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Introduction

One of the main topics in signal processing is the reconstruction of a signal from a set of
measurements. Similarly, in statistics, much interest pertains to finding a ground truth
explaining a sample set. A possible set of measurements are the moments of a measure.
These are quantities that reflect aspects such as the shape of a distribution. For a Borel
measure µ (or, more generally, a distribution) on the space Rn, n ∈ N, its moments are
defined as

mα :=

∫︂
Rn

xαdµ(x), α ∈ Nn,

where xα := xα1
1 · · ·xαn

n . Moments also arise in signal processing as the Fourier coeffi-
cients of a signal.

Of particular interest for this thesis is the truncated moment problem: Is it possible to
reconstruct the measure µ from a truncated moment sequence, i. e. from finitely many
moments {mα | |α| ≤ d}, for some d ∈ N, and how can this be accomplished effectively?
For this, we restrict ourselves to particular parametric classes of measures and seek
to solve the inverse problem of recovering the defining parameters of the underlying
measure.

One such class is that of finitely-supported (complex-signed) measures of the form

r∑︂
j=1

λjδξj ,

supported at points ξ1, . . . , ξr ∈ Cn with weights λ1, . . . , λr ∈ C \ {0}, for some r ∈ N,
where δξj denotes the Dirac measure located at the point ξj . For a fixed number of
support points r, the parameters (ξ1, λ1), . . . , (ξr, λr) are in fact uniquely determined by
the moments {mα | |α| ≤ d}, as long as d ∈ N is sufficiently large.

In the one-dimensional case n = 1, this parameter recovery problem can be solved using
Prony’s method, a widely-used tool in signal processing that is algebraic at heart. It is
precisely this algebraic nature that we focus on and use as motivation for generalizations.
The classic Prony method and its modern multivariate form recover the finitely many
support points as the zero set of a family of polynomials. Therefore, it is natural to view
the support as a zero-dimensional algebraic variety. In the course of the thesis, we not
only consider finitely-supported measures or distributions, but we also examine measures
which have finite moments and a support that is (contained in) a positive-dimensional
variety, such as an algebraic curve or surface. As these varieties consist of infinitely many
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points, this forms a large class of measures and we study related reconstruction problems
for them.

Outline

In Chapter 1, we start by giving an overview of the terminology we use and by summa-
rizing a few algebraic and ideal theoretic properties. Afterwards, we give an introduction
to the multivariate Prony method which can be used to solve the parameter recovery
problem for finitely-supported signed measures in any dimension. It serves as common
starting point for the following chapters of the thesis. Additionally, a multi-degree ver-
sion of Prony’s method is presented which, in particular, is useful for the demonstration
of a link to the decomposition of symmetric tensors, at the end of the chapter.

Chapter 2 is an adaptation of [GW20] and deals with local Dirac mixture distributions.
These can be regarded as a generalization of finitely-supported measures that incorpo-
rate information about derivatives. We summarize results about the moment variety of
these distributions and relate it to the moment variety of Pareto distributions. Beyond
that, we explore the parameter recovery problem. By connecting it to Prony’s method,
we formulate a numerical reconstruction algorithm, which is then applied to some exam-
ples.

In Chapter 3, we switch from finitely-supported measures to the much more general class
of measures that are supported on algebraic varieties of any dimension. We analyze
which features of Prony’s method can be transferred to this setting. By considering
the kernels of certain moment matrices, it is possible to recover the vanishing ideal
of the support of a measure. In other words, given sufficiently many moments, one
obtains the Zariski closure of the support, by algebraic means. Afterwards, we focus on
measures whose support is contained in the complex torus. Besides the identification of
the support, we examine functions that are constructed from finitely many moments and
that approximate particular features of the underlying measure on the torus.

Finally, Chapter 4 addresses the problem of finding the individual components of mixtures
of measures that are supported on different algebraic varieties. As in the case of finitely-
supported measures, this problem can be approached by eigenvalue-based methods. For
measures on positive-dimensional varieties, this strategy requires some alterations which
we discuss in detail. We present several reconstruction algorithms that allow to solve
this problem. An implementation of the algorithms, both symbolic and numerical, is
provided at [Wag21].

