tions and the expected decrease of the standard deviation with system size, at least above certain
system-specific temperatures. Below and in particular for temperatures smaller than the excitation
gap, simple rules are not available.

I. INTRODUCTION

Methods such as the finite-temperature Lanczos
method (FTLM) [1–7], that rest on trace estimators
[1, 8–16] and thus – in more modern phrases – on the
idea of typicality [17–20], approximate equilibrium ther-
modynamic observables with very high accuracy [2, 21].
In the canonical ensemble, the observable can be evalu-
ated either with respect to a single random vector |r⟩,

Or(T ) ≈
⟨r|O∼e

−βH∼ |r⟩
⟨r| e−βH∼ |r⟩

, (1)

or with respect to an average over R random vectors,

OFTLM(T ) ≈
∑R
r=1 ⟨r|O∼e

−βH∼ |r⟩
∑R
r=1 ⟨r| e−βH∼ |r⟩

, (2)

where numerator and denominator are averaged with re-
spect to the same set of random vectors. The components
of |r⟩ with respect to an orthonormal basis are taken from
a Gaussian distribution with zero mean (Haar measure
[22–24]), but in practice other distributions work as well.
T , β, andH∼ denote the temperature, inverse temperature

and the Hamiltonian, respectively.
In this work, we discuss the accuracy of Eqs. (1) and

(2), where we particularly focus on the dependence of
this accuracy on the system size or, to be more pre-
cise, the dimension of the effective Hilbert space spanned
by thermally occupied energy eigenstates. While it is
well established that the accuracy of both equations in-
creases with the square root of this dimension, we shed
light on the size dependence from two less studied per-

∗ jschnack@uni-bielefeld.de
† Johannes.Richter@physik.uni-magdeburg.de
‡ rsteinig@uos.de

spectives. First, we study the full probability distribu-
tion of random-vector expectation values, for the spe-
cific example of magnetic susceptibility and heat capac-
ity in quantum spin systems on a one-dimensional lattice.
At high temperatures, our numerical simulations unveil
that these distributions are remarkably well described by
simple Gaussian functions over several orders of magni-
tudes. Moreover, they clearly narrow with the inverse
square root of the Hilbert-space dimension towards a δ
function. Decreasing temperature at fixed system size,
we find the development of broader and asymmetric dis-
tributions. Increasing the system size at fixed temper-
ature, however, distributions become narrow and sym-
metric again. Thus, the mere knowledge of the standard
deviation turns out to be sufficient to describe the full
statistics of random-vector expectation values – at least
at not too low temperatures.

The second central perspective of our work is taken
by performing a systematic analysis of the scaling of the
standard deviation with the system size, over the entire
range of temperature and in various quantum spin models
including spin-1/2 and spin-1 Heisenberg chains, critical
spin-1/2 sawtooth chains, as well as cuboctahedra with
spins 3/2, 2, and 5/2. We show a monotonous decrease of
the standard deviation with increasing effective Hilbert-
space dimension, as long as temperature is high com-
pared to some system-specific low-energy scale. Below
this scale, the scaling can become unsystematic if only a
very few low-lying energy eigenstates contribute. How-
ever, when averaging according to Eq. (2) over a decent
number (∼ 100) of random vectors, one can still deter-
mine the thermodynamic average very accurately in all
examples considered by us. A quite interesting example
constitutes the critical spin-1/2 sawtooth chain, where a
single state drawn at random is enough to obtain this
average down to very low temperatures.

This paper is organized as follows. In Sec. II we briefly
recapitulate models, methods, as well as typicality-based
estimators. In Sec. III we present our numerical examples
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both for frustrated and unfrustrated spin systems. The
paper finally closes with a summary and discussion in
Sec. IV.

II. METHOD

In this article we study several spin systems at zero
magnetic field. They are of finite size and described by
the Heisenberg model,

H∼ =
∑

i<j

Jij s⃗∼i · s⃗∼j , (3)

where the sum runs over ordered pairs of spins. Here and
in the following operators are marked by a tilde, i.e. s⃗∼i
denotes the spin-vector operator at site i. Jij denotes
the exchange interaction between a spin at site i and a
spin at site j. With the sign convention in (3), Jij > 0
corresponds to antiferromagnetic interaction.

Numerator and denominator of (2), the latter is the
partition function, are evaluated using a Krylov-space
expansion, i.e. a spectral representation of the expo-
nential in a Krylov space with |r⟩ as starting vector of
the Krylov-space generation, compare [1, 4]. One could
equally well employ Chebyshev polynomials [13, 25, 26]
or integrate the imaginary-time Schrödinger equation
with a Runge-Kutta method [27–29], the latter is used
later in this paper as well.

If the Hamiltonian H∼ possesses symmetries, they can

be used to block-structure the Hamiltonian matrix ac-
cording to the irreducible representations of the employed
symmetry groups [4, 5], which yields for the partition
function

ZFTLM(T ) ≈
Γ∑

γ=1

dim[H(γ)]

R

×
R∑

r=1

NL∑

n=1

e−βϵ
(r)
n | ⟨n(r) | r⟩ |2 . (4)

H(γ) labels the subspace that belongs to the irreducible
representation γ, NL denotes the dimension of the Krylov
space, and |n(r)⟩ is the n-th eigenvector of H∼ in this

Krylov space grown from |r⟩. The energy eigenvalue is

ϵ
(r)
n . To perform the Lanczos diagonalization for larger
system sizes, we use the public code spinpack [30, 31].

In our numerical studies we evaluate the uncertainty
of a physical quantity by repeating its numerical eval-
uation NS times. For this statistical sample we define
the standard deviation of the observable in the following

way:

δ(O) =

√√√√ 1

NS

NS∑

r=1

[Om(T )]
2 −

[
1

NS

NS∑

r=1

Om(T )

]2

=

√
[Om(T )]

2 −
[
Om(T )

]2
. (5)

Om(T ) is either evaluated according to (1) (m=r) or to
(2) (m=FTLM), depending on whether the fluctuations
of approximations with respect to one random vector or
with respect to an average over R vectors shall be inves-
tigated.

We consider two physical quantities, the zero-field sus-
ceptibility as well as the heat capacity. Both are eval-
uated as variances of magnetization and energy, respec-
tively, i.e.

χ(T ) =
(gµB)

2

kBT

[〈
(S∼

z)2
〉
−
〈
S∼
z
〉2
]
, (6)

C(T ) =
kB

(kBT )2

[〈
H∼

2
〉
−
〈
H∼

〉2
]
. (7)

We compare our results with the well-established high-
temperature estimate

δ⟨O∼⟩ ≃ ⟨O∼⟩
α√
Zeff

, Zeff = tr
[
e
−β(H∼−E0)

]
. (8)

Here E0 denotes the ground-state energy. In general the
prefactor α depends on the specific system, its structure
and size, as well as on temperature [18, 19], but empiri-
cally often turns out to be a constant of order α ≈ 1 for
high enough temperatures, compare [2, 6, 21]. Rigorous
error bounds, see Refs. [19, 32], share the dependence on
1/
√
Zeff, but lead to a prefactor that can be substantially

larger than the empirical finding.

III. NUMERICAL RESULTS

We now present our numerical results. First, in the
following Sec. III A, the full probability distribution of
random-vector expectation values is discussed for shorter
spin chains, where this distribution can be easily obtained
by generating a large set of different random vectors. In
the remainder of Sec. III the size dependence of the stan-
dard deviation is investigated for longer spin chains of
spin s = 1/2 and s = 1, respectively, which are treated
by Lanczos methods. The interesting behavior of a quan-
tum critical delta chain is studied as well. Finally, we
discuss the dependence of the standard deviation on the
spin quantum number for a body of fixed size, the cuboc-
tahedron.
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A. Distribution of random-vector expectation
values for smaller antiferromagnetic spin-1/2 chains

As a first step, in order to judge the accuracy of the
single-state estimate in (1), it is instructive to study its
full probability distribution p, obtained by drawing many
[here O(104 − 106)] random vectors. To be more precise,
we evaluate the numerator of (1) for different random
states |r⟩, while its denominator is calculated as the av-
erage over all |r⟩,

⟨r|O∼e
−βH∼ |r⟩

∑R
r=1 ⟨r| e−βH∼ |r⟩

. (9)

The advantage of using this equation, instead of (1), is
that the mean coincides with (2), the latter should be
used to correctly obtain the low-temperature average in
system of finite size [21]. However, at sufficiently high
temperatures or in sufficiently large systems, one might
equally well use (1), as we have checked.

The single results for (9) are then collected into bins
of appropriate width in order to form a “smooth” distri-
bution p. While one might expect that p will be approxi-
mately symmetric around the respective thermodynamic
average, the width of the distribution indicates how reli-
able a single random vector can approximate the ensem-
ble average.

In this Section, we study the probability distribution p
(in the following denoted as pχ and pC) for the quantities
χ(T )T/N and C(T )T 2/N , and exemplarily consider the
one-dimensional spin-1/2 Heisenberg model with antifer-
romagnetic nearest-neighbor coupling J > 0 and chain
length N . Note that, as discussed in the upcoming
Secs. III B - III E, details of the model can indeed have
an impact on the behavior of p in certain temperature
regimes. Note further, that we focus in this Section on
small to intermediate system sizes N ≤ 20, where p can
be easily obtained by generating a large set of different
random vectors and evolving these vectors in imaginary
time by, e.g., a simple Runge-Kutta scheme. We have
checked that the Runge-Kutta scheme employed in this
Section has practically no impact on p.

To begin with, in Fig. 1 (a), pχ is shown for differ-
ent chain lengths N = 12, . . . , 20 at infinite temperature
βJ = 0. For all values of N shown here, we find that
pχ is well described by a Gaussian distribution [33] over
several orders of magnitude. While the mean of these
Gaussians is found to accurately coincide with the ther-
modynamic average limT→∞ χ(T )T/N = 1/4 [34], we
moreover observe that the width of the Gaussians be-
comes significantly narrower upon increasing N . This
fact already visualizes that the accuracy of the estimate
in (1) improves for increasing Hilbert-space dimension.
In particular, as shown in the inset of Fig. 1, the stan-
dard deviation δ(χ) scales as δ(χ) ∝ 1/

√
d, where d = 2N

is the dimension of the Hilbert space. This is in agree-
ment with (8) for α ≈ 1.2 and Zeff = d at β = 0. Note
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Figure 1. (a) Probability distribution of the susceptibility
χ(T )T/N evaluated from independently drawn single states
according to (9). Data is shown for different system sizes
N = 12, . . . , 20 at infinite temperature βJ = 0. The dashed
lines indicate Gaussian fits to the data. The inset shows the
standard deviation δ(χ) versus N , which scales as δ(χ) ∝
1/

√
d with Hilbert-space dimension d = 2N . (b) Same data

as in (a) but now for the finite temperature βJ = 1.

that since pχ is found to be a Gaussian, the width δ(χ) is
sufficient to describe the whole distribution (apart from
the average).

To proceed, Fig. 1 (b) again shows the probability dis-
tribution pχ, but now for the finite temperature βJ = 1.
There are two important observations compared to the
previous case of βJ = 0. First, for small N = 12, one
clearly finds that pχ now takes on an asymmetric shape
and the tails are not described by a Gaussian anymore.
Importantly, however, upon increasing the system sizeN ,
pχ becomes narrower and eventually turns into a Gaus-
sian again. One may speculate about possible reasons for
the observed asymmetry: It might reflect an asymmetry
of the distribution, which is already present at β = 0
and small N , and then increases with increasing β; or it
might also stem from the boundedness (positivity) of the
observables, although the bounds are still far away for
the presented case of βJ = 1 in Fig. 1 (b). While this
asymmetry remains to be explored in more detail in fu-
ture work, it is expected that the Gaussian shape breaks
down in small dimensions of the effective Hilbert space
dimensions [33]. It is worth pointing out that, even for
very large dimensions, the very outer tails of the distri-
bution are expected to be of non-Gaussian nature [33].
Yet, these tails are hard to resolve in our numerical simu-
lations, since a huge number of samples would be needed.
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Figure 2. (a) Probability distribution of the susceptibility
χ(T )T/N for various temperatures 0 ≤ βJ ≤ 2 at the fixed
system size N = 12 obtained by ED (symbols). For compar-
ison, data obtained by Runge-Kutta at βJ = 2 is shown as
well (curve). (b) Same data as in (a), but now as a contour
plot.

As a second difference compared to βJ = 0, we find
that although pχ becomes narrower for larger N also at
βJ = 1, this scaling is now considerably slower as a func-
tion of dimension d (see inset of Fig. 1 (b)). This is caused
by the smaller effective Hilbert-space dimension Zeff < d
at βJ > 0. As a consequence, for a fixed value of N ,
the single-state estimate in (1) becomes less reliable at
βJ = 1 compared to βJ = 0. However, let us stress that
accurate calculations are still possible at T > 0 as long as
N is sufficiently large. (Recall, that N ≤ 20 was chosen
to be able to generate a large set of random vectors.)

In order to analyze the development of the probabil-
ity distribution with respect to temperature in more de-
tail, Fig. 2 (a) shows pχ for various values of βJ in the
range 0 ≤ βJ ≤ 2, for a fixed small system size N = 12.
Note that the qualitative behavior in principle is inde-
pendent of N , but better to visualize for small N with
a broader pχ. Starting from the high-temperature limit
limT→∞ χ(T )T/N = 1/4, we find that the maximum of
pχ gradually shifts towards smaller values upon decreas-
ing T .

This shift of the maximum is clearly visualized also in
Fig. 2 (b), which shows the same data, but in a different
style. Moreover, Fig. 2 (b) additionally highlights the
fact that the probability distribution pχ for a fixed (and
small) value of N becomes broader (and asymmetric) for
intermediate values of T . Note, that pχ might become
narrower again for smaller values of T , see also discussion
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Figure 3. Analogous data as in Fig. 1, but now for the heat
capacity C(T )T 2/N .

in Secs. III B - III C.

Eventually, in Fig. 3 and Fig. 4, we present analogous
results for the full probability distribution p, but now for
the heat capacity C(T )T 2/N . Overall, our findings for
pC are very similar compared to the previous discussion
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Figure 4. Analogous data as in Fig. 2, but now for the heat
capacity C(T )T 2/N .
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of pχ. Namely, we find that at βJ = 0, pC is very well
described by Gaussians over several orders of magnitude.
Moreover, the standard deviation δ(C) again scales as

∝ 1/
√
d at β = 0. As shown in Fig. 3 (b) and also in

Fig. 4, the emerging asymmetry of the probability dis-
tribution at small N and finite T is found to be even
more pronounced for the heat capacity compared to the
previous results for χ(T ). Interestingly, we find that the
maximum of pC , on the contrary, displays only a minor
dependence on temperature (at least for the values of βJ
shown in Fig. 4 - naturally, it is expected to change at
lower temperatures and will to go to zero at temperature
T = 0).

B. Larger antiferromagnetic spin-1/2 chains

Using a Krylov-space expansion one can nowadays
reach large system sizes of N ∈ [40, 50] for spins s = 1/2,
see e.g. [35]. But since we also perform a statistical anal-
ysis we restrict calculations to N ≤ 36 spins.
Following the scaling behavior of {⟨(S∼

z)2⟩ − ⟨S∼
z⟩2} as

well as {⟨H∼
2⟩ − ⟨H∼ ⟩2}, which is shown in Figs. 1 and 3,

one expects a very narrow distribution of both quantities
for N = 36 compared to e.g. N = 20 since the dimension
is 216 = 65536 times bigger for N = 36 which yields a
256 times narrower distribution. Such a distribution is
smaller than the linewidth in a plot.
That the distributions are narrow can be clearly seen

by eye inspection in Fig. 5 where the light blue curves
depict thermal expectation values according to (1). For

Figure 5. Spin ring N = 36, s = 1/2: The light-blue curves
depict 100 different estimates of the susceptibility (a) as well
as of the heat capacity (b). The FTLM estimate for R = 100
is also presented.

Figure 6. Spin rings, s = 1/2: Computed standard deviations
(dashed curves) of the susceptibility (a) and the heat capacity
(b) compared to the error estimate (solid curves) for various
sizes N . The same color denotes the same system.

kBT > |J | they fall on top of each other and coincide
with the average over R = 100 realizations. Below this
temperature the distributions widen, which is magnified
by the fact that the real physical quantities susceptibil-
ity and heat capacity contain factors of 1/T and 1/T 2,
respectively.

Their standard deviation is provided in Fig. 6. Com-
ing from high temperatures, the universal behavior (8)
switches to a behavior that in general depends on system
(here chain) and size below a characteristic temperature,
here kBT ≈ |J |. Nevertheless, the qualitative expecta-
tion that the standard deviation shrinks with increasing
system size is met down to kBT ≈ 0.2|J |, below which no
definite statement about the dependence on system size
can be made. We conjecture that with growing N the
increasing density of low-lying states as well as the van-
ishing excitation gap between singlet ground state and
triplet first excited state influence the behavior at very
low temperatures strongly.

C. Antiferromagnetic spin-1 chains

In order to monitor an example where a vanishing ex-
citation gap cannot be expected, not even in the ther-
modynamic limit, we study spin-1 chains that show a
Haldane gap [36, 37], see Fig. 7. The scaling formula
(8) indeed suggests that for kBT ⪅ (0.4 . . . 0.5)|J | the
standard deviations of the larger system with N = 24
should exceed those of the smaller system with N = 20,
compare crossing curves of the estimator in Fig. 8. How-
ever, the actual simulations show that this is not the case.
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Figure 7. Spin ring N = 24, s = 1: The light-blue curves
depict 100 different estimates of the susceptibility (a) as well
as the heat capacity (b). The FTLM estimate for R = 100 is
also presented.

The low-temperature fluctuations in the gap region are
smaller for the larger system, at least for the two inves-
tigated system sizes.

Figure 8. Spin rings, s = 1: Computed standard deviations
(dashed curves) of the susceptibility (a) and the heat capacity
(b) compared to the error estimate (solid curves) for various
sizes N . The same color denotes the same system.

Figure 9. Delta chain s = 1/2, |J2/J1| = 0.5: heat capacity
for N = 32 (a) and standard deviation for N = 28 and N = 32
(b). The light-blue curves depict NS = 30 different estimates
of the heat capacity (there are indeed 30 curves in this plot,
which are indistinguishable by eye). Computed standard de-
viations (dashed curves) are compared to the error estimate
(solid curves). The same color denotes the same system.

