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From Narratology to Computational Story
Composition and Back–

An Exploratory Study in Generative Modeling

ABSTRACT

There are two disciplines that are concerened with the same object of study, nar‐
ratives, but that rarely exchange insights and ideas, let alone engage in collaborative
research. The first is Narrative Theory (NT), an analytical discipline from the human‐
ities that attempts to analyze literary texts and from these instances derive a general
understanding of the concept of narrative. The second is Compuatational Story Com‐
position (CSC), a discipline in the domain of Artificial Intelligence that attempts to
enable computers to autonomously compose fictional narratives in a way that could
be deemed creative. Several reasons can be found for the lack of collaboration, but one
of them stands out: The two disciplines follow decidedly different research method‐
ologies at contradistinct levels of abstraction. This makes it hard to conduct NT and
CSC research simultaneously, and also means that CSC researchers have a hard time
validating whether they use NT concepts correctly, while NT scholars have no use for
the outputs created by work in CSC. At the same time, a close exchance between the
two disciplines would be desirebale, not only because of the complementary approach
to their object of study, but also because comparable interdisciplinary collaborations
have proven to be productive in other fields, like for instance linguistics.

The present thesis proposes a research methodology called generativemodeling de‐
signed to address the methodological differences outlined above, and thus allow to
conduct simultaneous NT and CSC research. As a proof of concept it performs several
cycles of generative modeling, in which it computationally implements concepts and
dynamics described in two frameworks from NT, namely Marie‐Laure Ryan’s possible
worlds approach to plot, and Alan Palmer’s fictional minds approach to characters.
In detail, the first cycle attempts to implement Ryan’s possible worlds semantics and
the resulting dynamics of plot, but falls short in a way that suggests that the first prin‐
ciples layed out in the theory are not sufficient to capture an example plot, for a num‐
ber of reasons. The second cycle resolves these hypothesized problems by extending
Ryan’s plot understanding with affective dynamics based on Palmer’s understanding
of fictional minds. With plot dynamics completed, the third cycle implements Ryan’s
concept of tellability, which represents a quantifiable measure of the structural qual‐
ity of plots. The last cycle implements a Genetic Algorithm based search heuristic
that is capable of searching the plot space spanned by the employed formalism for
plots high in tellability, which provides additional insights on properties of tellabil‐
ity. The resulting implementation is a in‐depth computational representation of plot
ingrained into the CSC System InBloom, which is capable of autonomusly composing
novel plots and evaluating their quality.
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The study reported in this thesis demonstrates, how implementing narratological
theories as generative models can lead to insights for NT, and how grounding com‐
putational representations of narrative in NT can help CSC systems take over creative
responsibilities. Thereby, it shows the feasibility and utility of generative modeling.
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Preface

THE WORK THAT WILL BE PRESENTED IN THE FOLLOWING revises, extends and puts
into context ideas that I previously published, at various scientific conferences. In
particular:

• Chapter 1 extends the idea of generative modeling first described in Berov (2019a),
• Chapter 2 extends technical work first reported in Berov (2017a),
• Chapter 3 extends technical work first reported in Berov (2017a), and uses the

empirical evaluation first introduced in Berov and Kühnberger (2018),
• Chapter 4 describes the implementation of ideas first outlined in Berov (2017b),

and extends technical work first reported in Wilke and Berov (2018),
• Chapter 5 describes the implementation of ideas first outlined in Berov (2018),
• Chapter 6 inludes ideas first described in Berov (2019a).

While it might be tempting for a reader to just consult the much more concise publi‐
cations listed above, and be done with it, I want to encourage everyone interested to
stick to this dissertation. The confines of short conference papers can rarely do justice
to a topic at the boundary between the humanities and the sciences, and many of the
decisions I made could only be properly argued here.

My work changed, developed and shifted—as these things are known to do—and
the text of this dissertation presents its most up to date documentation. In case of in‐
consistencies between previous publication and the present work, readers are advised
to heed the latter.
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Call me Ishmael. Some years ago—never mind

how long precisely—having little or no money in

my purse, and nothing particular to interest me on

shore, I thought I would sail about a little and see

the watery part of the world.

Herman Melville, ‘Moby‐Dick’

1
Introduction

THIS DISSERTATION ATTEMPTS TO CROSS THE SPACE BETWEEN TWO DISTANT SHORES,

the disciplines of narrative theory (NT) and artificial intelligence (AI). At first glance,

these two have not much in common. NT is an analytical discipline from the human‐

ities that attempts to analyze literary texts and from these instances derive a general

understanding of the concept of story. AI deals with digital problem‐solving ma‐

chines and attempts to understand the concept of intelligence by recreating it, being

thus wedged in between computer science and psychology. However, I firmly believe

that this appearance of detachedness is misleading. As I will outline shortly, stories

are an integral part of human nature, and might one day turn out to be one of the keys

towards unlocking a machine’s ability to make sense of the surrounding world. At the

same time, stories are made by the human mind and are concerned predominantly

with the human mind, so their understanding should benefit from a clearer view of

the principles that constitute minds. I encountered the wittiest summary of this in‐

terconnection early in my voyage, when literary theorist Víctor Bermúdez succinctly

quipped that “literature is the data of consciousness” at the 2016 Symposium on Nar‐

1



CHAPTER 1. INTRODUCTION

rative, Cognition and Science held at the University of Erlangen‐Nürnberg (personal

communication). My thesis will cross the waters between AI and NT several times,

and while the trips are not intended to uncover the Great whale of consciousness it is

an attempt to demonstrate how both disciplines can benefit from trading ideas. The

concrete project on which I will conduct my demonstration is a computational plot

composition system I called InBloom, yet it is not the final system in which I see my

thesis’ main contribution. Instead, I see it in the repeated cycles of design grounded

in NT, and implementation using AI technology, as well as the insights that are gar‐

nered along the way.

In the following, I will first motivate my work by further outlining the benefits

of an exchange between NT and AI, which will lead to the formulation of three re‐

search questions. I will continue with short introductions of NT and computational

creativity in order to provide readers with differing backgrounds with a shared com‐

mon ground. Then, I will outline related work on computational story composition

(CSC) to allow readers to place this thesis in context. The chapter will conclude with

a reader’s guide intended to describe the structure of the rest of this thesis, and, more

importantly, disclose the rationale behind this structure.

1.1 MOTIVATION

Narratives are an ubiquitous part of our every day life, be it as books, films, or small

talk. But under this surface, they also play a more crucial role than mere entertain‐

ment. We make sense of our experiences by organizing a continuous stream of con‐

current perceptions in the form of events connected by a meaningful structure, that

is, in narratives. As cognitive scientist Mark Turner writes: “Narrative imagining—

story—is the fundamental instrument of thought. Rational capacities depend on it.

It is our chief means of looking into the future, of predicting, of planning, and of

explaining. It is a literary capacity indispensable to human cognition generally” (M.

Turner, 1996, p. 4f). Another line of argument for the central role of narratives in

human cognition focuses on its role in interpreting the behavior, and by that merit

basic understanding, of other humans, as cultural theorist Phoebe Sengers (2000,

p. 3) agues: “Narrative psychology shows that, whereas people tend to understand

2



CHAPTER 1. INTRODUCTION

inanimate objects in terms of cause‐effect rules and by using logical reasoning, inten‐

tional behavior is made comprehensible, not by figuring out its physical laws, but by

structuring it into narrative […]”. Paradoxically, this seems to apply not only to oth‐

ers, but even to understanding oneself. Philosophers have argued, that the notion of

the self—that is how people conceptualize and locate themselves in existence—has

an important narrative constituent (Schechtman, 2011): the stories we tell ourselves

about ourselves define who we are. Quite naturally, such definitional narratives also

play a role in close dyadic settings. Lasting bonds between romantic partners have

been argued to be connected to the presence and type of shared narratives adopted

in the relationship (Bühler & Dunlop, 2019). Narratives also organize the interac‐

tions of humans at a much grander scale. According to the historian Yuval Harari

(2014) it was an important part of the cognitive revolution—which was central to the

evolutionary success of homo sapiens—that humans learned to create reliable bonds

between members of large groups based on shared narratives: we call these narratives

religions, nations or the free market. So pervasive is the role of narratives in human

matters, that evolutionary psychologist Jonathan Gottschall (2012) called homo sapi‐

ens “the storytelling animal”.

Why should this be relevant to the discipline of AI? According to one of the canon‐

ical introductory books on AI, two main traditions exist in the discipline (Russell &

Norvig, 2010): the engineering approach studies how individual tasks that usually

require intelligence to be performed can be solved using computers, while the cogni‐

tive approach is the empirical study of the mind. For the AI engineer, the ability to

create and understand narratives might be a secondary but still relevant problem: if

humans have evolved to communicate via narratives then computers should also be

able to employ this medium in order to improve human computer interaction. No‐

body likes to read spreadsheets. However, it is for the AI cognitive modeler for whom

narrative intelligence should be a central concern. If human level general intelligence

has only been observed in correlation with strongly developed narrative capabilities

that also seem to serve important functions, then AI should be interested in them.

Narrative capabilities come in two forms: understanding and generation. Person‐

ally, I find the second type more fascinating since it involves another elusive compo‐

nent of human general intelligence: creativity. In fictional narratives, non‐existent

3



CHAPTER 1. INTRODUCTION

but believable characters have to be developed (or assembled from stereotypes and

filled with individuality). They have to be credibly ensnared in a network of made‐up

events, and the resulting interactions have to convey meaning. Even in factual narra‐

tives this structure and meaning imposed on a sequence of events is never a given, but

a result of imagination and interpretation. The composition of narratives (a term I

prefer to generation, in this context, due to its connotation of creativity) is thus a topic

especially worthy of cognitively minded AI research because it provides the chance to

study two relevant parts of human intelligence at the same time.

As I outlined above, the composition of fictional narratives leaves more room and

freedom for an algorithm than the composition of factual ones, which are constrained

by a set of events that need to be reported. It might be this freedom, or perhaps the

questionable impression that it reduces the complexity of an already daunting task,

that lead to a focus on fictional narratives early on in AI research.1 While these nar‐

ratives seem to play a lesser role than their factual brethren, and are not commonly

associated with notions like the self or the evolution of society, the great regard that

we place on them in incarnations like literature or film still makes them a relevant

research topic. Another great benefit of focusing on fictional narratives is the exis‐

tence of a venerable and long‐standing tradition of research on literature, going back

as far as Aristotle’s Poetics around 335 BC. This body of work means that researchers

interested in generating fictional narratives do not necessarily need to first personally

conceptualize an artefact far outside the usual scope of their studies, but can instead

cherry‐pick from the work of specialists.

One of these specialist fields is NT. The focus of NT, which sets it apart from fields

like Literary Criticism, is on what defines narratives as a genus, as opposed to the

meaning making strategies of individual narratives (Prince, 2003, p. 66). Does this

mean that the computational composition of narratives is just an application of in‐

sights from NT, or can AI also contribute back to that field? The case is much harder to

make than the reverse, since I know of no instances where insight from story compo‐

sition changed what theorists think about narratives. However, I believe that there is

1The earliest system attempting this task was recently discovered by an ongoing digital ar‐
chaeology project (J. Ryan, 2017) and dates back to 1963, only seven years after the Dartmouth
workshop that is often regarded as the founding event of AI as a field.

4



CHAPTER 1. INTRODUCTION

indeed great untapped potential. NT is an analytical discipline, that performs theory

building by analyzing canonical instances of narratives and deriving general frame‐

works2 of what constitutes narratives, through abstraction. The computational com‐

position of narratives opens a complementary approach: implementing the first prin‐

ciples and dynamics described by a narratological framework as a generative model,

and deriving insight from the outputs it generates. One type of insight can come

from judging these outputs individually. If they do not appear valid and well‐formed

instances of the genus narrative, or if certain effects—which the underlying frame‐

work purports to represent—fail to appear, then the first principles that constitute

that framework are not sufficient. The other type of insight comes from comparing

composed narratives to each other. This allows to do something that is impossible in

an analytical setting: study the effect of individual parts of a framework in isolation,

by varying an individual parameter of the model while keeping all others constant.

From the outputs, the influence and effect of a single part of the framework on the

structure and dynamics of a narrative as a whole can be observed; something that

cannot be done based on narratives ‘in the wild’ because no two existing narratives

can be guaranteed to differ only in one trait. I am aware that to those who are well ac‐

quainted with the complexity of narratives and the vagaries of narratological theories

this might sound abstract, and impossible to achieve in practice. But I take courage

from the fact that such an approach is by now quite established in another discipline

from the humanities, in linguistics, where the study of computational natural lan‐

guage generation is an established field that plays its part in the overarching quest of

linguistics for a theoretical understanding of language.

Researchers working on CSC commonly take one of two approaches. One is to use

an established technology from AI and see how it can be used to model some of the

constituent parts of narratives. This seems to be the case for many planning based

approaches like Bahamon and Young (2013), Brenner (2010), Meehan (1977), Riedl

and Young (2010), and Ware and Young (2014) or many multi agent simulation ap‐

proaches like Klein et al. (1973), Riegl and Veale (2018), Swartjes and Theune (2008),

and Wadsley, Ryan, et al. (2013). The other approach is to depart from cognitive the‐

2I use the plural here, since no unified framework holds sway over the field, but rather a
multitude of ‘narratologies’ that coexist (Meister, 2014).
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ories of writing or creative thought, and to implement these via any technological

means. Representative instances of this approach are, for instance, the works of Aki‐

moto (2019), Pérez y Pérez and Sharples (2001), and S. R. Turner (1993). This dis‐

tinction aligns well with the two general approaches to AI research (engineering and

cognitive modeling) I discussed above, and its reification in computational creativity

research (Pérez y Pérez, 2018). What these approaches have in common is that they

treat narratives as a secondary phenomenon: they either focus on a technology or a

process model, and consequently subordinate their computational representation of

narratives to whatever requirements these foci bring with them.3 Given my interest

in how NT can benefit from the exploits of CSC, my ideal is to follow an inverse route.

The research agenda of my thesis is to 1) depart from a promising narratological frame‐

work, 2) based on this, implement a computational representation of narrative (with

little regard to technological purity), and 3) consider any process that can operate

on this representation in search of narratives with particular properties a system for

CSC (no matter its cognitive plausibility). This allows the formulation of two general

research questions, that permeate the present thesis.

RQ 1: Can NTs be computationally implemented using generative models?

How can narratological theories benefit from such modeling? Answering this

question involves solving a range of more specific sub‐questions, and the problems

they represent: Can a narratological framework be identified that is formulated in

a way that is amenable to computational generative modeling, at all? Can such a

framework be sufficiently formalized and specified in order to be implemented, de‐

spite of parts that are described at a level of abstraction that is substantially above the

algorithmic, without distorting the underlying ideas beyond recognition? Can such

an implementation be used to generate artefacts that are recognizable as instances

of the genus narrative, and do variations of the parameters of such an implementa‐

tion result in narratologically meaningful differences in these outputs? Can insights

about the properties of the underlying narratological framework be drawn based on

3Claiming that there are only two approaches in the field is of course a simplification. For
instance, Gervás (2016) also departs from a narratological theory outlined by Russian folklorist
Propp. And even those approaches that do not focus on NT do not operate in total disregard
for its ideas. My main point is that neither are interested in contributing the insights of their
work back to NT, which I consider a lost opportunity.
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the observation of such outputs?

RQ 2: Can CSC be modeled as the manipulation of a computational repre‐

sentation of narratives grounded in NT? What are the benefits of grounding

the modeling process in NT? Again, several sub‐questions are involved in address‐

ing this question: Can a narratological framework be identified that supports all tasks

that are involved in the computational composition of narratives, especially genera‐

tion and evaluation? Does an implementation of such a framework provide sufficient

parameters such that a search space of narratives can be explored based on them?

What constitutes a meta‐algorithm that can manipulate such a search space? Are

the artefacts that are created by such a search recognizable as narratives, and is there

sufficient variation in such a search space to support a semblance of creativity?

Both of the original research questions contribute to answering a central, meta‐

research question: RQ 3: Is a scientific/scholarly exchange between NT and CSC

possible and productive? How can such an exchange be facilitated? While it

might sound trivially true at the beginning, I believe that this question could lead to

insights that allow to address some of the reasons that, so far, have limited the ex‐

change between these two disciplines. From the outset, I see several problems that

impede this exchange: One is a fundamental difference in methodology, whose effect

I felt immediately when I first developed an outline for this dissertation. Practical re‐

search in AI commonly follows a linear course: 1) one starts with a task that needs

to be solved by the machine and where success can be measured and compared to

other approaches, 2) based on theoretical or empirical considerations one formal‐

izes a model and ideally demonstrates theoretically that it can solve the task at hand,

3) one implements the formalization in parametrizable algorithmic form and, in the

end, 4) empirically establishes the best parametrization as well as its performance

in comparison with previous approaches based on task‐specific metrics. Practical

research in NT, in contrast, commonly follows a helical course: 1) one identifies a

concept whose scope seems to be in need of refining,4 2) analyzes its use and pres‐

4Originally, I envisioned this process to start with the identification of a concept that is
lacking (in a particular theory). After running this first version past Dr. Janina Jacke—a nar‐
ratologist at the Institute for German Studies of the University of Hamburg—she pointed out
to me that in NT research the introduction of completely new concepts is rare. Instead, most
work revolves around the refinement and re‐contextualization of existing concepts (Janina
Jacke, personal communication).

7



CHAPTER 1. INTRODUCTION

ence in a small set of canonical texts, 3) derives an improved understanding of the

concept, 4) revises the initial analysis of the texts and perhaps expands the corpus

to contain more varied texts, 5) revises and extends the adopted understanding of

the concept to account for newly gained insights, 6) returns to the corpus… and so

on. Both approaches are based on the scholarly traditions of the respective fields and

were developed to account for their respective challenges. Work on the interface of

these two disciplines needs to find a way of honouring both.

However, even once procedural questions like these are cleared out of the way, the

situation does not get easier. Applying AI methodology to narratological frameworks

is not straightforward. Concepts from NT are specified at a high level of abstraction

and are analytical or interpretative in nature, which means that their operationaliza‐

tion is a complex reasoning task in itself. This holds to such an extent that specialists

often disagree on how a concept should be operationalized and, what is worse, even

given one particular operationalization and the same text to apply it to, different spe‐

cialists can be expected to disagree on instances of the given concept in the given text.

This is not mere conjecture on my side but was recently demonstrated in a fascinating

series of workshops, where groups were invited to formulate annotation guidelines for

the concept of narrative levels, and these guidelines where then used to annotate a

corpus of short stories (Gius et al., 2019).5 Given how a formalization of concepts

that would be reliably usable for humans eludes the grasp even of domain experts,

it is highly problematic to expect computer scientists to be able to perform such for‐

malizations in a way that is sufficient for machines. To make matters worse, there

are no established quantifiable metrics that measure the quality of instances of such

concepts in a (computationally generated) narrative, and no universal metric of the

quality of a narrative either, so also the empirical evaluation step, that is fundamental

to AI research, is not readily applicable to this domain.

Furthermore, the other way around, there also is no intuitive application of gener‐

ative models from AI in narratological studies. Including computationally generated

narratives into a corpus is theoretically questionable since it is not clear whether they

5Eight different guidelines where submitted, and the resulting inter‐annotator agreement
ranged from 0.05 to 0.30, where 0 indicates below chance level agreement and 1 indicates
perfect agreement.
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are proper instances of the genus narrative at all, and practically questionable since

the state of art in CSC has not yet reached a point where performance is close to hu‐

man. While I have sketched one way out of this situation in my remarks on NT on

p. 5 above, so far, it remains hypothetical and has never been successfully carried out

in practice. If the present thesis can demonstrate the feasibility of this hypothetical

way by generating viable narratological insights then I would consider the mere fait

accompli an important stepping stone in NT/CSC exchange, and, at the same time, a

step towards answering my third research question.

Before continuing this introduction with more details about the context of my

work, a general technological reservation is in order. When I started my work in

2016, computational linguistics was not in a state to provide outsiders with out‐of‐

the box capabilities to generate natural sounding language, let alone narrative prose.

Rare individual forays into prose generation existed (see e.g. Callaway & Lester, 2002)

but were closely tied to idiosyncratic systems for content generation. It did not seem

like the field would mature enough in the decade to come, so I made the decision to

focus my work on composing the content plane of narratives (like plot or character)

and leave the presentation plane (like discourse or prose) to future work, a separation

that has been quite common in the field (Gervás, 2009). Only four years later, by

2020, the deep neural network architecture GPT‐3 (Brown et al., 2020) demonstrated

the ability to generate prose that is hardly distinguishable from human6, including a

remarkable aptness for varying the style of its output. However, even this advanced

system is not capable of generating prose about a given content, which would be the

requirement for attaching it to a story composition system like the one envisioned

here. For this reason, from now on, my use of the term ‘CSC’ will remain restricted to

the task and the field of computationally creating the content of narratives.

1.2 NARRATIVE THEORY

Above, I outlined that NT is concerned with the study of what constitutes narratives

as a genus, that is, with the theory of narrative representation. However, NT can

6One of the use cases was an automatically generated article for the British newspaper The
Guardian, where GPT‐3 was tasked with arguing that it does not pose a threat to humanity:
https://www.theguardian.com/commentisfree/2020/sep/08/robot‐wrote‐this‐article‐gpt‐3.
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also be regarded a methodology for studying instances of narrative, for instances as a

first step of interpretation (Meister, 2014). Since the post‐classical turn in the 1990s,

the state of NT has been described as one where no unifying, universally accepted

framework exists, but instead a “multitude of compound or ‘hyphenated’ narratolo‐

gies” (Meister, 2014) coexist. Different schools have proposed differing theories, and

while most theories agree on the general type of the phenomena involved in narrative

representation, they still markedly differ in how they analyze their concrete function‐

ing, interaction, and relevance. For instance, a Proppian formalist approach analyzes

characters as mere functions subservient to the teleology of plot (Propp, 1968), while

a cognitively informed approach like Palmer’s (2004) puts the focus on the mimetic

properties of characters as fictional beings reconstructed from the discourse; just to

demonstrate the potential gamut of differences. For this reason, NT is best consid‐

ered neither a theory nor a methodology but a discipline in its own right (Meister,

2014). The goal of this section is not to provide an overview of the current state of

this discipline, as this would probably require a thesis in its own right. Instead, it will

attempt to opportunistically distill a (more or less) uncontroversial understanding of

the field’s subject of study, in order to demonstrate the breadth and complexity of

the type of thing a creative AI system would have to generate. It is also intended to

provide a common ground for readers from different backgrounds.

1.2.1 DEFINITION OF NARRATIVE

The barest viable definition of narrative I came across is “the representation of an

event or a series of events” (Abbott, 2002, p. 12). Maintaining that narratives are repre‐

sentations defines them as semiotic constructs, while requiring them to signify events

distinguishes narratives from descriptions7 or arguments. Taken together this means

that there are at least two phenomena that comprise narratives: a content plane that

encompasses the events that are narrated, and a presentation plane that encompasses

the way they are mediated to the reader. The notion of a ‘series of events’ addition‐

ally implies that on the content plane also the phenomenon of temporality plays a

7Abbott (2002, p. 12) explicates the distinction between descriptions and narratives by
contrasting “My dog has fleas” with “My dog was bitten by a flea”: the former “is a description
of my dog, but it is not a narrative because nothing happens”.
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role. While representing the broadest possible consensus among theorists (Herman

et al., 2005, p. 347), the above definition omits important phenomena and would, for

instance, also classify historical annals and chronicles as narratives. A slightly more

specific definition expands the understanding of that which is represented in narra‐

tives to “the transition from one state to another state, caused or experienced by ac‐

tors” (Bal, 1997, p. 182). This adds two more phenomena to the content plane: fictional

characters that are capable of action as well as perception, and character‐mediated

causality as a central relationship between the narrative’s events. The notion of char‐

acter carries with it the phenomenon of a story world (i.e. spatiality) of which they,

like other existents, are part, while character‐action, in turn, implies motivation and

conflict. As becomes apparent, already these seemingly innocuous definitions import

at least as much implicit elements as they explicate. However, there is still one major

phenomenon missing. Above, I explained that narrative differs from argument and

description because it represents events, and from chronicle and annal because it is

concerned with characters. Herman et al. (2005, p. 347) argue that this can be gen‐

eralized: narrative differs from other text types by its ability “to evoke a certain type

of image in the mind of the recipient”, stressing that it is the nature of the evoked

images that distinguishes text types. The crucial part is the explication that all these

phenomena (the spatial, temporal, mental and causal dimensions) require a reader,

in order to be realized in the form of mental models and through that to unfold their

discriminatory effect. A definition that, in my opinion, brings all these parts together

best, has been proposed by the narratologist Monika Fludernik:

A narrative is a representation of a possible world […], at whose cen‐
ter there are one or several protagonists of an anthropomorphic nature
who are existentially anchored in a temporal and spatial sense and who
(mostly) perform goal‐directed actions (action and plot structure). It is
the experience of these protagonists that narratives focus on, allowing
readers to immerse themselves in a different world and in the life of the
protagonists.

(Fludernik, 2009, p. 6)

In the following, I will present a rough overview over each the four phenomena

that are central to this definition: plot, discourse, character, and reader. Then, I will

sketch their interactions because they only constitute narrative when taken together.
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1.2.2 CONSTITUENT PHENOMENA

STORY AND PLOT

At the heart of each narrative is a temporally ordered series of events, which is often

referred to as story (Herman et al., 2005, p. 435). These events can be of two types:

those that have no agent but only patients (happenings) and those that are caused by

an intentional agent (actions). They take place in a spatial realm referred to as story

world, which is comprised of two types of existents: those that have the potential to

act and perceive (characters) and those that do not (settings). An interesting paradox

is that in contrast to the real world the story world is at the same time incomplete

and over‐determined; incomplete, since a finite story can never present all details

that would be perceivable in the real world, and over‐determined since some details

can be presented that could not be known in the real world (Lahn & Meister, 2013,

p. 200), like for instance the thoughts of all characters when reported verbatim by

a hetero‐diegetic (sometimes called ‘omniscient’) narrator. A particular type of over

determination is that the events that form a story are known to have been selected

and assembled in a certain way in order to achieve an intended effect. To describe this

aesthetic structuring that underlies stories, the concept of plot has been introduced.

It can be best understood as a mental configuration that draws out a meaning from

a series of events (Ricoeur, 1984, p. 65)8. Two perspectives can be taken on plot: a

post‐closure view that imposes a rigid structure over a known series of events to im‐

bue them with a certain meaning, and a pre‐closure view that sees plot as the fluid

development of all the possible, superimposing structures that could be applied to

an ongoing series of events, whose final teleological organization has not yet fully

emerged (Dannenberg, 2008, pp. 9, 45). In both cases, the organization achieved by

plot can be conceptualized as a network of causality that permeates the story world.9

8Consider, how the same sequence of events could be taken to represent the overcoming
of a monster, or a tragedy, depending on whether one empathizes with the experiences of the
‘hero’ or the ‘monster’. Sometimes, a series of events can also seem completely unconnectable
at all, in which case there would be no plot, a setting that is sometimes explored in post‐
modern fiction

9Causality is a difficult and philosophically contested notion whose discussion lies far
outside the scope of the present thesis. After reviewing the gamut of possible philosophical
notions of causality for the application to narrative, Currie (2010, Sec. 2.1) identifies the in‐
terventionist understanding as the best candidate, but finds also fault with that. Suffice to
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DISCOURSE

While story and plot describe the content plane of a narrative (i.e. what is told), dis‐

course is used to describe the presentation plane (i.e. how it is told) (Prince, 2003,

p. 21). A central notion for this is the narrator, a textually inscribed entity that re‐

counts the events of the story or presents the properties of the story world, to an

equally inscribed narratee. Narrators can be overt, in which case they establish a

distinct personality and occasionally foreground the diegetic situation, or covert, in

which case they recede behind the content and appear to simply transmit informa‐

tion (Prince, 2003, pp. 66f). An interesting paradox is that in fictional narratives it is

only through discourse that story and story‐world come into being, but, at the same

time, discourse can be seen as subordinate to story because it appears to be a reorga‐

nization and selection, that is just the mediation, of story. This finds its culmination

in the phenomenon of unreliable narration, when it becomes clear that the presen‐

tation of the story is biased, misleading, or incomplete, which can happen when the

telling contains inconsistencies, contradictions to the ontology of the story world, or

even just endorses questionable moral norms (Herman et al., 2005, pp. 495f).

In general, Genette (1983) distinguishes between three aspects of discourse: voice,

mode, and tense. Voice investigates the ontological position of the narrator with re‐

gard to the story. Two types of voice are distinguished. A heterodiegetic voice is not

itself part of the story world that it narrates, and consequently can have reliable ac‐

cess to characters’ thoughts or feelings, future or past events, and is not subject to

the physical laws of the story world. On the other hand, a homodiegetic voice be‐

longs to a character of the story it recounts (although it might be in retrospection), so

that it does not have privileged access to other characters’ inner world and speaks in

an individuated manner. The mode (also called perspective) is an epistemic criterion

about how the narrator knows what it recounts, and three types can be distinguished.

Zero focalization implies that no restrictions exist on the narrators viewpoint, which

is often also a strong indication of a heterodiegetic voice. In internal focalization

say that I follow his analysis and its final position that “[i]n saying that the representation
of causation is central to narrative, we are saying something about the centrality of repre‐
sented relations which we would, in our philosophically unreflective moments, think of as
causal” (Currie, 2010, p. 29).

13



CHAPTER 1. INTRODUCTION

the perspective is identical to the viewpoint of one particular focalizer character at

a time, so that everything that that character sees, knows or feels is known to the

narrator. Potentially, the reported perceptions appear to be filtered through the fic‐

tional consciousness of the focalizer, which, for instance, in the case of a small child

or a deranged character results in unreliable narration. In external focalization the

view‐point follows one particular focalizer character at a time, but takes a perspec‐

tive ‘from without’ that character, so that no access to its internal states is granted.

The final aspect, tense, focuses on the representation of time in the narration. Here,

the criterion order investigates whether the temporal sequence of events in the story is

preserved in the telling (chronological order) or whether they are reordered (achrono‐

logical order). Possible reordering operations are flash‐backs (when events from the

past relative to the time of the narrated now are revisited) and flash‐forwards (when

events from the future relative to the narrated now are foreshadowed). The criterion

duration investigates the relation between how long the fictional events take (story

time) and how long it takes to narrate these events (discourse time). Several options

exist to describe this relation, for instance scene (both are equal), summary (discourse

time is shorter), or stretch (discourse time is longer). It is common for duration to

switch often throughout the narrative text. The frequency criterion investigates the

number of discourse references to a story event. This can be either singulative (an

event takes place once and is recounted once), repetitive (a single occurrence is re‐

ferred to several times) or iterative (an event takes place several times but is referred

to once). Thus, Genette’s aspects provide a toolkit to analyze the relationship of story

and narration.

CHARACTER

Fictional characters are anthropomorphic existents of the story world that possess

agency. There are two dominant approaches to conceptualizing character.

The mimetic approach treats characters as non‐actual individuals that are located

in space as well as time, and are characterized using traits from three dimensions:

physical, behavioral, and mental (Herman et al., 2005, p. 53). This can take the form

of explicit characterization, when a character is ascribed certain properties by the
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narrator or other characters, or implicit characterization, when traits can be derived

from certain behavioral or emotional patterns of the character. Unlike actual indi‐

viduals, fictional characters are incomplete, which means that some of their prop‐

erties are not determined by the text. Some of these gaps can be filled in based on

general world knowledge, whereas others are fundamentally open. For instance, the

number of legs Lady Macbeth has is never explicitly mentioned in the text of the

near‐eponymous Shakespeare (1623) tragedy, however, Gricean pragmatics and com‐

mon sense knowledge allow to assume she had two. This is the case because gaps

in character representation can be filled by readers by importing knowledge about

actual persons, like for instance about human physiology, social stereotypes, or be‐

havioral scripts. Alas, a comparable inference is impossible in order to determine the

number of her children (Knights, 1933), since this particular gap cannot be filled from

general common sense knowledge. Central to the mimetic view is that characters

posses an interiority that is comprised by mental phenomena like goals, emotions, or

seemingly stable dispositional traits (also expectations imported from common as‐

sumptions about actual persons). Although they are presented through a series of

events, characters’ interiority is assumed to be continuous, so that when a character

is encountered in a narrative after some story time has elapsed, its mental state can

have changed in comparison to the last encounter. The actions of a character are

intended to achieve its goals, and can be influenced by its emotions.

An alternative perspective on character is the non‐mimetic approach, which fo‐

cuses on the textual, functional and semiotic properties of the narrative discourse

representing characters (Herman et al., 2005, p. 56). Here, characters are understood

as proper nouns that are ascribed with properties through referring expressions re‐

sulting in a web of semes (Barthes, [1970] 1974), and derive their meaning from stand‐

ing in opposition to other characters. The analysis of characters as instantiations of a

plot function, like e.g. the protagonist, the antagonist or the foil, is also a non‐mimetic

stance.
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READER

Narrative theory distinguishes two types of reader concepts: the actual or empirical

reader, a real person who in the process of consuming a text constructs mental models

and can be researched using methods from psychology, and reader constructs that are

textually inscribed, abstract addressees (Herman et al., 2005, p. 482, for examples see

below).

As argued above, the nature of the mental models produced by the empirical reader

is one of the criteria distinguishing narrative from other text types. It is hypothesized,

that readers’ mental models are built up gradually in working memory and integrate

information over time. During bottom‐up processing, new information from the text

is entered into working memory without necessary integration into a holistic model.

During top‐down processing this content of working memory is expanded by import‐

ing text‐external knowledge from the reader’s long‐term memory, which is activated

by association to the current content, or is required to fill gaps. This can lead to

categorization, when the information in the working memory is consolidated into a

holistic mental model, which might come at the cost of rejecting contradictory pieces

of information. In the case of mounting evidence contradicting a mental model, later

bottom‐up processing can result in decategorization and consequently reconstruction

of parts of the model (Schneider, 2001). Empirical research has shown that readers can

be emotionally affected during the consumption of narrative fiction (see e.g. Keen,

2013). Scholars have argued that the two central readerly emotions aresympathy, that

is, feeling for a character, and empathy, that is, feeling with a character (Caracciolo,

2016; Eder, 2006).

Different abstract reader constructs have been used by theorists to highlight differ‐

ing properties of narratives. An influential concept is the implied reader, which can be

seen to fulfill two functions (Schmid, 2014): As the presumed addressee it encompasses

the “linguistic codes, ideological norms, and aesthetic ideas” that the implied author

seems to assume to govern her audience. As the ideal recipient it functions as an im‐

age of an audience that “understands the work in a way that optimally matches its

structure and adopts the interpretive position and aesthetic standpoint put forward

by the work”. This difference becomes relevant in ideological works that propose an
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uncommon way of thinking, and where, consequently, the presumed addressee dif‐

fers strongly from the ideal recipient. Reader constructs should not be confused with

the narratee, who is the intra‐diegetic recipient of the narrator’s fictional speech acts.

1.2.3 MODELS OF NARRATIVE

The idiosyncrasies of narrative originate not only in the properties of the above phe‐

nomena seen in isolation, but also in their interactions and how they are structured

when seen in combination. While there appears to be a fairly broad consensus about

which phenomena are relevant, their combination and relative relevance are already

a contested domain. Peter Wenzel’s (2004) introduction opens with two complemen‐

tary, overarching models.

The communication model (pp. 6f, 10f) conceptualizes narrative as a Russian doll

of fundamentally different layers of communication (see Fig. 1.1). The outer‐most

Figure 1.1: The communication model of narrative, based on (Wenzel, 2004, p. 12).

layer is the layer of non‐fictional communication, between an author who composed

the narrative in order to achieve a certain effect, and an actual reader who consumes

it and is affected by it. This is a strictly text‐external communication situation, and

details about it should not be inferred from the narrative text (although it can be

studied, by e.g. psychological experiments on subjects during the process of reading).

Text internally, the outer‐most (and hence, most authoritative) layer of communi‐

cation is that between the textually inscribed implied reader and the textually in‐

scribed implied author, neither of which is individuated as a person. A key phe‐

nomenon that requires the postulation of this layer of communication, at this po‐
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sition, is unreliable narration. If a narrative text contains clues that indicate that its

narrator is not mediating the fictional truth, then this information must be commu‐

nicated at a layer that is superior and more authoritative than the narratorial layer. It

is clearly directed to the implied reader as an ideal recipient, and thus the sender has

been dubbed the implied author for symmetry reasons. For instance, in Edgar Poe’s

(1843) short story The Tell‐Tale Heart the narrator explicitly and repeatedly explains

that he is not mad, yet the frantic and disrupted way these assertions are phrased (and

the very fact that they need to be made, at all) communicates to the reader that the

narrator is, indeed, mad and thus cannot be reliable. The implied author subverts the

narrator, by crafting his pleas for sanity in a way that discloses his insanity.

As already indicated, the next layer is that of fictional mediation, where a narrator

communicates to a narratee. This communication can be more or less covert; with the

narrator either just relaying information that has been perceived in the story world

by a focalizing instance, or describing events using a clearly individuated voice while

drawing attention at the diegetic situation through commentary, as the two opposite

sides of the spectrum. The inner‐most layer is that of the story world that is described

by the narrator, where characters communicate with each other through direct speech

or action. It is an interesting feature of this model that it can be infinitely recursive

because characters can tell each other stories, resulting in nested narratives that in

turn have the same structure as the actual narrative.

The two‐level model (pp. 7f, 15f) follows a structuralist approach, in that its con‐

stituent phenomena are delineated through binary contrasts (see Fig. 1.2). The first

dichotomy is that between the layers of story and discourse—that which is told in

a narrative as opposed to how it is being presented—which was already discussed

above. On the story side, a general distinction is made between events and existents.

The former are dynamic components, which means that events act as the driver of

the story. Events can be further distinguished into either actions (events that have an

agent) or happenings (events that have a patient but no agent). Existents capture the

stative components of a story that can be categorized as either characters (anthro‐

pomorphic agents) or parts of the story world (entities incapable of action, physical

and societal rules governing the fictional space). These components comprise the

states that define the narrative and can be changed by events. On the discourse side,
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Figure 1.2: The two-level model of narrative, based on (Wenzel, 2004, p. 15).

a distinction is made between structure and medium. The layer of structure con‐

tains literary devices that can be used to present the story, like the different types of

perspective or characterization discussed above. The layer of medium, on the other

hand, describes the material and technique that is used to implement these devices.

For instance, perspective in books is implemented using written text, while in film

perspective can be implemented using visual frames.

While the first model describes the structure of the communication that brings

narrative into being, and the second model opposes narrative phenomena with each

other to sharpen their profile, personally, I also find it relevant to outline how these

phenomena interact with each other when they come together as constituent parts

of a narrative. The model I propose is depicted in Fig. 1.3.

Here, all phenomena are shown to interact with each other in different ways, which

is one of the reasons for the complexity of modeling narrative. Without implying a

rank order, I will start untangling this knot from the concept of reader. The actual

reader consumes the narrative discourse, and from that reconstructs a series of events
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that form the story, and forms mental models of the characters as well as the story

world.

Figure 1.3: An interaction model of narrative.

Through interpretation he posits

a structure that permeates and

connects these components into

a meaningful whole, the plot.

In a fictional narrative, char‐

acters and story do not actu‐

ally exist, which means that

they are brought into being only

through the fact of being me‐

diated by a discourse. The dis‐

course also implies a certain im‐

age of an abstract reader construct, be it in the form of a presumed addressee or an

ideal recipient. Story is the contentual material from which the discourse is assem‐

bled because the discourse is considered a temporal rearrangement and an aspectual

mediation of the events and the existents of the story. The plot part of story provides

functional roles (like, for instance, protagonist or foil) that certain characters can fill.

It also provides meaning to the actual reader by suggesting a structure that holds the

narrative together. Characters also affect the actual reader, but emotionally, and by

that merit keep her engaged with the events of the story. They are constituent parts of

the story world, and their actions (driven by characters’ intentions) as well as happen‐

ings (as perceived and appraised by characters) are the material over which the plot

weaves its structure. Finally, in a homodiegetic narrative the discourse is produced

by a character that acts as the narrator, while in a heterodiegetic narrative the char‐

acters’ direct speech, thoughts, and perceptions are the textual material from which

the discourse is comprised.

1.2.4 PERSPECTIVES ON NARRATIVE

Narratives are not only multi‐faceted phenomena by virtue of their constitution, but

also because they can be seen and analyzed from multiple perspectives.
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One simple distinction of two perspectives that I find very compelling is proposed

by the philosopher Gregory Currie (2010, Chap. 3). The internal perspective focuses

on the narrative, as if its events and existents were actual, even though they are known

to be fictional. While taking this perspective, it is plausible to analyze a characters

intentions or emotions, to feel sympathy for their ordeals, or to ponder whether they

are behaving logically (all while knowing, that they do not actually exist). The external

perspective, instead, focuses on the whole of a narrative as an intentional artefact

that was crafted by an author in order to achieve certain effects and which stands in

relation to the norms of a society in which that author is embedded. While taking this

perspective, one would be rather inclined to analyze whether a character is believable,

the plot coherent, or a stylistic device appropriate to achieve a certain effect. Currie

summarizes:

The interaction of these two ways of seeing and thinking is crucial to
understanding how narrative works. Our expectations about a narrative,
our desire for explanation of what happens, and our sense of what is
satisfactorily explained, are all a product of the interaction between these
two factors. By getting us to adjust the resources we allocate to the two
different perspectives, narratives manipulate our expectations, affect our
sense of what is probable, and shape our willingness to grant plausibility
to events within the story. (Currie, 2010, p. 49)

A more specialized distinction is proposed by the film scholar Jens Eder et al. (2010),

who suggests to analyze fictional characters using the four aspects: artefact, fictional

being, symbol and symptom. Eder restricts his analysis to characters, however, I do

not see why the same aspects that underlie characters should not also be at the core

of all narrative. My following suggestion is based on Eder’s work, with a slight dif‐

ference in terminology to account for this widened scope. The first is the synthetic

aspect, which focuses on the properties of the narrative as an artefact: by what means

is it constructed, which artefactual properties does it have, how does it achieve cer‐

tain aesthetic effects. The mimetic aspect focuses on the properties of the story world

as if it was actual: what happens to whom and why, what emotional reactions could

this elicit in readers. The symbolic aspect, in turn, focuses on indirect meaning that

is transported through the narrative: symbols for concepts or entities from the ac‐

tual world, morals conveyed by the plot, or general themes of the human condition
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raised by the story. Finally, the symptomatic aspect focuses on the role of the narra‐

tive in a socio‐cultural context: the effects a narrative can have on real audiences, the

forces and causes that led to its creation, or the structures of power that underlie its

meaning‐making mechanisms.

It is worth pointing out a few observations, here. The most general is that the

mimetic aspect seems to correspond one to one to Currie’s internal perspective, while

only the synthetic, symbolic and symptomatic aspects taken together correspond to

a holistic external perspective. Another one is that these aspects are cross‐cutting

concerns with regard to what I called the narrative phenomena above. In his reading

of the fictional character Rick Blaine from the 1942 film Casablanca, Eder et al. (2010)

demonstrate, how Rick’s mimetic and synthetic properties come together to allow a

(symbolic) interpretation of him as a symbol for the United States at the beginning of

the second world war, and allow a (symptomatic) analysis of the image of masculinity

promoted by this acclaimed performance. However, such an interpretation along the

four aspects could also be performed on the plot of this film, or its implied reader.

A last observation refers back to the comparison I made between NT and linguistics

in Sec. 1.1, when I pointed out how the analytical approach of classical linguistics has

been combined with the generative approach of natural language generation. Also

in linguistics, language (as the object of study) is analyzed using different aspects:

morphology, syntax, semantics, and pragmatics. This ability to break down a complex

concept into different levels of abstraction was of great importance for enabling the

exchange between classical and computational approaches. It thus seems worthwhile

to also keep such a distinction close at hand for this exchange in NT.

1.3 COMPUTATIONAL CREATIVITY

Before I will come to the concepts that drive work on computational creativity (CC)

I think it is important to provide a brief glance on the human side of creativity that

fuels the interest of AI researchers in this topic.
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1.3.1 HUMAN CREATIVITY

In everyday language, creativity is a widely applicable tag: great works of art like de

Cervantes’s (1605) novel Don Quixote are considered the results of creativity, but also

activities like playing the Chinese game of Go can be said to demand creativity, and

even everyday acts of petty problem solving, like fixing a bike without proper tools,

are often referred to as creative. What is more surprising is that also the scientific

community, despite empirically studying the concept and even developing tools to

assess creativity in humans, could not agree on a common definition. In The Cam‐

bridge Handbook of Creativity, Plucker and Makel (2010, p. 48) write that “[d]espite

the abundance of definitions of creativity and related terms, few are widely used and

many researchers simply avoid defining the relevant terms at all”. In their preface

to the Handbook, the editors attempt to bring together three components that are

common to most definitions:

First, creative ideas must represent something different, new, or inno‐
vative. Second, creative ideas are of high quality. Third, creative ideas
must also be appropriate to the task at hand or some redefinition of that
task. Thus, a creative response is novel, good, and relevant.

(Kaufman & Sternberg, 2010, p. xiii)

The problem with this attempt is that it focuses on ideas, that is the outcome of

a creative act, but does not make any assertions about the cognitive process that

produced this outcome. An influential distinction called “the Four P’s of creativ‐

ity” (Rhodes, 1961) refers to this as one of the four facets of creativity it posits. The

facets are: product, process, person and place. As we have seen, the product facet

focuses on properties of the outcomes of creativity, be it fully realized works of art or

merely ideas that still need to be executed. The process facet focuses on the nature

of the cognitive mechanisms and representations that occur during, and contribute

to, creative thought. Another facet, person, focuses not on the process of creative

thought, but rather on the properties and traits that are common in creative thinkers.

Finally, the place facet focuses not on the traits of individuals but on properties of

the settings that enable interactions between persons and environments that foster

creative thought. These facets are useful labels to group related strands of research
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together, and explain differences between unrelated strands. However, it should be

remembered that they are all views, from different directions but on the same phe‐

nomenon, which consequently should be considered a superposition of the individual

views.

Another distinction of views considers the magnitude of creativity (see e.g. Koz‐

belt et al., 2010). The Big C perspective derives insights from focusing on unambigu‐

ous instances of creative thought (like the novel Don Quixote), outstanding people

that repeatedly succeeded in producing such instances (like the Russian writer Lev

Nikolayevich Tolstoy), or particular places that created environments where creative

thinkers could strive (like the cafés of Paris during the Belle Époque). In contrast, the

little c perspective focuses on more subjective experiences of creativity accessible to

anyone in every day life, but again cross‐cutting the facets person (like a development

in the painting style of an amateur painter), process (like the reaching of a new devel‐

opmental stage by a child), person (like the traits common to handymen) and place

(like institutions that enable effective learning or problem solving). Sometimes, this

dichotomy is also referred to as H‐creativity (as in historical creativity, an idea new to

mankind) versus P‐creativity (as in psychological creativity, an idea new to a person),

where the former is of course a special case of the latter (Boden, 2004, p. 2).

An influential position has been taken by the cognitive scientist Margaret Boden,

who derives three different types of creativity from the three different meanings the

adjective ‘surprising’ has (which is one of the properties products are commonly ex‐

pected to exhibit, in order to be considered creative):

An idea may be surprising because it’s unfamiliar, or even unlikely—like
a hundred‐to‐one outsider winning the Derby. This sort of surprise goes
against statistics. The second sort of surprise is more interesting. An
unexpected idea may ‘fit’ into a style of thinking that you already had—
but you’re surprised because you hadn’t realized that this particular idea
was part of it. Maybe you’re even intrigued to find that an idea of this
general type fits into the familiar style. And the third sort of surprise is
more interesting still: this is the astonishment you feel on encounter‐
ing an apparently impossible idea. It just couldn’t have entered anyone’s
head, you feel—and yet it did.

(emphasis as in Boden, 2004, p. 3)
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The first type of surprise, according to Boden, is directed at results of combinational

creativity, which appears when familiar concepts and ideas are combined in a new

way. A natural example of this is analogy, like for instance seeing the atom as a solar

system, which has become known as the Rutherford‐Bohr model in atomic physics.

The second type of surprise arises from perceiving exploratory creativity, which ap‐

pears when new concepts and ideas are discovered by following established conven‐

tions of the domain or accepted stylistic rules. This can lead to masterful results that

surprise by the virtue that it is possible to create them by following conventions in

certain ways. An example for this could be George Eliot’s (1871) novel Middlemarch

that is considered one of the greatest works of literary realism, a genre whose con‐

ventions and central tenet (that objective reality can be perceived by the senses and

described in language) had been established early in the 19th century, long before the

publication of that novel. The third type of surprise, finally, is aroused by transforma‐

tional creativity, which appears when the rules and conventions that are accepted in

a field or genre are altered in a way that allows the creation of concepts that were pre‐

viously impossible. This can be exemplified by the rise of literary modernism, a genre

that overturned the previously accepted tenet of a perceivable objective reality and

replaced it with the idea that reality is merely a subjective construction by individu‐

als. This lead to the development of novel stylistic devices like unreliable narration

or the stream‐of‐consciousness, and allowed the creation of contentious novels like

James Joyce’s (1922) Ulysses.

The metaphor that serves as the foundation for these three types of creativity is that

of the conceptual space. Conceptual spaces are culture‐dependent “structured styles

of thought” (Boden, 2004, p. 4), which define how one idea or concept can be cre‐

ated from another idea. Based on such traversal rules certain regions of a conceptual

space are quickly explored by a culture and become common knowledge, resulting

in a network of (unsurprising) ideas. Consider the conceptual space of literary de‐

vices for expressing abstract themes, in which poets operate when they compose. In

such a space, one common style of thought would be to describe situations that are

connected to, or evocative of, a theme. For instance, to express longing one could

describe a lover’s reminiscence of a deceased partner of a lifetime, or portray an expa‐

triate recalling memories of his distant home. While strongly evocative, these ideas
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have been explored countless times and might be of limited interest to a poet, who

would forgo them because they have become trite, and rather look for novel ways

of expressing this theme. Creativity, as we can see, can be understood as search for

novel and valuable ideas in an appropriate conceptual space. Combinational creativ‐

ity, then, is the combination of ideas in a well explored region of the space, that by

themselves would either not be novel or valuable, but taken together result in a new

idea. Our poet, if she were combinationally inclined, could combine the two ideas

above and express longing by describing the memories of a person thinking about an

exiled lover. This results in a blend that equates exile with death and reverses the

focus from the one deported to the ones left behind, thus exposing uncommon sides

of two seemingly well‐known clichés. The second type, exploratory creativity, corre‐

sponds to following the established traversal rules of the conceptual space until they

end up in a previously unexplored region of the space. In our example, one candidate

situation that could be considered by the poet to evoke longing is that of a train leav‐

ing the station and speeding towards the horizon. While in modern times this, too,

might be considered trite, for someone during the age of the industrial revolution this

situation in itself would have been completely novel and its connection to longing un‐

explored. This demonstrates the ability of conceptual spaces to grow and incorporate

new ideas, resulting in an abundance of potential for exploratory creativity despite

the constant exploration performed by creative thinkers. The last type, transforma‐

tional creativity, is associated with the introduction of new traversal rules into an

existing space. This results in its transformation into a completely new space because

it allows the enmeshment of concepts that were impossible to reach previously. The

space of literary devices for expressing abstract themes, that we considered so far,

only allowed to “describe situations that are connected to, or evocative of, a theme”,

which, effectively, restricted it to a space of situations. A transformational insight for

a poet could be that longing can be evoked not only representationally, by descrip‐

tions of situations, but also by means of form—like grammar or syntax—which results

in the addition of a novel “style of thought” allowing the consideration of grammat‐

ical devices inducing longing in a reader, which fundamentally alters the nature of

ideas available in that conceptual space and allows the fortunate poet to discover the

value of overly long parenthetical sentences (like the present) in triggering a reader’s
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longing for conclusion by a delay of the use of punctuation. In contrast to exploratory

creativity, the transformational type is not a search over concepts but a search over

conceptual spaces; in particular for spaces that allow to find previously inaccessible

ideas.

1.3.2 COMPUTATIONAL FORAYS INTO CREATIVITY

Instances of H‐creativity are widely revered by mankind and humans often engage in

P‐creativity, so it is no wonder that the phenomenon has sparked ample interest in

AI. This has led to varied experimental research, typically through the engineering of

systems that are capable of solving tasks that require creativity in humans. Indeed,

machines have repeatedly demonstrated their ability to generate creative outputs. For

instance, Google Translate10 can deliver high‐quality translations of texts, that were

not used during its training, into many different languages (an act that would be con‐

sidered P‐creative in humans), and in 2016 DeepMind’s Alpha Go beat the human

world champion in a five‐game match of Go (something that could well be consid‐

ered H‐creative in itself, but especially so because Alpha Go’s style of playing has been

described as surprising and unconventional11). However, in the general public there

still remains a wide spread conviction that computers cannot be genuinely creative.

Boden presents some of the arguments made in support of this position:

For instance, it’s the programmer’s creativity that’s at work here, not the
machine’s. The machine isn’t conscious, and has no desires, preferences
or values, so it can’t appreciate or judge what it’s doing. A work of art
is an expression of human experience and/or a communication between
human beings, so machines simply don’t count.

(Boden, 2004, p. 7)

AI researcher Simon Colton (2008) experienced similar reactions to his CC systems

and summarized them into three avenues of criticism: skill, appreciation and imag‐

ination, from which he inferred that in order to appear creative a system needs to

“exhibit behaviour which could be described as skillful, appreciative and imaginative”

10https://translate.google.com/
11For instance, European Go champion Fan Hui commented on the decisive move 37 of

game two, made by the system: “I’ve never seen a human play this move. So beautiful.” (https:
//www.theatlantic.com/technology/archive/2016/03/the‐invisible‐opponent/475611/)
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(a notion he called the creative tripod) although without being able to outline which

concrete properties could make a behavior qualify as one of these three. Another

set of objections was described by AI researcher Dan Ventura (2019), after analyzing

three surveys about the possibility of CC conducted among different audiences. His

conclusion was that a system needs to demonstrate intentionality and autonomy in

order to be judged creative. These are all notoriously slippery concepts, but what

they imply is that in order to earn the label creative, machines need to pursue a goal

or objective when they generate outputs, that they need the ability to evaluate to what

extent their output satisfies that goal, that they need to have some measure of free‐

dom in the goals they pursue and the means they select to obtain them, and that all

of this needs to be done well. It seems that when it comes to creativity, algorithms

are held to a somewhat higher standard than human individuals, in whom many of

these properties are simply presupposed.

In fact, it should not come as a surprise that it is hard to convince the public that

a machine could be creative, given that there exists no accepted definition of what

constitutes creativity in humans. This led the field to two conclusions. The first is

that a focus on the product aspect of creativity in CC research is simply not enough:

the mere generation of (perhaps even large numbers of high quality) outputs for the

programmer to curate and the audience to judge does not plausibly warrant the use

of the label creative. Instead, generation needs to be coupled and influenced by an

awareness of the quality, novelty, and utility of the generated output. The second

conclusion is that CC cannot just be a scientific and engineering discipline, but must

also be a philosophical one, because it targets a phenomenon that so far cannot be

grasped only by empirical means. This resulted in the adoption of the following self‐

conception by the field: “The philosophy, science and engineering of computational

systems which, by taking on particular responsibilities, exhibit behaviours that un‐

biased observers would deem to be creative.” (Colton & Wiggins, 2012) It should be

noted, that this manifesto does not explicitly mention the study or implementation

of human means for creativity. While a certain amount of overlap can be expected

in any case, in order for the “exhibited behaviors” to be recognizable as creative by

“unbiased observers”, this leaves the door open for processes that are not inspired

by human creativity. For this reason, AI researcher Rafel Pérez y Pérez (2018) sug‐
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gested the use of a computational creativity continuum in order to judge whether and

how different CC systems can be compared. On the one side of the continuum is the

cognitive‐social approach, whose adherents focus on the study of human creativity

using technology from AI to implement and test models of creativity. They typically

judge the success of their approaches not by the quality of the artefacts generated

by their systems, but by how well certain phenomena can be reproduced that have

been observed in naturally creative situations. On the other side of the continuum is

the engineering‐mathematical approach, which applies when existing computational

optimization or problem‐solving techniques are adapted and transferred to creative

domains. Here, success is judged based more on the merits of the generated outputs

and the projectability of certain adjectives on the process by which they were gener‐

ated. As it is natural to continua, most actual systems do not fall squarely onto one

end or the other, but are best located somewhere in between.

1.3.3 IMPORTANT RESPONSIBILITIES FOR CREATIVE APPEARANCES

CC systems need to be more than sophisticated tools like Adobe Pho‐

toshop, which can produce surprising effects but have no intention‐

ality or autonomy. In order to do so, according to the above mani‐

festo, CC systems need to take on particular ‘creative’ responsibilities.

Figure 1.4: Interrelation of creative responsibilities in a
CC system. The responsibilities, represented as rectangles,
are: framing, aesthetic evaluation, concept generation and

expression of concept.

Under the acronym

FACE, Colton et al. (2011)

have suggested four main types

of responsibilities that play a

role in creative acts and thus

should be implemented in a CC

system. These responsibilities

are called: framing, aesthetic

evaluation, concept generation

and expression of concept.

Their interrelation is schemat‐

ically depicted in Fig. 1.4, and
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will be outlined now.

Expression of concept, in this terminology, means the generation of a candidate

output based on an algorithm, which can potentially take inputs and is parametriz‐

able, such that the output can be varied by the system. As I explained above, this can

be seen as a search in a conceptual space, but not yet quite seems to fit the moniker

exploratory creativity because the system has no way of determining whether it found

a satisfying concept.

Aesthetic evaluation can be understood as the application of a function that takes

as input the candidate output of an algorithm responsible for expression of concept,

and computes a numerical value representing its appropriateness. The candidate is

considered a valid output only if it passes a certain threshold. Appropriateness needs

to be determined depending on the domain of the system, but in general it should

be geared towards assessing the properties that we above described as important for

creative products: quality, novelty, and utility. The interaction between E and A can

be understood as a mere generate‐and‐test procedure that filters out bad candidates,

but it could also be a more complex iterative process where E generates more and more

elaborate drafts which it revises and expands based on feedback from A. Both these

approaches, however, would be regarded instances of exploratory creativity according

to Boden.

Concept generation stands for the ability to create executable algorithms, or at least

make changes to existing algorithms that go beyond mere parameter manipulation.

In particular, this means the autonomous ability to change how the system performs

aesthetic evaluation or concept expression, for instance based on feedback that the

system receives from its environment. This expands the system’s creative responsi‐

bilities to a meta level, where it is also responsible for autonomously adopting the

ways it is creative, a capability that is central in order to counter the line of criticism

that sees CC systems only as expressions of a human programmers creativity. Since

changing the way candidates are generated and evaluated alters what types of out‐

puts the system can generate, this corresponds to a modification of the traversal rules

in a concept space in Boden’s terminology, and can be considered transformational

creativity. It is not exactly clear, whether learning12 can be considered an approach

12Here, I refer to learning in the Good Old Fashioned AI (GOFAI) sense, which means
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to concept generation or not. On the one hand, expanding a systems knowledge base

does result in a fundamental change to what types of outputs can be generated, and if

previously generated outputs by the system are taken into account by the learning al‐

gorithm it does operate on a meta level. On the other hand, GOFAI learning does not

change the procedures that are employed in generation and evaluation, so it does not

really fit the description of concept generation. In any case, learning based on feed‐

back from the environment can go a long way in enhancing the system’s appearance

of creativity.

Framing is the ability to generate natural language information that discloses de‐

tails about some parts of the creative act. These can include, but is not limited to, the

intention that initially guided the generation, details about decisions made during

the generation, properties of the output that lead to a positive evaluation, or how any

of this relates to previous outputs. This becomes necessary because without fram‐

ing information the workings of a CC system remain opaque to the audience, who

only can consume its outputs and might as well assume these to be the result of a

random process instead of an algorithm that takes up creative responsibilities. In

fact, human artists often come up with framing information (Charnley et al., 2012),

which is another reason to regard this as a valid creative responsibility. An interesting

consideration is that with human artists, it is not always clear whether such framing

information contains valid descriptions of their creative process (which might be par‐

tially subconscious), or intentional fabrications to project a certain persona. Equally,

it would be possible to enable a CC system to generate fake framing information that

enhances its appearance of creativity. However, the ethical side of such an approach

would have to be carefully reflected.

Apart from a useful way for comparing CC systems that operate in different do‐

mains, the FACE framework can also act as a guideline for the development of such

systems. Each aspiring creative system starts out with some capabilities, while re‐

sponsibilities outside these capabilities are usually taken up by the developer. For in‐

stance, an early story composition system might generate murder mysteries, but the

expanding the system’s knowledge base, as opposed to learning in the machine learning sense,
which, in its barest essence, means changing parameter values. This distinction is important
to make, since changes of parameter values clearly correspond to responsibility E, expression
of concept.
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developer would have to carefully curate those that are coherent in order to publish

a paper in a prestigious journal. A more advanced system might be capable of gener‐

ating the stories and then discarding those that are nonsensical, but if the developer

were now inclined to have a folktale generated instead, they would have to implement

additional domain knowledge and different plot structures. The suggested develop‐

mental principle is referred to as climbing themetamountain, and calls for developers

to carefully observe which responsibilities they take up in conjunction with their CC

system, and to strive to enable the system to perform these tasks on its own.

1.4 COMPUTATIONAL STORY COMPOSITION

There exists an abundance of computational systems that generate narratives13, but

little theory that could unify these works into a coherent field. A first, very general,

distinction can be made based on the field from which a system stems: Story composi‐

tion systems from computational creativity focus on enabling a computer to generate

any number of narratives, as long as these narratives are ‘good’, and by that merit al‐

low to view the composing system as creative. Work of this type is presented at the

annual International Conference for Computational Creativity. Composition systems

from interactive digital storytelling, in contrast, focus on telling one particular nar‐

rative while allowing readers as much meaningful influence over it as possible. The

two main venues for work of this type are the annual International Conference on In‐

teractive Digital Storytelling and the annual conference on Artificial Intelligence and

Interactive Digital Entertainment. Unfortunately, collaborations between these two

fields are rare. Since my focus is on the interaction of concepts from NT and their

implementation using AI, I do not regard this distinction a particularly important

factor, and think that both fields could benefit by an increased exchange over their

shared interest: how narrative can be represented computationally. When looking at

computational representations of narrative, a more interesting distinction between

systems can be derived from the way they handle the trade‐offs necessary when op‐

13The latest attempt to collect the existing systems was published by Kybartas and Bidarra
(2017) and is based on a monumental review of more than 100 references. By 2020, it lacks
several new systems, and historical research by James Ryan also uncovered several older sys‐
tems that are not included in this review. This is by no means a shortcoming on the side of
the authors, but rather a testament to the Sisyphean nature of the task.
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erationalizing NT concepts. One particularly influential distinction is that between

strong story systems and strong autonomy systems (see e.g. Riedl & Bulitko, 2013),

which should be viewed as a continuum between these two poles.

As a last general remark before exploring this continuum, I want to point out that

most (if not all) CSC systems borrow freely from NT in order to find representational

formalisms for narratives (see e.g. Cavazza & Pizzi, 2006), but, to the best of my

knowledge, none of the work on generative models was intended to contribute back to

NT, or explore the nature of narrative per se. As I argued in Sec. 1.1 on the motivation of

my thesis, I view this as a missed opportunity, and attempt to explore the feasibility of

using generative models to explore the dynamic properties of narratological theories.

1.4.1 STRONG AUTONOMY SYSTEMS

Strong autonomy systems can be seen as grounded in an internal perspective on nar‐

ratives, and put their focus on modeling fictional characters as agents that have vary‐

ing intentions, stable traits and values, and an internal state that is affected by their

environment. These characters act autonomously in order to realize their intentions,

and plot emerges from their interactions with each other and the story world. For this

reason, this paradigm is also referred to as emergent narrative systems. The strength

of this approach is that it results in believable characters, whose actions appear to be

plausible and goal directed.

A major drawback, however, is that such a lack of global guiding principles usually

results in plots that lack structure and coherence, simply because plausible charac‐

ter goals rarely coincide with authorial goals from the external perspective: Authors,

in general, are interested in a thickening network of conflicts during the beginning

phase, and their gradual resolution towards the end of a narrative14, whereas char‐

acters are interested in resolving conflicts as quickly and easily as possible, with no

regards for tension, symmetry, or the elegance of the resulting interactions. Since

character believability and plot coherence are both important properties for a narra‐

14This is, of course, a generalization and oversimplification of dramatic structure, and ex‐
ceptions can be easily found. Most notably, all open‐ended plots leave some conflicts unre‐
solved and thus do not follow the described recipe. However, I would claim that is a form
of baseline structure that readers have come to expect, and deviation from which results in
heighten readerly attention or surprise.
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tive, but are seemingly at odds with each other here, this can be called the emergent

narrative paradox.15 In his dissertation, James J. Ryan (2018, p. 12) argues that “emer‐

gent narrative actually works more like nonfiction than fiction”. This can be observed

quite well in the output of early strong autonomy systems like Meehan’s (1977) Tale‐

Spin, which generates fable‐like animal stories. One (in)famous instance goes:

John Bear is somewhat hungry. John Bear wants to get some berries.
John Bear wants to get near the blueberries. John Bear walks from a cave
entrance to the bush by going through a pass through a valley through a
meadow. John Bear takes the blueberries. John Bear eats the blueberries.
The blueberries are gone. John Bear is not very hungry.

(Gervás, 2009, p. 53)

Ignoring the obvious problems with regard to prose, this text also seems to hardly

qualify as a narrative due to a lack of plot: there is no structure, no tension and no

point. In fact, it seems more like a chronicle of events than like a story that would

have the potential to be told.

One solution the proponents of the strong autonomy camp came up with is the

introduction of a specific module—variously called dramamanager or director—that

analyzes the events that are emerging from character interactions and can exert some

sort of influences on them in order to steer the interactions in a narratively more

productive direction. In the Oz‐project system (Kelso et al., 1993) and the Façade

system (Mateas & Stern, 2002) the drama manager acts prescriptively, in that it can

provide characters with new goals that are likely to result in behaviors that come

together in a plot. In the Virtual Storyteller system (Theune et al., 2003) the drama

manager is limited to acting proscriptive, in that characters choose their goals on

their own but are required to get the drama manager’s permission for their actions so

that it can prevent events that would be detrimental to plot. The additional guidance,

naturally, comes at the cost of a decrease in character autonomy, and depending on its

execution moves systems further towards the strong story side along the continuum.16

15The emergent narrative paradigm was originally suggested as a solution to another para‐
dox in interactive fiction by Aylett (2000). This so‐called “narrative paradox” lies in the in‐
commensurateness of scripted characters (that are required for a coherent plot) with user
autonomy (that is required to make a narrative truly interactive). It thus seems appropri‐
ate to me to refer to the resurgence of this problem in its intended solution as the emergent
narrative paradox.

16In particular, presenting Mateas and Stern’s (2002) Façade system under the caption
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In contrast, J. Ryan (2018) suggests in his dissertation that the solution is not to

find a balance between emergence and guiding interventions, but instead to double

down on the autonomy of story world and characters. Since meaningful structures

are not very likely to emerge from the simulated interactions of characters, he argues,

the simulation needs to be more complex in order to provide enough interactions

so that some of them will form a plot by sheer chance. The more characters inter‐

act, the more dynamics are guiding these interactions, and the longer a simulation

runs, the more potential there is to detect interesting configurations of events in the

chronicle of everything that happened. Hence, an emergentist system must first run

complex simulations, and then sift through the abundance of generated material to

identify configurations that fit a meaningful structure. He summarizes his position

in the tagline “overgenerate and curate” (J. Ryan, 2018, p. 227), and accordingly calls

his approach curationist emergent narrative. This is also the reason why he prefers to

see emergent narratives as non‐fiction and computational storytelling more as histo‐

riography in the sense of Hayden White (1981).

As will become apparent in the coming chapters, the story composition system that

I developed in my project, too, falls into the category of strong autonomy systems. In

my conclusions presented in Chap. 6 I will return to Ryan’s position, in the hope to

demonstrate that emergent narrative systems can also be grounded in NT, and still

address the emergent narrative paradox. In order to have a catchy label to go along

with Ryan’s, and also provide a cliffhanger that keeps readers engaged, I will here only

dub the approach developed in my thesis creationist emergent narrative, and flesh the

name out in the concluding chapter.

1.4.2 STRONG STORY SYSTEMS

Strong story systems commonly model the events and the plot that is comprised from

them. They focus on artefactual goals like maintaining coherence, a strong sense of

organization and the potential for an emergence of secondary meaning. That is, con‐

siderations important to the external perspective on narrative. For this reason, char‐

of strong autonomy makes me feel uneasy since the drama manager provides characters
with whole beats to play out. However, the authors themselves refer to their characters as
“behavior‐based autonomous agents”, which probably means that Façade should be located
around the center of the continuum.
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acters are primarily understood as second‐order entities: necessary effectors of plot

events that have no dynamic internal states that might be causally responsible for

their actions. This is also the major drawback of this approach because it is hard to

project believable character behavior without genuinely modeling notions like inten‐

tion or personality.

One way to ensure the coherence of a plot is to rely on a formal grammar, that

uses production rules to describe how events can proceed from one another, or how

higher order plot functions can be instantiated by lower order functions and events.

A recent example is Gervás’s (2016) Propper system, that implements a story grammar

of Russian folktales as described by the formalist Vladimir Propp (1968). Plots, in this

formalism, are described as a succession of interdependent character functions (like

“villany” or “villain punished”), that can appear in a clearly defined order and that

offer roles (like “hero” or “villain”) which stand in for characters.

Another approach is to rely on an explicit modeling of the story world, which has

a predefined start state and one or several desirable end states (which are desirable

because they achieve some authorial goal). Plot, then, can be seen as a sequence

of state transitions that can transform the start state into an end state, where each

transition is effectively an action that is executed by a character. The computation of

such valid transition sequences can be achieved using classical reasoning techniques

like forward chaining or backward chaining. One particular line of research is espe‐

cially interesting here because it attempts to address the main drawback of strong

story systems. Riedl’s (2004) planing system IPOCL uses backward chaining to come

up with an action sequence that transforms the start state into the goal state, but

with the additional constraint that an action can be only assigned to a character if

it also works towards achieving an intention that this character has. Intentions can

be assigned to characters arbitrarily by the planer, but once assigned have to be re‐

spected for the rest of the planning branch. This contributes to an appearance of

goal directed behavior. A recent extension of this paradigm was introduced by Ba‐

hamon’s (2016) system Mask, which was designed to portray character personality

along the trait agreeableness. Whenever several actions exist that the planning sys‐

tem can choose from to effect a desired transformation, these actions are evaluated as

agreeable or non‐agreeable by checking whether they interfere with other characters’
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intentions or not. If the evaluation shows that there is a choice available between

actions that portray different expressions of this traits, then the system picks one

in accordance with the executing character’s personality (or assigns the character a

personality by choosing randomly, if it previously had none). This allows Mask to in‐

crease character believability by creating an impression of consistently ‘good’ or ‘bad’

characters, and demonstrates that strong story approaches can be constrained in a

way that also allows a measure of character autonomy. It is particularly heartening,

that the empirical evaluation reported in Bahamon’s (2016) dissertation shows that

such an action selection based on underlying character traits can result in plots that

convey the correct impression of this underlying trait to an audience.

In Chap. 3 I will report how the story composition system that I developed in my

project models characters’ personality along the traits openness to experience, con‐

scientiousness, extraversion, agreeableness and neuroticism. Since my approach, as

mentioned above, is located in the strong autonomy camp, the way this is realized is

markedly different from the one reported here since it cannot rely on the detection

of choice‐situations by a macro planer. Instead, personality is conceived as one of

the relevant character phenomena, which interacts with other such phenomena, like

emotions or moods, and results in an dynamic internal state that affects how charac‐

ters reason and act. The empirical evaluation I will report in that chapter is based on

the one conducted on Mask, and I am grateful for this inspiration, as well as the op‐

portunity to demonstrate how very different intellectual positions and technological

means can be used to computationally model the same narratological phenomenon.

1.4.3 COGNITIVE APPROACHES

The distinction between strong autonomy and strong story is mainly based on tech‐

nological considerations and the trade‐offs that have to be made when computation‐

ally modeling narrative. However, it seems that also human authors are privy to

such problems, at least anecdotally. In an interview with the British newspaper The

Guardian, the novelist George R.R. Martin presented his trade as having two basic

dispositions:

I think there are two types of writers, the architects and the gardeners.
[…] The architects plan everything ahead of time, like an architect build‐
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ing a house. They know how many rooms are going to be in the house,
what kind of roof they’re going to have, where the wires are going to run,
what kind of plumbing there’s going to be. They have the whole thing
designed and blueprinted out before they even nail the first board up.
The gardeners dig a hole, drop in a seed and water it. They kind of know
what seed it is, they know if they planted a fantasy seed or mystery seed
or whatever. But as the plant comes up and they water it, they don’t
know how many branches it’s going to have, they find out as it grows.

(Flood, 2011)

This description so acutely echoes the distinction I presented before that I would

not have been surprised to find it in a scientific publication to the ICCC instead of The

Guardian. It brings to the fore the idea, that perhaps some difficulties encountered

by the field are not only due to technological limitations, but also to the cognitive

affordances of the task of composing narrative. This perspective is what lies behind

a third type of approach to CSC, which focuses on modeling the cognitive processes

that are assumed to implement creative writing in human authors. Since also human

authors, by necessity, have to think about plot coherence and character believability,

this approach is not completely detached from the distinction discussed above. They

should rather be seen as cross‐cutting concerns.

One of the first notable systems to go this way is S. R. Turner’s (1993) Minstrel,

which explores case‐based reasoning. It operates in two stages: a (first) planning stage

that operates on authorial goals, which can be either decomposed into sub‐goals or

passed on to the second stage that is focused on problem solving. Problem solving is

performed by querying an episodic‐memory like knowledge base that contains frag‐

ments from which previous stories were built. If no fragment fitting precisely to the

query can be found, the query is made successively more and more abstract through

a chain of transformations, until a fitting fragment can be identified, which is then

adapted back to the present situation by applying the reversed chain of transforma‐

tions. The creative potential of the Minstrel system lies in the ability of these transfor‐

mations to identify not easily recognizable matches, which correspond to unexpected

solutions to authorial problems.

Another approach is taken by Pérez y Pérez’s (1999) system MEXICA, which imple‐

ments a psychological model of creative writing in which phases of engagement—
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where material is generated in order to satisfy authorial constraints—interchange

with phases of reflection—where the generated content is analyzed and new con‐

straints are formulated—in a cycle. Plot is represented as a sequence of networks of

emotional links between characters, from which the tension arc of the plot can be

computed, and the actions that were taken to transform one network of the sequence

into the next one. The system has a library of known narratives represented in this

format, as well as an ideal tension arc that plots should follow. Starting from a user‐

selected action during engagement, MEXICA first expands the plot by searching its

library for actions that were taken in the same (or, if none are to be found, in 50%

similar) networks and applying them to the present state of the plot. After repeating

this step for several times, or running out of options, the system switches into reflec‐

tion mode, where it evaluates whether all the preconditions for the selected actions

were met, whether the plot follows a desirable tension arc, and how similar it is to

already known narratives. From this evaluation, it can add individual actions at any

step of the plot in order to satisfy any open preconditions, and issue guidelines for the

subsequent engagement step, which affect what actions are preferred when querying

the knowledge base.