Contributions

The main contributions of this thesis are the following:

• Algorithm 2.1 represents a procedure for reconstructing l-th order local Dirac mix-
tures, which is proved in Theorem 2.3.2. Our setting is a special case of the one
considered by [Mou18], which allows us to optimize the algorithm for the use of
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fewer moments than would be needed in a more general context.

• The Vandermonde decomposition of the moment matrix of a finitely-supported
signed measure is an essential ingredient of Prony’s method. Theorem 3.2.4 forms
an analog of this decomposition that is suitable also for measures supported on
positive-dimensional varieties.

• For any compactly-supported signed measure, Theorem 3.4.3 establishes a relation-
ship between moment matrices and the vanishing ideal of the support. It shows
that the Zariski closure of the support can be computed from finitely many mo-
ments. The theorem can be viewed as an extension of Theorem 3.4.11, which makes
a similar statement for non-negative measures and has been considered by [LR12;
PPL21], in the real affine (non-trigonometric) setting.

• Theorem 3.5.13 proves a pointwise convergence property of certain functions associ-
ated to the moments of measures supported on algebraic varieties of any dimension.
In the finitely-supported case, this is connected to MUSIC [Sch86], a well-known
parameter estimation technique, so the theorem is a generalization for particular
measures with infinite support.

• The development of Algorithms 4.2 to 4.4 forms the core of Chapter 4. Their cor-
rectness is proved in Theorems 4.4.7, 4.7.4 and 4.7.9, respectively. Algorithm 4.2
solves a parameter recovery problem for pencils of positive-semidefinite matrices.
Algorithms 4.3 and 4.4, on the other hand, address the task of finding the compo-
nents of mixtures of measures supported on positive-dimensional varieties, putting
more emphasis on the algebraic geometric nature of the problem – for this, The-
orem 4.5.4 is of central importance, by providing a characterization of specific
eigenvectors.

All these algorithms are eigenvalue-based. As such, they represent a variant of
pencil-based techniques, such as ESPRIT, that are in common use for the case
of finitely-supported signed measures [RK90; HS90; ACdH10; Moi15]. By allowing
non-discrete measures, our setting is also a more general form of the one considered
in multi-snapshot spectral estimation, which appears in problems like direction-of-
arrival estimation (see e. g. [KV96; LZGL21]).
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1 Preliminaries

1.1 Terminology

Let us fix some notation and terminology that is used throughout this thesis. The
symbol k always denotes a field. Note that in some sections we explicitly assume that
the field k satisfies additional properties, such as being of characteristic 0. The natural
numbers are denoted by N = {0, 1, 2, . . .}.
We choose the following conventions from linear algebra. The standard basis of the vector
space kn, n ∈ N, is denoted by e1, . . . , en. If v ∈ k

n is a vector, then the coordinates
are denoted by v1, . . . , vn, with respect to the standard basis or some other specified
basis. The homogeneous coordinates of v are written as [v] = [v1 : · · · : vn] ∈ Pn−1

k
. If

no confusion is possible, we may identify a matrix with its corresponding linear map,
using the convention that vectors are multiplied to matrices from the right. Thus, the
kernel of a matrix is the same as the right null space. Similar conventions apply to the
image and related notions. If V ⊆ k

n is a vector subspace and no confusion is possible,
we may also denote by V a matrix whose columns span this space. The trivial vector
space is denoted by 0. The (algebraic) dual space of a k-vector space V is written as V ∗

or Homk(V,k). Similarly, Homsemi
k

(V,k) denotes the set of semilinear maps from V to
k (cf. Section 3.1). The notion of positive-semidefiniteness of a matrix only applies to
matrices that are also Hermitian.

For an introduction to algebraic geometry, we refer to [CLO15]. For more advanced
topics, see also [Har87] and [Eis99]. In this thesis, the term algebraic variety refers to
the vanishing set of a set of polynomials, also known as algebraic set, that is, we do
not require irreducibility. A variety generated by an ideal a is denoted by V(a). The
vanishing ideal of a set X ⊆ k

n is denoted by I(X). Over an infinite field, a property
holds generically, if it is satisfied for all elements of a non-empty Zariski-open set.