D. Critical Spin-1/2 delta chains

As the final one-dimensional example we investigate a
delta chain (also called sawtooth chain) in the quantum
critical region, i.e., thermally excited above the quan-
tum critical point (QCP) [38–40]. The QCP is met
when the ferromagnetic nearest-neighbor interaction J1
and the antiferromagnetic next-nearest neighbor inter-
action J2 between spins on adjacent odd sites assume
a ratio of |J2/J1| = 1/2. At the QCP the system fea-
tures a massive ground-state degeneracy due to multi-
magnon flat bands as well as a double-peak density of
states [21, 38, 39]. Moreover, the typical finite-size gap
is virtually not present at the QCP [38].

Since the QCP does not depend on the size of the sys-
tem and the structure of the analytically known multi-
magnon flat band energy eigenstates does not either, we
do not expect to find large finite-size effects when in-
vestigating the standard deviation of observables, e.g. of
the heat capacity. It turns even out that by eye inspec-
tion no fluctuations are visible in Fig. 9 (a). The figure
shows NS = 30 thermal expectation values (3) that vir-
tually fall on top of each other. This means that a single
random vector provides the equilibrium thermodynamic
functions for virtually all temperatures. When evaluat-
ing the standard deviation, dashed curves in Fig. 9 (b),
it turns out that it is unusually small, even for very low
temperatures. The estimator (8) to which we compare
had to be scaled in this case which might have two rea-
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Figure 10. Cuboctahedron N = 12, s = 5/2: The light-blue
curves depict 100 different estimates of the susceptibility (a)
as well as the heat capacity (b). The FTLM estimate for R =
100 is also presented. The structure of the cuboctahedron is
displayed in (b).

sons. One reason could be that the large ground state
degeneracy cannot be fully captured by the Krylov space
expansion and thus the evaluation of the estimator (8)
by means of (4) is inaccurate. The other reason could be
that the empirical finding of α ≈ 1 is not appropriate in
this special case of a quantum critical system. However,
the general rule that trace estimators are more accurate
in larger Hilbert spaces is also observed here. The stan-
dard deviation of the smaller delta chain with N = 28 is
a few times larger than for N = 32.
The result is an impressive example for what it means

that a quantum critical system does not possess any in-
trinsic scale in the quantum critical region [41, 42]. The
only available scale is temperature. This means in partic-
ular that the low-energy spectrum is dense and therefore
does not lead to any visible fluctuations of the estimated
observables.

E. Antiferromagnetic cuboctahedra with spins 3/2,
2, and 5/2

Our last scaling analysis differs from the previous ex-
amples. The cuboctahedron is a finite-size body, that is
equivalent to a kagome lattice with N = 12 [43–45]. The
structure is shown in Fig. 10(b). Here, we vary the spin
quantum number, not the size of the system. The dimen-
sion of the respective Hilbert spaces grows considerably
which leads to the expected scaling (8) above tempera-
tures of kBT ≈ 1.5|J |. But the low-temperature behav-
ior, in particular of the heat capacity for temperatures

Figure 11. Cuboctahedron N = 12: Computed standard de-
viations (dashed curves) of the susceptibility (a) and the heat
capacity (b) compared to the error estimate (solid curves) for
various spin quantum numbers s. The same color denotes the
same system.

below the crossing of the estimators, eludes the expected
order of more accurate results, i.e. smaller fluctuations
for larger Hilbert-space dimension.

While the low-temperature behavior and the standard
deviation of the susceptibility are largely governed by the
energy gap between singlet ground state and triplet ex-
cited state, and this does not vary massively with the spin
quantum number, the heat capacity is subject to stronger
changes. When going from smaller to larger spin quan-
tum numbers the strongly frustrated spin system looses
some of its characteristic quantum properties while be-
coming more classical with increasing spin s. In partic-
ular, the low-lying singlet states below the first triplet
state which dominate the low-temperature heat capacity
move out of the gap for larger spin s [46, 47].

It may thus well be that the type of Hilbert space en-
largement, due to growing system size which leads to the
thermodynamic limit or growing spin quantum number
which leads to the classical limit, is important for the be-
havior of the estimators (1) and (2) at low temperatures.

IV. DISCUSSION AND CONCLUSIONS

To summarize, we have studied the finite-size scaling
of typicality-based trace estimators. In these approaches,
the trace over the high-dimensional Hilbert space is ap-
proximated by either (i) a single random state |r⟩ or (ii)
the average over a set (R ≪ d) of random vectors. In
particular, we have focused on the evaluation of thermo-
dynamic observables such as the heat capacity and the
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magnetic susceptibility for various spin models of Heisen-
berg type. Here, the temperature dependence of these
quantities has been generated by means of a Krylov-space
expansion where the random states |r⟩ are used as a start-
ing vector for the expansion.
As a first step, we have studied the full probability dis-

tribution of expectation values evaluated with respect to
single random states. As an important result, we have
demonstrated that for sufficiently high temperatures and
large enough system sizes (i.e. sufficiently large effective
Hilbert-space dimension Zeff), the probability distribu-
tions are very well described by Gaussians [33]. In par-
ticular, for comparatively high temperatures, our numer-
ical analysis has confirmed that the standard deviation
of the probability distribution scales as δ(O) ∝ 1/

√
Zeff,

and that this width already describes the full distribu-
tion.
In contrast, for lower temperatures, we have shown

that (i) the probability distributions can become non-
Gaussian and (ii) the scaling of δ(O) can become more
complicated and generally depends on the specific model
and observable under consideration. While a larger
Hilbert-space dimension often leads to an improved accu-
racy of the random-state approach at low temperatures
as well, compare the investigation on kagome lattice an-
tiferromagnets of sizes N = 30 and N = 42 in [35], we
have also provided examples where this expectation can
break down for too small Zeff , compare also [48].

A remarkable example is provided by the spin-1/2 saw-
tooth chain with coupling-ratio |J2/J1| = 1/2. Due to
the (virtually) gapless dense low-energy spectrum at the
quantum critical point, we have found that statistical
fluctuations remain negligible throughout the entire tem-
perature range with only minor dependence on system
size (see also Ref. [49] for a similar finding in a spin-liquid
model).

In conclusion, we have demonstrated that typicality-
based estimators provide a convenient numerical tool in
order to accurately approximate thermodynamic observ-
ables for a wide range of temperatures and models. While
in some cases, even a single pure state is sufficient, the
accuracy of the results can always be improved by aver-
aging over a set of independently drawn states.
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Density Dynamics in the Mass-Imbalanced Hubbard Chain

Tjark Heitmann ,1, ∗ Jonas Richter ,1 Thomas Dahm,2 and Robin Steinigeweg 1, †

1Fachbereich Physik, Universität Osnabrück, Barbarastr. 7, D-49076 Osnabrück, Germany
2Fakultät für Physik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

We consider two mutually interacting fermionic particle species on a one-dimensional lattice and
study how the mass ratio η between the two species affects the (equilibration) dynamics of the
particles. Focussing on the regime of strong interactions and high temperatures, two well-studied
points of reference are given by (i) the case of equal masses η = 1, i.e., the standard Fermi-Hubbard
chain, where initial non-equilibrium density distributions are known to decay, and (ii) the case of
one particle species being infinitely heavy, η = 0, leading to a localization of the lighter particles
in an effective disorder potential. Given these two opposing cases, the dynamics in the case of
intermediate mass ratios 0 < η < 1 is of particular interest. To this end, we study the real-time
dynamics of pure states featuring a sharp initial non-equilibrium density profile. Relying on the
concept of dynamical quantum typicality, the resulting non-equilibrium dynamics can be related to
equilibrium correlation functions. Summarizing our main results, we observe that diffusive transport
occurs for moderate values of the mass imbalance, and manifests itself in a Gaussian spreading of
real-space density profiles and an exponential decay of density modes in momentum space. For
stronger imbalances, we provide evidence that transport becomes anomalous on intermediate time
scales and, in particular, our results are consistent with the absence of strict localization in the
long-time limit for any η > 0. Based on our numerical analysis, we provide an estimate for the
“lifetime” of the effective localization as a function of η.

I. INTRODUCTION

Understanding the dynamics of quantum many-body
systems is a central objective of modern physics which
has been reignited by experimental advancements featur-
ing, e.g., cold atoms or trapped ions [1, 2], and has expe-
rienced an upsurge of interest also from the theoretical
side [3–7]. In this context, an intriguing and fundamental
direction of research is to explain if and how thermody-
namic behavior can emerge from the unitary time evolu-
tion of isolated quantum systems. One notable explana-
tion for this occurrence of thermalization is the eigenstate
thermalization hypothesis (ETH) [8–10], which has been
numerically verified in numerous instances [5].
However, despite thermalization certainly being a

rather common observation, there are also classes of sys-
tems which generically evade to reach thermal equilib-
rium even at indefinitely long times. In particular, it has
been realized early on by Anderson that non-interacting
particles in one or two spatial dimensions localize for an
arbitrarily weak disorder potential [11, 12] (for experi-
mental confirmations see, e.g., [13, 14]). Moreover, it is
now widely believed that for sufficiently strong disorder,
localization is also possible in the presence of interac-
tions [15, 16], which is supported by experimental results
as well [17].
While the majority of studies on many-body localiza-

tion (MBL) typically focus on one-dimensional and short-
ranged models composed of, e.g., spin-1/2 degrees of free-
dom, there has been much effort recently to generalize the

∗ tjark.heitmann@uos.de
† rsteinig@uos.de

notion of MBL to a wider class of models [18]. This in-
cludes, e.g., systems which are weakly coupled to a ther-
mal bath [19], models with long-range interactions [20]
or degrees of freedom with higher spin S > 1/2 [21, 22],
as well as Hubbard models where the disorder only cou-
ples to either one of the charge or spin degrees of freedom
[23, 24].

A particularly interesting question is whether MBL
can also occur in systems which are translational invari-
ant, i.e., without any explicit disorder [25–39]. A conve-
nient model to investigate this question is given by the
mass-imbalanced Hubbard chain [29–31, 39–41]. In this
model, two mutually interacting particle species are de-
fined on a one-dimensional lattice and exhibit different
hopping amplitudes. Here, the imbalance is parametrized
by the ratio η between the two hopping strengths, rang-
ing from η = 0, where the heavy particles are entirely
static, to η = 1, where the hopping amplitudes are the
same. On the one hand, in the balanced limit η = 1, nu-
merical evidence for diffusive [42–44] (or superdiffusive
[42, 45]) charge transport has been found in the regime
of high temperatures and strong interactions. On the
other hand, for η = 0, the static particle species creates
an effective disorder potential which induces localization
of the lighter particles [41, 46–49]. In view of these two
opposing cases, it is intriguing to study the dynamics in
the regime of intermediate imbalances 0 < η < 1. While
genuine localization (i.e. on indefinite time scales) is most
likely absent for any η > 0 [35, 39], e.g., due to slow
anomalous diffusion which ultimately leads to thermal-
ization [35], this does not exclude the possibility of inter-
esting dynamical properties such as a “quasi-MBL phase”
at short to intermediate times [35].

In this paper, we scrutinize the impact of a finite
mass imbalance 0 < η < 1 from a different perspective
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Figure 1. (Color online) Illustration of the imbalanced Fermi-
Hubbard chain. Spin-↑ and -↓ particles with on-site interac-
tion of strength U and different hopping amplitudes t↑ and
t↓. Diffusive broadening of the initially peaked spin-↑ density
profile is sketched as a possible scenario depending on the im-
balance ratio η = t↓/t↑.

by studying the real-time dynamics of pure states featur-
ing a sharp initial non-equilibrium density profile. Re-
lying on the concept of dynamical quantum typicality,
the resulting non-equilibrium dynamics can be related
to equilibrium correlation functions. Summarizing our
main results, we observe that diffusive transport occurs
for moderate values of the mass imbalance, and that it
manifests itself in a Gaussian spreading of real-space den-
sity profiles and an exponential decay of density modes in
momentum space. Moreover, for stronger imbalances, we
find evidence that on the time and length scales numeri-
cally accessible, transport properties become anomalous,
albeit we cannot rule out that normal diffusion eventually
prevails at even longer times. Furthermore, our results
are consistent with the absence of genuine localization
for any η > 0. In particular, we find that for smaller and
smaller values of η > 0, the resulting dynamics resem-
bles the localized η = 0 case for longer and longer time
scales. However, we conjecture that this “lifetime” of
effective localization always remains finite for a finite η.

This paper is structured as follows. After introduc-
ing the model in Sec. II, we give an introduction to the
employed typicality approach, and the initial states and
observables in Sec. III. We then present our results in
Sec. IV and conclude with a discussion in Sec. V.

II. MODEL

We study the Hubbard chain describing interacting
spin-↑ and -↓ fermions on a one-dimensional lattice. The
Hamiltonian for L lattice sites with periodic boundary
conditions (L+ 1 ≡ 1) reads

H =

L∑

r=1

hr (1)

with local terms

hr = −
∑

σ=↑,↓
tσ

(
c†r ,σcr+1,σ + h.c.

)
(2)

+U

(
nr,↑ −

1

2

)(
nr,↓ −

1

2

)
,

where the creation (annihilation) operator c†r,σ (cr,σ) cre-
ates (annihilates) a fermion with spin σ at site r, and
nr,σ = c†r,σcr,σ is the particle-number operator. (We omit
any additional operator symbols for the sake of clean no-
tation.) The first term on the right hand side of Eq. (2)
describes the site-to-site hopping of each particle species
with amplitude tσ. The second term is the on-site in-
teraction between the particle species with strength U ,
see Fig. 1. The imbalance between t↑ and t↓ ≤ t↑ is
parametrized by the ratio

η =
t↓
t↑
, (3)

ranging from η = 0 for t↓ = 0 to η = 1 in the case of
t↓ = t↑.

While the Hamiltonian H in Eqs. (1) and (2) is in-
tegrable in terms of the Bethe Ansatz for η = 1 (i.e. in
the case of the standard Fermi-Hubbard chain, see, e.g.,
Ref. [50]), this integrability is broken for any finite imbal-
ance 0 < η < 1. Moreover, despite its integrability, there
has been numerical evidence that, in the regime of high
temperatures and strong interactions, charge transport
in the one-dimensional Fermi-Hubbard model is diffusive
[42–44] (or superdiffusive [42, 45]). In order to have this
well-controlled point of reference for our analysis of finite
imbalances η ≤ 1, we here fix the interaction strength to
the large value U/t↑ = 16.

In addition to η = 1, another important point in pa-
rameter space is the so-called Falicov-Kimball limit η = 0
[51, 52]. In this limit, the spin-↓ particles become com-
pletely immobile (t↓ = 0), implying that the local occu-
pation numbers nr,↓ become strictly conserved quantities,
i.e.,

[H,nr,↓] = [nr,↓, nr,↑] = 0 . (4)

Using this symmetry, the Hamiltonian (1) can be
decoupled into 2L independent subspaces, effectively
describing non-interacting spin-↑ particles on a one-
dimensional lattice with random (binary) on-site poten-
tials ± (U/2) (nr,↑ − 1/2), which implies the onset of An-
derson localization [11].

It is worth mentioning that by means of a Jordan-
Wigner transformation, the fermionic model in Eqs. (1)
and (2) can be mapped to a spin-1/2 model with ladder
geometry [35]. This spin model is described by the local
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terms

hr = −
∑

k=1,2

2Jk

(
sxr,ks

x
r+1,k + syr ,ks

y
r+1,k

)
(5)

+ J⊥ s
z
r,1s

z
r,2

with J1 = t↑, J2 = t↓ and J⊥ = U . Here, the different
particle species ↑ and ↓ are represented as local magne-
tizations on the two separate legs k = 1, 2 of the lad-
der. The hopping term and the interaction term in
the Hubbard formulation correspond to the XY inter-
action along the legs and the Ising interaction on the
rungs of the ladder, respectively. The particle num-
ber conservation Nσ =

∑
r nr,σ = const. for both par-

ticle types translates into magnetization conservation
Mk =

∑
r s

z
r,k = const. on each leg.

III. SETUP AND NUMERICAL METHOD

A. Initial states and observables

We investigate the real-time dynamics of local particle
densities given by the expectation values

pr,σ(t) = Tr [nr,σρ(t) ] (6)

with the density matrix

ρ(t) = e−iHt |ψ(0)⟩ ⟨ψ(0)| eiHt (7)

for pure initial states |ψ(0)⟩, such that

Tr [nr,σρ(t) ] = ⟨ψ(t)|nr,σ |ψ(t)⟩ . (8)

In order to realize inhomogeneous particle densities, we
prepare the initial states via the projection

|ψ(0)⟩ ∝ nL/2,↑ |ϕ⟩ . (9)

The reference pure state |ϕ⟩ is constructed as a random
superposition,

|ϕ⟩ =
d∑

k=1

ck |φk⟩ , (10)

where the |φk⟩ denote the common eigenbasis of the local
occupation number operators nr,σ, and the sum runs over
the full Hilbert space with finite dimension d = 4L. (In
spin language, this simply is the Ising basis.) Moreover,
the complex coefficients ck are randomly drawn from a
distribution which is invariant under all unitary trans-
formations in the Hilbert space (Haar measure) [53, 54],
i.e., real and imaginary parts of these coefficients are nor-
mally distributed with zero mean. As a consequence, the
initial density profile exhibits a sharp delta peak for the
spin-↑ particles in the middle of the chain on top of a

homogeneous many-particle background [44, 55],

pr,σ(0)

{
= 1 r = L/2 and σ = ↑
≈ 1/2 = peq. else

. (11)

Rather than taking the full Hilbert space into account,
one could also consider the half-filling sector (respectively
the zero-magnetization sector).

B. Dynamical quantum typicality

Given the specific construction of the pure state |ϕ⟩ in
Eq. (10), the concept of dynamical quantum typicality
(DQT) provides a direct connection between the non-
equilibrium expectation value pr,↑(t) and an equilibrium
correlation function (see Ref. [44] and also Appendix A),

pr,↑(t)− peq. =2 ⟨(nL/2,↑ − peq.)(nr,↑(t)− peq.)⟩+ ϵ ,

(12)

where the thermodynamic average ⟨•⟩ = Tr [ • ] /d is car-
ried out at formally infinite temperature. As a conse-
quence, the dynamics of the non-equilibrium expectation
value pr,↑(t) can be used to study transport properties
within the framework of linear response theory.

Importantly, the variance of the statistical error
ϵ = ϵ(|ϕ⟩) of Eq. (12) is bounded from above by

Var(ϵ) < O
(
1

d

)
= O

(
4−L

)
, (13)

i.e., the accuracy of the typicality approximation im-
proves exponentially upon increasing the size of the sys-
tem. In principle, this error can be further reduced by
averaging over multiple realizations of the random state
|ϕ⟩ [56, 57]. However, for the system sizes studied here,
the DQT approach is already very accurate, and this ad-
ditional sampling becomes unnecessary [58]. More details
on the concept of dynamical quantum typicality (and on
error bounds) can be found in Refs. [58–73].