1.5 READER’S GUIDE

To decide on the structure of a thesis at the intersection of NT and CSC is not a

straightforward task. As I discussed when presenting my RQ 3 in Sec. 1.1, research

methodologies in AI and NT differ, and both methodologies have their own benefits

and drawbacks which are rooted in the different challenges that are posed by the two

disciplines. In particular, the linear succession of theory‐implementation‐evaluation

of AI research provides the structure that is necessary to concretize abstract concepts

into executable code, and then verify that the code indeed addresses the original

problem. However, it is hard to transport this methodology into the narratologi‐

cal domain, which does not formulate quantifiable metrics of success and operates

in concepts that are specified at a high level of abstraction. On the other hand, the

hermeneutically grounded iterative interaction of theory formation and text analy‐

sis of NT is well suited for the development of concepts from a complex and diverse
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subject matter like narrative, but has no place for the generative type of models that I

am interested in. This makes it clear why, for the present thesis, it is not sufficient to

simply follow one of the two research styles. Instead, I will now outline an approach

I call generative modeling, which attempts to merge the styles in a way that solves

the above drawbacks, and that I adopted as the guideline for my work as well as the

structure of my thesis. This means that, in essence, my thesis itself is intended to be

an answer to RQ 3, by way of demonstration that generative modeling is a suitable

approach for the exchange between NT and CSC.

The proposed generative modeling methodology is schematically represented in

Fig. 1.5. The starting point is a narrative theory, that is either personally developed or

Figure 1.5: The proposed generative modeling methodology for NT and CSC.

adopted from prior work. In both cases, the theory can be assumed to be grounded

in a set of canonical fictional works. Then, a first pass is made at implementing that

theory in a generative computational model, while concretizing underspecified con‐

cepts as one goes along. When the implementation is complete, the model is used in

an attempt to reproduce a set of canonical works. The outputs can then be compared

to the original works, and if differences between them become apparent, insights can

be drawn on the shortcomings of the employed theory and its implementation. This

concludes one cycle of generative modeling. In practice, as I mentioned above, con‐

cepts from NT are not likely to yield easily to implementation, so that multiple cycles

will become necessary, in which the implementation and the theory are expanded un‐

til the generated outputs sufficiently resemble their canonical counterparts. At this

stage, additional canonical works can be added to the corpus, and the process can be

continued.

The proposed methodology has several benefits: First, it circumvents the problem

of missing numerical evaluation criteria in NT, by instead relying on a comparison
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of generated artefact to existing ground truth narratives. Second, it proposes a way

for drawing narratological insights from generation instead of analysis. It does so by

relying on the assumption that if the first principles posited by a narratological the‐

ory are sufficient to describe the structure of a narrative, then the narrative should

be reproducible from these first principles. If, in practice, such a reproduction does

not succeed, then the first principles must be insufficient and the theory needs to

be expanded in order to account for the problems.17 Third, the methodology retains

the hermeneutical approach of an iterative revision of the theory based on exposure

to the material, which has been demonstrated to work well in the literary domain.

Finally, the generative computational model that has been developed to implement a

narrative theory can not only be used to recreate existing works, but also to generate

new works by exploring alternative parameter settings. It thus can be employed as a

part of a creative CSC algorithm, especially taking over responsibilities for the expres‐

sion of concepts and the aesthetic evaluation of candidates (see Fig. 1.6 for a visual

representation of this overlap between NT and CC).

Figure 1.6: A schematic representing how generative modeling brings together NT and CC.
While NT contributes an approach to improving computational models of narrative, CC assists

in searching for unconventional outputs that can be generated by this models.

As I pointed out above, the rest of the present thesis is organized based on this

methodology. Each chapter represents one cycle of generative modeling. This means

17A complicating factor, here, is that a failure to reproduce a narrative might not be caused
by the narrative theory in question but by its implementation. Consequently, I would not
claim that one cycle of generative modeling is always enough to demonstrate the shortcomings
of a theory. Instead, multiple cycles might be necessary to improve the computational model,
until the problems cannot be traced to technical details of the implementation anymore.
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that each chapter will be divided in the parts: theory, implementation and case study,

where the case study will lead to an evaluation of that cycle. In Chapter 2, I will intro‐

duce Marie‐Laure Ryan’s possible worlds theory of plot, implement it using a multi‐

agent simulation system, but ultimately fail to reproduce the plot of a popular folktale

using that implementation. Based on this result, in Chapter 3, I will propose an exten‐

sion of Ryan’s theory based on Alan Palmer’s concept of fictional minds, which I will

implement using an affective reasoning architecture, and demonstrate that the re‐

sulting implementation can reproduce the plot of the folktale from my case study. In

order to surpass mere generation, I will continue in Chapter 4 by introducing Ryan’s

theory of tellability as a measure of plot quality, implement it using graph analysis al‐

gorithms and evaluate it based on a variety of alternative versions of the folktale from

my case study. In Chapter 5, I will have to part ways with NT, in order to demonstrate

that the benefits of my approach are not limited to the narratological domain, but that

the resulting models can also be used for the generation of plots in a CSC system. For

this, I will introduce Genetic Algorithms as a means to explore the plot space set up by

the models developed so far. Chapter 6 will conclude my thesis by summarizing the

final system, presenting the contributions of my work to the two domains it bridges,

and by that means attempt to address the three research questions I proposed in the

beginning of this chapter.

Before commencing with the next chapter, and the cycle that it constitutes, I would

like to offer a conjecture and make a request. I can imagine that, as a reader, it might

feel unsatisfying to have to read through Chapter 2 while already knowing that it is

bound to fail, indeed, to repeatedly have to mentally switch between theory, imple‐

mentation and evaluation without first knowing the complete picture. My request is

this: to read this thesis not as the manual to a ready‐made and well‐formed (concep‐

tual) gizmo, but rather as the narrative of an intellectual journey, that is, to curiously

go along with the flow and judge the experience at the end, when the overall shape

has revealed itself.
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I consider that aman’s brain originally is like a little

empty attic […]. Now the skillful workman is very

careful indeed as to what he takes into his brain‐

attic. He will have nothing but the tools which may

help him in doing his work, but of these he has a

large assortment […].

Arthur Conan Doyle, ‘A Study in Scarlet’ 2
The Narrative System

WHEN SETTING OUT TO enable the computational composition of narratives, an im‐

portant concern is to understand what a narrative is. In a computational setting this

requires a deconstruction of this complex concept into its constituent phenomena

and their interactions. Such a reconstruction has to be rigorous, as any phenomenon

missing in the analysis cannot be represented by the computational model and hence

will be either completely missing in the generated narratives, or worse, will emerge

unintended from an interaction of the represented parts and each individual reading

process.

A classical example for such formally unwarranted emergence has been docu‐

mented by Heider and Simmel (1944), who presented participants with a short cine‐

matic sequence depicting “three geometrical figures […] moving in various directions

and at various speeds” (p. 244, for one frame see Fig. 2.1). When asked to report

what they saw, all but one participant described the scene in terms of social, ani‐

mated beings partaking in anthropomorphic interactions like fights or love‐making,

that is, they described it using a narrative form. What is more, when prompted,
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participants even ascribed the geometrical shapes with anthropomorphic traits like

“bad‐tempered”, “a fighter” or “female” just based on their shape, size and movement,

demonstrating the mind’s immense propensity for superimposing a narrative struc‐

ture on its raw perception stream. Reports like these led psychologist Jerome Bruner

to go as far as elevating narrativized thinking1 to one of two fundamental modes of

cognitive functioning (Bruner, 1986, Chapter 2).

Figure 2.1: A frame from the cine-
matic sequence Fritz Heider and Mar-
ianne Simmel presented to their par-
ticipants. The triangles and the circle
are commonly perceived as characters,
while the broken square is seen as a
house. Figure from Heider and Sim-

mel (1944).

At first sight, this willingness to find narratives

in chaos might seem like an alleviating factor

for computational systems aiming at generating

them because it implies that less strict standards

are necessary for their outputs to be recognized

as such. However, even if unrepresented phe‐

nomena can emerge during the reading of a nar‐

rative, their effect can by no means be accounted

for, controlled or affected by a generating system.

Since the aim of a CSC system is not to just cre‐

ate any narrative but to create a good narrative,

while at the same time conveying the impression

of intentionality (for the rationale behind this, see Section 1.3), such arbitrariness is

not conducive.

A second constraint on the deconstruction of narrative into phenomena is the re‐

quired low level of abstraction, since both the structure and the dynamic properties

of a phenomenon need to be implemented in computer code. All underspecification

or recourse to higher level concepts result in ambiguities which have to be resolved

ad‐hoc by the system designer in order to even just get a first result from the system.

While such gaps are unavoidable, their number and size affect how complicated, in

the case of a failure, it will be to infer the responsible ad‐hoc solution from an un‐

desired output (i.e. an output that does not resemble a natural narrative). Thus, the

deconstruction of choice has an immense impact on the performance of the resulting

1Bruner describes the narrative mode as interpreting events via “human or human‐like
intention and action and the vicissitudes and consequences that mark their course” (Bruner,
1986, p. 13) and opposes it with the “logico‐scientific” mode.
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system. As I wrote in Sec. 1.2, no single theory currently holds sway over the discipline

of NT. In order to satisfy the constraints outlined above, for the present purpose a the‐

ory is required that puts its primary focus on plot in fictional narratives, describes its

dynamics and operates as much as possible using concepts that are computationally

penetrable. Such a theory is outlined in M.‐L. Ryan (1991), which develops and ex‐

tends the Possible Worlds Approach to Narrative (sometimes also grouped under the

label Text‐World Approach).

2.1 THE POSSIBLE WORLDS APPROACH

The concept of possible worlds was initial developed by the analytic school of phi‐

losophy to enable a formal‐semantic modeling of counterfactual statements as well

as statements modalized by possibility and necessity operators. This model was im‐

ported to and adapted for narrative theory in the 1970s by scholars like Umberto Eco,

Thomas Pavel and Lubomir Dolezel (M.‐L. Ryan, 2013). The Routledge Encyclopedia

of Narrative Theory states:

The basis of the theory is the set‐theoretical idea that reality—the sum
of the imaginable—is a universe composed of a plurality of distinct el‐
ements. This universe is hierarchically structured by the opposition of
one well‐designated element, which functions as the center of the sys‐
tem, to all the other members of the set. […] The central element is com‐
monly interpreted as ‘the actual world’ [AW], and the satellites as merely
possible worlds [PW]. For a world to be possible it must be linked to the
center by a so‐called ‘accessibility relation’.

(Herman et al., 2005, p. 446)

These properties of actuality and accessibility have sparked ample philosophical

debate (see e.g. Rescher (1979) versus Lewis (1973)). For the purpose of this thesis it

will suffice to assume that AW is the world in which reader and author are located,

while accessibility is given for any possible world that respects the logical principles

of non‐contradiction and excluded middle.2

2This is a very lax notion of accessibility, since it essentially only excludes possible worlds
that are inconsistent or incomplete. In a literary context, however, already this might be too
strict since it quite often would exclude the PWs of valid literary genre like surrealist, absurd
or post‐modern fiction.
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2.1.1 NARRATIVE SEMANTICS

To accommodate narrative semantics, the original model had to be extended. While

readers and author are located in AW, a specific PW is introduced to describe the on‐

tological domain which is defined by the propositions that are presented as true by the

narrator. This world is called Textual ActualWorld (TAW) and is central for analysing

narrative fiction. All statements in a fictional narrative are per default assumed to

refer to entities and situations in the TAW: “In fiction […] speaker, hearer, and speech

act are relocated within the created world. Nothing indicates a foreign perspective

on the sphere focused upon, nothing records its birth in a mental event” (M.‐L. Ryan,

1991, p. 22). This pragmatic contract that Ryan postulates to exist during the con‐

sumption of fiction is called fictional recentering. Thus, Joyce’s ingenious chapter four

opening in Ulysses, “Mr. Leopold Bloom ate with relish the inner organs of beasts and

fowls” (Joyce, 1922), needs to be taken to establish the existence of a character in the

TAW set up by the novel, while at the same time assigning the character distinct

personality traits. It is fictional recentering that precludes an interpretation of this

snippet as bestowing upon the reader truths about an actual Mr. Bloom of Dublin,

and thus what distinguishes fiction from false statements or lies. In terms of the pos‐

sible world semantics described by the Routledge Encyclopedia this means that “for

the duration of our immersion in a work of fiction, the realm of possibilities is […]

recentered around the sphere which the narrator presents as the actual world” (M.‐L.

Ryan, 1991, p. 22). This means that the TAW is a special PW because it acts as the tex‐

tual central world which—like the AW—can spawn its own textual possible worlds to

describe that which is textually not actual, but possible. Note, that fictional recenter‐

ing is not a symmetrical operation. For instance Philip K. Dick’s (1962) TheMan in the

High Castle is an alternative history that describes a TAW where the Axis forces have

won the Second World War. In this world, a book exists that describes a (textual)

alternative history where the Axis forces lost the war. However, no matter the seem‐

ing reversal of these ’alternative‐izing’ changes that led to the alternative alternative

history, the TAW of this fictional book can no more be considered AW then the TAW

of a historical fiction.

Since, by necessity, any text is finite, no narrative fiction can ever explicitly spec‐
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ify all properties of its TAW. Yet still, readers are often found capable of answering

questions about such gaps. Recall from Sec. 1.2.2, that, asked about the number of

legs in command of fictional Mr. Bloom, any reader will insist to know the answer for

two—despite the fact that the truth value of this proposition is never mentioned by

the text. Ryan explains this situation with another central tenet of the phenomenol‐

ogy of reading, which she dubs the Principle of Minimal Departure. This principle

states that gaps in TAW will be filled by readers by tacitly importing knowledge from

AW, unless such an import is explicitly countermanded by the text, intertextual con‐

ventions, or genre conventions (M.‐L. Ryan, 1991, p. 51). Whether this implies that

TAWs are ontologically complete—that is that all possible logical propositions about

a TAW are either true or false—has been a topic of debate. As we have seen, a ques‐

tion often used to illustrate this situation is how many children Lady Macbeth had

in Shakespeare’s (1623) near eponymous tragedy. Since an answer to this question

cannot be provided by AW‐based common sense logic it remains an ontological gap

even in the face of the Principle of Minimal Departure. While some argue that such

gaps are of relevance for a texts aesthetics, like e.g. its “texture” (Doležel, 1998), oth‐

ers propose that for each possible reification of a gap simply a distinct TAW should

be postulated (M.‐L. Ryan, 1991). This debate is mentioned here because of its rele‐

vance for the theory, however, for generative purposes like the present it can be safely

left unresolved since all phenomena generated by a computational systems must be

explicitly covered by its knowledge base anyway.

2.1.2 STRUCTURE

The two principles introduced above imply that the nature of this postulated system

is recursive. If mental acts—like counterfactual thinking or narrative telling—in the

AW set up PWs (fictional recentering), and the functioning of characters in TAW can

be mostly inferred from the functioning of actual individuals3 (minimal departure),

then the mental acts of characters should also be analyzed as setting up textual possi‐

ble worlds (TPWs), branching from the center that is the TAW. M.‐L. Ryan (1991, p. 111)

suggests three types of mental operations that set up different categories of charac‐

3This thesis will be discussed extensively in Section 3.2 on fictional minds.
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ter’s private (textual) possible worlds: epistemic, axiological and deontic thought acts,

resulting in the creation of knowledge, wish and obligation worlds.

• Knowledge (K) World: contains all propositions regarding a character’s beliefs

about the complete system, that is, the TAW or other character’s private worlds.

While K‐Worlds can be incomplete, or conflicting with regard to other worlds,

for a character they form their subjective, complete reality. All other private

worlds of a character are defined in relation to its K World, and all of a charac‐

ter’s thinking as well as planning is performed on propositions from this world.

• Wish (W) World: “capture[s] how a character would like the [TAW] to be”

(M.‐L. Ryan, 2013), it contains propositions the character wants to be true (or

false), like, for instance, desired events or undesired states. A W World can be

inconsistent within itself, when a character’s wishes are mutually exclusive, or

in conflict with other worlds, when propositions in those worlds have a differ‐

ent truth value than desired.

• Obligation (O) World: represents “[…] a system of commitments and prohibi‐

tions defined by social rules and moral principles” (M.‐L. Ryan, 1991, p. 116).

It contains propositions that are mandated to be true (the obligatory) or false

(the prohibited), and can also be in conflict with other worlds or inconsistent

within itself.

This embedded referential structure, K Worlds centered around TAW, and W/O

Worlds centered around each characters’ K World, is metaphorically referred to as

narrative universe (see Fig. 2.2), and provides the background from which other nar‐

rative phenomena are derived: “Narrativity resides in a text’s ability to bring a world

to life, to populate it with individuals through singular existential statements, to place

this world in history through statements of events affecting its members […]” (M.‐L.

Ryan, 1991, p. 112).

Summarizing, the TAW represents a narrative’s factual domain: “[…] a succession

of different states and events which together form a history. […] TAW also comprises

a set of general laws that determine the range of possible future developments of the

plot out of the present situation ”(M.‐L. Ryan, 1991, p. 113). Based on this, characters’

private possible worlds unfold their narrative significance from a juxtaposition with
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the ‘actual facts’ of TAW, and by how they affect TAW states, over time, through char‐

acters’ actions, which are motivated or guided by the respective propositions of their

private worlds.

Figure 2.2: The embedded referential structure of the narrative universe: TAW represents the
factual domain. Character’s K Worlds are subjective representations of TAW and can be more
or less in conflict with it (‘closer or further away’ from being accurate representations). W
and O Worlds are representations of the characters’ desired state of TAW as represented by
their respective K World (in turn ‘closer or further away’ from being satisfied by their subjective
reality). Here schematically: a narrative universe with character A, an unhappy realist, and

character B, a content ‘errorist’.

2.1.3 CONFLICT

M.‐L. Ryan (1991, p. 119) expounds that “[f]rom the viewpoint of its participants4, the

goal of the narrative game—which is for them the game of life—is to make TAW

coincide with as many as possible of their private worlds”. This goal is meaningful

only if no complete coincidence is given from the outset, that is, at least one conflict

exists between TAW and a character’s private world. Thus, Ryan’s understanding of

conflict is fairly unconventional:

Conflict is not simply the complication or thickening of the plot that
occurs between exposition and resolution, but a more or less perma‐
nent condition of narrative universes. The dénouement of a narrative
is not the elimination of all conflicts, since the resolution of the hero’s
problems usually creates conflicts in his opponent’s domain, but only the
disappearance of the productive ones. A conflict is productive when its

4i.e. characters, footnote mine.
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experiencer is in a position, and is willing, to take action toward its res‐
olution.

(M.‐L. Ryan, 1991, p. 120)

Crucially, this implies a transitive nature of conflict. Let p be a true proposition in

TAW (e.g. character A possesses a magical ring). Another character B’s W World could

be in conflict with TAW due to proposition wB (say, it desires the possession of the

magical ring owned by A). Assume now, that, at the same time, character A’s O World

is in conflict with TAW due to proposition oA (say, society demands the destruction of

said ring). Because the propositions wB and oA cannot be satisfied in the same TAW

(assuming a semi‐realist ontology where an object can’t be destroyed and owned at

the same time) this means that they are also transitively in conflict with each other.

This demonstrates, that conflicts can also exist between characters’ private domains.

In fact, there is no restriction that these worlds need to belong to different characters:

It is absolutely conceivable that above wish w and obligation o could pertain to the

same character. Both, the former inter‐character conflict, as well as the latter intra‐

character conflict, are for instance extensively portrayed in Tolkien’s (1954) magnum

opus Lord of the Rings; one by the inner struggles of protagonist Frodo Baggins, the

other one by the opposition of Frodo and Gollum.

Taking into account the mediating nature of K Worlds, M.‐L. Ryan (1991, p. 122)

also makes a distinction between objective conflicts, which relate to properties that

hold in TAW, and subjective (also called second‐level) conflicts that are grounded

only in an epistemological conflict (i.e. a conflict based only on a character’s lapse

of judgement). A prime example is Shakespeare’s (1603) tragedy Othello, where the

eponymous protagonist erroneously believes his wife Desdemona to be unfaithful (K

World conflict), which leads to a subjective conflict between his W and O Worlds since

he feels a “gentleman’s” obligation to punish her as well as a lover’s wish to not hurt

her5. This conflict is subjective because it results from a belief that is not warranted

by the facts of TAW.

This all goes to show that Ryan’s focus, when describing characters, is their use for

the teleology of the plot. They are completely described by the propositions of their

private modal worlds, as these lay the foundations for their goals, and the knowledge

5Ryan’s own example.
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for their plans, which lead to the actions that shape the plot. Consequently, character

and conflict are the catalysts of plot: “The relations among the worlds of the narrative

system are not static, but change from state to state. The plot is the trace left by the

movement of these worlds within the textual universe” (M.‐L. Ryan, 1991, p. 119).

2.2 UNDERSTANDING PLOT THROUGH POSSIBLE WORLDS

The last section was mainly concerned with the structure of textual possible worlds,

and their relation to each other: it presented the concept of narrative universe. Plot,

per se, is not a building block of such a system, but rather a phenomenon that emerges

from the dynamics that occur when a particular universe is ‘let loose’ to follow its own

rules; a “trace left by the movement of […] worlds” in Ryan’s words (ibid.), or the run‐

time behavior of an execution‐run in more computational parlance. This means that,

while the unit of consideration so far has been the proposition, it will now become

the state transition, i.e. the event.

2.2.1 EVENTS AND EVENT‐STRUCTURES

M.‐L. Ryan (1991, p. 129) distinguishes between two main types of events: happen‐

ings and actions. A happening is an event that is accidental and has no animated

agent, only patients. Example happenings are chance encounters, natural forces or

failures of action‐execution. From an internal perspective (introduced in Section 1.2),

happenings appear to be random (or, in pre‐realist fiction, perhaps divine) events

that coincidentally happen to affect characters in a relevant way. From an external

viewpoint, of course, happenings are anything but random; they are teleologically

motivated by the changes they induce and their contribution to the plot6.

An action is an intentional event that has an agent, which executes it to realize a

goal, usually as part of a plan. Not all actions are of the same narrative significance.

Some are just dictated by the underlying logic of the narrative universe (like having to

rest regularly during an arduous trip to a fiery mountain), while others are directed at

solving an important character goal, often connected with a chance of failure (ibid.).

6This understanding will become relevant in Chap. 5 to propose a solution for the
emergent‐narrative paradox, which was introduced in Section 1.4.
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In this context, deliberate non‐action (sometimes called ‘passive action’) can also be

regarded as a type of action if it serves to further a character’s goals.

Goals can be understood to form a direct link to the structure of the narrative uni‐

verse as analysed above. They are “[…] established by selecting one of the propositions

through which some private world departs from the actual world: a desire to fulfill,

an obligation to satisfy, an enigma to solve” (M.‐L. Ryan, 1991, p. 130). A plan, then, is

a sequence of events that is intended to lead from the present state of TAW to the goal

state. It is a projection into the future of TAW because it involves not only selecting

actions but also predicting the results of these actions on the state of TAW. Some

plans even contain a transfer of control from the main planing agent to a subagent,

in cases where the planner requires assistance. While in cooperative circumstances

this transfer is straight forward for the main agent—it usually just has to ask the sub‐

agent to fulfill some shared sub‐goal—in competitive circumstances the main agent’s

goals are conflicting with the sub‐agent’s ones, so that the transfer has to be decep‐

tive (M.‐L. Ryan, 1991, pp. 142).

Apart from prospective constructions, also retrospective constructions influence

the structure of plans. Beliefs about the history of TAW can be incomplete or false,

leading to further complexities in plan execution. In the example of Othello, the

protagonist kills Desdemona with the goal of punishing her for adulterous behavior.

While his action succeeds, his goal can be seen to fail, as the assumption of her guilt

is based on a false reconstruction of the narrative past—instead of delivering justice

Othello becomes guilty himself.7 This demonstrates how plans can, and often do,

fail if a character’s projections fall short of the textual reality. Yet even when a plan

does not come to fruition, its presence as causal‐intentional structure is important

as it turns physical gestures into interpretable actions. From the bird’s eye view of

the plot in Othello, the deed of smothering Desdemona is the unfathomable murder

of an innocent loved one. It is as part of Othello’s subjective plan, that it becomes

explainable as an action towards the goal of punishing an intimate betrayer.

7The tragedy Othello is also a prime example of a deceptive transfer of control, as Othello’s
plan is, in fact, a sub‐plan of Iago’s, who has been subversively plotting Othello’s downfall by
his own hand (example from M.‐L. Ryan, 1991, p. 146).
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2.2.2 PLOT AS A NETWORK OF POSSIBILITIES

Fictional mental constructs, be they pro‐ or retrospective, are important for plot. Ryan

explains that:

[…] they link states and events in a temporal sequence, and [by that
merit] present the same structure as the narrative of which they are a
part. […] Whether they are verified by the actual events or remain purely
virtual, these private embedded narratives weave their strands into the
texture of the plot and turn it into a layered structure, a bundle of pos‐
sible stories.

(M.‐L. Ryan, 1991, p. 147)

Classically, plot is understood as consisting only of the things that physically hap‐

pen: actual events and their causal interconnection (see the overview in Sec. 1.2.2).

The statement above explicitly includes the domain of the virtual into plot: Mental

events, which capture prospective and retrospective story‐like constructs that may

never be realized, are accepted as necessary for understanding the actual events of

classical plot. They are included into its causal structure and turn plot into a network

of possibilities, instead of a linear chain of events.

Since the implications of this analysis on the understanding of plot adopted by

this thesis are immense it is necessary to dwell on it a little longer. The general

idea that plot should be understood on more layers than just action is supported

by Jerome Bruner (1986, p. 14) when he outlines that “[…] story must construct two

landscapes simultaneously. One is the landscape of action, where the constituents

are the arguments of action: agent, intention or goal, situation, instrument[…]. The

other landscape is the landscape of consciousness: what those involved in the action

know, think, or feel, or do not know, think, or feel”. The interaction of these two

‘landscapes’ had been previously also analyzed by Greimas and Courtès (1976). Al‐

though their work is dealing with narrative semiotics, their conception of this term is

“the analysis of the descriptions of actions and of their concatenations, descriptions

which are at the same time the place where events are organized into meaning”; which

describes the same phenomenon that Ryan is defining as plot presented from the in‐

ternal perspective, just viewed from the outside of the external perspective. Greimas

and Courtès’ insight is that the pragmatic plane of action is inseparably connected
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with a cognitive plane of knowledge: the beliefs acquired and presuppositions ac‐

tivated by observing other characters act. This is of no significance if both planes

overlap and all characters possess perfect knowledge. However, Greimas and Courtès

observe:

The producer of the narrative […] can distribute the knowledge differ‐
ently by attributing it (partially or totally) to certain characters and by
depriving others of it. In this case, a gap or disjunction is produced be‐
tween the acting subject (the subject of doing) and the knowing subject
(the cognitive subject), a gap the sudden destruction of which can con‐
stitute an event of a different order, a cognitive event with repercussions
and peripeteias, capable of generating a new string of events.

(Greimas & Courtès, 1976, emphasis mine)

What this implies is that the distribution of knowledge between characters is a

plotting principle and, consequently, that epistemic virtual events are a plot driver—

just like actions, their pragmatic counterparts. The subtle difference is that Greimas

and Courtès’ analysis, coming from a considerably different perspective then Ryan’s,

argues that actual events are inseparably connected with epistemic events so that in‐

cluding the former in the plot necessitates the inclusion of the latter. Plot, in their un‐

derstanding, remains a linear structure of cause‐and‐effect. Ryan, on the other hand,

argues that failed plans, which might never fully come to fruition as actual events, are

crucial to interpret characters’ physical gestures as actions, and that this necessitates

the inclusion of the virtual into plot. This, too, involves (especially false) beliefs, but

also prospective constructs like plans. These are structured like plots themselves, for

which Ryan calls them private embedded narratives, and their inclusion into plot turns

it into a mixed actual‐virtual network.

2.2.3 INTRODUCING THE CASE STUDY

The folktale “The Little Red Hen” (TLRH), which I will use as a case study through‐

out the thesis, will be used to demonstrate the importance of this difference. A few

words should be said about this choice of genre, in order to preempt criticism from

those expecting narrative theory to operate only on works of the likes of Proust (like

the seminal Genette, 1983) or Balzac (the equally acclaimed Barthes, [1970] 1974). The
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irritation, in short, might be that folktales are not prototypical literary masterpieces,

which are the works commonly used as a test‐bed for theory. At the same time, it is

neither a plot‐driven genre in the same way as e.g. the detective novel, nor do its char‐

acters provide particularly interesting cases of conflicting desires or complex mental

functioning, like e.g. the psychological novel of the 19th century. Indeed, the main

appeal of the folktale, for the present purpose, is not canonicity but instead its short‐

ness and simplicity, which allow for thorough analysis and at times even graphical

representation of the phenomena involved. I also want to point out that I do not at

all intend to contest a more commonplace reading, which sees the folktale’s parabolic

message as its main driver of action, and its characters as allegoric symbols without

deep interiority. All that is required here is to agree that the ensuing possible‐worlds

reading is one plausible analysis of many; an exercise undertaken not even in order to

glean a better understanding of the meaning‐making strategies of TLRH, but rather

to tease out the dynamic properties of the theory itself. It is a further solace that even

a highly acclaimed expert of the narratological trade like Marie‐Laure Ryan adopts

this genre for most of her analytical heavy lifting.

The version of TLRH I will be employing is the following:

Once upon a time, Little Red Hen lived on a farm with a dog, a pig and a
cow. Little Red Hen worked hard every day to grow plants in her garden.
The dog, the pig, and the cow did nothing but sleep all day in the warm
sun and watch Little Red Hen work in her garden.

One day, Little Red Hen found a grain of wheat. “Who will help me plant
this wheat so that we can eat fresh bread?” she said. “Not I” said the dog.
“Not I” said the pig. “Not I” said the cow. “I will plant it myself then” said
Little Red Hen, and she planted the grain of wheat.

Little Red Hen took good care of her wheat, but the dog, the pig and the
cow said they were too tired to help.

By the end of the summer, the wheat grew very tall. It was time to cut
the wheat and take it to the mill. “Who will help me cut the wheat and
take it to the mill so that we can have fresh bread?”; “Not I” said the dog.
“Not I” said the pig. “Not I” said the cow. “Well then, I will take it to the
mill myself” said Little Red Hen, and she cut the wheat and set off for
the mill.

After the miller made wheat into soft flour, she came back to the farm

55



CHAPTER 2. THE NARRATIVE SYSTEM

and asked, “Who will help me bake the bread?”; “Not I” said the dog.
“Not I” said the pig. “Not I” said the cow. “Well then, I will bake the
bread myself ”. And she did just that! She mixed the flour with salt and
yeast to make the dough. After the dough rose, she put it in the oven to
bake.

When the bread was done, she asked, “Who will help me eat the bread?”;
“I will”, said the dog. “I will”, said the pig. “I will”, said the cow. “No, you
will not”, said Little Red Hen. “You did not help me plant the grain, and
you did not help me care for it. You did not help me cut it and take it to
the mill. You did not even help me make the bread. I will eat it myself.”
And she did.

Figure 2.3 depicts this plot from a virtuality‐agnostic (A) and a virtuality‐aware

(B) perspective, in a somewhat abridged version. In (A) the story text is analyzed

through actual events, in a straight forward manner. Finding wheat is a happening,

which initiates a line of action: the hen asks for help with planting the wheat but her

request is denied by the animals, which forces her to plant it by herself. The same

interaction structure is repeated with the other agricultural proceedings (omitted in

the diagram for brevity) until the hen has baked the bread alone. This results in the

hen being in sole possession of the bread, which allows her to taunt the other animals

by first offering them bread but in the end withholding it and eating it alone.

Of course the TLRH plot can be represented in such a linear structure of cause

and effect. However, the chain contains one weakness. Having the bread is causally

connected to offering and withholding it, in the sense that it is a necessary condition.

But is it also the event that is responsible for the arising of the intention to ‘taunt’

the animals? This seems unlikely, yet the virtuality‐agnostic view conceals any other

causality from view, and even speaking of virtual events like “intentions” in the last

sentence is problematic in such a perspective.

Version (B) can resolve this problem and offers us a more comprehensive view of

the plot’s structure. In this view, again, the storyline is initiated by the happening of

finding wheat. However, this is seen to first cause a virtual event: the hen’s adoption

of the goal to make bread. This goal causes the hen to take up a plan to make bread,

where she asks the other animals for help, they consent and in the end they all share

the labour and its fruits together. Since this process is never actualized in TAW it
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Figure 2.3: A graphical representation of the events of the TLRH plot, following an (A)
virtuality-agnostic or (B) virtuality-aware understanding of plot.

remains a purely virtual, prospective construction, depicted in the graph by dashed

arrows and vertices. It is interesting to note, that such a construction implies that

the hen holds (at least an implicit) belief that the other farm animals are of a helpful

nature and would consider such a request. This is, again, a virtual state and, in sight

of the actual plot, might be considered an incorrect reconstruction of the actual state

of TAW, respectively of the characters it contains. During the ensuing negative in‐

teractions it can be assumed that the other animals’ behavior eventually leads to an

adjustment of the hen’s belief system. This proceeds by means of a virtual event when

she adopts the belief that the other characters are selfish, necessarily terminating her

previously held belief about their disposition. That virtual event can be taken to lead

to a goal of punishing them for their selfish behavior8, which can be realised as soon

as the hen obtains some bread. Thus, the explanatory gap of version (A) is filled by

disclosing the dual causal precursors of the punishment intention.

At the same time, version (B) is able to reveal a structural elegance of the TLRH

plot that remained hidden in (A). By ‘offering but withholding bread’ the hen brings

to the foreground of the other animals’ (and readers’) attention a preferable, unactu‐

8This fairly weak motivation can be analyzed better by relying on a more elaborate psy‐
chological model of characters. For instance, one could instead assume that the punishment‐
intention of the hen is caused by the negative experience of having to suffer from cognitive
dissonance in the face of false beliefs. This would make it plausible to adopt a plan in order
to teach the others a lesson, with the goal of changing their personality. Such a chain would
allow the hen to reinstate her initial belief and thus reduce cognitive dissonance again. While
being fairly cumbersome, this interpretations is fully in line with the character meta‐goal of
increasing the coincidence of their private worlds with TAW.
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alized PW where she shared the bread because the other animals had helped her. This

happens by way of retrospectively constructing the same virtual course of action that

the hen had prospectively constructed in her initial plan, down to her incipient belief

(see upper lane of Fig. 2.3.B). It is such multi‐functionality—the same (virtual) chain

of events being the motivation for punishment and the means for its attainment—that

will be discussed as an important feature of plots’ aesthetic appeal in Section 4.1.1.

The advantages of the view adopted here are offset with a drawback, which already

manifested itself in the all‐permeating subjunctive mood of the preceding paragraph.

Not all virtual events of a plot have to be directly reported in the discourse, so that

some of them have to be inferred, like e.g. the hen’s initial belief that the other animals

are helpfully disposed. With no direct access to plot, no guarantee can be given about

the correctness of these inferences, or that they are the only possible interpretation.

The discussion in footnote 8, whether the hen’s intention is to taunt the others in

order to reduce cognitive dissonance or in order to simply punish them, is indicative

of how underlying assumptions—like e.g. differing cognitive models of character—

can change an interpretation of the structure of the virtual realm, with little evidence

to decide among competing options. How can plot remain a definitive category if we

include such ambiguous virtual structures? Ryan addresses this problem by taking

the stance that a virtuality‐aware plot is the result of one possible narrative universe,

and any one discourse is compatible with multiple possible universes at the same

time (M.‐L. Ryan, 1991, p. 173). Ambiguities like these are inherent to an analytical

approach to plot because it is a deep structure which cannot be directly accessed but

must be inferred from the surface, i.e. text.9

Analytical reasoning in NT has, by necessity, to depart from text and can thus infer

properties about the nature of a narrative only from text. For instance, Genette (1983)

investigates, among other things, how different types of discourse create changes in

story time, while Palmer (2004) describes how fictional minds are reconstructed by

readers from the discourse. It is one of the advantages of generative modeling as un‐

9The spatial metaphor of depth has been described as one of two currently prevalent
literary methodologies by the professor and critic Rita Felski (2015): “Reading is imagined as
an act of digging down to arrive at a repressed or otherwise obscured reality. […] The text is
envisaged as possessing qualities of interiority, concealment, penetrability, and depth; […]”
(p. 53). While her analysis focuses on the discipline of literary criticism, and its quest for
meaning, the same metaphor, to me, seems to also underlie much narratological thought.
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dertaken throughout this thesis, that it allows to also investigate the inverse direction

of reasoning, that is, how changes in a deep structure can influence the surface (or

at least higher levels). Instead of hypothesizing how different stories can be analysed

by the same abstraction, it demonstrates how varying the parameters of this abstrac‐

tion can generate differences in stories. The narratological insights garnered by the

generative modeling undertaken in this thesis will be presented in the last chapter in

Section 6.2.1.

2.2.4 SUMMARY

Summarizing the whole discussion we can distill a working definition of plot:

Definition 1 (Plot). The plot of a narrative is any causal network of happenings, ac‐
tions and mental events that is consistent with the narrative’s discourse. Happenings
are events that have no agent but are experienced by at least one patient and thus
cause mental events. Actions are events that have an agent and are caused by men‐
tal events. Mental events themself include: the adoption or deprecation of beliefs,
wishes, obligations or plans. They are the building blocks of prospective as well as
retrospective virtual constructs, which have the same structure as the actual parts
of plot. These constructs are the private embedded narratives characters have about
their narrative universe.

This makes clear that all the constituent parts of plot in this model are defined

in reference to character, and especially its mental functioning. In the following, I

will therefore refer to it as a character‐centric plot model. M.‐L. Ryan (2013)’s own

description of characters as “the [non‐actual] individuals whose actions, experience,

and destiny form the central concern of narrative fiction” should be a case in point

that this view is not unduly reductive.

While Ryan uses the metaphor of the narrative universe, Umberto Eco describes the

narrative text as “a machine for producing possible worlds” (Eco, 1984). Under this

view, a narrative can be seen as a system whose dynamics, the movement of possible

worlds, lead to the emergence of a plot. As plot is a dynamic property of this sys‐

tem, changes in its individual static properties—the parameters and levers of Eco’s

machine—can result in changes of the plot. Some of these alternative plots are made

explicit in the narrative through the virtual and counterfactual constructions of char‐

acters, while others remain implicit. To capture this phenomenon I will refer to the
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compound that makes a concrete narrative, i.e. the TAW it constructs, the APWs of

its characters and the plethora of potential plots it spans, as a concrete narrative sys‐

tems (e.g. ‘the narrative system of TLRH’). The term narrative system as a genus, then,

will refer to the abstract concept that was outlined by the two previous sections. This

metaphor maintains the structural implications of Ryan’s narrative universe, while

also importing properties from Eco’s machine metaphor. Especially, I intend it to ex‐

plicate the generative capability of this concept, as well as the insight that changes

of parameters in parts of its structure can result in different dynamic properties: the

generation of different plots whose potential already lay within the system.

2.3 IMPLEMENTING THE CONCEPT OF NARRATIVE SYSTEM

As observed before, plot is a phenomenon that emerges from the dynamics that occur

when a narrative system is ‘let loose’. The concept of a narrative system—as derived

from possible worlds semantics—is character‐centric, and all events relevant to plot

are closely connected to characters. Therefore, my computational implementation of

this concept will depart from modeling characters.

2.3.1 MULTI AGENT SYSTEMS

Systems where several goal‐directed, autonomous entities interact with each other

and an environment can be modeled as Multi Agent Systems (MAS) in an AI con‐

text (e.g. Wooldridge, 2002).

An agent is understood as an entity that “receives stimuli from the environment

and carries out actions in the environment” (Poole & Mackworth, 2010, p. 43). The

following explanations are based on Chapter 2 of Russell and Norvig (2010), in which

a percept is used to describe the input an agent receives at any given instant, while the

complete history of all input is referred to as the percept sequence. Actions are atomic

events initiated by agents and potentially affecting the state of the environment. Since

agents act in order to achieve goals, they are required to have a performance measure

that allows them to establish whether their goals are met (or how close they are to

this state). Research on MAS is primarily concerned with the question of how to

implement rational agents, which are agents that “for each possible percept sequence
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[…] select an action that is expected to maximize [their] performance measure, given

the evidence provided by the percept sequence and whatever built‐in knowledge the

agent has” (Russell & Norvig, 2010, p. 37).

The environment is an entity that encodes the states towards which agents are ori‐

ented: their performance measure is based on environment states, and their actions

affect environment states. This means that environments have to also encode state

transitions, i.e. the dynamics that agents attempt to leverage in order to maximize

their performance measure. These dynamics do not need to be reactive, that is, only

triggerable by agents. Environments can also encode entirely internal dynamics that

result in state changes independent of agent action. For the present purpose it can

be assumed that all agents in a MAS are part of the same shared environment, which

allows individual agents to perceive other agents through the mediation of the envi‐

ronment.10

Russell and Norvig (2010, pp. 42) outline different dimensions along which envi‐

ronments can be described. To exemplify that concept, I provide a subset deemed

important here.

• Fully vs. partially observable: In the former case each perception contains the

complete environment state at that time, whereas in the latter case parts of the

state can remain unknown after an individual sampling step.

• Deterministic vs. stochastic: The former is true if the next state of the envi‐

ronment is dependent only on its previous state and the agent’s action. If the

next state can be described only by a probability distribution then the system

is stochastic. Partially observable environments can appear stochastic to an

agent, if their behavior is determined by unobserved properties.

• Static vs. dynamic: An environment is described as dynamic for an agent if its

state can change while the agent is deliberating.

• Discrete vs. continuous: Discrete describes an environment where states, time,

percepts and actions (if modeled) are represented in a countable way, that is by

a set of separate (if potentially infinitely many) values they can take. If one of

10This must not always hold true. In some cases a purely abstract environment is em‐
ployed to just encode a task. For instance, a crosswords puzzle environment does not need to
represent the playing agent.
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these properties can take any value within a range, or cannot be deconstructed

into atomic constituents, then the environment is continuous in that property.

While all of the preceding terminology is sometimes used to describe embodied

agents in an actual environment, throughout this thesis it will only be used to refer

to virtual agents and environments.

2.3.2 THE BELIEF‐DESIRE‐INTENTION AGENT ARCHITECTURE

Different agent architectures have been developed to conceptualize the inner work‐

ings of rational agents (see e.g. Siebers & Aickelin, 2008). For the present purpose

the Belief‐Desire‐Intention (BDI) architecture (Rao & Georgeff, 1991, 1995) is a natu‐

ral fit since it was derived from possible‐worlds semantics. As will become apparent,

this allows the representation of many parts of the expounded narrative semantics as

first‐order entities when modeling a particular narrative system.

The BDI architecture consists of four principal components and an interpreter al‐

gorithm, which performs reasoning based on them. These components are:

1. Belief: Beliefs encode an agent’s informational state by representing its knowl‐

edge about the environment, which apart from propositions can include infer‐

ence rules that generate new propositions from existing ones. This is necessary

because goal‐directed action needs to be based on information about the en‐

vironment, but an individual sensing act is not guaranteed to return complete

information, which necessitates agent‐side knowledge management. Beliefs

can be false when grounded in an unreliable perception or inference, and can

change over time.

2. Desire: Desires encode an agent’s motivational state, that is, the objectives it

might want to accomplish. Since desires represent all states that are associated

with an increase in performance measure, the set of desires can be conflicting.

New desires can arise as a reaction to new percepts.

3. Intention: Intentions encode an agent’s deliberative state, that is, a non‐con‐

flicting subset of desires that it is currently committed to.

4. Plan: Plans encode information about courses of action that are sufficient to

achieve certain desires. Adopting a plan to achieve a desire turns it into an in‐
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tention. A plan consists of a goal, which is the state it achieves, a set of precon‐

ditions that have to be met in order for the plan to be viable, and a body which

is a sequence of atomic actions as well as subgoals. This implies that plans are

partial. That is, the means for achieving subgoals are not predetermined in the

containing plan itself, but are resolved at runtime when plan‐execution arrives

at the subgoal.

The interpreter algorithm is a loop that is executed for each agent (see Alg. 1). It

operates on the agent’s internal state and mediates between the maintenance of the

four components described above as well as action execution.

Algorithm 1 BDI‐interpreter, amended for clarity from (Rao & Georgeff, 1995)
1: INITIALIZE_STATE();
2: loop
3: // State update
4: B = BELIEF_REVISION(event_queue.dequeue(), B);
5: D = OPTION_GENERATOR(B, D);
6: I = DELIBERATE(D, B, I);
7: // Action selection
8: i = SELECT_INTENTION(I);
9: EXECUTE(i);

10: // Sensing the environment
11: event_queue += SENSE();
12: end loop

At the beginning of each reasoning cycle the interpreter updates its belief base B

by processing a number of events, which are organized in a first‐in first‐out order.

Then, the set of desires D is updated based on the current belief base, which requires

checking whether previous desires have been satisfied and whether new desires have

been triggered. After that, the intention set I is updated. In practice, adopting a de‐

sire as an intention means coming up with, and committing to, a plan which has the

goal of satisfying that desire, so that I contains a set of plans. Updating I requires

checking whether a new desire can be committed to, which is the case when it is

satisfiable (a plan exists to attempt it) and not conflicting with the already present in‐

tentions. Since, in a dynamic environment, conditions might change and plans might

fail, intentions can also become impossible to achieve by means of the selected plan,

in which case they have to be removed from I . However, they can remain in D and
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be readopted during a later cycle. After the internal state has been updated, action

selection can commence: From the intentions in I one plan is selected, and its next

step is executed. If this step is an action its execution is attempted in the environ‐

ment. Otherwise it must be a subgoal, in which case an internal event is enqueued in

the events queue in order to add it as a new desire. In this case, the current intention

is paused until the subgoal is satisfied. The loop finishes by performing a sensing

act and enqueueing the newly perceived external events, usually at least containing

the outcome of the initiated action—as well as all coinciding but unconnected envi‐

ronment changes—into the event queue. Further internal events that are generated

during cycle execution, like e.g. the observation that an intention had to be aborted,

can be enqueued at any time during the loop.

The main advantage of BDI is that it allows agents to balance planing, goal‐directed

action, and reactive behavior, which means that it can operate effectively in dynamic,

partially observable environments in real‐time. Of importance for the envisioned

narrative semantics is that the distinction between intentions and desires allows the

representation of conflicting motivational states (e.g. a wish in conflict with an obliga‐

tion). Furthermore, the ability to adopt multiple intentions at the same time allows

to concurrently pursue several goals. This flexibility, however, comes at a cost be‐

cause it means that neither forward nor backward chaining11 can be employed during

reasoning. Since agents cannot predict the results of their actions they cannot in‐

dependently come up with new plans in situations when no existing partial plan is

applicable. Also, they cannot dynamically re‐plan in case of a plan failure, but have

to abort plan execution completely even when the goal is still attainable via actions

that are not part of the initial plan.

2.3.3 MODELING NARRATIVE SEMANTICS USING MAS

With this understanding at hand, the introduced narrative system can be modeled

in the MAS framework as follows (see Table 2.1, below, for a summary): The factual

domain that is the TAW is modeled as an environment. The environment is initially

11Forward and backward chaining are the two main inference methods used in AI sys‐
tems. Basically, they are build on a repeated forward (respectively backward) application of
generalized modus ponens (e.g. see Russell & Norvig, 2010, Secs. 9.2 and 9.3).
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in a start state s0, and each subsequent state transition of the environment represents

an event in TAW. If the transition was caused by an agent then the event is an action,

in the case of a transition that is causally dependent only on environment dynamics

it is a happening.

Characters are modeled as BDI agents.12 A character’s APW are modeled by the

respective agent’s internal state. The K World is comprised by the belief propositions

and inference rules in an agent’s belief base: K = {p|p ∈ B}. Since in a partially

observable environment beliefs about parts of the environment might be missing (or

initially incorrect), and in a dynamic setting the environment can change in between

agents’ sense‐acts, an agent’s beliefs can be(come) incorrect. This allows to model

objective conflicts between K World and TAW, as well as subjective conflicts of all

types. The W World and O World of an agent are related from a MAS perspective

because both contain propositions that determine what the agent wants to achieve.

Consequently, both worlds need to be modeled through desires, and a solution is re‐

quired to keep the respective desires distinguishable from each other. I propose to

represent the difference between them through propositions in that characters be‐

lief base, making use of the unary predicates wish/1 and obligation/1. Thus, the O

World of an agent is determined by the following set: {p|p ∈ D∧ obligation(p) ∈ B},

while its W World is given by: {p|p ∈ D∧wish(p) ∈ B}. This solution allows to keep

the function of D restricted to representing motivational states, while maintaining

discriminability between wishes and obligations via B. As a consequence, characters

represented this way always posses propositional knowledge about their wishes and

obligations, which precludes the modeling of subconscious drives. Since in the un‐

derlying narrative semantics the main function of W and O Worlds is to be the source

from which plan‐goals are derived, and planning requires the conscious formulation

of target states, this trade‐off seems warranted. Because desires that have not yet

been selected as intentions can be conflicting, this solutions also does not preclude

the representation of intra‐character conflicts, e.g. between contradictory wishes and

12Note that character and agent are both representations of the same narrative phe‐
nomenon. From now, on the term ‘character’ will be used to refer specifically to its narra‐
tological manifestation and the connected semantic field, while ‘agent’ will refer to its com‐
putational counterpart. Since these domains sometimes overlap, some flexibility will be in‐
evitable.
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obligations. Note that desires are triggered and satisfied only on the basis of changes

in an agent’s belief base and do not have direct access to the true state of the envi‐

ronment. This situation reflects the embedded referential structure of the narrative

universe described in Section 2.1, where the W and O Worlds are defined in reference

to a character’s K World, and only the K World is defined in direct reference to TAW.

As mentioned above, conflict is present as soon as an agent’s set of desires is not

empty because the elements in this set represent wishes and obligations.13 By itera‐

tively adopting desires as intentions the BDI‐interpreter thus implements a strategy

to reduce conflict by selecting wishes/obligations as goals, identifying plans to sat‐

isfy these goals, and executing these plans. This resonates well with the underlying

narrative theory that expounds that characters’ meta‐goal is to make their private

worlds coincide with TAW as much as possible, which in the implementation coin‐

cides with a small D. By following this line of reasoning we can conclude that BDI

agents not only model characters, but also more specifically, that the BDI‐interpreter

implements characters’ reasoning. This means that the results of such reasoning,

character‐plans, are directly represented by the outcome of the interpreter‐cycle: par‐

tial plans selected form the agent’s plan library. What is more, when a BDI‐interpreter

is executed it regularly senses the environment and turns the results into events of

perception, which in turn trigger further internal events that together form a trace of

the agent’s processing of the environment. Hence, these internal events—the acquir‐

ing or abandonment of beliefs, the arousal and satisfaction of desires and the adop‐

tion and failure of plans—must represent the mental events that have been analysed

in Sec. 2.2 as constituting the virtual constructs that turn plot into a mixed actual‐

virtual network. By that merit the execution of an agent’s interpreter continuously

generates the corresponding character’s private embedded narratives.

Since plot, in the underlying theory, is taken to be the network between the actual

events and the private embedded narratives of the characters, we can conclude that, in

the MAS framework, plot is represented by the internal events of all agents’ reasoning

cycles (virtual part) and the actions and happenings that perform the state transitions

13This is a sufficient but not necessary condition. Conflict can also be present with D = ?
if the agent’s B set contains incorrect beliefs. This can be neglected here, as false beliefs do
not initiate action unless in connection with a desire to rectify them.
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Table 2.1: Overview of how the elements of narrative semantics are represented in the MAS
framework.

narrative semantics MAS framework

character BDI agent
K world agent’s belief base B
W world {p|p ∈ D ∧ wish(p) ∈ B}
O world {p|p ∈ D ∧ obligation(p) ∈ B}
character plans agent’s adopted partial plans
embedded narrative internal events of an agent’s BDI‐interpreter

TAW partially observable, dynamic environment
action agent‐induced state transition
happening internal state transition
productive conflicts union of all agents’ desire sets

S
D

plot union of actions, happenings and all embedded narratives

of the environment.

2.3.4 INBLOOM: A BDI BASED MAS FRAMEWORK FOR NARRATIVE SEMANTICS

To implement the abstract specifications of the last section in an executable program‐

ming language, the BDI framework Jason14 was selected. Its primary advantages are

the following:

• A book‐length documentation of the agent architecture, programming best‐

practices and design decisions is available (Bordini et al., 2007).

• The framework was published more then 10 years ago, so that maturity is guar‐

anteed, and is still under active development so that help requests can be ad‐

dressed by the authors.

• The implementation is open source, and can be easily extended and adopted

to personal needs.

• Jason provides entry points for both agent modeling and environment model‐

ing, and manages their interaction mostly autonomously.

• Advanced features exist that, among others, enable speech‐act based agent

communication, the handling of plan failure, and strong negation.

Jason needs to be extended in three regards in order to enable the full functionality of

narrative semantics: (1) the agent model needs to account for wishes and obligations,

14https://github.com/jason‐lang/jason

67

https://github.com/jason-lang/jason


CHAPTER 2. THE NARRATIVE SYSTEM

(2) the environment model needs to support both actions and happenings, as well as

universal narrative phenomena like spatio‐temporality, and (3) a dedicated model of

plot needs to be created from scratch, as normal MAS do not require this concept at

all. Since the result of this extension can be used to model different narrative

systems (see Fig. 2.4) it should be considered a BDI based MAS framework for

modeling narrative semantics. To do justice to the character‐centered nature of

the underlying semantics I dubbed the framework InBloom, short for ‘inside Bloom’;

a homage to Joyce’s ingenious character construction of Leopold Bloom. It is made

accessible as open source software to the general public at https://github.com/carti

san/inBloom.

Figure 2.4: Schematic representation of the envisioned architecture. InBloom is a framework
that extends the Jason multi agent simulation framework with narrative semantics. Concrete
narrative systems, like for instance the TLRH system, can be implemented by using (and further

extending) InBloom.

THE JASON FRAMEWORK

Before outlining my extensions, an introductory overview of Jason proper will be pro‐

vided.
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1 hungry. // 0-ary atomic formula
2 pleasant(eat(bread)). // atomic formula
3 useful(Item) :- pleasant(eat(Item)) & hungry. // inference rule
4
5 +has(Item) : hungry & pleasant(eat(Item)) <- // plan statement: belief add.
6 -wish(has(Item)); // belief removal
7 ?present(Agents); // declarative goal
8 !share(Item, Agents); // achievement goal
9 eat(Item). // action
10
11 +!share(Item, Agents) <- // ... // plan statement: goal add.

Listing 2.1: AgentSpeak example code.

AGENT‐SIDE REASONING in Jason can be implemented in a declarative paradigm us‐

ing an extended version of AgentSpeak (ASL). Its full syntax and formal semantics

can be found in Bordini et al. (2007, Chap. 10), but I will informally review the basics

necessary to parse this thesis.

An agent is comprised by a set of beliefs (its belief base) and a set of plans (its

plan base). Beliefs are ground atomic formulae, where an atomic formula is of the

form P (t1, . . . , tn) with P being a predicate symbol (starting with a lowercase letter)

and ti being terms (either constants c, variables X , or atomic formulae themselves).

Beliefs can also be defined indirectly using inference rules based on (potentially not‐

ground) atomic formulae, that are unified against the belief base. The belief base

and its inference rules encode what an agent holds to be true. Lines 1–3 in Listing 2.1

demonstrate the ASL syntax for this. They encode a belief base in which the agent

believes that it is hungry, that it is pleasant to eat bread, and that anything that is

pleasant to eat is useful, when one is hungry.

Line 3, at the same time, demonstrates how atomic formulae can be connected

and modified using logical operators. The main operators are &, |, and not which

represent conjunction, disjunction and negation from a Boolean Algebra. Any com‐

bination of atomic formulae using these operators is called a logical formula. A literal

is an atomic formula, or its negation. Also, the line demonstrates the use of vari‐

ables (symbols starting with an uppercase letter), which are initially free but can be

unified against the belief base, in which case they are bound to a particular value (a
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constant or an atomic formula15) throughout their scope. In this case, useful(bread)

would result in a belief of the agent because unifying Item with bread results in the

atomic formula pleasant(eat(bread)) that can be derived from the belief base, while

useful(cheese) would not resolve into a belief of the agent because no corresponding

atomic formula about cheese can be found in the belief base.

An idiosyncratic feature of Jason‐flavour ASL are annotations, which can be used

to provide additional information about an individual belief, like e.g. its provenance.

Annotations are enclosed in square brackets following a literal, and contain a list of

atomic formulae. Thus, hungry[source(perception),intensity(5)], would encode

that the agent knows that it is hungry from a perception, and that the intensity of

this feeling is 5. While this does not increase the expressive power of AgentSpeak, it

is a handy shorthand for conveying meta‐knowledge.

Plans are statements of the form triggering event : context <- plan body,

which denotes that plan body is to be adopted as a plan whenever an agent’s BDI‐

interpreter processes the triggering event, under the condition that context can

be derived from the agent’s belief base. A triggering event can be either the addi‐

tion/removal of a belief (denoted as +af or −af with af being an atomic formula),

or the adoption/failure of a goal (denoted as +g, −g with g being a goal as defined

below). Line 5 in the example demonstrates a plan that is triggered when the agent

processes the addition of a belief of form has(Item). In this case, the context, which

can be any logical formula, is evaluated using the variable instantiation from the trig‐

gering event. E.g. for +has(bread), the context of line 5 would be evaluated to true in

our exemplary belief base. A plan body consists of goals, belief addition/removal or

actions. Line 6 demonstrates the syntax of belief removal. In the example, processing

this plan step generates the internal event -wish(has(bread)) because in ASL vari‐

ables are plan‐scoped. The event is added to the interpreters event queue to be pro‐

cessed in due time (when it will remove the atomic formula wish(has(bread)) from

the belief base, and also could in turn trigger a new plan). Belief addition functions

comparably, but is denoted using the + operator. Like with beliefs, the addition of

15This means that ASL is effectively a higher order logic, which entails certain theoretical
problems. However, since it lacks universal quantification, in practice, these problems can be
circumvented through reification.
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goals (denoted as !af for achievement goals, and ?af for declarative goals) generates

internal events. However, with goals, execution of the active plan is paused until the

sub‐goal is achieved, and resumed only after that. Line 7 demonstrates a declarative

goal, which generates the internal event +?present(Agents) and is achieved if Agents

can be instantiated against the belief base (essentially constituting a request against

the agent’s knowledge). Line 8 contains an achievement goal, which generates the

internal event +!share(Item, Agents), with appropriately instantiated variables. It is

achieved if this event triggers a (sub) plan, and execution of this plan is successful.

Line 9, finally, demonstrates an action. This step does not trigger an internal event,

but instead attempts to execute the given action in the environment. Plan execution is

again paused, until the environment notifies the agent whether action execution was

successful. Remember, that a BDI‐interpreter can concurrently pursue several plans

as well as process external events, which means that an agent continues reasoning

while a plan it was executing is paused. This interpreter, responsible for maintain‐

ing agent state and performing reasoning with the help of ASL agent programs of the

above type, is implemented in the Java programming language. Its functionality is re‐

alized in void jason.asSemantics.TransitionSystem#reasoningCycle()16 and

each agent has its own reasoning cycle, which is executed in a dedicated thread so

that agents can run concurrently. For details on the implementation of the reasoning

cycle see Bordini et al. (2007, Chap. 4, especially Fig. 4.1).

COMMUNICATION BETWEEN AGENTS can be initiated from AgentSpeak using a

mechanism called speech act (Bordini et al., 2007, p. 118). A speech act is a prede‐

fined action (called internal action) of the form:

.send(receiver, performative, propositional_content),

where receiver is the name (or list of names) of the receiving agent, propositiona

l_content is a literal, a triggering event or a plan and performative is one of the

following message‐types, which define the effect of the speech act:

• tell/untell: adds/removes the literal in the content to/from the receiver’s

belief base;

16References to program code throughout the thesis will follow the convention:
return-type package.Class#method.
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• achieve/unachieve: adds/removes the triggering event in the content as a de‐

sire to/from the receiver’s desire set;

• askOne/askAll: the receiver resolves the literal in the content against its belief

base and returns one/all variable assignments that make it true;

• tellHow/untellHow/askHow: tells the receiver to add/remove/return a plan

from its plan library.

This means that Jason enables information exchange, goal delegation, information

seeking and know‐how related communication between agents.17

THE COMMUNICATION BETWEEN AGENTS AND ENVIRONMENTS is implemented in

Java and realized through the base class jason.environment.Environment that

needs to be subclassed to implement a custom environment. A Jason environ‐

ment is mainly responsible for two tasks: executing agents’ actions, and deliver‐

ing perceptions to them. For this, it needs to maintain a state, which is how

it represents the TAW. Whenever an agent requests the execution of an action,

the method boolean jason.environment.Environment#executeAction(String

agentName, Structure action) is triggered, with agentName containing a unique

identifier of the agent and action containing the name and potentially the parame‐

ters of the action, for instance eat(bread) in the example above. Custom environ‐

ments need to override executeAction, and by that implement the state changes that

are caused by any action available to agents. If, after that process, the environment

determines that the action was successful then the method needs to return true,

otherwise (e.g. the agent didn’t posses any bread to eat) it returns false, which is

reported as action failure to the agent.

Whenever a custom environment determines that an agent should perceive a state

(change) it can schedule perceptions using the method void jason.environment.

Environment#addPercept(String agName, Literal... per). Per is an array of

individual perceptions p, which are ASL atoms or predicates. Analogously, a per‐

ception can also be removed using the method boolean jason.environment.Envir

17Speech act, here, is loosely based on the classical speech act theory as developed by John
Austin and John Searle (see e.g. Green, 2017). Especially, each invocation of .send constitues
a locutionary act, and the literal propositional_content defines its illocutionary force.
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onment#removePercept(String agName, Literal p). All perceptions currently

available to an agent according to the environment are maintained in a list, and when‐

ever the agent’s reasoning cycle performs sense() all the changes since the last sens‐

ing (addition or removal of individual percepts) are conveyed to it as internal events

of form +p or -p.

A SIMULATION IS CONFIGURED using a multi‐agent systems definition file in the cus‐

tom mas2j syntax (Bordini et al., 2007, pp. 236). This file contains the class name

of the custom environment to be used, the location of the ASL file containing the

plan library, and a definition of each agent to be executed. The agent definition con‐

tains configuration details like each agent’s name, the class that will be used by Ja‐

son to run the agent (per default:jason.asSemantics.Agent) as well as a number of

special initial beliefs or goals particular to that agent. The mas2j file is then passed

to jason.infra.centralised.RunCentralisedMAS, which performs all tasks neces‐

sary for setup and execution. Normally, a simulation runs until it is paused using the

GUI, or stopped from inside the simulation.

INBLOOM: ENVIRONMENT IMPLEMENTATION

After having reviewed Jason, we can now come to the implementation of InBloom

performed by me. On the environment side, InBloom implements narrative seman‐

tics in a set of classes connected to inBloom.PlotEnvironment—which extends Ja‐

son’s Environment class—loosely following the Model‐View‐Controller (MVC) pat‐

tern (see e.g. Buschmann et al., 1996, pp. 125): From an MVC perspective, agents’ BDI‐

interpreters act as views, which receive partial (and potentially subjective) represen‐

tations of the TAW and regularly request to change it. This objective TAW is encap‐

sulated in the model, of type inBloom.PlotModel. It acts as a computational repre‐

sentation of the current state of the TAW, and is responsible for computing how char‐

acters’ actions affect this state. This means that each action available to agents needs

to be implemented as a method in the model. Thus, when the PlotEnvironment re‐

ceives an action request from an agent, its task is to parse this request, identify the

method in PlotModel that provides the requested operation, and call it with the pa‐

rameters supplied by the agent. The respective model methods change the state of
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Figure 2.5: Sequence diagram depicting general MVC style setup of the InBloom framework.
The PlotEnvironment (controller) mediates the interaction of the agents (view) and the Plot-
Model (model). Note, how agents request actions from the controller, which decides which
model method implements the required functionality, and how, in turn, the model requests the
controller to report a new state-perception to the agents. Also, the PlotEnvironment automati-
cally generates event-perceptions reporting that an action was executed and delivers them to all

perceiving agents.

the TAW according to the action, determine any side effects that need to be reported

to observing agents, and decide whether the action was successful. PlotEnvironment,

in essence, acts as controller by mediating between multiple concurrent agents, the

model, and the plot‐graph capturing mechanism (see Fig. 2.5).

As outlined above, InBloom is a framework and provides only domain‐independent

narrative semantics through the classes introduced in detail below. Custom narrative

systems are expected to subclass them in order to extend the system with domain‐

specific functionality.

PLOTENVIRONMENT subclasses Environment via jason.environment.TimeSteppe

dEnvironment, which synchronizes agent action execution. It does that by collecting

action requests until each agent has requested one action, and only then executing

them together. Since agents can take different time to come up with an action re‐

quest depending on their internal state, it can happen that one agent requests sev‐
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eral actions in the same time that another one needs for one.18 In that case, the

surplus actions are queued for later execution. Each round of simultaneous action

execution increases an internal counter called step. A step is thus delimited by an

(excluded) lower‐bound at which the previous actions of all agents are executed, and

an (included) upper bound at which the new actions are executed. This means that

environment steps are denoting time intervals in which each character decides on a

course of action and executes this action. They can be interpreted as units of story

time. The foremost benefit of this discretization is that its units are independent of

program execution time, and thus of processor speed, which otherwise would result

in the paradoxical situation that the same story exhibits differing temporal properties

on different computers.

Jason’s addPercept mechanisms introduced above is very well suited to notify

agents of the state of the environment. However, as I have discussed, most narrative

interest resides not in states but in events: actions and happenings. While it would

be possible for agent reasoning programs to infer events from pure state percepts,

the reasoning (and ASL programming) load can be lowered by providing environ‐

ments with a dedicated mechanism for event perception delivery. For this purpose

PlotEnvironment implements the method void addEventPercept(String agentN

ame, String percept), which adds percept to the list of perceptions for only one

reasoning cycle and removes it again after it has been perceived once. Deciding, when

events happen and who is capable of perceiving them is a task of custom models. The

only exception concerns events that report the outcomes of actions, which are gen‐

erated automatically by the InBloom framework: After an agent action is executed

by the model, the environment determines which agents are capable of perceiving

this event (per default this corresponds to all characters present at the same location)

and adds a corresponding event perception for each of these agents. For the acting

agent the literal of the perception is equal to the action request it provided to the en‐

vironment. For the observing agents an additional term containing the acting agent’s

name is inserted at position 0 of this literal, which allows them to ascribe the action

18To prevent deadlocks a timeout of 100ms is set in place, which enforces the execution of
all presently scheduled actions thus forcing slow reasoners to take a none‐action instead of
blocking the entire environment.
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percept to the acting agent (e.g. note the different event percepts in Fig. 2.5). That

way, happenings and actions are reported to agents as events, while all other percepts

are reported as states.

Apart from that, PlotEnvironment is responsible for administrative tasks at the in‐

tersection of model, agents, actions and happenings. Due to its central position it can

determine when a particular narrative system has reached an equilibrium state, that

is, when no noteworthy events are expected to happen anymore. This is for instance

the case, when each agent has been repeating the same action sequence for a consid‐

erable number of times. Custom environments can further extend these conditions

by overriding the method boolean PlotEnvironment#narrativeEquilibrium().

When a narrative equilibrium is detected, PlotEnvironment pauses the execution of

the simulation under the assumption that all productive conflict has been resolved.

This allows users to inspect the hitherto created plot, or subsequent processing to ini‐

tiate. Furthermore, the environment can notify agents of all dynamic common sense

knowledge, that is, belief base entries that cannot be hand‐coded into ASL files be‐

cause they depend on the particular model and launcher configuration. The method

void initialize(List agents) is responsible for this task, and, currently, notifies

agents of all available locations and all existing characters. This, too, can be extended

by custom environments.

PLOTMODEL provides the actual implementation of the TAW. It implements a weak

form of spatiality by representing distinct locations using the inBloom.storyworld

.Location class. Each location has a unique name, a list of present characters and

a list of available items. Characters can enter any location from any other location

in one time step, and items can be placed or removed from the location. When a

character enters a location, it perceives all items, other present characters as well as

their visible belongings. One default location is created during start‐up, which is

used as initial location for all existents unless the subclassing custom environment

specifies otherwise.

Characters are implemented in the model using the inBloom.storyworld.Chara

cter class, and one character is set up for each Jason agent. Each character has a

name, a location and an inventory of items it carries. The class implements methods
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to share, receive, collect or eat items from its inventory.

Items are non‐agentive existents that characters can interact with. The abstract

class inBloom.storyworld.Item can be subclassed to implement custom item types,

and makes sure that all item types have a name and define whether they are edible or

not.

All three classes: Location, Character and Item represent existents of the TAW

that are perceivable to characters. In order to enable this functionality, they extend

the abstract class inBloom.storyworld.Existent that implements the method Lite

ral literal(). Per default, this method creates a jason.asSyntax.Literal from

the generic String toString() representation, and can be used by any method to

generate an ASL‐compliable perception about the respective existent. Subclasses are

responsible for implementing their own toString method in an appropriate manner.

HAPPENINGS are events that have no agent but affect at least one patient. By that

merit they have to be understood as environment‐internal state changes. Since they

are state changes, happenings require at least two properties: an effect they have

on the model, and a trigger that causes their occurrence. These are maintained via

the class inBloom.storyworld.Happening<T extends PlotModel>. The effect is a

function that takes as input a custom model (that is, an instance of any possible class

T), and performs a set of manipulations on that model. The trigger is also a function,

but one that takes as input a custom model, and returns true if specific triggering con‐

dition are met by this model. Since version 1.8, this can be implemented in Java using

functional interfaces, which allow the representation of functions as objects—in this

case of type java.util.function.Consumer and java.util.function.Predicate,

respectively. Listing 2.2 serves to demonstrate how the happening ‘finding a grain of

wheat’ could be implemented.

At first sight, it might appear tempting to incorporate randomness into the trig‐

gering function in order to capture the apparent coincidental nature of happenings.

However, as was discussed in Section 2.2, happenings appear random only from the

internal perspective, while from an external perspective they serve a function for the

plot. This means that happenings that appear random (i.e. not caused by changes in

model state) still happen at a definite point in time, which can be implemented using a
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1 Happening<FarmModel> findCorn = new Happening<FarmModel>(
2 // trigger:
3 new Predicate<FarmModel>(){
4 public boolean test(FarmModel model) {
5 if(model.FARM.farmingProgress > 3)
6 return true;
7 return false;
8 }
9 },
10 // effect:
11 new Consumer<FarmModel>() {
12 public void accept(FarmModel model) {
13 Character chara = model.getCharacter("hen");
14 chara.addToInventory(new FarmModel.Wheat());
15 }
16 }
17 );

Listing 2.2: Happening: A hen finds a grain of wheat after some farm work has been done.

triggering condition that is dependent on the environment step e.g. model.getStep()

> 3. This has the added benefit that simulation runs remain deterministic, which

leaves experiments with inBloom reproducible.

While trigger and effect describe the happening itself, its function is to affect a

patient. For that, it further needs to specify a patient, as well as a percept that will

be delivered to the patient as an event perception. In the example of Listing 2.2 the

patient would be the hen and the percept would be "found(wheat)", which need to

be defined before the happening instance is operational. Note, that it doesn’t have to

be the case that the entity affected by the happening’s effect (e.g. see code lines 13/14)

is also the patient. Imagine Cinderella loosing her slipper: it’s Cinderella’s inventory

that is changed by the event, but in her haste she does not even perceive this state

change. It is the prince who, perceiving "lost(girl, slipper)", is the patient of this

happening.

Happenings are scheduled with a triggering condition in mind, and in advance of

a simulation run. This means that it cannot be guaranteed that all happenings will,

in fact, be executed, because for some the triggering conditions might never be met.

The management of happenings is performed by the class inBloom.storyworld.Sch

eduledHappeningDirector, of which each model has an instance. A happening can

be scheduled by using the method void scheduleHappening(Happening h). At the
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beginning of each step, before considering the execution of scheduled actions, the

environment will delegate to the model to check whether any happenings have been

triggered using the method void checkHappenings(int step). The model queries

its ScheduledHappeningDirector, which iterates over its list of scheduled happen‐

ings and for each one checks whether its trigger‐function returns true. It removes all

triggered happenings and returns them to the model, which for each happening exe‐

cutes the corresponding effect function and schedules the happenings perception to

be delivered to its patient as an event. This means, that each happening is executed

only once after it gets first triggered. Recurring happenings need to be scheduled

multiple times.

ATTENTIVE READERS might have noticed a whiff of event‐related causality relation‐

ships wafting around the mechanism of happening triggering. Listing 2.2 encodes

that ‘finding corn’ is triggered when the field farmingProgress of location FARM

passes a certain threshold—one might say that it is causally dependent on the state

of this field (on the notion of causality, review my comments in footnote 9 on p. 13).

The state of this field itself is, in the same way, dependent on previous events, which

have affected it. In the example above, farmingProgress would be increased above

the threshold by an execution of the action farmWork, which by rule of transitivity

can be considered the event that triggers our serendipitous happening—is causally

responsible for it. Since all states and events are realized through the model, it is

well equipped to track such causality relations. To capture the state of the TAW,

PlotModel maintains a cache of relevant fields of model, location and character in‐

stances, mapped to their current values. The decision which fields are relevant for

TAW state representation is a responsibility of the user of the framework; it can be

indicated to the framework by annotating the respective field with the custom anno‐

tation @ModelState. During model initialization, and whenever new locations and

characters are added, PlotModel uses Java’s reflection capabilities to detect all an‐

notated fields and store them (with their respective containing objects and current

values) in Table<Field, Object, Object> PlotModel.fieldValueStore. After

each action or happening e that is executed, the model is requested to note state

changes, which it can do by iterating over the entries of its fieldValueStore and
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Figure 2.6: An abridged class diagram representation of the narrative semantics architecture
in InBloom. For brevity reasons attributes are represented without types and methods without

parameters or return types.

comparing the stored values with the current ones. If it finds a value change, then

it can note that event e caused the change by saving this connection in the field

Table<String, String, String> PlotModel.causalityTable. With one addi‐

tional step this allows identifying the causes of happenings: Each happening has a

field String Happening.causalProperty, which can be set manually by the frame‐

work user. It represents the name of the field whose state change triggers the exe‐

cution of the happening (as per it’s triggering condition). When the ScheduledHap

peningDirector determines that a particular happening was triggered, it can look

up causalProperty in PlotModel’s causalityTable, and that way determine which

previous event caused the triggering field‐value change. This information will be‐

come relevant later on, when causality relationships between events will be used in

order to find units of functional significance in plot graphs (see Section 4.1.1).
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TOGETHER, the environment and the model classes realize an ontology that

covers basic versions of spatio‐temporality, causality, agency and ownership

(for an overview see Fig. 2.6). This selection, and the degree to which it was imple‐

mented, was guided primarily by the needs of the case‐studies implemented so far,

and can be further extended by custom models.