Additionally, let us fix some algebraic notions. Unless stated otherwise, all rings are
unital. We use multi-index notation for monomials. Thus, when working in the polyno-
mial ring k[x1, . . . , xn], the monomials are denoted by xα = xα1

1 · · ·xαn
n , α ∈ Nn. The

(total) degree of a polynomial p =
∑︁

α∈Nn pαx
α with coefficients pα ∈ k is given by

deg(p) = max{|α| | α ∈ Nn, pα ̸= 0}, where |α| := α1 + · · · + αn. Similarly, we define
the max-degree of a Laurent polynomial q =

∑︁
α∈Zn qαx

α, qα ∈ k, as max{|α|∞ | α ∈
Zn, qα ̸= 0}, where |α|∞ := max{|α1|, . . . , |αn|}. The same definition applies when q
is a polynomial. Though, note that the max-degree does not define a grading of the
polynomial ring, but gives rise to a filtration (cf. Example 3.1.3). By ⟨−⟩, we denote
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1.2 Algebraic prerequisites

the vector subspace spanned by a family of vectors or the ideal spanned by a family of
ring elements. If B ⊆ k[x1, . . . , xn] is a family of linearly independent polynomials, we
also write

⨁︁
f∈B kf for the vector subspace generated by these elements, in order to

emphasize that B is chosen as basis and to avoid ambiguity.

Given an ideal a ⊆ k[x1, . . . , xn], the Krull-dimension of the quotient ring k[x1, . . . , xn]/a,
i. e. the supremum of the heights of all prime ideals, is the same as the dimension of the
variety V(a) ⊆ k

n (cf. [CLO15, Theorem 9.3.8]). By abuse of language, we also refer to
this as the dimension of the ideal a. The residue class of a polynomial p ∈ k[x1, . . . , xn]
modulo an ideal a is denoted by p = p + a or, if there is no risk of confusion, it may
also be denoted by p again. (Note also that complex conjugation of a vector v ∈ Cn is
denoted by v.) We write

mξ := ⟨x− ξ⟩ = ⟨x1 − ξ1, . . . , xn − ξn⟩

for the maximal ideal associated to a point ξ ∈ k
n. Furthermore, the map

evξ : k[x1, . . . , xn] −→ k, p ↦−→ p(ξ),

denotes the evaluation homomorphism associated to the point ξ ∈ k
n. It can naturally be

viewed as a ring homomorphism to the quotient ring corresponding to the ideal mξ.

Unless otherwise noted, the term measure refers to non-negative Borel measures. Oc-
casionally, we also work with signed measures, which will especially be common for the
finitely-supported measures we consider. Over the complex numbers, the term signed
measure stands for complex(-signed) measure. Every (finite) non-negative measure is,
in particular, a signed measure. Moreover, signed measures are particular distributions.
Distributions will play a role primarily in Chapter 2. For details, we refer to [Sch73;
Rud87].

1.2 Algebraic prerequisites

For completeness, we collect a few elementary ideal theoretic and geometric properties
which will be useful for our work later on. We start with some properties of comaximal
ideals. Recall that two ideals a, b of a ring R are comaximal if a+ b = R.

Lemma 1.2.1. Let a, b be comaximal ideals of a ring R. Assume that a′b ⊆ a for some
ideal a′ ⊆ R. Then a′ ⊆ a.

Proof. As a and b are comaximal, we can choose elements a ∈ a, b ∈ b such that a+b = 1.
Then, for every element f ∈ a′, we have f = f(a + b) = fa + fb ∈ a, since fa ∈ a and
fb ∈ a′b ⊆ a.

The following statement is a general form of the Chinese Remainder Theorem.

Lemma 1.2.2 (cf. [Bou06, Chapter 2.1.2, Proposition 5]). Let r ≥ 1 and let a1, . . . , ar ⊆
R be ideals in a ring R which are pairwise comaximal. Then
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Preliminaries

(1) a1 ∩ · · · ∩ ar = a1 · · · ar,
(2) R/(a1 · · · ar) ∼= R/a1 ⊕ · · · ⊕R/ar.