C. Time evolution via pure-state propagation

For the time evolution of the pure state

|ψ(t)⟩ = e−iHt |ψ(0)⟩ (14)

we can bypass the exact diagonalization of the Hamil-
tonian and rather solve the time-dependent Schrödinger
equation directly via iterative forward propagation in
small time steps δt. Aside from the many numerical
methods such as Trotter decompositions [74, 75], Cheby-
shev polynomials [76–78] or Krylov-space methods [79],
the action of the time-evolution operator in each step
can be calculated by a fourth-order Runge-Kutta scheme
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[68, 69],

|ψ(t+ δt)⟩ = e−iHδt |ψ(t)⟩ (15)

≈
4∑

k=0

(−iHδt)k
k!

|ψ(t)⟩ .

Crucially, the matrix-vector multiplications in Eq. (15)
can be implemented very memory efficiently due to the
sparse matrix representation of the given Hamiltonian.
While the action of H on |ψ⟩ can also be calculated on-
the-fly, we save the sparse Hamiltonian matrix for the
sake of run time. Moreover, symmetries of the system
can be exploited in order to split the problem into smaller
sub-problems and to further reduce the computational ef-
fort [80]. In this paper, we exploit the particle number
(magnetization) conservation for both particle species
(legs) separately. As a consequence, the maximum mem-
ory consumption for the largest symmetry sector in a sys-
tem of length L = 15, with full Hilbert-space dimension
d ∼ 109, amounts to about 20 GB (using double-precision
complex numbers). While L = 14 or L = 15 are already
comparatively large (especially in view of the extensive
parameter screening and the long simulation times con-
sidered here), let us note that even larger system sizes
can be treated by the usage of large-scale supercomput-
ing (see, e.g., Refs. [41, 44]). The time step used in all
calculations, if not stated otherwise, is δt t↑ = 0.005.

D. Diffusion on a lattice

1. Real space

The dynamics of the densities pr,↑(t) is diffusive, if it
fulfills the lattice diffusion equation [81]

d

dt
pr,↑(t) = D[pr−1,↑(t)− 2pr,↑(t) + pr+1,↑(t)] (16)

with the diffusion constant D. For the δ-peak initial con-
ditions (11), the solution of Eq. (16) can be well approx-
imated by the Gaussian function

pr,↑(t)− peq. =
1

2
√
2πΣ(t)

exp

[
− (r − L/2)2

2Σ2(t)

]
, (17)

where the spatial variance scales as Σ2(t) = 2Dt and is
given by

Σ2(t) =

L∑

r=1

r2δpr,↑(t)−
[
L∑

r=1

rδpr,↑(t)

]2
, (18)

with δpr,↑(t) ∝ pr,↑(t)− peq. fulfilling
∑
r δpr,↑(t) = 1 for

all times t. More generally, a scaling of the variance ac-
cording to Σ(t) ∝ tα is called ballistic for α = 1, superdif-
fusive for 1/2 < α < 1, diffusive for α = 1/2, subdiffusive
for 0 < α < 1/2, and localized for α = 0. Moreover, away

from the case α = 1/2, the density profiles pr,↑(t) are not
expected to take on a Gaussian shape.

2. Connection to current-current correlation functions

Due to the typicality relation (12), the spatial variance
in Eq. (18) can be related to the dynamics of current-
current correlation functions via [82]

d

dt
Σ2(t) = 2D(t) , (19)

where the time-dependent diffusion coefficient D(t) is
given by

D(t) =
4

L

t∫

0

⟨j↑(t′)j↑⟩ dt′ , (20)

and j↑ denotes the total current operator of the spin-↑
particles,

j↑ = −t↑
∑

r

(
ic†r,↑cr+1,↑ + h.c.

)
. (21)

(Note that the relation (19) requires δpr,↑(t) to vanish
at the boundaries of the chain [82].) We therefore can
compare the spatial variance of density profiles calculated
according to Eq. (18) to the one already obtained from
current-current correlation functions [43, 82, 83],

Σ2(t) = 2

t∫

0

D(t′)dt′ . (22)

A detailed analysis of transport in the mass-imbalanced
Hubbard chain extracted from current-current correla-
tion functions can be found in [41].

3. Momentum space

In addition to the real-space perspective, it is also
instructive to look at momentum-space observables as
given by the lattice Fourier transform of the density pro-
files,

pq,↑(t) =
1√
L

L∑

r=1

eiqrpr,↑(t) (23)

with the momentum q = 2πk/L and wave numbers
k = 0, 1, . . . , L− 1. In particular, the Fourier transfor-
mation of the diffusion equation (16) yields the corre-
sponding diffusion equation for the pq,↑(t),

d

dt
pq,↑(t) = −q̃2Dpq,↑(t) , (24)
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Figure 2. (Color online) Real-time broadening of the non-
equilibrium density profile for limiting imbalance ratios (a)
η = 1 and (b) η = 0. System size L = 14 and interaction
strength U/t↑ = 16. The initial density peak in the center of
the chain spreads rather quickly over the system for η = 1,
whereas it appears to be frozen for η = 0.

with q̃2 = 2(1− cos q). From Eq. (24), it becomes clear
that diffusion manifests itself in momentum space by ex-
ponentially decaying modes

pq,↑(t) ∝ e−q̃
2Dt . (25)

IV. RESULTS

We now turn to our numerical results. To begin with,
the two limiting cases η = 1 and η = 0 are presented in
Sec. IVA. Intermediate imbalances 0 < η < 1 are dis-
cussed in Secs. IVB and IVC.

A. Limiting cases

In order to mark out the two completely different be-
haviors of the density dynamics in the limiting cases of
the model, we first discuss the limit of equal particle
masses (η = 1) and contrast it with the limit of infi-
nite mass-imbalance (η = 0). Recall that the interaction
strength is set to U/t↑ = 16 in the following.
First, Fig. 2 shows the real-time broadening of the ini-

tially peaked density profiles pr,↑(t) for both limits in a
time-space density plot. While the particle density for
η = 1 [Fig. 2 (a)] is found to spread over all sites of the
chain, pr,↑(t) for η = 0 [Fig. 2 (b)] appears to be essen-
tially frozen at the central lattice sites, as it is expected
in the Anderson insulating limit.
For a more detailed analysis, the spatial dependence

of the profiles pr,↑(t)− peq. is shown in Fig. 3 for fixed
times t in a semi-logarithmic plot. Remarkably, the pro-
files for η = 1 in Fig. 3 (a) can be very well described by
Gaussians [see Eq. (17)] over three orders of magnitude.
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q
. (a) η = 1

p
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↑(
t)
−
p
e
q
.

r

(b) η = 0

Figure 3. (Color online) Density profiles pr,↑(t) at fixed times
for (a) η = 1 and (b) η = 0. In the case η = 1, the profiles can
be very well described via Gaussians (parabola in the semi-
logarithmic plot) indicating clean diffusion for the time scales
depicted. Note that the Gaussians (dashed lines) are no fit,
but calculated from Eqs. (17) and (18). In the case η = 0,
an overall triangular shape survives even for long times, with
some local fluctuations.

These Gaussian profiles indicate that charge transport
in the integrable Fermi-Hubbard chain is diffusive [42–
44], at least in this parameter regime (strong interactions
and high temperatures) and for the time scales depicted,
see also Refs. [42, 45] for the possibility of superdiffu-
sive transport. Note that the Gaussians in Fig. 3 (a) are
no fit, since the width Σ(t) has been calculated exactly
according to Eq. (18), i.e., there is no free parameter in-
volved. In contrast, the profiles for η = 0 in Fig. 3 (b) are
clearly non-Gaussian and remain, even for the long times
shown, in an overall triangular shape with variations on
short length scales.

B. Small imbalances

1. Real space

Next, let us study a finite imbalance between the parti-
cle masses. In analogy to Fig. 2, time-space density plots
are shown in Fig. 4 for η = 0.8 and η = 0.6. For these ra-
tios the broadening of the initial density peak apparently
happens on a time scale comparable to the one observed
for η = 1 in Fig. 2, with a barely noticeable slowdown
with the increasing imbalance. Similar observations can
be made for the density profiles at fixed times, as shown
in Fig. 5. At weak imbalance η = 0.8 [Fig. 5 (a)], the
profiles are still in very good agreement with Gaussians
[see Eq. (17)] which suggests that diffusion occurs also for
η ̸= 1. Even for stronger imbalance η = 0.6 [Fig. 5 (b)],
the profiles appear to be of Gaussian shape, although
small deviations start to appear at t t↑ = 4, which might
be seen as the onset of a drift from normal to anomalous
diffusion, see also the discussion below.
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Figure 4. (Color online) Real-time broadening of the initially
peaked density profile for weak imbalances (a) η = 0.8 and
(b) η = 0.6.

2. Spatial width

In order to analyze the broadening of the density pro-
files further, Fig. 6 shows the time-dependence of the
spatial width Σ(t) obtained by Eq. (18) for moderate im-
balance η = 0.8 and different system sizes L = 10, . . . , 14.
Necessarily, there is an initial linear increase Σ(t) ∝ t for
t t↑ ≲ 1, indicating ballistic transport, as it is expected
for short times below the mean-free time. Subsequently,
Σ(t) shows a scaling ∝

√
t, consistent with diffusion.

However, for later times, we find that Σ(t) approaches a
saturation value which increases with increasing L. This
behavior of Σ(t) can be easily understood since the width
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Figure 5. (Color online) Density profiles pr,↑(t) at fixed
times for the same system parameters and imbalance ratios as
shown in Fig. 4. The dashed lines are Gaussian functions cal-
culated from Eqs. (17) and (18). At moderate imbalance (a)
η = 0.8, the profiles can be very well described by Gaussians.
At slightly smaller (b) η = 0.6, the density profiles are still
in good agreement with Gaussians, although small deviations
become apparent at t t↑ = 4.
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Figure 6. (Color online) Spatial width Σ(t) as obtained by
Eq. (18) for imbalance ratio η = 0.8 and different system
sizes L = 10, . . . , 14 (arrow). The dotted line with the scal-
ing Σ(t) ∝

√
t is a fit to the L = 14 curve. The width Σ(t)

(dashed-dotted line) as calculated by Eq. (22) is shown for
comparison (L = 14).

of a density profile on a finite lattice with L sites is ob-
viously bounded from above. Namely, assuming equili-
bration, i.e., a perfectly homogeneous distribution of the
pr,↑ for t → ∞ with δpr,↑ = 1/L at each site, we obtain
the saturation value

Σ2(t→ ∞) =

L∑

r=1

r2

L
−
[
L∑

r=1

r

L

]2
(26)

=
1

12

(
L2 − 1

)
.

This L-dependent saturation value is reached quickly for
the weakly imbalanced case η = 0.8 in Fig. 6, e.g., Σ ≈ 4
for L = 14.
Moreover, for the biggest size L = 14, Fig. 6 also shows

Σ(t) calculated from current-current correlation func-
tions via Eq. (22). Overall, the behavior of this Σ(t)
is in good agreement with the one described above. Note
that the small deviations between the two widths set-
ting in at t t↑ ∼ 6 presumably arise when the tails of the
density distribution reach the boundaries of the system
(cf. Fig. 5). Additionally, we note that the finite-size
saturation value (26) does not apply to Eq. (22), which,
by definition, is not bounded. Rather, for times t t↑ ≳ 6,
we find an accelerated increase of Σ(t). This is caused
by the fact that the current-current correlation function
⟨j↑(t)j↑⟩ does not completely decay to zero in a system
of finite size, see also Refs. [41, 81].

3. Momentum space

Complementary to the real-space data for η = 0.8, 0.6
shown in Fig. 5, the corresponding Fourier modes pq,↑(t)
with momentum q = 2πk/L are shown in Fig. 7 for
the four longest wavelengths available, i.e., k = 1, . . . , 4.
While pq,↑(t) decays rather quickly for k ≥ 2 (with the
decay rate increasing with k), we find that at least for
k = 1, pq,↑(t) is to good quality described by an expo-
nential decay [see Eq. (25)], consistent with the onset of
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Figure 7. (Color online) Discrete Fourier transform pq,↑(t)
of the density profile with momentum q = 2πk/L and wave
numbers k = 1, 2, 3, 4 (arrow) for weak imbalances (a) η = 0.8
and (b) η = 0.6.

diffusion on the corresponding length scales.

C. Strong mass imbalance

Now, let us study how the equilibration dynamics alter
for stronger imbalances and also discuss the possibility of
localization for η > 0.

1. Real-space dynamics

Before discussing the full density profile in detail,
let us for simplicity focus on the decay of the cen-
tral peak pL/2,↑(t), as shown in Fig. 8 for imbalance
ratios η = 0, . . . , 1 and two system sizes L = 12 and
L = 14. While pL/2,↑(t) ∝ t−1/2 to good quality for

0.1

1

0.1 1 10 100

L = 12
14

∝ t−
1/2

p
L
/
2
,↑
(t
)
−
p
e
q
.

t t↑

η = 0.0
η = 0.1
η = 0.2
η = 0.4
η = 0.6
η = 1.0

Figure 8. (Color online) Decay of the central peak pL/2,↑(t)
at different imbalances ranging from η = 0 to η = 1 (from
top to bottom) for system sizes L = 12 (dotted) and L = 14
(solid). Dashed lines indicate the expected L-dependent long-
time value (1 − peq.)/L.
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Figure 9. (Color online) Time-space density plot as in Fig. 4
but for (a) η = 0.4 and (b) η = 0.2.

η = 1, consistent with diffusive transport, this decay
is slowed down with decreasing η. At small but finite
η = 0.1, we find that pL/2,↑(t) approximately coincides
with the η = 0 curve up to times t t↑ ≈ 40, until it
eventually starts to decay towards the equilibrium value
pL/2,↑(t→ ∞)− peq. = (1− peq.)/L. Note that the two
curves for L = 12, 14 agree very well with each other be-
fore the equilibration value is reached. On these time
scales, the behavior of the density dynamics thus appears
to be independent of the system size. This also illus-
trates the accuracy of the DQT approach, since there
is no sign of sample-dependence in the time-dependent
fluctuations of the strongly imbalanced curves. For ad-
ditional data with smaller η and longer time scales, see
Appendix B. Moreover, a more detailed finite-size anal-
ysis can be found in Appendix C.

Next, let us come back to a discussion of the full den-
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Figure 10. (Color online) Density profiles pr,↑(t) as in Fig. 5
but for smaller (a) η = 0.4 and (b) η = 0.2. The profiles
broaden much slower and take on a triangular shape in the
semi-logarithmic plot used. The fit parameter α(t) is the ex-
ponent used in Eq. (27).
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Figure 11. (Color online) Spatial width Σ(t) for different sys-
tem sizes L = 10, . . . , 14 (arrows) as obtained by Eq. (18) at
(a) η = 0.4 and (b) η = 0.2. The width Σ(t) (dashed-dotted
lines) as calculated according to Eq. (22) is shown for com-
parison (L = 14).

sity profile. To this end, Fig. 9 shows time-space density
plots for the two η = 0.4 and η = 0.2. We find that the
broadening of the density profiles visibly slows down with
decreasing η, until no substantial spreading of the den-
sity can be observed for η = 0.2 up to the maximum time
t t↑ = 40 shown here, consistent with Fig. 8 discussed be-
fore.

The corresponding cuts of the density profiles at fixed
times are shown in Figs. 10 (a) and (b). Note that, owing
to the slow broadening of the profiles, we show cuts at
later times compared to Fig. 5. One clearly sees that the
profiles are not Gaussian anymore, but rather exhibit a
pronounced triangular shape in the semi-logarithmic plot
used. In particular, they can be well described by the
function

pr,↑(t)− peq. = β(t) exp

[
−|r − L/2|α(t)

2Σ2
f (t)

]
(27)

with the time-dependent fit parameters α(t), Σf(t), and
β(t). In particular, the exponent α(t) ∈ [1, 2] is intro-
duced to capture the triangular shape. This shape indi-
cates a crossover to anomalous diffusion for small ratios
η ≲ 0.4 [84]. This is another central result of this paper.

2. Spatial width

Additionally, Fig. 11 shows the width Σ(t) of the den-
sity profiles for η = 0.4 and η = 0.2, as calculated by
Eqs. (18) and (22). Compared to the weakly imbalanced
case shown in Fig. 6, Σ(t) now grows much slower, and
Eqs. (18) and (22) are in better agreement, since the dis-
tribution is still well concentrated in the center of the
chain. For η = 0.2, Σ(t) appears to remain at a constant
plateau up to the maximum time t t↑ = 20 shown.
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Figure 12. (Color online) Spatial width Σ(t) for fixed system
size L = 14 and varying imbalances ranging from η = 0 to
η = 1 (arrow) in steps of 0.05. In the balanced case η = 1,
the width reaches its natural saturation value (dashed line)
of Σ ≈ 4 [cf. Eq. (26)] rather quickly, while the other curves
grow slower as η goes to zero. The curve for η = 0 remains at
around Σ ≈ 2.

To analyze the η-dependence of the width in more de-
tail, Fig. 12 shows Σ(t) in Eq. (18) on a longer time scale
t t↑ ≤ 150 for various values of η and a fixed system size
L = 14. While the growth of Σ(t) towards the saturation
value becomes slower and slower with decreasing η, we
find that even for the smallest value of η = 0.05 shown
here, Σ(t) clearly increases at long times. In contrast, the
width in the η = 0 case fluctuates around a constant and
lower value, which might be interpreted as the Anderson
localization length.
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Figure 13. (Color online) Discrete Fourier transform pq,↑(t) of
the density profile with momentum q = 2πk/L and wave num-
bers k = 1, 2, 3 (arrow) for two imbalance ratios (a) η = 0.2
and (b) η = 0.1 (L = 15). Another density mode pq,↑(t)
(dashed line) for a smaller system size L = 10 with wave num-
ber k = 2 is shown for comparison, which has the same mo-
mentum q = 2π/5 as the mode k = 3 for L = 15.
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Figure 14. (Color online) (a) Discrete Fourier transform
pq,↑(t) of the density profile for fixed momentum q = 2π/14
and (b) “lifetime” according to the definition (28) for various
distances δ = 0.05, . . . , 0.5 in steps of 0.05.

3. Momentum-space dynamics

Let us now turn to momentum-space dynamics again.
To this end, Figs. 13 (a) and (b) show the discrete Fourier
modes pq,↑(t) for imbalance ratios η = 0.2 and η = 0.1.
Note that the data is obtained for an even larger system
with L = 15 lattice sites and for momenta q = 2πk/L
with k = 1, 2, 3. Compared to Fig. 7, we find that the
pq,↑(t) now decay visibly slower for all wave numbers k.
Moreover, in contrast to the scaling of decay rates in
the case of normal diffusion [cf. Eq. (25)], the density
modes now seem to decay at a similar rate for all k. Fur-
thermore, even for small η = 0.1 and k = 1, we find that
pq,↑(t) is clearly non-constant, which suggests that gen-
uine localization is absent for η > 0.