INBLOOM: AGENT IMPLEMENTATION

On the agent side, InBloom implements narrative semantics using a custom AgentS‐

peak formalism for wish and obligation management, encoded in agent-desire_wi

sh_management.asl. It can be imported in all custom ASL files to include its func‐

tionality.

As outlined in Sec. 2.3.3, wishes and obligations are representable in a BDI setting

by a belief‐desire combination, e.g. a goal1 ∈ D can be considered a wish only iff

wish(goal1) ∈ B. Naively, this could be achieved by triggering a desire to achieve

goal1, whenever the agent program adds a statement wish(goal1) to its belief base,

utilising the second‐order plan‐statement: +wish(Goal) <- !Goal., where Goal is a

variable that contains goals like eat(bread). However, this solution quickly falls short.

As soon as the Jason BDI interpreter processes the internal desire‐addition event

+!Goal, it attempts to match a plan to achieve this. Yet, in most cases pertinent to

narrative semantics this has to fail, as narrative interest (at least partially) resides in

the long‐range maintenance of such conflict. In such cases, Jason will be unable to

identify a matching plan, and as a consequence remove the unsolvable goal from its

desire set while creating an internal desire‐removal event -!Goal. According to the

above definition this is tantamount to removing wishes after only one failed attempt

at achieving them, which doesn’t make for modeling very interesting stories. The

solution is to leverage the desire‐removal event to reintroduce the wish. However,

the naive solution of simply reintroducing the goal via -!Goal <- !Goal. would again

be inadvisable as it would result in a blind adherence to all goals an agent might ever

commit to, and not just wishes. This impasse can be broken by a provident utilisation

of second‐order plans to allow the distinction of mundane goals from wish‐goals, as

depicted in Listing 2.3. A mediating second‐order desire !wish(Goal) is introduced
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1 // adding a wish-belief creates a second-order desire to achieve it
2 // --> wish(Goal) established
3 +wish(Goal) <-
4 !wish(Goal).
5
6 // attempting to achieve second-order desire by attempting to achieve
7 // embedded first-order desire
8 +!wish(Goal) <-
9 !Goal;
10 !wish(Goal).
11
12 // on failure reintroduce second-order desire to keep wish active
13 -!wish(Goal) <-
14 !wish(Goal).
15
16 // removing a wish-belief removes all associated desires
17 // --> wish(Goal) removed
18 -wish(Goal) <-
19 .drop_desire(wish(Goal));
20 .drop_desire(Goal).

Listing 2.3: Implementation of narrative semantics of wishes using AgentSpeak.

by the belief addition instead of the actual goal. It contains the sub‐goal of achieving

the actually wished state, which, like above, is likely to fail. However, its failure now

also causes the failure of the second‐order goal and the creation of an additional in‐

ternal desire‐removal event -!wish(Goal). This can finally be leveraged as per lines

13, 14 of Listing 2.3 to reintroduce the wish‐goal, while not being sensitive to other

goals. Note, that line 10 effects a similar reintroduction of the wish‐goal even in the

case that the sub‐goal is successfully achieved. The resulting behavior is that wishes

remain active even after they were satisfied. In order to remove a wish the respec‐

tive belief has to be removed from an agent’s belief base as per lines 18 and following.

This design decision was made to maintain consistency with the mechanism of wish‐

addition, and preclude inconsistent states where wish(goal1) ∈ B∧goal1 /∈ D. Note,

that the initially proposed formalization has to be slightly updated:

Definition 2 (Wish). A character is said to have a wish to achieve goal1 iff for its
corresponding InBloom agent the following holds: wish(goal1) ∈ B ∧wish(goal1) ∈
D, where B is the agent’s belief base and D its desire set.

Obligations are represented and managed accordingly:
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Definition 3 (Obligation). A character is said to have an obligation to achieve goal1

iff for its corresponding InBloom agent the following holds: obligation(goal1) ∈ B ∧
obligation(goal1) ∈ D, where B is the agent’s belief base and D its desire set.

INBLOOM: PLOT‐GRAPH GENERATION

Per Def. 1, plot is a causal network of actions, happenings, and mental events, which

emerges from the interaction of characters in a TAW. As has been discussed in

Sec. 2.2.2, significant narrative interest resides in the virtual parts of plot: the private

embedded narratives of the individual characters. So far, the computational represen‐

tation of plot has not been discussed, since common MAS do not require modeling

comparable phenomena. A custom data structure needs to be developed for InBloom,

which can support all operations that a storytelling system might conceivably perform

on plot.

Throughout the second part of her book, M.‐L. Ryan (1991) resorts to graphs to

illustrate the points she makes about plots, and in her Chap. 10 she introduces two

formal representations by means of directed graphs. Since the system introduced in

this thesis will have to part with Ryan’s framework starting from Chap. 3, a scrupulous

implementation of one of these formalisms is not expedient. However, the general

approach to plot representation using graphs remains very appealing, since graphs

are extensively researched computational data structures. The details of the graph

formalism deployed here are heavily influenced by the work of Lehnert (1981)—one

of the approaches mentioned by Ryan—which will come in handy in Chap. 4, when

plot quality will need to be estimated. At the same time, the present solution adapts

and expands Lehnert’s suggestions liberally, based on technological affordances and

conceptual needs.

IN GENERAL, a plot graph is comprised of vertices that represent the events of a story,

and edges that indicate how these events are connected. Since InBloom models dif‐

ferent types of events, different vertex types need to be distinguished:

• I : to represent intentions;
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• P : to represent perceptions, which could be happenings, the actions of other

agents, or the occurrence of internal events;

• A: to represent actions;

• S: to represent the sending of speech acts;

• L: to represent the reception of speech acts.

The semantics of the event represented by a vertex (e.g. the content of a speech act, or

the particular state of affairs that an intention aims at achieving) are called the propo‐

sitional content of that vertex, and will be represented by an ASL event (in informal

graphs, I will resort to single words or a short phrases in English, instead).

Events are generated by the BDI reasoning cycles of individual agents (or are, in

the case of actions, at least initiated by them). This means that they are subjective

representations of the TAW and can be taken to capture (parts) of the characters’

private embedded narratives. Thus it makes sense to organize the plot graph into

character subgraphs, each of which contains the events generated by the reasoning

cycle of only one agent. To denote this in the plot graph, another type of vertex is

introduced:

• R: to represent root vertices, and containing the respective characters’ name

as propositional content

In a plot, events can stand in different types of relations to each other so that Lehn‐

ert’s formalism introduces several edge types in order to represent this distinction.

For representing Ryan’s narrative semantics, however, this is not relevant so that for

now19 edges can be simply taken to always represent a total temporal ordering.

Definition 4 (Character Subgraph). A character subgraph is a directed, vertex‐
labeled graph Gc = (Vc, Ec, lv, prop) comprised by a set of vertices Vc, a set of directed
edges Ec ⊆ V 2

c as well as the label function lv : Vc → {I, P,A, S, L,R} and the propo‐
sitional content function prop : V → Asl, where Asl is the set of valid expressions in
the AgentSpeak language. Each character subgraph contains exactly one root vertex
v0—with lv(v0) = R and prop(v0) = c—which has no predecessors in the subgraph:
|E−

v0 | = 0.20

19This formalism will be extended with the edge types: motivation, actualization, termi‐
nation, causation and cross‐character in Chap. 4 in order to enable specific aspects of plot‐
quality estimation.

20Let E−
v denote the set of incoming edges for the vertex v.
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Thus, for readability purposes c can be assumed to be the name of the correspond‐

ing character, which will be also the propositional content of the root vertex when

the graph is displayed by InBloom.

Definition 5 (Plot Graph). A plot graph is a directed graph G = (V,E) that is com‐
prised by disjoint character subgraphs such that V =

S
Vci and E =

S
Eci for all

ci ∈ C and C being the set of all characters participating in a plot.
The plot graph can be said to contain the character subgraphs from which it is

comprised, shorthand notation: Gci ∈ G. It thus holds that: ∀Gci ,Gcj∈G : i ̸= j ⇒
Vci ∩ Vcj = ?.

The type of a vertex vi ∈ V in a plot graph is a short hand way of referring to the
label of that vertex in the character subgraph to which it belongs: type(vi, G) = lv(vi)

where lv ∈ Gc with c such that vi ∈ Vc and Gc = (Vc, Ec, lv, prop) ∈ G.

From Definition 5 follows that each vertex of a plot graph is contained in exactly

one character subgraph: ∀v∈V ∀Gi∈G : v∈Vv ∧ Gv ̸= Gi ⇒ v ̸∈ Vi. It is also worth

noting that, following the above definitions, plot graphs only represent the subjective

domains of individual characters. Although these domains may sometimes overlap

because e.g. the action of one character is perceived by another one, the resulting

picture does not necessarily represent an objective total. The system and formalism

would effortlessly support the addition of an objective domain, i.e. events represent‐

ing state changes occurring (only) in the environment, by insertion of an additional

subgraph for the TAW. However, no added benefit from this could be identified so

far, so that an implementation remained unnecessary.

As a noteworthy aside, I would like to point out that plot graphs are generated by

InBloom during the execution of narrative systems, and their vertices are temporally

ordered in accordance with the order of the events of the system. From a computer

science perspective, they could be regarded as the execution trace of a simulation run,

a tool used by software engineers to debug the dynamics of complex programs. The

developer and poet Richard Gabriel, who attempted to implement a computational

system for poetry generation based on his personal writing style (Gabriel, 2016) noted,

that execution traces of his system allowed not only the debugging of the system itself,

but also could be subverted to assess and frame the aesthetics of the poem that was

generated by that execution. As mentioned, in Chap. 4 I will face a similar problem,

and I too will resort to the execution trace (in its instantiation as plot graph) in order
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to solve it. Whether this is a coincidence, or a yet under‐investigated affordance of

CC software I do not dare to say.

For the convenience of the system’s users, another auxiliary subgraph is added to

plot graphs, whose vertices are not of any of the previous type but contain environ‐

ment step numbers. This subgraph acts as a temporal axis, and when the plot graph

is displayed vertices from character subgraphs are visually distributed in a way that

enables a quick identification of synchronous events and the associated environment

step. A toy plot graph, generated and visualized by the system, can be found in Fig. 2.7.

Note, how the agents develop beliefs about each other through mutual perception,

and how action‐perceptions like +wipe(barbara,glass) are delivered and removed

in quick succession by the environment, as they represent fleeting events and not

permanent states. Also, a collection of dynamic common sense knowledge (about

locations and characters) is digested by each agent in the beginning, as has been de‐

scribed in Section 2.3.4.

THE PLOT GRAPH IS IMPLEMENTED using the JUNG framework21. The class in

Bloom.graph.PlotDirectedSparseGraph implements methods to add events to

the graph, which are translated into vertices (inBloom.graph.Vertex) and edges

(inBloom.graph.Edge). For this it maintains HashMap<String, Vertex> lastVe

rtexMap, a mapping from character names to the last vertex added to this char‐

acter’s subgraph (initially, the root node). When a new event is added, a Vertex

instance is created whose label contains the full event literal, and whose type is

a representation of the type of the occurring event (an enum with the options:

ACTION, PERCEPT, SPEECHACT, LISTEN, INTENTION, ROOT, AXIS_LABEL). The

new vertex is connected via a new Edge instance to the last vertex of the experiencing

character’s subgraph, and replaces its new‐found parent vertex in lastVertexMap.

The method simultaneously maintains the previously mentioned temporal axis, by

checking whether the newly added event was experienced at a new environment step,

and attaching a Vertex instance of AXIS_LABEL type to the subgraph of the temporal

axis if this is the case.

21“A software library that provides a common and extendible language for the modeling,
analysis, and visualization of data that can be represented as a graph or network” (http://ju
ng.sourceforge.net/).
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Figure 2.7: Example plot graph generated by InBloom. Actions (A-type vertices) are visualized
by dark-gray color, while virtual events are visualized by light-gray color: Intentions (I-vertices)
start with an !, perceptions (P vertices) start with + or − (denoting belief addition or removal).
The addition or removal of wishes and obligations are a special type of virtual event, and for
that reason do not appear inside a box. Content-wise, the graph represents a plot with two
characters, located at bar called Far Far Away. Barbara is a bar keeper, busying herself by wiping
a glass. Jeremy patronizes the establishment with the intention of drowning his sorrows. He gets
himself a drink, and watches barkeeper Barbara wipe the glass. Presumably already inebriated,

he decides that Barbara is his friend, and feels his sorrows ease.
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This graph is managed and built by the class inBloom.graph.PlotGraphControl

ler in real‐time, while a simulation is being executed. The PlotGraphController

is designed following the singleton pattern (see e.g. Gamma et al., 1995) such that

the static method PlotGraphController#getPlotListener() provides the whole

system with access to an instance of PlotGraphController. This instance can be

used to add events to the graph using the method void addEvent(String charac

ter, String event, Vertex.Type eventType, int step). Once a simulation is

completed (usually, because PlotEnvironment identified a narrative equilibrium and

paused the execution) it is again the controller’s responsibility to create the centered,

character and step aligned column layout22 that was devised to visualise the graph (re‐

fer to Fig. 2.7 for an example). This is done by the method PlotGraphController#vi

sualizeGraph() via the class inBloom.graph.PlotGraphLayout. For this purpose,

PlotGraphLayout iterates twice over the whole graph. In a first run it computes the

x‐position of each character subgraph (which is dependent on the maximum vertex‐

width in the previous subgraph), and the y‐position of each step (which is dependent

on the maximum number of vertices in the previous step). In the second run it de‐

termines the position of each individual vertex depending on its step and subgraph

affiliation. Lastly, the PlotGraphController is also responsible for creating the UI

that visualizes the graph on screen and allows user‐interactions with it.

In order to use the functionality of the PlotGraphController, Jason needs to be

extended so that vertices are added in the following situations:

1. an agent requests the execution of an action,

2. an agent sends or receives a speech act,

3. an agent processes an internal or external (perception) event.

As has been described previously, the first functionality is implemented by the

method PlotEnvironment#executeAction, which can be easily extended to include

a call to PlotGraphController’s addEvent method.

22Since a graph is an abstract structure that is defined only by which vertex‐pairs are con‐
nected, a plethora of different layouts can be used to illustrate the same graph. Thus, a layout
is a function f : V → N2 that transforms plot graphs into legible plot graph drawings by
computing for each vertex v ∈ V a point that can be used as the upper‐left corner for a visual
representation of this vertex. Edges can then be inserted as straight lines accordingly.
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Sending and receiving messages, in the setup under which Jason is employed

throughout this thesis, is implemented by the class jason.infra.centralised.Cent

ralisedAgArch. It is extended by inBloom.jason.PlotAwareCentralisedAgArch

so that the method void sendMsg(Message m) can be overridden to include a call to

PlotGraphController to create a new SPEECH‐type vertex. This is followed by an

execution of the method void receiveMsg(Message m, Vertex senderV) on the

PlotAwareCentralisedArch instance that runs the receiver of the message, which

creates a LISTEN vertex and delegates the rest of the message‐reception to it’s super‐

class. Jason can be configured to use the new agent architecture during simulation

start, which will be described in the next subsection.

The third situation can be captured by attaching a listener to each agent’s Transi

tionSystem. The listener gets notified by the Jason framework each time an event is

added during the agents reasoning cycle. This is done by extending Jason’s abstract ja

son.asSemantics.CircumstanceListener class and overriding its method void ev

entAdded(Event e) to include a call to PlotGraphController’s addEvent method,

which is accomplished by the InBloom class inBloom.jason.PlotCircumstanceLi

stener. Listener instances need to be added for each agent during initialisation, so

that the respective listeners are operational when the simulation starts. To accomplish

this, Jason allows extending its jason.asSemantics.Agent class and overriding the

method void initAg(), which is done by inBloom.jason.PlotAwareAg. Jason can

be configured to use PlotAwareAgent as agent class in the simulation’s mas2j file

(refer back to Section 2.3.4 for a description of Jason’s configuration mechanism).

Summarising, PlotGraphController effectively functions as a tracer that is

informed whenever a plot‐relevant event is processed by the system, and that

constructs a plot graph by ordering these concurrent calls andmatching them

to the appropriate character subgraphs. The resulting architecture can be seen in

Fig. 2.8.

INBLOOM: START‐UP AND CONFIGURATION

A Jason simulation is typically started by jason.infra.centralised.RunCentralis

edMAS, which reads in a mas2j configuration file and, based on its contents, sets up the
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Figure 2.8: An abridged class diagram representation of the plot graph architecture in InBloom.
For brevity reasons attributes are represented without types and methods without parameters or

return types. Static members are underlined.

agents, the environment as well as the UI. This mechanism is extended by InBloom to

make the start‐up more dynamic and appropriate for the narrative context in which

it operates.

First, the UI needs to be adopted. This is done by inBloom.PlotControlsLaunch

er which extends RunCentralisedMAS and overrides its method void createButton

s(). This method omits several unnecessary controls created by default, and instead

adds a button that can be used to display the current plot graph. The realization

of this is straightforward, since the graph and its graphical representation are made

available to the whole system by the singleton PlotGraphController.

For a better division of concearns the actual setup is encapsulated in a sub‐

class of this launcher class, inBloom.PlotLauncher. This class provides the

convenience method void run() that starts a simulation, waits until it ends

(usually because a user clicked the “end” button) and then finalizes the sys‐

tem before quitting. What is more important, the class also implements

the method void initialize (String[] args, PlotModel<?> model, List<La

uncherAgent> agents, String agentFileName) that performs everything neces‐

sary to configure an InBloom simulation run. Especially, it automatically constructs

the file launcher.mas2j based on the list of provided agents and a number of static

parameters that declare which classes should be instantiate to represent individual

agents (PlotAwareAgent) and the environment (any subclass of PlotEnvironment).

During launch, agents can be configured by instantiating the class inBloom.Launcher

Agent and appropriately setting the parameters: beliefs, goals, inventory and
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location, which can be used to set up differing initial states for each agent, as well

as name, which is used as an agent ID throughout the simulation. That way, users of

the InBloom framework do not need to manually write or modify configuration files

when they make changes to the initial narrative semantics of a simulation, but instead

can rely on purely object‐oriented methodology.

After creating the config file and using it to initialize the Jason framework, the

method proceeds by successively initializing PlotEnvironment, PlotModel and all

PlotAwareAgents (in that order) so that all of the newly introduced InBloom func‐

tionality is operational on start‐up. As a side‐note, PlotLauncher also has to override

the method void createAgs() that is used by RunCentralisedMAS to setup agents,

in order to change the agent architecture class to InBloom’s own PlotAwareCentral

isedAgArch.

Thus, all a user has to do in order to start a simulation is to instantiate PlotLaun

cher and perform the following four steps:

1. indicate the custom environment class for the simulation by setting the

launcher’s static variable ENV_CLASS,

2. provide details on the agents that should be created for the simulation via a list

of LauncherAgent instances,

3. instantiate the custom model class for the simulation and provide it with an

initialised happening director,

4. set the simulation in motion by executing the initialize and run methods of

the launcher instance.

This is usually done by extending PlotLauncher with a custom launcher class that

performs these steps in its public static void main(String[] args) method.

To enable any other system to operate on the active launcher, PlotLauncher pro‐

vides the static method PlotLauncher getRunner(), which gives access to the only

existing launcher instance in singleton fashion. This is crucial for any meta‐process

that would like to exhibit creative behavior by iteratively executing and evaluating

simulation runs, which will be the focus of Chap. 5. The resulting architecture can be

seen in Fig. 2.9.
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Figure 2.9: An abridged class diagram representation of the launcher architecture in InBloom.
For brevity reasons attributes are represented without types and methods without parameters or

return types. Static members are underlined.

OVERVIEW

Before moving on to a case study, lets quickly recapitulate what has been accom‐

plished with InBloom so far.

The environment and the model realize an ontology that covers basic versions

of spatio‐temporality, causality, agency and ownership, and by that means model

the TAW of a narrative system. An AgentSpeak file implements the management

of wishes and obligations via belief addition and removal. By that means it en‐

ables an automatic translation of narrative semantics into Jason’s BDI logic. The

plot graph controller functions as a tracer that is informed whenever a plot‐relevant

event is processed by the system. It constructs a plot graph by ordering these concur‐

rent calls coming mainly from agent’s reasoning cycles, and organizing them in time

step aligned character subgraphs. That way it captures plot, which is an emergent,

virtuality‐aware property of a narrative systems. These extensions of the Jason frame‐

work are orchestrated by the plot launcher, which can be used to dynamically set up

and run simulations.

As pointed out repeatedly, InBloom ended up a framework rather than a simple

application because it implements the abstract rules that govern narrative systems

rather than an individual narrative system. It can equally well be used to realize e.g.

folktale systems or bildungsroman systems, although their respective TAWs follow
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markedly differing rules and their characters are subject to differing behavioral pat‐

terns. In order to implement a custom narrative system only few steps are required,

which involve the implementation of its domain‐specific rules. This is done by sub‐

classing three InBloom classes and creating an ASL file:

1. PlotModel needs to be subclassed to implement the state of the environment,

the actions available to agents in order to affect it, as well as its internal dynam‐

ics leading to happenings.

2. A custom AgentSpeak file needs to be created that includes InBloom’s agent‐

desire_wish_management.asl and implements a domain‐specific plan library,

common‐sense reasoning and basic world knowledge.

3. PlotEnvironment needs to be subclassed to perform a mapping from agent

actions to model methods.

4. PlotLauncher needs to be subclassed to configure InBloom to use these cus‐

tom classes, setup the initial state of the agents and schedule happenings.

Following this procedure, the next section will attempt to create a narrative system

for TLRH using InBloom.

2.4 A CASE STUDY (IN RED)

Far from being a mere example, recreating the plot of an existing folktale is an im‐

portant step in the process of theory building. It is the experimental validation of the

implicit hypothesis behind any comprehensive narratological theory: that the first

principles set up by this theory are suitable and sufficient to describe the narratives

in its target corpus. The default approach of a narratologist to theory validation is the

analysis of existing stories. While being the classical tool in the narratological toolkit,

the analysis is susceptible to several problems: One is, that it has to depart from text,

which can lead to ambiguities when dealing with underlying layers like the virtual

parts of plot, a problem we have encountered in the discussion of the plot of TLRH

in Section 2.2.4. Furthermore, it operates on a high level of abstraction that makes it

easy to overlook inconsistencies or omissions on lower levels. Lastly, analysis best af‐

fords static descriptions like the classification of phenomena, while making it harder
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(albeit far from impossible) to describe how the dynamic properties of a narrative un‐

fold from its static components. The computational means described in this chapter

can be seen as a belated addition of generation to the tool belt of one particular nar‐

ratologist, namely Mary‐Laure Ryan. Her theory can be validated by being put to the

test via generation: Are the first principles set up by her theory sufficient to recreate

the plot of existing folktales? Using InBloom to recreate one tale, ‘The Little Red Hen’,

can be but the start of such an endeavour.

2.4.1 IMPLEMENTATION

We will walk through the steps required for implementing the narrative system of

TLRH one by one.

A CUSTOM MODEL that represents the story’s TAW needs to be created. For this

purpose, inBloom.stories.little_red_hen.FarmModel is set up by extending Pl

otModel. It has one location, inBloom.stories.little_red_hen.FarmModel.Farm

that extends Location. The farm can have produce, represented by the field: Wh

eat produce, which is initially empty but can contain a wheat instance as soon as

some cereal grain has been planted. The respective class, inBloom.stories.little

_red_hen.FarmModel.Wheat, extends Item and has a state, represented by the field

Wheat.STATES state, with the enum type STATES allowing the constants: SEED, G

ROWING, RIPE, HARVESTED or FLOUR23. In order to make the state available to ASL

reasoners, it is appended to the default representation created by the method literal

as an annotation of the form state(α) with α ∈ Wheat.STATES. The farm offers

the convenience method void updateProduceState(Wheat.STATES state) which

changes the state of its produce to the requested state and at the same time updates

the state perceptions available to all present agents using the addPercept method

provided by PlotEnvironment.

This is used by the FarmModel method plantWheat(Character agent)—which

checks whether the agent’s inventory contains a wheat seed instance and, if so, moves

23Representing flour as a state of grain is an ontologically highly questionable decision.
However, since in the present narrative system flour only ever appears as an interim stage in
the bread‐making process it seems acceptable to maintain this simplification.
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it from the agent’s inventory to the farm’s produce field—to update the wheat’s state

to growing. FarmModel implements comparable methods: tendWheat, harvestWhe

at and grindWheat, to enable the successive transition of the growing wheat from

ripe over harvested into the flour state, located again in the inventory of the agent

who executed the grinding. It also offers the method bakeBread(Character agent),

which destroys one wheat‐flour instance in the agent’s inventory and adds a newly

created instance of inBloom.stories.little_red_hen.FarmModel.Bread, which is

a generic Item subclass with the single deviation that it overrides the isEdible()

method to return true.

To enable this process, the hen needs to find a grain of wheat, around the begin‐

ning of the story. This can be accomplished by extending Happening with a cus‐

tom class inBloom.stories.little_red_hen.FindCornHappening whose execute

method creates a Wheat instance, adds it to it’s patient’s inventory, and is perceived in

ASL as the predicate found(wheat). The trigger for this happening can vary. In its

simplest form, it can return true when a certain environment step is reached, in com‐

bination with the hen being the hard‐coded patient. Another, more elegant, route

was chosen to show‐case the utility of the causality implementation. The story notes

the hen’s propensity to regular farm work, which can be exploited for our own wicked

needs. Thus, the additional method farmWork(Character agent) is implemented

in FarmModel, which allows an agent (located at the farm) to increase the value of the

field int farmingProgress, which is added to the location Farm precisely for this

purpose. This can then be exploited by setting the happening’s trigger to return true

when farmingProgress reaches a certain threshold (arbitrarily set to 2). In my par‐

lance, this makes the happening causally dependent on farmingProgress.24 Once

an action results in the required state change, InBloom’s causality mechanism can

back‐track this connection, and extract the responsible agent to be subjected to the

happening in question.

Only a few loose ends remain to be tied up for the model. Characters need the

ability to eat, so the method eat(String itemType) is implemented in the class

24This additionally requires the developer to remember to set the happening’s causalPr
operty field to farmingProgress, as described in Sec. 2.3.4. This is tedious, but necessary, as
Java Reflection is not powerful enough to automatically extract such logical information.
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character. It succeeds iff the respective character posses an instance of itemType in

its inventory and that instance is edible, with the effect that the instance is removed

from the inventory. Furthermore, the method relax() is added to the character class,

which (at least for now) has no effect and always succeeds.

A CUSTOM AGENTSPEAK FILE that will determine the agents’ reasoning needs to be

created, then. Since all the characters in the story are essentially of the same nature—

folktale animals—it seems prudent to assign them the same set of cognitive affor‐

dances, that is, common‐sense beliefs, potential plans, and so on. For this, the file

agent_folktale_animal.asl is created.

To enable the main process of the story, plans need to be encoded that allow an

agent to make bread from wheat. One possible way of doing that is demonstrated in

Lis. 2.4.

1 +!create(bread) : has(wheat[state(seed)]) <-
2 !plant(wheat).
3 +!create(bread) : at(wheat[state(growing)], farm) <-
4 !tend(wheat).
5 +!create(bread) : at(wheat[state(ripe)], farm) <-
6 !harvest(wheat).
7 +!create(bread) : has(wheat[state(harvested)]) <-
8 !grind(wheat).
9 +!create(bread) : has(wheat[state(flour)]) <-
10 !bake(bread);
11 .resume(wish(relax));
12 -obligation(create(bread)).

Listing 2.4: ASL plans for bread creation

This is a more flexible notation then employing one monolithic plan that is com‐

prised of all individual sub‐plans, since it allows agents to decide the appropriate next

step based on the state of the environment instead of a blind schema. Note, how the

state annotations that the class Wheat appends to its literal representations can be

leverage by this approach to identify the next plan step independent of whether the

wheat is planted or in an agent’s inventory.

In order to commence the bread‐making, an agent needs to develop either a wish

or an obligation to do so. I enable this in Lis. 2.5 in a fairly general fashion to again

allow for flexibility.
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1 +found(X) : creatable_from(X,Y) & is_useful(Y) <-
2 .suspend(wish(relax));
3 +obligation(create(Y)).
4
5 is_useful(A) :- is_pleasant(eat(A)) & hungry.
6
7 creatable_from(wheat,bread).
8 is_pleasant(eat(bread)).

Listing 2.5: ASL system triggering bread baking behavior

Thus, the obligation to create something is cued upon finding a thing from which

something useful can be created. Apart from requiring a plan statement, this solution

brings about the design of a fledgling common‐sense knowledge base that encodes

facts (like that bread is creatable from wheat) but also conceptual knowledge (like

that something is useful, if it is edible and oneself is hungry).

A crucial part of the story is the hen’s repeated request for help, and the repeated

refusal of the other characters. Our implementation in Lis. 2.6 again attempts to

generalize as far as possible in order to create an abstract reasoning template for the

schema denied request, and naturally makes use of Jason’s speech acts. The main

work here is performed by the meta‐plan in l.1 of Lis. 2.6, which encodes that an

agent asks all other present agents for help before attempting a plan that is encoded

as work‐intensive in its knowledge base. Then, the agent waits a reasonable amount

of time for the other agents to answer, before attempting its plan—with or without

help. In order to avoid an infinite recursion of help‐asking, a short lived mental note

already_asked(X) is added after the first time the meta‐plan is triggered, and removed

after the actual plan is executed, so that the next time the plan is attempted the cycle

can start again. The help request is transmitted to the other agents as a Jason speech

act of type tell, which results in the addition of the belief request(help_with(send ⌋

er_name, plan)) to the receiver’s knowledge base. Processing this event triggers an

obligation to help the sender (l. 13–14).

While, so far, the implementation has remained fairly independent of the current

application, the next steps are dictated by the needs of the folktale to have the hen’s

requests rejected. My solution is to stipulate that an obligation to help someone is re‐

jected by an agent if the requested task is work‐intensive and the agent has a wish with
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1 +!X : is_work(X) & not complex_plan(X) & not already_asked(X) <-
2 .my_name(Me);
3 ?present(Animals);
4 +already_asked(X);
5 for (.member(Animal, Animals)) {
6 .send(Animal, tell, request(help_with(Me,X)));
7 +asking(help_with(X), Animal);
8 }
9 .wait(not asking(help_with(X), _), 1000);
10 !X;
11 -already_asked(X).
12
13 +request(help_with(Helpee, Plan)) <-
14 +obligation(help_with(Helpee, Plan)).
15
16 +!obligation(help_with(Helpee, Plan)) : wish(Y) & is_work(help_with(Plan)) <-
17 !reject(Helpee, help_with(Helpee,Plan)).
18
19 +!reject(Helpee, Plan) <-
20 .send(Helpee, tell, rejected_request(Plan));
21 -obligation(Plan).
22
23 +rejected_request(help_with(Helpee,Req))[source(Name)] <-
24 -asking(help_with(Req), Name).
25
26 is_work(help_with(Name, X)) :- is_work(X).
27 is_work(plant(X)).
28 //... and so on for the rest of the sub-plans involved in creating bread

Listing 2.6: ASL plans for managing help requests and denying them

regards to something it would rather like to do (l. 16). This rejection is implemented

by tell‐ing the sender that the agent rejects its request and removing the obligation.

Processing this event on the side of the original sender results in the addition of a

mental note that its collocutor has answered, which enables it to stop waiting for

help after everyone has answered.25

From the story’s main elements, only the capacity for punishment remains open.

The most general solution for implementing punishment would see an agent reason

about another agent’s intentions and desires, as well as means to counteract them.

This is a non‐trivial task of other‐representation based on some sort of theory of mind,

which unfortunately remained outside the scope of the possible for this dissertation.

25The conspicuous absence of a capacity for positive response is due to the narrow require‐
ments of the original story. It can be easily added to the current implementation along the
same lines, and will be, in Chap. 3.
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Thus, for want of a generic solution, I opted for introducing a story‐specific, basic one

depicted in Lis. 2.7.

1 +!punish : has(X) & hungry & is_pleasant(eat(X)) <-
2 ?punishment_targets(Anims);
3 .send(Anims, achieve, eat(X));
4 !eat(X);
5 -wish(punish).

Listing 2.7: ASL plans for punishment behavior

This implementation of punishment works based on a conflation of self and other:

The punishing agent works under the assumption that if itself beliefs something to

be pleasant of taste, then other agents will do so, too. It then leverages the fact that it

posses a ‘tasty’ item by triggering a desire in the other agents to eat (some of) that tasty

item via means of an achieve speech act, and then removing it’s victims possibility

of doing so by visibly destroying that item by ingesting it itself. This, in essence,

taunts the other animals with a piece of food, which conventionally is understood as

a malevolent act and thus can serve as punishment. As mentioned above, this is a

very basic solution because it does not include any reasoning about why such a plan

is harmful for the other agent and thus also does not allow any meaningful alteration

of the plan to come up with comparable punishment strategies in case of absence of

suitable edibles. The ideal solution for this would be the implementation of a theory

of mind module based on which punishment plans can be deduced dynamically.

In order to set up the general behavior of the farm animals, some default behavior

and machinery has to be put in place as, per Lis. 2.8.

1 wish(relax).
2 self(farm_animal).
3 hungry.
4
5 +self(farm_animal) <- +obligation(farm_work).
6
7 +!plant(wheat) <-
8 plant(wheat).
9 //... each action wrapped in dedicated action-execution plan

Listing 2.8: ASL setup for default farm-animal behavior

Lines 1 and 5 set up an essential conflict underlying the tale: the wish of (presum‐
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ably every creature) to relax, versus the obligation of a farm animal to work on the

farm. In order for this to have effect, the inhabitants of the farm require the knowl‐

edge that they are farm animals, which is accompanied by the belief that they are

hungry in order to fulfill the preconditions of the plan for bread creation later during

the simulation. Also, in order to enable the help‐seeking behavior described above,

it is necessary to wrap the actions involved in bread‐making in dedicated plans like

in lines 7‐8. To maintain clarity and comparability of style the decision was made to

equip all other actions with such plans, which I call action‐execution plans. This is a

side‐effect of the fact that ASL only allows reasoning about plans but not actions.

2.4.2 DISCUSSION OF THE CASE STUDY

The main goal of the present case study is to put to the test the narratological theory

underlying InBloom’s implementation. However, before reporting the actual insights

gained from this endeavor, I find it important to openly discuss the limitations of the

technological execution that lead to them.

TECHNOLOGICAL CONSIDERATIONS

As discussed in Sec. 1.4, strong‐autonomy approaches to plot generation rest on the

emergence of unexpected event combinations from the dynamics of the MAS. In or‐

der to allow such unexpected interactions the implementation of the environment’s

internal behavior and the agents’ reasoning must be as general as possible. As such,

the introduced narrative system does not completely hold up to my personal expec‐

tations. Consider the ASL code implementing the obligation to create bread (line 1

in Listing 2.5). It is triggered when an agent that believes to be hungry finds a grain

of wheat. However, already in the trivially isomorphic case that an agent, who posses

a grain of wheat, turns hungry, this obligation is not triggered any more. Of course,

this can easily be alleviated by implementing an analogous second case with the new

triggering condition. But extending this approach to all conceivable cases would lead

to code‐duplication and a code base cluttered with conditions that (in the foreseeable

future) are never going to be executed.

During another case study, the above narrative system has been extended in order
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to accommodate the plot of a second folktale. For this it was necessary to enable a

piece of cheese to fall out of the beak of a bird that starts singing. In an ideal world, this

should be done by incorporating gravitation into the ontology of the narrative system.

However, this would require implementing the concept of a surface, meaning that all

existents have to be supported by a surface, as well as a general rule that existents

fall to a lower surface when they stop being supported. This, in turn, would require

incorporating a three‐dimensional Euclidean model of spatiality into that system, in

order to be able to identify lower surfaces. As if this wasn’t enough, the cheese in

the target tale actually always remains supported by the underside of the crows beak.

However, since it is larger then the beak, it rests in an unstable equilibrium that is

maintained only by the force of the upper beak being applied from above. It is the

singing‐induced lifting of the upper beak that deprives the system of the external

force and breaks the equilibrium, which leads to the fall of the cheese. Modeling this

would require incorporating at least a subset of Newtonian physics into the narrative

system’s ontology, as well as a three‐dimensional modeling of the constituent parts

of existents; a dizzying prospect that led me to the decision to quickly abandon this

‘ideal’ world. Instead, I chose to implement that the entire inventory of an agent

that sits on a tree falls below the tree as soon as the agent sings. Obviously, this is

a remarkably inept solution that is at the same time too broad (since e.g. a singing

human should not loose a single thing) and too narrow (since singing on e.g. a roof

would not produce the desired effect) and thus undermines the systems potential for

interesting emergent behavior. Yet, implementing a solution that generalizes better

seemed a bad trade‐off due to the exorbitant amount of required time.

Problems like these are a fundamental aspect of symbolic, non‐embodied ap‐

proaches, especially in cases where the knowledge base and environment have to be

completely manually designed and cannot be reliably learned by the system, which

in itself is an open research problem. In fact, problems like these have led to the great

wave of disappointment with the AI research program by the end of the 1980s that

has been called the AI winter. It has never been the ambition of this thesis to solve,

or even just address, these long standing problems, so that all that is left here is to

acknowledge them and move on with a meek smile.

Another problematic point can be exemplified by how in the implementation of
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the environment one action is enough to enable the wheat’s transition through the

individual stages of its ripening process (note too, how no other produce, possibly

with other needs for upkeep, have been realized). This is clearly not a realistic simu‐

lation, even of the context of a folktale story world. Instead, it is a simplification that

alleviates the need for any downstream composition‐processes that performs con‐

densation26, and facilitates the synchronization of the fates of individual characters.

Solutions like this have no merit from an internal perspective on the story world but

have to be included into the simulation because of reasons from the external perspec‐

tive, which is an undesirable intermixture of concerns.

CONCEPTUAL INSIGHTS

The implementation introduced in the last section covers all phenomena required

by Ryan’s framework to model the narrative system of TLRH. If the first principles

provided by her theory are sufficiently expressive then running the simulation should

result in the emergence of the narrative’s plot. However, this is not the case, because

two questions remain to be addressed before all of the characters’ observed behavior

can be implemented:

1. Why does the hen normally work on the farm, while the other animals always

relax?

2. What triggers the hen’s desire to punish the other animals?

THE FIRST QUESTION leads back to the previously mentioned basic conflict between

the obligation to work and the wish to relax. Ryan’s approach outlines how plot can

be analyzed based on the conflicts inherent to the state of a character’s private worlds.

The dynamics of goal selection in the presence of conflicting private worlds, however,

are not discussed by her at all. At the very least, for the sake of consistency, the posi‐

tion must be that comparable characters act comparably in similar states. Specifically,

this means that they should select the same goals if they have the same beliefs, wishes

and obligations. Yet precisely this appears not to be the case in TLRH: the characters

26The narrative system that is implemented by the MAS, here, is only one component of
a complete CSC algorithm. Whether condensation should be considered the responsibility
of a plot generation process, which uses the narrative system, or of a later process, which
transforms plot into discourse, is left open here.
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start out in comparable positions, yet their default goals differ: the hen follows the

obligation, while the others indulge the wish. One might resolve this problem by

assuming that for some reason the hen lacks the wish to relax, and the other ani‐

mals lack the obligation to work on the farm. However, this is undesirable for several

reasons. One is that such an interpretation removes two fundamental internal con‐

flicts from the narrative system, thereby stripping its virtual domain bare of some of

its characteristic furnishing. Here, it is important to remember Ryan’s position, in‐

troduced in Section 2.1.3, that conflict should be considered the default condition of

the narrative universe. Thus, resolving the problem by removing conflict seems not

prudent. Another reason is that such an interpretation does not appear grounded in

the logics of the underlying story world. What reason might there be in a folktale

world that one in four farm‐animals be obliged to work, while others should not be

subject to such societal expectations? On the technical side, the issue could of course

be easily resolved by implementing the hen’s behavior via a separate ASL file. The

implication of this would be, however, that the hen is an essentially different type of

agent than the other animals, a situation that again is not warranted by the logic of

the story world.

THE SECOND QUESTION arises with the need for low‐level descriptions that an im‐

plementation brings with it. It can be safely assumed that the hen’s wish to punish

the other animals is a reaction to their actions. But when precisely does it form? Is

already the rejection by the first animal enough to trigger the hen’s vengeance, or is

it only after she was rejected by everyone, that this goal arises? Is one cycle of rejec‐

tions enough, or does it take several rounds? The text of the story does not specify

the precise time nor reason, which would be required to resolve this problem. What

is worse, Ryan’s framework and the above implementation offer only binary decision

mechanisms: either an event occurs and triggers a desire, or it does not. A gradual

accumulation of negative disposition that only eventually results in a wish—like what

appears to be the case here—cannot be explained with the first principles at the dis‐

posal of our theory. Technologically, a possible solution would not be complex: the

perception of a rejection could increase a counter stored in a belief. The surpassing

of a certain threshold by the counter could be then implemented to trigger the wish
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to punish the offending agents. But this again raises more questions: Should other

events also influence the counter’s level, and how to decide which events do? Does its

level also fall eventually, and if yes, how and why? How can such a negativity counter

be interpreted narratologically? And, finally, should there be more counters of this

sort, for instance a positivity counter?

MY CONCLUSION of the conducted case study is that M.‐L. Ryan’s (1991) theory does

not stand the test of generation.27 It is not that the plot emerging from an implemen‐

tation of the outlined first principles is not sufficiently similar to the original plot.

The problem is that the provided first principle are not sufficient to resolve questions

that need to be addressed before any plot can be generated at all. In short: the theory

appears to be underspecified.

This situation might appear a failure of the undertaken approach, but should rather

be considered a success. Generative modeling was capable of uncovering problems

at the level of theory. All that remains to be wished is that another cycle of theory‐

building, implementation and generation can also uncover the nature of the under‐

specification and how it can be resolved. Should another cycle succeed, then this

would be a strong indication that generative modeling as approach, as well as InBloom

as a concrete operationalization, are valid and valuable. That is, that the problem in‐

deed lies with the theory, and not the tools.

Thus, the next chapter will begin by focusing on the uncovered short‐comings and

attempt to derive what is amiss at the level of theory. As the culprit seems in both

cases to be the hen, its primary lens will be fictional character.

27To be precise, it is only my operationalization of the theory that has been shown to fall
short. However, one of the claims of this thesis is that inferences about the underlying theory
can be drawn from such operationalizations.
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Mr Leopold Bloom ate with relish the inner organs

of beasts and fowls. He liked thick giblet soup,

nutty gizzards, a stuffed roast heart, liverslices

fried with crustcrumbs, fried hencods’ roes. Most

of all he liked grilled mutton kidneys which gave to

his palate a fine tang of faintly scented urine.

James Joyce, ‘Ulysses’ 3
Fictional Characters

THE OBSERVATION FROM CHAPTER 2 that currently no unified theory of narrative

holds sway over the field of narratology also means that there is no predominant un‐

derstanding of fictional character as one of its main constituent phenomena.1 The

previous chapter introduced characters as agglomerations of beliefs, wishes and obli‐

gations, whose intentions are the main driver of plot: Actions that are undertaken

serve characters’ intentions, happenings trigger new intentions, and mental events

outline the connection between intentions and actions (for more details refer back

to Sec. 2.2.2). Such a character‐centric view is not overly idiosyncratic. Bruner, for

instance, puts the action‐intention nexus at the centre of his understanding of all of

narrative (as a genus): “I think we would do well with as loose fitting a constraint as

we can manage concerning what a story must ‘be’ to be a story. And the one that

strikes me as most serviceable is […]: narrative deals with the vicissitudes of inten‐

tion” (Bruner, 1986, p. 17). And yet, the case study I introduced in the last chapter has

shown that such a view is not sufficient to recreate plot from character behavior, as

1For an overview of the main approaches and possible perspectives on character see the
discussions undertaken e.g. by Eder et al. (2010), Margolin (1990), and Mead (1990).
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it can be observed in existing narratives. What might be amiss?

My overview of the phenomenon of character in Section 1.2 introduced four analyt‐

ical perspectives that can be taken in order to look for an answer. The symptomatic

and symbolic perspectives can be dismissed out of hand, since they operate on too

high levels of abstraction: Since Ryan’s narrative semantics make no attempt to model

the emergence of secondary meaning, like themes or messages, our problem can be

neither located nor addressed from the symbolic perspective. And since the theory

takes a strictly text‐internal stance, the problem can also not be located at the symp‐

tomatic level of socio‐cultural communication. The synthetic perspective focuses on

aspects of characters as constructed artefacts. For us, this would imply a teleological

analysis of characters with regard to plot, which makes it a promising candidate to

understand why the desired plot fails to emerge from the described characters. The

classical approaches in this vein view characters as signs (in the semiotic sense) with‐

out interiority but defined by e.g. a function (Propp, 1968) or the actant of a gram‐

mar they correspond to (Greimas, 1983). Unfortunately, this is incommensurate with

Ryan’s approach, since it derives plot precisely from the interiority of characters, so it

seems unlikely to find solutions in these more classical works. To recapitulate, Ryan’s

position on the teleology of characters for plot is that “the plot is the trace left by the

movements of [character’s private worlds] within the textual universe” which is a re‐

sult of characters’ attempts “to make TAW coincide with as many as possible of their

private worlds” (M.‐L. Ryan, 1991, p. 119). Thus, whatever is amiss in a plot must be so

because it is not supported by a possible worlds understanding of fictional character.

In a later summary of her approach, M.‐L. Ryan (2013) endorses an understanding

of characters as “make‐believe life‐like persons” or “non‐actual individuals”. This im‐

plies that potential shortcomings must be due to a failure to sufficiently represent

‘actual individuals’. Analysing characters through the lens of how they represent per‐

sons is, incidentally, the main avenue of the fourth, the mimetic, perspective. This

is a curious realization, since it means that taking the synthetic perspective in the

present case implies to rather take the mimetic one. Elaborating what the mimetic

perspective entails, Margolin (1990) outlines that “[…] this nonactual individual […]

possess[es] human or humanlike properties and relations of the most diverse kinds:

physical, behavioral, social, communicative, and mental (psychological). [It] can also
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be endowed with […] a consciousness, interiority or personhood.” Ryan’s approach, as

we have seen, is compatible with such a perspective since it views characters as an ag‐

glomeration of beliefs, wishes, obligations and intentions. However, it arrived at this

state not because it set out to model the properties of personhood, but the possible

worlds semantics of narrative discourse: the importance of deontically, axiologically

and epistemically modalized propositions for a comprehensive logical representation

of a narrative. Consequently, it did not include any further phenomena that might

be associated with slippery, non‐formal, concepts like “consciousness, interiority or

personhood” (see the Margolin quote above). This hesitation is understandable, but

the issues encountered in the previous chapter indicate that it might be problematic,

and suggest an exploration of notions of character that are more comprehensive from

a mimetic perspective.

In a wistful remark, Currie (2010, p. 187) suggests that “narratives encourage us to

make sense of the world by telling of the ways in which the mind controls it. Perhaps

narrative encourages us to think of the mind as […] more robustly in control of cir‐

cumstances than it really is”. This move artfully brings together the above discussion:

It explicates Bruner’s position that intention is central to narrative, by outlining that

the structure of plot derives from intention, while at the same time expanding it to

consistently encompass a mimetic approach by replacing mere intention (or even in‐

tention combined with wishes, beliefs and obligations) with the more general concept

of mind. This chapter will explore why ‘mind’ can help overcome the first iteration’s

shortcomings, how it can be thought in a narratological context, and whether it can

be substantiated enough to be computationally modeled.

3.1 THE MIMETIC PERSPECTIVE

The above discussion was guided by theoretical considerations. To consider whether

it is also practically fruitful, we need to revisit the problems uncovered by the case

study and check whether they can be traced back to an incomplete modeling of phe‐

nomena connected to (an at this moment still pre‐theoretic understanding of) mind.
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3.1.1 ADDRESSING THE CASE STUDY

The first problem was uncovered by the question why the hen in TLRH chooses to fol‐

low an obligation, while the other farm animals follow their wishes. Being the same

type of character (i.e. folktale farm animal) in the same circumstances (i.e. living on

a farm), according to Ryan, they should choose the same goals. From a mimetic posi‐

tion, it is this implication that is problematic. While minds in persons fundamentally

do work comparably, simply because they share biological properties, in particular

situations even resemblant persons belonging to the same socio‐cultural group often

behave markedly different: One farmer might treat his animals respectfully, while an‐

other might abuse them. This is because persons are subject to strong inter‐individual

differences. The same can be observed in folktales, which are not commonly regarded

as overly concerned with accurate representations of the human mind. For instance in

“Three Little Pigs” two pigs quickly build houses from straw and wood which turn out

to be unsafe, while the third one takes more time and employs stone to a more stable

effect. Clearly, some inter‐individual differences must exist between the pigs. Even

the moral of the tale—a little extra work can go a long way in ensuring happiness—is

reducible to an inference from physical action to psychological essence: laziness is

punished, while diligence gets rewarded. A comparable stance would also resolve the

TLRH problem. The diligent hen chooses to work on the farm, while the lazy other

animals choose to relax. It remains to be seen whether binary traits like laziness and

diligence are narratologically desirable properties of the phenomenon mind, but the

general idea of introducing some sort of interpersonal difference—as first principles

responsible for goal selection—into Ryan’s framework seems fruitful.

The second problem was uncovered by the question when precisely the hen forms

the wish to punish the other animals. Ryan’s framework only supports binary deci‐

sions: an occurring event triggers a wish/obligation, or not, while in TLRH some sort

of gradual accumulation of negative disposition seems to take place. Additionally, the

precise nature of this negativity remains unclear, as well as whether there could be

comparable mechanisms at work with e.g. positivity. From a mimetic position, this

situation appears much less confusing. In psychology, persons’ valenced reactions to

external events are being described by the concept of affect. This covers short‐term
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phenomena like the appraisal of individual events through emotions, as well as mid‐

term dispositions that result from an aggregation of emotions into moods. This is a

useful observation because Ryan herself makes extensive use of the concepts of posi‐

tive and negative affect when, later in the book, analysing the plot of another folktale,

“The Fox and the Crow” (see e.g. p. 223 in M.‐L. Ryan, 1991). Curiously, she does not

explain what these phenomena are, or how they relate to the rest of the framework

she set up. In the case of TLRH, it seems plausible to assume that the repeated rejec‐

tions that the hen experiences cause negative emotions like anger or disappointment.

Over time, these emotions solidify into a hostile mood, causing her to lash out at her

earliest convenience.

Affect could also help untangle another issue with the plot. So far, the hen’s pun‐

ishment plan has been introduced as a form of taunting: offering something which

is then withheld. Yet, why should this, in fact, be considered a punishment, i.e. what

is the negative effect of such a treatment? Consider a Ryanian reasoner’s expected

reaction: it adopts its belief base concerning the (non‐)existence of bread, scraps a

wish to eat some bread, and carries on unfazed. Affect, especially in the guise of a

negatively valenced reaction like disappointment, would be a good explanans for this

situation because it is an a priori negative, involuntary reaction of the experiencing

agent. It is this negative emotion that gives this punishment the required sting.

These two exercises in mimetic interpretation support the theoretical argument

that Ryan’s approach suffers from insufficient modeling of phenomena related to

mind. Specifically, it seems that InBloom could be successful in recreating the plot

of TLRH if the underlying framework would address affectivity and interpersonal dif‐

ferences in characters. However, before we analyze in more detail what phenomena

comprise a mind and could be of use as first principles in a narratological setting, an

important objection to the mimetic approach in general needs to be addressed.

3.1.2 ANTI‐MIMETIC OBJECTIONS

The previous section ascribes characters wishes and obligations, suggests that they

exhibit personalities and experience affect—it even boldly claims fictional characters

have fictional minds. Does it not run the danger of confusing fictional characters with
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actual persons by falling into the fallacy of anthropomorphising mere signs?

This position would certainly be taken by Knights (1933) who expressed it in the

catchy question “How many children had Lady MacBeth?” about the near‐eponymous

tragedy by Shakespeare (1623). Naturally, Knights was not interested in the answer,

but instead wanted to criticize the then‐prevailing approach in Shakespeare criticism

to analyze characters as if they were humans. The problem his question exposed was

that the text itself offers contradicting evidence and leaves no recourse to close this

epistemic gap, since the answer can neither be inferred from the logic of the TAW nor

by importing common sense knowledge from the AW (relying on what was introduced

as the Principle of Minimal Departure in Sec. 2.1.1). This incompleteness is a funda‐

mental ontological difference to actual persons, who, as inhabitants of AW, are nec‐

essarily ontologically complete, even if we normally only have incomplete knowledge

about them. The solution, for formalists like Knights, is to treat characters strictly

as aggregates of words that are either used to describe them, or are uttered by them,

and are understood in opposition to other such word‐aggregates. Thus, Weinsheimer

(1979, p. 195) writes that: “[…] characters at most are patterns of recurrence, motifs

which are continually recontextualized in other motifs” while Barthes ([1970] 1974)

observes that ‘voices’—a code he introduces to substitute characters with a less an‐

thropomorphic term—are nothing but a web of semes attached to a proper noun.

This view has no place for purely conceptual phenomena like fictional minds, or even

emotions and beliefs, unless they are explicitly attached to the proper name that is a

character, by explicit psychonarration. Positing their existence purely because they

exist in people, for the formalist, means ignoring the incompleteness of fictional nar‐

ratives and naively conflating non‐existing paper‐beings with actual persons. Literary

critic Vermeule (2010, p. x) even insists that “If my profession has a single rule it is that

the distinction [between fictional character and real person] has to be honored”. A

sentiment that was voiced more figuratively by Weinsheimer (1979, p. 187) who pos‐

tulates that “[…] Emma Woodhouse is not a woman nor need be described as if it

were”2. I find the formalist view of character per se valid and valuable, but remain

unconvinced by its petulant insistence on being the only valuable perspective.

Before I address my reasons for this, I would like to first strengthen the position I

2Emphasis mine.
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oppose, by adding what I would classify as anti‐mimetic criticism that does not take

a formalist stance itself. These positions were occasionally expressed to me in private

communication, for which I am grateful both because of the valuable input as well

as the realization that my position needs delicate re‐adjusting. R. Michael Young—

director of the Liquid Narrative Research Group and Professor in the School of Com‐

puter Science at the University of Utah—expressed his anti‐mimetic stance in the

catchy phrase “Life‐like is not like life”, while Janet Murray—Professor in the School

of Literature, Media and Communication at the Georgia Institute of Technology and

author of the seminal Hamlet on the Holodeck: The Future of Narrative in Cyberspace

maintained the (less severe) position that “[…] there is one thing that computer sci‐

entists need to be told over and over again: Creating characters is not about being

realistic. It is about abstracting reality in a way that is dramatic”. This is not a for‐

malist stance, since it does not prescribe how characters should be conceptualized.

However, it is anti‐mimetic because it posits that understanding characters as mere

representations of actual persons is not sufficient to account for the ‘dramatic effect’

that they are intended to produce. I find this (broader) position sensible, too, but

several reasons lead me to maintain that a mimetic perspective is still tenable by ar‐

guing that it is just one of the viable perspectives—especially one that is not at odds

with a formalist one.

3.1.3 ARGUING FOR FICTIONAL MINDS

I shall depart from a formalist position myself, by affirming that in the text of a nar‐

rative characters, indeed, are mere signs without interiority: proper nouns that are

further qualified by descriptive statements, and that take their signification from an

opposition with other, comparable aggregates. What is important to maintain is that

the text is only the mediating part in an act of communication, in which a sender

(the author, an entity commonly considered ‘dead’ to narratologists) intends to en‐

code symbolically charged representational content, such that it is decodable by a

receiver (the much more narratologically innocuous reader).
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THE PROCESS OF DECODING fictional characters by readers3 has been surveyed from

a cognitive perspective by Schneider (2001, 2013). The central claim is that readers

use the clues in a text (what Barthes would call semes) to construct mental models of

the referred‐to characters. A mental model is a “holistic mental representation of [a

person’s] experience of the world and that, in tasks such as problem solving, […] can

provide a guideline for the operations of the mental apparatus” (Schneider, 2001), i.e.

a dynamic cognitive structure that is being continuously and effortlessly deployed by

persons to make predictions about the actual world. This alone is already much richer

than the barren ‘proper name cum web of semes’ that formalists claim exhaustively

represents characters.

To add insult to injury, Schneider essentially suggests that readers use the same

mental structures to represent fictional characters that they use to represent actual

persons, implying that—to the reader’s mental processing—there is no fundamental

difference between an actual person and a fleshed‐out character4, an important pro‐

mimetic argument. Schneider also observes that this bottom‐up process of mental

model construction is accompanied by a top‐down process of information integra‐

tion, which opportunistically imports relevant real‐world knowledge that appears to

apply to the character, into the emerging mental model. This dominantly pertains

to stereotypical information, for instance about social roles (‘mother’), professions

(‘lawyer’) or class (‘rich person’), which allows readers to form expectations about

characters’ behavior even before sufficient individuating information has been pro‐

vided by the text. This results in a further conflation of the mimetic with the textual

because knowledge about persons in AW is imported into readers’ mental character

representations.

Keeping in mind the idea that readers represent fictional characters like they rep‐

resent humans, it does not come as a surprise that they regularly and predictably

develop affective dispositions towards characters: sympathy, that is, feeling for the

character, as well as empathy, that is, feeling with the character (see e.g. Caracciolo,

3Reader in this context refers to actual lay persons as the subject of empirical study, not
abstract reader‐constructs like the modal or ideal reader (see Sec. 1.2.2) that is sometimes put
forward by literary scholars like Eco (1984).

4A non‐fundamental difference between the two would be that the mental model of a
character contains the additional belief that it represents a non‐actual entity.
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2016; Eder, 2006). It is absurd to even speak of ‘feeling with’ a “pattern of recurrence”

or a “web of semes”. Empathy is a disposition that is reserved to animate objects and

supposes in its target a phenomenological center of experience capable of feeling; one

might say: a mind. Thus, if readers are capable of feeling with a character, then they

must (at least subconsciously) perceive it as something that has a mind with enough

capacity for joy or suffering to trigger an empathetic reaction. An observation that im‐

plies the usefulness of a mimetic analytical category in the fashion of fictional mind.

This point is developed further by cognitive narratologist Lisa Zunshine (2006)

who makes a convincing case that readers effortlessly apply their real‐world Theory

of Mind (ToM) capabilities when interpreting fictional characters’ actions. ToM is

the ability to infer others’ (but also one’s own) mental states from observable be‐

haviors and physical states; something that comes natural to neurotypical5 human

adults. This ability develops during childhood through exposure to a complex social

environment, and is honed well into adolescence. Zunshine’s introductory example

demonstrates how the very same ToM influences the reception of a novel:

When Peter Walsh, a protagonist of Virginia Woolf ’s Mrs. Dalloway, un‐
expectedly visits Clarissa Dalloway “at eleven o’clock on the morning of
the day she [is] giving a party,” and, “positively trembling” and “kissing
both her hands” (40), asks her how she is, how do we know that his “trem‐
bling” is to be accounted for by his excitement at seeing his old love again
after all these years and not, for instance, by his progressing Parkinson’s
disease? (Zunshine, 2006, p. 3)

At first glance the question seems nonsensical since it is hard to conceive of a reader

that should make the assumption Walsh’s trembling could be caused by Parkinsons’

disease or even just cold weather. But it is precisely this pervasiveness of the assump‐

tion that physical gesture must be caused by psychological state—which readers carry

over from the actual world into fiction—that makes us blind to its existence. As Zun‐

shine puts it, this default interpretational stance rests on “our evolved cognitive ten‐

dency to assume that there must be a mental stance behind each physical action and

5It is interesting to note that disorders on the autistic spectrum are characterized by (more
or less expressed) difficulties with applying ToM, correlated with unusually low interest in
fiction and narratives (Zunshine, 2006, p. 8). A correlation that Zunshine suggests is not
accidental, but due to the fundamental role mind reading plays in the functioning of stories.
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our striving to represent to ourselves that possible mental stance even when the au‐

thor has left us with the absolute minimum of necessary cues for constructing such a

representation” (Zunshine, 2006, p.23). For the present discussion these observations

mean that readers do not only reconstruct fictional minds from narrative discourse,

as I suggested previously, but also that these representations of minds seem to func‐

tion closely enough to those of real minds that reader’s real‐world trained ToM can

be successfully applied to them.

Summarising, readers seem to reconstruct fictional characters from narrative dis‐

course by importing real world knowledge into the resulting representation, they re‐

spond emotionally in ways that are reserved for animate beings, and per default suc‐

cessfully apply their real world ToM to infer a broad range of fictional characters’ prop‐

erties. These phenomena seem hard to explain from a formalist perspective, but even

if it were possible, the principle of parsimony seems to suggest that a more economic

theory would be to simply acknowledge the referential, mimetic aspects of their na‐

ture. Once a mimetic perspective is established as valid, accepting the tenability of

fictional minds is only logical, especially in view of the above argument from ToM.

THE PROCESS OF ENCODING narrative fiction by an author is, in contrast to its decod‐

ing by the reader, rarely the object of scientific study due to the notorious difficulty

of finding empirically valid approaches and sufficiently large pools of subjects. It also

fell into disrepute as the subject of scholarly argument in the middle of the 20th cen‐

tury, when Roland Barthes (1977) famously declared the ‘death of the author’. The

main driver for this move was to liberate the text from an authoritative interpreta‐

tion in reference to an authorial intention, which is unknown, and instead accept

that it contains a plethora of meanings that can be uncovered by any individual act

of reading. This seems to thwart any possibility to infer properties of fictional char‐

acters from their mental representations pre‐encoding, like we did from the mental

representations post‐decoding. However, an interesting opening is provided by cre‐

ative writing‐researcher Lina Varotsi (2016), who essentially makes the argument that,

while the mind of an individual author is necessarily opaque, it still remains an in‐

stance of the human mind as a genus and thus subject to all and any properties and

limitations that pertain to all minds. Thus, we can depart from the assumption that
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the author as an intentional agent intends to communicate something that originates

in the author’s experience of the actual world: “Texts are […] inspired by concepts,

perceptual products, and the personal experiences of their originators. Those experi‐

ences reflect upon, or are drawn by, real‐life interactions, even if their conveyance is

purely conceptual; the correspondence to the prototype is inevitable” (Varotsi, 2016,

p. 71). It seems that the formalists’ liberation of the text from the author is question‐

able because it focuses solely on the signifier while neglecting the signified. Yet the

nature of the signifier, in narratives, is connected to the signified: “the text does not

antagonise the concept; it defines and shapes it, as per the author’s aims, and the

reader’s deconstruction, both of which can be examined […]” (Varotsi, 2016, p. 72).

Thus, Varotsi views “The fictional text […] as an imprint of the author’s consciousness

on paper” (Varotsi, 2016, p. 73). When applied to the question at hand this means

that the conception and creation of characters is necessarily shaped and informed by

the author’s phenomenological experience of its prototype, the actual person:

The novelist invents and discovers her characters through her experience
of the human person. Invents, because every textual being is conceived
ex nihilo; discovers, because her individual textual elements, both ‘phys‐
ical’ and idiosyncratic, will emerge from the author’s cognitive informa‐
tional storage processed by her imagination.

(Varotsi, 2016, p. 74)

A fascinating study of such writerly informational processing of characters, pre‐

sented by Taylor et al. (2003), revealed a strong prevalence of a phenomenon they

dubbed Illusion of Independent Agency (IIA). IIA is defined as the writer’s subjective

experience of their fictional characters “[…] as having their own thoughts, feelings,

and actions. The essence of this conceptual illusion is the sense that the characters

are independent agents not directly under the author’s control. As a consequence,

writing becomes more like passive reporting than active creation” (Taylor et al., 2003,

p. 366). The study’s authors conducted interviews with 50 writers and found that only

4 report no experience of IIA. Of the 92% of writers who experienced IAA, 22 were

classified as reporting mild, 19 moderate, and 5 strong forms. The study’s authors

also remark that “furthermore, the writers provided vivid examples of their characters

who not only had taken over the job of composing their own life stories, but who also
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sometimes actively resisted the writer’s attempts to control the story” (Taylor et al.,

2003, p. 376). This quantitative and qualitative findings lend credibility to the many

remarks by novelists to this effect, most famously perhaps Edward Morgan Forster’s

below, which were commonly dismissed by literary scholars as cliche:

The characters arrive when evoked, but full of the spirit of mutiny. For
they have these numerous parallels with people like ourselves, they try to
live their own lives and are consequently often engaged in treason against
the main scheme of the book. They “run away,” they “get out of hand”:
they are creations inside a creation, and often inharmonious towards it;
if they are given complete freedom they kick the book to pieces, and if
they are kept too sternly in check, they revenge themselves by dying, and
destroy it by intestinal decay. (Forster, [1927] 2002, p. 48)

No explanation for the phenomenon of IIA can be derived from a quantitative

study. However, Taylor et al. offer an interesting hypothesis, by drawing an anal‐

ogy to operating a car. For a novice, the process is effortful and requires constant

attention to the details. An experienced driver, on the other hand, experiences the

process as quasi automatic: It usually doesn’t require much attentional resources and

leaves the driver room to listen to music or have a conversation. This corresponds to

two fundamental modes of thought Kahneman (2011) calls ‘System 1’: fast, automatic,

unconscious; and ‘System 2’: slow, effortful, conscious. With prolonged training and

increased mastery, tasks can move from being executed in System 2 to System 1. When

applied to fiction writing, this reasoning suggests that also the process of imagining

fictional characters and their interactions could, in time, be relegated to System 1,

which would mean that it would be executed fast, automatically and subconsciously.

A manifestation of this could be phenomenologically experienced as if the imagined

characters were having a life of their own: precisely what is described by the IIA.

The ramifications of this, for the discussion at hand, is that writers at least ground

their understanding of fictional characters in real life, and seem to employ mental

representations that are life‐like enough for these characters to be perceived as non‐

actual individuals with independent agency. Clearly, no mental model is perfect, and

any writer has (at least in theory) full control of her writing process. Consequently,

Varotsi suggests that “the nature of the correspondence between character and the

real person is defined as much by the similarities between the two poles, as by their
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fundamental differences” (Varotsi, 2016, p. 77). But even speaking about the differ‐

ences between characters and persons presupposes a mimetic, referential perspective

from which these entities first become comparable.

SUMMARIZING the previous section, it seems appropriate to state that the opposi‐

tion of a formalist versus a mimetic perspective is a gratuitous dilemma. The two

perspectives merely view different sides of the same coin: formalists restrict their

study to the properties of the signifier, while mimeticists focus on the signified. The

advantage of the formalist view is that it operates on the only reified part of the act

of narrative communication, the immutable piece of writing that is the result of an

encoding and the source of any decoding. The advantage of the mimetic view is that

it focuses on the beginning and the endpoint of this narrative communication act,

thus allowing a more teleological approach.

The observation that both perspectives can be valid at the same time also allows

to address the second class of criticism reported previously, which objects that a

mimetic perspective does not allow to account for the dramatic effect of fictional

character. These non‐mimetic parts of a character‐representation can be captured

in a formalist analysis, while phenomena that can not be accounted for from a for‐

malist perspective—like empathy or applying ToM to characters—are captured by a

mimetic analysis. Furthermore, I would argue that a dramatic effect can arise from

a non‐mimetic representation precisely because readers’ default assumption is that a

character will appear mimetic. The heightened sense of awareness that results from

this defied expectation allows the realization of the character’s aesthetic construct‐

edness.

With this argumentation in place the suggestion to approach the TLRH case study’s

problems by introducing the notion of fictional minds appears finally vindicated. If

characters are written and read like persons, then their narratological constitution

in relevant regards should be comparable. This includes the property of seemingly

being determined by a mind.
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3.2 FICTIONAL MINDS

The concept of fictional minds was introduced by the narratologist Alan Palmer

(2004), who takes a mimetic position quite like the one developed above: “narra‐

tive fiction is, in essence, the presentation of fictional mental functioning” (Palmer,

2004, p. 5). His work, however, starts from a different perspective. Palmer states that

narrative theory has mostly equated mental functioning with characters’ thoughts,

and dealt with it in two ways: by classifying relevant parts of the narrative discourse

based on several categories of thought report, and by grounding assumptions about

their mental states in explicit psycho‐narration. However, he also observes that even

in narratives that do not provide much access to characters’ interiority, like for in‐

stance Hemingway’s quasi‐behaviorist novels, readers are capable of extracting a great

deal of fictional mental functioning. Palmer concludes that there must be more to

fictional mental functioning than mere thought report, and suggests that fictional

minds could be reconstructed by readers even just from action descriptions because

actions are completely determined by minds. Accordingly, the main difference is that

Palmer departs from the reconstruction of fictional minds from discourse, while my

discussion above was motivated by how fictional minds are causally related to the

events that comprise the plot. Since these two approaches are connected through

their shared focus on minds, Palmer’s insights will be also valuable for us. Such an

application of his work can be seen as licensed by Palmer when he writes that his

is “a functional and teleological perspective that considers the purposive nature of

characters’ thought in terms of their motives, intentions, and resulting behavior and

action” (Palmer, 2004, p. 12). A teleological perspective to characters’ minds, in the

end, must be one that leads to the purposive nature of these minds in the overarching

organizational principle of the plot.

The main approach of Palmer (2004, Chap. 4) is to review what he calls the cog‐

nitive science discourse on actual minds, and outline how it applies to the fictional

minds reconstructed from narrative discourse. Since Palmer operates in an analyti‐

cal setting he presents cognitive phenomena conceptually and at a high level of ab‐

straction, which is reflected in the fact that he grounds his thoughts in the works

of big‐picture thinkers like Dennett, Pinker and Damasio. In the following subsec‐
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tions, I will follow Palmer’s lead and summarize his observations on a selection of

topics: functionalism, disposition, emotion and action. These will become the con‐

stituent phenomena that make up the concept of fictional mind for this thesis. Since

for the present work it is necessary that this concept is operationalizable in a gen‐

erative model, I will expand Palmer’s view with insight from the applied side of the

cognitive sciences, wherever it is opportune to demonstrate how mental phenomena

are quantifiable and operationalizable.

I want to caution that the following sections might produce a feeling of jarring

discrepancy, since mathematical descriptions of cognitive phenomena will appear

alongside Palmer’s high‐level literary considerations. Being able to think phenom‐

ena both ways at the same time is one of the inherent challenges (but also chances

for cross‐fertilization) that come with interdisciplinary efforts like the present.

3.2.1 FUNCTIONALISM

To understand why Palmer puts forward a teleological approach to fictional minds

that allows to integrate his ideas so well into this thesis, I will first summarize his

view on functionalism. He subscribes to a weak form of functionalism, which he

summarizes like this: “[…] the functional view of the mind […] analyzes what it does

and what it is for, rather than asking what the brain is made of” (Palmer, 2004, p. 88).

In a narratological setting, this corresponds to the position that I already outlined:

fictional minds should be analyzed not only through the thoughts that are reported

(what they are ‘made of’ in a story), but also how they shape characters’ actions and

reactions (what they ‘are for’)—its teleology. In analogy to the computational theory

of mind that is at the basis of the work of thinkers like Dennett or Pinker, Palmer

observes that also fictional minds can be analyzed as (representations of) processes of

information processing. To exemplify how this perspective can be applied to a novel,

I will relay Palmer’s own brief analysis of Charles Dickens’s (1861) Great Expectations:

Pip’s mind processes the information that he receives from the other
minds around him and from other aspects of his physical and social en‐
vironment. He learns, in particular from Estelle and Miss Havisham,
that he wants to be different. He develops goals, such as wanting to
be a gentleman, that conflict with his current situation. He then learns
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from Herbert, Mr. Jaggers, and so on how to adapt and how to become a
gentleman. His mind adapts differently to all of the various minds with
which it interacts. Finally, he learns the most difficult lesson of all—that
becoming a gentleman is not enough and that he has another goal: he
has still to learn how to be a good person.

(Palmer, 2004, p. 90)

3.2.2 DISPOSITIONS (FROM COGNITIVE AND LITERARY PERSPECTIVES)

Dispositions, for Palmer, are not events that take place in the mind, but rather a sort

of state that affects how and which events usually take place in a particular mind:

“These are states of mind or dispositions that, Damasio claims, are ‘records which

are dormant and implicit rather than active and explicit, as images are’ (2000, 160).

[…] Daniel Dennett calls them ‘mind‐ruts’ (1991, 300)” (Palmer, 2004, p. 109). To con‐

tinue the metaphor: these mind‐ruts channel a person’s stream of thought in com‐

mon ways, which results in tendencies to act in certain ways—pronounced enough

to allow observers to form expectations about that person’s behavior. These expecta‐

tions are then perceived by both parties as personality, and even allow to distinguish

persons from each other. “Antonio Damasio describes the differences between imme‐

diate, single mental events and states that continue over time in terms of two selves:

‘the seemingly changing self and the seemingly permanent self ’ (2000,217)” (Palmer,

2004, p. 109). Hence, the ‘changing self ’ corresponds to a person’s sense as locus of

experience, while the ‘permanent self ’ corresponds to that person’s sense as diachron‐

ically stable essence manifested in a distinct personality.

In psychology, personality is commonly operationalized using a set of fixed and

distinct traits which can be empirically demonstrated to have predictive value. One

of the most influential trait theories is the Big Five model (McCrae & John, 1992) that

proposes the five basic factors (i.e. domains of traits) openness to experience, conscien‐

tiousness, extraversion, agreeableness and neuroticism (OCEAN) to comprehensively

capture an individual’s personality. Each factor is associated with clusters of related

adjectives used as trait terms in natural language (see Table 3.1), and derived rating

scales that contrast these adjective groups. McCrae and John (1992, pp. 195–198) at‐
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Table 3.1: The five personality factors and a sample of adjectives associated with the high pole
of the respective dimension; abridged version from (McCrae & John, 1992).

Factor Adjectives (high pole)

Openness Artistic, curious, imaginative, insightful, original
Conscientiousness Efficient, organized, planful, reliable, responsible

Extraversion Active, assertive, energetic, enthusiastic, outgoing
Agreeableness Appreciative, forgiving, generous, kind, sympathetic

Neuroticism Anxious, self‐pitying, tense, touchy, unstable

tempt to distill factor definitions but fail to provide a succinct wording. The following

provides a short explanation while grossly simplifying the original discussion:

• Factor O captures the broad domain of aesthetic sensitivity, intellect and a need

for variety, which could be seen as lack of focus or unpredictability, at the high

end of the dimension. At the low end, it corresponds to conservatism, perse‐

verance, and pragmatism.

• Factor C, at the higher end, can be understood as either an inhibitive tendency

to control ones impulses, or the proactive tendency for planning and organi‐

zation. Thus, at the lower end it corresponds to flexibility but also impulsive

tendencies.

• Factor E, at the high end, corresponds to a tendency for positive affect, which

also captures the complex of warmth‐dominance because “cheerful people con‐

sistently tend to be dominant, talkative, sociable, and warm” (McCrae & John,

1992). Low E corresponds to independence, but also retiring and quiet behav‐

ior. It should not be confused with high negative affect (corresponding to high

N) or what is folk‐psychologically referred to as introversion (high introspec‐

tion).

• Factor A captures a tendency for altruistic cooperation and a concern for social

harmony at the one end of the dimension. At the other, it captures self‐centered

antagonism, but also strength of will.

• Factor N, at the high pole, is understood as the tendency for negative affect and

low stress tolerance. The low pole denotes the opposed tendency for calmness

and serenity, but also low emotional reactivity.