Lemma 1.2.3. Let r ≥ 1, let a1, . . . , ar ⊆ R be ideals and let p ⊆ R be a prime ideal in
a ring R such that aj ⊈ p for 1 ≤ j ≤ r. Then

a1 · · · ar ⊈ p.

In particular, this implies that
r⋂︂

j=1

aj \ p ̸= ∅.

Proof. Assume that a1 · · · ar ⊆ p. For every 1 ≤ j ≤ r, we can choose an element
fj ∈ aj \ p, since aj ⊈ p. This means that

∏︁r
j=1 fj ∈ a1 · · · ar ⊆ p. As p is a prime ideal,

this implies that fj ∈ p for some j, which is a contradiction by choice of fj . Therefore,
we have a1 · · · ar ⊈ p. The addendum follows from a1 · · · ar ⊆ a1 ∩ · · · ∩ ar.

Moreover, let us take note of the following property related to (affine) Hilbert functions
(cf. [CLO15, Chapter 9.3]). Here, O(f(d)), Θ(f(d)) denote the sets of functions bounded
from above or, respectively, from above and below (up to constant factors) by a function
f(d), for all sufficiently large d.

Lemma 1.2.4. Let X1, . . . ,Xr ⊆ k
n be varieties of dimension s ∈ N over a field k of

characteristic 0 such that dim(Xi ∩ Xj) < s for all 1 ≤ i, j ≤ r with i ̸= j. Denote
by aj ⊆ R := k[x1, . . . , xn] the vanishing ideal of Xj and set a :=

⋂︁r
j=1 aj as well as

bj :=
⋂︁r

k=1,k ̸=j ak, for 1 ≤ j ≤ r. Then

(1) dim((bj ∩R≤d)/(a ∩R≤d)) ∈ Θ(ds), for every 1 ≤ j ≤ r;

(2) dim(R≤d/(a ∩R≤d))−
∑︁r

j=1 dim((bj ∩R≤d)/(a ∩R≤d)) ∈ O(ds−1).

Here, R≤d denotes the space of polynomials of total degree at most d ∈ N.

Proof. These statements follow from an analysis of Hilbert polynomials. Indeed, for all
1 ≤ j ≤ r, we have

dim((bj ∩R≤d)/(a ∩R≤d)) = dim(bj ∩R≤d)− dim(a ∩R≤d)

= −dim(R≤d/(bj ∩R≤d)) + dim(R≤d/(a ∩R≤d)).

The affine Hilbert polynomials of R/bj and R/a have leading terms ds

s!

∑︁r
k=1,k ̸=j degXk

and ds

s!

∑︁r
k=1 degXk, respectively, by [Har87, Proposition 1.7.6] combined with [CLO15,

Theorem 9.3.12 (ii)], where Xk denotes the closure of Xk in Pn
k
. Thus, the affine Hilbert

polynomial of bj/a has the leading term ds

s! degXj , from which the statements follow.

In particular, if the dimension of the varieties is s = 0, then (2) is zero for sufficiently
large d ∈ N, which agrees with the Chinese Remainder Theorem, Lemma 1.2.2.

Furthermore, recall the following property about prime ideals in Laurent polynomial
rings.
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1.3 Prony’s method

Lemma 1.2.5. Let a ⊆ k[x±1
1 , . . . , x±1

n ] be an ideal, where n ∈ N and k is any field.
Then a is prime if and only if a ∩ k[x1, . . . , xn] is prime.

Proof. This follows from the fact that the Laurent ring is the localization of the poly-
nomial ring at the multiplicatively closed set {xα}α∈Nn ; see for instance [Eis99, Proposi-
tion 2.2].

1.3 Prony’s method

1.3.1 Multivariate Prony method

The following is a multivariate generalization of Prony’s method that, in its univariate
form, goes back to [Pro95]. It is the central starting point for many of our considerations
in this thesis. The variant we cite here is useful for this, but there are many alternative
formulations that accentuate different points of view. For instance, it has been considered
in terms of exponential sums with a focus on signal processing in [KPRvdO16; vdOhe17;
Sau17; Mou18]. Another variation of Prony’s method is Sylvester’s algorithm [Syl86]. It
is also related to Macaulay inverse systems (see e. g. [Eis99, Chapter 21.2]) and apolarity
theory (cf. [IK99, Lemma 1.15, algorithm in Chapter 5.4], [Sch17, Chapter 19]), which
put more emphasis on algebraic and geometric aspects. We will see further variants later
on, in Theorems 1.3.6 and 2.3.1.