To analyze the dependence on system size, Fig. 13 also
shows the Fourier mode pq,↑(t) for L = 10 and wave num-
ber k = 2. This mode has the same momentum q = 2π/5
as the mode k = 3 for L = 15. We find that for both
η = 0.2 and η = 0.1 the decay of pq,↑(t) is almost inde-
pendent of L. Especially for η = 0.1, the curves show no
significant differences up to the maximum time t t↑ = 120
shown.

Finally, Fig. 14 (a) shows the relaxation of the Fourier
mode pq,↑(t) with the smallest wave number k = 1 for
various 0 ≤ η ≤ 1. The decay appears to be exponential
for η ≳ 0.2, albeit very slow for strong imbalances. While
for sufficiently small times, all η > 0 curves agree with the

η = 0 curve, they start to deviate at a certain point in
time. In order to analyze this separation time from the
η = 0 curve in more detail, we define

τη,δ = max

{
t |

|pηq,↑(t)− p0q,↑(t)|
p0q,↑(t)

< δ

}
(28)

using the running averages of the density modes

pηq,↑(t) =
1

t

t∫

0

pηq,↑(t
′)dt′ . (29)

It measures the maximum time up to which η = 0 and
η > 0 curves do not deviate up to a distance δ. (Note
that this maximum time can not exceed the maximum
simulation time, here tmax t↑ = 1000. Moreover, the run-
ning averages are used to mitigate the fluctuations of the
pq,↑(t), which complicate the extraction of precise sepa-
ration times.)

The physical picture for this analysis can be under-
stood as follows. For very small but nonzero η, the heavy
particles still appear as a quasi-static disorder potential
for the lighter particles, which induces localization anal-
ogous to η = 0. At some point in time, however, the
residual hopping of the heavy particles becomes relevant,
which can be seen as an η-dependent “lifetime” of the
Anderson insulator. The corresponding data for differ-
ent distances δ is shown in Fig. 14 (b). For every δ, the
lifetime grows fast with decreasing η, but apparently is
always finite for all η considered. A complementary anal-
ysis of τη,δ, based on the spatial width Σ(t) (cf. Fig. 12),
can be found in Appendix D and provides a similar pic-
ture.

V. CONCLUSION

In this paper, we have studied the real-time dynamics
of local charge densities in the Fermi-Hubbard chain with
a mass-imbalance between the spin-↑ and -↓ particles. To
this end, we have prepared a certain class of pure states
featuring a sharp initial peak of the density profile for
the (lighter) spin-↑ particles in the middle of the chain
and investigated the resulting non-equilibrium dynamics.
Relying on dynamical quantum typicality, this dynamics
can be related to time-dependent correlation functions at
equilibrium.

In the regime of weak and moderate imbalance,
η ≳ 0.6, we have provided evidence for the emergence
of diffusive dynamics, manifesting in (i) Gaussian shape
of density profiles, (ii) square-root scaling of the spatial
variance in time, and (iii) exponentially decaying modes
for small momenta.

In contrast, in the regime of strong imbalance, η ≲ 0.6,
we have observed signatures of anomalous transport,
emerging as an exponential rather than a Gaussian shape
of density profiles and subdiffusive scaling of spatial vari-
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ance and density modes in time, consistent with other
works [35, 41]. However, we cannot rule out that this
anomalous transport is just a transient effect which
crosses over to normal diffusion at even longer times,
e.g., at time scales much longer than the “lifetime” of
the Anderson insulator.
For very small but nonzero η, our results are consistent

with the absence of genuine localization and support long
but finite equilibration times.
Promising future research directions include extensions

of the model such as nearest-neighbor interactions and
the study of lower temperatures, including potential re-
lations between static and dynamical properties at such
temperatures [85].
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Appendix A: Typicality relation

To make this paper self-contained, we here derive the
typicality relation (12), see also [44]. To this end, we
start with the correlation function

Cr,↑(t) = 2 ⟨(nL/2,↑ − peq.)(nr,↑(t)− peq.)⟩+ peq. (A1)

and use ⟨nr,↑(t)⟩ = peq. = 1/2, while carrying out the
multiplication of the brackets, to obtain

Cr,↑(t) = 2 ⟨nL/2,↑nr,↑(t)⟩ =
Tr
[
nL/2,↑nr,↑(t)

]

d / 2
. (A2)

This expression, using cyclic invariance of the trace and
the projection property n2L/2,↑ = nL/2,↑, can be written
as

Cr,↑(t) =
Tr
[
nL/2,↑nr,↑(t)nL/2,↑

]

d / 2
. (A3)

Exploiting typicality, the trace can be approximated by
a single typical pure state |ϕ⟩ as

Cr,↑(t) =
⟨ϕ|nL/2,↑nr,↑(t)nL/2,↑ |ϕ⟩

⟨ϕ |ϕ⟩ / 2 + ϵ(|ϕ⟩) (A4)

≈

(
⟨ϕ|n†L/2,↑eiHt

)
nr,↑

(
e−iHtnL/2,↑ |ϕ⟩

)

⟨ϕ |ϕ⟩ / 2 ,

where the the variance of the statistical error ϵ(|ϕ⟩)
is bounded from above by Var(ϵ)(|ϕ⟩) < O(1/d) (at
formally infinite temperature) and becomes negligibly
small already for intermediate system sizes. With
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Figure 15. (Color online) Decay of the central peak pL/2,↑(t)
for L = 10 and long times at η ≤ 0.1.

|ψ(0)⟩ = nL/2,↑ |ϕ⟩ /
√
⟨ϕ |ϕ⟩ / 2 we arrive at

Cr,↑(t) ≈ ⟨ψ(t)|nr,↑ |ψ(t)⟩ = pr,↑(t) (A5)

and finally, comparing to (A1),

pr,↑(t)− peq. ≈ 2 ⟨(nL/2,↑ − peq.)(nr,↑(t)− peq.)⟩ .
(A6)

Appendix B: Equilibration for small η

Complementary to Fig. 8, Fig. 15 shows data for the
central peak pL/2,↑(t), but now for a smaller system size
L = 10 (in the half-filling sector N↑ + N↓ = L) and sig-
nificantly longer time scales. We find that pL/2,↑(t) ul-
timately decays towards its equilibrium value, even for
very small values of η. Note that the interaction strength
in Fig. 15 is chosen as U/t↑ = 20, analogous to earlier
investigations in Ref. [35], where similar findings were
presented for momentum-space observables.

Appendix C: L-independence of density profiles

To demonstrate the L-independence for the scaling of
the density profiles, Fig. 16 shows pr,↑(t) for two system
sizes with L = 13 and 14 and exemplary values for times
t and imbalances η. Apart from small deviations at the
tails, we find that the profiles for different L are in very
good agreement. This fact also demonstrates the accu-
racy of the typicality approach.

Appendix D: Anderson lifetime

In addition to Fig. 14 (b), Fig. 17 shows another analy-
sis of the lifetime τη,δ. Here, τη,δ is calculated in analogy
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Figure 16. (Color online) Comparison of density profiles for
two system sizes L = 13, 14 and a few exemplary imbalance
ratios η. The overall behavior coincides nicely for both L,
apart from slight deviations at the boundaries.
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Figure 17. (Color online) “Lifetime” in analogy to the defi-
nition (28) for various distances δ = 0.05, . . . , 0.5 in steps of
0.05, now based on the spatial width Σ(t) shown in Fig. 12.

to (28), but based on the spatial width Σ(t) (cf. Fig. 12),

τη,δ = max

{
t | |Σ

η
(t)− Σ

0
(t)|

Σ
0
(t)

< δ

}
(D1)

with

Σ
η
(t) =

1

t

t∫

0

Ση(t′)dt′ . (D2)

In comparison to Fig. 14 (b), Fig. 17 provides a very
similar picture for the η-dependent lifetime.
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Quantum Quench Dynamics in the Transverse-Field Ising Model: A Numerical
Expansion in Linked Rectangular Clusters

Jonas Richter ,∗ Tjark Heitmann , and Robin Steinigeweg

Department of Physics, University of Osnabrück, D-49069 Osnabrück, Germany

We study quantum quenches in the transverse-field Ising model defined on different lattice ge-
ometries such as chains, two- and three-leg ladders, and two-dimensional square lattices. Starting
from fully polarized initial states, we consider the dynamics of the transverse and the longitudinal
magnetization for quenches to weak, strong, and critical values of the transverse field. To this end,
we rely on an efficient combination of numerical linked cluster expansions (NLCEs) and a forward
propagation of pure states in real time. As a main result, we demonstrate that NLCEs comprising
solely rectangular clusters provide a promising approach to study the real-time dynamics of two-
dimensional quantum many-body systems directly in the thermodynamic limit. By comparing to
existing data from the literature, we unveil that NLCEs yield converged results on time scales which
are competitive to other state-of-the-art numerical methods.

I. INTRODUCTION

Understanding the dynamics of isolated quantum
many-body systems out of equilibrium is an active area of
research of modern theoretical and experimental physics
[1–3]. A popular nonequilibrium protocol in this con-
text is a so-called quantum quench [4]. In such quench
protocols, the system’s Hamiltonian H depends on some
parameter λ, and the system is prepared in an eigenstate
|ψ(0)⟩ of H, e.g., the groundstate, for an initial value λi.
Next, the value of λ is suddenly changed, λi → λf , such
that |ψ(0)⟩ is no eigenstate of H(λf ), and the system
exhibits nontrivial dynamics. For an isolated quantum
system undergoing unitary time evolution, it is then in-
triguing to study if and in which way the system relaxes
back to equilibrium. Central questions are, for instance,
how the (short- or long-time) dynamics can be described
in terms of “universal” principles [1, 5–11], what are the
relevant time scales of relaxation [12–14], and whether
or not the long-time values of physical observables agree
with the prediction of, e.g., a microcanonical or canonical
ensemble (i.e. thermalization) [15–17].
One possible mechanism to explain the emergence of

thermalization in isolated quantum systems is given by
the eigenstate thermalization hypothesis (ETH) [18–20].
While the validity of the ETH has been numerically
tested for a variety of models and observables (see, e.g.,
[21–27]), there are also classes of systems which violate
the ETH and fail to thermalize. One such class is given by
integrable models, where the extensive number of conser-
vation laws prevents the applicability of standard statisti-
cal ensembles [28]. Instead, it has been proposed that in-
tegrable models equilibrate towards a generalized Gibbs
ensemble (GGE), which maximizes the entropy with re-
spect to the conserved charges [29–31]. In addition, it is
now widely believed that some strongly disordered sys-
tems can undergo a transition to a many-body localized
(MBL) phase, where the ETH is violated as well [32, 33].

∗ jonasrichter@uos.de

Moreover, there has been plenty of interest recently in
models which are, in a sense, intermediate cases between
“fully ETH” and “fully MBL”. This includes, e.g., mod-
els featuring “quantum scars” where rare ETH-violating
states are embedded in an otherwise thermal spectrum
[34–38], as well as models which exhibit a strong fragmen-
tation of the Hilbert space due to additional constraints
[39, 40].

From a numerical point of view, studying the nonequi-
librium dynamics of isolated quantum many-body sys-
tems is a challenging task. This is not least caused by the
fact that for an interacting quantum system, the Hilbert
space grows exponentially in the number of constituents.
Nevertheless, thanks to the continuous increase of com-
putational resources and the development of sophisti-
cated numerical methods including, e.g., dynamical mean
field theory [41], Krylov subspace techniques [42, 43],
dynamical quantum typicality [44], or classical repre-
sentations in phase space [45], significant progress has
been made. Especially for one-dimensional systems, the
time-dependent density-matrix renormalization group, as
well as related methods based on matrix-product states
(MPS), provide a powerful tool to study dynamical prop-
erties for system sizes practically in the thermodynamic
limit [46, 47]. However, since these methods rely on an
efficient compression of moderately entangled wave func-
tions, the reachable time scales in simulations are eventu-
ally limited due to the inevitable buildup of entanglement
during the unitary time evolution.

The growth of entanglement becomes even more se-
vere in spatial dimensions larger than one. Despite re-
cent advances involving MPS-based or tensor-network
algorithms [48–53], as well as the advent of innovative
machine-learning approaches [54–56], the time scales nu-
merically attainable for two-dimensional quantum many-
body systems are still comparatively short. While the
dynamics of such two-dimensional systems can nowadays
be accessed in experiments with quantum simulators [57–
59], the development of efficient numerical techniques is
paramount. On the one hand, unbiased numerical sim-
ulations are important to confirm the accuracy of the
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experimental results. On the other hand, numerical sim-
ulations can also serve as an orientation for experiments
to explore certain models or parameter regimes in more
detail.
In this paper, we scrutinize the nonequilibrium dynam-

ics for quantum quenches in the Ising model with trans-
verse magnetic field. While this model is exactly solvable
in the case of a chain and has been studied in numerous
instances, our main focus is on nonintegrable geometries
such as two- and three-leg ladders and, in particular, two-
dimensional square lattices. To this end, we rely on an
efficient combination of numerical linked cluster expan-
sions (NLCEs) and the iterative forward propagation of
pure states in real time via Chebyshev polynomials. De-
pending on the model geometry, the initial state, and the
strength of the quench, the nonequilibrium dynamics is
found to display a variety of different behaviors ranging
from rapid equilibration, over slower monotonous relax-
ation, to persistent (weakly damped) oscillations. Most
importantly, from a methodological point of view, we
demonstrate that NLCEs comprising solely rectangular
clusters provide a promising approach to study the real-
time dynamics of two-dimensional quantum many-body
systems directly in the thermodynamic limit. By com-
paring to existing data from the literature, we unveil that
NLCEs yield converged results on time scales which are
competitive to other state-of-the-art numerical methods.
This paper is structured as follows. In Sec. II, we

introduce the models, observables, and quench proto-
cols which are studied. In Sec. III, we then discuss the
employed numerical methods, while our results are pre-
sented in Sec. IV. We summarize and conclude in Sec.
V.

II. MODELS, OBSERVABLES, AND QUENCH
PROTOCOLS

We study the Ising model with ferromagnetic nearest-
neighbor interactions and transverse magnetic field, de-
scribed by the Hamiltonian

H = −J


∑

⟨ℓ,m⟩
σzℓσ

z
m + g

L∑

ℓ=1

σxℓ


 , (1)

where the first sum on the right hand side runs over all
pairs of nearest neighbors ℓ and m, L is the total number
of sites, J > 0 sets the energy scale, g > 0 denotes the
strength of the transverse field, and σx,zℓ are Pauli matri-
ces at site ℓ. Note that the Hamiltonian (1) is symmetric
under the global spin-flip operation σzℓ → −σzℓ .
In this paper, the transverse-field Ising model (1) is

considered for different lattice geometries such as chains
(L = Lx), two- and three-leg ladders (L = Lx × 2, L =
Lx × 3), and two-dimensional square lattices (L = Lx ×
Ly). While we generally intend to obtain results in the
thermodynamic limit L → ∞ (see Sec. III A for our nu-

merical approach), we consider finite system sizes as well.
In the case L <∞, one has to distinguish between open
boundary conditions (OBC) and periodic boundary con-
ditions (PBC), where for chains and ladders the latter
only applies in the x direction.

On the one hand, in the case of a chain, H is a paradig-
matic example of an integrable model and can be solved
exactly by subsequent Jordan-Wigner, Fourier, and Bo-
goliubov transforms [60], see also Appendix A. For g < 1,
H is in a ferromagnetic phase with a two-fold degenerate
groundstate. At the critical point g = 1, H undergoes a
quantum phase transition towards a paramagnetic phase
with unique groundstate for g > 1. On the other hand,
for a two-dimensional square lattice, H is nonintegrable
[24, 25, 61], and the quantum phase transition between
an ordered phase and an unordered phase occurs at the
larger transverse field g = gc ≈ 3.044 [62]. For inter-
mediate cases, such as multi-leg ladders on a cylinder
geometry, the value of gc can vary since these cases are
quasi-one-dimensional [50].

In this paper, we consider quench protocols starting
from fully polarized initial states |ψ(0)⟩. Namely, we ei-
ther study quenches starting from |ψ(0)⟩ = |↑⟩,

|↑⟩ = |↑↑ · · · ↑⟩ , (2)

where all spins are initially aligned along the z axis, or
quenches starting from the state |ψ(0)⟩ = |→⟩,

|→⟩ = |→→ · · · →⟩ , (3)

where all spins point in the x direction. Note that writ-
ten in the common eigenbasis of the local σzℓ , |→⟩ is a
uniform superposition of all 2L basis states. Moreover,
while the state |↑⟩ is an eigenstate of H for vanishing field
g = 0, the state |→⟩ is the groundstate of H for g → ∞.
Given the states |↑⟩ and |→⟩, we study the nonequilib-
rium dynamics resulting from quantum quenches to weak
(g < gc), strong (g > gc), or critical values (g = gc) of the
transverse field, i.e., depending on the initial state these
are quenches either within the same equilibrium phase,
or to or across the critical point.

Due to the quench, the fully polarized states |↑⟩ and
|→⟩ are no eigenstates of H anymore and evolve unitarily
in time (ℏ = 1),

|ψ(t)⟩ = e−iHt |ψ(0)⟩ . (4)

Consequently, the expectation values of observables ac-
quire a dependence on time as well. In particular, we here
consider the dynamics of the transverse and the longitu-
dinal magnetization,

⟨X(t)⟩ = 1

L

L∑

ℓ=1

⟨ψ(t)|σxℓ |ψ(t)⟩ , (5)

⟨Z(t)⟩ = 1

L

L∑

ℓ=1

⟨ψ(t)|σzℓ |ψ(t)⟩ . (6)
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III. NUMERICAL APPROACH

We now discuss the numerical methods which are em-
ployed in this paper. Throughout this section, we ex-
emplarily focus on the transverse magnetization ⟨X(t)⟩.
The calculations for ⟨Z(t)⟩ are carried out analogously.