Personality is assessed using standardized questionnaires. Most commonly, this is

done via self‐report, when a person is requested to rate how strongly several state‐
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ments apply to them. However, valid scores can also be obtained by asking observers

to provide the necessary information about that person (Eysenck, 2004, p.455–457).

This is felicitous because self‐report data is not readily available for the study of fic‐

tional characters, while third‐person ascriptions can be requested from readers6. A

recent questionnaire, that has been successfully used for self‐report as well as ob‐

server ratings, is the Berkeley BFI instrument (John et al., 1991; John et al., 2008). The

whole instrument consists of 44 items in the form of “short phrases based on the trait

adjectives known to be prototypical markers” (John et al., 2008) that are answered

using a 5‐point Likert scale. An excerpt of which can be found in Lis. 3.1.

The OCEAN personality score of a person has been shown to have predictive

value for a broad range of behavioral (see e.g. Ozer & Benet‐Martinez, 2006) and

affective (see e.g. Komulainen et al., 2014; Revelle & Scherer, 2009) tendencies.

However, it is important to point out that, apart from personality, also context has

an important effect on a person’s behavior. In fact, the debate on whether the former

or the latter has the stronger influence is still not settled. A fascinating case in point

has been made by Darley and Batson (1973), who demonstrated the role of time

pressure on helping behavior. Their experiment was conducted on seminarians, who

were asked to give a 5 minute talk on the vocational careers of seminary students

based on a short passage of text. After some time for preparation, each subject was

told to go to another building. In the low‐hurry condition the subject was informed

that the facility would be ready in a few minutes and that they could wait there. In

I see myself as someone who...
... is talkative.
... is reserved.
... is full of energy.
... tends to be quiet.
... has an assertive personality.
... is sometimes shy, inhibited.
... is outgoing, sociable.

Listing 3.1: The BFI items used to asses the factor extraversion.

6One might argue that third‐person ascriptions are even more reliable in the case of fic‐
tional characters than they are in actual individuals because narrative discourse often provides
readers with direct access to characters’ thoughts—a privilege that in AW is not available even
to one’s closest relatives.
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the high‐hurry condition the subject was told that they were already expected a few

minutes ago so they should better hurry. When passing through the alley between

buildings, all subjects encountered a collaborator who had seemingly collapsed,

sitting slumped in a doorway, coughing and groaning. If personality were a strong

predictor of helping behavior one would expect time pressure in an insignificant

assignment to have no effect on behavior in such high stake circumstances, i.e. that

the amount of help observed in all conditions would be the same. The observed

results were quite sobering: In the low‐hurry condition 63% offered some sort of

help, against 10% in the high‐hurry condition.7 This demonstrates that context

can have a dramatic effect on behavior and seems to be able to override intrinsic

dispositions.

In the context of narratological study, personality has been behind one of the first

generally accepted approaches to classify fictional characters: E.M. Forster’s ([1927]

2002) distinction between “flat” and “round” characters. Forster, who was not only

a writer but also an accomplished literary critic, maintained that flat characters are

“constructed round a single idea or quality” (Forster, [1927] 2002, p. 48); one might say

they are built around one strongly pronounced personality trait. Round characters,

on the other hand, are “capable of surprising in a convincing way” (Forster, [1927]

2002, p. 55), which means that they either have conflicting traits, undergo a marked

development, or are capable of acting ‘out of character’—not in accord with their

personality.

The personality of characters has been mainly analyzed by annotating passages of

narrative discourse that perform direct characterization: remarks by either the narra‐

tor or other characters that directly ascribe certain properties to a character. These

are further distinguished by whether they appear en bloc, or interspersed. More inter‐

esting, in this context, is the approach of indirect characterization, which allows the

analyst to derive properties of a character’s personality from its actions: “Given the

sort of disposition that this particular character has, how will he or she react in this

7It’s a notable twist, that half of the subjects were given the parable of the Good Samaritan
as basis of their talk, while the others received a task‐related text. Whether subjects read the
parable, or another text, turned out to have no significant effect on helping behavior.
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specific situation? The answers to this question will then modify to a greater or lesser

extent the initial hypotheses that we have formed regarding that character” (Palmer,

2004, p. 112). While this makes no claims about underlying personality dimensions

or the set of possible personality traits, it at least presupposes that a causal connec‐

tion exists between fictional minds (and especially their dispositions) and characters’

actions, which allows to infer the former from the latter.

It is important to keep in mind that ‘mind‐ruts’ apply not only to actions, but also

to emotions, which often modify how actions are performed. This connection, too,

has been utilized by narrative theory. “It is not so much what a character does and

says that is important, but how s/he behaves or speaks: in a leisurely way, agitatedly,

preachily, shrilly, looking at the floor in embarrassment etc. The adjectives and ad‐

verbs used in the course of a text often contribute more extensively to characterization

than a detailed, one‐off description of a person’s appearance or disposition” (Flud‐

ernik, 2009, p. 46). While Fludernik’s remarks focus on the discoursive surface of a

narrative text, they also demonstrate that personality can be derived from a charac‐

ter’s displayed emotions. Hence, a causal connection is presupposed also from per‐

sonality to affect. This demonstrates how the concept of fictional minds has been

implicitly present even in more classical approaches to narratology, via the concept

of personality.

An example of personality at work (and how it is analyzed) in literature can be

found in the introduction of Leopold Bloom in Joyce’s (1922) Ulysses, which served

as this chapter’s epigraph (on p. 105). Bloom’s introduction does not ascribe him any

traits directly but, instead, compiles a long list of his dietary predilections. These are

in and of themselves dispositions; but taken together they also allow to infer a general

tendency: Bloom is a man of prodigious appetites, someone who takes great pleasure

in the satisfaction of his bodily needs. The mention of his relish of the ‘faint tang of

urine’ in his favourite food demonstrates that he is unruffled even by the less savoury

of bodily phenomena and can be taken to imply a certain vulgarity. This complex dis‐

position manifests and guides the protagonist throughout the novel. To name but a

few (from the innocent to the vulgar): In the chapters ‘Lestrygonias’ and ‘Circe’ great

detail is provided on Bloom’s mental dealings with food, the chapter ‘Calypso’ con‐

tains a vivid description of the protagonist enjoying the mundane process of moving
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his bowel, and ‘Nautica’ describes him masturbating on a beach while watching the

bathers. On a more fundamental level, Bloom’s attitude towards physicality can be

considered the main (mimetic) driver behind the plot of the novel. He is described as

incapable of intercourse with his wife, Molly Bloom, ever since the death of their son,

Rudy, more than a decade before the day on which the novel takes place. Molly has

taken a lover, Blaze Boylan, to compensate for this lack. Leopold Bloom’s Odyssey

through Dublin can be seen as an attempt to flee (and eventually come to terms with)

the evidence of his own inability to satisfy the physical needs of a loved one. Thus we

can state that his actions and emotions project a distinct personality which is consis‐

tent with the expectations created in his introductory characterization.

3.2.3 EMOTIONS (FROM COGNITIVE AND LITERARY PERSPECTIVES)

Emotions were mentioned above as one type of mental events that can vary depend‐

ing on dispositions. However, the distinction is not so clear‐cut. As Palmer points

out: “Emotions last for varying periods of time. When they are short‐term, they are

emotional events; medium‐term, they tend to be called moods; as long‐term states,

they are closer in nature to dispositions” (Palmer, 2004, p. 114). Indeed, some theories

refer to personality as long‐term affect (see e.g. Gebhard, 2005). To make the distinc‐

tion clear, I will use the term emotion only to refer to short‐term affect. To refer to

the whole temporal continuum described by Palmer, I will use the term affect.

It is important to stress that the folk‐psychological notion of an opposition between

affectivity and rational thought is not appropriate. Emotions are often the precondi‐

tion of rational thought:

According to Damasio, ‘the presumed opposition between emotion and
reason is no longer accepted without question. For example, work from
my laboratory has shown that emotion is integral to the processes of rea‐
soning and decision making’ (2000, 40–41). Patients who have ‘lost a
certain class of emotions’ have also ‘lost their ability to make rational
decisions’ (2000, 41)

(Palmer, 2004, p. 116).

However, emotions can not only serve as an enabler of rational thought, but can

also arise as a result of it. As Palmer succinctly puts it: “Cognition causes emo‐
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tion” (Palmer, 2004, p. 116). This elucidates that rational thought and emotion are

closely intertwined instead of opposing modes of cognition.

Palmer mentions several ways of categorizing emotions, one of which is the distinc‐

tion between primary and secondary emotions. The former are considered immedi‐

ate, unreflective and universal reactions to events. Commonly, four or six emotions

are considered primary: fear, happiness, sadness, anger, and sometimes also surprise

and disgust. Secondary emotions are learned and thus can sometimes be specific

to the culture in which a person grew up. They are deliberative and social, which

means that they can arise as the result of a reasoning process and serve a function

in social interaction. Elgin (1999, Chap. V) presents an insightful example for the

learned, deliberative and fine‐grained nature of secondary emotions. She explains

that regret is an emotion that arises as a reaction to misfortunes, and remorse differs

from regret “only by incorporating a belief that one is responsible for the misfortune

it concerns” (Elgin, 1999, p. 148). This is interesting because we do not have special‐

ized emotions for many other types of misfortunes, like for instance those happening

on Mondays. She claims that the reason for this is that it is socially encouraged to

develop an awareness for one’s responsibilities with regard to misfortunes, while not

with regard to days of the week.

Several taxonomies exist that outline the differences between emotions, and an

overview is outside the scope of this thesis. One popular approach, which will be the

one to be computationally adopted in Sec. 3.3, is the theory of Ortony et al. (1990,

short: OCC). OCC is an appraisal theory, which means that it conceptualizes emo‐

tions as valenced reactions to some aspects of the environment: either events, agents

or objects. The diagram in Fig. 3.1 outlines which emotion corresponds to which ap‐

praisal in OCC. For instance, if an event is appraised with a focus on its consequences

for one self and the prospects of this event are irrelevant, then a positive appraisal

would elicit the emotion of joy, while a negative appraisal would elicit distress. Over‐

all, the taxonomy is comprised of 22 different emotions, which is significantly larger

than the set of basic emotions. However, in a literary context, where often great sensi‐

bility is displayed towards affective phenomena8, this might prove a meager selection,

8A fine example of the sensibility with which authors dissect affect can be found in the
preliminary studies that were conducted and preserved by Gustave Flaubert on his classic
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Figure 3.1: The OCC taxonomy of emotions, from Ortony et al. (1990).

and even in a cognitive science context at least the lack of surprise as a distinct emo‐

tion is questionable.

Medium‐term affect, i.e. mood, has also been the object of psychological investiga‐

tion. In contrast to emotion, mood is not taken to be bound to one particular event,

but is rather a stable and pervasive affective state whose changes can correlate with

emotional events. Psychologist Albert Mehrabian (who refers to mood as temper‐

ament) defines it as the “average emotional state across a representative sample of

life situation” (Mehrabian, 1996b). Because it is not possible to compute an average

over a set of discrete emotion‐events9, Mehrabian presents three basic dimensions

along which moods and emotions can be quantified: pleasure (P), arousal (A), and

dominance (D):

The Trait Pleasure‐displeasure Scale (Mehrabian, 1978a; 1994a) indexes
the relative predominance of positive versus negative affective states

novel Madame Bovary (Leclerc, 1995). They include the author’s analysis of characters’ states
using emotions as specific as feeling of emptiness, poetic feelings or jealousy‐curiosity.

9To illustrate this point one might for instance ask oneself what the average of the emo‐
tions: anger, pity and pride would be.

127



CHAPTER 3. FICTIONAL CHARACTERS

across a representative sample of life situations. […] The Trait Arous‐
ability Scale (Mehrabian, 1977; 1994b; 1995a) is a measure of how eas‐
ily a person is aroused by “high information” (i.e., complex, changing,
and/or unexpected—Mehrabian & Russell, 1974b) stimuli and how slowly
his/her arousal returns to baseline levels. […] The Trait Dominance‐
submissiveness Scale (Mehrabian & Hines, 1978; Mehrabian, 1994c) as‐
sesses a person’s characteristic feelings of control and influence over his
life circumstances versus feelings of being controlled and influenced by
others or events.

(Mehrabian, 1996b)

This allows to understand mood instances as points in a three dimensional space

with the axes P, A, and D. Mood changes, for instance caused by the onset of an

emotion, are then conceptualized as a movement of this point in the PAD space.

Figure 3.2: The mood-octants of the PAD
space.

To further classify moods, Mehrabian

suggests to dichotomize each of the axes

of the PAD space and assigns a label to

each of the resulting octant‐segments

which enables a discretization. Fig‐

ure 3.2 presents the resulting PAD space

with the octants: exuberant (+P +A

+D), dependent (+P +A ‐D), relaxed (+P

‐A +D), docile (+P ‐A ‐D) as well as:

hostile (‐P +A +D), anxious (‐P +A ‐D),

disdainful (‐P ‐A +D) and bored (‐P ‐A

‐D). Thus, a subliminal mood change

would correspond to a movement inside

an octant, while a noticeable, categorical change of mood corresponds to a transition

from one octant to another.

In the context of narratological study, Palmer notes, affect has been accepted as an

important motivational factor but has not been thoroughly theorized. The main ap‐

proach is to distinguish between how affect is presented to the reader: “Emotions can

be explicitly labeled or inferred from mental events that appear to embody an emo‐
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tion such as anger. For example, if one character says of another, ‘He’s angry,’ this

has a different status from a direct presentation by the narrator of a stream of angry

thoughts” (Palmer, 2004, p. 114).

As an example Palmer analyzes a short passage from Austen’s (1815) novel Emma,

which describes the young protagonist Emma Woodhouse’s reaction at being repri‐

manded by the respected gentlemen George Knightley for an unkind jest she made

about Mrs. Bates:

He had misinterpreted the feelings which had kept her face averted, and
her tongue motionless. They were combined only of anger against her‐
self, mortification and deep concern. She had not been able to speak;
and, on entering the carriage, sunk back for a moment overcome—then
reproaching herself for having taken no leave, making no acknowledge‐
ment, parting in apparent sullenness, she looked out with voice and hand
eager to show a difference, but it was just too late. He had turned away,
and the horses were in motion […] She was vexed beyond what could have
been expressed—almost beyond what she could conceal. Never had she
felt so agitated, mortified, grieved, at any circumstance in her life. She
was most forcibly struck. The truth of his representation there was no
denying. She felt it at her heart. How could she have been so brutal, so
cruel to Miss Bates!

(Austen, 1815, p. 309)

Palmer (2004, p. 113) uses this passage to demonstrate several narratological obser‐

vations about fictional affectivity. One is how emotions are presented using thought

report. Sometimes they are directly labeled (“agitated, mortified, grieved”), and

sometimes transported indirectly through the content of the thoughts (“How could

she have been so brutal”, here e.g. in the form of free indirect discourse). Another

is that the internal affect reported through thoughts also causes behavioral changes

that are observable to other characters. Even if the underlying emotions are some‐

times misconstrued (which is for instance the case with Knightley) it allows these

characters to form opinions about the interiority of the thinker. A third observation

is that affect and thinking are closely intertwined: Emma’s emotions arise as a reac‐

tion to her beliefs10, and in the end lead to a decision to change her behavior. Palmer’s

10It is interesting to note the nature of these beliefs. Her vexation is directed at the be‐
lief that Knightley’s beliefs about her emotions are mistaken. One might say it is a 3rd‐level
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last observation is that affectivity can have teleological value. In Emma, the affective

conflict creates a rift between Emma and Knightley, whose elimination leads to their

marriage that concludes the novel.

3.2.4 ACTIONS (FROM COGNITIVE AND LITERARY PERSPECTIVES)

For Palmer, the classical understanding of an action as an event that has an agent,

only apprehends the tip of the iceberg:

Action arises when an agent wants to change some aspect of their en‐
vironment and believes that an action will successfully bring about that
change. The agent sees both the world as they believe it to be and also the
world as they desire it to be. Action is required when there is a disparity
between the two, and it is necessary to align the world as it is believed to
be with the world as it is desired.

(Palmer, 2004, p. 118)

This picture is somewhat reminiscent of Ryan’s possible worlds approach outlined

in Chap.2. However, it also departs from it in that the observable event—i.e. a

physical doing—is seen as just the endpoint of a larger mental process that involves

a desire that is not met according to the agent’s beliefs about the current state of the

environment, all of which should also be considered part of the action. As Palmer

points out, the crucial difference between a mere doing and an action is that the

latter is brought about intentionally. This means that for Palmer beliefs, desires and

intentions form a necessary part of the concept action. Although he only vaguely

refers to “philosophy of action” as the source of his understanding, the decomposition

into constituent phenomena and the descriptions Palmer employs for them are a

clear indicator that he adopts a BDI approach. This is a valuable insight because

it implies that his general framework is compatible with the practical approach to

character reasoning that was developed and adopted during the previous chapter.

Because the concepts belief, desire and intention where already introduced there

(see Sec. 2.3.2), I will refrain from repeating myself.

mental phenomenon: a belief about someone’s belief about someone else’s thoughts. This
demonstrates vividly how the embeddedness and referentiality of fictional minds and the as‐
sociated phenomena like affect allow to create complexity and conflict.
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Seeing how actions can be hardly separated from the thought processes causing them,

Palmer prefers to speak of a thought‐action continuum (Palmer, 2004, pp. 212) in a nar‐

rative context. He demonstrates what he means by this, masterfully, in a discussion

of one simple statement from Evelyn Waugh’s (1930) novel Vile Bodies:

The three statesmen hid themselves. (86)

This is a description of an action, but it goes further in identifying the
accompanying mental processes than a statement such as “They stood
behind the curtain,” that leaves more work for the reader to do in de‐
ciding why they are standing there. It can be decoded in consciousness
terms as follows: the three agreed that it was in their interest to conceal
themselves from someone, realized that it was possible for them to do
so, and decided together to take the action of hiding.

(Palmer, 2004, p. 211)

Two points are worth expanding here. One is that an action verb like ‘hide’ im‐

plies certain epistemic and intentional, i.e. mental, positions that are presupposed in

the fictional mind of the hiding character. Without them, the same physical gesture

would be a mere ‘standing behind the curtain’. This should be taken as an indication

that actions are indeed comprised of physical gestures and the mental events that

cause them. The other is the relation between ‘hide’ and ‘stand behind the curtain’,

which are two ways for a narrator to describe the same physical gesture. The action

of hiding, as we have seen, discloses a great deal about the accompanying events in a

fictional mind. The action of ‘standing behind a curtain’ is much more opaque with

regard to thoughts. This illustrates well what Palmer means, when he suggests to

speak of a though‐action continuum: The former is located closer to the thought end

of this continuum, while the latter is located closer to its action end. One might ask

why ‘standing behind a curtain’ is located on the continuum at all, if it doesn’t disclose

any thoughts. I suggest two possible explanations. One is that, read in the appropriate

context, many readers would still be able to decode a hiding intention from such an

action description, especially since we have established above that the default reading

assumption seems to be that fictional action is caused by fictional minds. An opaque

description just demands more work when decoding. The other is that it might in‐

deed be the case that some readers do not decode any mental phenomena from this
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description. I would argue, however, that in that case the statement ceases to be an

action description at all, and turns into a state description. If ‘standing behind a cur‐

tain’ is not connected to any intention, and not based on a belief that it achieves a

certain effect, then it simply is not an ‘event that has an agent’ but becomes a passive,

thoughtless maintaining of a contingent state.

3.2.5 IMPLICATIONS

The previous subsections have described the phenomena that make up the mind for

cognitive science, and how these phenomena are conceptualized and operationalized.

It also described how they have been implicitly employed by narrative theory, without

realizing that—or how—they realize whole fictional minds. This subsection will now

present the implications that Palmer draws from his new, holistic understanding of

fictional minds.

A first, general, implication follows from the ways in which personality, affect,

intentionality, and action are intertwined: “[…] narratological examinations of fic‐

tional action need not involve just the study of physical actions on the story level,

it should also entail the systematic analysis of presentations of mental action in the

discourse” (Palmer, 2004, p. 174). This suggests that my argumentation so far has

been on the right track: it departed from an analysis of plot (i.e. action on the story

level) and arrived at the concept of fictional minds (i.e. mental action). However, it

also uncovers the limitations of a purely analytical approach to theory building like

Palmer’s. For the analyst, mental action has to remain a phenomenon limited to the

discourse level, a mostly hidden dynamic that has to be more or less effortfully re‐

constructed from action. In a generative setting, this artificial separation of physical

action on the plot plane and mental action on the discourse plane can be removed

because it allows to directly study how mental action causes physical action. In a

generative setting, a change in personality can be realized through the change of a

single parameter, which will cause a change in affectivity, which will cause a change

in action, that is, in plot. Hence, to contrast Palmer’s quote above, I will claim that

also the reverse is true: Narratological examinations of mental action need to involve

not just the study of the presentation of mental events in the discourse, they should
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also entail the systematic analysis of the effect of mental events on physical actions

on the plot level.

A more specific implication of postulating fictional minds is what Palmer calls the

continuing‐consciousness frame: “The reader collects together all of the isolated ref‐

erences to a specific proper name in a particular text and constructs a consciousness

that continues in the spaces between the various mentions of that character” (Palmer,

2004, p. 176). Just like actual minds don’t stop functioning the moment we stop ob‐

serving, also fictional minds continue functioning when the narrator is not describing

them. The understanding of this comes so natural to readers that even mentioning it

here might appear trivial. However, it is useful to still do so in order to point out that

it is a readerly strategy that facilitates integrating the various mentions of a character

into a coherent whole, by interpolating the blanks as (unknown) processes of mental

functioning.

What are the results of this mental activity that is continuing throughout a story?

Each character constantly observes a small part of the story world, integrates these

observations into an aspectual world view, develops desires based on the world, plans

to achieve them and intermittently adjusts these plans to changing circumstances. It’s

not a coincidence that this description closely echoes our previously developed un‐

derstanding of plot: Ricoeur (1984, p. 65) writes that “emplotment is the operation

that draws a configuration out of a simple succession”, that is, plot is the meaning that

can be derived from observed events. As such, the result of characters’ attempts to

make sense of the unfolding, overarching plot they witness can as well be called a plot.

These aspectual, character made, plots are an essential but encoded part of all nar‐

ratives. They are what a reader reconstructs when she decodes the continuous func‐

tioning of fictional minds from sparse references and periodic action descriptions.

Palmer (2004, pp. 183) proposes to call the result of such a reconstruction embedded

narrative to draw out that it is an aspectual narrative inside the narrative (and about

the narrative). This term will be familiar to readers of this thesis, as it has been intro‐

duced in Subsection 2.2.2 as a concept that Ryan uses to describe the virtual branches

in her plot understanding. Indeed, Palmer adopts her terminology, but extends it in

subtle ways:

It is Marie‐Laure Ryan’s notion of embedded narratives, which I am ex‐
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tending by applying it to discourse analysis and using it to mean the
whole of a character’s mind in action: the total perceptual and cogni‐
tive viewpoint; ideological worldview; memories of the past; and the set
of beliefs, desires, intentions, motives, and plans for the future of each
character in the story as presented in the discourse.

(Palmer, 2004, pp. 183, 184)

The crucial part here is the identification of embedded narratives with the whole of

the fictional mind in action. This includes all the phenomena that comprised private

embedded narratives for Ryan, but further extends it via generalization with regard

to fictional minds: all internal events that take place within them (which, as we have

seen, extends into the actions taken as a result of these events) while they function

continuously throughout the whole of the story. A second adaptation is that of view‐

point, alluded to above: Ryan, as well as this thesis, is interested in how embedded

narratives shape, and are part of, the plot, while Palmer focuses on how they can

be reconstructed from discourse. The two viewpoints, however, work hand in hand:

“Fictional minds are semiotic constructs that form part of an overall narrative pattern.

They are elements in a plot as well as centers of consciousness” (Palmer, 2004, p. 191).

Finally, I would like to suggest an implication of my own: Fictional minds, in most

regards, can be understood to function like real minds. This statement needs some

clarification. Fictional minds do not literally function, in the same way as real minds

function, since they are just words on a page. However, the previous sections ar‐

gued that they are representations of such functioning, and are read as if they were

the same; which is why I write ‘can be understood’. The equalization of fictional and

actual mental functioning undoubtedly has limits. One obvious difference is in on‐

tological status: the latter are actual, while the former are not. Yet more intricate

mismatches exist, too. Like all representations, fictional minds necessarily have to be

simplifications of their actual counterparts. A comprehensive representation would

be indescribable, unreadable and, even, unknowable: Neither cognitive science nor

literature have so far managed to uncover all the mysteries of the brain, and if they

once do, then the resulting models are unlikely to operate on a narrativizable layer

of abstractions but rather deal in neuronal activity, biochemical reactions or even
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quantum interactions.11 Furthermore, fictional minds are partly teleologically moti‐

vated by plot, while actual minds are not. These differences are hard to formalize and

capture in a few words, which is why I so curtly treat them in the qualification ‘in

most regards’. With these hedges in place, my statement can be taken as an one‐line

summary of Palmer’s book‐length argument: The science of the actual mind can be

used to analyze the representation of the fictional mind. But the same statement also

points towards a new direction. If the theories of cognitive science can be used to

analyze fictional minds, then the corresponding computational models should also

be useable in order to generate the respective phenomena in an approach like mine.

3.2.6 OBJECTIONS

Before moving on to describe how an architecture for fictional minds can be imple‐

mented based on the observations in the previous sections, I would like to discuss

one last line of criticism that was pointed out to me in private communication. Pablo

Gervás—director of the Instituto de Tecnología del Conocimiento in Madrid and Pro‐

fessor at the Universidad Complutense de Madrid—expressed the concern that mod‐

elling characters based on scientific models of cognition might unnecessarily restrict

the scope of what types of narratives can be computationally generated. In partic‐

ular, he suggested that writers would rely on folk psychology to come up with their

characters, and that this folk psychology would be influenced by the prevalent the‐

ories of thought of that age. Thus, for literature predating—at the very least—the

modernist period, these theories would be unscientific and unlikely to converge with

our present understanding of mind. He further supported his caution with the ob‐

servation that narratives would often focus on characters that are extraordinary and

thus very different from the average person, while psychological and cognitive theo‐

ries were developed precisely by averaging over (representative) groups of individu‐

11Modernist novelists have, in fact, attempted to create comprehensive representations of
the mind in the form of the stream of consciousness novel, like Joyce’s Finnegans Wake or
Faulkner’s The Sound and the Fury. However, as has been outlined above, the mind consists
of more phenomena than just the consciously perceivable monologue of an inner voice that
is supposed to be captured by this technique, and verbal thought might not be the most
appropriate level of description for the mind.
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als.12 Summarizing: scientific theories of cognition might not be a felicitous choice

to represent interesting characters, and might not be suited at all to represent char‐

acters based on pre‐scientific conceptions of thought. This concern is closely related

to the considerations of Michael Young and Janet Murray—presented earlier—but as

opposed to those, comes from a cognitive angle that is not anti‐mimetic. Instead, it

questions whether present day theories of cognition are necessarily the best choice

to achieve a mimetic effect. It deserves pointing out that this position does not entail

that the use of cognitive theories for modeling character’s thought is always inappro‐

priate, just that it limits the space of representable stories to those with a specific type

of character.

I see Gervás’ line of thought as very acute and tend to agree on the premise, while

not on the conclusion. My working assumption is, too, that writers rely on folk psy‐

chology to construct round characters. Folk psychology is, foremost, a skill developed

and trained in the real world to predict or explain the behavior of actual humans and

not a cognisant approach based on formal theories. The previously introduced IIA

is a perfect case in point how this process might phenomenologically manifest itself

during writing. Consequently, scientific theories of cognition and folk psychology

perform the same task and should both be expected to provide reasonably accurate

predictions of human‐seeming behavior. I agree that they can not be expected to

make exactly the same predictions or offer the same explanations, and formal theo‐

ries of thought surely play a role in writers’ deliberations through rationalization of

the folk‐psychologically constructed (or perhaps, simulated) behavior. But my edu‐

cated guess would be that the actual differences in predicted behavior should not be

too big. After all, the characters in a Regency novel still appear human to us, even if

their construction was influenced by Romantic theories of thought.

Furthermore, I disagree with the point that psychological models are not well

suited to model extraordinary individuals because they are developed from mostly

average subject groups. The whole field of clinical psychology successfully relies on

its models to assess pathologies. For instance, Eysenck (2004, p. 467) reports that the

12A famous quip goes that the best understood topic in psychology is the cognition of
twenty year old students; that is, the subject group most readily available to psychologists.
While this statement is, of course, not scientifically sound, it still points to an important
issue: the effect of low diversity on the validity of legacy research.
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“[…] prediction that individuals with personality disorders should have extreme scores

on the Big Five factors has received much support […]”. This entails that also other

types of extraordinary individuals could be modeled, for instance, through extreme

personality scores.

In general, even if my counter arguments should prove unconvincing, I do not per‐

ceive a potential restriction of the character space as problematic at the present state

of my research. Most story composition systems restrict themselves to a specific genre

or type of story, and ‘realistic character’ is no worse field to explore than e.g. S. R.

Turner’s (1993) Arthurian tales. If the need should arise to model a specific sort of

character at a later stage of the project, then the suggested scientific cognitive charac‐

ter architecture can be replaced with an alternative one, based e.g. on the (debunked)

idea of the bicamerality of mind (Jaynes, 1976), as has, in fact, been attempted else‐

where (Veale, 2018). The ways in which such a change of underlying architecture

would affect the resulting plot is an interesting topic for future research.

3.3 IMPLEMENTING AFFECTIVE REASONING

The previous section outlined the constituent phenomena of fictional minds, and

how they can be conceptualized using the cognitive science discourse. These insights

are expected to solve the impasse encountered at the end of the previous chapter,

that the character architecture realized through InBloom was not sufficient to capture

the behavior of the characters in TLRH. This hypothesis can be tested by extending

InBloom to model fictional minds, and then revisit the case study in hope that the

original plot can be finally recreated.

Of the main phenomena discussed in Sec. 3.2, the thought‐action continuum has

been already covered through InBloom’s use of the BDI framework. Thus, the task at

hand is to integrate models of personality and affect into the existing architecture. A

plethora of computational models—and even whole cognitive architectures—exists,

which are potential candidates for this. A compelling argument to select one over the

others would be a unified treatment of both phenomena because it would simplify

the temporal costs of integration considerably. In fact, such a model can be found in

“A Layered Model of Affect” (ALMA), which has been proposed by Gebhard (2005) to
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Figure 3.3: Diagram representation of the dynamics of the ALMA model.

implement real‐time affective conversational agents. It views emotions as short term

affect and personality as long term affect, while mood (mid‐term affect) is conceptu‐

alized as an interface between the two. An integration of ALMA and BDI has been

suggested previously (Alfonso et al., 2014), which is a second encouraging fact.13

In the following, I will first formally introduce ALMA, outline my implementation

of it, and then present its integration into Jason.

3.3.1 ALMA

As pointed out, ALMA models the interactions of three different kinds of affect: emo‐

tion, mood and personality. Gebhard (2005) conceptualizes these phenomena based

on the same quantifiable psychological models that have been introduced in Sec. 3.2.

Thus, emotions are seen as valenced reactions to external events and their internal

repercussions, using the OCC taxonomy. Mood is seen as the more stable mid‐term

affective state of an agent, represented using the PAD dimensions. Personality is un‐

derstood as a disposition towards certain affective states, and represented using the

OCEAN dimensions. The interactions of these phenomena in the ALMA model are

13 Alfonso et al. also extend Jason in order to support ALMA‐like processing. However,
when working on this in early 2017, their implementation was unfortunately not yet publicly
available (Alfonso, personal communication on 10.05.2017). This forced me to (reluctantly)
perform an integration myself. When the authors released their code under http://gitlab.g
ti‐ia.upv.es/balfonso/affectiveJason, my own work was well underway and its design already
adapted to the needs of my project.
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shown in Fig. 3.3.

Every affective agent is assigned a stable personality on creation, which can be un‐

derstood as a point in OCEAN space.

Definition 6 (Personality). An agent’s personality p is a 5‐tuple of the form:
(O,C,E,A,N), where each element is in the range [−1, 1] ⊂ R.

From personality, the agent’s defaultmood can be derived. For this, Gebhard (2005)

borrows some equations from Mehrabian (1996a)14 that have been derived from cor‐

relations observed in several empirical studies of personality.

Definition 7 (Default Mood). An agent’s default mood md = (P,A,D) ∈ R3 is a
point in PAD space, which can be computed from the agent’s personality p:

P = min(max(0.21 · E + 0.59 ·A− 0.19 ·N, −1), 1)

A = min(max(0.15 ·O + 0.30 ·A+ 0.57 ·N, −1), 1) (3.1)

D = min(max(0.25 ·O + 0.17 · C + 0.60 · E − 0.32 ·A, −1), 1)

Table 3.2: Personality settings and default mood.

O C E A N P A D

0 0 0 0 0 0.00 0.00 0.00

1 1 1 1 1 0.61 1.00 0.70

‐1 ‐1 ‐1 ‐1 ‐1 ‐0.61 ‐1.00 ‐0.70

0.5 0.5 0.5 0.5 0.5 0.31 0.51 0.35

0 0 0 0 1 ‐0.19 0.57 0.00

0 0 0 1 0 0.59 0.30 ‐0.32

0 0 1 0 0 0.21 0.00 0.60

0 1 0 0 0 0.00 0.00 0.17

1 0 0 0 0 0.00 0.15 0.25

To exemplify the behaviour of

these equations, Tab. 3.2 shows

a few personality edge cases and

the associated default mood. The

default mood is a constant that

is used to initialize the current

mood, which represents the mid‐

term affective state the agent is

currently in and which, conse‐

quently, changes over time.

According to ALMA, two dy‐

namics determine the changes of

the current mood. First, when

14The equations presented by Gebhard (2005) have several problems: First, Mehrabian’s
(1996a) original version uses trait stability, while Gebhard’s uses the inverted trait neuroti‐
cism, which leads to a sign error in the computation of both P and A. Second, Gebhard con‐
fines the PAD space to the range of [‐1,1] but takes no measures to enforce these boundaries
on Mehrabian’s equations. The decision to clip the value of the mood at 1 and ‐1 in my for‐
malization (instead of normalizing it) is based on Gebhard’s implementation of ALMA at
https://github.com/A‐L‐M‐A/ALMA.
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the agent is experiencing emo‐

tions, that leads to a shift of the mood. Second, as long as no emotions are active but

the current mood is perturbed, it slowly decays towards the default mood. To update

the current mood based on emotions, the 22 OCC emotions have to be mapped into

PAD space, which will allow mood updates via vector operations; Gebhard suggests

the mapping in Tab. 3.3, which is partly grounded in empirical research and partly

estimated by him from similarity. When an agent appraises an event that elicits an

emotion, this emotion is said to be active. Depending on the type and urgency of the

appraised event it gets assigned an intensity, which decays over time until it reaches

zero, at which point the emotion ceases to be active. Gebhard (2005) mentions that

multiple decay functions are feasible. For the sake of simplicity, throughout InBloom,

the simplification will be adopted that the intensity of emotions is always 1, and that

the decay to 0 happens in one reasoning cycle step.15 Since an agent can experience

several emotions at the same time, an aggregation of the active emotions needs to be

performed before the current mood can be updated. This is done by determining the

emotion center.

Definition 8 (Active Emotion). An emotion is a tuple (ω, ι), where ω ∈ OCC is the
name of the emotion and ι ∈ [0, 1] is the emotion’s intensity. The emotion is called
active iff ι ̸= 0.

Due to the simplification outlined above, for InBloom, the following holds: If an

emotion is appraised during the reasoning cycle tj then for reasoning cycle ti it holds

that: ti = tj ⇒ ι = 1 and ti = tj+1 ⇒ ι = 0. Furthermore, for convenience reasons,

I will define lPAD : OCC → [−1, 1]3 to be the function given by the mapping in

Tab. 3.3, which determines an emotion’s corresponding location in PAD space, such

that lPAD(ω) = λ, where λ is a point in PAD space.

Definition 9 (Emotion Center). Let Ec
t = {e1, . . . , en} denote the set of all active

emotions for character c at reasoning cycle t. The emotion center of character c at
cycle t is denoted (λc

t , ι
c
t). λc

t is a point in PAD space and the centroid of all active
emotions: λc

t =
1

|Ec
t |
·
Pn

i=1 lPAD(π1(ei)).16 ιct is the center’s intensity and represents

15This can be roughly taken to mean that InBloom, from a discourse viewpoint, operates
in a “summary” mode (c.f. duration in Genette, 1983), i.e. an emotion is either present or not.
To realize a dynamic that is below that of summary/plot, one could implement a switch to
“scene” mode duration by adopting a slower decay function. This would allow the system to
effectively ‘play out’ more nuanced emotional situations in real time.

16Let πj denote the jth projection function.
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Table 3.3: Mapping of OCC Emotions into PAD space, from (Gebhard, 2005).

Emotion P A D

Admiration 0.5 0.3 ‐0.2
Anger ‐0.51 0.59 0.25
Disappointment ‐0.3 0.1 ‐0.4
Distress ‐0.4 ‐0.2 ‐0.5
Fear ‐0.64 0.6 ‐0.43
FearsConfirmed ‐0.5 ‐0.3 ‐0.7
Gloating 0.3 ‐0.3 ‐0.1
Gratification 0.6 0.5 0.4
Gratitude 0.4 0.2 ‐0.3
HappyFor 0.4 0.2 0.2
Hate ‐0.6 0.6 0.3
Hope 0.2 0.2 ‐0.1
Joy 0.4 0.2 0.1
Love 0.3 0.1 0.2
Pity ‐0.4 ‐0.2 ‐0.5
Pride 0.4 0.3 0.3
Relief 0.2 ‐0.3 0.4
Remorse ‐0.3 0.1 ‐0.6
Reproach ‐0.3 ‐0.1 0.4
Resentment ‐0.2 ‐0.3 ‐0.2
Satisfaction 0.3 ‐0.2 0.4
Shame ‐0.3 0.1 ‐0.6
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the average active emotion intensity: ιct =
∑n

i=1 π2(ei)
|Ec

t |
. In case of Et = ∅ the emotion

center is not defined.

In our, simplified, case ιct is always 1 because emotion intensity decays from one to

zero in a single step.

As long as an emotion center exists, the current mood is attracted towards the outer

bounds of the octant in which the emotion center is located. This results in a dynamic

that Gebhard describes as pull‐push (see left half of Fig. 3.4): When the zero point

is located between the current mood and the emotion center, or the current mood

is located between zero point and the emotion center, then the mood is attracted

towards the octant of the emotion center (pull). Otherwise, when the emotion center

is located between the zero point and the current mood, the mood is attracted towards

the outer bounds of the emotion center’s octant (push). This means that a mood

always intensifies through the presence of supporting emotional experiences.

The strength of the attraction is dependent on the intensity of the emotion center

(currently always 1). It is tuned in terms of a maximal update time in such a way that

it would take the current mood nupdate steps to cover the maximal distance in PAD

space, given that an emotion center of intensity 1 would exist for that long. For all

experiments throughout this thesis, nupdate = 5 was employed.17

As has been previously discussed, trait neuroticism correlates with higher reac‐

tivity to emotional valence. This is incorporated into the mood update function by

modifying the update vector by a neuroticism factor. For the sake of simplicity, the

neuroticism update factor has been defined as a linear function of trait neuroticism

(N) such that it increases/decreases update speed by a factor of 0.5 in case of maxi‐

mal/minimal N , and leaves it unchanged at N = 0.

The decay of the current mood towards the default mood is defined in a compa‐

rable way, and happens in each reasoning cycle in which no emotion center exists

(see right half of Fig. 3.4). Decay steps are defined in such a way that it would take

the current mood at max ndecay steps to cover the maximal distance in PAD space.

For all experiments throughout this thesis, ndecay = 100 was employed. Here, the

neuroticism trait is interpreted as a general impediment for the normalization of the
17The maximal distance in PAD space, e.g. between the points (−1,−1,−1) to (1, 1, 1), is√

3 · 22 ≈ 3.46. At nupdate = 5 this means that the current mood moves approximately 0.69
per step, or |0.4| in each dimension.
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Figure 3.4: An example of mood update (left) and decay (right), projected into PA space
for visualization purposes. During update, the current mood mc(t) is attracted towards the
bounds of the emotion center’s octant (−→v pull ∥ −→v push ∥

−−−−−→
sgn(λc

t)),18 which results in a pull-
push dynamic. During decay, the current mood is attracted towards the default mood md.

mood. Thus, the neuroticism decay factor has been defined in the inverse manner,

as a linear function of trait neuroticism such that it decreases/increases update speed

by a factor of 0.5 in case of maximal/minimal N , and again leaving it unchanged at

N = 0.

Definition 10 (Current Mood). An agent’s current mood mc(t) = (P,A,D) ∈
[−1, 1]3 ⊂ R3 is a point in PAD space. It is defined in an inductive way, as a func‐
tion of the reasoning cycle number t and the set of active emotions Et.

mc(t0) = md (3.2)

mc(tn+1) =

8>>>><>>>>:
mc(tn) +

2ιctn+1

nupdate
·
−−−−−−−→
sgn(λc

tn+1
) · υN if Etn+1 ̸= ∅

mc(tn) +
√
12δN

ndecay
· b∆m else if |

−−→
∆m| >

√
12δN

ndecay

md otherwise

(3.3)

Where sgn is the signum vector function19, and b is the vector normalization oper‐
ator20. Also, let υN = 1 + 0.5N be the update neuroticism factor, δN = 1 − 0.5N be
the decay neuroticism factor, and

−−→
∆m = md −mc(tn) be a vector pointing from the

current mood towards the default mood. It should be noted, that the vector additions
here also have to ensure that the current mood never leaves PAD space, which in prac‐

18∥ denotes parallelity.
19For a ∈ Rn : sgn(a) := (sgn(a1), . . . , sgn(an)).
20For a ∈ Rn : ba :=

−→a
|−→a |
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tice means that the components of mc(tn+1) are clipped at −1 and 1. The respective
minmax function was omitted in the formal definition for improved legibility.

This requires some unpacking. Equation 3.2 states that the initial current mood is

the default mood.

The first line of equation 3.3 defines the mood updated in case of active emotions.

There,
−−−−−−−→
sgn(λc

tn+1
) can be understood as the vector representation of the emotion cen‐

ter’s octant’s attraction force. Taking the product with the scalar factor υN scales this

vector by the neuroticism update factor. The scalar factor ιctn+1
scales the resulting

update vector by the intensity of the emotion center, and the scalar factor 2
nupdate

en‐

sures that under default conditions (ιctn+1
= 1 and N = 0) at max nupdate steps are

required to reach any point in PAD space from any other point.

The second line of equation 3.3 defines the mood decay, when no active emotions

are present, and the default mood is more than one step away from the current mood

(|
−−→
∆m| >

√
12δN

ndecay
). First, the unit vector b∆m denoting the direction between the cur‐

rent mood and the default mood is computed. The step length is determined by the

scalar factor
√
12δN

ndecay
. It is composed of the neuroticism decay factor δN , and the step

length factor
√
3·22

ndecay
=

√
12

ndecay
, which ensures that under default conditions (N = 0)

the longest distance in PAD space can be traversed in ndecay steps.

The third line of equation 3.3 defines that the current mood is set to the default

mood if a regular decay step would overshoot the target.

The different formulation of the scalar products in line one and two of equation 3.3

might appear questionable at first glance. After all, if the maximal number of steps

appears as the denominator in both cases, why do they differ in the numerator? The

reason is that the update vectors are defined differently in the two cases: as a unit vec‐

tor in the latter, and a vector from zero to one of the corners of the PAD space, in the

former case. The comparability of the two formulations can be demonstrated for spe‐

cial cases with aligning directions, like e.g. mc(tn) = 0, md = λc
tn+1

= (−1,−1,−1).

For simplicity, lets also posit the default conditions ιctn+1
= 1 and N = 0, and assume
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nupdate = ndecay.

2ιctn+1

nupdate
·
−−−−−−→
sgn(λc

tn+1
) · υN

√
12δN

ndecay
· b∆m

≡ 2

nupdate
·
−−−−−−−→
sgn(λc

tn+1
) ≡

√
12

ndecay
· (
−−−−−−−−−→
md −mc(tn))√

3

≡ 2

nupdate
· (−1,−1,−1) ≡ 2

ndecay
· (−1,−1,−1)

It is important to explicate that the definitions introduced here contain several ar‐

bitrary decisions necessary for the formalisation, introduced either by the original

work of Gebhard (2005), or by me. For instance, this applies to the decision to define

the step length in terms of maximally necessary steps instead of e.g. steps necessary

on average, the decision on how to compute the various neuroticism factors, or how

these factors affect the update and decay functions. These are decisions about de‐

tails on the lowest, computational level of abstraction, which are rarely addressed at

the higher level at which the cognitive models operate. In an ideal setting, decisions

like these would be validated by comparing the behavior of the computational model

with observed dynamics. Unfortunately, this lies far outside the scope of this thesis.

However, the formalisation introduced above has been performed in a general way,

which allows a straighforward revision of any of these decisions, if the need should

arise at a later stage of the project.

3.3.2 IMPLEMENTING ALMA

An implementation of the formalisation in the last subsection is straight forward.

Since ALMA is intended as an extension of the MAS system, and is not specific to nar‐

rative semantics, it is implemented inside Jason proper. For this, the original repos‐

itory was forked21 and extended. An overview of the new classes can be found in

Fig. 3.5.

The class jason.asSemantics.Emotion contains fields to represent the emotion

instance’s name, its location as a 3D point and the current intensity. Further fields are

21The fork is publicly available under http://github.com/cartisan/jason
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Figure 3.5: A class diagram representation of the implemented ALMA architecture. For brevity
reasons attributes are represented without types and methods without parameters or return types.

Static members are underlined.

the strings target and cause, which will became relevant later on. It also implements

functionality to perform one step of intensity decay, currently simply setting it to 0.

This is enough to represent individual emotion instances, but further functionality is

implemented on the static side. The method static Point3D findEmotionCente

r(List<Emotion> emotions) can take a list of Emotion instances and returns the

PAD location of their centroid. Each appraised emotion is represented by a distinct

instance of Emotion (instead of e.g. a singleton), and can be obtained via the method

static Emotion getEmotion(String emotion).

The class jason.asSemantics.Mood contains a field to represent a mood instance’s

location in PAD space. It has two relevant methods: void updateMood(List<Emotio

n> emotions, Personality personality) takes a list of active emotions and the

agent’s personality, and executes one update step (first line of equation 3.3), where the

emotions are required to determine the emotion center and personality is required to

determine the neuroticism factor, while void stepDecay(Mood defaultMood, Pe

rsonality personality) executes one decay step (second and third line of equa‐

tion 3.3) based on personality to determine the neuroticism factor, and default mood

to determine the direction of decay.

The class jason.asSemantics.Personality contains double‐typed fields to rep‐

resent a personality instance’s five OCEAN values. The method Mood defaultMood()

can be used to compute a default mood as per Def. 7.
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3.3.3 INTEGRATING ALMA AND JASON

The classes introduced above implement all of the ALMA functionality, but are

still separate from the BDI architecture. In order to create a unified architecture of

fictional minds these two components need to be integrated. Two main interaction

types can be distinguished: First, the BDI cycle influences ALMA because events

perceived by the agent cause emotions to be appraised. Second, ALMA influences

the BDI cycle because an agent’s decision making is dependent on its affective state.

But which of the three affect types should be taken into account during planning?

Since personality, by definition, is understood as a disposition to act in certain ways,

it seems promising to introduce this connection. However, as has been discussed on

the basis of the Good Samaritan study in Sec. 3.2.2 (see p. 122), apart from personality

also context plays a big role in decision making. After having analysed the dynamics

of ALMA, we can finally propose a candidate representation of context to properly

account for this interaction. Emotions represent the direct link between context,

seen as environment events, and affective states. However, emotions in ALMA

are fleeting states, and several contradictory emotions can be present at any time.

Felicitously, a time‐discounted aggregate of emotions is preserved in the form of the

current mood, which also has the desirable property of changing more slowly than

the set of active emotions: A single negative emotion won’t disturb the current mood

too much, whereas a succession of negative emotions will still change it quickly

enough. It is thus an auspicious proxy for an agent’s current context. This led to the

decision to make planning depend on both mood and personality. Fig.3.6 presents a

high‐level overview of the intended fictional mind architecture.

The following problems need to be addressed in order to implement the envisioned

architecture:

• A mechanism is required that allows to define an agent’s personality during the

initialization of a narrative system.

• A mechanism is required that allows programmers to specify that a particular

event triggers certain emotions.

• The BDI reasoning cycle needs to be extended to regularly keep affective phe‐
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Figure 3.6: Diagram representing the integration of ALMA and BDI into a unified fictional
mind architecture.

nomena up to date.

• An ASL formalism needs to be defined in order to allow mood and personality

to affect plan selection, as well as to initiate new goals.

PERSONALITY DEFINITION

Jason’s jason.asSemantics.Agent class has no field which could be used to store

personality. Following proper object oriented practice like separation of concerns,

and to allow users of the framework to still use non‐affective agents, the decision

was made to not simply add a field to the existing Agent class, but instead to intro‐

duce the subclass jason.asSemantics.AffectiveAgent to hold this field. Because

an agent’s default mood is dependent on its personality, setting this field should

also initialize the default mood. This functionality is implemented in the func‐

tion void initializePersonality(Personality personality).22 If an applica‐

tion wants to use affective instead of vanilla Jason agents, it can configure this by set‐

ting AffectiveAgent as agent class in its mas2j. However, unlike other agent proper‐

ties, Jason’s mas2j configuration files do not support setting up personality. This has

to be done by the client program during launching—after Jason created the agents but

before the simulation started—using the provided initializePersonality method.

22Of course this is not the only functionality of the newly introduced class. Its further
responsibilities will be discussed later.
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EMOTION APPRAISAL

As discussed in Sec. 3.2.3, emotions can be grouped into two types: primary emotions,

which are unmediated reactions to events, and secondary emotions, which are delib‐

erative reactions. Consequently, there should be two ways for the designer of a nar‐

rative system to appraise emotions: through the environment, that is, concomitant

to an event perception; and through the agent, as part of the ASL reasoning. Both

methods of adding emotions have to report to the BDI interpreter which emotions

have been scheduled for appraisal during the next cycle.

The environment has no way of directly affecting agent state, and its only way of

transmitting information to agents is via events. Fortunately, Jason explicitly supports

meta information about literals in the form of annotations (outlined on p. 68), which

are accessible for the BDI interpreter when it processes an event. The annotation

emotion(X) with X ∈ OCC is introduced as a keyword to indicate to the reason‐

ing cycle that a particular event should elicit the primary emotion X. Thus, when the

need arises to schedule an unmediated emotion through the environment, it can be

added through a respective emotion‐annotation to the event perception. A canonical

example for a primary emotion would be the immediate and involuntary bout of fear

experienced upon seeing a large charging predator. Since this emotion seems not to

be the result of a ponderous deliberation, but an arguably universal and instantaneous

reaction, it its logical and economical to encode it as part of the environment‐based

event definition itself: e.g. attack(tiger)[emotion(fear), target(tiger)]. As be‐

comes apparent from the example, a primary emotion can also have a target, which

can be added via an appropriate annotation.

Agent‐side reasoning offers a more direct route to emotion appraisal because it

is conceptually permissible for ASL code to directly influence agent state. New

ASL keywords can be implemented via custom internal actions, simply by adding a

new class derived from jason.asSemantics.DefaultInternalAction to the pack‐

age jason.stdlib. This way, a new action appraise_emotion can be defined to

schedule secondary emotions from ASL code. It takes two obligatory, and two op‐

tional parameters: .appraise_emotion(emotion, source, target, type).

• The obligatory atom emotion is the name of the emotion to be scheduled.
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• The obligatory string source specifies the source of the emotion, i.e. the literal

that is to be preserved as its cause.

• The atom target can be added to indicate an agent at which the emotion is

directed.23

• The integer type can be used to indicate whether the event source is the ad‐

dition (0) or removal (1) of a percept, or an action/speech‐act (2); it defaults

to 0. This is necessary because the system can not automatically detect event

types from an ASL literals, but needs to treat different event types differently.

When an internal actions is triggered in the ASL code, Jason executes its Object exec

ute(TransitionSystem ts, Unifier un, Term[] args) method, and provides it

with the internal action’s arguments stored in args. What is more, it contains a ref‐

erence to the respective agent’s transition system. As outlined in Sec. 2.3.4 on p. 71,

this class is responsible for implementing the BDI interpreter’s reasoning cycle in the

method jason.asSemantics.TransitionSystem#reasoningCycle(). To allow the

reasoning cycle to manage emotions, the subclass jason.asSemantics.AffectiveT

ransitionSystem is created, and the method scheduleForAppraisal(String em

otion, String target, String source) is implemented, which can be called as

part of appraise_emotion’s execute. This method is responsible for creating appro‐

priate instances of the Emotion class based on the argument emotion, and storing

them in the field List<Emotion> deliberative_appraisal, where the emotions

can be retrieved later, when the reasoning cycle reaches the appropriate appraisal

step.

In order to notify Jason to use the newly introduced transition system instead of

its vanilla counterpart, the initialization of AffectiveAgent is adapted by overriding

the method AffectiveAgent#initAg() to set its transition system to an instance of

AffectiveTransitionSystem.

UPDATING THE REASONING CYCLE

During each reasoning cycle, the BDI interpreter has to update the agents affective

state, that is: decay active emotions, appraise new emotions, and update the current
23At the moment it is not possible to denote that the emotion is targeted at an object

because no use case for this has come up, so far.
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Figure 3.7: Simplified deterministic automaton representation of the extended BDI interpreter.
Gray steps have been added to include affective reasoning capabilities. Italics indicate steps
that are delegated to the agent’s AgArch class, which is responsible for interactions with the
environment. An explanation of individual steps can be found in Bordini et al. (2007, Chap. 4),

but is not pertinent for the present thesis.

mood. The transition system’s method reasoningCycle(), in essence, implements a

deterministic state machine responsible for all steps in the reasoning cycle. While a

detailed depiction of the automaton can be found in Bordini et al.’s (2007) Fig. 4.1, for

our present purpose I present a simplified version in Fig. 3.7. To extend this automa‐

ton, the subclass jason.asSemantics.AffectiveTransitionSystem can be used to

override the methods applySemanticRuleSense() as well as applySemanticRuleD

eliberate() to insert three new states, as shown in Fig. 3.7. Speaking in the most

abstract of terms, the individual steps perform the following tasks:

• Perceive: Use the agent architecture class to poll the environment for new

percepts and update the belief base accordingly;

• ProcMsg: Process the next message in the queue of incoming speech acts;

• UpMood: Perform one mood update or decay step;

• DeriveSEM: Appraise secondary emotions;

• SelEv: Select (and remove) one event from the event queue for further pro‐

cessing;

• DerivePEM: Appraise primary emotions associated with the selected event;

• RelPl: Identify all relevant plans in the plan library, i.e. plans whose triggering

event can be unified with the selected event;

• ApplPl: Determine all applicable plans, i.e. those relevant plans whose context

151



CHAPTER 3. FICTIONAL CHARACTERS

is true according to the current belief base;

• SelAppl: Select one applicable plan from all applicable plans;

• AddIM: Determine whether the plan is part of an existing intention (i.e. a sub‐

goal) which should wait until it is completed, or a completely new intentions

(and therefore to be executed concurrently to the other existing intentions);

• ProcAct: Process results of previously executed actions, reported by the envi‐

ronment;

• SelInt: Select one of the concurrently active intentions, to be pursued this

cycle;

• ExecInt: Identify the next step in the plan associated with the selected inten‐

tion; if it is an action schedule it for execution by the agent architecture;

• ClearInt: Clear intentions that have been recognized as completed (or failed)

during the course of the current cycle;

• Act: Use the agent architecture to execute the scheduled action in the environ‐

ment;

As becomes clear, each cycle performs three main tasks: update the agent’s informa‐

tional state, process an internal event, and continue the execution of an intention. We

will now review in detail the changes that are necessary to imbue affective reasoning

capabilities into this system.

THE TRANSITORY STATE of an agent’s reasoning cycle is represented in Jason using

the class jason.asSemantics.Circumstance. To be able to also store data about its

affective part, this class is subclassed by jason.asSemantics.AffectiveCircumsta

nce, which has the fields List<Emotion> PEM, List<Emotion> SEM and Mood M. An

emotion is considered active iff a respective instance is located in either of the lists,

PEM or SEM, depending on whether it is primary or secondary in nature. Emotion ap‐

praisal is performed using the method AffectiveAgent#addEmotion(Emotion emo

tion, String type), with type determining to which list of that agent’s affective

circumstance the emotion is added. Although actual persons are not always aware of

the precise emotions they are experiencing, the decision was made to increase the al‐

gorithms expressivity by providing agents with accurate beliefs denoting the emotions

that are currently active. This can be used in ASL reasoning to trigger new goals, or as
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plan context, which allows restricting the applicability of plans to certain emotional

situations. To do so, the method addEmotion translates the emotion back into ASL

literal representation—including its target and cause as annotations—and adds an

appropriate belief of the form emotion(X) to the agent’s belief base.24

DERIVESEM is the most straightforward of the newly introduced states. As out‐

lined above (on p. 149), secondary emotions are added from the ASL side directly into

the transition system’s deliberative_appraisal list, already reified as Emotion in‐

stances. Thus, appraising these emotions is done by simply traversing that list, exe‐

cuting the method addEmotion for each of its items, and clearing it in the end.

DERIVEPEM works in a comparable manner but has to use another source to iden‐

tify the emotions it needs to appraise. Primary emotions are attached as annotations

directly to the perceptions that cause them (as has been outlined above, on p. 149),

and perceptions are processed by the reasoning cycle one after another in the form

of events. For this reason, DerivePEM is inserted right after the SelEv state which

selects the event that is going to be processed by the current cycle. Thus, appraising

primary emotions is done by extracting all annotations of the form emotion(X) and

creating new Emotion instances. For this, X determines the type of emotion, the se‐

lected event determines its cause, and a potentially present target(Y) annotation

determines the emotion instance’s target. Again, each emotion can be activated by

executing the method addEmotion.

At first glance, it might appear like secondary emotions were appraised before pri‐

mary emotions because DeriveSEM is executed before DerivePEM in the automaton

in Fig. 3.7. This would be incorrect, since primary emotions ipso facto should be

more immediate than secondary ones. However, the appearance is deceiving. This

can be demonstrated by returning to the previously mentioned example of the fright‐

ful, charging tiger. Encoded as primary emotion—using the environment perception

attack(tiger)[emotion(fear), target(tiger)]—fear would be appraised during the

24Such a reliable transmission is just the baseline solution. Creating agents that are not
aware of their emotions, or whose beliefs about the emotions they experience are simply un‐
reliable, is as easy as changing one line of code. It is well worth investigating which effect
characters’ connectedness with their emotions might have on a narrative’s plot.
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reasoning cycle in which the corresponding event +attack(tiger)[...] is selected for

processing. When the same situation is encoded using secondary emotions, the envi‐

ronment perception and its corresponding reasoning cycle event contain no emotion

annotation: attack(tiger). To model an appropriate affective reaction, a delibera‐

tion step would need to be added using ASL side inference rules like:

+attack(Being) : large(Being) <-
.appraise_emotion(fear, "attack(Being)", Being).

For fear to be actually appraised in this case, one reasoning cycle has to select the

attack event for processing, which would result in the above inference rule being se‐

lected as applicable plan and being added to the intention set. Even in the best case

that no other intentions are present and the newly added plan is selected as inten‐

tion in the same cycle, the resulting emotion instance is added to deliberative_-

appraisal only after DeriveSEM has already been executed. Thus, it can be appraised

only during the next cycle, and consequently, one cycle later than in the primary emo‐

tion case.

UPMOOD can use the emotions that are appraised as active by the other two steps

in order to perform mood updates according to equation 3.3. When no emotions are

active (that is, PEM and SEM in AffectiveCircumstance are empty), and the agent’s

current mood (M in AffectiveCircumstance) is not the agent’s default mood, a decay

step is executed. If active emotions do exist, then an update step is executed instead.

An active emotion is considered to directly contribute to an agent’s mood if their lo‐

cations in PAD space agree in the sign of at least two the three dimensions (i.e. they

are located in the same or neighbouring octants). All directly contributing emotions

are checked for targets and causes, and these are preserved alongside the new mood

in the agent’s AffectiveCircumstance. This ensures that, for instance, an agent at

whom the emotion love is directed is not collaterally preserved as the target of a

hostile mood, just because the other emotions appraised during the same reason‐

ing cycle happened to be negative. Whenever the current mood changes its octant,

which can be considered a change in discrete, perceivable mood‐state, these targets

and causes are reset. This means that targets and causes are preserved only as long as
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they contribute to the currently prevailing mood type. Like with appraised emotions,

the decision was made to make agents aware of their mood by adding a belief of the

form mood(X) to their belief base, which encodes the current mood octant and con‐

sequently changes on every change of octant. After all these updates are done, one

decay step is executed on each of the appraised emotions (which in our case means

that they are deactivated and removed from PEM and SEM).

APPLPL is an already existing state of the BDI interpreter, which has to be extended

to make sure that plans are considered applicable only when their affective profile fits

the agent’s current affective profile. The details are explained in the coming subsec‐

tion, once it has been outlined how the ASL formalism is extended to enable affective

profiles for plans.

AFFECTIVE REASONING

As has been outlined in Fig. 3.6, the main interaction point of the newly introduced

affective architecture and the BDI framework is the procedural reasoning step. Af‐

fective phenomena can be relevant here in two ways: First, certain plans might be

applicable only under certain affective circumstances, and second, changes in affect

state might change the agent’s motivational state.

To denote that plans can have affective conditions in order to be applicable, the ASL

syntax has to be extended. The annotation affect has been introduced to define

these affective conditions, using a simple boolean algebra in prefix notation. It is

described by the following EBNF25:

25Note, that in the proposed notation affective predicate is the abstract super‐type of
personality predicate and mood predicate, that is, there is only two types of concrete
predicates.
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⟨affective conditions⟩ |= affect(⟨predicate⟩)

⟨predicate⟩ |= ⟨complex predicate⟩ | ⟨affective predicate⟩

⟨complex predicate⟩ |= and(⟨predicate⟩,⟨predicate⟩) | or(⟨predicate⟩,⟨predicate⟩) |

not(⟨predicate⟩)

⟨affective predicate⟩ |= ⟨personality predicate⟩ | ⟨mood predicate⟩

⟨personality predicate⟩ |= personality(⟨p trait⟩,⟨value⟩)

⟨mood predicate⟩ |= mood(⟨m trait⟩,⟨value⟩)

⟨p trait⟩ |= openness | conscientiousness | extraversion |

agreeableness | neuroticism

⟨m trait⟩ |= pleasure | arousal | dominance

⟨value⟩ |= high | medium | low | positive | negative

A noteworthy production of this EBNF is value, which can produce one of five

values whose denotations are presented in Tab. 3.4. This results in a discretization

Table 3.4: The denotations of the five different values that p trait and m trait can take.

high: x ≥ 0.7
medium: −0.7 < x < 0.7

low: x ≤ −0.7
positive: x > 0
negative: x < 0

of the mood and personality spaces from the perspective of planning, while the ac‐

tual values against which the conditions are tested remain continuous. The decision

to discretize has been made to make domain‐modelling easier, while maintaining ex‐

pressivity. Ideally, the number of possible values and their denotation would be based

on a statistical analysis of personality and mood clusters in a diverse sample. So far,

however, the arbitrary decisions above have been enough for all practical concerns.

The ApplPl step of the BDI interpreter, which determines the subset of the rel‐

evant plans that are applicable, has been adapted to take into account these affec‐

tive conditions stored in plan annotations. First, the original method is executed to
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identify all plans with applicable context. Then, for each of these plans, a check is

performed whether an affect annotation is present, and if it is, the annotation is

validated against the agent’s affective state via the method AffectiveAgent#check

Constraint(Literal condition). If the condition in the annotation is not true,

the plan is removed from the list of applicable plans. This means that in, the end,

the list of applicable plans contains plans that are applicable in all affective situa‐

tions and those whose affective preconditions are fulfilled. Since the latter provide

behavior that is more specialized and thus better suited for the particular context,

the method AffectiveAgent#selectOption(List<Option> options) (that is re‐

sponsible for selecting one of the applicable options during the SelAppl state) has

been adapted to give precedence to plans that have affect annotations.

The question might arise why the extra work of introducing and processing an ad‐

ditional ASL formalism has been necessary, instead of simply relying on the already

existing mechanism of plan contexts. After all, the applicability of plans is tested

based on their context, and affective preconditions could be placed in the context.

The problem with this solution is that the context is evaluated against an agent’s be‐

lief base. As has been discussed, a belief base does not need to be correct, and does

not need to contain all the information that is necessary to evaluate such precondi‐

tions. This makes the employed solution better suited because it evaluates affective

preconditions against the objective facts of the environment instead of their subjec‐

tive perception by the individual agent.

OVERVIEW

The resulting overall architecture of the affective extension of Jason can be found in

Fig. 3.8.

3.3.4 UPDATING INBLOOM TO USE AFFECTIVE CHARACTERS

Several changes have to be performed in order to allow InBloom to use the extended

Jason architecture.
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Figure 3.8: A class diagram representation of the affective extension of the Jason architecture.
For brevity reasons, attributes are represented without types and methods without parameters

or return types. Static members are underlined.

FIRST, AFFECTIVE PROCESSING has to be switched on, which is done by adapting the

employed agent class in inBloom.jason.PlotAwareAg to subclass AffectiveAgent

instead of Agent. This entails that a narrative system implemented using InBloom

has to be able to define its agents’ personalities during configuration. As outlined

in Sec. 2.3.4 (on p. 89), during configuration, agents’ properties can be set up us‐

ing the class inBloom.LauncherAgent. This mechanism can be extended to incor‐

porate personality. To do so, LauncherAgent receives a new field personality of

type Personality which can be instantiated by the narrative system with the appro‐

priate personality when its instances are created. The personality of the respective

PlotAwareAg is then set by the method PlotLauncher#initializePlotAgents(Li

st<LauncherAgent> agents) based on the LauncherAgent configuration.

PREVIOUSLY, EVENT PERCEPTIONS only needed to encode the agent that perceives

them, as well as their propositional content. Now, an event could potentially also

be associated with a number of primary emotions, determined by the model. As

has been discussed above, primary emotions need to be encoded in annotations,

which are added to a perception delivered to the agent. Thus, the event implemen‐

tation needs to be extended with a convenient way to add annotations. To do so,

the method PlotEnvironment#addEventPercept(String agentName, String pe

rcept, PerceptAnnotation annot) has been implemented. Its third parameter is
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of the newly created type inBloom.helper.PerceptAnnotation, a class that wraps

around a list of strings that represents all the annotations that need to be added to

a perception. This class offers convenience methods to add annotations of the type

emotion, target and cause, but also a method to add annotations of arbitrary form.

Its toString() method performs all the necessary manipulations to transform the

wrapped list into a syntactically correct annotation. With this, to create an event

with an emotion becomes as easy as:

environment.addPerception("hen",
"found(wheat)",
PerceptAnnotation.fromEmotion("joy"));

A special case of event perceptions are action‐result perceptions. Previously,

model‐side actions only needed to return true or false, depending on whether their

execution succeeded (revisit Fig. 2.5 for details on how actions are processed by In‐

Bloom). Now, the result of an action could potentially also be associated with a

number of primary emotions. To encapsulate all the information that an action—

implemented as a method in the model—needs to return to the agent, the class

inBloom.ActionReport is created. It contains the field Boolean success, which is

used to encode whether the action execution succeeded, and the field Map<String,

PerceptAnnotation> perceptMap, which can be used to store different perception

annotations for different agents. This is necessary because actions are always per‐

ceived by all agents present at the same location, however, their emotional appraisal

of the same action might differ. ActionReport is used as the return type of all model

methods that implement actions. The method PlotEnvironment#executeAction—

that receives agents’ action requests and is responsible for relaying them to the

model—analyzes the returned ActionReport, constructs event perceptions with ac‐

cording annotations for each present agent, and returns whether the action was suc‐

cessful. Its location as the interface between agents and model allows it to perform

an additional analysis step: If an action is reported to fail, an additional annotation

containing a disappointment emotion is constructed and attached to the perception

of the executing agent. This constitutes a first step towards automatic emotion de‐

tection by InBloom.26

26The autonomous, domain independent detection of appropriate emotions is a powerful
tool, that has the potential to take over much responsibility from the domain modeler. How
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Another type of events represented by InBloom are happenings, which also might

need to be associated with primary emotions. Therefore, the class Happening is ex‐

tended with the field PerceptAnnotation annotation, which can be used to hold

any annotation, but in particular those pertaining to emotions.When the model de‐

termines that a happening has been triggered during the course of its PlotModel#ch

eckHappenings method, it can now use the annotations stored in the happening to

deliver a perception—complete with emotions—to the agent via the environment, in

the same way as it would with actions.

THE AFFECTIVE DYNAMICS underlying the agent’s behavior might be of interest to

the end user, so functionality for capturing the development of mood over time in

the form of line graphs has been implemented. Whenever an agent’s mood value

changes, the extended Jason architecture notifies AffectiveAgent subclasses by call‐

ing their method updateMoodValue(Mood newMood). The class PlotAwareAg over‐

rides this method, to store the new mood in a table‐like model side structure, using

the method PlotModel#mapMood(String name, Mood mood, Integer reasoning

CycleNum). This table—rows containing agent names, and columns containing the

agent’s current reasoning cycle number—is wrapped in the class inBloom.helper

.MoodMapper. Among several auxiliary functionality it also implements the method

Mood sampleMood(String agName, Long reasoningCycleNum), which can deter‐

mine an agent’s mood at any given plot time based on the reasoning cycle num‐

bers stored in the table. When the user wants to display a mood graph she can

activate the Show Graphs button in the UI, effectively calling the method PlotCo

ntrolsLauncher#void drawGraphs(). This method prompts the singleton class

inBloom.graph.MoodGraph to analyze and visualize the mood data. The data un‐

derlying the graph is created by sampling every agent’s mood data stored in the

MoodMapper in 10 millisecond steps (from the start time of the fastest agent to the

stop time of the slowest agent) for a given dimension (all agents’ pleasure, arousal, or

emotions can be derived from certain configurations is an open and exciting research problem,
both from the AI as well as the narratology perspective. An example from narratology can
be found in Dannenberg (2008, Chap. 5), who outlines how the emotions ‘satisfaction’ and
‘regret’ can be derived from downward and upward counterfactual thought. However, as the
result of deliberation, they are candidates for the automatic appraisal of secondary emotions,
and not primary emotions like discussed here.
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dominance, or alternatively all dimensions of a single agent; which can be selected

using the graph’s UI). To allow for better cross‐referencing with the plot graph, the x‐

axis of the mood graph also receives ticks indicating which reasoning cycle numbers

correspond to which plot steps. The graph itself is represented as an XYLineChart

from the Java library JFreeChart27.

Furthermore, the plot graph is extended in order to allow it to capture the appraisal

of emotions as well as changes in mood, since these internal events have become addi‐

tional parts of the plot. Changes of mood are reported to the graph by a mechanisms

already in place in the class PlotCircumstanceListener, which reports all internal

events to the plot graph. This means that mood changes (the addition or removal of

the belief to be in a certain mood octant) are represented in the plot graph as vertices

of the generic type PERCEPTION. The same solution would also work for emotions,

however, for further processing steps it is necessary that emotions are represented by

a dedicated vertex type. Consequently, the new plot vertex type EMOTION was added

in the class Vertex. Then, PlotAwareAg’s method addEmotion was extended to per‐

form a call to PlotGraphController#addEvent, which adds a vertex of type EMOTION

to the plot graph.

3.4 THE CASE STUDY REVISITED

With the whole machinery for affective reasoning in place, finally, the case study from

Sec. 2.4 can be revisited. The hypothesis that motivated the present chapter was that

the difficulties encountered there during the modelling of the folktale TLRH, namely:

• Why does the hen normally work on the farm, while the other animals always

relax?

• What triggers the hen’s desire to punish the other animals?

can be resolved by taking into account characters’ fictional minds. This can now be

put to the test by enriching the previously outlined narrative system in three ways:

1. Encoding the four characters’ personalities,

2. Encoding when—and which—particular emotions are triggered,

27www.jfree.org/jfreechart
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3. Encoding the affective causes and conditions for agents’ plans.

Since the original tale does not provide any explicit indications about the characters’

affective life (and even if it did, it could not be expected that such prescriptions were

formulated using the conceptual framework set up in this chapter) any such modeling

must necessarily be regarded as an act of interpretation. As such, it has no claim to

universal validity: It may well be that readers’ intuitions diverge from the ones pro‐

posed below, but I would consider that not harmful to my overall argument. What

is of importance is that there exists at least one plausible interpretation that can lead

to a parametrization of the narrative system resulting in the emergence of the origi‐

nal plot. Remember, that the setting of this thesis so far has been one of generative

modeling, where the goal is to reproduce phenomena encountered ‘in the wild’, based

on a set of first principles offered by a particular theory. If a reconstruction has suc‐

ceeded, then the underlying theory can be considered sufficiently expressive to model

the phenomenon in question, in our case: plot.28

Some readers might be inclined to deny any reading that suggests that folktale

characters have personalities or experience moods, since the classical position is that

the plot of folktales is driven by the moral and not by the characters. This is under‐

standable, but I hope that the previous sections have succeeded in convincing these

readers to give it the benefit of a doubt. If the silent movement of simple geometric

shapes, like employed in the Heider‐Simmel experiment (see p. 44), can create the

appearance of personality in readers, then it should not be a stretch to accept such

readings in fairy tales, even if they might not be considered overly scholarly. I concede

freely that other genre might be better suited to make my point, however, the over‐

riding criterion here remains the simplicity of folktales, which makes them amenable

to computational modeling.

28In fact, the argument works better in the opposite direction: If a reconstruction has not
succeeded, the theory can be considered underspecified. All that a successful reconstruction
can demonstrate is that the theory is sufficient to model one particular instance. However,
for a computational approach to such a complex phenomenon like narrative even that can
be considered a success. Another indication for success is generative potential: the ability
of one model to create different instances of the modeled phenomenon based on different
parametrizations. This will be discussed below.
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3.4.1 ENRICHING THE NARRATIVE SYSTEM OF TLRH

As outlined, the narrative system needs to be enriched in three ways.

PERSONALITY

A first observation on personality is that the three farm animals behave completely

the same throughout the narrative, so it is plausible to assume that their personali‐

ties are similar. It would, of course, be possible to infer differences from intertextual

knowledge or social stereotypes, which would suggest different traits for e.g. the pig

and the dog. However, these seem to have no relevance for TLRH since they do not

lead to a difference in behavior. Hence, as a handy simplification, I will assume that

their personalities are identical.

Recalling the adjectives associated with the individual personality traits presented

in Tab. 3.1, the following profile can be deduced. The most prominent feature of the

‘non‐hen’ farm animals is that they do not perform any work on the farm and are

apparently not willing to be moved to do so. This suggests that they have a low level of

conscientiousness, which is associated with reliability and responsibility at the high

end of the scale. Another interesting feature is that the animals do not show any

willingness to help the hen in her work, even when she asks them directly to do so.

This would correspond to a low level of agreeableness, which on the high end would

be associated with kindness and a sympathetic attitude. Also noteworthy is that the

three characters spend all their time calmly relaxing in the sun, no matter the hen’s

antics. Foremost, this suggests a fairly low level of neuroticism, which, at the high end

of the scale, is associated with instability and intolerance to stress. It also lends itself

to ambivalent conclusions towards extraversion, which is associated with activity and

a high energetic level on the high end, but, at the same time, also to a tendency for

positive affect and cheerfulness. The animals commonly exhibit low energy behavior,

but perk up when they are offered bread, and seem also to be fairly capable of enjoying

positive emotions from their time in the sun. I therefore opt for a slightly low level

of extraversion. None of their behavior seems to relate to the openness trait, which is

associated with originality, imaginative capabilities and artistry, so I assume a neutral

level. A quantified realization of this discussion can be found in Tab. 3.5.
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The hen’s behavior can be interpreted as the result of a different personality pro‐

file. The fact that she persistently works on the farm indicates a high level of con‐

scientiousness. She exhibits a high level of energy, enthusiastically takes on the task

of creating bread and repeatedly asks for help, which also indicates a high level of

extraversion. She does not seem to react too strongly to individual rejections and

setbacks but still is sufficiently stung to punish the causers after continued trans‐

gressions, which could be taken to indicate mildly negative level of neuroticism. Her

level of agreeableness can’t be very high, otherwise the hen would share the bread in

all circumstances. However, it can’t be very low, either, if the tale is taken to indicate

that she would have shared the bread if the other animals did help her (see Fig. 2.3 for

the reasoning behind this interpretation). For practical reasons, a somewhat negative

level of agreeableness is assumed here. Again, no conclusions could be drawn about

openness. A quantified realization of this discussion can be found in Tab. 3.5.

Table 3.5: Personality profiles
employed in InBloom to reproduce

the plot of TLRH.

hen other animals

O 0 0

C 1 ‐1

E 0.7 ‐0.3

A ‐0.3 ‐0.7

N ‐0.2 ‐0.7

It should be noted that any mapping of qualita‐

tive assessment to quantitative representation must

be arbitrary to a certain degree, unless conducted via

a validated personality questionnaire averaged over

several raters. This approach will, in fact, become

relevant later in this section, but seemed excessive

in the present context, where the relation between

the two personality profiles counts more than any ac‐

tual numbers. Here, the numbers were fine tuned by

hand to ensure desirable dynamics.

EMOTION

The following (primary) emotions were implemented via the model and character

classes:

• Every action that successfully changes the state of the wheat (from corn, via the

preliminary stages, up until bread) elicits pride.

• Sharing an item with another agent elicits pride in the giver, and gratitude

in the receiver.
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• Eating an edible item elicits joy.

The following (secondary) emotions were implemented via the ASL reasoning file:

• When an agent realizes that a new item they dislike has come into their posses‐

sion, this is appraised with hate29, otherwise this situation is appraised with

love.

• Alternatively, when a hungry agent realizes that a new edible item has come

into their possession, this is instead appraised with joy.

• When an agent finds an item, from which a useful second item can be created,

this is appraised with hope.

• When an agent’s request for help is rejected, this is appraised with disappoint-

ment unless the agent’s mood is hostile, in that case it is appraised with anger.

• When an agent’s request for help is accepted, this is appraised with gratitude.

• Rejecting a request for help is appraised with reproach targeting the requesting

agent, while accepting a request results in feeling pride.

• When an agent attempts to eat something but realizes that it does not possess

anything edible, this is appraised with disappointment.

• When an agent realizes it has successfully completed its bread‐making inten‐

tion, this is appraised with satisfaction.

As attentive readers might have noticed, not all of these situations pertain directly

to the ones encountered in the original plot of TLRH. Instead, they might be taken to

represent situations that could arise during alternative possible plots. Since InBloom

is a framework for implementing narrative systems, and narrative systems receive this

name from their inherent potential to represent a plethora of possible worlds or plots,

this is a desirable property of the implementation.

AFFECTIVE REASONING

Affective reasoning can take two forms: one is that plans can be supplemented with

affective conditions concerning an agent’s personality and current mood, while the

29The decision which emotion is appraised in which situation was made relying on the
OCC taxonomy in Fig. 3.1. This might not always align well with an intuitive understanding
of the emotions or situations in question.
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other is that moods and emotions can be used to trigger changes in wishes and obli‐

gations. This can be used to address the two central difficulties of the initial version

of the case study.

One problem was that the reason for the hen’s desire to punish the other animals

could not be determined and implemented. This can be now done by using a hostile

mood as the triggering condition to punish those characters that caused that mood

(see Lis. 3.2). When the mood lightens again, this leads to the deactivation of the

respective desire.

1 +mood(hostile) <-
2 ?affect_target(Ags);
3 if not (.empty(Ags)) {
4 +wish(punish);
5 }.
6
7 -mood(hostile) <-
8 -wish(punish).

Listing 3.2: Hostile mood (de)activates punishment wish.

This seems intuitively plausible, and also follows the logic of the underlying affec‐

tive reasoning framework, since the repeated rejection of the hen’s requests for help

will be appraised by her with negatively valenced emotions, which can lead to a drop

of her mood into the hostile octant.

The other problem was that, previously, there was no way for the system to decide

why the hen normally works on the farm, while the other animals usually relax in

the sun. This can be addressed by leveraging their differences in trait conscientious‐

ness: agents high on that scale should first focus on achieving their obligations, while

agents closer to its lower end can freely follow their wishes instead (see Lis. 3.3).

The first plan encodes that an obligation that involves laborious tasks will be turned

into an intention only when the agent is high on trait conscientiousness. This means,

that non‐conscientious agents’ will find no plan to select in this case, and instead

fail, resulting in the fallback mechanisms (see line 13 in Lis. 2.3) being activated to

re‐introduce the obligation. This makes sense, since an obligation does not cease

to exist after being ignored once, but will be ‘at the back of the agent’s head’ con‐

stantly. The second plan encodes that non‐laborious obligations will be accepted by
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1 @obligation1[affect(personality(conscientiousness,high))]
2 +!obligation(Plan) : is_work(Plan) <-
3 !Plan;
4 !obligation(Plan).
5
6 +!obligation(Plan) : not is_work(Plan) <-
7 !Plan;
8 !obligation(Plan).
9
10 @wish1[affect(personality(conscientiousness,high))]
11 +!wish(Plan) : obligation(Plan2) <-
12 !wish(Plan).

Listing 3.3: Personality dependent wish and desire management

all agents, which is necessary to provide a plan ensuring normal obligation manage‐

ment behavior in case of common obligations. The third plan encodes that agents

high on conscientiousness can not turn a wish into an intention, as long as they still

have active obligations, instead holding on to the wish for later reconsideration.

This is sufficient to address the initial problems. However, in order for the moods

and, especially, the personality traits to have a perceivable effect on the narrative

system, the rest of the plan base has also to be annotated with affective conditions,

wherever plausible:

• If an agent has a high value on trait agreeableness and its mood is not low on

the pleasure dimension, the agent will offer to share its food with others.

• Also, if an agent has a medium value on trait agreeableness and its mood is high

on the pleasure dimension, the agent will offer to share its food with others.

• An agent will ask others for help on laborious tasks only if it has a positive value

on trait extraversion and its mood is not low on the dominance dimension.

• An agent will refuse a request for help if it has a low value on trait agreeableness

and its mood is not low on the dominance dimension.

• An agent will also refuse a request for help if its mood is high on the dominance

dimension, and its personality has a negative value on trait agreeableness.

• An agent that has a positive value on trait extraversion will loose the wish to

relax, after it has executed a relax action, while having a negative value on trait

extraversion means that the wish to relax remains active even after successfully

executing a relax action.
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• When an agent realizes that its mood switched to relaxed, it looses the wish

to relax. Conversely, when it realizes a mood switch to anxious, the wish to

relax becomes active again.

• If an agent has a high value on trait neuroticism, it will execute the new ac‐

tion Character#fret()—which appraises the emotion distress—as part of

its intentions to punish someone or to reject someone’s request for help.

3.4.2 EXPLORING A SPACE OF POSSIBLE PLOTS

RECREATING THE INITIAL PLOT

With the above provisions in place, all questions regarding the modelling of the nar‐

rative system and, consequently, the plot of TLRH could be resolved. This does not

mean that the system is guaranteed to recreate the correct plot, since the affective

dynamics of individual agents are hard to predict for the developer but crucial for the

emergence of the plot. In particular, the development of the hen’s mood is important

here, since it has to turn hostile at the right time to activate the desire to punish the

other animals. However, the above discussion of personality profiles allowed for a

certain leeway with regard to their precise quantification. It should, thus, not come

as a surprise that the parametrization in Tab. 3.5 can be used to successfully recreate

the desired plot. The resulting plot graph, produced by InBloom, can be found in

Fig. 3.930. It exposes well, how the hen and the other characters behave differently

due to their differences in personality: they all start out with the same wishes and

obligations (step 0 in the graph), but the hen chooses to pursue her obligation, while

the other animals pursue their wish. The hen’s activity works as a catalyst for the

plot, since it activates the happening of finding wheat (the dark blue arrow in step

2 indicates a causality relation) that sets her of on her pre‐ordained path. It is also

interesting to note, how she develops a desire to punish the other animals in step 5.

After getting rejected for two times, her mood switches to hostile, which activates

a wish to punish the culprits. However, she finds no plan to achieve this desire, so it

leads to no consequences. After some time—and experiencing the positive emotion

30The visual representation of the graph is post processed in order to enable human read‐
ability and the computational analysis of plot quality. The details of this process, as well as
the employed notation, will be introduced in detail in Chapter 4.
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pride because she successfully planted the wheat—the hen’s mood returns back to

a more balanced state, which deactivates the punishment desire (step 6, omitted for

brevity in Fig. 3.9). This dynamic repeats itself several times (also omitted from the

graph in Fig. 3.9), and culminates with the baking of the bread. As before, the hen

is in a hostile mood and has an active punishment desire. This time, however, she

holds the means to put her wish into action: the intention !punish can be selected

in step 15 because all pre‐conditions of a corresponding plan are now satisfied since

the hen is in possession of bread (compare with Lis. 2.7). As a result, she asks the

other characters whether they would like to eat some bread, which for them activates

an intention to eat bread. Alas, our plumed avenger does not share any of the bread,

opting instead to eat it alone. Consequently, the environment determines that the

other characters’ eat(bread) actions fail, which is automatically appraised with a

disappointment emotion. Interestingly, this solves a final puzzle that has remained

open (but so far unmentioned) since the previous case study: why do the actions of

the hen, in fact, constitute a punishment? For a reader who is well versed in social

norms this might be trivial, but so far the InBloom system had no way of determin‐

ing that the mentioned situation constituted an impairment of the other animals’

state, let alone a punishment. With the introduction of emotions, the situation fi‐

nally becomes comprehensible for the narrative semantics put forward in this thesis.

The emotion disappointment results in a negative movement along the pleasure di‐

mension of a character’s current mood, which can be regarded as negative ipso facto.

Furthermore, the cause of this emotion can be traced back to the hen’s punishment

intention, by following back the incoming light blue (indicating actualization) and

gray (indicating cross‐character communication) arrows.31

The affective dynamics of the plot can be seen more concisely in Fig. 3.10, which

contains current‐mood graphs, generated by InBloom. It is interesting to note, how

these graphs are representative for the characters’ personality traits. The hen’s mood

shows medium reactivity to events, which can be expected of a character with a non‐

31In fact, following this trail even further back also reveals how the hen’s punishment desire
was triggered by the other characters’ refusals, and so on. How InBloom is capable of detecting
these connections will be presented in Chapter 4, but it should be noted that by doing so it
unveils the causal structure behind the events of the story world, turning them into a coherent
whole: a plot.
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Figure 3.9: Abridged plot graph of TLRH: Parts of the create(bread) plan (vertical) and one
and a half farm animal (horizontal) have been removed to allow a more legible rendering on the
available limited space. The full plot graph can be found under https://www.home.uni-osnabru

eck.de/leberov/tlrh_plot_full.pdf.
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minimal neuroticism rating. The dog’s mood (which is representative for the other

non‐hen animals) remains mostly constant, which can be expected of a character with

a low‐ish extraversion rating leading to little activity. Also, in the second case, the

reactivity of the current mood is much lower than in the first, which is indicative of a

lower neuroticism rating.

EXPLORING THE PARAMETER SPACE

The previous section has demonstrated, how the right personality parameters can

lead to the emergence of the original plot of TLRH. This begs the question of what will

happen, when these parameters are varied. After all, InBloom is used to implement

narrative systems and not individual plots, which ideally should mean that variations

of the system’s parameters should result in the emergence of alternative plots.

The personality parameter space of the TLRH system is fairly large, even when indi‐

vidual traits are considered to be discrete (low, medium, high) instead of continuous,

which is a plausible simplification given how agents’ planning is determined by pre‐

cisely these discrete values. Already for one character, the protagonist, this results in

35 = 243 possible settings, and that does not even take into account the combinations

that are possible when the other three characters’ parameters are varied, too. Thus,

while an automatic exploration of this space would be feasible, in practice it would

have little value since the system (so far) still lacks the functionality to also review the

resulting plots automatically. For this reason, I preferred to conduct a manual explo‐

ration instead, performed by testing parameter combinations that seemed promising

to me based on the way affective conditions were implemented in the plan base. This

means that only a fraction of the possible settings could be tested, which, on the

positive side, allowed me to manually review the resulting plots and evaluate their

interestingness for the present discussion. The plots that could be created by the sys‐

tem, and the personality parameters that led to them (while keeping the happening

settings unchanged), are summarized in Tab. 3.6.

The first entry of the table lists the original plot for comparison. The second

parametrization effectively turns the hen into a relaxed farm animal which is so con‐

tent that it does nothing, while the other animals at least still actively relax. Since she
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Figure 3.10: The development of the current mood in PAD space for the hen (left) and a
representative farm animal (right). Black vertical lines represent environment steps and are

labeled with the respective step numbers.

does not work on the farm she can not find any wheat, and the narrative equilibrium

at the beginning is never breached. In the third version, the hen’s low neuroticism

score makes her less responsive to the negative affect from the rejected help requests

and she stoically performs her duty without getting into a hostile mood that would

lead to the wish for punishment. In the fourth version, the hen’s high agreeableness

value forces the selection of an eating plan that includes sharing food with the other

animals. Version number five sees the hen going about her business without ask‐

ing for help, since this is only possible with positive extraversion traits. Curiously,

the less extroverted hen is also the happier hen: never asking for help spares her the

many disappointments of her alternative brethren, which results in much higher av‐

erage current‐mood ratings on the pleasure dimension. For this reason, she shares

the bread with the other animals. The sixth parametrization shows that it is possible

to combine the effects of individual parameter changes. A lower extraversion paired

with a low neuroticism again sees the hen performing her tasks without requesting

help. Here, her newly added stoic disposition results in much less perturbation of the

current mood through her successful farming exploits, and her pleasure level never

rises enough to feel compelled to share the food. The next two settings explore the

influence of the other characters’ personalities, while leaving the hen in her default

parametrization. In the seventh version, the change in the dog’s agreeableness value

forces it to help the hen when she requests assistance. This means less negative emo‐

tions for the hen, and she does not develop a desire to punish the other animals. The

last entry reflects a situation where both the dog and the pig help the hen, due to

an increased agreeableness value, which propels her pleasure rating so high that she
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shares the food with everyone, including even the cow, who did not help. This is an

interesting version since it, incidentally, seems to embody a very different morale,

where society does not force the individual to contribute in order to secure its liveli‐

hood.32

3.4.3 AN EMPIRICAL EVALUATION OF PERCEIVED PERSONALITY

Above, I have argued that changing the personality parameters of the agents leads

to a change of plot. Indeed, a change can be observed in the emergent behavior of

the MAS, but is the claim justified that the changed parameters represent character

personality, or are they, in the end, just arbitrary numerical levers? The argument for

the representational nature of these parameters has been theoretical, so far: Since fic‐

tional minds work mostly like real minds, real minds have quasi‐stable dispositions,

and these dispositions can be captured using the Big Five personality trait scale in

certain interactions with other reasoning phenomena, my implementation of these

interactions is supposed to represent personality. However, in the setting of story

composition this can only hold true if the plots that result from different parametriza‐

tions also manage to convey a sense of different personality to their consumers. Even

more, personality settings in the computational model should actually correlate with

perceived personality in order for the parameters to be meaningful.33 In order to eval‐

uate, whether the proposed system is capable of modeling the personality of fictional

characters, an empirical study was conducted.

EXPERIMENTAL DESIGN

The study investigated whether changing the personality parameters of a character in

the computational model correlated with a significant co‐directed change of the per‐

ceived personality of this character, as judged by readers. The experiment presented

below was designed to test the following null hypothesis: Changing a personality trait

32InBloom does not reason about the symbolic dimension of narratives, and has no means
of detecting such changes at the interpretatory level. However, it is important to note that they
can incidentally emerge from changes at the mimetic level, which leaves open the possibility
to address this problem in future work.

33This should not, however, be taken to imply that modeled personality should be identical
to perceived personality, since in a complex communication setting like the fictional narrative
a completely faithful reconstruction of the message by the receiver should not be expected.
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of a character in the model does not correlate with a change of readers’ perceptions of

the same personality trait in that character. In order to investigate whether a potential

effect is diffused when multiple traits are changed at the same time, two experimental

conditions were tested.

The plot of TLRH was used as the control condition, using the settings laid out in

Tab. 3.5. Two experimental conditions were created by changing certain personality

parameters of the protagonist:

• Condition E: the extraversion trait was lowered (E = −0.3),

• Condition NA: the neuroticism trait was lowered (N = −1) while the agree‐

ableness trait was raised (A = 0.7)34,

which resulted in plots that differed from the basic condition by at least one action

executed by the protagonist. In condition E the hen doesn’t request help and in the

end it eats the bread alone35, while in condition NA she requests help and is repeatedly

rejected but still shares the bread in the end. The advantage of such a comparative

setting is that it allows to make inferences from comparison to the control, instead of

relying purely on absolute numbers, which would be the case if completely unrelated

stories were to be used.

Plots in InBloom are represented only through plot graphs that contain the ac‐

tions executed, the events perceived, and the emotions experienced by each charac‐

ter. However, no prose generation module exists that could be used to translate these

graphs into story text. It is conceivable to attempt training all subjects in reading plot

graphs, however, this would make the experiment more time consuming. Further‐

more, the inference of character personality from text is a natural process in which

readers are already proficient, and switching to an unfamiliar format might impair

the quality of this ability. For these reasons, the decision was made to obtain a textu‐

alized version of the generated plot graphs of the two experimental conditions. To do

so, a collaborator was recruited. She was presented with the system‐generated plot

graph for the control condition and the text of the original fairy tale, and given time

34Attentive readers might note that according to Tab. 3.6 the effect of increasing A sub‐
sumes the effect of decreasing N. This is true in the current system, but not at the time of
conducting this study in early 2018 because the system underwent considerable refactoring in
the mean time.

35Differences to Tab. 3.6 again due to changes implemented after the study.
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to study them. Then, she was asked to translate the graphs of conditions E and NA

into narrative texts based on the provided example pairing. To avoid the unconscious

introduction of biased text, the collaborator was not informed about the hypothesis of

the experiment or the provenance of the graphs. The crafted story text was identical

to the original tale whenever the same situations were described, and only differed in

the context of different actions taken by the protagonist.36

An online survey platform was used to carry out the study. 40 participants with

English language proficiency level B2 and higher were recruited from the University

of Osnabrück through e‐mail and social media. A within‐subject design was selected

in order to reduce interpersonal differences in the data and allow meaningful results

with the available number of participants. Each participant was presented with the

texts of all three conditions, and each text was instantly followed by a personality

survey about the protagonist. The personality survey used the 44 statements from

the BFI instrument (John et al., 1991; John et al., 2008), and asked participants to

indicate how much they perceived these statements as applicable to the protagonist

(e.g. “Little Red Hen is helpful and unselfish with others”). Participants could provide

answers to each statement using a Likert‐scale ranging from 1 (strongly disagree) to 5

(strongly agree).

In order to avoid introducing a systematic bias due to carry‐over effects from the

first story‐questions pair to following conditions, presentation order of the three con‐

ditions was randomized between participants. Feedback from a pre‐trial suggested

that participants found it hard to mentally separate the protagonist (Little Red Hen)

of the later conditions from preceding ones. To facilitate the task, and avoid this non‐

systematic carry over effect, the protagonists of the three conditions were additionally

assigned different names. The names were randomly selected from the top ten most

common female names in the US over the last 100 years37, in order to avoid name‐

related biasing. The resulting protagonist names were Little Red Hen Linda (control

condition), Little Red Hen Mary (condition E) and Little Red Hen Susan (condition

NA). As will be discussed below, these measures proved to be sufficient since the data

36All plot graphs and story texts can be found on www.home.uos.de/leberov/tlrh_version
s.htm.

37Based on https://www.ssa.gov/oact/babynames/decades/century.html.
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shows no significant effect of condition order on personality judgement.

The collected data for each participant includes demographic data, the order in

which conditions were presented, and the answers from three BFI inventories relating

to the three conditions. The inventory data was post‐processed according to the in‐

structions provided by the instrument’s authors (no ipsatization was applied). While

the collected inventory data was discrete, the resulting average scores are continuous

values in the range from 1.0 to 5.0. The results provide the five average personality

trait scores of the protagonist as perceived by the readers, for each of the three exper‐

imental conditions (see table 3.7).

Table 3.7: Survey results: perceived personality (mean +/- std) of the protagonists of the three
conditions. Asterisks indicate significant difference with control condition.

*: P ≤ 0.05, ****: P ≤ 0.0001.

control condition E condition NA

O 3.12 +/‐ 0.44 2.87 +/‐ 0.53* 3.11 +/‐ 0.46

C 4.50 +/‐ 0.37 4.26 +/‐ 0.56* 4.42 +/‐ 0.41

E 3.79 +/‐ 0.48 2.56 +/‐ 0.65**** 3.72 +/‐ 0.54

A 3.02 +/‐ 0.72 2.82 +/‐ 0.52 4.58 +/‐ 0.33****

N 2.39 +/‐ 0.66 2.58 +/‐ 0.60 1.86 +/‐ 0.60****

DATA EVALUATION

The gathered experimental data allows answering the research question—formulated

in the null hypothesis above—by checking for significant effects in the affected traits.

This can be done by analysing whether changing a character’s personality trait in the

model correlates with a co‐directional change in perceived personality. It is also of

interest to check whether the employed personality model has the desirable property

of being orthogonal, that is, whether a change in one trait also has no effect on the

perception of other traits. The same approach also allows validating the employed

within‐subject design by checking for interaction effects between subsequently pre‐

sented stories.

A Mauchly Test for all obtained trait ratings showed that the sphericity assumption

was violated in the data. Therefore, in the following, all repeated measure ANOVA

results are reported with a Greenhouse‐Geisser correction.
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Table 3.6: Personality parameter settings that lead to different plots in the narrative system
of TLRH. The parameters are reported in the order: O C E A N. For convenience, in the
rows containing plots number 2–8, parameter differences to plot number 1 are marked in blue.
Tellability scores represented in Tab. 4.3 are referencing the plot numbers and parameter settings

in this table.
Plot # Hen Dog Pig Cow Plot Summary

1 0 1 0.7 -0.3 -0.2 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 Original plot
2 0 -1 0.7 -0.3 -0.2 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 Farm animals relax, while hen does nothing
3 0 1 0.7 -0.3 -1 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 Hen eats bread alone, but no punishment
4 0 1 0.7 1 -0.2 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 Hen shares bread despite refusals
5 0 1 0 -0.3 -0.2 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 Hen doesn't ask for help, shares bread
6 0 1 0 -0.2 -1 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 Hen doesn't ask for help, doesn't share bread

7 0 1 0.7 -0.3 -0.2 0 -1 -0.3 0.7 -0.7 0 -1 -0.3 -0.7 -0.7 0 -1 -0.3 -0.7 -0.7 Dog helps hen, no punishment, no sharing
8 0 1 0.7 -0.3 -0.2 0 -1 -0.3 0.7 -0.7 0 -1 -0.3 0.7 -0.7 0 -1 -0.3 -0.7 -0.7 Dog and pig help hen, hen shares with everyone

CONDITION‐ORDER EFFECT It can be assumed that no interaction effects arise be‐

tween subsequently presented conditions, if a condition’s protagonist’s perceived per‐

sonality can be shown to not change significantly in dependence of the position in

which the condition was presented to the participants. To determine this, the five

personality trait ratings for the protagonist of the control condition were compared

between three groups: participants who read the story first (N = 16), ones that read it

second (N = 11), and last (N = 13)38. A single factor independent measure ANOVA

was executed for each personality trait (Tabs. 3.8 through 3.12). As anticipated, no

significant between‐group differences were found in the O, C, E and A traits. How‐

ever, a significant between‐group difference was found in the N trait (at P = 0.02):

µN1st = 2.17 vs. µN2nd
= 2.24 vs. µN3rd

= 2.79. A post‐hoc pairwise comparison

showed significant differences between the third group and the first group (P = 0.04),

however, no significant difference between the first and second group (P = 0.96), nor

between the second and the third group (P = 0.09).

The last result requires further analysis, since it indicates that presentation order

affects personality rating only for N traits and when the story is presented last. Since

an ANOVA tests the assumption that all samples were drawn from the same popula‐

tion, the post‐hoc tests suggest that the first and the second samples, as well as the

Table 3.8: Results for trait extraversion.
ANOVA SS df MS F P value

Between Groups 0.55 2 0.28 1.25 0.30
Within Groups 8.23 37 0.22

Error 8.79 39 0.23

Table 3.9: Results for trait neuroticism.
ANOVA SS df MS F P value

Between Groups 3.08 2 1.54 4.11 0.02
Within Groups 13.87 37 0.37

Error 16.95 39 0.43

38The unequal distribution of participants is due to a technical limitation of the employed
survey software which only allows a randomized presentation order instead of true counter‐
balancing.
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Table 3.10: Results for trait agreeableness.
ANOVA SS df MS F P value

Between Groups 0.91 2 0.46 1.76 0.18
Within Groups 9.64 37 0.26

Error 10.56 39 0.27

Table 3.11: Results for trait openness.
ANOVA SS df MS F P value

Between Groups 0.63 2 0.32 1.72 0.19
Within Groups 6.80 37 0.18

Error 7.43 39 0.19

second and the third samples, were drawn from the same population, while the first

and the third samples originate from different populations. Since being drawn from

the same population is a transitive property, this indicates inconsistent results. Fur‐

thermore, in the present case, five statistical tests were executed on the same data,

of which one found a significant effect at an α = 5% level. Considering that ANOVA

tests are not corrected for multiple comparisons, the probability of finding at least

one false positive in this setting is around 20%.39 Taking these observations together

I interpret the last finding as a random sampling effect, and not an effect of condition

order.

Taking this into account I conclude that in the control condition no interaction

effects take place between subsequent conditions for any of the traits, which validates

the choice of a within‐subject design. The same analysis could be conducted for the

other two stories, but was left out due to time constraints.

PERCEPTION OF MODIFIED TRAITS A single factor repeated measure ANOVA shows

a highly significant difference (at P = 5.85 · 10−14) in the perceived extraversion

between the three groups. A pairwise post‐hoc comparison between the control con‐

dition (µEcontrol
= 3.78) and condition E (µEE

= 2.56), where the parameter was

lowered, demonstrates that the effect shows in the correct direction.

Single factor repeated measure ANOVAs also show a highly significant difference

between the perceived neuroticism (P = 5.48 · 10−5) and agreeableness (P =

1.29 · 10−17) between groups. A pairwise post‐hoc comparison between the con‐

trol condition (µNcontrol
= 2.39, µAcontrol

= 3.02) and condition NA (µNNA
= 1.86,

µANA
= 4.58), where N was lowered while A was raised, demonstrates that the effects

show in the correct direction.

This leads me to conclude that the null hypothesis can be rejected, that is, changing

parameters in the model correlates with a change in perceived personality along the

39This probability can be computed as the inverse probability to finding not a single false
positive, i.e. 1− 0.955.
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Table 3.12: Results for trait conscientious-
ness.

ANOVA SS df MS F P value
Between Groups 0.02 2 0.01 0.06 0.94
Within Groups 5.39 37 0.15

Error 5.41 39 0.14

Table 3.13: Results for trait extraversion.
ANOVA SS df MS F P value
Subjects 19.54 39 0.50 2.30 0.00090
Groups 37.90 2 18.95 86.00 1.37 E‐20
Error 16.99 78 0.22

Greenhouse Geisser SS df MS F P value
Groups 37.90 1.83 20.67 86.10 5.85 E‐14
Error 16.99 71.51 0.24

Table 3.14: Results for trait neuroticism.
ANOVA SS df MS F P value
Subjects 21.01 39 0.54 1.78 0.06
Groups 11.22 2 5.61 18.50 2.66 E‐07
Error 23.66 78 0.30

Greenhouse Geisser SS df MS F P value
Groups 11.22 1.79 6.26 18.50 5.48 E‐05
Error 23.66 69.92 0.34

modified traits, and the effect shows in the right direction. For a statistical overview

see Tables 3.13, 3.14, 3.15, 3.16, and 3.17.

PERCEPTION OF NON‐MODIFIED TRAITS The data is less conclusive on the account of

trait orthogonality. Post‐hoc pairwise comparisons show the following results, which

indicate orthogonality:

• there is no significant difference between the O, C and E traits of the control

condition and condition NA (PO = 1.00, PC = 0.43, PE = 0.79),

• there is no significant difference between the N and A traits of the control con‐

dition and condition E (PN = 0.29, PE = 0.23).

At the same time, the following result indicates no orthogonality:

• there is a significant difference between the C and O traits of the control con‐

dition and condition E, although neither C nor O were changed there (PC =

0.0013, PO = 0.0063).

A first observation is that the unintended effects are only present in condition E.

This is a surprising finding, since I expected condition NA to have a higher interaction

potential due to the higher number of changed personality parameters in the model

Table 3.15: Results for trait agreeableness.
ANOVA SS df MS F P value
Subjects 21.01 39 0.54 1.78 0.06
Groups 11.22 2 5.61 18.50 2.66 E‐07
Error 23.66 78 0.30

Greenhouse Geisser SS df MS F P value
Groups 11.22 1.79 6.26 18.50 5.48 E‐05
Error 23.66 69.92 0.34

Table 3.16: Results for trait openness.
ANOVA SS df MS F P value
Subjects 16.83 39 0.43 3.51 1.19 E‐06
Groups 1.60 2 0.80 6.51 0.00242
Error 9.59 78 0.12

Greenhouse Geisser SS df MS F P value
Groups 1.60 1.83 0.88 6.51 0.01285
Error 9.59 71.28 0.13
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Table 3.17: Results for trait conscientious-
ness.

ANOVA SS df MS F P value
Subjects 17.32 39 0.44 4.97 9.12 E‐10
Groups 1.24 2 0.62 6.91 0.00172
Error 6.97 78 0.09

Greenhouse and Geisser SS df MS F P value
Groups 1.24 1.48 0.83 6.91 0.01099
Error 6.97 57.78 0.12

(2 versus 1). Two non‐mutually exclusive interpretations seem possible: (1) in the

employed computational personality model the traits N and A are orthogonal to the

other traits, whereas E is not orthogonal to at least O and C, (2) in this concrete nar‐

rative system a change in E trait leads to a more prominent change in behavior than

a change in N and A, which propagates to stronger changes in perceived personality.

The first interpretation is supported by the fact that several studies show evidence for

significant intercorrelations between at least some of the five traits (Eysenck, 2004,

p. 468). The second interpretation is supported by the observation that condition E

differs from control by four missing actions (three times the hen doesn’t ask for help

and one time she doesn’t offer to share the bread) whereas condition NA differs by

only one action (the hen shares the bread instead of eating it alone).

It should also be noted that, while the unintended effects are significant, they are

several magnitudes weaker than the intended ones. This is a desirable property since

it potentially allows to counteract unintended interactions by coordinated changes in

the dependent personality traits. Whether it is practically possible to negate interac‐

tions in such a way remains to be ascertained empirically.

CONCLUSIONS

The above results allow to reject the null hypothesis, which means that changes in

agents’ personality parameters in InBloom correlate with co‐directed changes in the

personality of fictional characters (represented by these agents) as perceived by read‐

ers.

This allows to draw two important conclusions: First, the employed affective agent

architecture is capable of modeling personality. So far, the claim that the architecture

is modeling personality was based only on the theoretical argument that it imple‐

ments a psychological model of personality. However, a psychological model is nec‐
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essarily an abstraction from the observed phenomenon, and an implementation of a

model is necessarily a simplification. The presented results indicate that these vari‐

ous transformations preserved the phenomenon they modeled. This means I, now,

also have a functional argument to support my claim: InBloom is capable of mod‐

elling personality because it creates plots that convey a corresponding appearance of

personality in readers.

Second, cognitively inspired personality theories can be used to model the literary

effect of personality. Throughout this chapter, I reported the scepticism of eminent

scholars towards the idea that characters can or should be modeled through recourse

to models devised to understand actual humans (voiced by Michael Young and Janet

Murray). My empirical study demonstrates, that mimetic approaches are feasible.

Characters based around fictional minds can be composed into a dramatic plot, and

what is more, at least some of their formal properties can even be reconstructed by

readers. Another line of criticism—by Pablo Gervás—has been, that it is implausible

to assume that writers use scientific theories of mentation to devise their charac‐

ters, but rather rely on their folk‐psychological understanding. This difference might

lead to problematic deviations in perceived characters, between those devised by hu‐

mans and those created based on cognitive models. In particular, folk psychology

would allow to generate predictions even for extreme cases, while scientific theories

would work more reliably in average situations. My study, on the contrary, suggests

that cognitive personality persists under narrativization. That is, personalities that

can be described using the Big Five can be created in the reader’s impression. As I

have argued in my repudiation above, the Big Five model has been observed to corre‐

late extreme ratings with unusual behavioral patterns, as for instance in persons with

mental disorders. This is further supported by the conducted study, where some of

the hen’s behaviors leaned heavily towards the quixotic despite being modeled based

on a cognitive architecture.

3.4.4 DISCUSSION OF THE CASE STUDY

The second iteration of generative modeling has been successful. By this I do not

mean that the resulting system is sufficient to represent narratives in general. Rather,
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it is a bare‐bones baseline, sufficient to demonstrate the general feasibility of gener‐

ative modelling as an approach. In particular, it shows that the plot of one existing

folktale can be reconstructed based on first principles derived from Ryan’s possible

worlds framework and extended by Palmer’s fictional mind approach.

What is important is the observation that personality traits in the resulting system

span a space of possible plots. From a computational creativity perspective this is

interesting because it frames plot generation as a search problem and outlines the in‐

volved parameters. It is also interesting from a narratological perspective because it is

a property of the underlying theory that has been seemingly overlooked by its creator,

Mary‐Laure Ryan. Her work focussed on how plot is a function of beliefs, wishes, obli‐

gations and plans. Personality comes into play as a mediating factor, by determining

how different characters choose between competing wishes and obligations, as well

as constraining which plans they select to achieve these. The resulting choices propa‐

gate through to plot, and allow readers to develop a corresponding model of character

personality. While other affective phenomena—like emotions and mood—also have

been demonstrated to affect the plot, their role is less important, since they are not

parameters that can be varied freely. Instead, they are a function of personality and

the general ontology of the story world.

This situation is reflected clearly in Fig. 3.6. If the figure is read as a cyclic graph

instead of a process model, Personality turns out to be a root node with no incom‐

ing edges. Emotions and Mood, on the other hand, are children nodes, dependent

on other nodes connected to them via incoming edges. Reviewing the figure along

these lines exposes that the affective character architecture has another root note:

Happenings. Indeed, the happening settings of a narrative system can be arbitrarily

changed (between simulations) without requiring the introduction of a justification,

just like with personality parameters. The conducted case study did not explore the

effect of happening variation because it would likely have transformed the resulting

plots so much that they would not have been recognizable as related narratives. A sys‐

tem that is not an exercise in generative modelling but in computational creativity,

however, would have no reasons to leave this option unused. Summarizing, the main

parameters of a narrative system (that is, given a fixed environment and plan library)

turn out to be: the number of characters, their five respective personality traits, as
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well as a variable number of happenings that can vary in type, patient and time of

execution.

Some words remain to be written about the drawbacks of the extension introduced

in this chapter. The biggest issue is a technical one, and reared its head during the

manual exploration of the plot space. As it turns out, affective dynamics introduce a

slight level of indeterminism into the system, which can lead to situations where the

same personality parameter settings resulted in different plots. I hypothesize that the

reason for this lies in the parallel nature of MAS, in this case, the multi‐threaded im‐

plementation of Jason. The reasoning cycles of the different agents are all executed

by dedicated threads. However, the order and duration of a thread’s execution is de‐

termined by the thread scheduler of the operating system, where it is undefined for

threads of equal priority. This means that, whenever multiple agents interact, the

order in which they process these interactions can vary. Consequently, the reasoning

cycle number, at which emotions from such interactions are appraised, is not deter‐

ministic. This can translate into noticeable changes, in particular when two emotions

are appraised consecutively instead of concurrently (or vice versa). In the former case,

two mood update steps are performed, while in the latter one update step is followed

by one decay step, which means that one update is effectively lost (compare with the

averaging operation in the equations of Def. 9). Especially in cases where the cur‐

rent mood is located at octant borders, this could make the difference between a new

mood octant and corresponding desires being activated, or not. During my experi‐

ments, most parameter settings consistently yielded the same plot, even when slight

differences could be observed in the mood graphs. However, some settings did ex‐

hibit indeterminism at the plot level, presumable when they resulted in the current

mood being located at an octant border at crucial time points. What is more, I also

observed differences in behavior when the operating system was running in energy

saver mode, which indicates that InBloom’s behavior might not always be comparable

between different machines. I do not foresee any conceptual problems arising from

this circumstance, but it complicates development and evaluation.

An expected issue is that affective dynamics make agent behavior harder to pre‐

dict for the developer of narrative systems. Previously, an agent’s plan selection was

a function of its (discrete) belief base, while now it also depends on its (continuous)
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current mood. This means that reproducing the behavior of existing stories becomes

harder, which complicates the process of generative modeling. However, in the con‐

text of computational creativity this drawback might be an advantage, since it allows

for more surprising emergent behavior.

On a conceptual level it should be noted, that the cognitive approaches adopted

here to represent fictional minds are neither the only possible, nor possibly the most

fitting ones when seen in isolation. They were selected only because they were part

of a comprehensive model outlining the interactions of all required individual phe‐

nomena. As a result, only a subset of potentially relevant affective phenomena can be

represented by InBloom. This ranges from the very particular, e.g. the lack of a dis‐

tinct emotion denoting surprise, to the fairly general, e.g. the lack of a coping function

for emotion. Such trade‐offs are inevitable, when committing to one approach over

another. However, I still find it necessary to explicate their existence.

The closing observation for this chapter is that the system, in its current state,

models narrative semantics only from a synthetic and a mimetic perspective. As

has been convincingly argued to me in private communication by Fotis Jannidis—

Professor for Computer Philology and Newer German Literary History at the Univer‐

sity of Würzburg—this is not enough to comprehensively represent narratives, espe‐

cially in the case of folktales. He illustrated his point with the question why the three

farm animals do not just take the bread by force, instead of accepting to be taunted by

a lone hen. The reason can not be found from the synthetic or mimetic perspectives,

but lies in the symbolic teleology of the plot, its moral: Those who refuse to work hard

and to plan ahead will suffer.40 For this moral to work, the farm animals need to ac‐

cept their punishment meekly, even if it were mimetically plausible for them to resort

to violence. As at the end of the last iteration, we find ourselves at a point where the

narratological backbone of our approach can not account for an important part of the

modeled narrative, since neither Ryan nor Palmer provide us with the narratological

means to address morals or messages. One way to proceed from here would be to

dedicate the next iteration to expanding the narratological backing of InBloom to ac‐

40This observation might raise the question whether folktales—a very moral‐driven
genre—are good case‐study material for an approach like mine. I have addressed this question
at the beginning of Sec. 2.2.3 and believe that the points made there are still valid.
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count for symbolic phenomena, just like we expanded it to mimetic phenomena here.

However, keeping in mind that the focus of this thesis is not only on narrative the‐

ory but also on computational story composition, I prefer to continue with another

aspect: the quality of plot. For a computational system to be able to surpass mere

generation (a concept introduced in Sec. 1.3) it needs to be able to take creative re‐

sponsibility for evaluating its own output. Only then can it claim to produce valuable

artefacts intentionally, and not through mere fortune. Ryan’s framework attempts to

capture the pre‐textual quality of plot using the concept of tellability, whose compu‐

tational modeling will be described in the coming chapter. Although the next chapter

will stay true to Ryan’s work and continue to operate from a synthetic perspective, I

believe that, in the end, this avenue must also converge with an analysis of the sym‐

bolic teleology of plot, as suggested by Jannidis. The original plot of TLRH is more

valuable than the more violent version (in part) because it coincides with a distinct

message.
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That’s a great story… I loved that one. I’m afraid I’m

going to have to kill you for it.

Richard Powers, ‘Galatea 2.2’

4
Plot Quality Estimation

A NARRATIVE SYSTEM SPANS A SPACE OF POSSIBLE PLOTS, and the previous chapter

demonstrated that such a space can be explored by changing personality parameters

and happenings. This can be seen as the main task of a computational story composi‐

tion system. However, exploration alone is not enough. A creative system needs also

to be able to evaluate what it found, in order to establish whether it has finished or

whether it should continue searching. This is not a trivial problem, because not every

sequence of events that can be found using a narrative system can be a priori consid‐

ered a plot. Recall the manual exploration of personality parameters summarized in

Tab. 3.6. In plot version 2, lowering the conscientiousness trait of the hen to ‐1 re‐

sulted in a configuration, where nothing interesting happens: the hen does nothing,

while the other characters ‘relax in the sun all day’. Although this can be taken to fit

our previous understanding of plot outlined in Def. 1, and even contains virtual com‐

ponents in the form of embedded narratives—after all the characters should at least

have an active wish to relax, and be able to choose actions to achieve this wish—this

still seems to hardly qualify as a plot at all, let alone a plot worth telling. While the

186



CHAPTER 4. PLOT QUALITY ESTIMATION

other parametrizations described in Tab. 3.6 result in event sequences that seem more

worthy of the title ‘plot’, perhaps only plot version 8 describes events that I personally

would consider telling someone as a story. As Ryan puts it: “not all plots are created

equal” (M.‐L. Ryan, 1991, p. 148). After all, some stories disappear the moment they

are told, while others have followed humanity since the dawn of civilization1, surviv‐

ing migrations, translations, and cultures. This suggests that “some configurations of

facts present an intrinsic ‘tellability’ which precedes their textualization” (M.‐L. Ryan,

1991, p. 148), and that this property is gradable, allowing plots to be compared. This

view falls in the domain of narrative poetics, whose prescriptive2 component can be

divided into a poetics of discourse (i.e. “how to tell a story well”) and a poetics of

plot (i.e. “what makes a story worth telling”) according to M.‐L. Ryan (1991, p. 149).

Naturally, these two components interact, since a good telling is partly determined

by its ability to enhance a plot’s point. But, at the same time, it is still possible to

think of examples where a pointless story is presented well, or where the potential

of a particular plot is botched by the telling. Thus, the separation between the two

poetics is meaningful.

Following Ryan, I will refer to the poetics of plot as tellability. This concept was

initially introduced by the social linguists Labov and Waletzky in the context of oral

storytelling, where it was used to illustrate that the relevance of a story depends on

the social context in which it is told: “most narratives are so designed as to emphasize

the strange and unusual character of the situation” (Labov & Waletzky, [1967] 1997,

p. 34). The concept was picked up by narratologists and its scope extended to other

domains. In the following, I will focus on Ryan’s very particular interpretation, which

is concerned with formal instead of pragmatic properties.

1Recent work used linguistic phylogenetic analysis to identify the oldest story still in ex‐
istence today (Da Silva & Tehrani, 2016). The plot of this story—“The Smith and the Devil”
(ATU 330)—could be traced down to an original version from the Bronze Age, i.e. 3000–5000
years ago.

2Scholars engaged in literature studies and literary critics are sceptical about prescriptive
notions of aesthetics because of their normative component. Computational modelers en‐
gaged in generation, on the other hand, are fond of such notions as they usually come with
guidelines on what is prescribed, which make for excellent algorithm blue prints. For these
very reasons I would like to caution computationally minded readers to scrutiny, while im‐
ploring literary minded ones for leniency on this concept.
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4.1 TELLABILTY

Referring back to Labov’s understanding, Ryan summarizes that “in order to be

tellable, a story must have a point” (M.‐L. Ryan, 1991, p. 150). Following Ryan’s un‐

derstanding of this concept, which will be presented shortly, a story can, in fact, have

multiple points, making them more akin to narrative highlights. To better understand

how points could be detected, several types can be distinguished.

External points are the generous category under which Ryan groups everything that

Labov would consider a point: all the possible goals of a story teller in a communica‐

tive setting. This is also the reason for the name of this category; its focus lies not

inside the narrative but in its interaction with its context, i.e. the social and com‐

municative situation of a telling. A list of such potential goals is presented in M.‐L.

Ryan (1991, p. 150), but since the computational part of this thesis has no access or

understanding of context I will omit it here.

The more relevant counterpart are internal points, which are those properties of a

story that have an inherent value and are of interest independent of (the social and

communicative) context. Here, again, a distinction can be made. Dynamic internal

points are events in a story that violate the expectations of at least one character. Con‐

sider the events in version 2 of the explored TLRH plots, where all animals relax or do

nothing. There is no single surprise or violated expectation. This can be compared

with version 5 (where the hen never asks for help due to a lower extraversion setting).

There, finding a grain of wheat is an unexpected happening that can be counted as a

dynamic point, and intuitively this seems to correlate with an increase in tellability.

The original plot, again, contains more dynamic points since all the refused help re‐

quests can be counted as defied expectations for the hen, which could account for this

version’s superiority. From this, Ryan derives a general, prescriptive maxim of tella‐

bility: “seek the diversification of possible worlds in the narrative universe” (M.‐L.

Ryan, 1991, p. 156), which she dubs the Principle of Diversification. A higher diversity

of the worlds of the narrative universe results in more conflicts3. Conflicts between a

K world and TAW are a priori surprising for characters, while conflict between W/O

3Remember, that Ryan uses an idiosyncratic notion of conflict that is equivalent to in‐
compatibility between possible worlds. For details, revise Sec. 2.1.3.
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worlds and TAW instigates action and by that increases the potential for surprise. But

the principle of diversification is not solely a means to ensure conflict:

The demand for a diversified semantic universe also determines what
kinds of resolutions and outcomes present the greater narrative interest.
My contention is that tellability is rooted in conceptual and logical com‐
plexity, and that the complexity of a plot depends on an underlying sys‐
tem of purely virtual embedded narratives. […] Among these embedded
narratives, some reflect the events of the factual domain, while others
delineate unactualized possibilities. The aesthetic appeal of a plot is a
function of the richness and variety of the domain of the virtual, as it is
surveyed and made accessible by those private embedded narratives.

(M.‐L. Ryan, 1991, p. 156)

In a post‐closure view, this simply means that the network of the plot is more com‐

plex, which can be taken as a measure of teleological refinement, or of the richness of

the corresponding narrative’s semantic domain. But in a pre‐closure view—which is

the only one available to a reader who watches the plot unfold for the first time and

does not yet know its final teleology or shape—this also corresponds to a heightened

potential for curiosity. A character’s intended course of action (i.e. the projected solu‐

tion for a conflict) is of limited interest in itself, but demands more attention the more

ways are foregrounded in which it might fail. The more forking paths are present in

the virtual domain, the less expectable is a positive outcome. Remembering Jerome

Bruner’s assertion that “[…] narrative deals with the vicissitudes of intention” (Bruner,

1986, p. 17), discussed during the opening of Chapter 3, it becomes plausible that tella‐

bility should be tied in this way to a diversification of the narrative universe.

I would like to also draw attention to the fact that Ryan sees this diversification

realized by private embedded narratives, as the main representational mechanism

of the purely virtual realm (as discussed in Sec. 2.2.2). As I have observed in the

last chapter, these private embedded narratives capture the whole functioning of the

fictional mind, which closely ties a plot’s tellability to the functioning of its fictional

characters.

Static internal points are the counterpart to dynamic internal points. They are not

concerned with the unfolding of a narrative’s dynamics, but with properties that can

be analyzed once the teleology of the whole plot becomes apparent, that is, they can
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be applied solely from a post‐closure view on plot. Static points can be further distin‐

guished into substantial and formal. The first type is concerned with the semantics of

the story: themes and motifs. It should not come as a surprise, that semantics play a

role in tellability, since some topics are of universal interest to humans, whereas oth‐

ers might be culture‐specific or even only relevant to particular groups of individuals.

Ryan quotes an example: “A French formula for successful novels lists the follow‐

ing ingredients: religion, sex, aristocracy, and mystery. (The last one is a [dynamic]

point). According to this formula, the most tellable story reads: ‘Mon Dieu, dit La

Marquise, je suis enceinte et ne sais pas de qui’4” (M.‐L. Ryan, 1991, p. 154). While

this is certainly an important part of tellability, it poses no great interest to us. In a

computational setting using MAS, topics and settings are almost entirely located on

the environment side and rely on manual domain modeling instead of computational

exploration.

Of more interest are the formal points, which are concerned with the structures

that comprise tellable plots. To start her argument, Ryan, like us, observes that not

all sets of events deserve the title plot. She thus formulates a pre‐condition for tella‐

bility: “a […] plot must present a conflict and at least one attempt at solving it” (M.‐L.

Ryan, 1991, p. 154). I would like to add, that this is a very generous pre‐condition due

to Ryan’s specific understanding of conflict, rephrased above. Even our ‘non‐plot’,

version 2 of the TLRH plots, would still pass this criterion, as the wish to relax consti‐

tutes a conflict between the characters W world and TAW, and their intention do so

is a (successful) attempt at solving it. Perhaps, a more conventional understanding of

conflict would be more suitable here. At a later point in her book, M.‐L. Ryan (1991,

p. 227) also adds a post‐condition that has to hold true for a plot to be well‐formed.

This closure condition holds iff every active intention in a plot has either failed or

succeeded. Many narratives are open ended, which violates this condition of well‐

formedness, so I would consider it more as a guideline. It is against the backdrop

of this guideline, however, that open endings achieve their aesthetic effect: It’s the

violation of an expectation for closure that results in a heightened attention.

Apart from these two general guidelines, Ryan proposes three tellability principles,

4Ryan reports the following, free translation: “My God, said the Duchess, I am pregnant.
Who done it?”
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that she derives from the poetics of lyric poetry:5

1. “Semantic opposition. This principle advocates sudden turns in the plot, rever‐

sals in the fortunes of characters, and, very generally, any kind of inversion be‐

tween narrative states. […] Another form of semantic opposition contrasts the

goals of characters with the result of their actions, leading to an effect known

as narrative irony.” (M.‐L. Ryan, 1991, p. 155)

2. “Semantic parallelism and symmetry. This principle promotes the multiplica‐

tion of narrative sequences presenting structural similarities but involving dif‐

ferent participants.” (M.‐L. Ryan, 1991, p. 155)

3. “Functional polyvalence. Narrative highlights are formed by events entering

into several distinct functional units. By functional unit I mean a grouping

of states and events […] presenting special strategic significance for the story

as a whole. The principle of functional polyvalence is what accounts for the

intrinsic elegance […] of certain ways of resolving problems.” (M.‐L. Ryan, 1991,

p. 155)

In a later chapter, Ryan returns to her tellability principles, and adds a forth one:

4. Suspense. “[A] delay [of] the fulfillment of the goals of characters.” (M.‐L. Ryan,

1991, p. 249)

Since these criteria are formal, they should be detectable in the structure (i.e. form)

of the plot. Plots are represented as directed graphs in InBloom, so it is reasonable to

expect that they should be also detectable in the structure of plot graphs. The detec‐

tion of graph properties is a discipline with a long tradition in computer science and

mathematics, which makes the four formal tellability principles the most promising

points to explore in the present setting. For this to be possible, however, they need

to be formalized in a much more rigorous manner than so far.

5It is not obvious to me, why lyrical principles should be translatable in this direct manner
to the poetics of plot, and Ryan does not provide any arguments for this. However, from a
computational perspective, her considerations are too tempting for me to be able to simply
dismiss them.
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4.1.1 FUNCTIONAL POLYVALENCE

Functional polyvalence captures situations where several narrative problems can be

furthered by a single event, thus exposing the inherent elegance and craftsmanship

of strategic economy. A high functional polyvalence is also a sign of strong narrative

cohesion, which is present when the constituent parts of a narrative are closely inter‐

connected.

Above, instances of functional polyvalence were introduced as “events entering into

several distinct functional units” (M.‐L. Ryan, 1991, p. 155). The notion of functional

unit (FU), to which Ryan refers here, was introduced in the work of Wendy Lehn‐

ert (1981), which focused on the computational generation of abstractive plot sum‐

maries. Her summarization model still remains unimplemented because extracting

the required information from the literary prose in which stories are commonly com‐

posed requires complex interpretation tasks that are mostly still outside the scope

of the computationally feasible.6 Since the natural language understanding step can

be omitted in the context of computationally generated stories, where the generative

algorithm can be expected (or extended) to possess the ground truth about the plots

it generates, her theoretical model is relevant for the present work.

Lehnert suggests to use directed graphs to represent plots, and, as will become

quickly apparent, her formalism is compatible with the one employed by InBloom.

She, too, suggests to divide the plot graph into character subgraphs, where each vertex

represents an event as perceived (or experienced) by that character. These vertices can

have one of three types:

• +: Events that are pleasant for a character

• −: Events that are unpleasant for a character

• I : Non‐affective mental events, used by Lehnert exclusively to denote

intention‐formation events

A vertex can be connected to an arbitrary number of other vertices in the same char‐

acter subgraph by directed and labeled edges, which represent causal links between

6A restricted implementation attempt was recently made by Goyal, Riloff, et al. (2013), but
yielded modest results.
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events. Lehnert defines that each edge has to have exactly one type‐label, and—from

observing the types of causality involved in stories—suggests the following types7:

• m: Motivation links, which capture that the source event is the motivation for

a target event (that has to be an intention)

• a: Actualization links, which capture that the source event (an intention) is

actualized by the target event

• t: Termination links, which capture that the effect of the target event is sup‐

planted by the effect of the source event8

• e: Equivalence links, which capture that multiple perspectives are possible on

one affective state

It should be noted, that m and a edges follow the temporal direction, while t and e

edges point in the anti‐temporal direction. These orientations have been selected by

Lehnert for reasons of convenience.

From these elements (three vertex types and four edge types) 36 pair‐wise combi‐

nations are possible, but only 15 are defined as legal configurations based on semantic

considerations. These 15 are called primitive FU, are each assigned a name that cap‐

tures their intended semantics, and can be used as building blocks to assemble the

actual (complex) FUs. The original primitive FUs, as defined by Lehnert (1981, p. 298),

are depicted in Fig. 4.1. Thus, for instance, a success primitive FU is constituted by

an intention that is actualized by a positive event, while failure is constituted by

an intention that is actualized by a negative event. To illustrate each of the possible

FUs, Lehnert provides three example situations. For instance, her three examples for

success are: “You ask for a raise and you get it. You fix a flat tire. You need a car so

you steal one”, while the examples for failure are: “Your proposal of marriage is de‐

clined. You can’t find your wallet. You can’t get a bank loan” (Lehnert, 1981, p. 298). In

most of the cases, these examples seem plausible to me, but hidden blessing awoke

my suspicion. The examples are: “You get audited and they owe you. You sprain an

ankle and win damages. Your mother dies and you inherit a million” (Lehnert, 1981,

7This collection of edge types will need to be adapted later, in order to be of maximal use
in the present context.

8For instance, a positive reaction to receiving an apple might be terminated by the later
perception that the apple is poisoned, while simply eating the apple would not terminate the
initial positive reaction (albeit terminating the apple itself).
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Figure 4.1: The original primitive FU defined according to Lehnert.

p. 299). The sprained ankle example does not really fit the equivalence‐edge situa‐

tion of multiple perspectives on the same event (in InBloom‐parlance this would be

one event being appraised by several emotions). Rather, there seem to be two events

connected by a prototypical case of causality: Spraining you ankle causes you to win

damages during a subsequent event. The same perspective can be applied to the other

two examples, where the first event is a happening, which is causally responsible for

a second happening. This caused me to probe the other FUs that are comprised by an

equivalence edge. Mixed blessing turns out to be a mixed bag: “You buy a car and

it turns out to be a lemon. You fall in love and become insanely jealous. Your book is

reviewed but they hate it” (Lehnert, 1981, p. 299). The first and the last example are

in my opinion better examples of loss, while the remaining second one is again a

case of causality between an event and a state. Also complex positive event (“You

win respect by getting a Rolls Royce […]”) and complex negative event (“You break

an arm in a car accident […]”) for me are better described by a causality edge. So is
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this just a matter of nomenclature? Apparently not, as perseverance would suggest:

“You want to get married (again). You reapply to Yale after being rejected. You want

to ski again after a bad skiing accident.” Neither of these situations involves proto‐

typical cases of causality. No one would want to go skiing again because they had a

bad accident last time, they might consider going despite the accident (same holds

for the marriage). And while reapplying to Yale is certainly only possible after having

applied once, the cause for the application would probably remain something else,

like for instance the expectation to increase one’s social standing. Here, an equiva‐

lence relation is appropriate, since it marks that two intentions have the same goal.

Making this difference is important for InBloom because it already contains features

implementing causality relations between agent actions and happenings (see p. 13),

which can be extended to detect related FUs. Hence, my solution is to keep the e

edges, but add an additional type:

• c: Causality links, which capture that the source event is causally responsible9

for the target event.

To follow intuition, c edges follow the temporal order (as opposed to the subset of e

edges they replace). With this, Fig. 4.2 displays the updated primitive FUs.

Figure 4.2: The updated primitive FU where equality has been replaced by causality.

Another important part of narratives is interaction between different characters.

This can be captured by plot graphs using cross‐character edges (cc) that connect ver‐

tices belonging to different character subgraphs. Lehnert (1981, p. 301) does not find

it useful to distinguish several types of cross‐character links, and defines all possible

9My remarks on the difficulty of the notion of causality from p. 13 apply here, equally.
Note, that the already introducedm and a edges can also be understood as representing causal
links, however, they are specific subtypes of causality pertaining to intentionality. For this
reason, c edges only connect vertices of types + and −, while connections pertaining to I
vertices are already captured by the more specific m and a edges.
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combinations of source and target vertex types as legal (as long as they are located in

different character subgraphs). This allows to uniformly represent all types of situa‐

tions that affect two characters: speech acts, actions affecting an other character, but

also just events that are perceived and appraised by two characters. Fig. 4.3 demon‐

strates the possible configurations. The first column depicts the situation that one

Figure 4.3: Character interactions represented using cross-character edges, along with possible
interpretations.

character communicates that it wants the other character to intend something and

succeeds with this, which would constitute an order, a request or a plea, depending

on the context. The second column depicts the situation that a character’s speech

act causes an affective reaction in the receiving character. A negative reaction might

appear merely due to the content, e.g. in the case of an insult, but also due to the in‐

terpretation of this content and its consequences, for instance if a request is perceived

as an imposition, or an intent is perceived as threat. The third column can be com‐

monly taken to depict the case that a character’s actions (be they perceived positively

or negatively by that character) are perceived by another character and cause it to in‐

tend something itself, for instance seeing someone succeed might cause their friend

to want to congratulate them. More rarely, this can be interpreted as an event merely

happening to the first character, and motivating the second character in a particular

way, e.g. seeing someone tumble could cause a bystander to want to help them up.

The last column represents situations when the same event (or its consequences) is

affecting two characters. In the case that the event has differently valenced conse‐

quences for, or is seen from different angles by, the affected characters, this consti‐

tutes a mixed event, denoted by opposed valences in the respective appraisal.

Using the primitive FUs and cc edges as an alphabet, complex FUs can be con‐

structed. Ryan’s interest lies in these complex FUs (simply ‘FUs’ from here on), which

are formulated to represent units of strategic significance and are matched against ac‐
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tual plot graphs. Lehnert suggests a number of FUs, but notes that the lexicon is open

ended. New units can be formulated when needed, and individual FUs can become ar‐

bitrarily complex. A few examples of FUs proposed by Lehnert (1981, p. 300–302, 307)

can be found in Fig. 4.4. For instance, the FU intentional problem resolution

Figure 4.4: Four examples of FUs constructed by Lehnert, with the title describing which
narrative function they respectively capture.

consists of a primitive FU problem (where a negative perception motivates an inten‐

tion), combined with a success (where an intention is actualized by an event that is

perceived positively) and a resolution (where a positive event terminates a negative

event). The same holds for FUs that contain two characters. A denied request FU

is constituted by a request (cross‐character), a success (the patient of the request

succeeds in rejecting it) and a failure (of the agent to have its request fulfilled). In‐

teractions that contain more than two characters are not supported by the formalism,

and need to be split up into dyadic interactions for representation. A special case can

be found in Lehnert’s formalization of retaliation, which contains a [?] vertex. This

denotes a wild‐card that can match any vertex in the original plot graph.

The main task of FUs is to act as patterns that can be matched against plot graphs.

This allows to decompose the plot into FU instances, which originally were used by

Lehnert to create functional summaries of the plot. To provide an intuition for such

matching, a very condensed and abstract version of the TLRH plot is provided in

Fig. 4.5, along with an FU analysis. The depicted plot graph represents a manual

analysis of TLRH using a Lehnert style formalism. In this version, two FU instances
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Figure 4.5: An example of FU analysis for functional polyvalence detection. On the left side:
a Lehnert-style plot graph representing an abridged version of TLRH10, where green vertices
represent + nodes, red vertices represent − nodes and gray vertices represent I nodes. On the
right side: The two FUs denied request and retaliation. A mapping of plot graph vertices

to FU vertices is overlain over the graph.

can be matched because two structures can be found in the plot graph that are iso‐

morphic to two of the FU graphs.

Joining Ryan’s analysis of Lehnert’s FUs, I too need to “[…] express some reserva‐

tions as to whether some of the graphs offer a viable semantic analysis of the concepts

they represent, rather than an arbitrary coding” (M.‐L. Ryan, 1991, p. 215). However,

I also doubt that a single “viable semantic analysis”, which Ryan presupposes here,

exists for any of these functions. For instance, consider Fig. 4.6 that again contains

the proposed FU for retaliation and an excerpt from another manual plot graph of

TLRH (which is, in fact, closer to what would actually be produced automatically by

InBloom than the graph in Fig. 4.5).

The excerpt encodes the hen punishing a farm animal for not helping her, by of‐

fering it some bread but then eating it all alone. From an intuitive standpoint such

a behavior could well be considered a retaliation, and also the structure of the graph

is closely resembling that of the FU. However, close resemblance is not sufficient for

Lehnert’s approach to matching and the situation would be rejected as an instance

of retaliation. Judging merely from structural properties this seems unwarranted:

why should the means of retaliation be only constituted by a negative event ([−],

10This graph is greatly simplified and serves only explanatory purposes, so pay no heed
to details like why certain vertices have certain types; the system‐generated graph for TLRH
presented later in this chapter will differ from the schematic discussed here.
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Figure 4.6: An excerpt from a Lehnert-sytle plot graph of TLRH (left) and Lehnert’s proposed
FU for retaliation (right).

last vertex in right character subgraph of the FU), while never by inciting a failure

([I] a−→ [−], last vertices in right character subgraph of the plot)? Yet, apart from struc‐

ture there is no theory or underlying constructive principle from which an FU could

draw its justification. As pointed out—rightfully—by Ryan, the FU are naught but

arbitrary codings, and as such both versions should be acceptable in this case. One

solution for this problem would be to define multiple alternatives for each FU, and

then rely on exact matching with this enhanced lexicon. However, such an approach

is inelegant because it requires uninspired labour and is susceptible for inconsisten‐

cies should changes become necessary in one of the FU originals. For this reason, it

seems more prudent to me to treat FUs rather as prototypes of narrative functions,

and instead adapt the matching algorithm to allow it to also match structures that are

closely resembling but not completely isomorphic. Details on such an algorithm will

be provided in the discussion of the implementation in Sec. 4.2.1 on p. 227.

However FU matching is implemented in detail, in the present case we are less

interested in which FUs are instantiated in a story, but rather in how these instances

interact. Since an FU instance consists of multiple vertices representing individual

events, functional polyvalence can be detected by identifying vertices of a plot graph

that belong to multiple FU instances. For example, in the analysis depicted in Fig.4.5,

the vertices Gets Angry and Rejects Request are both part of two FU instances,

and for this reason can be seen as functionally polyvalent.
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4.1.2 SEMANTIC PARALLELISM AND SYMMETRY

Ryan’s terse summary of semantic parallelism and symmetry (P&S) outlined it as the

“multiplication of narrative sequences presenting structural similarities but involving

different participants” (M.‐L. Ryan, 1991, p. 155). It is a feature commonly associated

with western fairy tales, which often feature three similar characters or three impor‐

tant tasks. This demonstrates that symmetry can also appear diachronically, in re‐

lation to the same character, instead of just between different participants. As Ryan

observes, this is often combined with an instance of semantic opposition on the last

try or with the third character, as for instance in the well known fable “The Three

Little Pigs”. However, it would be rash to limit the applicability of parallelism to ‘just’

children’s stories. For instance, O. Henry’s (1905) short story The Gift of theMagi rests

on the aesthetic effect of the two lovers—unknowingly to each other—selling their

priced possession (the husband’s old watch, respectively the wife’s beautiful long hair)

to be able to afford Christmas gifts for each other. A dramatic turn is included here

again, as in the end both find out that their gifts (an elegant watch chain for the hus‐

band, and a beautiful hair comb for the wife) were meant to complement precisely

those objects that the other had respectively sold.

Based on this description, P&S can be understood as properties of sequences: sym‐

metry describes structural similarities inside one character subgraph, while paral‐

lelism describes structural similarities between two character subgraphs.11 In the ex‐

ample of the “Three Little Pigs” these similarities are visible already on the story’s

surface, i.e. the event level: The three piglets each build a house, while the wolf huffs

and puffs three times to destroy these houses. Structure proper, however, is usually

considered to be formed not by the events themselves but the organizational princi‐

ples behind them. For this reason, structure can be conceptualized as being located

at the depth of stories (see footnote 9 on p. 58 for a short elaboration of the depth‐

metaphor). In The Gift of the Magi, on the surface, the two protagonists acquire dif‐

fering items using money they procured by differing means. Yet, at a functional level,

these differences become irrelevant and an underlying similarity is uncovered from

11Remember that, while plots can contain events that happen in parallel, character sub‐
graphs are by definition linearized and can hence be understood as sequences.
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the depth‐level: both of them can be seen to perform a sacrifice in order to then make

a gift. Since an analysis of the plot at a functional level will be available to the sys‐

tem (it needs to be performed in order to compute functional polyvalence) it seems

appropriate to me to first attempt to compute P&S based on the plot’s FU instance

sequences. This has the benefit of making the aesthetic analysis more interpreta‐

tive than just relying on the surface level. Only if no sufficient FUs can be detected

to allow the operation at the deeper level, as a fallback, the analysis should turn to

event‐sequences. One might consider discounting any P&S measure computed on

events instead of FUs, however, in practice I believe this will not be necessary since

the higher variability encountered at the unabstracted surface level should automat‐

ically result in lower intra‐character and inter‐character similarity.

The term symmetry itself is often associated with geometry, where it means that

an object remains invariant under certain types of transformation operations (Weis‐

stein, 2004), most commonly translation, rotation, or reflection. Sequences are 1‐

dimensional objects, so rotational symmetry can be excluded a priori. Translational

symmetry occurs in a sequence, when the same chain of elements occurs at several po‐

sitions in that sequence, which would for instance correspond to a number of events

being repeated several times during the course of a narrative. An example can be

found in the sequence ABXAB, where the chain AB appears at the start, but also trans‐

lated left at position three. This seems to be the canonical case for symmetry, as

described in Ryan’s examples. Reflectional symmetry is possible in 1D objects, too,

and in our case occurs when for a chain in the sequence another chain exists, which

is the inverse of that first chain. This would be the case in the sequence ABBA, where

the chain AB has an inverse, but also in the sequence ABXYBA, where the chain AB ap‐

pears reflected after two unrelated elements. Although no examples for reflectional

symmetry in plots have been provided by Ryan, I see no reason to exclude this type

of symmetry. Its poetic appeal has been recognized in the visual arts, and seeing how

the tellability principles employed here have already been imported from lyrical po‐

etics it seems not overly preposterous to motivate such a related import from another

domain. Indeed, this type of symmetry seems a useful albeit not commonly employed

concept. For instance, when discussing the plot of Homer’s epic poem Iliad, classics

scholar Beye (2006, p. 111) outlines in detail an inversion of action between the begin‐
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ning in book one and the end in book twenty‐four. He notes how this mirror symme‐

try acts as a “ring composition” at the core of the poem’s narrative component.12

Parallelism’s counterpart in geometry cannot be translated into one‐dimensional

sequences to be adapted to the present use case, like I did with symmetry. Hence,

the last resort remains reasoning by analogy: Two lines are considered parallel, when

they lie in the same plane but never intersect. The resulting image is one where the

two lines follow each other’s course into infinity. Two sequences (of events or FU in‐

stances) can be taken to follow each other’s course if they are comprised of the same,

or perhaps similar, events. Thus, perfect parallelism would be obtained if two charac‐

ter subgraphs were comprised of the same sequence. Partial parallelism, then, holds

when a chain in one character subgraph can be located in another character subgraph.

One might additionally impose the more strict requirement that these chains are to

start at the same plot step, in order to increase the visual likeness to the analogical

case of two lines following each other’s course. However, I believe this would be a too

literal interpretation that would exclude cases that are intuitively perceived as parallel

but where the chains do not strictly align.

Multiple qualifying chains can be expected to exist for each character, for each type

of P&S, and hence a value for each chain must be quantified in order to be able de‐

termine the overall score. At the very least, these values need to reflect the length

of the chain and the number of times the chain is repeated. Since character sub‐

graphs vary by length but their scores should remain comparable, it seems prudent

to also instantly normalize chain values by subgraph length, i.e. define chain paral‐

lelism or chain symmetry as the percentage of contributing vertices captured by that

chain. In order to compute each of the sub‐measures (i.e. one translational and one

reflective symmetry, as well as parallelism) for a character, also the aggregation over

their respective chain values needs to be decided. An incomplete selection of possible

aggregation types is:

1. Average symmetry over all chains,

2. Sum of symmetry over all chains,
12My initial take on mirror symmetry was to only accept chains that are palindromes, but

this would have excluded the example discussed by Beye (2006). It is for this reason, that
I relaxed my formulation above to allow arbitrary insertions between two mirror‐symmetric
chains.
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3. Value of best chain per character and per sub‐measure,

4. Value of best chain per character and per parallelism/symmetry,13

5. Value of first or last chain, after temporally ordering them.14

The best ways to choose one of these options would be to perform a perceptual study

where subjects can rate carefully selected sequences for similarity and parallelism, in

order to then tune a metric to best reflect these measures. This, unfortunately, lies

outside the scope of my thesis. I am wary of claiming to decide based on theoretical

arguments for choosing one approach over the others, since it is my feeling that such

arguments could be equally well concocted for most of them. My intuition here is,

that the most salient chain would be the maximal chain, and that this should con‐

tribute most to perceived similarity / parallelism, such that no averaging or summa‐

tion is required. Having manually compared symmetry values based on the resulting

options (3 and 4) for a few example chains, my perception of similarity seems to be

best reflected by ‘best chain per character and per sub‐measure’. As cautioned above,

I view this not as a scientific but as an engineering decision, to be potentially revised

in future work.

As outlined above, the semantic P&S measure is comprised of several sub‐

measures: one translational and one reflective symmetry measure per character, as

well as one parallelism measure for each possible character pairing. This amounts to

2nc +
(
nc

2

�
measures, where nc is the number of characters. Thus, after the first ag‐

gregation has been completed, still several sub‐measures per character remain to be

combined into one overall semantic P&S score. Again, several approaches are viable.

For the time being I prefer a simple average over the sub‐measures in order to be able

to take into account all the different parts that could contribute to an overall sense of

P&S. A disadvantage that should be pointed out here is that such an approach gives

more weight to parallelism than it does to symmetry because more parallelism scores

are incorporated into the mean. Should the need arise, this could be remedied by

13Effectively this means looking for chains that maximize both translational and reflec‐
tional symmetry at the same time, in order to compute one overall symmetry measure. This
measure can then be combined with the value of the best parallelism chain over all pairings
that contain the character.

14Looking only at the first or last chain in a sequence could make sense considering the
effects of primacy and recency on retention (Deese & Kaufman, 1957).
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resorting to a weighted average, or by first averaging over the parallelism scores, and

only then computing the overall average.

4.1.3 SEMANTIC OPPOSITION

Semantic opposition captures the aesthetics of a dramatic turn, which is a widely

used narrative strategy that can help generate emotional engagement in the audience.

Ryan’s description of this principle is comprised of three related phenomena.

One is described as “sudden turns in the plot” (M.‐L. Ryan, 1991, p. 150). A sud‐

den turn can be expected to violate the expectations of at least one character, mak‐

ing instances of this principle an indication for the presence of a dynamic point. An

example is easily found in The Gift of The Magi, where the two characters hold the

strong conviction that they procured a great present for their partner, only to be vi‐

olently confronted with the futility of both, their gifts and sacrifices; a device that

only works because of violated expectations. In InBloom, expectations are encoded

as agent’s non‐perception beliefs about the state of their environment. A violation of

an expectation would then correspond to a removal or substitution of such a belief,

represented by a corresponding termination edge in the analyzed plot graph. Fur‐

thermore, expectations can be also seen as beliefs related to the future. The OCC

taxonomy of emotions employed by InBloom has a specific dyad of emotions that

capture ‘valenced reactions’ to ‘consequences of events’ where the ‘prospects are rele‐

vant’ to the agent but have been ‘disconfirmed’ (see Fig. 3.1). These two emotions are

relief and disappointment, and whenever an event is appraised by these emotions

it can be assumed that this event violated an expectation.

Another manifestation of sudden turn in plot, according to Ryan, are “reversals in

the fortunes of characters” (M.‐L. Ryan, 1991, p. 155). ‘Fortunes’ are defined by the

Merriam Webster online dictionary as “the turns and courses of luck accompanying

one’s progress (as through life)” (Merriam‐Webster, 2020), and Fortuna represents the

forces outside of a character’s control. This can be seen akin to what I have introduced

in Sec. 3.2.2 as ‘context’: non‐dispositional factors determining the character’s behav‐

ior. As discussed in Sec. 3.3.3, this is captured in InBloom through affect. Emotions

are the immediate response of an agent to events in its environment, while current
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mood is a time‐discounted aggregate of past emotions. I interpret the resolution of

the Magi plot as a reversal in fortunes. The goals of both characters seem within their

reach and at least Della is explicitly narrated as being of good spirits. The ensuing

realization of failure is then connected with negative affect for both, which can be

exemplified with the following passage, where Jim perceives that his wife cut her hair

and thus has no use for his present:

Jim stopped inside the door. He was as quiet as a hunting dog when
it is near a bird. His eyes looked strangely at Della, and there was an
expression in them that she could not understand. It filled her with fear.