A. Numerical linked cluster expansion

Numerical linked cluster expansions provide a means
to access the properties of quantum many-body sys-
tems directly in the thermodynamic limit. Originally
introduced to study thermodynamic quantities [63, 64]
(see also [65–67]), NLCEs have more recently been em-
ployed to obtain entanglement entropies [68], to calculate
steady-state properties in driven-dissipative systems [69],
to study quantum quenches with mixed or pure initial
states [58, 70–74], as well as to simulate time-dependent
equilibrium correlation functions [75, 76].
The main idea of NLCEs is that the per-site value of

an extensive quantity in the thermodynamic limit can
be obtained as a sum over contributions from all linked
clusters which can be embedded on the lattice [77],

lim
L→∞

⟨X(t)⟩ =
∑

c

LcWc(t) , (7)

where the sum runs over all connected clusters c with
multiplicities Lc and weights Wc(t). Specifically, Lc is
the number of ways (normalized by the size of the lattice)
a cluster c can be embedded on the lattice [see also the
discussion around Eq. (10) below]. Moreover, the notion
of a connected cluster refers to a finite number of lattice
sites, where every site of the cluster has to be directly
connected to at least one other cluster site by terms of
the underlying Hamiltonian. Given a two-dimensional
square lattice and the nearest-neighbor Hamiltonian in
Eq. (1), for instance, the lattice sites (i, j) and (i, j + 1)
form a connected cluster of size two. In contrast, the sites
(i, j) and (i+1, j+1) do not form a connected cluster as
H does not contain terms along the diagonal. However,
in combination, the sites (i, j), (i, j+1), and (i+1, j+1)
would be a connected cluster of size three.
Given a cluster c, its weight Wc(t) is obtained by an

inclusion-exclusion principle. That is, the quantity of
interest (here the dynamics of the magnetization X) is
evaluated on the cluster c (with OBC) and, subsequently,
the weights Ws(t) of all subclusters s of c have to be
subtracted [77],

Wc(t) = ⟨X(t)⟩(c) −
∑

s⊂c
Ws(t) . (8)

While NLCEs yield results in the thermodynamic limit
(such that a finite-size scaling becomes unnecessary), it is
instead crucial to check the convergence of the series. To
this end, the sum in Eq. (7) is usually organized in terms

of expansion orders [77]. For instance, one could group
together all clusters which comprise a certain number of
lattice sites. Then, an expansion up to order C refers to
the fact that all clusters with up to C lattice sites are
considered in Eq. (7). Moreover, the NLCE is said to be
converged if the outcome of Eq. (7) does not depend on
the value of C.

At this point, it is important to note that in actual sim-
ulations, the maximum order C that can be reached is
limited by two factors: (i) the exponential growth of the
Hilbert-space dimension with increasing cluster size, and
(ii) the necessity to identify the (possibly very large num-
ber of) distinct clusters and to calculate their weights.
Since a larger expansion order typically leads to a con-
vergence of Eq. (7) up to longer times [75] (or down to
lower temperatures for thermodynamic quantities [66]),
it is desirable to include clusters as large as possible. In
this paper, we therefore aim to mitigate the limitations
(i) and (ii) by two complementary approaches. First,
instead of using full exact diagonalization to evaluate
⟨X(t)⟩(c), we here employ an efficient forward propaga-
tion of pure states (see Sec. III B), which is feasible for
significantly larger Hilbert-space dimensions. Secondly,
in order to reduce the enormous combinatorial costs to
generate (and evaluate) all clusters with a given number
of sites, we rely on the fact that the sum in Eq. (7) can
also converge for different types of expansions, as long as
clusters and subclusters can be defined in a self-consistent
manner [77]. In this paper, we specifically restrict our-
selves to only those clusters which have a rectangular
shape. This restriction is particularly appealing as the
number of distinct clusters is significantly reduced and
the calculation of the weights Wc(t) becomes rather sim-
ple since all subclusters are rectangles as well, see Fig.
1. Furthermore, the rectangle expansion has been suc-
cessfully used before to obtain entanglement entropies
[68], and it also appears to be a promising candidate to
study dynamical properties as it involves clusters with
many different length scales. In this context, let us note
that other restricted expansions for the two-dimensional
square lattice, e.g., clusters consisting of corner-sharing
2× 2 squares, have proven to be a good choice to extract
thermodynamic quantities [66]. In this paper, however,
we focus on rectangular clusters as a first case study.

Given a rectangular cluster c = (x, y) of width x and
height y, the inclusion-exclusion principle from Eq. (8)
to obtain the weight W(x,y)(t) takes on the form [78]

W(x,y)(t) = ⟨X(t)⟩(x,y) (9)

−
x∑

x′=1

y∑

y′=1

x′y′<xy

(x− x′ + 1)(y − y′ + 1)W(x′,y′) .

where the sum runs over all rectangular subclusters.
Next, in order to carry out the expansion (7), the mul-
tiplicity Lc is required. Given a two-dimensional square
lattice of size Lx×Ly with OBC, the number of ways per
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(a)

(b)

(d)

(c)

Figure 1. Examples of clusters which are used in the NLCE. (a) For a chain geometry, all clusters and subclusters are chains.
(b) and (c) In case of a ladder geometry, we only consider clusters and subclusters which are ladders as well. (c) For the
two-dimensional square lattice, we restrict ourselves to clusters with a rectangular shape. Given the Hamiltonian H in Eq. (1),
we note that a cluster c = (x, y) with x > y is equivalent to its 90◦-rotated counterpart c′ = (y, x). To speed up the simulations,
we therefore only need to consider clusters c with x ≥ y, where square-shaped clusters with x = y enter Eq. (7) once, while
rectangular clusters with x > y enter the expansion twice.

lattice site a rectangular cluster c = (x, y) (with finite x
and y) can be embedded on the lattice follows as,

Lc =
(Lx − x+ 1)(Ly − y + 1)

LxLy
, (10)

as there are (Lx − x + 1) possible translations in the x
direction and (Ly − y + 1) in the y direction. Thus, if
one is interested in the properties of the lattice in the
thermodynamic limit, Lx, Ly → ∞, one finds,

Lc = 1 . (11)

Furthermore, in order to speed up the simulations, it
is useful to take into account that the Hamiltonian H
in Eq. (1) is invariant under rotations in the sense that
a rectangular cluster c = (x, y) with x ≥ y yields the
exact same weight Wc(t) as the cluster c′ = (y, x), i.e., c
rotated by 90 degrees. Thus, in practice, we only need to
consider clusters with x ≥ y, where square-shaped cluster
with x = y enter Eq. (7) once, while rectangular clusters
with x > y then enter the expansion twice.

Let us add some comments on the NLCE for chains
and ladders. First, we note that in the case of chains,
all clusters are just chains as well, see Fig. 1 (a). In this
case, the expansion in Eq. (7) reduces to a single differ-
ence between ⟨X(t)⟩(c) evaluated on the largest and the
second-largest cluster [75]. Secondly, while for two-leg
(or three-leg) ladders, rectangular clusters can in princi-
ple have a height y = 1, 2 (or y = 1, 2, 3) with different
lengths x, we here restrict ourselves even further to those
clusters which are two-leg or three-leg ladders as well, see

Figs. 1 (b) and (c). In this case, the expansion (7) again
reduces to a single difference between ⟨X(t)⟩(c) evaluated
on the largest and the second-largest cluster. Despite
this simplicity, however, we find that this type of expan-
sion for ladders in practice yields convincing convergence
times.

B. Pure-state propagation

Evaluating the unitary time evolution of the initial
states |ψ(0)⟩ according to Eq. (4) in principle requires
the full exact diagonalization (ED) of the Hamiltonian
H. In order to access system (and cluster) sizes beyond
the range of full ED, we here subdivide the evolution up
to time t into a product of discrete time steps,

|ψ(t)⟩ = e−iHt |ψ(0)⟩ =
(
e−iHδt

)Q |ψ(0)⟩ , (12)

where δt = t/Q. If the time step δt is chosen sufficiently
small, then there exist various approaches to accurately
approximate the action of the exponential exp(−iHδt)
such as, e.g., Trotter decompositions [79], Krylov sub-
space techniques [42], or Runge-Kutta schemes [80, 81].
In this paper, we rely on an expansion of the time-
evolution operator in terms of Chebyshev polynomials,
for a comprehensive overview see [82–85]. Let us empha-
size that the evaluation of Eq. (12) to a high precision is
crucial for the convergence of the NLCE. Even relatively
small numerical errors for the contribution of each indi-
vidual cluster could eventually spoil the convergence of
the series when combined according to Eq. (7). In this
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context, the Chebyshev polynomial expansion is known
to yield very accurate results for a given step size δt. In
contrast, we have checked that reaching the same level of
accuracy by means of a fourth-order Runge-Kutta scheme
requires a significantly smaller δt which, in turn, increases
the overall runtime of the simulation.

Since the Chebyshev polynomials are defined on the
interval [−1, 1], the spectrum of the original Hamiltonian
H has to be rescaled [85],

H̃ =
H− b

a
, (13)

where a and b are suitably chosen parameters. In prac-
tice, we use the fact that the (absolute of the) extremal
eigenvalue of H can be bounded from above according to
[83]

max(|Emin|, |Emax|) ≤ J
(
N⟨ℓ,m⟩ + gL

)
= E , (14)

where Emax (Emin) is the largest (smallest) eigenvalue of
H, and N⟨ℓ,m⟩ denotes the number of nearest-neighbor
pairs ⟨ℓ,m⟩, i.e., the number of bonds of the lattice. By

choosing a ≥ E , it is guaranteed that the spectrum of H̃
lies within [−1, 1]. As a consequence, we can set b = 0.
Note that while this choice of a and b is not necessarily
optimal, it proves to be sufficient [83] (see also Appendix
B).

Within the Chebyshev-polynomial formalism, the time
evolution of a state |ψ(t)⟩ can then be approximated as
an expansion up to order M [85],

|ψ(t+ δt)⟩ ≈ c0 |v0⟩+
M∑

k=1

2ck |vk⟩ , (15)

where the expansion coefficients c0, c1, . . . , cM , are given
by

ck = (−i)kJk(aδt) , (16)

with Jk(aδt) being the k-th order Bessel function of the
first kind evaluated at aδt. [Note that the notation in
Eqs. (15) and (16) assumes b = 0.] Moreover, the vectors
|vk⟩ are recursively generated according to

|vk+1⟩ = 2H̃ |vk⟩ − |vk−1⟩ , k ≥ 1 , (17)

with |v1⟩ = H̃ |v0⟩ and |v0⟩ = |ψ(t)⟩. Given a time step
δt (and the parameter a), the expansion order M has
to be chosen large enough to ensure negligible numerical
errors. In this paper, we typically have δtJ = 0.02 and
M = 15, which turns out to yield very accurate results
(see Appendix B).

As becomes apparent from Eqs. (15) and (17), the time
evolution of the pure state |ψ(t)⟩ requires the evaluation

of matrix-vector products. Since H̃ is a sparse matrix,
these matrix-vector multiplications can be implemented
comparatively time and memory efficient. In particular,

we here calculate the matrix elements of H̃ on the fly
and use parallelization to reduce the runtime. Thus, the
memory requirements are essentially given by the size of
the state |ψ(t)⟩ and the auxiliary states |vk−1⟩, |vk⟩, and
|vk+1⟩. As a consequence, it is possible to treat system
(or cluster) sizes significantly larger compared to full ED
(here up to 28 lattice sites with a Hilbert-space dimen-
sion of d ≈ 108). Since the transverse-field Ising model
(1) does not conserve the total magnetizations X or Z,
the corresponding quantum numbers cannot be used to
block-diagonalize H. Moreover, the clusters entering the
NLCE are defined with open boundary conditions such
that translational invariance cannot be exploited. Let
us note that the clusters do have a reflection (parity)
symmetry, which in principle can be used to reduce the
memory requirements (though the reduction is less strong
compared to the other symmetries mentioned before). In
this paper, however, we do not exploit the reflection sym-
metry and always work in the full Hilbert space with di-
mension d = 2L.

IV. RESULTS

We now present our numerical results for the quench
dynamics of ⟨X(t)⟩ and ⟨Z(t)⟩ in chains, ladders, and
two-dimensional lattices. Our main focus is to analyze
the convergence properties of the NLCE by comparing to
direct simulations of finite systems with periodic bound-
ary conditions (for open boundary conditions, see Ap-
pendix C) and to existing data from the literature.

A. Chains

The transverse-field Ising chain is a paradigmatic ex-
ample of an exactly solvable model and analytical solu-
tions have been known for a long time [60, 86–88] (see also
Appendix A). Since quantum quenches in the Ising chain
have been studied extensively before (see, e.g., Refs. [89–
96]), the present section should be mainly understood
as a consistency check for our numerical methods and a
preparation for the study of ladders and two-dimensional
lattices in Secs. IVB and IVC. (It might be fair to say,
however, that explicit visualizations of the analytical so-
lutions, e.g., for the full time-dependent relaxation pro-
cess of ⟨X(t)⟩ for specific initial states and transverse
fields g, are less often available in the literature.)

In Figs. 2 (a)-(c), the dynamics of the transverse mag-
netization ⟨X(t)⟩ is shown for quenches starting from the
initial state |ψ(0)⟩ = |↑⟩ and different values of the trans-
verse field g = 0.5, 1, 2. (Recall that the quantum crit-
ical point is g = 1 for the chain geometry.) Numerical
data obtained by NLCE for expansion orders C = 24, 25
are compared to (i) a simulation for a finite chain with
Lx = 25 and PBC, and (ii) the exact, analytically known
result [see Eq. (A3) in Appendix A]. Note that we here
choose to compare to systems with PBC, since finite-size
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Figure 2. Dynamics of the transverse magnetization ⟨X(t)⟩ resulting from the initial state |ψ(0)⟩ = |↑⟩ [(a) - (c)], or |ψ(0)⟩ = |→⟩
[(d) - (f)], for chains with transverse fields g = 0.5, 1, 2. Numerical data obtained by NLCE for expansion orders C = 24, 25
(blue and red curves) are compared to direct simulations for chains with Lx = 25 and PBC (open boxes), as well as to the
exact, analytically known result [86–88] given in Eq. (A3) (open circles). In panel (b), we exemplarily show additional NLCE
data for lower expansion orders C = 10, 12, . . . , 20.

effects are typically weaker in this case. For an additional
comparison of NLCE results (also with lower expansion
orders) to direct simulations of systems with OBC, see
Appendix C.

Starting from its initial value ⟨X(0)⟩ = 0, we find
that the transverse magnetization ⟨X(t)⟩ in Figs. 2 (a)-
(c) quickly increases and exhibits a peak at short times,
before equilibrating towards a constant long-time value.
This stationary value is reached already for times tJ ≈ 2.
While this overall behavior of ⟨X(t)⟩ is very similar for all
values of g considered, the long-time value ⟨X(t→ ∞)⟩ is
found to vary with g. In particular, it is known that this
long-time value can be described in terms of a suitable
GGE [28].

Generally, we find that the NLCE results in Figs. 2 (a)-
(c) are well converged on the time scales depicted, i.e.,
the curves for expansion orders C = 24 and C = 25
agree convincingly with each other. To visualize the
convergence properties of the NLCE further, Fig. 2 (b)
shows additional NLCE data for lower expansion orders
C = 10, 12, . . . , 20. Apparently, the convergence time
of the expansion gradually increases with increasing C.
Furthermore, we find that the curves for the finite chain
with Lx = 25 also nicely coincide with the NLCE data
for L → ∞, i.e., finite-site effects appear to be less rel-
evant in these cases. Importantly, our numerical results
for ⟨X(t)⟩ agree perfectly with the analytical solution.

Next, in Figs. 2 (d)-(f), we consider quenches starting

from the state |ψ(0)⟩ = |→⟩. Despite the obvious differ-
ence that ⟨X(t)⟩ now starts at a maximum, ⟨X(0)⟩ = 1,
the general picture is very similar compared to the previ-
ous case of |ψ(0)⟩ = |↑⟩. Namely, ⟨X(t)⟩ exhibits a rapid
decay and equilibrates rather quickly towards its long-
time value. Especially for g = 1 [Fig. 2 (e)], however,
we now observe pronounced finite-size effects, i.e., the
curve for Lx = 25 deviates from the analytical solution
for times tJ ≳ 5 and exhibits oscillations. In contrast,
the NLCE results for C = 24, 25 remain converged up to
at least tJ = 10. This is a remarkable result since the
largest cluster in the NLCE also only has 25 lattice sites,
i.e., the computational complexities of the NLCE and the
simulation of the finite system are essentially the same.

Depending on the details of the quench, we thus find
that performing a NLCE can yield a numerical advan-
tage over the direct simulation of finite systems, see also
Appendix C. On the one hand, if finite-size effects are
weak, the results for finite chains can be very similar to
the actual L→ ∞ dynamics (and also remain meaningful
on longer time scales where the NLCE breaks down). On
the other hand, the presence of strong finite-size effects
[e.g. at the quantum critical point, cf. Fig. 2 (e)] appears
to favor the usage of NLCEs which yield the dynamics
directly in the thermodynamic limit. This is a first result
of the present paper. As will be discussed in more detail
in the upcoming sections, a similar parameter-dependent
advantage (or disadvantage) of performing a NLCE oc-
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curs for ladder geometries and two-dimensional lattices
as well.

B. Ladders

Let us now turn to the results for two- and three-
leg ladders, which can be seen as intermediate cases be-
tween the chain geometry (cf. Sec. IVA) and the two-
dimensional square lattice (cf. Sec. IVC). Since exact so-
lutions for the dynamics of ladders are absent, we cannot
compare our numerical data to analytical results. (For
additional remarks on the transition from integrability to
nonintegrability, see also Appendix D.)
In Fig. 3, we consider quenches starting from the state

|ψ(0)⟩ = |↑⟩ in two-leg ladders with different transverse
fields g. Here, the data is obtained by NLCE for ex-
pansion orders C = 24 and C = 26, i.e., the largest
clusters involved are of size 12 × 2 or 13 × 2. As shown
in Fig. 3 (a), the dynamics of the longitudinal magneti-
zation ⟨Z(t)⟩ displays a strong dependence on the value
of g. On the one hand, for g = 2, ⟨Z(t)⟩ rapidly de-
cays, exhibits a minimum at tJ ≈ 1, and equilibrates to
zero for tJ ≳ 3. On the other hand, for g = 1, the de-
cay of ⟨Z(t)⟩ towards zero is distinctly slower and much
more monotonous. Moreover, for g = 0.5 (i.e. a quench
within the same equilibrium phase), the decay of ⟨Z(t)⟩ is
almost indiscernible on the time scale shown, and we ad-
ditionally observe that ⟨Z(t)⟩ exhibits small oscillations
for this value of g. The corresponding dynamics of the
transverse magnetization ⟨X(t)⟩ is shown in Fig. 3 (b).
While ⟨X(t)⟩ quickly equilibrates towards a stationary
value for g = 2, ⟨X(t)⟩ displays oscillations for g = 0.5, 1
which, especially in the case of g = 0.5, do not equilibrate
on the time scale shown here.