(Henry, 1905)

In the terminology of InBloom, Jim is experiencing deliberative emotions with neg‐

ative valence, one might assume that this even leads to a change in mood. A transition

from positive to negative emotions is presented more overtly for Della: “White fin‐

gers pulled off the paper. And then a cry of joy; and then a change to tears” (Henry,

1905). This occurs even before she can realize that her own gift is rendered equally fu‐

tile, which can be expected to result in further (non‐narrated) distress. However, not

every succession of differently valenced emotions seems enough to constitute a ‘re‐

versal in fortunes’. Think of Little Red Hen joyously finding her seed, and soon after

experiencing her first rejection: it seems hardly plausible to consider this a change

of fortunes. Hence, I assume that changes in mood are better suited to detect this

criterion: A change in fortunes can be expected to solidify as a large delta along at

least one of the dimensions of the PAD space (see Sec. 3.2.3 from p. 127 onwards for

details on the PAD space), combined with a crossing of the respective zero‐axis (no

matter in which direction). I postulate a crossing of the axis because it corresponds

to a change in mood octant, the only form of mood perception available to the agent

itself. Changes of fortunes seem to me significant enough events to require the re‐

alization of their occurrence by their subject. In order for this to also constitute a

‘sudden turn’, an additional condition would be for this change to take place over a

comparatively short period of time.

Another form of semantic opposition exemplified by the ending of the Magi, too,

is narrative irony: an effect that Ryan describes as a contrast between the goals a

character has and the actual outcome of their actions. Naively, one might assume
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that ‘contrast’ is simply a failure to achieve a goal with a chosen course of action, but

the irony of our example short story would not be captured by such an understanding.

Both characters’ goal is to make their partner a great present, in which they (in some

sense) succeed. For me, the irony seems to rather reside in the fact that it is precisely

the eagerness of each of the two to acquire the best possible present that undermines

the value of their partner’s present, and turns their success into a failure. Semantic

subtleties like this go beyond simple affective analysis. Even at the FU level, which

is available in InBloom for tasks requiring semantic understanding, I see no way of

implementing a notion of contrast that would capture irony. For this reason, irony will

be excluded from the semantic opposition measure employed in the present thesis.

Again, these diverse measures need to be aggregated and normalized. For violated

expectations, the number of corresponding events can be normalized by the num‐

ber of relevant events, that is, all affectively appraised events and all beliefs. The

number of changes of fortunes can be normalized by the maximal number of fortune

changes that could have happened throughout the plot. It can be expected, that both

measures will be comparatively low since they are normalized by large numbers. For

this reason, the decision was made to not aggregate them by averaging, but instead

pick the larger of the two. The same holds for aggregating the opposition measures

of the multiple characters of a plot. It cannot be expected that semantic opposition

will be present in every secondary character, but instead will probably be focused on

the protagonists, which usually are those characters that have to overcome obstacles.

Simply averaging over all characters would result in an overly low score, so again the

highest of the individual characters’ opposition scores is taken as the overall opposi‐

tion score of the plot. This focusses the analysis on the most salient hardships of one

character—presumably the protagonist of the story—instead of an ‘overall impres‐

sion’, like the previous tellability features. Given that readers’ emotional investment

is usually strongest with the main character, this pragmatic decision seems not overly

implausible.

206



CHAPTER 4. PLOT QUALITY ESTIMATION

4.1.4 SUSPENSE

Suspense can be seen as another way of capturing tension potential, as readers can

be expected to root with protagonists and wish for the fulfillment of their goals. Ryan

writes preciously little about how she envisions the mechanics of suspense: “‘Sus‐

pense’ may be implemented through retarding devices: delay the fulfillment of the

goals of characters” (M.‐L. Ryan, 1991, p. 249). This seems to indicate that suspense,

for Ryan, is connected to the duration between the adoption of a goal and its fulfill‐

ment. Such issues can be addressed with the help of the analyzed plot graph, since

there intentions can be traced to the actions that fulfill (or fail to fulfill) them by

following actualization edges. Furthermore, intentions can contain sub‐intentions—

connected to them via motivation edges—that should be taken into account when

suspense is computed.

Hence, I propose to use the term intentional chain to denote the sequence of ver‐

tices on the longest possible path—in an analyzed plot graph—that starts from a ver‐

tex v of type I and follows motivation or actualization edges and is not completely

subsumed by any another intentional chain.15 Suspense can then be defined in rela‐

tion to intentional chains. Different ways of formalizing this are conceivable, like, for

instance, the number of actions that are part of an intentional chain, or the amount

of plot time (in terms of steps) that has passed between the initial intention and the

last action. For now, the latter seems to be the most straightforward equivalent to

Ryan’s words, but future work might explore the potential benefits of alternative for‐

mulations.

It should not be forgotten, that each character subgraph can be expected to contain

several intentional chains, while a plot can be expected to contain multiple characters.

To compute the overall suspense of a plot, again, multiple approaches like averaging or

summation of individual chains are conceivable. My intuition here is, that in a story

the suspense should relate to the main events of the plot, and not be affected too

much by occurrences in the exposition or denouement. This makes aggregation over

all intentional chains less appropriate, and instead I opt for equating the suspense of

15A formal definition of intentional chains will be provided in Sec. 4.2.4, when the imple‐
mentation of the suspense computation will be discussed.
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a plot with the highest suspense observed over all intentional chains. The assumption

here is that such a chain will most likely represent the main course of action. Again,

future investigation of alternatives can be of interest in order to fine‐tune the system.

4.1.5 AESTHETIC BALANCE, OR: DERIVING TELLABILITY

Seen in isolation, each of these principles seems to be plausible and to align with plot

properties that I would deem aesthetic. Two problems need to be addressed when

they are seen in combination, however.

The first is that these principles do not seem to be derived from an underlying

theory, but rather from analogy to lyrics and acute observation. This means that no

argument can be made to claim that Ryan’s list covers all possible formal tellability

principles, nor even that it covers the most important ones. This is unsettling, from a

computational perspective, since it means that implementing these principles might

yield only a poor approximation of a plot’s tellability.

The second problem is what M.‐L. Ryan (1991, p. 251) calls “aesthetic balance”:

The purpose of this […] is to prevent any given principle from taking over
and running wild. If no limits were set on the number of invocations of
‘diversification’, the semantic universe would reach such complexity that
the reader would lose track of the worlds to be contemplated. And if
‘semantic contrast’ [sic] were invoked repeatedly, the tale would become
a fully predictable sequence of reversals in the fortune of characters.

(M.‐L. Ryan, 1991, p. 251)

This is an acute observation that might get easily out of sight in a computational

setting, where much focus is put on maximizing individual metrics. Consider, what

a value of 1 for semantic opposition would mean: each possible interval of time that

might contain a large change of mood, actually does so. The respective plot would

have to be constituted by a constant flow of opposing emotions and become pre‐

dictable and tiring.

Ryan suggests that aesthetic balance could “be maintained by keeping a record of

the invocation and satisfaction of every principle” (M.‐L. Ryan, 1991, p. 251). This

seems to imply that tellability principles would be satisfied by comparable and easily

locatable atomic instances, which simply need to be present in alternation. I doubt,
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that this is an appropriate starting point: An instance of functional polyvalence is a

single event, while an instance of symmetry might be a chain that spans most of the

plot. Clearly, the latter should be considered to carry more weight, and how should

one decide what constitutes a healthy alternation of events and event‐chains? This is

the reason why above, I have opted for a quantification that is normalized and does

more than simply tallying instances. In this setting, it appears judicious to rather

focus on the individual scores and ensure that neither of them is too high, nor too

low. This does not ensure that instances of the principles appear in a balanced manner

throughout the plot, but I am unsure why this should be relevant at all. After all, plot

is a concept that focuses on overarching structures instead of local details.

To quantify these considerations, we have to depart from the intuitive idea that the

overall tellability of a plot is a simple average of the individual tellability principles’

scores. Instead, tellability should rise whenever a score is within healthy bounds, and

fall whenever individual scores go towards zero or one. The easiest way of doing so

is to define tellability as the average distance of each principle from an optimal (in

Ryan’s terms: ‘balanced’) threshold. This punishes scores equally if they are too high

or too low, while giving the individual metrics a comparable influence on the final

tellability score, since they are already normalized (in different ways, but into the

same interval).

While this approach sounds plausible for functional polyvalence, semantic P&S

and semantic opposition, I am hesitant to also apply it to suspense. A high suspense,

given the quantification proposed above, simply means that an intention exists that

lasts throughout most of the plot. I do not see why a plot’s balance should suffer from

the presence of such intentions, like in the case of the other principles. In fact, sus‐

pense is different from the other principles in that its not even meaningful to speak of

suspense instances, like one might of instances of functional polyvalence or instances

of semantic opposition. Ryan, too, does not include suspense into her initial list of

tellability principles, but adds it into the mix towards the end of her book, which en‐

courages me to give it special treatment, too. For this reason, I see it fit to apply the

balancing procedure suggested above only on the first three principles, while leaving

suspense as it is.

This approach is a fairly simple and straightforward suggestion, that cannot be
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expected to truly do justice to a concept as elusive and complex as aesthetic balance

or, perhaps even, harmony. For the present state of the system, it will suffice that

it captures the rough intuition that overly high scores of the individual principles

do not translate into tellable plots. A quantification that is more elaborate is surely

possible, but would require a better theoretical understanding of what constitutes an

aesthetic balance, and what breaks it. Its conspicuous, that Ryan does not provide any

theoretic underpinning from which the necessity for aesthetic balance is derived, and

which can be used to reason about its nature. Instead, like me, she seems to simply

follow common sense reasoning. This might also explain why Ryan does not develop

this intriguing line of thought any further, leaving it to the reader to put meat on the

bones of this concept.

4.2 IMPLEMENTING A TELLABILITY MEASURE

The most expedient principle to start addressing is functional polyvalence, since it is

based on a breakdown of the plot structure into functional units. This will help to

advance the employed understanding of plot. Furthermore, the segmentation of plot

into units that carry meaning can facilitate the formalization of other principles that

are based on semantic structures. After that, the other principles will be addressed

individually, and in the end details will follow about aggregating them into a single

tellability value that can be used to compare plots of different lengths.

4.2.1 COMPUTING FUNCTIONAL POLYVALENCE

Before FU analysis itself can be implemented, the system needs to support the un‐

derlying formalism, that is, (1) allow the emergence of affective dynamics that cor‐

respond to each of the primitive FUs, and (2) enable the generation of Lehnert‐style

plot graphs from these dynamics.

Def. 5, in short, described that a plot graph is a combination of character subgraphs.

Character subgraphs—as per Def. 4—are vertex‐labeled graphs, which contain only

one type of edge that indicates temporality, and are built online (that is, while the

plot unfolds in the MAS). This needs to be extended to account for the slightly differ‐

ent vertex types, and the variety of edge types, employed by Lehnert. While I vertices
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of my plot graph can be translated 1:1 into I vertices of the FU plot graph, a difficulty

imminently arises with the other plot graph vertex types: P (perception), A (action),

S (speech act sending) and L (speech act reception). Whether one of these events is

pleasant (+) or unpleasant (−) for a character cannot be determined when the event

itself is created and added to the graph, but only after it subsequently has been ap‐

praised with an emotion by the reasoning cycle of the character.16 As described in the

previous chapter, this is a process that can take some time (depending on the agent’s

reasoning load at that particular moment), and some events might not be emotionally

appraised at all. This means that FU plot graphs cannot be built online, but instead

have to be created post‐hoc, by analyzing the plot graph that was assembled during

MAS execution. For this reason, I will refer to Lehnert‐style plot graphs that are suit‐

able for FU analysis as analyzed plot graphs, and define them as being comprised by

analyzed character subgraphs.

In order to create analyzed plot graphs, InBloom needs to perform three tasks: 1)

merge emotion vertices with their respective action/perception/speech vertices, 2)

create edges of appropriate types between the vertices to enable all primitive FUs,

and 3) filter out irrelevant vertices that are not part of Lehnert‐style plot graphs. A

formal definition of analyzed plot graphs will be provided once these individual steps

have been discussed below.

To allow users to start the analysis process, the button Analyze Graph is created

by implementing the method void PlotControlsLauncher#createAnalysisButto

n() and adding it to the UI initialization routine in void PlotControlsLauncher#c

reateButtons(). When the button is triggered, it creates an instance of the class

inBloom.graph.GraphAnalyzer and provides it with an instance of the plot graph.

The analyzer is responsible for analyzing the plot graph, and after it is done initiates

the quantification of all tellability principles, by creating an instance of the class in

Bloom.helper.Tellability and providing it with an instance of PlotDirectedSp

arseGraph, representing the analyzed plot graph.

Since successive steps of the analysis process rely on the results of previous steps,

the analysis is performed in three passes over the whole graph. Since during a pass

16Also emotion vertices (E) exist, where + or − actually can be determined, but which
cannot be related to intentions by themselves, as would be required for Lehnert‐style graphs.
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each vertex has to be processed and the type of processing depend on the type of ver‐

tex, every pass was implemented as an individual visitor using the visitor software de‐

sign pattern (see e.g. Gamma et al., 1995). The base functionality is defined in the ab‐

stract class inBloom.graph.visitor.PlotGraphVisitor, whose method PlotDire

ctedSparseGraph apply(PlotDirectedSparseGraph graph) receives a plot graph,

clones it, asks the clone to accept the visitor, and returns the changed clone once

processing is done. To enable this, the method void PlotDirectedSparseGraph#ac

cept(PlotGraphVisitor visitor) was implemented in the plot graph, which tra‐

verses the subgraph of each root vertex and, depending on the type of the currently

visited vertex, calls the appropriate visitation method of visitor.

This means that each visitation creates a new copy of the plot graph. To be

able to inspect intermediate stages of the analysis as well as the original (complete)

plot graph, the UI was extended to allow to select which graph is displayed. For

this, the class PlotGraphController receives the new member JComboBox<PlotDi

rectedSparseGraph> graphTypeList, which is a drop‐down menu that can con‐

tain plot graphs. Intermediate plot graphs are added to that menu using the method

void PlotGraphController#addGraph(PlotDirectedSparseGraph g), after each

pass. Upon selection of a graph by the user, the method void PlotGraphControl

ler#actionPerformed(ActionEvent event) is executed, with the selected option

provided by event. This method changes the graph to be displayed, and updates the

UI accordingly.

After the graph has been successfully transformed by the visitors into its analyzed

form, the computations involved in determining the plot’s tellability can be per‐

formed. The class Tellability encapsulates all methods required for this, as well

as all the individual results that need to be combined into a holistic metric.

VERTEX MERGING

The merging of vertices is implemented by the visitor class inBloom.graph.visitor.

VertexMergingPPVisitor. Three types of vertices might need to be merged, namely,

emotion, percept, and listen.
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EMOTIONS alone are of little use in the analyzed plot graph, they need to be attached

to the event that caused them to thus form Lehnert‐style + or − vertices. Due to the

way emotion appraisal is implemented in InBloom, it is guaranteed that E‐type ver‐

tices occur later in the graph than the event that caused them, although it is not valid

to simply assume that they are a direct successor. For this reason, the causing event

has to be preserved along with the emotion, until the emotion vertex is processed by

the visitor. The class jason.asSemantics.Emotion contains the field cause, which

can be set when the emotion instance is created, and is included as annotation into

the ASL literal representation of the emotion that is used as propositional content of

its vertex in the graph (example: emotion(joy)[cause(eat(bread))]).

As outlined in Sec. 3.3.3, InBloom distinguishes between the creation of primary

and secondary emotions. Secondary emotions are created from ASL side, using the

internal action appraise_emotion, whose second parameter source has to contain

the event that caused the emotion. This is passed on to the method AffectiveT

ransitionSystem#scheduleForAppraisal(), which creates the emotion instance

and sets its cause accordingly. Primary emotions are created by the environment as

annotations to perceptions. These perceptions are processes as internal events by Af

fectiveTransitionSystem#applyDerivePEM, which extracts the emotions from the

event annotations and creates emotion instances. Thus, the cause of these emotions

is readily available—its the perception contained in the processed event. It is stripped

of annotations, and set as the emotion‐instance’s cause.

Having thus ensured that all emotions are preserved along with their cause, In‐

Bloom can guarantee that all E‐type plot graph vertices contain a cause annota‐

tion in their propositional content. The visitor has simply to extract the anno‐

tation’s content, and traverse the previously visited non‐intention vertices until it

finds one whose propositional content matches the cause. The emotion needs then

to be merged with this target vertex. Since any such target might have caused

several emotions, the class inBloom.graph.Vertex is extended to contain a field

LinkedList<String> emotions, which is used by the visitor to store the name of

the emotion it currently processes. Since pure E vertices are not desired in the ana‐

lyzed plot graph, it then deletes the emotion vertex from the plot graph and patches

the resulting hole. This functionality is provided by the method PlotDirectedSp
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arceGraph#removeVertexAndPatchGraphAuto, which creates a temporal edge17 be‐

tween a vertex’ predecessor and its successor. As a result, all E vertices are removed

from the analyzed plot graph by being merged with preceding non‐intention vertices.

PERCEPTIONS can represent independent events, but also action outcomes. The

reason is that actions are recorded in the plot graph when they are requested by the

agent, while their outcomes are returned to the agent as perceptions from the envi‐

ronment later on, and are recorded only once the agent’s reasoning cycle processed

the internal event containing that perception. Again, the perception vertex is guar‐

anteed to appear after the action vertex, but not necessarily as its successor.

Perceptions can carry important additional information in their annotations and

might include emotions that were merged into them, while actions (as will be de‐

scribed later) carry information that allows to identify which intention they belong

to. Thus, for a unified treatment of all aspects of an action, each action vertex needs to

be merged with the corresponding outcome‐perception vertex, which includes merg‐

ing their annotations. Whenever a perception vertex is visited, the list of previously

visited action vertices can be traversed in search for an action with the same propo‐

sitional content. If one is found, the percept’s annotation‐content is extracted and

appended to the action’s annotation, after which the percept is removed from the

graph and the list of visited vertices, and the graph is again patched.

LISTENS are vertices that are generated when an agent receives a speech act, and are

always the target of a cc edge. The message passed in the speech act is placed in an

internal event whose type depends on the type of the speech act (in our case either

achieve or tell). A respective vertex (either of the type intention or perception) is

added to the plot graph when the internal event is processed, thus it can be again

assumed that the associated vertex will appear after the listen vertex, although not

necessarily as its successor. In this case, the merging is performed through a look‐

ahead: the successors of the listen vertex are traversed until a vertex with the same

propositional content (and appropriate format) is found. Then, the type and propo‐

17The untyped edges employed by my initial plot graph formalism have been discussed to
essentially capture a temporal ordering in Sec. 2.3.4.
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sitional content of the (former) listen vertex are changed to those of the found target

vertex, and the target is removed from the plot graph. This approach is easier than the

reverse, since it does not involve the transfer of cc edges. As a result, all L vertices are

effectively removed from the analyzed plot graph by being replaced either through I

or P vertices, the latter of which might potentially receive an affective valence if it is

later merged with an emotion vertex.

EDGE GENERATION

The creation of typed edges is implemented by the visitor class inBloom.graph.vi

sitor.EdgeGenerationPPVisitor. Six types of edges need to be supported, namely,

equivalence, motivation, termination, actualization, causality and cross-c

haracter.

EQUIVALENCE edges appear only in the primitive FU perseverance, where they in‐

dicate that two intentions represent the same goal (see Fig. 4.1 for graphs of all com‐

ing FUs). The most straightforward way to implement this is to test the propositional

content of intentions for equality. Thus, when an I‐type vertex is visited, the list of

previously visited vertices is traversed in LIFO order, and if a match in propositional

content is detected the visitor creates an e edge between the two, and moves on to

the next vertex.

MOTIVATION edges appear in the primitive FUs motivation, enablement and pr

oblem, connecting any type of source vertex with an I‐type target vertex. The infor‐

mation which event motivated an intention has to be preserved in the propositional

content of the I vertex when it is created, since it is part of the agent’s transient rea‐

soning cycle state. This happens during execution of the method PlotAwareAg#se

lectOption that is called by the Jason framework to decide which applicable plan

should be chosen to react to the internal event currently selected by the reasoning

cycle. Once the selection is done and resulted in an appropriate achievement goal

(which is the only type of goal that needs to be preserved as an intention vertex in

the graph), the system can inspect the ‘selected event’ that was responsible for the

choice of this intention. Events are preserved alongside an ‘intended means stack’ by
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Jason, which contains all (recursive) parent plans of which that event is part of. This

stack is filtered for the first parent plan that is not part of the wish and obligation

management system introduced in Sec. 2.3.4 because these plans are only there for

the purpose of translating possible worlds semantics into a BDI form and are not part

of the FU formalism. If such a plan is found then the triggering event of that plan can

be treated as the event that motivated the currently generated intention. Triggering

events can be either the addition or removal of beliefs (i.e. perceptions) or the intro‐

duction or termination of intentions (i.e. intentions) so that all primitive FU cases are

covered. The triggering event is preserved as annotation in the propositional content

of the newly created intention vertex, using the format motivation(Event).

1 +found(Item[Annots]) : creatable_from(Item,Y) & is_useful(Y) <-
2 // ...
3 .appraise_emotion(hope, "found(Item[Annots])");
4 +obligation(create(Y)).
5
6 +!create(bread) : has(wheat[state(seed)]) <-
7 !plant(wheat).

Listing 4.1: ASL example for motivation extraction

In the example code in Lis. 4.1, the motivation of the intention !plant(wheat)

would be the event +!create(bread)—the addition of the intention to create bread—

because it is the triggering event of the plan that contains !plant(wheat). This

corresponds to the primitive FU motivation. The motivation of the intention

!create(bread), in turn, would be the belief addition +found(Item[Annots]), which

will also be appraised with the secondary emotion hope, resulting in the primi‐

tive FU enablement. Note, that the intended means stack of !create(bread) will

also contain plans triggered by +obligation(create(Y)), as well as the mediating

+!obligation(create(Y)), but these will be ignored by the system (see Fig. 4.7 for

a visual representation of the intended means stack in this example).

A special case that needs additional processing is when the identified triggering

event is a mood change (for instance, changing into a hostile mood would trigger

a punishment desire in the TLRH case study). The perception of a mood change

itself is not an affective event in the sense of Lehnert, since it does not cause a pos‐

itive or negative emotion. For this reason, preserving the mood change as the mo‐

216



CHAPTER 4. PLOT QUALITY ESTIMATION

Figure 4.7: Example intended means stack when processing the intention !create(bread).
The newer an event, the more towards the top of the stack it is located.

tivation of an intention would never result in a primitive FU. However, most mood

changes themselves are caused by affective events (whose emotions were appraised

by the agent and resulted in the mood change). These affective_source events for

the current mood are preserved in the agent’s AffectiveCircumstance. Whenever

PlotAwareAg#selectOption detects a mood change as motivation, it extracts the

affective source events and instead of the mood places them in the intention’s moti‐

vation annotation. In the above TLRH example, this would lead to the rejected help

requests being preserved as the motivations of the punishment intention, which is

exactly what is desired in this situation.

When the edge visitor processes an intention vertex it thus has to extract the

event(s) stored in the motivation annotation, and then traverse the list of previously

visited events, creating m edges whenever a match with the annotation is found.

TERMINATION edges appear in the primitive FUs change of mind, loss, resoluti

on, positive trade-off and negative trade-off.

The first FU appears, when an intention is cancelled out as part of another inten‐

tion. This can be triggered in the ASL using the internal action .drop_intention(I)

as part of a plan body. Whenever this is the case, Jason automatically informs InBloom

by executing the method PlotCircumstanceListener#intentionDropped(Intent

ion i). This method adds a faux intention‐type vertex to the plot graph, with the

propositional content drop_intention(I) and the annotation termination(Trigge

rEvent). TriggerEvent contains the event that triggered the execution of the plan

that contains the .drop_intention action, which can be extracted via the agent’s

transition system using Circumstance#selectedOption.getTrigger(). That way,

when the edge visitor visits an intention, it can check whether its propositional con‐

tent is of the above form. If it is, it traverses the list of previously visited events in
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search for I as well as TriggerEvent (that latter of which will usually be an inten‐

tion addition event, i.e. an intention, too) and creates a t edge from the latter to the

former. After that, the faux‐intention vertex is removed from the graph, the hole is

patched and the visitor moves on to the next vertex.

The next four FUs—loss, resolution, positive trade-off and negative trad

e-off—capture all the possible combinations in which an affectively appraised per‐

ception (either positive or negative) cancels out another affectively appraised percep‐

tion (again, either positive or negative). The most direct way to detect this is to check

whether the agent removed a previously held belief, or took up a belief (again) that

it removed previously.Thus, whenever the edge visitor visits a perception with an at‐

tached emotion, it traverses the list of previously visited perceptions in search for

a target vertex whose propositional content matches that of the visited one, whose

belief base operator (either + for addition or − for removal) is different, and that

also has an emotion attached. When it finds a match, it creates a t edges from the

visited vertex to the target vertex. This approach will, for instance, automatically cre‐

ate a t edge from -has(bread)[emotion(distress)] to +has(bread)[emotion(pride)],

since the realization captured by the former terminates a state that was positive to

the agent, captured by the latter.

A more interesting case can be detected when the ASL code indicates the removal

of a belief. More concretely, if a mental note is removed as part of a plan that was

triggered by another mental note operation, then it can be assumed that the removal

is inherent to the semantics of that second mental note. Consider the example in

Lis. 4.2: When an agent perceives that it dropped an item (+is_dropped(bread)),

1 +is_dropped(Thing)[owner(Agent)] : .my_name(Agent) <-
2 -has(Thing);
3 .appraise_emotion(remorse, "is_dropped(Thing)", Agent, 1).

Listing 4.2: ASL example for termination edge deduction

it removes the mental note that it posses that item (-has(bread)). Here, a ter‐

mination edge should be created between +is_dropped(bread) and a former event,

+has(bread).18 Depending on which emotions are attached to +is_dropped(bread)

18This is uncovers an additional, more interesting, connection than the rather trivial t edge
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and +has(bread), this constitutes one of the four primitive FU above. In our

case, +is_dropped(bread) is appraised by a negative emotion (remorse), and

+has(bread) is appraised by a positive one (joy), which makes this constellation

into the primitive FU loss. To enable this functionality, mental notes should have

an annotation containing the triggering event of their parent plan. This is imple‐

mented in PlotCircumstanceListener#eventAdded. If the added event is a mental

note (i.e. contains the annotation source(self) and is not an intention) then the trig‐

gering event is extracted from that event’s parent plan, and added as annotation to

the newly created perception vertex, using the form cause(Trigger).19 When the

edge visitor processes an affective vertex containing the removal of a belief, and finds

an annotation of the above type, it first traverses the list of previously visited events

in search of the annotation content (in our case +is_dropped(bread)). It then tra‐

verses the list further in search of a vertex that contains the addition of the belief

to‐be‐removed (here: +has(bread), and creates a t edge between the former and the

latter.

ACTUALIZATION edges appear only in the primitive FUs success and failure, and

indicate that an intention is causally responsible for an action. In the case of InBloom,

the sending of speech acts can be part of an intention in exactly the same way as

actions are, for which reason they will be treated similarly with regard to actualization

edges. Thus, the edge visitor needs to be able to find the corresponding intention

vertex, when visiting an action or a speech vertex. For this, each of these vertices

needs to store its causally responsible intention as part of its propositional content.

When an action is requested by an agent, the method TimeSteppedEnvironme

nt#scheduleAction is executed by the framework and passed the required data

as a parameter. This method is overriden by PlotEnvironment, which extracts

the intention and stores it as mapping from the agent name and the action

in the field HashMap<String, HashMap<Structure, Intention>> actionInten

between -has(bread) and +has(bread), described before.
19It is interesting to note what this implies: InBloom is capable of tracking the inferential

chains of characters, and persist this information in the plot graph so that their role in the
causal structure of the plot can be uncovered. These annotations are also relevant for the
detection of several other edge types, as will be described below.

219



CHAPTER 4. PLOT QUALITY ESTIMATION

tionMap. The action vertex is created later, when the requested action is actually

executed by the method PlotEnvironment#executeAction. At this point, the in‐

tention is looked up in the actionIntentionMap, added as an annotation of the form

actualization(Intention) to the content of the vertex, and the action‐intention

pairing is removed from the map.

The sending of a speech act, as well as the creation of the corresponding vertex, is

implemented by the method PlotAwareCentralisedAgArch#sendMsg. This method

has access to the agent’s reasoning cycle, which saves the currently selected intention.

Using that information, the intention can be added to the vertex’ content in the same

manner as for actions.

This way, the edge visitor can simply extract the required information from any vis‐

ited A or S‐type vertex, and traverse the list of previously visited vertices until it finds

an intention vertex whose propositional content matches the extracted intention. It

then creates an a edge between the two, and moves on to the next vertex.

An unusual, but possible, case is that an agent’s intention is actualized not through

an action of its own, but an independent event in the environment (be it a happening,

or the action of another agent). For this to be recognized, the agent needs to perceive

the event and make the inference that it fulfills one of its intentions. In InBloom,

such a realization would be encoded in ASL by removing a wish or obligation as

reaction to the incoming perception (compare with Sec. 2.3.4 for wish and obliga‐

tion management). Lis. 4.3 presents a simple example: If an agent perceives that it

1 +has(Item) <-
2 -wish(has(Item));

Listing 4.3: ASL example for actualization by perception

posses an item, then it can consider its intention to acquire such an item obsolete.

As described above during the creation of termination edges, mental notes receive a

cause‐annotation containing the triggering event that caused its addition or removal

(in our example this would be +has(Item)). Thus, when the edge visitor processes a

perception of the form -wish(X) or -obligation(X) it checks for the presence of a

cause annotation. If one is present, it traverses the list of previously visited events

in search for the appropriate vertex. It then moves on to locate the vertex represent‐
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ing the intention !X (the content of the wish/obligation to be removed, in our case

!has(Item)), and creates an edge of type a between this intention and the previously

identified cause.

CAUSALITY edges appear in the primitive FUs mixed blessing, hidden blessing,

complex positive event, and complex negative event. One possible situation

they capture is that the target event is an affectively appraised happening, which was

triggered either by an action or another happening (also affectively appraised). In‐

Bloom can automatically detect which event is responsible for the change in envi‐

ronment state that caused a happening, as described in Sec. 2.3.4 on p. 79. This is

implemented in PlotModel#checkHappenings, and if a cause is found it is stored in

the annotations of that happening’s event percept using the format cause(Event).

As reader’s will recall, the event percept is later delivered to the patient of the hap‐

pening, and results in a perception that is subsequently added to the plot graph..

The other possible situation where this can arise is when the processing of a mental

note causes the addition of another mental note; which in essence constitutes one

inference step of an agent that is engaged in reasoning. A simple example can be

found in Lis. 4.4. Here, the agent realizes that after successfully picking up an item

1 +collect(Thing)[success(true)] <-
2 +has(Thing).

Listing 4.4: ASL example for causality in mental notes

(an action‐result perception) it is in the possession of that item (a mental note about

a state). The functionality that adds the parent plan’s triggering event of a mental

note to its propositional content using an annotation of the form cause(X) is already

in place, as has been described above, and can be used to preserve causality relations

like these for the edge visitor.

Thus, when a perception vertex is visited, the edge visitor checks for the presence of

a cause annotation, and if one is present traverses the list of previously visited events

until it finds a perception whose propositional content matches that annotation. It

then creates a c edge between the two, and moves on to the next vertex.
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CROSS‐CHARACTER edges can appear between any types of vertices, and thus do not

form particular primitive FUs, but the potential constellations have been summarized

in Fig. 4.3. Mainly, cc edges are generated by InBloom when a speech act is executed

between two agents. As has been described above, the type of the receiving vertex

(previously: listen) is changed either to I or toP (which can be affectively appraised)

by the merging visitor. The sending vertex remains of the type speech, but can be

merged with emotions by the merging visitor, or remain neutral if no emotions were

appraised. This covers the cases described in Fig. 4.3 as request, threat, promise,

enablement and motivation.

What remains are shared event and mixed event, which do not represent a com‐

munication setting but one where the same event is perceived independently by two

agents. An intuitive solution would be to simply connect all vertices in different char‐

acter subgraphs that have the same propositional content. This, however, would fall

short. First, characters might perceive similar events but at different times, which

should not result in a connection through cc edges. And second, the same event

might be perceived differently by two characters20, in which case a lookup using the

propositional content would miss a required connection. The solution is to create

a unique ID for each set of events that should be connected by cc edges, and at‐

tach it to the propositional content of their vertices as an annotation of the form

crosscharacter(ID). To generate such an ID upon event creation, InBloom com‐

putes the hash code of (one of the alternatives for) the propositional content of the

event, appended with the time stamp (in nano seconds) at which the event is created.

Adding the event time avoids creating the same ID for events of the same content but

happening at different times (problem one from above). This functionality is imple‐

mented in the method PerceptAnnotation#addCrossCharAnnotation, which cre‐

ates an annotation that can be attached to each of the event perceptions that should

later be connected. InBloom automatically does this for actions executed by agents

because action percepts are delivered to all agents present at the acting agent’s loca‐

tion and these perceptions should consequently be connected—a functionality imple‐

20As the famous slogan goes: “One man’s terrorist is another man’s freedom fighter”. The
same aspectuality holds for events: one character might perceive an event as a terrorist attack,
while another one might see the same event as a liberation attempt.
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mented in PlotEnvironment#executeAction—as well as for percepts that are to be

delivered to all agents at one location—implemented in PlotEnvironment#addPer

cept(Location loc, Literal... perceptions). However, custom narrative sys‐

tems can also make use of this functionality whenever the logic of the story world

dictates that an event is perceived by several agents.

A problem with this approach arises later, at visitation time, because the list of

previously visited vertices is cleared before the visitor switches to a new character

subgraph. Thus, looking up events with the same annotation in the list of previously

visited vertices, like in the other cases, will not be sufficient for inter‐character edges.

Instead, the edge visitor maintains the hash map ArrayListMultimap<String, Ver

tex> xCharIDMap, which maps from IDs to lists of vertices. Whenever an action or

perception is visited, the visitor checks whether an annotation of the required form

is present in the current vertex, and if it does adds that vertex to the list to which

the ID is mapped. Once all vertices in all subgraphs have been visited, the method

EdgeGenerationPPVisitor#postProcessing() is executed, which iterates over all

values in the hash map and creates bi‐directional cc edges between all 2‐combinations

of each vertex‐list.

FILTERING

After vertices have been merged and typed edges have been created, some vertices

can still be found in the plot graph that are not relevant for an FU analysis. They are

removed from the analyzed plot graph by the third visitor class, inBloom.graph.vi

sitor.VisualizationFilterPPVisitor.

No emotion or listen vertices can remain in the analyzed graph by the time the

filtering visitor is executed because they have been removed by the merging visitor. At

the same time, intention, action and speech vertices are always considered relevant

since they form part of the agents intentional state. The remaining vertex type is

perception. Perceptions can be considered relevant if they are either appraised by an

emotion (i.e. are of special concern for the agent) or are connected to other relevant

vertices by a typed edge (i.e. form part of a network of causality). Other perceptions

can a priori not be part of FUs and can hence be removed from the analyzed graph to
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remove clutter, and provide a more causality‐centered picture.

Two exception are made here. One, for perception vertices that report the addition

(respectively removal) of wishes or obligations by the agents. While these can never

be part of an FU graph, I still decided to keep them in the graph to allow users to

perceive the possible world semantics behind the affective reasoning. The second

exception is made for vertices that represent the onset of a new mood. Even if such a

vertex is not connected to relevant vertices via a typed edge it is still kept in the graph,

to provide users with an easy way to track affective dynamics. Since FU analysis is not

sensitive to intermitting vertices, keeping these non‐relevant parts in the graph is not

problematic.

ASL PROGRAMMING GUIDELINES

As became apparent throughout the last pages, the shape of the analyzed plot graph

in part depends on how the plan library is implemented in ASL. While obviously a

multitude of ways exist to implement the same plan, only certain ones also ensure

that InBloom is capable of automatically creating the right edges to make up FUs.

For this reason, I propose the following list of ASL programming guidelines, which

increase the chances of FU emergence during simulation runs:

1. The achieveNF‐operator (!!) should be avoided, use a regular achieve‐operator

(!) instead.

Reason: Events generated by achieveNF do not reference the triggering inten‐

tion, the system would therefore be unable to create m edges.

2. The internal action .appraise_emotion should not be used for appraising in‐

tentions.

Reason: Intentions are of neutral affect in Lehnert’s formalism.

3. When creating a complex plan that contains sub‐plans, make sure to consis‐

tently use sub‐plans instead of mixing them with concrete actions.

Reason: The FU nested goal will be created when a sub‐plan is employed,

but not an action.
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+!create(bread) <-
!plant(wheat);
tend(wheat).

+!plant(wheat) <-
get(tools);
plant(wheat).

Listing 4.5: Counterexample

+!create(bread) <-
!plant(wheat);
!tend(wheat).

+!plant(wheat) <-
get(tools);
plant(wheat).

+!tend(wheat) <-
tend(wheat).

Listing 4.6: Suggestion

4. Events triggered through the reception of a speech act should be always

affectively appraised.

Reason: These events cannot receive a (primary) emotion from the environ‐

ment, but require an affect label for most cross‐character FUs to match.

+!ask_help(X, AgentB) <- //Agent A asks agent B for help
.my_name(AgentA);
.send(AgentB, tell, request(help_with(AgentA,X))).

+request(help_with(AgentA, Plan)) <- //Event triggered in agent B
.appraise_emotion(reproach, "request(Plan)", AgentA);
.send(AgentA, tell, rejected_request(Plan)).

Listing 4.7: Suggestion

5. When successfully completing an action is supposed to change the agents

belief base, the addition/removal of mental notes should be implemented as

reaction to the action‐result perception, and not as part of the original plan.

Reason: Edges of type c and t can only connect mental notes with perceptions,

and not with intentions.

+!eat : has(bread) <-
eat(bread);
-has(bread).

Listing 4.8: Counterexample

+!eat : has(bread) <-
eat(bread).

+eat(Food)[success(true)] <-
-has(bread).

Listing 4.9: Suggestion

6. Whenever a mental note is added, make sure to ensure the consistency of the

belief base by explicitly removing all beliefs that become obsolete or invalid.

Reason: Edges of type t are created between events only if one explicitly

removes the other from the belief base.
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+is_dropped(Thing)[owner(Agent)] : .my_name(Agent) <-
-has(Thing).

Listing 4.10: Suggestion

RESULTING FORMALISM

In contrast to the original formalism introduced by Lehnert, the implementation in‐

troduced above does not limit itself to + and − vertices that represent positive or

negative affect, but instead attaches these properties in addition to the original ver‐

tex types, which can be either R, P , A, or S. In fact, some of these vertices remain

in analyzed plot graphs without affective valence at all, if their relevance is due to

their role in the causal structure of the plot. To account for this, my original plot

graph definition needs to be adapted in such a way that vertex labels can represent

not only the vertex type, but at the same time also any affective valence that was po‐

tentially merged to it during the analysis process. In the style of Definitions 4 and 5,

the following describes the structure of analyzed plot graphs generated by InBloom:

Definition 11 (Analyzed Character Subgraph). An analyzed character subgraph is a
directed, vertex‐labeled and edge‐labeled graph Gcha = (Vcha, Echa, lv, le, prop) com‐
prised by a set of vertices Vcha, a set of directed edges Echa ⊆ V 2

cha, as well as the
label functions lv : Vcha → {R, I,A,A+, A−, S, S+, S−, P, P+, P−} and le : Echa →
{m, a, t, e, c} and the propositional content function prop : V → Asl, whereAsl is the
set of valid expressions in the AgentSpeak language. The subgraph Gcha is considered
legal, iff ∀ϵ = (vs, vt) ∈ Echa and with λϵ = le(ϵ), λs = lv(vs) as well as λt = lv(vt)

denoting the respective edge, source and target labels:

λϵ =

8>>>>>>>>><>>>>>>>>>:

m ⇒ λt = I

a ⇒ λs = I ∧ λt ∈ {A+, A−, S+, S−, P+, P−}

t ⇒ λs = λt = I ∨ (λs ̸= I ∧ λt ̸= I)

e ⇒ λs = λt = I

c ⇒ λs ̸= I ∧ λt ̸= I

and Gcha furthermore contains exactly one root vertex v0—with lv(v0) = R and
prop(v0) = c—which has no predecessors in the subgraph: |E−

v0 | = 0.

Analyzed character subgraphs can be used to define analyzed plot graphs.
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Definition 12 (Analyzed Plot Graph). An analyzed plot graph G = (V,E) is a col‐
lection of disjoint analyzed character subgraphs and cross‐character edges. Its con‐
stituents are the sets V =

S
Vci and E =

S
Eci ∪ Ecc, for all ci ∈ C where C denotes

the set of all characters, and Ecc denotes the set of all cross‐character edges. The an‐
alyzed plot graph can be said to contain the subgraphs from which it is comprised,
shorthand notation: Gci ∈ G. It thus holds that: ∀Gci ,Gcj∈G : i ̸= j ⇒ Vci ∩ Vcj =

? ∧ Eci ∩ Ecj = ?. The type of a vertex v ∈ V or an edge e ∈ E of an analyzed
plot graph is a short hand way of referring to the label of that vertex or edge in the
analyzed character subgraph to which it belongs:

type(v,G) = lv(v) where v ∈ Vc

type(e,G) =

8<:le(e) if ∃Ec : e ∈ Ec

cc if e ∈ Ecc

if there exists a c such that Gc = (Vc, Ec, lv, le, prop) ∈ G.

Sometimes, I will refer to vertices simply as + or − vertices to foreground their

affective valence. This will denote vertices where the type contains + or − and where

I do not care whether, apart from that, they are an action, perception or a speech act.

FU MATCHING

With the above components in place, InBloom can automatically create analyzed plot

graphs with all the features that can appear in FUs, as well as the addition of A (ac‐

tion), P (perception), and S (speech) as part of the vertex type. This makes it possible

to also expand the formalism that is used to define FUs. In the original proposal, FU

vertices can either match intentions, or one type of affect. This allows only for limited

discriminatory potential, especially taking into account that cross‐character edges are

untyped, and thus no possibility exists to distinguish cc edges that arise due to com‐

munication, and cc edges that arise because a character acts upon another character.

At the same time, an FU like honored request clearly would benefit from the abil‐

ity to restrict its application to cases that only involve speech acts. For this reason, I

opted to also expand the FU representation formalism to allow the additional vertex

types A and S.

Taking into account that FU graphs are used as patterns that are matched against

analyzed plot graphs, the two should be defined comparably. The formalism needs
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to be adopted only to support one additional type of vertices—the wild‐card vertex

(denoted ?)—which are used in FUs by Lehnert (1981, p. 307) to allow matching any

arbitrary plot graph vertex. While Lehnert does not mention wild‐card edges (de‐

noted ? here, too), the need for their introduction arises by necessity. Since the type

of an edge depends on the type of its source and target vertices, which at the time at

which an FU is defined is unclear for wild‐card vertices, all incident edges of a wild‐

card vertex must be defined as wild‐cards themselves. To account for the addition of

the A and S vertex types I discussed above, I also decided to introduce a more dis‐

criminative wild‐card vertex that would match any type of activity from an agent, but

not intentions or perceptions, which are more deliberative in nature. These activity‐

vertices will be denoted A/S. In the style of Def. 12, I define an FU graph as follows:

Definition 13 (FU Graph). An FU graph is a directed, vertex‐labeled, and edge‐
labeled graph GFU = (VFU , EFU , lv, le) comprised by a set of vertices VFU , a
set of directed edges EFU ⊆ V 2

FU , as well as the label functions lv : V →
{I,+,−, A, S,A/S, ?} and le : E → {m, a, t, e, c, cc, ?}. The FU graph contains ei‐
ther one or two disjoint character subgraphs such that: ∀Gci ,Gcj∈GFU : i ̸= j ⇒
Vci ∩Vcj = ? ∧ Eci ∩Ecj = ? and VFU =

S
Vci and EFU =

S
Eci ∪Ecc, for all ci ∈ C

with C being the set of all characters, and Ecc being the set of all cross‐character
edges.

FUs need to contain at least three vertices (FUs of two vertices are called primi‐

tive FU and serve as the building blocks of (complex) FU, as has been explained in

Sec. 4.1.1), but no restriction is placed on their maximal size. In her paper, Lehnert

proposes a number of FUs and mentions that new FUs can be defined freely. For

InBloom, the 13 of her FUs which I deemed most useful have been adapted and im‐

plemented in the class inBloom.graph.isomorphism.FunctionalUnits. Each unit

is represented as an instance of the class inBloom.graph.isomorphism.Function

alUnit which consists of a unitGraph of type PlotDirectedSparseGraph, and the

String name. FunctionalUnits constructs all the defined FUs on class initializa‐

tion, by assembling their respective unitGraphs from the required edges and ver‐

tices, and stores them in the static field FunctionalUnit[] ALL. The resulting FUs

are depicted in Fig. 4.8. Formally, I will refer to the set of all FU graphs supported by

InBloom as G = {GFU1 , . . . , GFUn}.

Originally, Lehnert proposed to use the FUs as patterns that can be matched against
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a plot graph. Whenever a subgraph of the overall plot graph could be identified,

whose structure (including connections, vertex types and edge types, but excluding

propositional content) was a precise match of an FU graph, this subgraph was con‐

sidered an instance of that FU. This means that it is possible for each FU to be found

several times in any given plot, and that we can conceive FU analysis as a function

from analyzed plot graphs to sets of subgraphs. This situation can be interpreted as

an instance of the established subgraph‐isomorphism problem, applied to the ana‐

lyzed plot graph and each of the FU graphs.21 Several recent approaches to solve this

problem exist (see e.g. Bonnici et al., 2013; Cordella et al., 2004; Ullmann, 2011). How‐

ever, as discussed, I deem this approach too inflexible for the present use case. For‐

tunately, some solutions to the subgraph isomorphism problem have been extended

to also enable inexact matching. One such solution,Cordella et al. (1998), proposes

and algorithm where “two graphs are considered similar if, by using a defined set of

syntactic and semantic transformations, they can be made isomorphic to each other”.

This neatly captures what I have previously described as prototype based matching:

The original FU graphs can be successively subjected to transformations, allowing

more and more differing plot subgraphs to be matched by the FU. Thus, for the task

of FU analysis, a custom version of that algorithm has been implemented in InBloom.

Cordella et al. (1998) rely on a state space representation (SSR) to formalize the

matching process involved in solving the subgraph isomorphism problem. Let G1 =

(V1, E1) and G2 = (V2, E2) be two graphs22, and M be a mapping that associates

vertices from G2 with vertices from G1: M = {(v, w) ∈ V2 × V1|v is mapped to w}.

Here, a mapping is a set of vertex‐pairs, where each pair can be denoted as mi. Such

a mapping M can be considered a partial isomorphism if it is an injective function,

where the edge structure (and labeling) as well as vertex labeling of all pairs match.

Using SSR, the matching process is described by a succession of states si, each of

which represents a partial mapping M(si) ⊆ M , i.e. M(si) contains some compo‐

nents of the final mapping M . A state transition from si to si+1 in this formalism

21While subgraph‐isomorphism has been shown to be NP‐complete (S. A. Cook, 1971) I
do not consider this overly problematic since at present analyzed plot graphs generated by
InBloom typically contain only a few hundred vertices, while all the FU graphs contain less
than ten.

22W.l.o.g it is assumed that #V2 ≤ #V1, where # denotes set cardinality. This means that
G2 (the subgraph) is an FU graph, and G1 is an analyzed plot graph.
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Figure 4.8: The FUs implemented in InBloom, as displayed by the system itself. Best viewed in
color: gray edges are m, light-blue edges are a, red edges are t and dashed edges are e. Edges
of type c (dark blue) do not appear in these base versions, but their relevance will become clear

later.
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is possible by the addition of a new vertex mapping to M(si). Thus, solving the in‐

exact subgraph isomorphism problem means traversing the SSR from state s0 with

M(s0) = ∅ until all states sz are found, where all vertices in V2 are part of the map‐

ping M(sz). I will refer to the set of all these solutions for a particular pair of graphs

as MG1,G2 .

The algorithm depicted in Alg. 2 is adapted from Cordella et al. (1998) to enable

such a traversal.

Algorithm 2 Inexact subgraph matching, acc. to Cordella et al. (1998, 2004)
1: procedure MATCH(s, results)
2: // Check whether mapping is complete
3: if M(s).size() == V2.size() then
4: results.append(M(s));
5: return results
6: end if
7: // Explore all feasible pairs that can expand the mapping
8: P (s) = GET_CANDIDATE_PAIRS(M(s));
9: for all p in P (s) do

10: if FEASIBLE_PAIR(p) then
11: M(snext) = M(s).append(p);
12: MATCH(snext, results);
13: end if
14: end for
15: return results
16: end procedure
17:
18: // Initialization
19: M(s0) = []; results = [];
20: MATCH(s0, results);

It starts with the current state being the empty state scurrent = s0, and generates the

next state snext by adding the first feasible pair23 p = (n,m) ∈ V2×V1 to the mapping:

M(snext) = M(scurrent) ∪ p. This procedure is applied recursively on that next state

(by setting scurrent = snext), until either a solution is found—which happens when

the number of pairings in a mappingM(s) is the same as the number of vertices in the

subgraph G2—or the set of feasible pairs for a state generated that way is empty. In

23Feasible pairs will be formally defined below, on p. 234. In essence, a feasible pair is a
syntactically and semantically valid mapping of a vertex from the FU graph to a vertex from
the plot graph.
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both cases, the algorithm backtracks by removing the last feasible pair that was added

to the mapping, and instead exploring the state that is created when another feasible

pair is added. This amounts to a depth‐first search. In a slight variation from the

original, this algorithm does not terminate after it finds the first complete mapping,

but instead continues to aggregate all solutions in a list.

A certain amount of complexity, including the realization of the inexact matching

part of the algorithm, is hidden in the function get_candidate_pairs which is called

on l. 8 of the pseudocode. Let G1(s) = (V1(s), E1(s)) denote the projection of M(s)

onto G1 (comparably for G2). Then, let T out
1 (s), T in

1 (s) denote the sets of vertices that

are connected to G1(s) via outgoing (respectively, incoming) edges and are not yet

part of the partial mapping. T out
2 (s), T in

2 (s) are defined accordingly for G2(s). Also,

let v0 be a function from analyzed graphs to vertex‐sets, which, given the analyzed

graph G = (V,E) returns a set of vertices Vstart ⊂ V , where Vstart contains all vertices

that represent events that happened at plot step 0.24 The (basic) candidate pairs (P (s)

in l. 8 of the pseudocode) are computed as follows:

P (s) =

8>>>>>>>>><>>>>>>>>>:

v0(G2)× V1 if #V2(s) = 0

T out
2 (s)× T out

1 (s) else if T out
2 (s) ̸= ∅ ∧ T out

1 (s) ̸= ∅

T in
2 (s)× T in

1 (s) else if T in
2 (s) ̸= ∅ ∧ T in

1 (s) ̸= ∅

∅ else

(4.1)

That is, when no mapping exists yet, the algorithm suggests to match the first vertex

of the FU with every vertex of the analyzed plot graph. After a successful first match,

it tries to match vertices connected via outgoing edges to the current partial map‐

ping. When no such vertices exist, incoming edges are used to identify candidates.

The original algorithm employed the operation P (s) =
(
V2 \V2(s)

�
×
(
V1 \V1(s)

�
for

the else case, which proposes all possible pairs of not yet mapped vertices as candi‐

dates. This option is only useful for cases when G2 contains unconnected subgraphs,

which should never occur with FU graphs.25 This makes it possible to omit it for

24Note, that this function will be applied only on FU graphs, which are always defined in
a way that exactly one such event exists.

25Should such FUs be added to the catalog at a later time, this decision would need to be
revised. However, I would strongly discourage from introducing such FUs, since it is not clear
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Figure 4.9: Graphical representation of the six implemented split transformations. White arrows
represent the transformation, the split vertex is located on the left of that arrow, the resulting

subgraph on the right.

InBloom, since under these conditions it can never detect feasible mappings, while

slowing down the runtime of the algorithm considerably. According to Cordella et al.

(2004, p. 1368) this approach establishes a total order over the vertices in P (s), which

precludes the regeneration of already seen states.

So far, this only implements exact matching. For inexact matching, the genera‐

tion of candidates needs to also consider legal transformations of G2 (Cordella et al.,

1998). I make the assumption that the prototype FUs encoded as part of InBloom’s

catalogue are the smallest viable versions of the semantics they encode. This restricts

the transformations that need to be considered to splits, where a vertex of an FU

graph is transformed into a subgraph. Formally, a split can be defined as a 4‐tuple

(v,E, V ′, E′), where v is the vertex to be split, E is the set of edges incident to v, V ′

is the set of vertices that are added, and E′ is the set of newly introduced edges. Six

possible split types have been determined by me based on the analysis of the analyzed

plot graphs of several narrative systems implemented in InBloom, in comparison with

the FUs that were expected to be found there based on manual interpretation. They

are shown in Fig. 4.9.

Thus, before P (s) is returned, each of its candidate pairs (n,m) ∈ V2×V1 needs to

be tested, whether any of the possible split types can be applied to n, and all resulting

mappings are also added to P (s). One instance of such reasoning has been already

how two causally unconnected sets of events could constitute a unit of functional significance.

233



CHAPTER 4. PLOT QUALITY ESTIMATION

introduced above, in Fig. 4.5. There, the actual plot graph contained a subgraph of

the form [I] a−→ [−] at a place where the FU graph for retaliation contained just a

[−] vertex. This could be resolved by the split transformation (−, {cc}, {I,−}, {a}):

A negative emotion is transformed into an intention that fails (i.e. is actualized by

a negatively appraised event). In fact, such a transformation can be applied to any

[−] vertex in the FU graph without loosing this semantic meaning, which lead to the

decision to determine transformation applicability based simply on the vertex type

of n. To prevent the bastardization of FUs through incremental splitting, a transfor‐

mation cost was introduced, which at the moment is uniformly set to one for each

transformation type.

To account for these changes, states s had to be expanded to store not only the

mapping of vertices M(s), but also the two complete graphs that are being mapped

(since after transformations G2 can change), as well as the accumulated transforma‐

tion cost. Transformations of pairs in P (s) are only added to the set if this accumu‐

lated transformation cost is smaller or equal to the maximal allowed cost. In informal

experiments I conducted, already two successive splits often resulted in implausible

matches, so that the maximal cost is presently set to 1.

Another noteworthy function is feasible_pair on l. 10 of the pseudocode. It is

responsible for checking whether adding a candidate pair results in a consistent map‐

ping M(snext), or whether the candidate should be rejected. According to Cordella

et al. (2004), a partial mapping is consistent if the partial graphs G1 and G2 are iso‐

morphic. For this to be the case, the structure and the labeling of the graphs need

to be compared. If a candidate state results in a consistent mapping it is called feasi‐

ble, thus, a general feasibility function can be defined: F (s, n,m) = Fsyn(s, n,m) ∧

Fsem(s, n,m) where s is the current state, (n,m) is the candidate mapping, and Fsyn

stands for syntactic feasibility (i.e. same structure) while Fsem stands for semantic

feasibility (i.e. same labeling).

Syntactic feasibility for a candidate pair is given, iff all predecessors/successors in

the partial mapping of the first vertex are mapped to a predecessor/successor of the
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second mapping. Formally:

Rpred(s, n,m) ⇔ ∀n′ ∈ V2(s) ∩ Pred(G2, n) ∃m′ ∈ Pred(G1,m) : (n′,m′) ∈ M(s)

Rsucc(s, n,m) ⇔ ∀n′ ∈ V2(s) ∩ Succ(G2, n) ∃m′ ∈ Succ(G1,m) : (n′,m′) ∈ M(s)

(4.2)

where Pred(G, v) and Succ(G, v) denote the sets that contain, respectively, the pre‐

decessors or successors of the vertex v in the graph G.26

Such reasoning can be applied not only to test individual states but also to prune

the search tree as early as possible, since a candidate mapping can be deemed not

feasible in advance, if it is clear that it has no feasible successor states. Checking the

k future steps of a candidate pair for feasibility is called a k‐look‐ahead, and can be

included in syntactic feasibility checks. Cordella et al. (2004, p. 1369) introduce rules

that perform two 1‐look‐aheads: Rin and Rout as well as one 2‐look‐ahead: Rnew,

which check necessary but not sufficient conditions for consistency. For performance

reasons these rules are included in InBloom, too, but due to the complexity of their

formalization an inclusion here is forgone for readability reasons; interested readers

are referred to the original publication. A last syntactic feasibility criterion is specific

to InBloom: Since each FU can apply to at most two agents, the number of character

subgraphs that a partial mapping graph contains has to be smaller or equal than two:

Rroot(s) ⇔ #{c|Gc ∈ G1 ∧Gc(s) ̸= ∅} ≤ 2 (4.3)

Summarizing, syntactic feasibility is given by:

Fsyn(s, n,m) = Rsucc(s, n,m)∧Rpred(s, n,m)∧Rroot(s)∧Rin(s)∧Rout(s)∧Rnew(s)

(4.4)

26Cordella et al. (1998, 2004) also check whether the inverse is true: ∀m′ ∈ V1(s) ∩
Pred(G1,m) ∃m′ ∈ Pred(G2, n) : (n′,m′) ∈ M(s); accordingly for successors. This im‐
plies that they actually address the induced subgraph isomorphism problem, where all edges
between two mapped vertices have to match, too (see e.g. Heggernes et al., 2015). Such an
additional restriction is harmful for my use case, since analyzed plot graphs are multigraphs,
but edges present in a plot graph do not need to be present in an FU graph for a match. For
this reason, the original conditions are relaxed as stated above.
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Semantic feasibility for a candidate pair is given when the labels of the first vertex

and its incident edges match the labels of the second vertex and its incident edges. Let

this be captured by a compatibility relation that is defined for vertices≈v ⊆ VFU×Vplot

and edges ≈e ⊆ EFU×Eplot. Then, following Cordella et al. (2004):

Fsem(s, n,m) ⇔n ≈v m

∧ ∀(n′,m′) ∈ M(s) : (n, n′) ∈ E2 ⇒ (n, n′) ≈e (m,m′)

∧ ∀(n′,m′) ∈ M(s) : (n′, n) ∈ E2 ⇒ (n′, n) ≈e (m
′,m) (4.5)

The implementation of the algorithm described here is distributed over four

main classes (see Fig. 4.10). Upon instantiation by the analysis process in

GraphAnalyzer, the class Tellability iterates over all the FUs contained in

FunctionalUnits.ALL. For each FU, it executed Alg. 2, which is encapsu‐

lated in the class inBloom.graph.isomophism.UnitFinder. In particular, its

method Set<Map<Vertex, Vertex>> findUnits(PlotDirectedSparseGraph uni

tGraph, PlotDirectedSparseGraph plotGraph, int tolerance) performs the

initialization and in turn calls method boolean match(State s, Set<State> un

itList, int tolerance). States like s are implemented as instances of the class

inBloom.graph.isomophism.State, which maintains the current mapping and a

potential candidate pair. It contains the methods boolean isFeasible() and Se

t<State> getCandidates(int tolerance), that implement the respective parts

of the algorithm as formalized above. The list of split‐transformations, which is

required to compute candidate pairs, is maintained in the static initializer of the

class inBloom.graph.isomophism.FUTransformationRule. Each transformation

itself is an instance of that class, and provides the methods boolean test(Vert

ex v) and PlotDirectedSparseGraph apply(Vertex toReplace, PlotDirected

SparseGraph fuGraph), which can be used to perform the split encoded by that

transformation on those vertices, where it is applicable.

After the subgraph isomorphism algorithm has been executed on the analyzed plot

graph G = (VG, EG) and each of the FU graphs GFU ∈ G, the results are stored as a

set of mappings ΦG, where each mapping represents an FU instance (denoted ϕ from
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Figure 4.10: An abridged class diagram representation of the FU matching architecture in
InBloom. For brevity reasons attributes are represented without types and methods without

parameters or return types.

now on):

ΦG =
[

MG,GFU
= {ϕ|ϕ = {(v, w)|v is mapped to w}} (4.6)

We can say that a vertex v is part of an FU instance ϕ iff ∃x : (v, x) ∈ ϕ ∨ (x, v) ∈ ϕ

for some vertex x; short hand notation: v @ ϕ.

POLYVALENCE COMPUTATION

All vertices of an analyzed plot graph G = (VG, EG) that are part of more than one FU

instance can be considered part of the set of polyvalent vertices: V ∗
G = {v ∈ VG|nv >

1} where nv = #{ϕ ∈ ΦG|v @ ϕ}.

To make plots of different length comparable with regard to the functional polyva‐

lence measure, I propose to normalize the number of polyvalent vertices by the total

number of vertices in the analyzed plot graph. This leads to the following density

function determining a plot’s functional polyvalence:

polyvalence(G) =
#V ∗

G

#VG
(4.7)

It might be worthwhile to explore more sophisticated versions of this equation, for

instance taking into account the individual vertices’ actual polyvalence scores. For

my purposes, the easiest viable solution is sufficient.
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4.2.2 COMPUTING SEMANTIC PARALLELISM AND SYMMETRY

As outlined in Sec. 4.1.2, P&S are preferably computed over FU instance sequences,

and only as a fallback on the actual event sequences per character.

LINEARIZATION

Thus, the first task is to create such sequences for each character. An instance is

included into a character’s FU instance sequence if at least one vertex that belongs to

that FU instance is part of that character’s subgraph. Let G be an analyzed plot graph,

ΦG the corresponding set of all FU instances, and Gc = (Vc, Ec, lv, le, prop) ∈ G be

an analyzed character subgraph. The set of FU instances for character c is defined as:

Preseqϕc = {ϕ ∈ ΦG|∃v @ ϕ : v ∈ Vc}. Remember, that an FU instance can contain

vertices from either one, or two characters. Hence, it is possible that the same FU

instance appears in two different character sequences.

Determining the order in which FU instances appear in such a set is not straight‐

forward, since instances span several vertices and can normally not be assigned a

single plot step. In practice, an FU instance might easily span the course of the whole

plot, making the question of how to assign plot steps to instances more than just a

minor detail. Since an FU instance cannot be recognized by a reader until it is com‐

pleted, it appears best to order instances based on their latest vertex, first. However,

a vertex can be part of multiple FU instances and in practice two FU instances quite

commonly end in the same vertex. In this case, their order can be compared based

on their earliest vertex.

Vertex order cannot be compared easily based on the analyzed plot graph G, since

it does not contain any temporal edges. However, the order can be inferred from the

original plot graph. Let G′ = (V ′, E′) be the plot graph from which the analyzed

graph G was constructed, and G′
c = (V ′

c , E
′
c, l

′
v, prop

′) ∈ G′ be the character subgraph

that corresponds to Gc. Furthermore, let v0 ∈ V ′
c be the root vertex as per Def. 4. We

can define an indexing function f i
c : V

′
c → N as:

f i
c(v0) = 0

f i
c(v) = 1 + f i

c(vpred) with vpred such that (vpred, v) ∈ E′
c
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Remember that plot graphs—as opposed to analyzed plot graphs—have only tempo‐

ral edges, so that an edge between two vertices by necessity indicates that the former

is the predecessor of the latter. Using this index function, we can define the index of

the last vertex of an FU instance ϕ with regard to character subgraph c as:

imax
ϕ,c = max

v@ϕ∧v∈Vc

f i
c(v)

Since all vertices inGc are selected fromG′
c during the analysis process, we can assume

that Vc ⊆ V ′
c and that hence v will be part of the domain of f i

c . The index of the first

vertex of an FU instance iϕ,cmin can be defined accordingly based on the min function.

To induce a total order over Preseqϕc we can now define a binary relation

≽FU : Preseqϕc × Preseqϕc such that ϕ1 ≽FU ϕ2 iff27:

(imax
ϕ1,c > imax

ϕ2,c )∨

((imax
ϕ1,c = imax

ϕ2,c ) ∧ (imin
ϕ1,c ≥ imin

ϕ2,c))

The total order criteria are trivially fulfilled here, since total order over FU instances

is reduced to total order over natural numbers. We denote the resulting ordered set

(Preseqϕc ,≽FU ), which represents what I above called a character’s FU instance se‐

quence.

In case no sufficient FU instances are present in an analyzed plot graph (the thresh‐

old I currently employ is at least three instances per character), instead, the charac‐

ter’s event sequence is used as a basis to detect P&S. The order of events can be de‐

termined easily by the order of the respective vertices in the character subgraph, as

enumerated by the function f i
c . Thus, given the set of vertices in an analyzed charac‐

ter subgraph Vc, we can define a total order relation over these vertices ≽V : Vc × Vc

such that v1 ≽V v2 iff: f i
c(v1) > f i

c(v2). We denote the resulting ordered set (Vc,≻).

To simplify notation further on, we define the sequence on which P&S should be

27A more canonical approach would be the use of Allen’s interval algebra (Allen, 1983),
however, it is not applicable for FU instances because they are intervals with holes. Hence,
the total order defined here is meant as a purely practical solution capable of deterministically
defining an order over FU instances. It is not intended as a plausible solution to the problem
of ordering intervals with holes, which would exceed the scope of this thesis.
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detected for a character c as follows:

Seqc =

8><>:
(Preseqϕc ,≽FU ) if ∀c ∈ C : #Preseqϕc ≥ 3

(Vc,≽V ) else
(4.8)

SYMMETRY

TRANSLATIONAL SYMMETRY, as I outlined in Sec. 4.1.2, occurs when a chain ap‐

pears n times in Seqc, with n > 1. Let Seqc = (a0, a1, . . . , ak), then the ordered

set Cha = (ai, ai+1, . . . , aj) is called a chain given that 0 ≤ i < j ≤ k. We define

an auxiliary function f chain, which takes as input a sequence Seqc as well as the in‐

dices i, j and returns the corresponding chainCha. The translational symmetry value

of such a chain is determined by its number of occurrences multiplied by its length

and normalized by the overall length of the underlying sequence, computable by the

function: vts(Seqc, Cha) = n× j−i+1
k+1 .28

To compute the translational symmetry value of a sequence, we first need to iden‐

tify all possible chains in that sequence Seqc = (a0, a1, . . . , ak):

Cc =
�
t | t =

(
f chain(Seqc, i, j), i, j

�
∧ 0 ≤ i < j ≤ k with i, j ∈ N

	
where Cc is a set of 3‐tuples, each containing a chain, its start‐index and end‐index.

Note, that f chain(Seqc, i, j) = f chain(Seqc,m, n) is possible even for (i, j) ̸= (m,n),

as long as the elements in the two chains are the same. This means that for each

chain that is symmetric, Cc contains multiple elements. To be able to determine the

number of occurrences of each chain, the elements of Cc need to be grouped by the

actual chains:

C′
c =

n
(t1, L) | (t1, _, _) ∈ Cc ∧ L =

[
(t1,i,j)∈Cc

�
(i, j)

	o

28That way, a chain that covers all elements of a sequence receives the value of 1. Note,
that, under this definition, a chain that covers one third of a sequence and appears three times
is as valuable as a chain that covers half the sequence and appears two times. This might not
correspond to human intuitions of symmetry, but is the most straight‐forward approach in
this scenario.
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which results in a set of 2‐tuples, where the first element is always a chain and the

second a set of (begin‐index, end‐index) position‐pairs. A problem remains here be‐

cause following the above formalization chains are allowed to overlap. For instance,

the sequence Seqc = {a, a, a} would result in C′
c =

n(
(a, a), {(0, 1), (1, 2)}

�o
because

the chain (a, a) can be found at positions (0, 1) and (1, 2). Since I see chains as fixed

units of perception, it seems more natural for me to assume that each element of a se‐

quence can be only part of one chain instance29, which means that such overlaps need

to be filtered out from the elements of C′
c. This can be done by starting from the first

position pair of each chain, and removing all subsequent position pairs whose begin‐

index is smaller or equal to the end‐index of that pair, until a pair is reached that does

not overlap. Then, the process is repeated with this pair, until the complete set is pro‐

cessed in this way.30 In the end, all chains that appear with only one index‐pair can be

discarded, since they do not represent symmetric chains under these more restrictive

requirements. For reasons of brevity, I omit the mathematical formalization of this

procedure and simply denote its result as C′′
c . Curious readers are referred to the im‐

plementation in inBloom.helper.SymmetryAnalyzer#filterOverlappingChains.

Given C′′
c = {(t1, L1), (t2, L2), . . . , (tz, Lz)}, the translational symmetry value of each

chain tx can be computed using the function vts introduced above, where the num‐

ber of occurrences can be determined based on the number of elements in the corre‐

sponding position‐pair set: n = #Lx, the position‐indices are an arbitrary position‐

pair (i, j) ∈ Lx and k is the length of the underlying sequence Seqc. As suggested in

Sec. 4.1.2, the translational symmetry of a sequence should be the value of the best

chain it contains:

trans_sym(Seqc) = max
(t,L)∈C′′

c

vts(Seqc, t) (4.9)

REFLECTIONAL SYMMETRY, as introduced in Sec. 4.1.2, occurs when a chain Cha =

(ai, ai+1, . . . , aj) exists for Seqc = (a0, a1, . . . , ak), such that its inverse Cha−1 =

(aj , aj−1, . . . , ai) is also a chain forSeqc. An additional restriction is made here, which

29As an example, inspect the sequence AABAABAA. When allowing overlap, the best transla‐
tional chain would be AABAA, which covers the whole of the sequence. The best chains when
disallowing it would be ABA and AA, which each cover only 75% of the sequence. The latter
coincides better with my intuition that in this sequence translational symmetry should be
weaker than reflectional symmetry (with chain AABA).

30We assume, that the ordering from Seqc has been retained when constructing Cc and C′
c.
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allows Cha and Cha−1 to overlap in at most one element.31

Again, Cc needs to be obtained like above, as a representation of all possible chains

in sequenceSeqc. From this, only those chains are relevant, for which an inverse chain

exists that overlaps with it in at most one element:

C∗
c =

�
(t1, L) | (t1, i1, j1) ∈ Cc ∧ ∃(t2, i2, j2) ∈ Cc : (t−1

2 = t1) ∧ (i2 ≥ j1)

∧ L =
[

(t1,i1,j1),
(t2,i2,j2)∈Cc:

(t−1
2 =t1)∧(i2≥j1)

n(
(i1, j1), (i2, j2)

�o�

which results in a set of 2‐tuples, where the first element is a valid reflective chain,

and the second element is a set of paired 2‐tuples, each containing (begin‐index,

end‐index) position‐pairs of a chain instance and its reflected instance. To exem‐

plify this, let us apply these formalizations to the sequence ABABBA with a focus only

on the chain AB. The set of all chains would contain the following relevant entries:

Cc = {((A,B), 0, 1), ((A,B), 2, 3), ((B,A), 4, 5), . . . }. As becomes apparent, the origi‐

nal chain is represented by two elements, and its inverse by another. This is combined

into one object in the set of valid chains:

C∗
c =

n�(
A,B

�
,
�(

(0, 1), (4, 5)
�
,
(
(2, 3), (4, 5)

�	�
, . . .

o
The reflectional symmetry value of a chain is determined by the number of elements

from the original sequence that are included in all instances of the chain and its in‐

verse, normalized by the total number of elements in the sequence. Given the se‐

quence Seqc and the corresponding set C∗
c = {(t1, L1), (t2, L2), . . . }:

vrs(Seqc, tx) =
X

((m1,n1),(m2,n2))∈Lx

#
(
f chain(m1, n1) ∪ f chain(m2, n2)

�
/#Seqc

31The overlap is important to detect symmetry in sequences like ABA, where the axis of
symmetry runs through an element, instead of between elements. The restriction of overlap
to at most 1 element prevents overly long chains like in the case of sequence AAAA, where AAA
could be considered a mirror symmetric chain if an overlap of 2 were allowed.
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and the reflectional symmetry value of the whole sequence is then:

refl_sym(Seqc) = max
(t,L)∈C∗

c

vrs(Seqc, t) (4.10)

PARALLELISM

As outlined in Sec. 4.1.2, parallelism occurs when a chain Cha = (ai, ai+1, . . . , aj) in

one character’s sequence Seqc1 = (a0, a1, . . . , ak) also appears in another character’s

sequence Seqc2 = (b0, b1, . . . , bp). Here, the set of all possible chains needs to be

obtained for both sequences—like above—giving us Cc1 and Cc2. Let’s assume w.l.o.g

that #Seqc1 ≤ #Seqc2. We can define the set of all parallel chains:

Cc1,c2 = {(Cha, i, j) | (Cha, i, j) ∈ Cc1 ∧ ∃(Cha, _, _) ∈ Cc2}

and compute the parallelism value of a chain using the function: vp(Seqc1, Cha) =

#Cha/#Seqc1. Then, the parallelism score for a pair of analyzed character subgraphs

is:

para(Seqc1, Seqc2) = max
(t,_,_)∈Cc1,c2

vp(Seqc1, t) (4.11)

This value needs to be computed for each possible 2‐combination of characters.

Note, that the parallelism value is always computed with respect to the smaller

of the two sequences, it is thus possible to achieve high parallelism values even in

those cases when the best chain covers only a small part of the larger sequence. This

decision was made in order to be able to achieve parallelism scores of one even in

those (common) cases when character sequence pairs differ in length. It remains to

be ascertained, whether this is desirable overall.

OVERALL

The overall semantic P&S score for a plot is the average over all of the above values:

p&s(G) =

P
Gc∈G

(
trans_sym(Seqc) + refl_sym(Seqc)

�
+

P
{c1,c2}∈[C]2

para(Seqc1, Seqc2)

2× #C +
(#C

2

�
(4.12)
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where C is the set of all of character participating in G, and [C]2 is the set of all 2‐

combinations from C. The denominator, here, is simply the number of the individual

scores in the numerator: two symmetric scores per character: 2× #C, and one paral‐

lelism score per possible 2‐combination of characters:
(#C

2

�
.

The individual computations for symmetry and parallelism are implemented in

the class inBloom.helper.SymmetryAnalyzer, while the combination and normal‐

ization of these measures is performed in Tellability#detectSymmetryAndParal

lelism(PlotDirectedSparseGraph graph).

The above computation is implemented in the class inBloom.graph.CountingVi

sitor#getSuspense() which, among others, is called by Tellability#computeSim

pleStatistics(PlotDirectedSparseGraph graph).