Let us comment on the convergence properties of the
NLCE data in Fig. 3. Both for ⟨Z(t)⟩ and ⟨X(t)⟩, we ob-
serve that the NLCE remains converged for longer times
if the value of g is smaller. Specifically, we find that
the series breaks down at tJ ≈ 4 for g = 2, at tJ ≈ 8 for
g = 1, while no breakdown can be seen for g = 0.5. Com-
paring these NLCE data to direct simulations of ladders
with periodic boundary conditions and Lx = 12, a good
agreement is found on short to intermediate time scales
(or even longer for g = 0.5). In particular, the simula-
tion for the finite ladder turns out to be advantageous
for a strong transverse field g = 2, since it captures the
stationary value of ⟨Z(t)⟩ and ⟨X(t)⟩ for a longer time
than the NLCE. Similar to our previous results for chains,
however, it becomes clear from Fig. 3 (a) that the usage
of NLCEs is in turn beneficial for g = 1, where finite-size
effect appear to be stronger and the NLCE captures the
monotonous decay of ⟨Z(t)⟩ up to longer times compared
to the finite-system data.

To proceed, Fig. 4 shows results for quantum quenches
starting from the initial state |ψ(0)⟩ = |→⟩, with data for
two-leg ladders in Fig. 4 (a) and data for three-leg ladders
in Fig. 4 (b). Since ⟨Z(t)⟩ = 0 due to the spin-flip sym-

metry of H, we only have to consider ⟨X(t)⟩ in this case.
We find that ⟨X(t)⟩ generally behaves very similar for
the two different ladder geometries. Specifically, ⟨X(t)⟩
rapidly decays towards an (approximately constant) sta-
tionary value which is naturally higher for a higher value
of g. Note however, that for Ly = 2 and g = 0.5, as well
as for Ly = 3 and g = 2, ⟨X(t)⟩ still exhibits some resid-
ual fluctuations, i.e., perfect equilibration is absent. Con-
cerning the convergence properties of the NLCE, we find
that analogous to the previous case of |ψ(0)⟩ = |↑⟩ (cf.
Fig. 3), the NLCE remains converged significantly longer
for g = 0.5 compared to g = 2. Especially the early
breakdown of convergence for Ly = 3 and g = 2 in Fig.
4 (b) emphasizes the fact that NLCEs are not necessarily
the method of choice if one aims to study thermalization
which typically requires the analysis of long time scales.
(There exist, however, also examples where NLCEs yield
converged results even in the infinite-time limit, i.e., con-
verged results for the so-called diagonal ensemble [70].)
Eventually, let us note that the NLCE results and the
data for systems with PBC in Fig. 4 yield a considerably
longer convergence compared to analogous simulations
for systems with OBC, see Appendix C for details.

As a side remark to conclude the study of ladder ge-
ometries, let us note that Ref. [97] has recently discussed
the possibility of quantum scars in transverse-field Ising
ladders. Specifically, Ref. [97] has considered small val-
ues of g and “density-wave” initial states of the form
|ψ(0)⟩ ∼ |↑↓↑↓ · · ·⟩. These initial states were found to
exhibit a large overlap with rare, weakly entangled eigen-
states, leading to quasi-periodic revivals in the dynamics.
As detailed in Appendix D, the fully polarized states |↑⟩
and |→⟩ studied in the present paper, in contrast, do not
exhibit such a significant overlap with the weakly entan-
gled eigenstates. These special eigenstates therefore do
not play a distinguished role for the quench dynamics
presented in Figs. 3 and 4.

C. Two-dimensional square lattice

We now come to the last part of this paper, i.e.,
the quantum quench dynamics in the two-dimensional
transverse-field Ising model. Note that dynamical prop-
erties of this model [50, 52, 56, 58, 98, 99], as well as
the emergence of thermalization [24, 25, 61], have been
studied before by a variety of approaches. By compar-
ing our results to existing data from the literature, let us
demonstrate in this section that numerical linked cluster
expansions based on rectangular clusters only, combined
with an efficient forward propagation of pure states, pro-
vide a competitive alternative to other state-of-the-art
numerical approaches.

As a first step, it is instructive to compare our results
to earlier NLCE data from Ref. [72]. This comparison is
shown in Figs. 5 (a) and (b), where the dynamics of the
transverse magnetization ⟨X(t)⟩ is studied for quenches
from |→⟩ and |↑⟩ with g = 1. (Recall that gc ≈ 3.044
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Figure 3. Dynamics of the (a) longitudinal magnetization ⟨Z(t)⟩ and (b) transverse magnetization ⟨X(t)⟩, in two-leg ladders
with initial state |ψ(0)⟩ = |↑⟩ and different transverse fields g. Numerical data obtained by NLCE for expansion orders
C = 24, 26 are compared to direct simulations for ladders with Lx = 12 and PBC.
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Figure 4. Dynamics of the transverse magnetization ⟨X(t)⟩ resulting from the initial state |ψ(0)⟩ = |→⟩ for (a) two-leg ladders
and (b) three-leg ladders with g = 0.5 and g = 2. Numerical data obtained by NLCE for different expansion orders C are
compared to direct simulations of finite ladders with PBC. For additional NLCE data with lower expansion orders and a
comparison to direct simulations of systems with OBC, see Appendix C.
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Figure 5. Dynamics of the transverse magnetization ⟨X(t)⟩ for a two-dimensional square lattice with transverse field g = 1,
obtained by NLCE with rectangular clusters and expansion orders C = 24, 27, 28. The open circles are NLCE data digitized
from Ref. [72], where all (also nonrectangular) cluster geometries with up to 10 lattice sites have been considered. In addition,
we present data from a rectangle expansion up to C = 10 which, in comparison, converges to slightly shorter times than the
full expansion. The dynamics for a 5× 5 lattice with PBC is shown as well. The initial state is chosen as (a) |ψ(0)⟩ = |→⟩ and
(b) |ψ(0)⟩ = |↑⟩.
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for the two-dimensional lattice.) Importantly, Ref. [72]
has considered all (also nonrectangular) cluster geome-
tries in the expansion and has used full ED to evaluate
the respective weights. Due to the computational bottle-
necks of NLCEs discussed in Sec. IIIA, Ref. [72] was con-
sequently limited to rather small clusters with up to 10
lattice sites. In Fig. 5, we find that our NLCE with solely
rectangular clusters nicely reproduces the data from Ref.
[72]. In particular, while the results of Ref. [72] are con-
verged for times tJ < 1, the rectangular NLCE up to
expansion order C = 28 (i.e. the largest clusters are of
size 7 × 4, 14 × 2, 28 × 1) yields converged results on
time scales which are approximately twice as long. This
demonstration, that a NLCE restricted to rectangular
cluster geometries can be better than a NLCE compris-
ing all (possibly nonrectangular) clusters, is an important
result of the present paper.

Let us add some comments on the convergence prop-
erties of the NLCE in Fig. 5. First, as an additional
comparison between the rectangle expansion and the full
expansion from Ref. [72], Figs. 5 (a) and (b) also show
data obtained by the rectangle expansion with the lower
expansion order C = 10. For this value of C, we find that
the rectangle expansion is converged to slightly shorter
times than the data from Ref. [72]. This is expected since,
for a fixed value of C, the full expansion should always
perform equally well or better compared to any restricted
NLCE. However, let us stress once again the crucial ad-
vantage of the rectangle expansion that higher expansion
orders can be included due to the reduced combinatorial
costs. Secondly, we note that given the NLCE results
up to expansion order C = 28 in Figs. 5 (a) and (b),
the short-time dynamics for this value of the transverse
field can apparently be accessed also by the direct sim-
ulation of a 5 × 5 lattice with PBC. This is similar to
our previous findings for chains and ladders in Secs. IVA
and IVB. Namely, depending on the parameter regime,
NLCEs might not necessarily outperform a direct sim-
ulation of a finite system with PBC if the latter yields
small finite-size effects. As shown in Appendix C, how-
ever, the advantage of the NLCE is more pronounced
when one compares to direct simulations of systems with
OBC instead.

Next, let us study quenches starting from the state
|ψ(0)⟩ = |↑⟩ such that ⟨Z(0)⟩ = 1 and ⟨X(0)⟩ = 0, and
consider a strong transverse field g = 2.63gc ≈ 8, i.e.,
a quench across the quantum critical point. Again, we
consider clusters with up to 28 lattice sites in the NLCE.
In Fig. 6 (a), we find that ⟨Z(t)⟩ displays pronounced
oscillations with an amplitude that is weakly damped
over time. Correspondingly, the transverse magnetiza-
tion ⟨X(t)⟩ in Fig. 6 (b) exhibits damped oscillations as
well (with a frequency that is twice as large). It is in-
structive to compare these NLCE data for the thermody-
namic limit to a simulation of a 5× 5 lattice with PBC.
Specifically, one observes that for such a finite system
and times tJ ≳ 1, the oscillations of ⟨Z(t)⟩ and ⟨X(t)⟩
die away rather quickly. This is in contrast to the NLCE

results for L → ∞ which capture the persistent oscilla-
tions on a longer time scale. In addition, we compare
our NLCE results for ⟨Z(t)⟩ in Fig. 6 (a) to recent data
digitized from Ref. [56], which are computed by an arti-
ficial neural-network (ANN) approach for a 8× 8 lattice.
While the NLCE and ANN data agree nicely with each
other for times tJ < 1, the NLCE remains converged also
on longer time scales. In particular, the ANN data from
Ref. [56] up to times tJ ≲ 1 can be reproduced even by
the smaller 5× 5 lattice. Thus, for the parameter regime
considered in Fig. 6, it appears that the NLCE can be
better than the direct simulation of finite systems with
PBC as well as the ANN approach from Ref. [56]. This
is another important result of the present paper.
Finally, we also consider quenches starting from the

state |ψ(0)⟩ = |→⟩. The values of the transverse field
are chosen as g = 0.1gc, 1gc, 2gc, which again allows us
to compare to ANN data from Ref. [56], as well as to
data from Ref. [52] based on infinite projected entangled
pair states (iPEPS). For all values of g shown in Figs.
7 (a)-(c), we find a convincing agreement between the
data from Refs. [52, 56] and our NLCE results up to ex-
pansion order C = 28, with convergence times that are
rather similar for all three methods. In order to put the
convergence times into perspective, it is again helpful to
compare the NLCE data to a simulation of a finite 5× 5
lattice with PBC. While finite-size effects appear to be
less important for g = 0.1gc and g = 2gc, we observe
pronounced finite-size effects for g = gc already at short
times tJ ≈ 0.5 due to, e.g., the divergence of the rele-
vant length scales at the quantum critical point. Impor-
tantly, the NLCE results for g = gc in Fig. 7 (b) remain
converged up to times tJ ≈ 1.5. One explanation for
the advantage of NLCEs at the quantum critical point
might be given by the fact that the expansion involves
a variety of clusters with different ratios of width and
height such that one can capture the dynamics on longer
time and length scales. This is another central result of
this paper. In this context, let us add that the inclu-
sion of rectangles with different length ratios appears to
be crucial to achieve a good convergence. For instance,
we have checked that an expansion using solely square-
shaped clusters (1 × 1, 2 × 2, . . . , 5 × 5) performs very
poorly instead (not shown here).

V. CONCLUSION

To summarize, we have studied the nonequilibrium dy-
namics of the transverse and the longitudinal magnetiza-
tion resulting from quantum quenches with fully polar-
ized initial states in the transverse-field Ising model de-
fined on different lattice geometries. To this end, we have
relied on an efficient combination of numerical linked
cluster expansions and a forward propagation of pure
states via Chebyshev polynomials.
Depending on the geometry and the parameter regime

under consideration, the quench dynamics has been
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Figure 6. Dynamics of the (a) longitudinal magnetization ⟨Z(t)⟩ and (b) transverse magnetization ⟨X(t)⟩, resulting from the
initial state |ψ(0)⟩ = |↑⟩ for a two-dimensional square lattice with g = 2.63gc. Data obtained by NLCE for expansion orders
C = 24, 27, 28 are compared to a simulation of a 5× 5 lattice with PBC. In (a), we additionally show digitized ANN data from
Ref. [56] for a 8 × 8 lattice.
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Figure 7. Dynamics of the transverse magnetization ⟨X(t)⟩ for two-dimensional lattices with initial state |ψ(0)⟩ = |→⟩ and
transverse fields (a) g = 0.1gc, (b) g = 1gc, and (c) g = 2gc. Data obtained by NLCE for expansion orders C = 24, 27, 28 are
compared to the simulation of a 5 × 5 lattice with PBC. Additionally, we show iPEPS data digitized from Ref. [52] and ANN
data for a 10 × 10 lattice digitized from Ref. [56].

found to display a variety of different behaviors ranging
from quick equilibration, over slower monotonous relax-
ation, to persistent (weakly damped) oscillations. As a
main result, we have demonstrated that NLCEs compris-
ing solely rectangular clusters provide a promising ap-
proach to study the dynamics of two-dimensional quan-
tum many-body systems directly in the thermodynamic
limit. While the organization of the NLCE becomes
straightforward due to the simple cluster geometry, the
memory efficient pure-state propagation made it possi-
ble to include clusters with up to 28 lattice sites. Espe-
cially, for quenches to the quantum critical point, where
finite-size effects are typically strong, we have shown that
NLCEs can yield converged results on time scales which
compare favorably to direct simulations of finite systems
with periodic boundary conditions (also in the case of
chains or ladders). By comparing to existing data from
the literature, we have demonstrated that the reachable
time scales are also competitive to other state-of-the-
art numerical methods. While NLCEs with rectangu-

lar clusters have been used before to obtain thermody-
namic quantities [100] or entanglement entropies [68], the
present paper unveils that such NLCEs also provide a
powerful tool to study the real-time dynamics of quan-
tum many-body systems.

A natural direction of future research is to further
explore the capabilities of NLCEs to simulate quantum
quench dynamics of two-dimensional systems in the ther-
modynamic limit. In this context, it might be promising
to consider other building blocks for the expansion such
as, e.g., clusters that consist of multiple corner-sharing
2 × 2 squares [66]. Moreover, it will be interesting to
study other two-dimensional lattice geometries such as
triangular or Kagome lattices with nonrectangular clus-
ter shapes. One particular question in the field of quan-
tum many-body dynamics where NLCEs might be able
to contribute is the existence of many-body localization
in higher dimensions. While the usage of NLCEs in disor-
dered systems involves additional complications beyond
our explanations in Sec. III A, NLCEs can yield results
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directly in the thermodynamic limit which is especially
important close to the potential transition between the
thermal and the MBL regime. Although truly long times
might still remain out of reach, the usage of supercom-
puting will be helpful to include higher expansion orders
(up to C ≈ 40 [76]), which improves the convergence of
the NLCE even further.
Note added: After this paper was submitted, we be-

came aware of the related work [101] which appeared in
the same arXiv posting as our manuscript. While Ref.
[101] also presents NLCE calculations for the dynamics
of two-dimensional systems using an expansion in rect-
angles, its focus is on the application of NLCEs to disor-
dered systems and inhomogeneous initial states. In ad-
dition, while Ref. [101] employs full ED to evaluate the
contributions of the clusters, the present paper highlights
the usefulness of efficient pure-state propagation meth-
ods to reach expansion orders beyond the range of full
ED and to extend the convergence times of the NLCE.
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Appendix A: Exact solution for the integrable chain

In the case of a chain geometry, the transverse-field
Ising model (1) is a paradigmatic example of an inte-
grable model and can be diagonalized by means of sub-
sequent Jordan-Wigner, Fourier, and Bogoliubov trans-
forms [60],

H =
∑

k

Ekη
†
kηk + const. , (A1)

Ek = 2J

√
(g − cos k)2 + sin2 k . (A2)

Since quantum quenches in the transverse-field Ising
chain have been studied extensively before, and since the
focus of this paper is on the numerical analysis of nonin-
tegrable geometries, we here refrain from providing more
details and refer to the large body of existing literature
instead [89–96]. Given the notation of H in Eqs. (1) and
(A1), as well as an initial state |ψ(0)⟩ which is chosen
as the groundstate of H for some transverse field g′, the
dynamics of the transverse magnetization ⟨X(t)⟩ for a
quench g′ → g is then given by [86–88, 90],

⟨X(t)⟩ = 2

∫ π

0

dk

2π

1

E2
kE

′
k

(A3)

×
[
ϵk(ϵkϵ

′
k + γ2k) + γ2k(ϵ

′
k − ϵk) cos(2Ekt)

]
,

where we have used the abbreviations

ϵk = 2J(g − cos k) , γk = 2J sin k , (A4)

and E′
k and ϵ′k are defined like their unprimed coun-

terparts, but with g → g′. In order to obtain the re-
sults shown in Fig. 2 of the main text, we have numeri-
cally evaluated the integral in Eq. (A3) either for g′ = 0
(|ψ(0)⟩ = |↑⟩) or for g′ → ∞ (|ψ(0)⟩ = |→⟩).

Appendix B: Accuracy of the pure-state propagation

While we have already demonstrated that our numeri-
cal results agree very well with existing data, let us never-
theless discuss the accuracy of the Chebyshev-polynomial
expansion which is used to evaluate the time evolution of
the pure states |↑⟩ and |→⟩. To this end, Fig. 8, shows
the dynamics of the transverse magnetization ⟨X(t)⟩ for
a cluster of size Lx×Ly = 7×3 (with OBC), initial state
|ψ(0)⟩ = |→⟩, and transverse field g = gc ≈ 3.044.

First, in Fig. 8 (a), we set the discrete time step to
δtJ = 0.02 and depict results for different expansion
orders M = 5, 10, 15, 20 (curves). On the one hand,
for small M = 5, we observe clearly unphysical results
(e.g. ⟨X(t)⟩ > 1), which can also be explained by the
fact that the norm ⟨ψ(t)|ψ(t)⟩ (symbols) is not conserved
over time for this choice of M . On the other hand, for
M = 10, 15, 20, all curves for ⟨X(t)⟩ are perfectly on top
of each other, i.e., convergence with respect to M has
been reached, and ⟨ψ(t)|ψ(t)⟩ = 1.
Next, Fig. 8 (b) shows results for a fixed expan-

sion order M = 15 and varying time step δtJ =
0.01, 0.02, 0.05, 0.1. We find that ⟨X(t)⟩ is practically in-
dependent of the time step for the three smallest values
of δtJ used here. However, visible deviations occur in
the case of the largest time step δtJ = 0.1. While the re-
quired time step δt and expansion order M can certainly
depend on the parameter regime under consideration, the
typical choice used in the main text, i.e., δtJ = 0.02 and
M = 15, appears to yield very accurate results.