4.2.3 COMPUTING SEMANTIC OPPOSITION

VIOLATED EXPECTATIONS, as I outlined in Sec. 4.1.3, is the first form of semantic

opposition and consists of two parts. The number of invalid or substituted beliefs

n−b
c can be determined by counting the number of termination edges whose des‐

tination vertices are of the type perception. Let G be an analyzed plot graph, and

Gc = (Vc, Ec, lv, le, prop) ∈ G be an analyzed character subgraph (w.l.o.g.), then:

n−b
c = #{(v1, v2) | (v1, v2) ∈ Ec ∧ lv(v2) ∈ {P, P+, P−} ∧ le((v1, v2)) = t}

The other part is nrel_em
c , the number of events that have been appraised by the emo‐

tions relief or disappointment:

nrel_em
c = #{v | v ∈ Vc ∧ (relief ∈ emotion(v) ∨ disappointment ∈ emotion(v))}

where emotion : V → P(OCC) denotes a function that maps a vertex to the set

of emotions that it was appraised with. The overall number of violated expectations

viol_expc for character c is thus the sum of these two measures. In order to normalize

it into the range between zero and one, it needs to be divided by the overall number
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of beliefs n∗b
c and the overall number of affectively appraised events nem

c :

n∗b
c = #

�
v | v ∈ Vc ∧ lv(v) ∈ {P, P+, P−}

	
nem
c = #{v | v ∈ Vc ∧ emotion(v) ̸= ∅}

and, finally:

viol_exp(c) =
n−b
c + nrel_em

c

n∗b
c + nem

c

(4.13)

CHANGES OF FORTUNE have been introduced as the second type of semantic op‐

position in Sec. 4.1.3. A change of fortune occurs when a character’s current mood

undergoes a significant change ∆m
int, during a small period of time ∆t

int, and also

crosses at least one of the zero‐axis of the PAD space during that time. Clearly, this

information cannot be obtained from a plot graph, since it only contains discrete

mood information. As outlined in Sec. 3.3.4, mood data for all characters is stored

in a table‐like structure implemented in the class MoodMapper, where rows represent

agents, columns represent reasoning cycle numbers, and individual cells contain a

Mood instance if the current mood of the respective agent changed during the respec‐

tive cycle. Since moods do not need to change every cycle, the table can be expected

to be sparsely populated. Let moodc : N → PAD be a function that returns the cur‐

rent mood of agent c at any reasoning cycle number, by sampling it from the table

in MoodMapper as per Sec. 3.3.4, which means that the value is looked up in the ta‐

ble and if a value is not contained for that reasoning cycle number, then the current

mood at that time is determined by the last present entry before it. Furthermore, let

a simulation run begin with reasoning cycle 0 and end with reasoning cycle cyc_max.

We can define the set of all intervals containing changes of fortune:

Ic =
n(

i, j,moodc(i),moodc(j)
�
| i, j ∈ N ∧ 0 ≤ i ≤ cyc_max ∧ i < j < i+∆t

int

∧ ∃dim∈{p,a,d} :
���πdim(

moodc(i)
�
− πdim

(
moodc(j)

���� ≥ ∆m
int

∧ sgn
�
πdim

(
moodc(i)

��
̸= sgn

�
πdim

(
moodc(j)

��o
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where πp, πa and πd are functions that project a mood into the respective p, a and d

dimension of the PAD space. Here, Ic is assembled as a set of 4‐tuples, where each

tuple represents a change of fortunes interval that begins at reasoning cycle i and

ends at reasoning cycle j, and the respective moods at these points. This is realized

by finding for all possible start‐cycles i all possible end‐cycles j such that these two

cycles are at most ∆t
int apart, and where a dimension dim exists in the PAD space for

which the mood difference between cycles i and j is bigger than the threshold ∆m
int,

and where the sign of the mood at cycle i is different from the sign at cycle j. For all

experiments performed as part of this thesis, ∆m
int was set to 0.5, and ∆t

int to 10.

The resulting set can be expected to contain multiple overlapping intervals, when‐

ever a mood change between a peak and a low takes longer than ∆t
int. For instance,

focusing on only one dimension p, given the following development of the plea‐

sure value over reasoning cycles (cycle number, p value): (0, 0.4), (5, 0.3), (8,−0.1),

(9,−0.2) the set Ic would contain the intervals (0, 8, 0.4,−0.1), (0, 9, 0.4,−0.2) and

(5, 10, 0.3,−0.2), which should not be counted as three separate change of fortune

intervals but as one. For this reason, overlapping intervals need to be filtered out

from Ic. The procedure here is the same as for filtering out overlapping translational

symmetry chains. First, a total order needs to be imposed over the set. For this, the

indexing functions gstartc and gendc : (N,N, [−1, 1], [−1, 1]) → N can be defined, which

map each interval to its start, respectively end, cycle:

gstartc

(
(i, j,mi,mj)

�
= i

gendc

(
(i, j,mi,mj)

�
= j

Then, the binary relation ≽: (N,N, [−1, 1], [−1, 1])× (N,N, [−1, 1], [−1, 1]) can be de‐

fined such that interval1 ≽ interval2 iff:

gstartc (interval1) > gstartc (interval2) ∨

(gstartc (interval1) = gstartc (interval2) ∧ gendc (interval1) ≥ gendc (interval2))

which is used to induce the totally ordered set (Ic,≽).

Starting from the first interval in this ordered set, all subsequent intervals are re‐
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moved whose begin‐index is smaller or equal to the end‐index of that first interval,

until an interval is reached that does not overlap. Then, the process is repeated with

this interval, until the complete set is processed in this way. The resulting set is de‐

noted I ′
c, and its cardinality represents the number of changes of fortunes. To nor‐

malize this value, it can be divided by the number of changes of fortunes that would

have been possible maximally: cyc_max/∆t
int:

fort_cha(c) =
#I ′

c ×∆t
int

cyc_max
(4.14)

OVERALL, the semantic opposition score for a character is determined as the maxi‐

mum of the two measures, as motivated in Sec. 4.1.3:

oppo(c) = max{viol_exp(c), fort_cha(c)} (4.15)

and the semantic opposition value for the whole plot is the maximum of the char‐

acters’ values:

opposition(G) = max
Gc∈G

oppo(c) (4.16)

The counting necessary to compute the violated expectations measure is performed

by the CountingVisitor, while the changes of fortune measure, as well as the aggre‐

gations are implemented in Tellability#detectOpposition((PlotDirectedSpar

seGraph graph, MoodMapper moodData)).

4.2.4 COMPUTING SUSPENSE

In Sec. 4.1.4 I have proposed to determine the suspense of a plot as the highest sus‐

pense observed over all intentions of that plot. The suspense of an intention is mea‐

sured as the amount of plot time that has passed since a plan to satisfy this intention

has been taken up, and the latest action of that plan (recursively including all actions

that were executed as part of any sub‐plan that was triggered along the way). Let

G = (V,E) be an analyzed plot graph and v ∈ V be a vertex in that graph. We can
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define a motivational path MP as follows:

MPG(v) = {v} ∪
[

∀vi∈V
∃e=(v,vi)∈E:
type(e,G)=a

∨ (type(e,G)=m∧type(v,G)=I)

MPG(vi)

Thus, a motivational path is a set of all vertices of G that can be reached from v only

by following a and m edges (which, naturally, includes v itself). For technical reasons,

a further restriction is placed on the m edges that are allowed in motivational paths:

they have to start from an I edge. This is done to exclude edge cases like: [I]
a−→

[+]
m−→ [I], where the action that resolves an intention motivates a completely new

intention. Note, that, in practice, analyzed plot graphs are always finite, and that

cycles are impossible in the present setting because m as well as a edges always point

in temporal direction, which makes the recursive definition in MPG(v) uncritical.

Based on this we can define a subtype of motivational paths, called intentional

chains, where ICG denotes the set of all intentional chains for an analyzed plot graph:

ICpre
G = {MPG(v) | v ∈ V ∧ type(v,G) = I}

ICG = {mp |mp ∈ ICpre
G ∧ @mplarger ∈ ICpre

G : mp ⊂ mplarger}

Thus, the set of intentional chains for a graph G is the set of all motivational paths

that start from an intention vertex, and are not completely subsumed by a larger mo‐

tivational path starting from an intention vertex.

We can then formalize the suspense of a motivational path as the difference in plot

steps between the first and the last vertex on that path. W.l.o.g. let Path = MPG(v)

be the motivational path for a vertex v from graph G:

suspense(Path) = max
vi∈Path

step(vi)− min
vj∈Path

step(vj)

where step(v) denotes the plot step at which the event represented by vertex v took

place. The suspense of the plot represented by G, then, is the maximal suspense over

all the intentional chains of G. Again, it is necessary to normalize the suspense score

in order to make plots of different lengths comparable. For this, it is divided by the
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plot length, that is the highest plot step number observed in vertices of the analyzed

plot graph:

suspense(G) =

max
Path∈ICG

suspense(Path)

max
v∈V

step(v)
(4.17)

The above computation is implemented in the class inBloom.graph.CountingVi

sitor#getSuspense() which, among others, is called by Tellability#computeSim

pleStatistics(PlotDirectedSparseGraph graph).

4.2.5 COMPUTING OVERALL TELLABILITY AS AESTHETIC BALANCE

As discussed in Sec. 4.1.5, high does not necessarily mean good with regard to tellabil‐

ity principles. Instead, an aesthetic balance needs to be maintained by the individual

scores to ensure a high overall tellability. The scores I have derived above are the

following, each normalized into the [0, 1] range:

• polyvalence(G) =
#V ∗

G
#VG

• p&s(G) =

∑
Gc∈G

(
trans_sym(Seqc)+refl_sym(Seqc)

�
+

∑
{c1,c2}∈[C]2

para(Seqc1,Seqc2)

2×#C+(#C
2
)

• opposition(G) = max
Gc∈G

oppo(c)

• suspense(G) =
max

Pathi∈ICG
suspense(Pathi)

max
v∈V

step(v)

For the first three scores, I have suggested in Sec. 4.1.5 to measure their balanced‐

ness as a distance to a predefined threshold θbalance (while arguing that the last one—

suspense—does not need to be balanced). Throughout the thesis, I will employ the

balance threshold of θbalance = 0.5, since it divides the original range of the tellabil‐

ity scores in two equally large halves. It should be noted that a low distance to the

threshold is actually preferable to a high one, and should consequently result in a

higher tellability, which means that we are looking for an inverse distance measure.

Postulating that a distance of 0 should result in a balanced score of 1, one possibility

would be of the form: 1−|0.5−x|, where x is one of the tellability score to be balanced.

A problem that arises with this formalization is a bifurcation of the possible range of

tellability, which becomes [1 − θbalance, 1]. For this reason, the distance needs to be
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re‐normalized into [0, 1], leading to the following form of the balancing function:

balance(x) = 1− 1

0.5
|0.5− x| (4.18)

with balance : [0, 1] → [0, 1] (for a graphical representation, see Fig. 4.11).32

Figure 4.11: The development of the balancing function in dependence of a tellability scores
that requires balancing. Note, that the function peaks at θbalance = 0.5.

Using the balancing function in Equation 4.18, we can define the overall tellability

of a plot, represented by an analyzed plot graph G, as follows:

tellability(G) =

balance(polyvalence(G)) + balance(p&g(G))
+ balance(opposition(G)) + suspense(G)

4
(4.19)

based on Equations 4.7, 4.12, 4.16 and 4.17. This, again, results in a range of [0, 1]. The

computation of balanced scores, as well as of the overall tellability function, is im‐

plemented in Tellability#compute(). With this, we have arrived at a quantifiable

metric for plot quality and can now investigate how it fares when applied to the case

study of TLRH.

32Beware that this formalization only works for θbalance = 0.5, while the general form
balance(x) = 1 − 1

θbalance
|θbalance − x| does not provide the required formalization for

θbalance ̸= 0.5.
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4.3 THE CASE STUDY EXPLORED

As I have admitted freely in the previous sections, Ryan’s tellability principles are not

derived from any sort of theoretical reasoning, and my implementation of them rests

on several decisions about how to formalize underspecified concepts like ‘parallelism’

or ‘change of fortunes’ that could also be interpreted very differently. At the same

time, the overall formula is fairly complicated and depends on a multitude of narra‐

tological phenomena and technological details which makes it impossible to estimate

the behavior of the tellability function. It can thus not be taken for granted that the

final scores computed by it will be a meaningful reflection of a plot’s quality, as op‐

posed to an arbitrary number. To quote parts of an anonymous review I received on

an early version (Berov, 2017b) of my tellability formalization: “I am also very sceptical

that such a measure can be found at all […]: the structure that the author describes

would be too naive to provide any relevant computational measure of plot quality”.

To get a feeling for the behavior of the individual tellability principles, I will first

discuss in detail how the original plot of TLRH is evaluated by the system. Then, I will

use tellability to rate several differing versions of the plot that can be generated by the

narrative system of TLRH by varying the personality parameters of the participating

agents. I share my reviewer’s reservations about the existence of an objective measure

of plot quality, so that the goal of this endeavour cannot be to quantifiably evaluate

my implementation of tellability by comparing the ranking it produces with an ideal

ranking (or even with a non‐ideal, average ranking, solicited from experimental sub‐

jects). What remains to judge its worth, instead, is to qualitatively discuss whether

the plot properties it condenses into different numbers are rooted in narratologically

interesting structural differences, or irrelevant technical perturbations.

4.3.1 ANALYZING TLRH BASED ON TELLABILITY

InBloom was intentionally designed to contain no non‐deterministic components be‐

cause I did not want to give skeptics the option to attribute any appearance of creativ‐

ity to randomness instead of intentional choice. However, the hard truth I had to learn

was that in a multi‐threaded MAS system some non‐determinism is inevitable. While

the plot generated under most parameter settings is reproducible, subtle differences
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in timing and agent coordination turned out to have a measurable effect on tellabil‐

ity. For this reason, the following scores were averaged over ten runs of InBloom’s

TLRH environment using the same settings (reported in Tab. 3.5), as implemented

in the class inBloom.stories.little_red_hen.RepeatingRedHenLauncher. This

class executes a simulation until a narrative equilibrium is detected, automatically

starts the tellability analysis and stores all the required scores. This is repeated un‐

til the desired number of runs is completed, and all the necessary statistics can be

computed. For reasons that have eluded my scrutiny, the first of the simulation runs

always exhibits outlier results regarding the suspense score. To pragmatically solve

this problem, a dry run is always executed first, and not included into the evaluation

metrics.

Tab. 4.1 shows the average and standard deviations for both, the absolute and the

balanced score of each principle and the corresponding tellability: Beware, that dur‐

Table 4.1: Overview over the tellability principles’ scores and the overall balanced tellability of
the TLRH plot. Values are given as average ± standard deviation over 10 simulation runs.

FPo…functional polyvalence P&S…semantic parallelism and symmetry SOp…semantic oppo-
sition Sus…suspense Tell…tellability

FPo P&S SOp Sus Tell

absolute 0.23 ±0.01 0.71 ±0.00 0.24 ±0.02 0.38 ±0.03 0.39 ±0.01
balanced 0.47 ±0.01 0.57 ±0.00 0.48 ±0.04 0.38 ±0.03 0.48 ±0.02

ing the runs executed by the RepeatingRedHenLauncher, the GUI of the system is

disabled in order to speed up the processing. This results in simulation runtime be‐

havior and tellability scores that are different from the ones observed in a single run

executed through the conventional RedHenLauncher. All inconsistencies attentive

readers might have noted between the above numbers and the plot graph in Fig.3.9

or the mood graphs in Fig. 3.10 are due to the fact that the figures in the last chapter

were produced by the latter launcher, while the current numbers were produced by

the former.33

The value that is taken to represent the TLRH plot’s quality by InBloom is bal‐

anced tellability, i.e. 0.48. Note, that the standard deviation indicates some variation

33It is unpleasant that an algorithmic difference like whether the GUI is displayed or not
changes a narrative system’s runtime behavior. However, it is an inevitable part of the multi‐
threaded architecture of Jason, or perhaps even all multi‐threader Java programs.
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in values between runs, but that these variations are fairly small. To get a better un‐

derstanding of what these numbers mean, let us inspect how the system arrives at the

individual absolute scores by reviewing its processing of an example run.

FUNCTIONAL POLYVALENCE

The functional unit analysis identifies an overall of 49 FU instances in the plot graph:

15Denied Requests (DR), 26Nested Goals (NG), 3 Retaliations (Ret), 1 Sacrifice (Sac),

1 Fortuitous Problem Resolution (FPR) and 3 Successes from Adversity (SA).

Of the plot’s overall 270 vertices, 87 are part of at least one FU instance, and of those

63 are polyvalent, resulting in an absolute functional polyvalence score of 0.23. The

most polyvalent vertex is the intention !create(bread), with a polyvalence score of

10.

In qualitative terms, these results are hard to place without the context of other

plots. They suggest a fairly good coupling, since 72% of the vertices that are part of

at least one FU instance are also polyvalent. The high polyvalence score of the vertex

!create(bread) could be taken to suggest that this intention is a central hinging

point of the plot, which connects its different parts. However, personally, I would

dispute that this is as a plausible interpretation, and rather argue that it is a technical

artefact, since this intention is part of each NG instance that is detected when the

hen asks for help, and again for each NG instance that is detected when she performs

the task herself. This, combined with the five‐fold repetition of the tasks themselves

artificially drives up the polyvalence score of this vertex. The second‐most polyvalent

vertex is the intention !punish with a value of 7. It is a more plausible candidate for

central hinging point of the plot because it logically connects the repetitive plot part of

the creation of the bread with the part where bread is withheld from the other animals

as punishment, and indicates the hen’s final success from adverse circumstances.

From a technological perspective, the number of detected FU instances and the

number of different detected FUs is a good sign, since it indicates a reasonable flexi‐

bility of the implemented FU detection algorithm.

253



CHAPTER 4. PLOT QUALITY ESTIMATION

SEMANTIC PARALLELISM AND SYMMETRY

Since sufficient FU instances are present in the plot graph, the analysis of P&S is per‐

formed on the basis of FUs. The ordered FU instance sequence for each character is

depicted in Tab. 4.2.

Table 4.2: FU sequences detected by InBloom in the TLRH plot.
Character FU Sequence

hen [NG, DR, DR, DR, NG, NG, DR, DR, DR, NG, NG, DR, DR, DR, NG, NG, DR, DR, DR, NG, NG, DR, DR, DR, NG, Ret, Ret, Ret, SA, SA, SA, Sac, NG, FPR]
dog [DR, NG, DR, NG, DR, NG, DR, NG, DR, NG, Ret]
cow [DR, NG, DR, NG, DR, NG, DR, NG, DR, NG, Ret]
pig [DR, NG, DR, NG, DR, NG, DR, NG, DR, NG, Ret]

It clearly indicates three parallelism scores of 1.0 because the farm animals all have

the same sequence of FU instances. The parallelism of the hen’s sequence with each of

the farm animal’s sequences is computed as 0.27 based on the shared sequence: [DR,

NG, Red], resulting in an average parallelism score of 0.63. The best translational

chain for the hen is the sequence: [NG, DR, DR, DR, NG], which represents the hen

asking for help, getting rejected by the other characters and finally performing her

task herself. It is easy to see why this sequence appears multiple times and is indeed

an effect of the plot’s symmetry. The best reflectional chain for the hen is the FU

instance sequence: [NG, DR, DR, DR, NG, NG, DR, DR, DR, NG, NG, DR, DR]. This

sequence captures two and a half of the same ask‐reject‐do interactions as before, but

instead of uncovering that they simply appear several times it focusses on the fact that

also the internal structure of this interaction is mirror symmetric, combined with the

fact that it appears five times in total, which allows for another level of macro‐level

reflectional symmetry. This results in a symmetry score of 0.75, for the hen.

The best translational chain is the same for each of the other animals: [DR, NG],

capturing the events around being asked for help and rejecting that request. The best

reflectional chain for the other animals is: [DR, NG, DR, NG, DR], again capturing two

and a half instance of the ask‐reject interaction. In terms of symmetry, for the other

animals, this results in a normalized score of 0.86. All together, an average symmetry

score of 0.84 is achieved, and an absolute P&S score of 0.72.

These values are fairly high, and draw attention to the parallelization and the repe‐

titions so typical for fairy tales: The three farm animals are exact copies of each other

and thus their behavior is similar. At the same time, the hen asks the animals for help
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five times, and gets rejected five times in much the same manner, which is responsi‐

ble for the very high intra‐character symmetry scores for all characters. Indeed, the

absolute P&S score is by far the highest of the three absolute scores and applying the

balancing reduces its value significantly, effectively punishing the plot for the high

level of structural self‐similarity.

SEMANTIC OPPOSITION

The number of violated expectations for Little Red Hen, as determined by InBloom,

is 6: four times when her help request is rejected by one of the other animals

while her mood is not yet hostile (which means that the rejections are appraised

with disappointment), and two times from the terminated beliefs: has(bread) and

hungry. Since the overall number of relevant events for her is 85, her normalized

opposition score due to violated expectations is fairly low at 0.07. For the other

characters, the only violated expectation is when the hen asks them to help her

eat some bread but doesn’t share any bread (resulting in an affective appraisal with

disappointment). Combined with an overall of 33 relevant events, their opposi‐

tion score from violated expectations is even lower at 0.03. The number of non‐

overlapping fortune change intervals for Little Red Hen is determined to be 8, starting

at the reasoning cycles: 54, 105, 153, 173, 204, 224, 254 and 274. Five of these intervals

occur when the hen asks for help during each of the steps of the plan to create bread,

and gets rejected by everyone, which results in a significant drop along the pleasure

dimension as well as a significant rise along the arousal dimension of the PAD space.

The remaining three intervals occur respectively as a result of the hen’s harvest, grind

and bake actions which all lead to several positive emotions that significantly drive up

her mood along the pleasure dimension. The maximal number of non‐overlapping

interval changes that would have been possible in this plot is 32, leading to a normal‐

ized opposition score from changes of fortunes of 0.25. According to the system, the

three other characters do not experience any changes of fortunes. The way InBloom

aggregates semantic opposition scores means that the maximal score, i.e. the nor‐

malized number of changes of fortunes for the hen character, determines the plot’s

absolute opposition score.
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This analysis results draw attention to several important properties of the plot. One

is that Little Red Hen is the most interesting of the four characters involved because

she is the one that faces the most opposition. Classically, this would indicate that

she is best suited for the role of main protagonist for the plot, since it is usually the

protagonist who has to face adversity. Assuming that readers of the story develop

a positive emotional disposition towards the hen, choosing her as the protagonist34

would induce the most emotional effect on readers, given that they experience empa‐

thy and sympathy to the main character, as discussed in the last chapter in Sec. 3.1.3.

At the same time, semantic opposition helps detect parts of the plot which are char‐

acterized either by violated expectations or by strong changes of affect, and by that

merit could be regarded as points of interest for the plot. It is also interesting to note

that although the fundamental difference of the hen from the other characters was

theoretically known to the system because of their different personalities, semantic

opposition uncovers that this difference also has an important impact on the plot:

while the hen exhibits fairly strong changes of affect because of what happens to her,

the other animals remain stoic throughout the plot.

SUSPENSE

The longest intentional chain detected by InBloom is located in the hen’s character

subgraph. It starts with the intention !create(bread), runs through the various help

requests as well as farming actions and finishes with the action bake(bread). This

results in a path suspense of 4 plot steps and since the overall length of the plot is 10

steps, an absolute suspense of 0.4.

Given the understanding of suspense adopted by this thesis, it seems semantically

plausible to assign the highest suspense value to the intention of creating bread. By

this, it is highlighted as the central motivator behind the plot’s action.

34This is of course confounded with the question of whether the hero of the plot is also
the main focalizer of the discourse, as otherwise readers might be barred from access to the
hen’s internal states. The generation of discourse is explicitly not addressed in this thesis, but
this interaction effect is a good example of the difficult interrelation of these two elements of
narratives.
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4.3.2 COMPARING PLOTS BASED ON TELLABILITY

In the previous chapter I reported seven manually discovered personality parameter

configurations of the narrative system, which lead to alternative plots (i.e. counter‐

factual plots to the original TLRH plot), summarized in Tab. 3.6. These plots can be

analyzed and compared based on their balanced tellability principle scores, as well as

the balanced overall tellability.

TELLABILITY BASED RANKING

Table 4.3: Overview over the balanced tellability principles’ scores and the overall balanced
tellability of several plots generated by the narrative system of TLRH. Plots are generated using
the parameters reported in Tab. 3.6, and the values for each plot are given as average ± standard

deviation, over 10 simulation runs. Ordered by tellability in decreasing order.
FPo…functional polyvalence P&S…semantic parallelism and symmetry SOp…semantic oppo-

sition Sus…suspense Tell…tellability
Plot # FPo P&S SOp Sus Tell Plot Summary

8 0.46 ±0.01 0.90 ±0.00 0.72 ±0.08 0.67 ±0.01 0.69 ±0.02 Dog and pig help hen, hen shares with everyone
7 0.43 ±0.01 0.95 ±0.02 0.56 ±0.06 0.69 ±0.04 0.66 ±0.02 Dog helps hen, no punishment, no sharing
4 0.45 ±0.01 0.62 ±0.00 0.62 ±0.04 0.35 ±0.06 0.51 ±0.02 Hen shares bread despite refused help requests
1 0.47 ±0.01 0.57 ±0.01 0.48 ±0.04 0.38 ±0.03 0.48 ±0.02 Original plot
3 0.45 ±0.02 0.54 ±0.00 0.42 ±0.00 0.43 ±0.05 0.46 ±0.01 Hen eats bread alone, but no punishment
5 0.20 ±0.01 0.69 ±0.00 0.23 ±0.02 0.31 ±0.02 0.36 ±0.01 Hen doesn’t ask for help, shares bread
6 0.08 ±0.00 0.79 ±0.01 0.13 ±0.00 0.40 ±0.00 0.35 ±0.00 Hen doesn’t ask for help, doesn’t share bread
2 0.00 ±0.00 0.82 ±0.00 0.00 ±0.00 0.00 ±0.00 0.2 ±0.00 Everyone relaxes, no plot

The first question is whether the differences in plot actually lead to significant dif‐

ferences in tellability, and if yes, in how far the resulting ranking coincides with an

intuitive quality‐ranking of these plots. Tab. 4.3 reports the scores for all of the plots,

including the original, ordered by balanced overall tellability. It proves that the tella‐

bility implementation of InBloom is indeed sensitive to differences in plot, and shows

that four clusters of plots with roughly similar overall tellability emerge.

• The first cluster contains two plots (#8 and #7)35, where either one or two of

the farm animals help the hen instead of rejecting her requests.

• The second cluster contains the original plot (#1) as well as two other plots (#3

an #4), which run the gamut of potential reactions of the hen to being rejected

by all the other animals.

35Remember, that the events of these plots cannot be chosen freely, but depend on the
personality parameters of the involved characters. The personality parameters that lead to
each of the plots are reported in Tab. 3.6.
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• The third cluster contains the two plots where the hen doesn’t ask for help (#5

and #6): one where she afterwards shares the bread with the others, and one

where she doesn’t.

• The last cluster contains only plot #2, where the hen does nothing while the

other animals relax.

A first observation is that plots in the same cluster (i.e. with comparable overall tella‐

bility) do seem more similar than plots in different clusters, with their similarities

being pointed out in the itemized list above. Furthermore, intra‐cluster differences

in overall tellability are fairly low so I do not think that intra‐cluster order is a mean‐

ingful reflection of differences in plot quality. Thus, a natural focus of discussion is

inter‐cluster order. Although this ordering is not completely in line with my intu‐

itive expectations, it also does not strike me as implausible. I fully agree with the

positioning of the last two clusters: Cluster four represents basically a non‐plot, a

succession of events that has no point, no cohesion and no overarching structure.

Cluster three contains plots that I would rate slightly better: there is an underlying

intention that drives the action forward, but the plots suffer from a lack of interaction

between the characters, as well as low adversity. It is the order of clusters two and one

that I would intuitively have reversed because cluster two contains the original plot

of TLRH, which I would expect to exhibit the highest tellability, as it is the version

that has prevailed over many oral and written retellings to become a well known folk‐

tale.36 At the same time, I do not see any of the obvious problems of clusters three

or four in cluster one, which would give me tangible reason to actively disagree with

the proposed algorithmic ranking.

36What makes this argument problematic is that a narrative’s evolutionary success is de‐
pendent on more than just the quality of its plot. Particularly with folktales, another factor
of prime importance is the moral, which might well change due to differences in plot, but is
not measured by tellability because it is a concept located on a completely different level of
interpretation (see Sec. 1.2 for details on levels of interpretation). However, disentangling plot
quality from the quality of the message conveyed by that plot might be already too analytical
to be considered part of one’s intuitions about a story, for which reason I decided to keep my
justification as it is.
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ANALYZING PLOTS VIA TELLABILITY

The second question, which is the more interesting of the two, is to what extent the

different tellability principle scores help uncover the qualitative differences between

the different plots. This will also shed more light on why—at least according to In‐

Bloom’s tellability—the original plot is of lesser value than some of its alternative

versions. But lets begin our analysis of the plots’ qualities and shortcomings from

below.

PLOT #2, AS I HAVE ARGUED REPEATEDLY, might even be considered a non‐plot. So

why does the system assign it a balanced tellability score above zero? It should be

pointed out that three of four tellability principles are actually rated zero, which cap‐

tures the plot’s shortcomings quite well: it contains absolutely no adversity (seman‐

tic opposition is zero), has no cohesion (functional polyvalence is zero) as well as no

functional structure (no FU instances detected) and lacks a driving force (suspense is

zero).

What tellability it has stems from semantic P&S: since no FU instances are detected,

parallelism and symmetry are measured based simply on the actions of the partici‐

pating characters, and on this superficial level the plot indeed exhibits a certain, but

not excessive, level of self‐similarity (i.e. organization). In fact, one might come up

with a hypothetical alternative plot, where all characters would always follow random

intentions that are instantly successfully actualized by their actions, which would re‐

sult in a lower balanced P&S score and be even less tellable than our TLRH version

#2. From this perspective, a non‐zero tellability seems a justifiable reminder of that

plot’s meager but existing qualities.

THE PLOTS OF THE THIRD CLUSTER, #5 AND #6, differ only by the fact that in the

former the hen shares her food, while in the latter she does not, and their overall

tellability is nearly the same. However, the individual tellability principles paint a

more nuanced picture. An interesting difference is uncovered by functional polyva‐

lence (0.20 vs. 0.08): the act of sharing food is an interaction point between the cast

of characters and a necessary cohesive element driving up both, the number of FU
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instances and functional polyvalence. Such a point for convergence between the dif‐

ferent characters subgraphs is completely lacking in plot #6, which is a significant

shortcoming. After all, why should several characters be included in a plot at all, if

no interaction exists between their actions?

This question can be partly answered based on the semantic P&S values of the

two plots (0.69 vs. 0.79): different characters can be of value even without interac‐

tion, if structural similarities exist between them. However, this insight comes with a

caveat: one of the factors that contributes to the higher P&S score of the latter plot is

that without the sharing‐action it lacks sufficient FU instances in order to qualify for

similarity analysis on the FU level, which leads to the analysis being undertaken on

the event level. This makes the P&S score harder to compare to plot #5 (but easier to

compare to #2). However, sharing does lead to a break of structural similarity towards

the end of plot #5, so technological details are not the only contributing factor to the

higher P&S score of plot #6.

Another effect of the sharing of bread is that plot #5 takes much longer to conclude

than plot #6 (18 steps vs. 11), while not affecting the actualization of both plot’s main

intention—the creation of bread. This leads to the lower suspense of the former plot

(0.31 vs. 0.4). It seems debatable whether this is a technical artefact, or an useful

indication that the latter of the two plots is more focussed.

The difference in semantic opposition between the two plots (0.23 vs. 0.13), on the

other hand, is only a technical artefact. It stems from the fact that the only opposition

in both plots comes from two terminated beliefs: the belief to be hungry and the belief

to possess bread, which are terminated when a character eats bread. In case of plot #6,

this happens only to the hen who experiences many relevant events due to her prolific

activity, while in plot #5 it also happens to the dog who experiences less relevant

events, which leads to a higher normalized opposition (and, in fact, suggests that the

protagonist of this story should be the dog and not the hen). From a narratological

perspective I do not think that any of the two plots contains more than traces of

semantic opposition, and that the terminated beliefs detected by the system are not

valid instances of violated expectations.
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A COMPARISON OF THE THREE PLOTS DISCUSSED ABOVE WITH THE FIVE REMAINING

PLOTS exhibits a crucial difference in their functional polyvalence values (which lie

below 0.2 for the former, but around 0.45 for the latter versions). The reason for

this lies in the additional interactions between the characters in the remaining five

plots, where the hen repeatedly asks for assistance with her chores. These repeat‐

ing requests force the other animals to react, which results in a higher entanglement

and thus higher cohesion than in the previously discussed plots. It is also a sign of

tighter plotting, which means that more events form causal chains and cannot be

removed without changing the remainder of the plot.37 This causal connectedness

reaches its culmination in plot #1 (where the hen’s retaliation is a consequence of the

other characters’ adverse behavior towards her) and plot #8 (where the sharing is a

consequence of their help). Coincidentally, these are also the plots with the highest

functional polyvalence scores (0.47 and 0.46), although the observed standard devia‐

tion does not allow ruling out that this is just the result of stochastic variations.

PLOTS #4 AND #1 HAVE ONE NOTEWORTHY DIFFERENCE, in their semantic opposi‐

tion scores (0.62 vs. 0.48). In both cases, the opposition scores are derived from the

number of change of fortunes intervals of the hen, but the former case has two more

intervals than the latter. This is not an effect of differing actions or happenings be‐

tween the two plots, but a direct consequence of the differing personality parameters

of the hen character. Plot #4 is generated based on a higher agreeableness trait for

the hen. This significantly shifts her default mood (leading to higher default plea‐

sure and arousal values, but lower default dominance, as compared to the original

version), which results in her change of fortunes intervals being based on pleasure

and dominance crossing the zero‐axis instead of pleasure and arousal. As I have re‐

ported in Sec. 3.4.3, readers are able to infer personality profiles that correspond to

the personality parameters of InBloom from the plots it generates. It is an interest‐

ing question whether they would also be able to infer different affective reactions to

comparable events based on such differences in personalities. This also draws atten‐

37It is interesting to note that in order to detect such causal chains readers need to consider
counterfactual plots where certain settings and events differ from the plot under considera‐
tion, in order to decide which events depend on which. By doing that they explore a space of
possible plots much like the one explored here by InBloom.
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tion to the fact that tellability was conceived by Ryan as a function not only of the

actual domain, but also of the virtual M.‐L. Ryan (1991, p. 156), and that this property

is supported by InBloom.

THE PLOTS OF THE FIRST CLUSTER ARE EVALUATED BETTER THAN THE PLOTS OF THE

SECOND CLUSTER along two tellability principles: functional P&S (∼0.93 vs. ∼0.58)

and suspense (∼0.68 vs. ∼0.39). The reason for the former is that in cluster two

the farm animals all share the same personality traits and exhibit the same behavior,

while in cluster one at least one of the animals has different traits from the others and,

consequently, behaves differently. As a result, the stories of cluster two are highly

parallel (the overall parallelism sore of e.g. plot #1 is 0.64 and its normalized P&S

score is 0.72), while in cluster one the parallels between the farm animal are reduced

(for instance plot #7 has an overall parallelism score of 0.30 and a normalized P&S of

0.53). Thus, the tellability system judges plots from cluster two as overly parallel and

penalizes their P&S scores, while the P&S score of cluster one is nearly balanced and

is boosted. This is also the main reason why the plots from cluster one are evaluated

better by InBloom than the original plot of TLRH. I appreciate this finding, since

from a purely plot‐centered perspective the triplication of the farm animals in the

original folktale seems superfluous. Ryan’s credo is to: “seek the diversification of

possible worlds in the narrative universe” (M.‐L. Ryan, 1991, p. 156), and the narrative

universe is diversified when the farm animals behave differently. This does not take

into account genre‐specific tropes and conventions, which for folktales postulated

the triplication of characters and tasks, but rightly so, since this is an inter‐textual

concern that can affect the plot but is not governed by the rules of plot aesthetics.

Tracking down the difference in suspense is a trickier task. The most suspenseful

intention remains the same in all plots of clusters one and two, but the details differ.

For instance, in plot #7 the intention takes 16 steps to completion and the overall plot

has a length of 23, while in plot #1 the same intention takes 4 steps and the overall

plot has a length of 10. From this it is evident that whatever prolongs the plot must

happen mostly during the duration of the intention to create bread. Since the per‐

sonality and behavior of the hen is the same in both plots, the difference must come

from the animal whose parameters were changed. My hypothesis is that the culprit is
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the help action that is executed by the changed animal after each help request. While

the hen’s activity during the creation of bread does not wait for this help to be exe‐

cuted, she still perceives the additional actions which forces her reasoning cycle to

process additional events and delays the processing of events related to her main in‐

tention. This assumption is supported by the fact that in plot #8, where two animals

execute help actions, the length of the intention as well as the overall plot is increased

again. Unfortunately I see no other means of investigating this question, so the of‐

fered explanation must be viewed with caution. If it is correct, the difference would be

infelicitous since it stems merely from technical details instead of valid narratological

properties of the analyzed plots.

THE REMAINING DIFFERENCE IS BETWEEN PLOTS #8 AND #7, and is rooted in their

semantic opposition scores (0.72 vs. 0.56) which are based on the change of fortunes

intervals of the hen. In the former plot each help request is rejected once and fulfilled

twice. Thus, positive emotions accumulate over time and the hen’s mood oscillates

around the zero‐axis only along the dominance dimension. In the latter plot the sit‐

uation is reversed: the hens request is accepted once and rejected twice. This leads to

a mix of negative emotions from the rejections and positive emotions from successful

farming, which leads to an oscillation of the hen’s mood along the pleasure dimen‐

sion while her dominance remains fairly high. The dynamics of the current mood

are fairly complex and hard to correlate with particular events, but these differences

seem to lead to more changes of fortune in the case where two animals help. I am not

sure, in how far this should be regarded a valid narratological difference or a technical

artefact.

SUMMARIZING, the implemented tellability measure is capable of uncovering sev‐

eral differences between the alternative plots that are narratologically plausible and

interesting. At the same time, it also is sensitive to differences that are caused by

technical properties of the implementation and should not be regarded as relevant.

In the present case study, out of ten differences I analyzed five turned out to be narra‐

tologically plausible, two turned out to be implausible and the remaining three could

not be placed. Furthermore, due to multi‐threading the overall balanced tellability
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score of one and the same configuration might vary slightly between different runs.

This means that small differences in tellability should not be necessarily considered

expressive. Instead, plots with similar tellability can be grouped into clusters, and

the ranking can then be performed over clusters. After analyzing the reasons why the

original plot has not been included in the first cluster, I also conclude that InBloom’s

ranking of plot clusters in the narrative system of TLRH appears plausible to me,

which indicates the viability of the present implementation as well as Ryan’s version

of the concept itself (if only for the present case study).

4.3.3 DISCUSSION OF TELLABILITY AND ITS IMPLEMENTATION

A system that can only generate plots cannot function as a creative agent, since it

lacks the means for deciding which of its outputs to scrap and which to keep, or even

just when to stop generating. In computational creativity theory (see Sec. 1.3 for an

overview) this creative responsibility as called aesthetic analysis and forms one of four

main types of tasks for a CC system. Thus, the motivation behind this chapter was to

find and formalize a measure of plot quality that could allow InBloom to choose the

‘best’ plot from a set of plots it can produce. However, it would be unreasonable to

expect such a measure to represent an objective ground truth, simply because literary

aesthetics are not governed by objective laws. Hence, the real value of an evaluation

function for a plot composition system does not lie in the ranking it can produce, but

rather in the analysis that it needs to perform in order to arrive at this ranking. If

such an analysis is derived from narratologically meaningful features and is capable

of detecting plausible instances of them in a plot, then it provides the system with

the means to offer an explanation of why it chooses a particular story over others,

and by that can contribute to its appearance of intentionality and creativity. This

creative responsibility has been described as framing, another of the four tasks of

creative systems according to CC theory, and has been recently even argued to be the

new frontier of CC research (M. Cook et al., 2019). This lead me to dedicate the third

cycle of generative modeling to Ryan’s formal part of tellability, since it promised to be

an interpretable measure of plot quality.38 A risky endeavour, since the notion is not

38This may not seem to be noteworthy from a literary perspective, but for readers from
AI—who by 2020 are most likely well habituated to deep learning system that learn to mag‐
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derived from an underlying general narratological theory, is not specified in sufficient

detail to be straightforwardly quantified, was never systematically tested and—which

might be worst—in the case of failure would quite likely fail in most evident and

absurd ways. These problems demonstrate that potential benefits of this iteration of

generative modeling lie not only on the side of computational creativity, but also on

the narratological side.

Hence, before I come to an discussion of technical (de‐)merits, I will first present

some conceptual insights that follow for me from the performed implementation.

CONCEPTUAL INSIGHTS

The most general (and to me, surprising) insight is that I consider the third iteration of

my generative modeling process a success. Although the implemented metric was in

parts sensitive to phenomena that should not be considered narratologically relevant,

in general it created a plausible structuring of the plot space in terms of plot quality.

The analysis it provided for favouring the plots of one cluster over the others is cogent

and a plot selected on this basis could prove a reasonable foundation for a narrative.

Thus, it can be used as the basis for the next iteration.

Furthermore, I want to stress the point that tellability analysis, as formalized in this

chapter, is not limited to InBloom. The computation of balanced tellability scores de‐

pends on two data structures: an analyzed plot graph (as formalized in Def. 12) and

a mood graph (which is a function of time into a three dimensional space over real

numbers). Any system that can translate its outputs into these two graphs can use

tellability to evaluate the structural quality of its plots. As a rule of thumb, applica‐

bility can be considered for plot composition systems that support the generation of

at least the following narrative phenomena:

• temporality: the system needs to be able differentiate the story time at which

events take place,

• intentionality: the system needs to represent characters’ intentions, track

which actions are associated with which intention, and realize when an event

nanimously proclaim numerical qualities of texts or images based on unspeakable statisti‐
cal properties learned from millions of examples and hidden in a black box of billions of
parameters—this might be a welcome diversion.
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finalizes an intention,

• short‐term‐affectivity: the system needs to be able to identify whether charac‐

ters affectively appraise pertinent events as positive or negative for them (i.e.

emotions),

• mid‐term‐affectivity: the system needs to quantify the development of charac‐

ters’ affective state (i.e. mood) over time,

• causality: the system needs to be able to identify causal connections between

events.

The concrete representation of these phenomena does not need to match the way

they are modeled in InBloom, however, the farther they depart the more adaptations

to the formalization of the individual tellability scores will be required. For instance,

a change of the types of causality relations representable by a system would require a

redefinition of functional unit graphs, and a departure from representing mood using

the PAD space would require an adjustment in the way change of fortune intervals

are computed.

FROM THIS SUCCESS, TWO INSIGHTS FOLLOW. One is that Ryan’s approach proved

to be justifiable. As I explained at the beginning of this chapter she developed her

tellability principles by transferring formal aesthetic properties from poetry into the

narrative domain, a move for which neither a reason nor a justification of its validity

was provided. This justification can now be added post‐hoc, since in the end it yields

an operationalizable metric.

The second is that a highly underspecified and abstract narratological concept like

tellability can be formalized in a way that is concrete enough to allow its quantifica‐

tion, without overly diluting the results through the introduction of formal or tech‐

nological artefacts. This can be beneficial for narratologists for several reasons. A

computational operationalization of a concept like tellability allows to analyze many

more plots in much more meticulous and reproducible ways than are available to the

theorist. Through this, the properties and implications of the concepts can be ex‐

plored by applying it to minimally different plots and comparing the analysis results.

It also opens the door to even more automatized approaches, like adversarial testing:

The ability to quantify tellability allows to exploit the great capability of computers
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to optimize scores through machine learning. Different approaches, like reinforce‐

ment learning or genetic algorithms, can be trained to systematically vary the plot‐

generating system’s parameters in order to identify the most tellable configurations.

A manual analysis of these optimized plots can then lead to the detection of aber‐

rant but legal configurations, and thus suggest ways how the underlying measure falls

short of its goals. Performing such an exploration manually seems theoretically possi‐

ble, but practically daunting and vulnerable to inconsistencies. For the claim that the

computational approach is possible, on the other hands, I have anecdotal evidence.

I supervised a bachelor’s thesis on the topic of exploring the tellability space using

nature inspired algorithms, that started out using an incomplete versions of the tella‐

bility score that only computed functional polyvalence, suspense and semantic P&S,

without balancing the individual scores. Quickly, the employed algorithms learned

that they could maximize tellability by interrupting the actualization of the charac‐

ter’s first intention by presenting it again and again with the same urgent happening,

effectively driving up suspense and symmetry, while doing nothing to improve the ac‐

tual plot quality. From this I was reminded about the great importance of balancing

the individual tellability scores (a circumstance that is treated very briefly by Ryan),

and could resolve this problem by implementing the solution introduced above.

AS THE OPINION OF THE ANONYMOUS REVIEWER, that I recalled above, demon‐

strates, it is by no means a given that underspecified and abstract concepts from

narrative theory can be operationalized at all. Decisions that have to be made

at lower (implementational) levels of abstraction are often strongly governed by

formal‐technological constraints, which can distort properties at higher (narratolog‐

ical) levels. One recent instance where this problem has been observed is reported

by Spendlove and Ventura (2020), who describe a machine‐learning approach for the

generation of six‐word stories. The work represents the high‐level concept ‘narrative’

as a hierarchically structured artifact based on the elementary structure ‘word’. Based

on this formalization, it applies a specialized type of Bayesian statistics to model nar‐

ratives as factorized joint probability distributions over words. Training consists in

inferring such a distribution from a corpus of six‐word stories, and new stories can

be generated by sampling from that distribution. After conducting an empirical sur‐
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vey, the authors conclude that it demonstrates “that a handful of […] stories achieve

coherence […], however the majority do not. Very few of its stories are both coherent

and impactful”. An example coherent story reported in the work would be: “To him,

‘endlessly’ meant ‘twenty decades”’, while the only reported coherent and impactful

story is: “Diamond ring. Glassy diamond. Costliest engagement”. These high‐quality

examples only represent instances of the genus narrative (as I conceptualize it), if

they are given a very benevolent reading. At the same time, human examples of this

format exist that I would never hesitate to call narratives, such as the infamous “For

sale: baby shoes, never worn” attributed to Ernest Hemingway, or “Goodbye, mis‐

sion control. Thanks for trying” reported in the paper. My interpretation of these

results is that modeling six‐word narratives using Bayesian statistics lead to a focus

on probabilistic surface properties that obscure latent properties of narratives rather

than uncovering them.

The tellability implementation employed here, in contrast, focussed primarily on

underlying properties of the plot, which had to be uncovered by analyzing its causal

structure. Given the nature of plot, this requires an understanding of the dynamics of

concepts like event‐based causality, intentionality and affectivity. Manually encoding

this knowledge in declarative form as a set of rules (or even automatically extracting

them from narrative texts like attempted by Goyal, Riloff, et al. (2013)) would have

been a complicated and, most likely intractable, task. What allowed me to realize

tellability analysis, nevertheless, was the fact that in InBloom the system that analyzes

plot quality is directly connected to the system that maintains the ‘objective reality’ of

the story world (the TAW). This way, instead of manually deriving general metaphys‐

ical rules about the story world, I enabled it to capture and pass on this information

itself, via the plot graph. The insight here is that even a purely structural analysis of

plot quality requires semantic knowledge about the functioning of the story world,

and this does not even include what Ryan calls a substantial analysis of plot quality

(which would be concerned with properties like themes, settings or motifs; see p. 190

where this difference was first introduced). My hypothesis is that this might be one

of the underlying reasons why simple statistical learning approaches to story analy‐

sis and generation, like Spendlove and Ventura (2020) and Goyal, Riloff, et al. (2013),

failed: the underlying corpus as well as the employed models were not sufficient to
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learn this kind of information. A case in point is GPT‐2 (Radford et al., 2019), a very

deep transformer based network that was trained to perform the language modeling

task, i.e. a predicting of the most likely next word given a preceding text, on 40GB of

text from varied domains. As the authors surprisingly found, the resulting network

was fairly successful at several text‐based tasks that test world‐knowledge and com‐

monsense reasoning (for which it was not trained). At the same time, it was the first

neural network approach known to me that was capable of occasionally generating

coherent and interesting multi‐paragraph narratives. This success was trumped by

GPT‐3 (Brown et al., 2020), an even larger network of the same design, trained on an

even larger corpus. Its performance on question answering and reasoning tasks led

the authors to assume that the network reached a complexity where it was able to ex‐

tract and encode a significant amount of world knowledge from its input data. Again,

this coincides with an impressive increase in story‐generating capabilities.39 Based

on these observations as well as my experience with implementing tellability I would

hypothesize that generating or analyzing plots requires some sort of encoded knowl‐

edge about ontological and metaphysical properties of the underlying story world.

Additionally, the way tellability was conceptualized by Ryan indicates that a crucial

role is played by a particular type of world knowledge concearned with the mental

functioning of fictional characters (at least for the analysis of plot quality). This in‐

terconnection between the nature of narratives and metaphysical knowledge is what

makes operationalizing concepts from narratology so hard in a computational setting.

COMING BACK TO MORE CONCRETE OBSERVATIONS, exploring the behavior of the

individual (unbalanced) tellability principles on a small set of plots allowed me to

revise my theoretical understanding of how high scores on these principles can be

interpreted narratologically:

• Functional polyvalence: Two metrics are relevant here. A high number of FU

instances indicates a high coherence of the plot, since it means that its indi‐
39Despite the impressive success of GPT‐3 at generating narrative prose it is important to

note that the system has no explicit model of what constitutes narratives or good narratives.
Although it is possible to prompt GPT‐3 to generate an explanation of why it generated a
certain narrative, the resulting text would not be grounded in any understanding of the nar‐
rative itself or of narrative theory. It is thus not capable of performing the aesthetic analysis
or framing tasks, at least not in good faith.
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vidual elements are organized in meaningful structures. A high polyvalence

indicates a high cohesion, since it means that the individual structures are well

connected. This can be also understood as strong meta‐causal40 organization.

• Semantic P&S: A high P&S score indicates a high level of structural organization

that is not causal. This can be interpreted as a foregrounding of the plot’s con‐

structedness, which is a desirable property in some genres (e.g. post modern

fiction) but not others.

• Semantic opposition: A high opposition score indicates that the plot contains a

high level of adversity for at least one character, which might mean that some of

its plans fail, that pleasant circumstances for it are terminated or negative cir‐

cumstances introduced. This increases the likelihood that a plot has dynamic

points (since violated expectations normally lead to strong affect) or external

points (since events describing struggle or failure are inherently of more inter‐

est than events describing smooth sailing).

• Suspense: A high suspense score indicates the presence of a central driving force

that underlies most of the plot’s events, and consequently a strong focus.

My take‐away from this is that not all of Ryan’s tellability principles are equally im‐

portant. Semantic P&S certainly is a bonus when it is present, but its absence would

not constitute a serious problem for a plot. The same holds, to some extent, for sus‐

pense: while a central intention can add value to a plot, it is also possible to have a

tellable plot where the protagonist has to react to frequently changing demands from

its circumstances instead of following one overarching goal. An example of this can

be found in the adventures of the stranded Robinson Crusoe in the eponymous novel

by Daniel Defoe (1719), in which the protagonist’s survival depends on him mastering

the various challenges life on a desert island confronts him with. A balanced level of

opposition seems more important to me, than the two previous principles, since it is

hard to see a point in plots without adversity. When all endeavours of the characters

40I refer to this as meta‐causality since in the present setting plots are causally organized
by default: actions are only performed to actualize intentions, intentions are triggered by per‐
ceptions, and so on. High polyvalence indicates that causality also exists at the more abstract
FU level, in the interventionist sense that removing one FU instance would lead to the re‐
moval of another FU instance, simply because they share common events (i.e. vertices in a
plot graph).
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succeed on first try, and no sudden changes of fortunes throw them off balance, the

resulting events simply fail to be noteworthy, and thus not likely to illicit in readers

emotions that are important for the consumption of fiction, like curiosity, surprise,

or sympathy. The most important feature, however, is functional polyvalence since

it focuses on the central property that makes a plot a plot: the causal structure it su‐

perimposes on a sequence of events. This property is part of my working definition of

plot outlined in Def. 1, where it says that “the plot of a narrative is any causal network

of happenings, actions and mental events […]”, and has been canonically illustrated

by Forster:

We have defined a story as a narrative of events arranged in their time‐
sequence. A plot is also a narrative of events, the emphasis falling on
causality. “The king died and then the queen died,” is a story. “The king
died, and then the queen died of grief” is a plot. The time‐sequence is
preserved, but the sense of causality overshadows it.

(Forster, [1927] 2002, p. 61)

IT IS NOTEWORTHY, that it was in order to determine functional polyvalence, that

an analysis of plot graphs needed to be implemented that is capable of connecting

that graph’s vertices with edges that indicate different types of causal connections.

Revising the original definition of (unanalyzed) plot graphs in Defs. 4 and 5 with this

understanding in mind reveals that they would have been more aptly named ‘story

graphs’(in the Forsterian sense of that word) since they contain only temporal rela‐

tions between events and do not capture the causal structure that is central for plots.41

I would, in fact, maintain that the functional analysis described in Sec. 4.2.1, and re‐

quired to generate analyzed plot graphs per Defs. 11 and 12, is the most important

contribution of this chapter to the overall project, since, before that, the plot genera‐

tor InBloom had no proper representational format of plot. The subsequent detection

of FU instances and the computation of their overlap is a valuable addition since it

41I debated whether it would not be more prudent to revise the thesis and simply rename
the concepts and definitions in question. If this were a more classical computer science thesis
I certainly would have done so, and pretended that I knew all along. But given the decision
to organize this document as a record of hermeneutic circles I decided against it. I think
being able to openly disclose that the cycle completed here changed parts of my previous
understanding is an advantage of the methodology of generative modeling, and a normal
part of the process of modeling concepts as complex as narratives.
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allows lifting the systems analytical capabilities to the more abstract level of narra‐

tological functions, but even without these steps I think that an evaluation of story

graph’s ‘plotness’ would be possible based merely on the edges generated by func‐

tional analysis. The more edges are added to a sequence of vertices and the longer

the resulting chains get, the stronger a sense of causal organization can emerge from

the underlying events. I do not attempt to formalize and evaluate such a measure

here, anymore, since it would not further my project’s progress in the right direction,

but think that it’s an auspicious avenue for future work. The difference, then, be‐

tween the mere presence of edges and the presence of edges in certain configurations

(i.e. FUs) is that the former tells us about a plots level of organization, while the latter

tells us whether this organization is coherent (i.e. meaningful).

THE PRECEDING DISCUSSION led to a more general insight because it shifted my un‐

derstanding of the levels of narratological representation that should be included in

computational story composition systems. Common wisdom has it to distinguish be‐

tween two levels of representation: ‘what is told’—referred to as fabula or plot—and

‘how it is told’—referred to as discourse (Gervás, 2009; Kybartas & Bidarra, 2017). I

have come to realize that this view conflates two levels of representation into one,

when it speaks of ‘what is told’: (1) the events that happen in the story world and (2)

the abstract causal organization and roles that can be superimposed over the events

as part of a meaning‐making strategy.

Ryan is adamant that some events in TAW are part of the plot while some are

not (M.‐L. Ryan, 1991, p. 126) and that “[m]any different texts share the same plot…”,

but for my purposes she, too, conflates these two levels when she continues: “…(con‐

sider all the versions of ‘Cinderella’).” (M.‐L. Ryan, 1991, p. 127). This seems to imply

that there is a Cinderella plot, and different instantiations of it might differ in minor

things like whether Cinderella has to sweep the floor, do the dishes, or perform some

other kind of menial housework instead of going to a ball. But then it would follow

that there also is a TLRH plot, a Three Little Pigs plot, as well as infinitely many more,

and there is no way of judging whether a sequence of events is organized in a mean‐

ingful way or not, since there are too many plots to compare it to. In my opinion, plot

should be regarded as a high‐level format of representation that allows to abstract
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away from the details of individual events and to draw out their underlying causal

structures in order to be able to compare it with structures that are meaningful. This

need for abstraction is precisely what I believe forces Ryan to introduce Lehnert‐style

“higher semantic units” when she describes her own “Recursive Graph Model” for plot

representation (M.‐L. Ryan, 1991, pp.222–232), instead of merely relying on events and

the changing states of character’s APW.

Can there be a level of abstraction at which a few common meaningful structures

emerge? Journalist and author Christopher Booker observed how seemingly very dif‐

ferent narratives on closer inspection can be found to exhibit remarkable similarities:

[…] a Shakespeare play, Macbeth; Vladimir Nabokov’s novel Lolita; a
1960s French film, Truffaut’s Jules et Jim; the Greek myth of Icarus; and
the German legend of Faust. Each begins with a hero, or heroes, in some
way unfulfilled. The mood at the beginning of the story is one of an‐
ticipation, as the hero seems to be standing on the edge of some great
adventure or experience. In each case he finds a focus for his ambitions
or desires, and for a time seems to enjoy almost dream‐like success. Mac‐
beth becomes king; Humbert embarks on his affair with the bewitching
Lolita; Jules and Jim, two young men in pre‐First World War Paris, meet
the girl of their dreams; Icarus discovers that he can fly; Faust is given
access by the devil to all sorts of magical experiences. But gradually the
mood of the story darkens. The hero experiences an increasing sense of
frustration. There is something about the course he has chosen which
makes it appear doomed, unable to resolve happily. More and more he
runs into difficulty; everything goes wrong; until that original dream has
turned into a nightmare. Finally, seemingly inexorably, the story works
up to a climax of violent self‐destruction. (Booker, 2004, p. 4)

Booker calls shapes like these basic plots, and in a tour de force through centuries of

literature identifies seven of these shapes: (1) Overcoming the Monster, (2) The Quest,

(3) Voyage and Return, (4) Rags to Riches, (5) Rebirth, (6) Comedy and (7) Tragedy

(the plot underlying the five examples above, according to Booker). This, however, is

not the only distinction of basic plots put forward by scholars. Foster‐Harris (1959)

proposes three basic plots, Tobias (1993) espouses 20, while Polti (1921) raises this to

36. I do not have a stake in the question how many basic plots there should be; what is

important to me is that one plot should be able to fit a wide range of event sequences.
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What makes this interesting is that at the same time also one sequence of events

can be interpreted to adhere to several plots. One instance is observed by Gervás

and León (2015), who attempt to compare the different plot‐taxonomies I pointed out

above from a computational perspective, and report that the difference between a

narrative of ‘Overcoming a Monster’ and a ‘Tragedy’ in many cases could boil down to

whether the focus is on the experiences of the hero slaying the monster, or on those

of the monster being slain. The flexibility of such a many‐to‐many mapping is of no

use in a linear generation process like the one employed by InBloom, where first the

story events are generated and then a fitting plot is identified (or the events are judged

untellable). In an iterative process, however, it can be exploited to the benefit of the

generated narrative, if the results of one stage can be used to inform the following

stage. For instance, in a first iteration a number of events is generated based on a

story world. The next iteration determines that these events can be badly fit by two

different plots, selects one of these plots and determines which events would be re‐

quired for a better fit. The third iteration attempts to alter the story world in a way that

an approximation of the missing events can emerge, which leads to a whole lot of un‐

expected changes, so that in the subsequent stage a different plot suggests itself…and

so on, and so forth. A narrative that is generated by such a process benefits from the

way two narratological forces are used to shape its content: a top‐down structuring

force that ensures the narrative is well formed, and a bottom‐up self organizational

force that ensures the characters and events are believable. Creativity, in a computa‐

tional story composition system, can be derived from the way the system balances out

the tension that results from these two opposing forces. This requires solving several

hard problems, like identifying computational representations for story events and

plots that allow bi‐directional matching, developing a matching algorithm that toler‐

ates imprecise matches, and developing an event generation process that is capable

of performing a guided exploration of the system’s parameters in search for ways of

adding new events of certain types to a sequence of existing events. However, I believe

that without addressing these problems, computational story composition is doomed

to follow a linear path that is not well suited to balance out the narratological forces

that shape the content plane of narratives.
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TECHNOLOGICAL CONSIDERATIONS

The main advantage of the implementation is that it does its job, and since most

design decision I have made came about to solve particular problems and have been

argued when they were introduced, I do not think that a detailed review of advantages

is of much worth to readers. Instead I will discuss a few problematic observations, in

order to contextualize the results and insights presented above.

The most general problem is that the tellability measure implemented by InBloom

is not only sensitive to narratologically plausible differences in plots, but also to differ‐

ences that are rooted in technological details or the employed formalization. One part

of this is that executing the same configuration several times might lead to slightly

different individual tellability principle scores, as well as differing balanced overall

tellability. For instance, in the ten simulation runs performed to evaluate the original

plot of TLRH, the tellability determined by the system exhibited a standard deviation

of 0.02. This is not a large number, but still constitutes two percent of the measure’s

maximal range. The reason for this seems to be that individual agent’s reasoning cy‐

cles are executed as Java threads and run concurrently with the environment, which

can lead to indeterminism based on race conditions. By synchronising the agent’s

transition systems during simulation execution and the introduction of a stepped en‐

vironment I tried to remove as much indeterminism as possible, but was not com‐

pletely successful. Consequently, evaluating plots on different machines might lead

to different results, since the allocation of resources to threads depends on details

like the processor, the operating system or the work load of the executing machine.

Another instance of this is that executing the simulation without a GUI (like I did for

evaluation purposes) again changes its runtime properties in a way that makes results

deviate from runs executed with the GUI. This seems to be due to the increased over‐

head and delay required for logging the plot on the system’s interface. A metric that

is especially sensitive to this is the number of steps required to perform a simulation,

which varied as much as four versus ten for the original plot of TLRH. This, in turn,

directly affects the score of the tellability principle suspense. Overall, judging by the

results of Tab. 4.3, functional poyvalence and semantic P&S seem to be affected less

by technological differences than semantic opposition and suspense are. This situa‐
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tion is unfortunate, since it makes tellability results harder to compare and evaluate.

Ideally, the implementation of a plot quality measure should be agnostic to technical

details.

Another problem can be attributed to the way plot graphs are analyzed in order to

insert different types of causal edges. Information that is necessary for this analysis

is inserted into the original plot graph based mainly on properties of the execution

of individual agents’ reasoning cycles. The drawback of this solution is that it cre‐

ates a strong coupling between the ASL code that models agents’ reasoning and the

structure of the plot graph, which means that whether an FU instance can be de‐

tected in a graph or not partly depends on how the narrative universe is modeled.

This makes a hard problem (I discussed the problems connected with modeling the

narrative universe in Sec. 2.4.2) even harder, since predicting whether a piece of ASL

code will result in an FU instance upon execution is not easily possible, and thus the

system’s full potential for detecting meaningful structures might not be exhausted.

I attempted to somewhat alleviate this problem, by implementing inexact instead of

exact matching of FU graphs, and collecting a set of ASL programming guidelines,

but this cannot solve the fundamental underlying problem.

Finally, I observed a few minor problems with the formalization and implementa‐

tion of some of the tellability principles, which could be addressed in another iter‐

ation. With regards to semantic opposition, one potential part of it are terminated

beliefs, which are expected to capture the semantics of violated expectations. How‐

ever, in practice, it turned out that terminated beliefs, instead, are often just mental

notes of state changes, like e.g. +hungry or +has(bread), which appear when an agent

realizes that it is not hungry anymore, or that it is not in the possession of bread any‐

more. While, usually, semantic opposition is computed based on change of fortunes

intervals, in the case of plots #5 and #6 it were precisely these terminated beliefs that

lead to a narratologically not justified difference in scores. I thus deem it necessary to

rethink how the semantics of violated expectations could be captured by the formal‐

ism. With regards to semantic P&S, at the moment, the system computes its metrics

based on FU instances when sufficient instances could be detected, and on raw events

else. While this allows a wider variety of plots to be analyzed, it also makes P&S re‐

sults harder to compare between plots that have sufficient FU instances and those
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that do not. This problem arose when comparing plots #5 and #6, too. With regards

to suspense, I suspect that the measure could be easily tricked by adversarially gener‐

ated examples, since all it takes to achieve a high suspense is to induce an intention

in an agent that it cannot address, and then resolve it via a happening at the final step

of the plot. This would yield the maximal suspense value possible, while not actu‐

ally representing a suspenseful intention. One approach at addressing this would be

to only count the number of steps in which an agent worked towards actualizing its

intention, instead of counting all steps in which the intention was simply active.
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Nearly everything I’ve read in the world’s literature

describes varieties of human failure [...] when the

marriage of men and women to machines is com‐

plete, this literature will be redundant because we’ll

understand each other too well. [...] The lapidary

haiku, the still, clear perception and celebration of

things as they are, will be the only necessary form.

Ian McEwan, ‘Machines Like Me’ 5
Outlook: Computational Creativity

ALL THE PLOTS GENERATED AND EVALUATED BY INBLOOM, so far, have been discovered

manually by me. This was sufficient for the NT side of the project, since NT is only

concerned with the system’s ability to represent or capture certain narratological phe‐

nomena, and by that demonstrate the expressivity of the underlying narratological

theories. For the CSC side of the project, however, the computational representation

of narrative is only one of the required steps. It’s not enough for a computational story

composition system to be able to represent narratives, it should also demonstrate that

it can take over the responsibility for autonomously identifying good narratives in the

search space set up by its representational formalism.

In Chap. 3, I demonstrated that narrative systems implemented in InBloom set up

a space of possible plots that can be traversed by changing the personality parameters

of the involved characters, and defining which happenings befall which character, and

when. Then, in Chap. 4, I showed that it is possible to quantify the quality of plots

created by InBloom simulations based on the tellability metric. This provides the

necessary means for a computationally creative system to autonomously traverse the
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space spanned by any given narrative system1, in search for plots high in tellability.

Figure 5.1: Abstract overall architecture for the re-
alization of computational creativity in InBloom.

In general terms, the following

approach proffers itself: An ini‐

tial simulation is executed with

randomly initialized characters and

happenings. The resulting interac‐

tions are analyzed in order to de‐

termine the underlying plot and its

tellability. As long as the tellability

is below a certain threshold, the plot

is discarded. Then, the personality parameters of the characters are changed, and the

details of the happenings are adapted, changing which happenings befall whom and

when. After this, the new simulation is executed. This cycle (see Fig. 5.1) is repeated,

until a sufficiently tellable plot is found, or time runs out.

The basic intuition behind this is compelling: Characters in InBloom are autono‐

mous agents, whom the system cannot prescribe goals or behaviors. Thus, instead,

in order to create tellable plots it attempts to manipulate the characters into acting

in tellable ways, by finding happenings that force them into action, while calibrat‐

ing their personalities in such a way that they react strongly to these happenings and

their environment. This also sketches a way out of the emergent narrative paradox

that I introduced in Sec. 1.4.1, and that has been leveled as criticism against emer‐

gentist strong autonomy systems like InBloom. The paradox asks how interesting

plots—which consist of complex networks of conflicts between and within charac‐

ters, combined with non‐trivial (but believable) resolutions—can emerge solely from

the interactions of autonomous characters—who in normal circumstances have mun‐

dane goals and whose behavior is guided by the maxim of finding the path of least

resistance for the satisfaction of these goals. Indeed, strong autonomy systems can‐

not directly force characters into behaving in tellable ways, since they have no direct

1One of the feats of writers is the ability to not only explore what plots might be possible in
a given story world, but also to simultaneously modify this story world in order to facilitate the
emergence of desired plots. It is the first capability for which I will transfer the responsibility
to InBloom, but not the second. Without a human to hand‐craft the narrative system it can
explore, InBloom is helpless.
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way of dictating their behavior. However, they still can try to do this indirectly via

manipulation.

The devil, as usual, is hiding in the details. Above, I suggested that personality set‐

tings and happening details can be iteratively changed in order to improve tellability.

The tricky question is how these parameters need to be varied in order to find pock‐

ets of high tellability in this multi‐dimensional search space. A naive approach would

be to simply try and systematically vary these parameters in an attempt to test them

all. However, this is not as straightforward as it sounds, since personality parameters

are real‐valued variables and are thus non‐denumerable. They can be discretized to

solve this problem, but even taking coarse discretization steps of 0.25 (resulting in

nine discrete values), a narrative system like TLRH would result in 95×4 = 1.21e+19

possible personality combinations. A number, that does not yet factor in that the one

happening defined in this system can befall any subset of the four characters at any

valid plot step. Given that executing a simulation and analyzing the resulting plot

can take up to several seconds on a personal computer, it seems that neither system‐

atically iterating nor randomly sampling possible settings is a viable approach. So

instead, the question becomes how the plot space can be explored in an efficient way.

When faced with questions like this one, up until now, I would turn to NT in order

to find theoretical answers that could be concretized and implemented by way of gen‐

erative modeling. Unfortunately, NT is concerned with how narrative texts work and

what they are, not how to compose them. Its lack of interest in matters of creativity,

or how to search conceptual spaces, becomes evident when one searches for this term

in Porter Abbott’s (2002) The Cambridge Introduction to Narrative, where it appears

exactly two times—both referring to the act of reading and interpreting narratives.

An alternative source for ways of modeling creativity could be found in the discipline

of psychology, which, as I discussed in Sec. 1.3.1, does study creativity. In particular, I

am aware of two process models of creative writing: Sharples (1999) and Flower and

Hayes (1981), the first of which has actually been implemented by the story compo‐

sition system MEXICA (Pérez y Pérez, 1999) that I introduced in Sec. 1.4.3. However,

both approaches are so general that they cannot provide insights with the particu‐

lar question at hand, which is not surprising seeing how the representational format

for narratives employed in this thesis is an idiosyncratic amalgamation of approaches
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from NT, which were not selected for cognitive plausibility. This is not problematic,

since the processes employed for computational creativity do not necessarily have to

resemble those in human creativity, as long as the resulting system exhibits the prop‐

erties outlined in Sec. 1.3.2. However, it means that the following chapter has to part

ways with the process employed by my thesis so far, i.e. generative modeling of non‐

computational theories. Instead, I will fall back on using a classical approach from

AI, by formalizing this situation as an optimization problem, and outlining a heuristic

for solving it by means of a nature inspired algorithm.

Be aware that my goal, in this chapter, is only to provide an outlook that demon‐

strates that it is possible to use the representational formalism for narrative, devel‐

oped so far, in a computational plot composition system, in order to show that a col‐

laboration between NT and AI is fruitful for the latter. A comprehensive investigation

of CC using InBloom would have to also include empirical studies, and comparisons

with existing systems, for which this thesis has already grown to lengthy.

5.1 OPTIMIZATION PROBLEMS AND LOCAL SEARCH

The situation outlined above can be described as an optimization problem, where we

are searching for a state x in a search space (in our case, this would be a plot in a

defined space of possible plots) that maximizes an objective function f (in our case,

tellability). In general, optimization problems need to be formulated as:

arg max
x∈Rn

f(x)

Below, in Sec. 5.2, I will outline how plots can be represented to satisfy this form.

An important difference between optimization problems and simple search prob‐

lems is that for the latter, any solution that can be found to satisfy the search problem

can be accepted, whereas for the former a solution needs to be better than all other

possible solutions, in order to be accepted. This is especially hard to verify, when the

search space is so large that it is not feasible to compare all possible solutions. In such

cases, approaches to solving an optimization problem cannot be expected to return

the global optimum. Instead, they are expected to make an appropriate trade‐off be‐
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tween exploitation (search of good solutions in promising parts of the search space)

and exploration (search inside unexplored parts of the search space).

Optimization problems with large or continuous search spaces can be addressed by

local search algorithms (Russell & Norvig, 2010, p. 121). Local search works by starting

“[…] from some initial solution and iteratively try[ing] to replace the current solution

by a better solution in an appropriately defined neighborhood of the current solution

[…]” (Blum & Roli, 2003, p. 269), which means that instead of systematically trying to

test all possible solutions, local search relies on heuristics in order to explore regions

of interest in the search space. The heuristics that are used in order to explore the

neighborhood are responsible for maintaining the balance between exploitation and

exploration throughout the search process, and differ from algorithm to algorithm.

In a bachelor thesis that I supervised, Wöbkenberg (2021) investigated and com‐

pared the ability of several local search algorithms to find solutions for the optimiza‐

tion problem faced by InBloom (for a formalization, see Equation 5.1 below). One of

the approaches that succeeded in finding the best known solution for the environ‐

ment used in that work was Genetic Algorithms (GA).

5.2 FORMALIZING INBLOOM’S PLOT SEARCH VIA GENETIC ALGORITHMS

GA is a probabilistic, nature inspired algorithm that is based on the intuition of evolu‐

tionary genetics (the following is based on Russell & Norvig, 2010, p. 127f): Individuals

in a population compete against each other based on a fitness function. The fitness

function measures the quality of an individual (see Sec. 5.2.1 below), and the mecha‐

nism attempts to iteratively increase the overall quality of the population. This hap‐

pens, by combining the fittest individuals from a given population based on specific

crossover principles (see Sec. 5.2.4 below), whereby a small chance exists that addi‐

tional random changes called mutations are introduced (see Sec.5.2.5 below). These

new individuals are called offspring. The next generation is made up proportionally

by the fittest individuals from the last generation and the fittest offspring, by a selec‐

tion process (see Sec. 5.2.6 below).

Thus, GA solve an optimization problem encoded in the fitness function, and each

individual represents a candidate solution. Usually, these solutions consist of mul‐
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tiple parameters (which in this metaphor are called allele, and organized in chromo‐

somes). GA perform a search of the so defined parameter‐space, conducting exploita‐

tion by combining the parameters of successful solutions, and exploration based on

the random mutation mechanism. A pseudocode representation of the algorithm can

be found in Algorithm 3.

Algorithm 3 Genetic Algorithm
1: population = INITIALIZE();
2: COMPUTE_FITNESS(population);
3: while time left do
4: offspring = CROSSOVER(population);
5: offspring = MUTATION(offspring);
6: COMPUTE_FITNESS(offspring);
7: population = SELECTION(population, offspring);
8: end while
9: return BEST_INDIVIDUAL(population);

5.2.1 OPTIMIZATION PROBLEM AND FITNESS FUNCTION

The problem of finding the most tellable plot in a narrative system—as described in

the beginning of this chapter—can be formalized as an optimization problem, where

we are searching for an analyzed plot graph G such that it maximizes the value of

the tellability function (as defined in Equation 4.19). We also know, that G is pro‐

duced by an InBloom simulation that is defined by the set of participating characters

C = {c0, c1, . . . , cn}, and the set of scheduled happenings H = {h0, h1, . . . , hm},

where each character ci, in turn, is defined by its five personality parameters: ci ∈

[−1, 1]5 ⊂ R5, and each happening hj by the index p ∈ {0, 1, . . . , n} ⊂ N of its pa‐

tient, the step number s ∈ N in which it is executed, and the index t ∈ N of its type2.

Additionally, it seems useful to let an individual encode a maximum possible simu‐

lation length L = {l} with l ∈ N+ (where N+ is the set of positive natural numbers),

in order to allow it to control the length of the plot. I refer to this as the maximal

simulation length because simulations can be automatically stopped earlier, when all

2To be able to easily represent happenings, a list containing all possible types of happen‐
ings is created and ordered at the start of a narrative system. This allows to reference each
happening type by its index in that list.
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participating characters die, or as soon as a narrative equilibrium is detected by In‐

Bloom, i.e. when all characters have performed the same sequence of actions for five

times in a row (see p. 76 for details). Let simulation : [−1, 1]5×n×N3×m×N+ → G—

where G is the set of all possible analyzed plot graphs—be a function that returns the

result of an InBloom simulation given a set of characters, a set of happenings, and a

maximal simulation length. Then, the goal of finding the best possible plot, based on

tellability, can be denoted as:

arg max
C,H,L

tellability(simulation(C,H,L)) (5.1)

Thus, the fitness function for a GA can be formalized as:

fitness(I) = tellability(simulation(I)) (5.2)

where I is an individual that is defined by the chromosomes C, H and L.