Appendix C: Additional results for lower expansion
orders and systems with open boundary conditions

In Figs. 2 - 7 of the main text, we have compared
the convergence of the NLCE to direct simulations of
systems with periodic boundary conditions. However,
since the clusters entering the NLCE are defined with
open boundary conditions, it might be interesting to
compare the convergence of the NLCE to direct simu-
lations with OBC as well. Such a comparison is shown
in Fig. 9 for the dynamics of the transverse magnetiza-
tion ⟨X(t)⟩ in chains [panel (a)], ladders [panel (b)], and
two-dimensional square lattices [panel (c)], with one ex-
emplarily chosen transverse field g in each case. Specif-
ically, the curves shown in Fig. 9 are complementary to
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Figure 8. Dynamics of the transverse magnetization ⟨X(t)⟩ for a cluster of size Lx × Ly = 7 × 3 (with OBC), initial state
|ψ(0)⟩ = |→⟩, and transverse field g = 3.044. The symbols indicate the norm ⟨ψ(t)|ψ(t)⟩. (a) Fixed time step δtJ = 0.02 and
varying expansion order M . (b) Fixed M = 15 and varying δtJ .
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Figure 9. Dynamics of the transverse magnetization ⟨X(t)⟩ for quenches in (a) chains with g = 0.5, (b) two-leg ladders
(L = Lx × 2) with g = 0.5, and (c) two-dimensional lattices with g = 0.1gc. The initial state is |ψ(0)⟩ = |→⟩. Results obtained
by numerical linked cluster expansion for different expansion orders C (solid curves) are compared to direct simulations for
systems with open boundary conditions (gray dashed curves). In all cases, we find that for a given expansion order C (or
system size L) the NLCE yields converged results for significantly longer times than the corresponding direct simulation with
OBC.

our earlier data in Figs. 2 (d), 4 (a), and 7 (a), as we now
also include NLCE results for lower expansion orders.
Moreover, to guarantee a fair comparison, Fig. 9 always
shows curves for matching system sizes and expansion
orders, i.e., L = C (recall that the expansion order of the
NLCE is defined as the largest cluster size involved in the
expansion). Importantly, we find that the NLCE yields
converged results on significantly longer time scales than
the simulation of the finite system with OBC for all cases
shown here. For instance, in the case of the chain [Fig.
9 (a)], expansion order C = 15 is already sufficient to
yield converged results up to tJ = 10, whereas the direct
simulation for a system with OBC fails to capture the
correct long-time plateau even for the considerably larger
system size L = 25. Similarly, in the case of the two-leg
ladder [Fig. 9 (b)], the curves for finite systems with OBC
converge only up to the rather short time tJ ≈ 1, while
the convergence of the NLCE quickly improves with in-
creasing C. Especially for the two-dimensional case [Fig.

9 (c)], the simulations for the finite system with OBC
even fail to describe the initial decay of ⟨X(t)⟩ correctly.
Thus, we conclude that for a given expansion order C (or
system size L) the NLCE performs considerably better
than the corresponding direct simulation with OBC.

Appendix D: Eigenstate entanglement and spectral
decomposition of initial states

Let us discuss some properties of the fully polarized
initial states |↑⟩ and |→⟩. To this end, we first study the
entanglement (von Neumann) entropy S|n⟩ of the eigen-
states |n⟩ of H,

S|n⟩ = −Tr[ρA ln ρA] , ρA = TrB {|n⟩ ⟨n|} , (D1)

where ρA is the reduced density matrix on a subsystem
A, obtained by tracing over the degrees of freedom in the
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of a chain and a two-leg ladder. The dashed line indicates
the “Page value” for a random state [105], while the dotted
line indicates the maximum entropy possible for the chosen
bipartition. (c) and (d) Overlap of initial states |↑⟩ and |→⟩
with the eigenstates |n⟩. We have L = 14, g = 0.5, and PBC
in all cases.

complement B. In Figs. 10 (a) and (b), S|n⟩ is shown
for a chain and a two-leg ladder respectively, numerically
obtained by full exact diagonalization for L = 14 sites,
transverse field g = 0.5, and periodic boundary condi-
tions. In both cases, we have chosen A as one half of the
system, i.e., the first 7 lattice sites in case of the chain, or
the first three rungs and one site of the fourth rung in case
of the ladder. On the one hand, for the integrable chain
geometry in Fig. 10 (a), we find that S|n⟩ is comparatively
small at the edges (consistent with the area-law entan-
glement scaling of ground states [102]), while weakly and
strongly entangled states coexist in the bulk of the spec-
trum (see also Refs. [103, 104]). On the other hand, for
the two-leg ladder in Fig. 10 (b), the fluctuations of S|n⟩

in the center of the spectrum are clearly smaller, i.e., the
eigenstates are typically stronger entangled. This be-
havior of S|n⟩ can be interpreted as an indication of the
transition from integrability to nonintegrability [104], by
going from chains to ladders. In addition, we can iden-
tify a small number of eigenstates |n⟩ with energy close
to E = 0 in Fig. 10 (b), which exhibit a distinctly lower
value of S|n⟩. This appears to be consistent with the re-
cent proposal of quantum scars in transverse-field Ising
ladders in Ref. [97].

Next, it is useful to study S|n⟩ in combination with the
overlap between the initial states |ψ(0)⟩ = |↑⟩ , |→⟩ and
the eigenstates |n⟩,

P|ψ⟩ =
D∑

n=1

|⟨n|ψ(0)⟩|2δ(E − En) , (D2)

where En is the eigenvalue of H belonging to |n⟩. As
shown in Figs. 10 (c) and (d), this spectral distribution
is narrow and peaked at the groundstate in the case of
|↑⟩, while P|ψ⟩ is much broader for |→⟩, both for the
chain and the ladder. Thus, a quench to g = 0.5 with
|ψ(0)⟩ = |↑⟩, results in a dynamics which is strongly dom-
inated by the groundstate with a significantly smaller ad-
mixture of excited states. Note that exactly for such a
situation, i.e., a quantum many-body system with one
macroscopically populated eigenstate, an analytical pre-
diction for the temporal relaxation has been recently ob-
tained in Ref. [106]. While this is beyond the scope of the
present manuscript, it appears that quantum quenches in
transverse-field Ising chains or ladders can be promising
candidates to test such predictions.

Finally, as already pointed out in the main text, we
note that the fully polarized initial states |↑⟩ and |→⟩ do
not exhibit a distinguished overlap with the rare, weakly
entangled eigenstates discussed in Fig. 10 (b). These
potential quantum scars therefore do not play an essential
role for the resulting quench dynamics.
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[46] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).
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Nontrivial Damping of Quantum Many-Body Dynamics

Tjark Heitmann ,1, ∗ Jonas Richter ,2, † Jochen Gemmer,1, ‡ and Robin Steinigeweg 1, §

1Department of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

Understanding how the dynamics of a given quantum system with many degrees of freedom is
altered by the presence of a generic perturbation is a notoriously difficult question. Recent works
predict that, in the overwhelming majority of cases, the unperturbed dynamics is just damped by
a simple function, e.g., exponentially as expected from Fermi’s golden rule. While these predictions
rely on random-matrix arguments and typicality, they can only be verified for a specific physical
situation by comparing to the actual solution or measurement. Crucially, it also remains unclear
how frequent and under which conditions counterexamples to the typical behavior occur. In this
work, we discuss this question from the perspective of projection-operator techniques, where ex-
ponential damping of a density matrix occurs in the interaction picture but not necessarily in the
Schrödinger picture. We show that a nontrivial damping in the Schrödinger picture can emerge if
the dynamics in the unperturbed system possesses rich features, for instance due to the presence
of strong interactions. This suggestion has consequences for the time dependence of correlation
functions. We substantiate our theoretical arguments by large-scale numerical simulations of charge
transport in the extended Fermi-Hubbard chain, where the nearest-neighbor interactions are treated
as a perturbation to the integrable reference system.

I. INTRODUCTION

Questions of equilibration and thermalization in iso-
lated quantum systems have experienced a renaissance
in recent years [1–3]. However, notwithstanding the sig-
nificant progress that has been made [4], describing the
precise dynamics of a given quantum many-body system
still remains a very challenging task. “Universal” prin-
ciples, which provide a faithful understanding of a wide
class of models in various nonequilibrium situations, are
therefore highly desirable [5–10]. A particularly success-
ful strategy in this context has been the usage of random-
matrix ensembles which mimic certain aspects of the full
many-body problem [11]. Prominent examples include
the eigenstate thermalization hypothesis [12–14], which
asserts that the matrix structure of observables becomes
essentially random in the eigenbasis of chaotic Hamil-
tonians [15–18], as well as random-circuit models [19–
21], which have led to new insights into the emergence
of hydrodynamics and information scrambling in isolated
quantum systems.
A particularly intriguing and omnipresent question in

physics is how the dynamics of a given quantum system
is affected by the presence of a perturbation [12, 22–26],
i.e., scenarios where the Hamiltonian H of the full system
can be written as

H = H0 + εV , (1)

withH0 being an unperturbed reference system and ε de-
noting the strength of the perturbation V. This includes,

∗ tjark.heitmann@uos.de
† j.richter@ucl.ac.uk
‡ jgemmer@uos.de
§ rsteinig@uos.de

e.g., the phenomenon of prethermalization [27–32], where
V weakly breaks a conservation law of the (usually inte-
grable) H0, and also the analysis of imperfect echo proto-
cols [33, 34], where the respective Hamiltonians governing
the forward and backward time evolutions are different.
In an even broader context, the impact of perturbations
also plays an important role for simulations on today’s
noisy intermediate-scale quantum devices [35], where V
can be interpreted as the inevitable imperfections of ele-
mentary gates which alter the desired circuit [36].

Given a quantum system with many degrees of free-
dom, the impact of a perturbation can clearly be man-
ifold. It is therefore quite remarkable that a series of
recent works predict that, in the overwhelming majority
of cases, the reference dynamics is just damped by a sim-
ple function [24, 25], e.g., exponentially as expected from
Fermi’s golden rule [26, 37, 38]. In essence, these works
rely on random-matrix theory as V is modeled by (an
ensemble of) random matrices with respect to the eigen-
states of H0 [24], as well as on the concept of typicality
[39–42], as a given perturbation is shown to behave very
similar to the ensemble average. However, while these
predictions were found to compare favorably to a variety
of experimental and numerical examples [24], it yet re-
mains unclear how frequent and under which conditions
counterexamples to the typical behavior occur.

In this work, we discuss exactly this question from
the perspective of projection-operator techniques, which
are well established in the realm of open quantum sys-
tems [43]. In this way, we provide a fresh insight and
show that, within these techniques and under mild as-
sumptions, the “standard” case of exponential damping
emerges for the density matrix in the interaction pic-
ture but not necessarily in the Schrödinger picture. We
particularly suggest that a nontrivial damping in the
Schrödinger picture can emerge if the dynamics in the
unperturbed system possesses rich features. This sug-
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gestion has consequences for the time dependence of cor-
relation functions. It is substantiated by large-scale nu-
merical simulations of charge transport in the extended
Fermi-Hubbard chain, where the nearest-neighbor inter-
actions are treated as a perturbation to the integrable
reference system.
This paper is structured as follows. In Sec. II we

first establish the setup by introducing an exemplary
model and observable, and then turn to a description of
our projection-operator approach and its implications on
the relaxation dynamics in perturbed many-body quan-
tum systems. We show illustrating numerical results in
Sec. III and conclude in Sec. IV.

II. SETUP AND PROJECTION-OPERATOR
APPROACH

A. Model and observable

Even though our analytical reasoning can be applied
to arbitrary operators and Hamiltonians, we here con-
sider for concreteness the dynamics of the particle current
in the extended Fermi-Hubbard chain, which constitutes
a physically relevant many-body quantum problem (see
Refs. [44–46] and references therein). The Hamiltonian

of this model reads H =
∑L
r=1 hr and is a sum over L

local terms

hr =− th
∑

σ=↑,↓
(c†r,σcr+1,σ +H.c.) + U(nr,↑ − 1

2 )(nr,↓ − 1
2 )

+ U ′∑

σ,σ′

(nr,σ − 1
2 )(nr+1,σ′ − 1

2 ) , (2)

where we assume periodic boundary conditions, i.e., we
have L+1 ≡ 1. c†r,σ (cr,σ) creates (annihilates) a fermion

with spin σ at lattice site r and nr,σ = c†r,σcr,σ is the
occupation-number operator. th is the hopping matrix
element and U,U ′ > 0 denote the strengths of the re-
pulsive on-site and nearest-neighbor interactions, respec-
tively. While the model is noninteracting for U,U ′ = 0,
it in fact remains integrable in terms of the Bethe ansatz
also for finite on-site interactions U > 0 [47]. In contrast,
this integrability is broken for any U ′ > 0. Note that H
preserves the number of each fermion species.
As an observable, we consider the particle current. It

can be derived from a continuity equation and takes on
the well-known form (see Refs. [44–46] and references

therein) J =
∑L
r=1 jr,

jr = −th
∑

σ=↑,↓
[(i c†r,σcr+1,σ +H.c.)] . (3)

While the particle current does not depend on U and U ′,
its dynamics does. Only in the case U = U ′ = 0, we have
[J ,H] = 0. Generally, tr[J ] = 0 and tr[J 2] = DLt2h/4,
where D = 4L is the dimension of the Hilbert space. In
this paper, we will be particularly concerned with the

dynamics of current-current correlation functions. How-
ever, as already stated above, all that follows now carries
over to other choices of observable and Hamiltonian.

B. Projection-operator approach

To apply projection-operator techniques, we first de-
compose the full system H according to Eq. (1) into an
unperturbed system H0 and a perturbation εV. For in-
stance, for the Fermi-Hubbard chain (2), we will later
consider two different reference systems H0, i.e., the non-
interacting H0 = H(U = U ′ = 0) and the interacting
integrable H0 = H(U ̸= 0, U ′ = 0).

After this decomposition, we then define a projection
superoperator P, which projects a density matrix ρ(t) at
time t onto a set of relevant degrees of freedom. This set
should at least include the identity and the observable of
interest,

P ρ(t) =
1

D
+
C(t)

⟨J 2⟩ J , C(t) = ⟨J ρ(t)⟩ , (4)

where ⟨•⟩ = tr[•]/D. Due to ⟨J ⟩ = 0, P2 = P. In this
work, we are interested in the time-dependent part C(t)
of the projected density matrix. It is important to note
that, using the projection in Eq. (4), C(t) is not iden-
tical in the Schrödinger and interaction picture. Even
though C(t) is a coefficient and not an expectation value,
it will turn out below that C(t) can be expressed in terms
of certain types of correlation functions. Importantly,
throughout this paper, the notions of Schrödinger or in-
teraction picture should be understood with respect to
the dynamics of the density matrix. This wording should
not be confused with the fact that expectation values of
observables are the same in both pictures.

While taking into account more degrees of freedom is
possible, this will not be necessary for our purposes. In
particular, for initial conditions ρ(0) in the span of 1 and
J , we further have Pρ(0) = ρ(0). From now on, we will
focus on such kind of initial conditions, which also appear
in the context of linear response theory [48] .

After having defined the projection superoperator (and
the reference system), the so-called time-convolutionless
(TCL) projection-operator technique routinely leads to a
time-local differential equation for the evolution of PρI(t)
in the interaction picture [43, 51],

∂

∂t
PρI(t) = G(t)PρI(t) + I(t) (1− P) ρ(0) , (5)

where ρI(t) = eiH0te−iHtρ(0)eiHte−iH0t. The term I(t),
i.e., the inhomogeneity on the right hand side (r.h.s.) of
Eq. (5), can be neglected, due to (1 − P) ρ(0) = 0. The
generator G(t) is given as a systematic series expansion
in powers of ε. In many cases, just like in our case, odd
orders vanish. Hence, the lowest order is the second order
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and reads

G2(t) = ε2
∫ t

0

dt′ PL(t)L(t′)P , (6)

where the Liouvillian is given by L(t) • = −i[VI(t), •]
with VI(t) = eiH0t V(0) e−iH0t.

So far, we have invoked no significant assumption. The
central assumption in the following will be a truncation
to lowest order. The quality of such a truncation natu-
rally depends on the perturbation strength ε, but also on
the structure of the perturbation V and the degrees of
freedom in the projection superoperator P. Note, how-
ever, that a truncation to lowest order does not neces-
sarily imply that we have to restrict ourselves to weak
perturbations ε → 0 and long times t → ∞. In particu-
lar, a lowest-order truncation turns out to be reasonable
in many situations [41]. While the quality can naturally
be further improved by taking into account higher-order
corrections [52], conditions for neglecting higher orders
at rather large ε can be found in Ref. [52].

Now, we use a truncation to lowest order, as well as
the simple mathematical facts that,

C(t) ∝ ⟨J (t)J ⟩ , CI(t) ∝ ⟨J (t)JI(t)⟩ , (7)

which relate the time-dependent part of the density ma-
trix (in the Schrödinger or interaction picture) to a cer-
tain type of correlation function. (A derivation of this re-
lation can be found in Appendix C.) In particular, within
the TCL formalism, a rate equation can be obtained for
CI(t) in the interaction picture,

∂

∂t
⟨J (t)JI(t)⟩ = −ε2 γ2(t) ⟨J (t)JI(t)⟩ , (8)

where J (t) = eiHt J (0) e−iHt and the time-dependent
damping γ2(t) results from a time-integral over a kernel
k2(t, t

′) = k2(τ = t− t′),

γ2(t) =

∫ t

0

dτ k2(τ) , k2(τ) =
⟨i[J ,VI(τ)]i[J ,VI]⟩

⟨J 2⟩ . (9)

Apparently, if k2(τ) → 0 for sufficiently long times, then
we have γ2(t) → const. at such time scales. We note that
the kernel k2(τ) can in principle be calculated analyti-
cally in the thermodynamic limit, if the reference system
H0 is integrable. But often a numerical calculation of
k2(τ) in systems of finite size is sufficient [52].

The solution of rate equation (8) obviously is an expo-
nential decay of the form

⟨J (t)JI(t)⟩
⟨J 2⟩ = exp

[
− ε2

∫ t

0

dt′ γ2(t
′)
]
. (10)

This solution reflects our central result: Within our TCL
approach, the time-dependent part of the density ma-
trix is damped exponentially in the interaction picture
and not necessarily in the Schrödinger picture. Clearly,

both pictures must agree, if the observable J is pre-
served in the reference system H0, [J ,H0] = 0. For
instance, for the particle current in the Fermi-Hubbard
chain, this preservation is given in the noninteracting
H0 = H(U = U ′ = 0). Therefore, both pictures can also
be expected to be rather similar, whenever the dynamics
of JI(t) is sufficiently slow compared to the dynamics of
J (t). In the general situation, however, the two pictures
are just not the same:

⟨J (t)J ⟩ε>0

⟨J (t)J ⟩ε=0
̸= ⟨J (t)JI(t)⟩

⟨J 2⟩ . (11)

Hence, a priori, one cannot expect that the lowest-order
prediction of an exponential decay in Eq. (10) simply
carries over to the Schrödinger picture, and the relax-
ation dynamics of ⟨J (t)J ⟩ε>0 may exhibit nontrivial
behavior that is distinct from typicality predictions in
Refs. [24, 25]. For instance, as we demonstrate later,
this difference is eye striking for the strongly interacting
reference system H0 = H(U ≫ th, U

′ = 0). Note that
Eq. (10) has also consequences for transport quantities.