5.2.2 REPRESENTATION

IN ORDER TO APPLY GA TO AN INDIVIDUAL, its chromosomes need to be represented

using a vector‐based encoding. The first chromosome contains the personality pa‐

rameters of all characters, and can thus be encoded as the n × 5 matrix C defined

over [−1, 1] ∈ R, where each row represents a character and the columns represent

the personality traits: openness to experience, conscientiousness, extraversion, agree‐

ableness as well as neuroticism (introduced in Sec. 3.2.2). Each entry of this matrix,

thus, represents a particular personality parameter of a particular character. The sec‐

ond chromosome contains the happening settings. It can be encoded as the n × m

matrix H over N, where each row represents a character and each column represents

a happening type. An entry, then, can encode the earliest simulation step in which

the respective happening can befall the respective character. The third chromosome

contains the simulation length, and can be encoded as a 1×1matrix L overN+, whose

entry encodes the maximal simulation length. The complete genotype of an individ‐

ual is a combination of these three chromosomes, and can be represented as a vector

of length n × (5 +m) + 1 by vectorizing and concatenating the individual matrices:
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(vec(C) | vec(H) |L).3 An example individual, encoded in this notation is provided in

Fig. 5.2.

Figure 5.2: Example for a GA individual, encoded using the chromosomes C, H and L. It
represents a particular simulation configuration in a narrative system with three characters and
two happening types, and a maximum simulation length of 30. Note, that some happenings are
disabled, by way of scheduling them to appear after the end of the simulation, or by being set

to a negative value.

SOME PROPERTIES OF THIS REPRESENTATION need to be pointed out. The most im‐

portant one is that the proposed representation only allows happenings to be sched‐

uled to befall each character at most once, which results in a strong restriction of

the search space. However, this decision simplifies the representation significantly,

which I deem an appropriate trade‐off in the context of an outlook chapter. This is

especially so since the formalism leaves open an avenue for resolving this restriction

in future work by a shift to three‐dimensional matrices for representing H.

Another question that needs to be addressed is how different types of entries in H

can be interpreted. As pointed out above, they indicate the first plot step at which the

happening can be executed by the environment. The reason why happenings cannot

be guaranteed to be executed at precisely the indicated step is that they usually have

associated conditions, which need to be fulfilled in the story world before the effect

of the happening can take place (see Sec. 2.3.4, p. 77 for details). Since the state of a

simulation cannot be predicted in advance, it is not guaranteed that the condition of a

3The operator | denotes vertex concatenation, and vec denotes the vectorization func‐
tion, which is a linear transformation that converts a matrix into a row vector obtained by
concatenating the rows of the original matrix.
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happening will be met at the scheduled step. When this is not the case, the happening

will be held inactive until the condition is fulfilled, and executed only then, which

actually means that scheduled happenings are not guaranteed to be executed at all.

This is further complicated by the fact that each simulation will only run for a lim‐

ited number of steps, encoded by a dedicated chromosome. Consequently, entries

with negative numbers, or positive numbers that are larger than the last step of a

simulation, cannot be executed either. However, this is not problematic because the

employed search algorithm can learn to use this behavior in order to disable happen‐

ings, which is important since not every happening that can happen necessary also

needs to happen in a plot. Disabling a happening can be achieved by GA by schedul‐

ing it to appear at a step smaller or equal to zero, or after the last step of a simulation.

A last limitation of the current approach is also connected to the proposed encod‐

ing. The length of the vector representing the genotype of a solution is dependent

on the number of characters. Since, classically, GA demand that the genotype of

all individuals follows the same format4, this means that the number of characters

needs to be determined before the start of the algorithm. Consequently, it cannot be

autonomously varied between different solutions, which further restricts the search

space accessible in a single run. Theoretically, it is possible to add a chromosome

to the encoding, which represents the number of agents that should be started in a

simulation. However, this would make the dimensions of an individual’s genotype

dependent on the value of this allele, and complicate the implementation of initial‐

ization, crossover and mutation. For this reason, this avenue is left for exploration in

future work.

5.2.3 INITIALIZATION

Since, in GA, most of the search is conducted by recombining existing values (only

occasionally, new values are introduced via mutation), the way a population is initial‐

ized has an important influence on the performance of a run. There are multiple ways

in which the chromosomes of an individual can be probabilistically initialized. When

a population of size kpop is initialized, one of the following strategies for personality

4The rationale behind this will become clearer below, when I outline how operations like
mutation and crossover are implemented.
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initialization, happening initialization, and length initialization is randomly selected

for each individual.

Given its personality chromosome, the following initialization procedures are in‐

troduced. For each of the n× 5 alleles, based on

• random continuous: a random number p ∈ [−1, 1] ⊂ R is selected based on a

continuous uniform distribution.

• random discretized: a random number p ∈ {−1,−0.9,−0.75,−0.5,−0.25,−0.1,

0, 0.1, 0.25, 0.5, 0.75, 0.9, 1} is selected based on a discrete uniform distribution.

• diverse random discretized: a random number p ∈ {−1,−0.9,−0.75,−0.5,

−0.25,−0.1, 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1} is selected without replacement, based

on a discrete uniform distribution.

The first strategy allows to explore the search space most freely, but at the same time

does not make use of any heuristic knowledge to improve the quality of initial indi‐

viduals. The second strategy restricts the initial parameters to three different types

of high and low personality, as well as seven types of medium personality (see p. 3.4

for details on high/medium/low), with a higher resolution around the notable points

‐1, 0 and 1. This has the potential to simplify the optimization problem by reducing

the search space, but could potentially make viable solutions not reachable. The third

strategy introduces another heuristic, whose aim it is to diversify the discretized gene

pool as much as possible, so that subsequent recombination operations can generate

a broad range of solutions.

Given its length chromosome, the following initialization strategies are introduced:

• Random: a random number l ∈ {1, 2, . . . , 100} is selected based on a discrete

uniform distribution.

• Discretized: a random number l ∈ {1×100
5 ,2×100

5 , …, 5×100
5 } is selected based on

a discrete uniform distribution.

Here, 100 is selected as a hard cap for maximum simulation lengths in order to prevent

overly long plots that take up a lot of processing time. Hence, the first strategy allows

to explore the search space most freely, while the second offers a restricted number

of options that are evenly distributed through the available space and can be seen as

heuristic suggestions for presumably good plot lengths.
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Given an individual’s happening chromosome, and assuming that a maximum sim‐

ulation length L has already been initialized, the following initialization procedures

are introduced:

• Random: for each of the n ×m entries, a random number h ∈ {0, 1, . . . , L} is

selected based on a discrete uniform distribution.

• Random synchronized: for each of the n × m entries, a random number h ∈

{⌊0×L
5 ⌉, ⌊1×L

5 ⌉, . . . , ⌊4×L
5 ⌉} is selected based on a discrete uniform distribution.

• Random unique: for each column in H, exactly one entry is selected randomly

based on a discrete uniform distribution and its entry is determined according

to random synchronized, while the other entries of that column are set to 0.

Again, the first strategy allows to explore the search space most freely but does not

make use of any heuristics to improve the initial population. The second strategy

restricts the steps at which happenings can be scheduled to five instances that are

evenly spaced throughout theL overall steps. This has the advantage, that happenings

are more likely to be disabled (by being set to step 0), and also more likely to appear

synchronized, which increases the likelihood of a thickening of the plot at particular

times. The last strategy, on the other hand, schedules each happening at most once,

which encourages leaner plots.

Ideally, the utility of each of these strategies would be determined through exten‐

sive ablation studies in order to understand whether the introduced heuristic knowl‐

edge is beneficial for the search algorithm. However, for the purpose of this thesis, it

is only important to demonstrate the general ability of GA to optimize tellability, and

not to optimize the search algorithm itself.

5.2.4 CROSSOVER

For crossover, first, a number of parent individuals needs to be selected from which

the offspring will be created. Then, the offspring is created via different types of re‐

combination strategies.

The ksel parent individuals are determined using roulette‐wheel selection (Gold‐

berg, 1989, pp. 11, 30), where population P is sampled ksel times and the probability

of individual I to be selected is Pr(I) = fitness(I)∑
K∈P fitness(K) , using the fitness function
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Figure 5.3: Examples of the three crossover strategies ‘genetic crossover’ (first row), ‘uniform
crossover’ (second row) and ‘X-point crossover’ (last row). On the left side, two parent individuals
are depicted for each strategy, while on the right side the offspring resulting from applying
crossover to the parents is depicted. Dashed red lines indicate crossover-points (or alleles to be
switched, in the case of the second row) that were determined probabilistically. Note, that in the
X-point crossover case (last row), the end of the genotype is implicitly treated as a crossover-

point, resulting in the exchange of the last two alleles.

defined in Equation 5.2. Thus, individuals with higher fitness are more likely to be

selected for recombination, while lower fitness individuals still maintain some chance

of being selected. From the set of parents, ksel
2 pairs are randomly created, which will

each generate two offspring.

The following crossover strategies are introduced (see Fig.5.3 for a visual example

for each), some of which rely on the parameter crossover probability pc:

• Genetic crossover: offspring are created by randomly deciding whether one or

two chromosomes of the parents should be exchanged, and then randomly de‐

ciding which chromosomes to exchange.

• X‐point crossover: offspring are created by iterating simultaneously over the

alleles of both parent, and denoting crossover points with probability pc. Then,

all alleles between each pair of consecutive crossover points are exchanged.

• Uniform crossover: one offspring is created by iterating over the alleles of one

parent, and replacing it with the other parent’s allele at the same position with

probability pc (or simply copying the original with the inverse probability),

while the other offspring is created using the same procedure based on the
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other parent.

The first strategy is a special case of the second one, with potential crossover points

restricted to alleles separating chromosomes. Cutting an individual’s genotype at

these points results in the least potential for damage, since the synergies that might

have developed within the characters or within the happenings are not disrupted.

The second strategy follows this idea of maintaining adjacent groups of allele based

on the hypothesis that these are most likely to be related, while offering the algo‐

rithm more freedom for exploring the search space by introducing the potential for

more crossover points. The last strategy offers GA the most freedom to explore new

settings, with the highest risk of disrupting beneficial combinations of parameters.

The crossover strategy applied to each parent pair is determined randomly. For

the same reason as above, no ablation studies have been performed to compare the

benefits of these different strategies.

5.2.5 MUTATION

Mutation is applied to all offspring created in the last step, by iterating over each allele

of each individual, and changing it with probability pm. Commonly, pm is selected to

be much lower than pc.

The following mutation strategies are introduced:

• Randommutation: for each allele a new value is selected with probability pm. In

the length chromosome, the new value is a random number l ∈ {1, 2, . . . , 100}

selected based on a discrete uniform distribution. In the personality chromo‐

some, the new value is a random number p ∈ [−1, 1] ⊂ R, selected based on

a continuous uniform distribution, while in the happening chromosome the

new value is a random number h ∈ {0, 1, . . . , l} selected based on a discrete

uniform distribution.

• Toggle mutation: each allele is toggled with probability pm. In the length

chromosome, alleles with a value smaller than the maximal simulation length

cap of 100 are set to 100, while those set to cap are set to a random number

l ∈ {1, 2, . . . , 99}. In the personality chromosome, the value of an allele is

toggled by multiplying with −1. In the happening chromosome active alleles
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(those with a value > 0) are toggled by setting them to zero, while inactive

alleles are toggled by setting them to a random number h ∈ {1, . . . , L′}.

• Oriented mutation: for each allele x1 that is selected for mutation with proba‐

bility pm, another allele x2 in the same chromosome of the same individual is

randomly selected. The value of the selected allele is shifted either towards or

away from that x2: x′1 = x1 + ϵ(x2 − x1) where ϵ ∈ [−1, 1] ⊂ R is a random

value.5 No oriented mutation can be performed in the length chromosome,

since it contains only one allele.

• Guided mutation: operates like oriented mutation, but randomly selects an‐

other individual from the population and shifts the value of the selected allele

either towards or away from the value of the other individual’s allele at the same

position.

The first strategy offers the GA the most freedom for exploring the search space.

The second strategy relies on the heuristic that interesting changes can be found by

toggling the value of a parameter, and by that restricts the space explorable via this

strategy to a certain dynamically defined region. The third and the forth strategy

allow to gradually change the value of individual parameters, allowing to approximate

information aggregated in comparable positions.

The mutation strategy applied to each offspring is determined randomly. Again,

for the same reasons as above, no ablation studies have been performed to compare

the benefits of these different strategies.

5.2.6 SELECTION

Elitist selection (Goldberg, 1989, p. 115) is employed, which means that the next gen‐

eration of a population is to 50% comprised of the best parent individuals and to

50% of the best offspring individuals, while making sure to avoid the introduction of

duplicates.

5Here, boundary conditions need to be respected such that no value is shifted outside the
permissible range of its chromosome.
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5.2.7 IMPLEMENTATION DETAILS

The algorithm described above is implemented in the class inBloom.nia.ga.Genet

icAlgorithm, and operates on individuals that are instances of the class inBloom.ni

a.ga.Individual, comprised by three chromosomes implemented in InBloom.ni

a.ChromosomeHappenings, InBloom.nia.ChromosomePersonality, and InBloom.

nia.ChromosomeLength. Each instance of Individual has a reference to a dedicated

instance of the class inBloom.nia.Fitness, which is a subclass of PlotLauncher and

thus can start a dedicated simulation based on the parameters encoded in the indi‐

vidual, as well as evaluate the tellability of the resulting plot. GA can be executed by

instantiating GeneticAlgorithm, making the desired settings using dedicated setter

methods, and executing the method GeneticAlgorithm#run(), which will perform

the search until either a timeout is reached, or the search process converges. A dia‐

gram of the resulting architecture can be found in Fig. 5.4, which also includes a set

of abstract super classes that can be used to implement other nature inspired algo‐

rithms.6

Figure 5.4: An abridged class diagram representation of the genetic algorithm architecture in
InBloom, including abstract super classes that allow the implementation of alternative nature
inspired algorithms. For brevity reasons attributes are represented without types, and methods

without parameters or return types.

Throughout this thesis, the following parameters have been employed: a temporal

constraint of one hour, a population size of kpop = 20, a parent selection size of ksel =

6The bachelor thesis of Wöbkenberg (2021), conducted under my supervision, also investi‐
gated the algorithms Particle Swarm Optimization (Kennedy & Eberhart, 1995) and Quantum
Swarm Optimization (Yang et al., 2004), which are also part of InBloom. Although these al‐
gorithms demonstrated that they search the space differently than GA, their results did not
categorically differ from those of GA and are thus not described in this thesis.

292



CHAPTER 5. OUTLOOK: COMPUTATIONAL CREATIVITY

10, a crossover probability of pc = 0.1 and a mutation probability of pm = 0.05.

5.3 THE AUTOMATED CASE STUDY

With an implementation of the GA in place, applying it to a particular narrative sys‐

tem is straightforward: The algorithm needs to be informed which environment it

should execute its simulations in, which types of happenings are available to be sched‐

uled, and the number of characters that are supposed to be present in every candidate

plot. For the purpose of this outlook, I will stick to the already familiar TLRH envi‐

ronment, its four denizens (the hen, the dog, the pig and the cow), as well as the one

type of happening we also encountered before: finding a grain of wheat, which can

be triggered only after some farm work has been done (see Sec. 5.2.2, p. 286, for de‐

tails on the role of triggering conditions for happenings scheduled by GA). It should

be clear that no radically new (or ‘creative’) plot can emerge from this narrative sys‐

tem, since there is not much room for variation with only one type of happening. On

the upside, however, some manual exploration of the plot space of TLRH has been

already performed in the previous chapters, which gives me the ability to judge can‐

didate solutions proposed by the GA by comparison to the plot clusters discussed in

Sec. 4.3.2. Furthermore, it means that many problems with the implementation of the

environment have been already discovered and solved, which is important, given the

propensity of evolutionary algorithms to exploit inconsistencies and impreciseness in

the constraints of their environment, instead of searching for desired solutions.7

The goal of this case study is to investigate whether GA can be used as a search

algorithm in the InBloom architecture sketched in Fig. 5.1. This can manifest in two

non mutually‐exclusive ways:

1. The solution found by the algorithm is high on tellability, i.e. comparable to

the first cluster discussed in Sec. 4.3.2, or better.

2. The average tellability of populations shows an upward trend over (at least the

initial) generations.

7A whole paper compiling the unexpected exploits of evolutionary algorithms has been
recently published (Lehman et al., 2020), and makes for an entertaining (as well as humbling)
read.
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The first demonstrates that GA can explore the search space effectively, and can find

desirable solutions in the available time, which cannot be just trivially assumed given

the size of this space. The second demonstrates that GA can address the optimization

problem8 formulated in Equations 5.1 efficiently, which again is not trivially true given

the complexity of the underlying tellability function. Both together would show that

GA does not only succeed by chance, but because it can perform a directed search in

the plot space. In the broader context of this chapter, it would mean that InBloom can

act as a computational story composition system because it can combine creative acts

of types E (generation of new exemplars) and A (aesthetic evaluation) from the FACE

theory of CC (see Sec. 1.3.3 for details on this categorization), in order to autonomously

compose plots it finds valuable.

Whether a proposed solution also constitutes a subjectively ‘good’ or ‘creative’ plot

is a different matter altogether. If it does not, then this can provide valuable additional

feedback on the viability of the employed implementation of the tellability metric,

as well as on the dynamic properties of the concept of tellability itself, especially,

because the present implementation can precisely attribute which properties of a plot

contributed how to its tellability. As such, in fact, the present chapter could be seen

as a contribution to another cycle of generative modelling, despite the reservations I

have discussed at its beginning.

5.3.1 EMPIRICAL EVALUATION

In order to empirically asses the performance of GA in searching for tellable plots,

ten independent runs were executed on the TLRH environment as outlined above,

with the default parameters introduced in Sec. 5.2.7. For each run, the tellability of

the best individual solution found over the whole run (tbest), the average tellability of

the whole population at the end of the last generation (taverage), and the number of

generations completed during runtime (ngen), are computed. Remember, that GA are

probabilistic in nature, so that individual runs are not expected to exhibit the exact

same behavior during search, nor return the same result (unless they reliable manage

8I do not write that the algorithm can solve the optimization problem, simply because
I do not know the most tellable plot possible in TLRH, and thus cannot discern whether a
candidate solution represents a local or global maximum.
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to find the global maximum).

To be able to draw comparisons to a meaningful baseline, additionally, a random‐

search algorithm (RA) was implemented. This algorithm simply instantiates and eval‐

uates 20 random candidate solutions per generation, and also runs for an hour. Again,

ten independent runs were executed, and the same metrics are computed as for GA.

The results of this experiment can be found in Tab. 5.1 and Tab. 5.2:

Table 5.1: Results of ten individ-
ual runs of GA on the TLRH envi-
ronment; best run marked in bold
face. Last two rows contain mean
and standard deviation computed

over all runs.

Run No tbest taverage ngen

1 0.81 0.58 52
2 0.81 0.79 67
3 0.87 0.77 61
4 0.81 0.54 47
5 0.79 0.65 48
6 0.83 0.70 42
7 0.91 0.82 46
8 0.79 0.69 64
9 0.78 0.68 52
10 0.81 0.63 84

mean: 0.82 0.68 56.3
std: 0.04 0.09 12.8

Table 5.2: Results of ten individ-
ual runs of RA on the TLRH envi-
ronment; best run marked in bold
face. Last two rows contain mean
and standard deviation computed

over all runs.

Run No tbest taverage ngen

1 0.67 0.16 128
2 0.73 0.18 130
3 0.73 0.18 128
4 0.67 0.18 125
5 0.71 0.21 115
6 0.65 0.14 136
7 0.66 0.14 136
8 0.78 0.16 138
9 0.71 0.18 136
10 0.64 0.19 138

mean: 0.70 0.17 131
std: 0.04 0.02 7.3

Several observations can be made. One is, that every single run of GA found a

solution that exhibits a higher tellability than the maximum tellability in the best

cluster I have found manually (balanced tellability of 0.69 there—see Tab. 4.3—vs. a

minimum balanced tellability of 0.78, here).

RA did not manage to consistently outperform the best cluster found by me, how‐

ever, the average tellability of its best solutions still beats it by a slight margin (0.70 vs.

0.69). One possible reason for this good performance is that RA, on average, manages

to run ngen × kpop = 131 × 20 = 2620 simulations during one hour, which is a con‐

siderable amount.9 Still, RA is strongly outperformed by GA (average tbest of 0.82 vs.

9The reason for the higher number of generations RA manages to perform in comparison
to GA (56.3 vs. 131) is that RA simulations end up in a narrative equilibrium faster than GA
simulations, and consequently get aborted after fewer steps.
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0.70), with their difference being significant at the p = 0.00016 level, as determined

by a two‐tailed Mann‐Whitney U test (Mann & Whitney, 1947).10

The picture becomes even clearer, when looking at the mean of the average tellabil‐

ity of the whole population after the last generation, taverage. Here, GA perform much

better than RA (0.68 vs. 0.17), this difference being significant at the p = 0.00016 level,

according to a two‐tailed Mann‐Whitney U test.11 As can be seen in Fig. 5.5—which

shows the development of the mean taverage over all ten runs, per generation—this

is grounded in the fact that GA population quality progressively increases, while RA

population quality stagnates. This can be interpreted as a sign of GA being capable

of performing directed search in tellability space, in contrast to RA’s purely random

exploration.

Figure 5.5: Average population tellability plotted against generation number, averaged over all
10 runs, for the first 43 generations. Blue diamonds represent development of GA and violet
circles that of RA, with whiskers indicating the standard deviation over all runs. The graph is

restricted to 43 generations because this is the smallest ngen observed over all runs.

These results clearly show that GA can be used as a search algorithm for high‐

10An unpaired Student’s t‐test could not be applied on this data because the assumption of
normality does not hold for any of the samples. The Mann‐Whitney U test is a non‐parametric
alternative to the t‐test, and is considered more conservative in cases of non‐normality. In‐
deed, with the given samples, an unpaired two sample t‐test with two tails returns significance
at the p = 0.000002 level.

11Vigilant readers might notice that this is the same p‐level as reported for the data on
tbest. The reason for this is that the Mann‐Whitney U test is a rank‐sum test, and in both
cases all ten data points of one group dominate all data points of the other group. Essentially
this means that, in both cases, the highest significance possible with the given test and data
is observed.
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tellability plots in the TLRH environment, that it performs better than random, and

exhibits learning over its runtime.

5.3.2 QUALITATIVE EVALUATION

Looking purely at the tellability score, GA seems to yield remarkable results: the over‐

all best plot found by that algorithm (no. 7 in Tab. 5.1 above) has a balanced tellability

of 0.91 out of the maximally possible 1.0.12 The break‐down of this overall value into

the individual sub‐scores can be found in Tab. 5.3:

Table 5.3: The balanced tellability sub-scores of the best plot found by GA in the TLRH
environment. Headers are abbreviated, FPo: functional polyvalence, P&S: semantic parallelism

and symmetry, SOp: semantic opposition, Sus: suspense.

FPo P&S SOp Sus

0.78 0.98 0.96 0.91

The configuration of the underlying simulation is as follows: a plot length of 23

steps, and personality parameters as well as happening settings as per Tab. 5.4:

Table 5.4: Configuration summary for the best plot found by GA in the TLRH environment.
First row indicates character name, the next five indicate rounded personality parameters, and
the last row indicates the step at which the find-corn happening is scheduled to befall each

character.

Character O C E A N find corn

hen 0.50 1.00 0.79 ‐0.5 0.83 1
dog 0.60 ‐0.25 0.75 0.51 0.50 1
pig 0.10 1.00 0.75 0.50 ‐0.75 1

cow ‐0.34 0.73 0.25 0.89 0.75 2

What plot do these parameters correspond to, and how does its quality fair on a

subjective level? The analyzed plot graph representation of the result can be found

online13, since it is too large to be meaningfully compressed into a single page. A nat‐

ural language summary, composed manually by me for the sole purpose of reporting

it here, would go like this:

12As already discussed in Sec. 4.3.3, InBloom simulations have a certain amount of race‐
condition induced indeterminism. This problem seems exacerbated in a GA like setup, where
multiple simulations are executed in quick succession. Consequently, the exact tellability
score cannot be easily reproduced outside of the GA cycle, even with the same parameter
settings, but values in the same ballpark have been reproduced.

13https://www.home.uni‐osnabrueck.de/leberov/tlrh_best_ga_plot.pdf
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A hen, a dog, a pig and a cow live on a farm. One day, each one of them
finds a grain of wheat. The dog wishes to relax in the sun and ignores this,
while the other three decide that they should make use of the corn and
create bread. They all ask the others for help with each laborious step
of their respective plans, and even the dog assists when it is approached
with a task. The plot ends when the animals are still in the middle of
their work, harvesting the wheat or grinding it into flour.

FROM MY SUBJECTIVE PERSPECTIVE, this plot is pretty bad. It has no adversity which

results in a lack of tension, its structure is simple so that it becomes quickly pre‐

dictable, and what little difference in characters’ personalities becomes apparent

through their actions does not seem to be meaningful. A very obvious and impor‐

tant problem is, that the plot lacks a point or a moral. However, tellability was not

designed to capture symbolic concerns like these, so this issue has to be bracketed

out from subjective judgement, as much a possible. There are a few strong points

that I can come up with: The plot is coherent, since most events seem to happen for

a reason and follow a meaningful course. It is fairly cohesive, in that characters are

interconnected and the events build on each other. Furthermore, the plot is clearly

open ended, which leaves some room for speculation about the projected course of

action. It begs the question whether the three animals will succeed with their work,

and, once finished, whether the dog’s behavior will have consequences. Will they

each just eat their own bread, or will they all share the results of their work, and if

yes, will the dog also be allowed to benefit?

HOW CAN THIS GLARING DIFFERENCE between a very high balanced overall tellabil‐

ity score and a very low subjective quality be explained? The functional polyvalence

score reported above (0.78) is the lowest of the four, and has a decent claim to plau‐

sibility, given that it represents the level of coherence and cohesion in the plot. It is

grounded in the FUs ‘Honored Request’ and ‘Nested Goal’ (see Fig. 4.8 for an overview

of FU types), the only two types detected in the plot, which count 30 and 81 instances,

respectively. Since there is a natural interaction between their instances—asking for

help being part of the nested goals for labour intensive tasks like planting wheat or

tending the crops—a certain number of polyvalent vertices is only natural.
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The very high score for semantic parallelism and symmetry (0.98) theoretically in‐

dicates a very strong balance between perceived order and randomness. It comes

into being as a mixture of a highish average symmetry score of 0.84 and a lowish

parallelism score of 0.27, which balance each other out. In practice, the high sym‐

metry makes sense given that each animal repeats the same course of action, while

the low parallelism is unfounded: three of the animals follow the exact same plan,

and should thus have high parallelism ratings between them. The reason the system

is not capable of detecting this is indeterminism in the execution of the individual

agent’s reasoning cycles, which results in differences at which points their respective

succession of nested goals is interrupted by help requests.

The high semantic opposition score (0.96) is grounded in the change of fortune

scores for the characters hen and cow: the dominance of their mood component goes

up every time they feel pride because of an accomplishment, and down again when

they feel gratitude because they are being helped. Because of their high scores in the

personality trait neuroticism (see Tab. 5.4), their mood reacts to these emotions with

strong fluctuations, that are detected as changes of fortune by the system. Subjec‐

tively, I would not consider these situations important enough to be able to affect a

character’s fortunes.

Finally, the high suspense score (0.91) comes into being simply because the three

characters’ intention of creating bread starts early, as soon as they find their corn,

and lasts till the end of the plot because we never see it fully actualized. This seems

plausible to me, and might be taken to capture the interest that is generated by the

open ended nature of the plot.

SUMMARISING, the discrepancy between the tellability score and the plots subjective

quality seems to stem, at least partly, from calibration problems. Some sub‐scores are

too sensitive, like semantic opposition which detects fortune changes where there

are none, while others are too impervious, like semantic symmetry and parallelism

which is not capable of detecting parallels due to minor, irrelevant variations. In the

following section, I will discuss what this means for InBloom as a story composition

algorithm, and outline suggestions on how to address this problem.
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5.3.3 DISCUSSION

The results of the case study reported above are mixed. On the one hand, the ob‐

served quantitative performance is satisfying, while the qualitative results, on the

other hand, leave much to be desired.

TELLABILITY FUNCTION

I do not see this poor qualitative performance as a fundamental problem. The work

presented in this chapter can be seen as another cycle of generative modelling, result‐

ing in the insight that the present implementation of tellability needs to be revised.

As I briefly mentioned in Sec. 4.3.3, algorithms like GA can be regarded as a form of

adversarial testing for the employed tellability score: They can efficiently come up

with a number of example plots that are rated high on tellability, and if this rating is

deemed unjustified by a human then the offending plots can inform ways in which

the implementation needs to be amended. The propensity of evolutionary algorithms

to exploit inconsistencies in their environments is known, as I discussed above, and

can be harnessed to the benefit of this project.

Given the particular problems discovered in the case study, two avenues offer them‐

selves for improving the tellability function. One would be to make the detection of

semantic parallelism and symmetry more robust by employing some sort of inexact

matching (a measure that, in fact, was already applied to functional polyvalence). The

other would be to revise semantic opposition, for instance by restricting the detection

of fortune change intervals to the mood domain of pleasure, which naively seems to

be a more reliable indicator of a character’s fortunes than arousal or dominance.

It should be noted, however, that the insights gained from the automated testing of

the tellability function need not be restricted to technological considerations. They

can also raise questions about Ryan’s theoretical underpinnings of tellability, as the

basis for my implementation. As it is standard practice in NT, Ryan developed and

tested her notion based only on naturally existing, human‐made narratives. Should

these narratives all share some very fundamental properties that contribute to their

plots’ qualities, then it would be only natural to find them overlooked by an analyst,

due to a lack of exemplars that do not have these properties. As a consequence, tella‐
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bility would be blind to these implicit properties of narrativity, and thus CSC systems

based on tellability could end up blindly endorsing plots that lack such properties.

To a certain degree, this is the feeling that I get about the present case, given how

the best detected plot seems to barely qualify as narrative at all. Unfortunately, at

the present moment, I do not see what theoretic problem could be indicated by the

observed behavior.

As an additional remark, I want to make clear that the discussed problems do

not have to result in deviations from subjective plot quality perceptions. One in‐

stance where score and perception overlap has been reported in detail in Sec. 4.3.2,

where I discussed the tellability evaluation of plots manually discovered by me.

Another instance is reported in the bachelor thesis in which one of my students

first experimented with nature inspired algorithms as a means for plot space explo‐

ration (Wöbkenberg, 2021). There, we employed an environment that was inspired

by Defoe’s (1719) Robinson Crusoe, and which fundamentally differed from TLRH in

that it only had one character but ten different types of happenings (like e.g. storms,

wildfires or poisonous plants). The most tellable story found by the system in that

environment (with a score of 0.301) can be summarized as follows:

The adventurer Robinson Crusoe goes on a voyage in a sailing boat. He
is caught in a tropical storm that sinks his ship, but can survive by swim‐
ming to the safety of a deserted island. Hungry from his exertions he
starts searching for food, but is obstructed by torrential rain. When the
rain finally stops he manages to find an edible fruit, but before he can
eat it he is attacked by group of monkeys that steal his food. Enfeebled,
Robinson collapses and dies of hunger.

While my subjective judgement would still value Defoe’s version over the one com‐

posed by the system, the latter is undeniably a much more viable exemplar of the

concept plot than the best plot instance found in the TLRH environment. The point

I want to make here is that any CSC algorithm can only work with the affordances it

is offered by the environment it explores. Having only one type of happening at its

disposal makes it that much harder for a system to find plots that not only optimize

abstract structural criteria, but also appeal to subjective human predilections.
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SEARCH ALGORITHM

The quantitative performance of GA exhibits both properties I proposed above as in‐

dicators of its suitability as search algorithm: it finds plots high in tellability, and

efficiently directs its search towards pockets of high tellability in the search space.

It thus seems that GA is sufficiently powerful to effectively and efficiently explore

the plot space spanned by TLRH, despite the complexity of the tellability function.

Also the results of RA are remarkable, given that the algorithm does not perform any

directed search, and does not even prevent the exploration of the same solutions mul‐

tiple times. I take this as an indication that the optimization problem formulated in

Equation 5.1 applied TLRH is tractable for computational approaches, given either

enough time or appropriate algorithms.

My results do not prove that this will also be the case for other narrative systems,

whose complexity can vary based on the number of characters, number of happening

types, and the degree of freedom that they afford agents. It should also be remem‐

bered, that the search space explorable by GA is somewhat restricted by design deci‐

sions regarding the chromosome representation of candidate solutions, namely that

the number of characters is fixed and that happenings can be scheduled at most one

time per character, which simplifies the search problem at hand. However, despite

these qualifications, I consider this case study successful in making the point that the

computational representational format for narrative implemented by InBloom can be

used as the foundation for a CSC system. It allows the system to take over responsi‐

bilities for creating candidate plots, evaluate their value, and modify the plots in an

intentional way in order to increase their value. The way this process is realized does

not attempt to mimic, or even just resemble, human creativity, but this is not a neces‐

sary requirement for a system do be deemed creative according to the understanding

of CC introduced in Sec. 1.3.2. What I find noteworthy, here, is that the means for

computationally representing narratives employed here were not developed with the

sole purpose of being searched and optimized by a system, but rather as a way for

testing and exploring narratological theories. It is thus anything but a given, that

they should lend themselves for the purposes of CC.

Another fact worth pointing out is that no solution was returned more than one

302



CHAPTER 5. OUTLOOK: COMPUTATIONAL CREATIVITY

time, by either of the search algorithms. This is an indication that the search ter‐

minated in local optima, and did not reliably find the global optimum of the search

space. Purely in terms of optimization, this would be considered a shortcoming, since

the goal of optimization is to find the best possible solution. From the perspective of

CC, however, this might even be considered an advantage. For an algorithm to be

deemed creative, it is not necessary for it to find the best possible plot, as long as

it finds a good‐enough one. On the contrary, being able to come up with different

plots on successive runs is actually conducive to a system’s semblance of creativity.

This is an interesting observation because it implies that when generative tasks in CC

are framed as optimization problems, it could be beneficial to solve these problems

not with the most powerful approaches at hand, but rather with ones that are on the

brink of not being capable of addressing them, in order to diversify the outputs. This

might even result in individual runs that fail to come up with acceptable solutions

in the available time, however, in humans, the occasional failure seems to be at least

conventionally considered an expected epiphenomenon of creativity.
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It was the best of times, it was the worst of times,

it was the age of wisdom, it was the age of foolish‐

ness, it was the epoch of belief, it was the epoch of

incredulity…

Charles Dickens, ‘A Tale of Two Cities’

6
Conclusion

TO CONCLUDE THE PRESENT DISSERTATION, I find it important to accomplish two main

tasks. One is to provide an overview over the whole project—including the compu‐

tational story composition (CSC) system InBloom developed to serve as a practical

case study—and the other is to outline its contributions to the different fields that it

bridges.

The necessity to do the first arises from the unconventional, hermeneutic struc‐

ture of this thesis, which was motivated in Sec. 1.5 by the observation that for the

task at hand a process is required that combines methodologies from both Narrative

Theory (NT) and Artificial Intelligence (AI). A side effect of this hermeneutic struc‐

ture was that the resulting narratological framework and computational model were

assembled incrementally, and, at no point, so far, presented in their entirety.

The second task has been partly undertaken at the end of each chapter, when I

discussed the lessons learned during their completion. However, these insights were

presented with attention to details but no concern for a broader context because they

were intended to evaluate the work performed so far, and identify a way forward. In

304



CHAPTER 6. CONCLUSION

this chapter, on the other hand, I want to put them in the context of the three research

questions that were introduced in Sec. 1.1:

RQ 1: Can NTs be computationally implemented using generative mod‐
els? How can narratological theories benefit from such modeling?
RQ 2: Can CSC be modeled as the manipulation of a computational
representation of narratives grounded in NT? What are the benefits of
grounding the modeling process in NT?
RQ 3: Is a scientific/scholarly exchange between NT and CSC possible
and productive? How can such an exchange be facilitated?

The first part of these RQ are yes/no questions about feasibility, which can all be

answered ‘yes’ because the present thesis demonstrated that it is possible to imple‐

ment certain narratological theories as generative models, and that these models can

be used to generate novel plots, which in turn demonstrated the productivity of an

exchange between NT and CSC.

These affirmations bring to the fore the respective second parts of the RQs, which

I find to be the scientifically more interesting ones. First, how can NT benefit from

computational generative modeling? I will address this question in Sec. 6.2.1, by sum‐

marizing the corollaries I suggest to the narrative theories considered in this thesis.

Second, how can CSC benefit from a grounding in NT of the representations it op‐

erates on? This question will be addressed in Sec. 6.2.2, by summarizing the novel

approaches to CSC that I explored in InBloom. And, third, how can the exchange

between these two disciplines be facilitated in general, that is, what has been learned

in this particular study that could aid future work at this interdisciplinary boundary?

This will be addressed in Sec. 6.2.3, where I propose generative modeling as a novel

research methodology and discuss it in the context of the Digital Humanities. The

main contribution of my thesis, as I see it, is not in the development of a novel CSC

system, but in addressing these theoretical questions.

6.1 OVERVIEW

Before I present the theoretical insights I gleaned from my work, I will provide an

overview of its current state: 1) the narratological framework that I needed to assem‐

ble in order to be able to reduce the plot of my case study—the tale of The Little Red
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Hen (TLRH)—to first principles in this framework, and 2) the CSC system InBloom

that implements this framework as a generative model. This section is not intended

to provide a comprehensive overview over the individual parts that were developed

in their respective chapters, but rather to outline how they come together to form a

whole.

6.1.1 THEORY: THE NARRATOLOGICAL FRAMEWORK

The framework focuses on two narrative phenomena: plot and fictional characters, as

well as their interactions (see Sec. 1.2.2 for an overview over narrative phenomena).

Plot is understood as a network—with virtual and actual components—in which

events are connected by different types of causal relationships. The actual domain of

this network, i.e. objective and observable parts of the plot, comprises actions (events

that have an agent) and happenings (events that have no agent but patients). Its coun‐

terpart, the virtual domain, comprises beliefs,wishes, obligations, plans, and affect, i.e.

the subjective, embedded narratives that individual characters build to make sense of

the actual domain. The two are densely connected because mental events in embed‐

ded narratives cause characters to act, while actions and happenings are perceived by

the involved characters and trigger new mental events in their embedded narratives,

a dynamic that is described in detail in Sec. 2.2.

Characters are understood as affective and rational non‐actual individuals. Ratio‐

nal, here, means that they follow a reasoning process in which wishes and obligations

motivate characters to develop plans for their fulfillment. These plans are based on

beliefs about the state of the story world, and are comprised of actions or sub‐plans.

Details on this can be found in Sec. 2.1. Their affective realm (as outlined in Secs. 3.2.2

and 3.2.3) is constituted by personality (stable dispositions to act and feel in certain

ways) and emotions (valenced reactions to unfolding events), which interact and re‐

sult in a current mood that captures characters’ affective state at any given time in the

narrative. The realms of affect and reasoning are closely intertwined: A character’s

personality and current mood influence what it wishes to achieve and feels obliged

to do, how it prioritizes between these motivators, and the nature of the plans it can

come up with for their fulfillment. Conversely, the plans and actions of a character
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Figure 6.1: Structural relationship of the narrative phenomena plot and character in the pro-
posed model. Normal arrows indicate a subtype relationship, open arrows a comprised-by rela-

tionship.

are perceived and emotionally appraised by other characters, which then influences

their affective state (for details, see Sec. 3.2.4).

Summarising this from an internal perspective (see Sec. 1.2.4 for details on perspec‐

tives), plot emerges from the experiences and interactions of characters with each

other and the story world in which they are spatially and temporally embedded. This

is possible because a strong overlap exists between the intermediate phenomena that

comprise plot and characters’ embedded narratives (see Fig. 6.1). Thus, the suggested

plot model is called character‐centric: Given a narrative system that consists of the

ontological rules as well as the existents of a story world, its characters’ personalities

and the providential happenings that befall them span a space of possible plots.

From an external perspective, these plots are not equally well suited to structure the

content plane of a narrative. This circumstance is captured by tellability, a measure

that allows to quantitatively compare and qualitatively analyze different plots. Tella‐

bility is comprised of four individual principles that gauge different types of structural

properties of plot, defined based on both its actual as well as virtual components:

• semantic opposition: contrasts between characters’ goals with the respective

action outcomes, as well as reversals in the fortunes of characters

• semantic parallelism and symmetry: structural similarities in event‐sequences

pertaining to different characters, as well as to one character with itself but over

time

• functional polyvalence: overlaps in the functions that individual events fulfill
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for the plot

• suspense: delays between the setting of a goal and its actualization or failure

Details on how this is conceptualized are outlined in Sec. 4.1.

6.1.2 IMPLEMENTATION: THE INBLOOM SYSTEM

Overall, InBloom is a generate‐and‐test architecture that performs a search over sim‐

ulations (see Fig. 6.2). A simulation is the execution of a narrative system that has

been parametrized with personality‐traits for each character as well as a set of hap‐

penings. The result of this execution is a story graph1, which consists of actual and

mental events connected by edges denoting temporal order.

Figure 6.2: Abstract overall architecture of In-
Bloom.

This story graph is post‐processed

and evaluated by the tellability anal‐

ysis module, which creates two out‐

puts: The plot graph that consists

of actual and mental events con‐

nected by edges denoting causal re‐

lationships, as well as a balanced,

real‐valued tellability score between

0 and 1 that estimates the structural

quality of the plot. Based on this score, a search algorithm decides whether the gen‐

erated plot is good enough to finish the process, and if this is not the case decides

how to change the parameters of the simulation, before the simulation is restarted.

SIMULATION

The simulation is implemented as a multi‐agent system, in which autonomous agents

represent fictional characters and the environment represents the story world. Plot

emerges from the interactions of these agents with each other and the environment,

caused by their problem‐solving behavior.

1One of the conclusions presented in Sec. 4.3.3 on p. 271 was that what I called ‘plot graph’
in Def. 5 turned out to actually represent a ‘story graph’, while the ‘analyzed plot graph’ from
Def.12 indeed represents a ‘plot graph’.
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Figure 6.3: Abstract representation of the affective rea-
soning architecture that implements agents in InBloom.

Agents are implemented as

reasoning systems based on a

BDI architecture, which was ex‐

tended to incorporate the af‐

fective phenomena: emotion,

mood, and personality as out‐

lined in Fig. 6.3. These affec‐

tive phenomena influence how

intentions are selected from competing desires, and which plans are selected to

achieve these intentions. Furthermore, they can lead to the activation of new desires

(for details see Sec. 3.3).

The environment implements actions that agents can take as part of their plans,

happenings that can be scheduled by the search component of InBloom, and an ini‐

tial state of the story world. It is responsible for maintaining the objective state of

the story world by incorporating the effects of actions and happenings. The basic

ontology supported by InBloom’s environment offers restricted notions of spatio‐

temporality, causality, agency and ownership, which can be used and extended by

individual narrative systems (for details see Sec. 2.3.4, starting from p. 73).

During the course of a simulation, all relevant events are retained in the form of a

story graph that follows Def. 5. The vertices of this graph represent the actions taken

by agents, the happenings that were triggered in the environment, and internal events

generated by the affective reasoning systems of individual agents. These vertices are

connected by edges that indicate a temporal order, such that each vertex has at most

one predecessor and at most one successor.

ANALYSIS

The analysis module operates on the story graph and performs two main functions:

plot graph generation and tellability score computation.

The (analyzed) plot graph, which follows Def. 12, is generated by performing several

post‐processing steps over the story graph. These steps are responsible for identify‐

ing causal relations from meta‐data stored in the story graph vertices as annotations
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(see Sec. 4.2.1). Most importantly, different types of edges are added to the graph,

whenever specific types of relationships between events can be uncovered: motiva‐

tion, actualization, termination, equality, causality, and cross‐character interactions.

These edges capture the causal structure that led to the emergence of the events on

the surface of the narrative, and connect its actual with the virtual domain. This re‐

sults in the analyzed plot graph, which is InBloom’s main output format.

The tellability score is computed by quantifying instances of four specific structural

properties of the plot graph, namely: functional polyvalence, semantic symmetry,

semantic opposition and suspense. These values are normalized for plot length, and

combined in a balanced way such that an ideal tellability is reached when no property

dominates over the others (see Sec. 4.2.5). This results in a single real valued metric,

the balanced tellability score, that estimates the structural quality of the plot.

SEARCH

The plot space spanned by non‐trivial narrative systems is so large, that random

search is unlikely to find near‐optimal plots given a realistic time frame. InBloom em‐

ploysGenetic Algorithms (GA) to instead perform directed search. In GA, the parame‐

ters of each simulation are encoded in a vector‐based format which is called the geno‐

type. An initial population of 20 individuals with differing genotypes is created based

on a number of heuristics, and each individual’s tellability is analyzed. Iteratively, the

worst‐performing individuals are removed from the population, and replaced by off‐

spring individuals whose genotype is created through crossover—which recombines

the genotypes of the best‐performing individuals in a probabilistic manner—and sub‐

sequent mutation—which can add random changes on top (details on these opera‐

tions and the formalization can be found in Sec. 5.2). This results in a search behav‐

ior that compromises between exploitation of already identified valuable parameter

combinations and exploration of novel parameter combinations, which leads to an

increase of average population tellability over time.

In essence, this approach amounts to executing 20 of the cycles depicted in Fig. 6.2

in parallel, where the simulation and evaluation steps are performed independently,

but the search process collects their results and derives new parameters from them.
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6.1.3 CONTEXTUALIZATION

After providing an overview over both theory and implementation, my work can be

easily placed in the context of the various fields of study that were introduced in

Chap. 1.

FOR THE PURPOSE OF NT, it is relevant to outline which aspects of narratives (see

Sec. 1.2.4 for details) are bridged by the framework outlined in this thesis. Since it

focuses on how fictional characters resemble actual persons and from this derives its

notion of plot, the proposed framework can be classified as mainly concerned with

the mimetic aspect of narrative. However, the notion of tellability adopted here is a

synthetic one, since it quantifies how well suited a sequence of events is as a plot,

which is a strictly artefactual property. No attempts are made to address symbolic or

symptomatic aspects of narrative.

From the four narrative phenomena discussed in 1.2.2: story and plot, character,

discourse, and reader, the present framework addresses the first two, as well as their

interaction. Discourse, as a third phenomenon, can be partly tied in with the present

work based on Alan Palmer’s consideration about the relationship of discourse and

fictional mind, which will be reiterated shortly.

IN THE CONTEXT OF CC, it is useful to locate my system on the CC continuum (see

Sec. 1.3.2 for details), where I see it more on the side of the cognitive‐social pole. The

main reason for this is that my work focuses on computationally modeling theories

from NT; it is interested in contributing back to that discipline rather than applying

certain technologies for their own sake or in generating outstanding artefacts. This

is also the reason why the plots that were explored as part of the case studies pre‐

sented here are neither overly novel nor overly interesting in themselves. Their value

lies in what they disclose about the theories that were used to model them. In terms

of creative responsibilities (see Sec. 1.3.3), InBloom implements the A and E parts of

FACE. It is capable of generating instances of plot (E) and of performing an aesthetic

evaluation (A) of them. I have not mentioned it so far because it is not relevant for

the narratological concepts behind InBloom, but through the use of its FU matching
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(which was implemented as a part of tellability analysis, see Sec. 4.1.1) the system can

also be enabled to automatically generate functional summaries of the plots it pro‐

duces, which I have shown elsewhere to be able to function as framing (Berov, 2019b).

While this approach would need more work to mature, it demonstrates potential for

the system to also take over responsibility for F‐type generative acts.

FINALLY, IN CSC, InBloom can be firmly placed as a CC system because it has no

interactive capabilities and is directed towards composing as many tellable plots as it

can find (see Sec. 1.4 for this distinction). It follows the strong autonomy/emergent

narrative approach, since it represents characters as autonomous agents (see Sec. 1.4.1

and 1.4.2). To steer the generation of plot into more productive parts of the search

space, the system does not rely on a drama manager which can assign certain goals to

characters or disallow certain actions. Instead, it attempts to iteratively manipulate

the autonomous characters into behaving in tellable ways by scheduling happenings

that affect them, and calibrating their personalities such that they react strongly to

these happenings.

6.2 THEORETICAL CONTRIBUTIONS

6.2.1 CONTRIBUTION TO NARRATIVE THEORY

The second part of my RQ 1 asks how narratological theories can benefit from gen‐

erative modeling. I think there does not exist enough practical work to inform an

answer to this question in general, but will instead address it by discussing the par‐

ticular narratological insights that I garnered about the two theories I based my work

on: Marie‐Laure Ryan’s possible worlds framework, and Alan Palmer’s fictional minds

approach.2

2At the onset, this content will sound reminiscent of the framework I presented above
in 6.1.1. This is only natural, since my framework is an extension and combination of these
two. Differences will become apparent, once I discuss the insights.
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CONTRIBUTION TO RYAN’S POSSIBLE WORLDS APPROACH

During the course of Chap. 2, I discussed Marie‐Laure M.‐L. Ryan’s (1991) possible

worlds based narrative semantics of plot. Ryan’s theory describes the emergence and

the properties of plot based on the goal‐directed actions of fictional characters, which

are structurally, in turn, described by a set of propositions capturing their interior

state: beliefs, wishes, and obligations. Based on beliefs, characters make plans in or‐

der to fulfill their wishes and obligations (their motivators), and the actions of these

plans change the state of the story world, resulting in the observable part of the plot.

However, Ryan argues that also only partially actualized plans should be considered

part of the plot because they are required to understand the causal structure that un‐

derlies the seemingly unfruitful actions of these thwarted plans. This means that plot

is a network of actual and virtual event sequences, as well as the beliefs, wishes and

obligations that drive them. However, as my implementation of a narrative system

during the case study in Sec. 2.4 demonstrated, this framework is not sufficient to

reconstruct the dynamics of the plot of the folktale TLRH. Based only on these prin‐

ciples, it is not possible to explain why the farm animals in this tale behave differently

from each other: some laboriously working in the field all day long, while others are

relaxing in the sun. It is also not possible to reduce the punishment of the relaxing

animals by the hen to the outlined first principles: why does the hen develop the wish

to punish the other animals, and why does taunting them by first offering but then

withholding bread constitute a punishment? In Chap. 3 I argue that these problems

can be resolved by adopting a more mimetically informed approach to the process

of character reasoning, which is responsible for connecting characters’ perceptions to

motivators and these, in turn, to plans. In particular, I suggest that personality affects

how characters select wishes or obligations to act upon, when several (perhaps con‐

flicting) of these motivators are active, and that sufficiently strong changes in affect

can induce new motivators. In the case study presented in Sec. 3.4 I demonstrate that

respective refinements of the narrative system of TLRH are sufficiently expressive to

allow the emergence of the desired plot dynamics: Positing different personality traits

for the farm animals (high conscientiousness for the hen, low conscientiousness for

the others) allows the narrative system to differentiate their initial behaviors, while
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the repeated experience of negative disappointment emotions by the hen due to re‐

peated refusals of her help requests accumulate into a hostile mood that can act as a

plausible trigger for her punishment wish.

Apart form describing the dynamics of plot, Ryan also introduces an idiosyncratic

take on the concept of tellability, by deriving several principles from the aesthetics of

lyrical poetry: functional polyvalence, semantic symmetry, and semantic opposition,

as well as later adding a forth principle called suspense. She makes the individual

principles plausible by presenting isolated examples from canonical works, but does

not provide an in‐depth analysis that would demonstrate how these principles come

together into a unified whole. Furthermore, she does not demonstrate that the con‐

clusions that can be derived from comparatively applying tellability to different works

are narratologicaly plausible. In Chap. 4, I present a computational operationalization

of the four tellability principles, which can be used to quantify the tellability of com‐

putationally represented plots following the principles I described above. This allows

me to conduct a quasi‐objective exploration of the properties of Ryan’s tellability3, by

applying it to several minimally differing versions of the same plot and comparing

the corresponding changes in tellability. The resulting analysis is, to the best of my

knowledge, the first practical application of Ryan’s tellability as a narratological tool.

To summarize these points, my contribution to Ryan’s possible worlds based se‐

mantics of plot is the following:

• I demonstrate that the framework is underspecified, in that it does not explain

how wishes or obligations arise from observed events, and how these motiva‐

tors are selected as actionable in cases where they contradict each other.

• I demonstrate that this problem can be resolved by adding the mimetic char‐

acter phenomena personality and affect as additional first principles affecting

the dynamics of wish/obligation selection and arousal.

• I demonstrate that Ryan’s tellability can be operationalized as a narratologi‐

cal tool for the quantitative analysis of plots, which leads to results that can

conform to human qualitative interpretation.
3Such an approach can never be objective, since any operationalization is necessarily per‐

formed by a subject, based on its interpretations of the concept. However, after its implemen‐
tation, an operationalized measure can be deemed quasi objective in that it analyzes all plots
in completely the same way.
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PALMER’S FICTIONAL MIND APPROACH

Above, I explained how the problems I encountered in Ryan’s approach could be

solved by introducing personality and affect. The reason that led me to consider

these phenomena is Alan Palmer’s (2004) fictional mind approach that, in essence,

states that fictional minds are represented by readers much like real minds, and thus

should be narratologically constituted by similar phenomena. Although the content

of Palmer’s approach is fairly unconventional, the methodology that he used to ar‐

gue for it is analytical modeling, the classic way of NT. Starting from the characters’

actions and their presentation in the narrative’s discourse, he demonstrates that the

nature of the actions and the way they are presented discloses what is happening in

characters’ fictional minds, even when there is no explicit psycho‐narration to de‐

scribe it. In Sec. 3.1.3 on p. 113, I reported a canonical example from Virginia Woolf ’s

novel Mrs. Dalloway, where the protagonist Clarissa Dalloway is payed an unexpected

visit by her former suitor Peter Walsh. Having returned after long travels, Walsh is

described as positively trembling when taking both her hands to kiss them. The nat‐

ural interpretation of this passage is to assume a causative psychological state in the

character’s mind for this behavior, presumably excitement, instead of e.g. suspecting

that he is succumbing to Parkinson’s disease. Since readers are constantly presented

with characters’ actions and the embedded narratives that they decode from them,

they start to develop expectations and mental models of these characters, which are

taken to represent their personality. Palmer describes his approach as teleological be‐

cause it investigates statements from the discourse and tries to uncover their purpose

in fictional mind representation.. This results in an analytical reasoning chain, that

starts from discoursive action descriptions, derives embedded narratives from them,

and finally integrates these narratives into models of personality. Thus, Palmer’s gen‐

eral insight is that readers can (re)construct fictional minds from discourse. With

the case study of Chap. 3, I demonstrated that also the inverse is true: After imple‐

menting fictional minds—using an affective BDI reasoning architecture—in my plot

composition system I could empirically show that changing a character’s personality

parameters results in changes to their embedded narratives, which in turn can lead to

significant changes in the narrative’s plot. This move is in Palmer’s teleological spirit
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because it investigates the purpose of specific parts of fictional minds. I call it inverse

to Palmer’s original insight for two reasons: One is that instead of analyzing how

surface phenomena are integrated into deep structures, it shows through generation

how changes in deep structures influence the narrative’s surface. The second is that

instead of arguing how fictional minds are reconstructed from discourse it argues how

plot is constructed from fictional minds. It is important to note that such an inversion

is difficult, if not impossible, to undertake from an analytical perspective because it

is hard to isolate changes in deep structures responsible for changes on the surface in

real narratives, since they normally differ in many regards at the same time. From a

generative perspective, however, this is unproblematic because here the scholar has

full control over the parameters of a narrative’s deep structure and can thus vary them

in isolation, which allows to study causal effects on the surface realization.

Summarizing, my contribution to Palmer’s fictional mind approach is the follow‐

ing:

• I demonstrate, that not only can fictional minds be reconstructed from dis‐

course, like Palmer argues, but that additionally fictional minds also causally

influence plot.

6.2.2 CONTRIBUTION TO COMPUTATIONAL STORY COMPOSITION

The second part of my RQ 2 asks, how CSC can benefit from starting the modeling

of story composition from grounding the employed computational representation of

narratives in NT. Again, I will not attempt a general answer, but rather present the

concrete insights that I gathered while working on InBloom.

Due to the nature of the narratological theories that I selected for implementation,

InBloom ended up being an emergentist plot composition system. Recently, AI re‐

searcher and media artist J. Ryan (2018) published his dissertation, which goes a long

way towards establishing a dedicated theory of emergent narrative systems, and that

I consider an outstanding work. Some of my insights seem to align well with Ryan’s

ideas, while at the same time also diverging in interesting ways. For this reason, I

will first outline what I consider my contributions specifically to emergentist narra‐

tive composition, in the context of Ryan’s ideas. Then, I will move on to a broader
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topic, and outline what I consider my insights into the computational representation

of narrative in general, i.e. irrespective of the particular approach.

CONTRIBUTION TO EMERGENTIST NARRATIVE SYSTEMS

The emergent narrative paradox has been leveled as a heavy charge against the viabil‐

ity of strong autonomy (also called emergent narrative) systems. It asks, how a struc‐

tured and non‐local phenomenon like plot should emerge from the interaction of au‐

tonomous characters whose decision processes are not concerned with global struc‐

tures but only their personal local context. In his dissertation, James Ryan mounted

a defense of emergent narrative system by demonstrating how this problem can be

overcome using what he calls a curationist approach to emergent narrative: The sim‐

ulated world and characters should be complex, the possible range of their interac‐

tions manifold and a simulation should run for a long time. The sheer complexity

and abundance of the resulting material should then make sure that plot‐patterns

can be identified by sifting through the chronicle of the simulated world, even if their

emergence is unlikely. Historians have found plenty of stories in the chronicles of the

actual world, and so this should also be possible in simulated worlds. Consequently,

Ryan proposes that emergentist systems should not be based on narrative theory, but

rather on historiography. He argues: “the pleasure of emergent narrative is rooted

primarily in its correspondences to the genre of nonfiction: when events emerge out

of simulations, they feel like they really happen, and this unlocks [a] set of aesthetics

[that were outlined before]” (J. Ryan, 2018, p. 220).

My position in this dissertation, from the start, was to do the exact opposite: start

from narrative theory and non‐dogmatically operationalize its models with any kind

of generative computational model that would serve the purpose, without being much

caught up with concerns of technological purity. It is thus somewhat surprising that,

after having done so with models from Marie‐Laure Ryan and Alan Palmer, I arrived

exactly where, according to James Ryan, I should not have: in the realm of emergent

narrative. This is a valuable insight in its own right, I think: the emergentist approach

can stand on a broader base than what James Ryan’s dissertation suggests. It hasmerit

from the historiographic perspective, but also from the narratological. Its latter merit
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is this: a focus on strong autonomy and cognitively inspired agent models allows to

elegantly capture essential elements of narrative semantics like knowledge, wishes,

obligations, personality and affect. These phenomena are all either direct parts of

plot, or indirectly affect it (as I demonstrate in Chaps. 2 and 3). They are also relevant

to assess the aesthetic quality of plot (as I demonstrate in Chap. 4). A grounding of

emergent narrative systems in narrative theory is important because it can shed light

on the relationship between characters and plot. It can demonstratewhat sort of com‐

plexity is relevant for character models and why, while a historiographic perspective

can only argue that this complexity is important.

So how does my approach deal with the emergentist narrative paradox? It is all well

and good that the properties of individual agents can come together into a plot, but

this is only a theoretical benefit of a particular approach to the computational repre‐

sentation of narrative. For a story composition system, they also have to reliably do so,

and this is where emergentist systems commonly fall short. As I glossed in Chap. 1,

this problem has sometimes been approached through the use of drama managers

that intervene into simulations and tell characters what their goals are, or what they

can or cannot do. James Ryan refers to this approach as interventionist emergent nar‐

rative and argues that it is not the way forward because it works against the grain of the

very approach it should rescue, by inhibiting the simulations’ emergent potential and

making events stand out as unnatural. In his own words, while remedying the pain of

emergent narrative, it also kills its pleasure (J. Ryan, 2018, p. 221). I think that, broadly,

this observation is correct. Seeing it from the historiography angle, it is understand‐

able that interventions seem unnecessary, after all, history too unfolded without any

divine intervention in order to ensure entertaining stories. However, from my narra‐

tological perspective, Ryan’s solution of abolishing all intervention seems too radical.

Counterfactual thought is one of the great virtues of the human mind, and as Marie‐

Laure Ryan demonstrated, one of the roots of narrative. Why wait for history to slowly

run its course, if it is so easy to imagine how things will end, or how events might have

been different if only some particular details were changed? Or, translating that into

more computational parlance: Why simulate hours after hours of a complex story

world in the hope of eventually generating some valuable material? Instead, one can

see where the simulation is after ten minutes, adapt the parameters that define its
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course, and restart the simulation, until that very valuable material appears during

the first ten minutes. I propose to call this approach creationist emergent narrative

because of how it is similar but also different from Ryan’s curationist approach. They

are similar, because both approaches work by exploring the space of possible plots set

up by a narrative system. They are different, in how this exploration works: Ryan’s is a

laissez‐faire approach that relies on entropy and randomness to explore the space for

him, while mine is more akin to the idea of intelligent design where, step by step, the

‘perfect’ narrative system is setup for a particular plot to emerge. This circumvents

the problems of common interventionist approaches described above because charac‐

ters do not need to be artificially prevented from doing certain things, or forced into

doing others, while a simulation runs. Instead, if their behavior does not come to‐

gether in a tellable plot, it can be changed by restarting the simulation with different

personality parameters, as I have demonstrated in Chap. 4. Additionally, in Chap. 5,

I have demonstrated that calibrating personality parameters with carefully orches‐

trated happenings allows for an indirect steering of a narrative’s course of action via

the manipulation of character behavior.

There is another similarity between Ryan’s work and mine that I find interesting

because we again arrive at it from very different directions. For Ryan, a crucial task of

curationist narrative systems is what he calls story sifting: identifying tellable material

from the chronicle of everything that was simulated. Without sifting, his approach

does not work, since most of the material generated during a simulation poses no

narrative interest. He suggests that there are two ways of doing this: “I differenti‐

ate between sifting patterns and sifting heuristics: the former pattern‐match against

the material recorded in a chronicle, while the latter encode abstract policies that

may guide the sifting process” (J. Ryan, 2018, p. 237). To readers of my thesis, this

may sound reminiscent of the inner workings of my tellability implementation, pre‐

sented in Chap. 4. The detection of FUs in the plot graph is an instance of inexact

pattern matching used to gauge the generated plot’s coherence, while the four tella‐

bility principles (functional polyvalence, semantic symmetry, semantic opposition

and suspense) are abstract heuristics that are used to judge whether the generated

plot is tellable. Indeed, I would go as far as to claim that, when implementing tella‐

bility, I actually developed a set of sifting heuristics for InBloom (although without,
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at that time, knowing of the existence of this concept). There is, of course, one ma‐

jor difference: I use these heuristics not to sift for all tellable plots in the chronicle

of a long simulation, but to test whether the one plot that was generated by a short

one is worth keeping. However, I feel that this is more of a lexical difference than

a functional one: I see no theoretical reasons why my implementation of tellability

could not be adapted to sift instead of just test. This is a serendipitous insight since

in the conclusion of his thesis James Ryan speaks highly of this challenge, and issues

the following call for action:

[…] we will likely need to develop robust sifting heuristics. This is some‐
thing that is not delivered in this thesis, because I do not personally know
how to do this yet, and it is a very hard challenge. I would like to issue a
call to others to roll up their sleeves and get to work on this critical prob‐
lem in emergent narrative—indeed, sifting heuristics could likely be the
topic of another entire dissertation.

(J. Ryan, 2018, p. 692)

At the risk of sounding ideological, I would like to point out that what enabled

me to answer this call, with my modest contribution, was the grounding of my work

in narrative theory instead of historiography. Of course, if I learned one thing from

my exposure to NT then it is that several perspectives on the same phenomenon can

co‐exist, and that there is merit in their interaction, so I do not mean to promote one

over the other.

To summarize these points, my contribution to the theory of emergent story com‐

position is the following:

• I argue that, contrary to claims in recent work, emergent story composition can

be motivated by and benefit from grounding in narrative theory.

• I expand the distinction of approaches to emergent narrative systems developed

by James Ryan, which consists of interventionist and curationist approaches,

with a new option called the creationist approach.

• I propose that character‐personality and happenings are two types of parame‐

ters that can be varied by emergentist story composition systems in search of

tellable plots, without running the danger of disrupting character believability.
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• I demonstrate the viability of Marie‐Laure Ryan’s theoretic notion of plot tella‐

bility as a sifting heuristic for emergent storytelling systems.

CONTRIBUTION TO THE COMPUTATIONAL REPRESENTATION OF NARRATIVE

The most concrete contribution is the formalization of tellability I developed in

Chap. 4, which is not limited to use by InBloom but can be also employed by other

plot composition systems in order to evaluate plot quality. In the last section, I ar‐

gued that emergentist systems can use it as a sifting heuristic, but this is not the only

use case. It could also be employed to guide the generation of plots in the case of

strong story systems, or as an aesthetic measure in cognitive approaches. This makes

it an approach‐agnostic contribution to CSC. However, due to the nature of the the‐

oretical underpinnings of tellability, not all plot composition systems can make use

of the measure. In order to be able to compute tellability, systems need to represent

several narrative phenomena, namely: temporality, intentionality, short‐term affect,

mid‐term affect and causality, as I explained in Sec. 4.3.3.

At the end of Chap. 4, I observed how the need to evaluate the suitability of a se‐

quence of InBloom‐generated events as a plot resulted in the necessity to detect an

“abstract causal organization and roles that can be superimposed over the events”

(p. 272)—FUs, in my implementation, i.e. abstract units of meaning that can match

different configurations of concrete events. From this, I argued that what researchers

in the field unifyingly call the content plane of a narrative should rather be repre‐

sented computationally using two different levels: the concrete events of the story

world plane, and the superimposed abstract structures of the plot plane. The benefit

of such a separation of representation is that it induces a corresponding separation

of processing during composition, with dedicated processes responsible for gener‐

ating the events of the story world and the structures of the plot. This is advisable

because these two processes differ fundamentally: the former takes an internal per‐

spective and exerts a bottom‐up self organizational force on the content that ensures

that characters and events are believable, while the latter is rooted in an external

perspective and exerts a top‐down structuring force that ensures the content is well

formed. The two forces seem to be mutually opposing, but I believe that high poten‐
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tial for the composition of good narratives lies not in favouring one over the other,

but in allowing them to form the narrative such that it can balance them out against

each other. Less metaphorically: instead of a linear process that first generates the

one and then merely tests for the presence of the other—treating it as a subordinate

phenomenon—an iterative process, where a story world module and a plot module

collaborate on a draft alternately, and thus mutually influencing each other, seems

more promising to me (see p.274 for an example of this envisioned process, and the

associated challenges). InBloom is a system that is firmly rooted in the linear tradition

because its simulation first creates story world events completely autonomously, after

which the tellability module checks for the presence of plot. One might argue that

there is some collaboration because simulation runs with low tellability are discarded

(see Chap. 5 for a description of the process), but the crux is that there is no direct

influence back from plot detection to simulation. This precludes the system from re‐

alizing that e.g. the particular events of a story world have the potential to become a

revenge plot, and thus the characters should be adapted such that appropriate events

are more likely to emerge. An important part of this example is the capability to de‐

tect what I called ‘potential’: that a sequence of events partly resembles a certain basic

plot, or that a certain plot is nearly instantiated by a sequence of events. Such inexact

matching between the two levels of content representation would allow a story com‐

position system to guide the exploration of the conceptual space it performs in a way

that balances out the requirements for believability and structural integrity.

It is important to remember that story world and plot are not the only levels of

representation that are required to model narrative. Although I bracketed them out

in the present work, the levels of discourse and prose are just as important. The stan‐

dard approach is to organize the generation of these levels in a linear pipeline: First,

content is generated, then, it is re‐arranged according to discourse principles, and fi‐

nally, the discourse is rendered as narrative prose (see e.g. Callaway & Lester, 2002;

Reiter & Dale, 2000). However, my observations from above seem also to apply here.

As I mentioned in passing on p. 274: “the difference between a narrative of ‘Overcom‐

ing a Monster’ and a ‘Tragedy’, in many cases, could boil down to whether the focus is

on the experiences of the hero slaying the monster, or on those of the monster being

slain”. Essentially, this implies that the same set of story world events can be seen
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as fitting one basic plot or another, depending on the choice of focalization, which

is a decision that is firmly located on the discourse level. But if discourse level de‐

cisions can affect a narrative’s plot‐structure affordances then it is contra‐productive

to rely on a linear process where the plot is fixed before the discourse. This leads

me to the hypothesis, that linear composition pipelines are generally not well suited

for CSC because they can hardly do justice to the many interrelations that connect

narrative phenomena (for these interrelations, refer back to Fig. 1.3). Thus, a more

promising approach would be to explore iterative processes that alternate between

the optimization of the different levels of representation, and do so using a multi‐

layered computational model of narrative that allows the content of these layers to

come together via inexact matching.

Summarizing, my contribution to CSC in general is the following:

• I formalized tellability as an approach‐independent measure of plot quality.

• I argue that the content‐plane of a narrative should be computationally repre‐

sented using at least two levels of abstraction: story‐world and plot, and that

such a representation should allow inexact matching of elements from one level

to the other, and vice versa.

• I argue that, instead of a linear pipeline, computational story composition

should be conceptualized as an iterative process that alternates between the

optimization of different types of content and form.

6.2.3 CONTRIBUTION TO DIGITAL HUMANITIES

The second part of my RQ 3 asks how the exchange between NT and CSC can be fa‐

cilitated. Here, I will actually propose a general answer by promoting the use of the

methodology that I employed in this thesis. This falls into the interest range of the

Digital Humanities (DH), a discipline that focuses on the development of computa‐

tional tools and resources for the humanities, as well as the facilitation and evaluation

of their usage. I consider my work an instance of DH research, and will frame the main

insights gleaned in its wake once more in this broader context.

In Sec. 1.5, I outlined the challenges of interdisciplinary research between NT and

generative AI: markedly differing research methodologies as well as difficulties ex‐
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changing concepts and models. I proposed an approach I called generative model‐

ing as a methodology to address these problems. Generative modelling incorporates

the linear design‐implement‐evaluate process of AI into hermeneutic cycles of the‐

ory formation and theory testing. Each cycle follows the same process: one starts

with a narratological theory, formalizes as well as implements it using a computa‐

tional generative model, and uses this model to attempt a regeneration of an existing

narrative. Conclusions can be then drawn by comparing the generated narrative to

its original counterpart. If the two are discernibly alike then the process can be con‐

sidered a success, which makes two points: one is that the narrative in question can

be reduced to the first principles put forward by the narratological theory, and the

second is that the computational model is a valid implementation of the underlying

theory. This addresses two important issues of the collaboration between AI and NT,

namely, how to evaluate AI implementations in the NT domain where quantifiable

metrics are scarce, and how to incorporate computational generative modeling in the

process of NT theory formation. A more complex situation occurs, when regenerated

and existing narrative are not alike (or when the narrative simply can not be regen‐

erated at all). While it is clear that this means a failure of the respective cycle of

generative modeling, the reasons for this can not be unequivocally attributed: One

possibility is that the implementation of the theory is flawed, while the other is that

the theory itself is not sufficient to model the narrative in question. Based on the

nature of the failure, a hypothesis has to be formulated on how it can be resolved,

which is then used to inform the next cycle of generative modeling. This inference

is a crucial part of the methodology, since the failure of individual cycles is probable

and an important source of insight. At the same time, however, this inference is the

most problematic step of the process since it can rarely be made based solely on logi‐

cal reasoning, but instead depends on a scholar’s intuition and acumen. Still, I could

demonstrate the feasibility of making such an inference with the failure of the gen‐

erative modeling cycle described in Chapter 2, and its resolution through the cycle

described in Chapter 3.

In the present dissertation, I employed generative modeling as the methodology

driving Chaps. 2, 3 and 4, which resulted in a functioning implementation of a story

composition system that is capable of generating and evaluating plots, as well as a
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range of theoretical contributions to NT and CSC. As I wrote on p. 40, “my thesis itself

is intended to be [a] demonstration that generative modeling is a suitable approach

for the exchange between NT and CSC”. Given that I could report several contributions

above, I consider this point made. My hope is that this encourages other researchers

in DH projects, who so far focussed on implementing computational tools that sup‐

port the analysis of literary texts, to also consider the potential of generative models

for their work. For NT, the gain would be that of a radically new tool that can allow

the demonstration of causal effects that are hard to prove purely from analytical rea‐

soning, like the insight on the causal role of personality on plot in Palmer’s fictional

mind approach, presented above. For CSC, the gain could be an influx of theoret‐

ically informed computational representation formalisms for narrative phenomena,

that have so far been eschewed by the field.4 A long‐term vision for the use of AI in

NT that springs from this idea was formulated recently by one of the working groups

of the Dagstuhl Seminar 191725 entitled “Computational Creativity Meets Digital Lit‐

erary Studies”: Computational analysis of narrative texts and generative modeling of

narratives can ideally work hand in hand as mutual validators in an approach called

cycle consistency. To exemplify this idea: imagine a narrative text that is translated

into some sort of well developed computational representation by an narratological

analysis system. How can the computational representation be checked for correct‐

ness? One way would be to execute a generative system on this computational rep‐

resentation, and verify that the generated narrative is isomorphic (or at least related)

to the original story. The idea is a natural descendent of the work presented in this

thesis, where the responsibility for the analysis of the narrative and its encoding in a

computational representation format was handed over to a human, while the recre‐

ation of the plot was already the responsibility of the CSC system. ‘Climbing the meta

mountain’ (introduced in Sec. 1.3.3), one of the central tenets of CC research, calls

for the transfer of more and more of responsibility from the human to the machine,

which, here, would culminate in exactly the cycle consistency system sketched above.

While this vision, of course, still remains far away for NT and AI, in other fields it

4One such phenomenon that comes to my mind immediately is (unreliable) narration, a
long‐established subject of scholarly curiosity in NT that has (to the best of my knowledge)
never been addressed by CSC systems despite its obvious potential.

5https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=19172
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is already gainfully employed. In machine translation, texts often are translated into

a target language and then back to the source language in order to judge the qual‐

ity of the translation algorithm, and in computational style transfer it is employed

as an unsupervised loss in much the same way. Enabling something similar for the

computational study of narratives is a fascinating and enticing prospect.

To summarize, my contribution to the digital humanities is the following

• I propose a novel method for the computational exploration of dynamic prop‐

erties of narratological theories, called generative modeling, and demonstrate

its feasibility as well as ability to generate insights.

6.3 VALEDICTION

If I were allowed to decide what impact this thesis will make, I would wish for it to

encourage more collaboration between AI and NT. Both fields have the potential to

benefit from an increased exchange: AI systems require the ability to tell stories in

order to communicate with humans in a more natural way, and perhaps it is even one

of the prerequisites for achieving human‐level intelligence. NT, on the other hand,

stands to gain additional tools, not only for the automated analyses of narratives but

also for theory testing via generation, a practice that has already been beneficial for

another domain in the humanities, linguistics. The work I presented here shows that

a mutually beneficial exchange is possible, and that ways can be found to bridge the

inherent methodological divide between the two disciplines. One such way, the one I

laid out here, is generative modeling. If you find it appealing, by all means, include it

in your own academic journeys. I would welcome for it to become a road well traveled.
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