III. NUMERICAL ILLUSTRATION

Next, we illustrate our central result in numerical sim-
ulations after a description of the employed method.

A. Method

To study system sizes larger than what is possible with
full exact diagonalization (ED), we rely on the concept of
dynamical quantum typicality (DQT) [39, 40, 42, 53] and
obtain time-dependent autocorrelation functions from a
single pure state |ψ⟩, which is drawn at random from a
high-dimensional Hilbert space. While this approach is
by now well established for “standard” correlation func-
tions such as ⟨J (t)J ⟩ (see Refs. [54, 55] and references
therein), the dynamics of correlation functions with a
more complicated time dependence such as ⟨J (t)JI(t)⟩
can be obtained in a rather similar fashion. Specifically,
we first introduce the two auxiliary pure states

|ϕ(t)⟩ = e−iHt eiH0t |ψ⟩ , (12)

|φ(t)⟩ = e−iHt eiH0t J |ψ⟩ , (13)

and then approximate the autocorrelation function and
its time dependence as

⟨J (t)JI(t)⟩ =
⟨ϕ(t)|J |φ(t)⟩

⟨ϕ|ϕ⟩ +O
( 1√

D

)
, (14)

where the statistical error becomes negligibly small for
system sizes studied here. Compared to the usual ap-
proximation of ⟨J (t)J ⟩ [56, 57], the approximation of
⟨J (t)JI(t)⟩ is more costly from a numerical point of view,
since at each point in time an additional backward prop-
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agation with respect to the reference system H0 is re-
quired. However, this extra operation can still be carried
out in large Hilbert spaces beyond the range of full ED,
thereby reducing the impact of finite-size effects, see Ap-
pendix B for a detailed analysis of finite-size effects. In
this paper, we treat systems with up to L = 16, where
D ≈ 4.3× 109, and the largest symmetry subspace has a
dimension ≈ 107. Note that a time evolution of the form
(12) is also relevant for the stability of quantum motion
with respect to a static perturbation [58].

B. Results

Let us now turn to our actual numerical results for
the two scenarios of a noninteracting and an interacting
reference system.

1. Noninteracting reference system

We start with a decomposition where the reference
system is chosen to be noninteracting, H0 = H(U =
U ′ = 0), such that Schrödinger and interaction picture
are identical, C(t) = CI(t), due to [J ,H0] = 0. The
role of the perturbation is then played by the particle-
particle interaction terms. In Fig. 1, we summarize the
decay of the current autocorrelation function ⟨J (t)J ⟩ =
⟨J (t)JI(t)⟩ for a finite system of size L = 16 and interac-
tion strengths U/th = U ′/th = ε ≤ 4. The decay is faster
the larger ε, and an exponential relaxation for weak ε
changes into a Gaussian type of relaxation for stronger ε.
This overall behavior is in qualitative agreement with the
lowest-order prediction of the TCL projection-operator
technique in Eq. (10). Note that the Gaussian behavior
is expected due to γ2(t) ∝ t at small t, which become
relevant for large ε [52].

To exclude that this agreement is accidental, we de-
pict in Figs. 1(b) and 1(c) numerical results for the kernel
k2(t) and rate γ2(t), as both given in Eq. (9), for different
chain lengths L ≤ 16. Apparently, k2(t) decays fast to
zero, and the visible finite-size effects set in at time scales
after this initial decay. As a consequence, the damping
γ2(t) shows a mild dependence on system size and, in
particular, a conclusion on the plateau value of γ2(t) for
L → ∞ is possible. Therefore, we can quantitatively
evaluate the lowest-order prediction in Eq. (10) and com-
pare to the direct numerics in Fig. 1 discussed before. We
find that the agreement is remarkably good over a wide
range of perturbation strengths ε, and small differences
might be either related to residual finite-size effects or
missing higher-order corrections. A detailed analysis of
finite-size effects can be found in Appendix B. Thus, our
TCL approach correctly captures the “standard” case of
exponential damping of ⟨J (t)J ⟩, in agreement with typ-
icality and random-matrix considerations [24–26].
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Figure 1. (a) Decay of the current autocorrelation func-
tion ⟨J (t)J ⟩ for the noninteracting H0 = H(U = U ′ = 0),
which is perturbed by particle-particle interactions of various
strengths U/th = U ′/th = ε ≤ 4. Numerical results from
DQT in a finite system of size L = 16 are compared to the
lowest-order prediction of the TCL projection-operator tech-
nique in Eq. (10). (b) Kernel k2(t) and (c) rate γ2(t), as both
given in Eq. (9), for L ≤ 16. Finite-size effects are mild and
systematic. The expected plateau value of γ2(t) for L → ∞
is indicated (dash-dotted line).

2. Interacting reference system

Finally, and most importantly in the context of this pa-
per, we turn to the decomposition H = H0 + εV with an
interacting reference system, H0 = H(U ̸= 0, U ′ = 0),
where the Schrödinger and interaction picture are no
longer the same, C(t) ̸= CI(t), and the perturbation V is
given by the nearest-neighbor interaction U ′ > 0. We de-
cide to choose a large on-site interaction U/th = 16 ≫ 1,
since the dynamics for such U is known to have rich
features [59, 60]. However, the overall phenomenol-
ogy emerges for smaller values of U as well, as can be
seen in the additional data presented in Appendix A.
As shown in Fig. 2(a) for a finite system size L = 12,
C(t) = ⟨J (t)J ⟩ in the Schrödinger picture exhibits oscil-
latory behavior, where the frequencies and zero crossings
also vary with the strength U ′/th = ε of the nearest-
neighbor interaction. Hence, from visual inspection, it is
clear that unperturbed and perturbed dynamics cannot
be related by a simple damping function. Their nontriv-
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Figure 2. Decay of (a) C(t) = ⟨J (t)J ⟩ and (b) CI(t) =
⟨J (t)JI(t)⟩ for the interacting H0 = H(U/th = 16, U ′ = 0),
which is perturbed in this case by nearest-neighbor particle-
particle interactions of strength U ′/th = ε ≤ 2. Numerical
results from DQT are shown for a finite system of size L = 12
and in (b) additionally compared to the lowest-order predic-
tion of the TCL projection-operator technique in Eq. (10).
For the kernel k2(t) and rate γ2(t), see Fig. 5 in Appendix
B. The inset in (a) shows the ratio between ⟨J (t)J ⟩ε>0 (per-
turbed dynamics) and ⟨J (t)J ⟩ε=0 (unperturbed dynamics)
in the Schrödinger picture. This ratio is a nontrivial function
and does not coincide with the damping in the interaction
picture.

ial relation becomes even more obvious by plotting their
ratio (see the inset of Fig. 2).

In the interaction picture, however, the situation turns
out to be different. As shown in Fig. 2(b), the behav-
ior of CI(t) = ⟨J (t)JI(t)⟩ is like the one in Fig. 1. It
decays monotonously and changes from exponential to
Gaussian type of relaxation as ε is increased, in quali-
tative agreement with the lowest-order prediction of the
TCL projection-operator technique in Eq. (10). Further-
more, a quantitative comparison is also feasible, since the
corresponding kernel k2(t) and rate γ2(t) are converged
with respect to system size (see Fig. 5 in Appendix B),
at least for the time scales depicted in Fig. 2(b). Appar-
ently, the agreement is not as convincing as before and
deviations set in for times t th ∼ 4. However, for such
times, the direct numerics is known to still depend on
system size (see, e.g., Refs. [59, 60] and Appendix B),
and deviations might eventually disappear in the ther-
modynamic limit L→ ∞. We should also stress that the
restriction by the finite-size time t th ∼ 4 does not allow
us to study very weak perturbations ε ≪ 0.1 in our nu-
merical simulation, where the relaxation takes place on

a much longer time scale. How to numerically study the
limit of very weak ε therefore remains an open problem.
In the specific context of currents, this result also has

direct consequences for the transport behavior [61–63];
i.e., only in the interaction picture is the dynamics of
the density matrix exponentially damped due to pertur-
bations such that (i) the frequency dependence of the
conductivity has a simple Lorentzian form and (ii) the
dc conductivity σdc scales as σdc ∝ 1/ε2. But for the
dynamics of the density matrix in the Schrödinger pic-
ture, which is of actual interest, both (i) and (ii) cannot
be expected (see also the corresponding data shown in
Appendix D).

IV. CONCLUSION

We have addressed the question of how the dynamics
of a given quantum system is altered when a perturba-
tion is switched on. We have shown that, within our
analytical approach based on projection-operator tech-
niques, the “standard” case of exponential damping oc-
curs for the density matrix in the interaction picture
but not necessarily in the Schrödinger picture. This key
point we have illustrated explicitly in numerical simu-
lations for charge transport in the strongly interacting
extended Fermi-Hubbard chain, as a physically relevant
many-body problem. Using this example, we have un-
veiled the emergence of nontrivial damping of current-
current correlation functions, which is on the one hand
not expected from typicality and random-matrix consid-
erations and on the other hand demonstrates the com-
plexity of quantum many-body systems out of equilib-
rium. While our numerics has focused on one specific
example, our analytical reasoning suggests a similar be-
havior for other quantum systems. We expect that a
nontrivial damping of relaxation dynamics in perturbed
many-body quantum systems occurs most likely for cases
where already the unperturbed dynamics possesses rich
features. Thus, strongly interacting spin-1/2 XXZ chains
or ladders [64–66] are natural candidates and promising
future directions of research. However, we do not ex-
pect that integrability is a necessary condition. It would
also be desirable to tackle the open problem of how to
numerically study the limit of very weak perturbations.
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Figure 3. Similar data as depicted in Fig. 2, but now shown
for the on-site interaction strength U/th = 8.

Appendix A: Other values for the on-site interaction

Since we have focused in the main text on a strongly
interacting reference system H0 = H(U/th ≫ 1, U ′ = 0)
with a single on-site interaction strength U/th = 16, we
redo the calculation in Fig. 2 for another value of U . As
shown in Fig. 3, the overall picture remains the same
for U/th = 8. Therefore, our numerical illustration is
not fine-tuned with respect to U . Additionally, Fig. 4
shows similar data as Fig. 3(a) but for small interaction
strengths U/th = 2 and U/th = 1. Naturally, with de-
creasing interaction strength U , we start to approach the
noninteracting limit where J is conserved and the oscil-
lations in the reference dynamics disappear. However,
while the ratio ⟨J (t)J ⟩ε>0/⟨J (t)J ⟩ε=0 assumes a more
well-behaved shape, the relation between perturbed and
unperturbed dynamics remains hardly reconcilable with
exponential damping for U/th = 2.

Appendix B: Finite-size scaling

1. Interacting reference system

In the main text, we have mentioned in the context of
Fig. 2 that the corresponding kernel k2(t) and the rate
γ2(t) are converged with respect to system size for the rel-
evant time scales. To support this, we depict in Fig. 5 the
numerical results for k2(t) and γ2(t) for different system

sizes L ≤ 15. We have also mentioned that finite-size ef-
fects for the strongly interacting case U/th = 16 in Fig. 2
occur for times t th ∼ 4. Since we have shown curves
for a single system size L = 12 there, we now illustrate
in Fig. 6 these finite-size effects explicitly by depicting
curves for different system sizes L ≤ 15. We do so for
H(U/th = 16, U ′ = 0), which enters as H0 the interaction
picture for all perturbations U ′/th = ε > 0.

2. Noninteracting reference system

In the discussion of Fig. 1 in the main text, we have
mentioned that small differences between direct DQT cal-
culations and lowest-order TCL predictions of the cur-
rent autocorrelation function ⟨J (t)J ⟩ might in part be
related to residual finite-size effects. To support this, we
depict similar data for different system sizes and for two
exemplary perturbation strengths ε = 0.2 and ε = 0.6 in
Fig. 7. Numerical results from DQT for different system
sizes L ≤ 16 are shown and compared to the lowest-order
prediction of the TCL projection operator technique in
Eq. (10) of the main text. Here, we show three differ-
ent curves (labeled as TCL15, TCL16, and TCL∞), cor-
responding to the rate γ2(t) obtained for the two largest
numerically accessible chain lengths L = 15, 16 as well as
its estimate for the thermodynamic limit L→ ∞, featur-
ing a constant plateau for t th ≳ 4 [see Fig. 1(c) of the
main text]. For ε = 0.2 [Fig. 7(a)], the DQT curves for
the largest system sizes are converged up to times t th ∼ 5
and coincide with all three TCL curves. For later times,
both the DQT and the TCL results show mild finite-size
effects, whereby the TCL∞ prediction appears to agree
best with the scaling behavior of the DQT data. For
ε = 0.6 [Fig. 7(b)], a very similar behavior is found in
the comparison of the DQT and the TCL curves.

Complementary to the DQT and the TCL data, Fig. 7
also shows numerical results for ⟨J (t)J ⟩ in the ther-
modynamic limit L → ∞ as obtained by means of a
numerical linked-cluster expansion (NLCE) (see, e.g.,
Refs. [67, 68] and below) for different expansion orders
cmax ≤ 15. The NLCE results agree with the DQT and
the TCL data at times t th ≲ 5 for both ε = 0.2 and
ε = 0.6. Beyond times t th ∼ 5, the NLCE does not add
much to the information on the thermodynamic limit for
ε = 0.2. However, for ε = 0.6, the NLCE curves are
converged just long enough to indicate that the TCL∞

prediction is most suitable to describe ⟨J (t)J ⟩ in the
thermodynamic limit.

a. NLCE in a nutshell

In the framework of NLCE, the per-site value of the
current autocorrelation function on an infinite chain can
be expanded in terms of its respective weights Wc on
all linked (sub-)clusters (i.e., open-boundary chains of
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Figure 4. Similar data as depicted in Fig. 3(a), but now shown for smaller on-site interaction strengths (a) U/th = 2 and (b)
U/th = 1.

different lengths c),

⟨J (t)J ⟩/L =
∑

c

Wc(t) . (B1)

For numerical calculations, the sum in Eq. (B1) natu-
rally has to be truncated to the maximum accessible
cluster size cmax. This, together with the inclusion-
exclusion principle for the calculation of each weight,
Wc(t) = ⟨J (t)J ⟩(c) −∑s⊂cWs(t), results in the very
simple expression approximating Eq. (B1),

cmax∑

c

Wc(t) = ⟨J (t)J ⟩(cmax) − ⟨J (t)J ⟩(cmax−1) , (B2)
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Figure 5. Second-order (a) kernel k2(t) and (b) damping γ2(t),
as both given in Eq. (9) of the main text, for the interacting
H0 = H(U/th = 16, U ′ = 0). Numerical results from DQT
are shown for various chain lengths L ≤ 15.

which is reliable up to a certain maximum time, increas-
ing with the maximum cluster size cmax. The ⟨J (t)J ⟩(c)
(evaluated on open-boundary chains of length c) are
again obtained with DQT and additionally averaged over
multiple random states in order to counteract the sensi-
tivity of the difference in Eq. (B2) to small statistical
errors.

Appendix C: Relation to correlation functions

To see that ⟨J PρI(t)⟩ ∝ ⟨J (t)JI(t)⟩, we first in-
sert the definition of the projection superoperator P in
⟨J PρI(t)⟩, which yields

⟨J PρI(t)⟩ = ⟨J
( 1

D
+

⟨J ρI(t)⟩
⟨J 2⟩ J

)
⟩ . (C1)
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Figure 6. Time dependence of the current autocorrelation
function ⟨J (t)J ⟩ in the strongly interacting system H(U/th =
16, U ′ = 0), as obtained from DQT for different system sizes
L ≤ 15. For such L, data are converged up to times t th ∼ 4.
Similar data can be found in [60].
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projection-operator technique in Eq. (10) of the main text. For the TCL curves, different rates γ2(t) corresponding to finite
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text]. Additionally, NLCE data is shown for expansion orders cmax ≤ 15.

Since ⟨J ⟩ = 0, performing the outer angles leads to

⟨J PρI(t)⟩ = ⟨J ρI(t)⟩ . (C2)

We then insert the initial condition ρ(0) ∝ 1 + bJ and
use the time dependence of a density matrix in the in-
teraction picture, ρI(t) = eiH0t e−iHt ρ(0) eiHt e−iH0t, to
obtain

⟨J PρI(t)⟩ ∝ ⟨J eiH0t e−iHt (1 + bJ ) eiHt e−iH0t⟩ . (C3)

Using ⟨J ⟩ = 0 again, we thus get

⟨J PρI(t)⟩ ∝ ⟨J eiH0t e−iHt J eiHt e−iH0t⟩ , (C4)

which, after a cyclic permutation, reads

⟨J PρI(t)⟩ ∝ ⟨e−iHt J eiHt e−iH0t J eiH0t⟩ . (C5)

Denoting by J (t) = eiHt J e−iHt and JI(t) =
eiH0t J e−iH0t the time evolution of an operator in the
Heisenberg and interaction picture, respectively, we can
write

⟨J PρI(t)⟩ ∝ ⟨J (−t)JI(−t)⟩ . (C6)

Due to J † = J , we can replace t→ −t and end up with

⟨J PρI(t)⟩ ∝ ⟨J (t)JI(t)⟩ . (C7)

Appendix D: Conductivity

In Fig. 8, we show the frequency-dependent conductiv-
ity in the strongly interacting system H(U/th = 16, U ′ =
0), perturbed by interactions U ′/th = ε. This conductiv-
ity is obtained by the Fourier transform of the current au-

tocorrelation functions depicted in Fig. 2(a) of the main
text,

σ(ω) =

∫ tmax

−tmax

dt e−iωt
⟨J (t)J ⟩

L
, (D1)

with a cutoff time tmax th = 100. The overall shape of
the conductivity is incompatible with a simple Lorentzian
form, while the freestanding shoulder shifts from higher
to lower ω as the perturbation strength increases, attest-
ing to the shift in the frequencies observed in the oscilla-
tory behavior of the corresponding current autocorrela-
tion functions. In addition, the spectral weight at small
ω provides a rough estimate for the value of the dc con-
ductivity σdc, which clearly does not scale as σdc ∝ 1/ε2.
For the detailed extraction of σdc, see Ref. [45].
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Figure 8. Frequency dependence of the conductivity σ(ω), as
obtained by the Fourier transform (D1) of the current auto-
correlation functions shown in Fig. 2(a) of the main text.
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[4] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana,
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