Theorem 1.3.1 ([Pro95], [KPRvdO16], [vdOhe17, Corollary 2.19]). Let k be a field and
let R = k[x1, . . . , xn] be the polynomial ring in n variables. Let σ : R → k be a k-linear
map of the form

σ(p) =
r∑︂

j=1

λjp(ξj), (1.1)

where ξj ∈ k
n are distinct points and λj ∈ k \ {0}, for 1 ≤ j ≤ r. If d ∈ N such that

ev≤d−1 : R≤d−1 → k
r, p ↦→ (p(ξj))

r
j=1, is surjective, then

V(kerHd) = {ξ1, . . . , ξr},

where Hd :=
(︁
σ(xα+β)

)︁
α,β∈Nn,|α|,|β|≤d

.

Here, kerHd is viewed as a subset of R≤d, the polynomials of degree at most d, by noting
that, with respect to the monomial basis, the matrix Hd represents the k-linear map into
the dual space of the vector space R≤d given by

R≤d −→ R∗
≤d, p ↦−→ (q ↦→ σ(pq)),

as well as the k-bilinear mapping

R≤d ×R≤d −→ k, (p, q) ↦−→ σ(pq).
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Preliminaries

Then, V(kerHd) denotes the common zero set of all the polynomials that are annihilated
by Hd. The ideal spanned by kerHd in R, that is, the vanishing ideal of the points
{ξ1, . . . , ξr}, is also called Prony ideal.

A map of the form (1.1) can also be viewed as exponential sum. It satisfies σ(xα) =∑︁r
j=1 λjξ

α
j for all α ∈ Nn, so can be interpreted as a map Nn → k, by composing

it with α ↦→ xα. Moreover, the map σ is a linear combination of evaluation maps
corresponding to the points ξ1, . . . , ξr, so σ =

∑︁r
j=1 λj evξj , where evξj denotes the

evaluation homomorphism associated to the point ξj , i. e. the element of the dual space
of R satisfying evξj (p) = p(ξj) for all p ∈ R, for 1 ≤ j ≤ r.

Also note that σ is the moment functional of the finitely-supported measure µ :=∑︁r
j=1 λjδξj . For this interpretation, we usually assume that k is R or C. If k = C

and the weights λ1, . . . , λr ∈ C are complex, then µ is a signed (complex) measure,
which is explicitly allowed in this setting. Here, δξj denotes the Dirac measure supported
at the point ξj ∈ k

n for 1 ≤ j ≤ r, defined as

δξj (A) =

{︄
1, if ξj ∈ A,

0, if ξj /∈ A,

for a set A ⊆ k
n. Indeed, the signed measure µ satisfies

∫︁
kn x

αdµ(x) =
∑︁r

j=1 λjξ
α
j =

σ(xα), so σ(xα) agrees with the α-th moment of µ. On top of that, the moments σ(xα)
uniquely determine the map σ. From this point of view, the statement of Theorem 1.3.1
is that the support of the finitely-supported signed measure µ is already determined by
finitely many of its moments, namely the ones that are required to construct the matrix
Hd. In fact, in this case, the weights λ1, . . . , λr can be recovered as well, by subsequently
solving a linear system of equations (cf. [vdOhe17, Algorithm 2.1]), so the measure µ
is fully determined by these moments. Note that ev≤d−1 is surjective if d is sufficiently
large, a trivial bound being d ≥ r; cf. [vdOhe17, Corollary 2.20]. The ideal

r⋂︂
j=1

⟨x− ξj⟩ =
r∏︂

j=1

⟨x− ξj⟩ =
r∏︂

j=1

⟨x1 − ξj1, . . . , xn − ξjn⟩

is clearly generated by polynomials of degree at most r, but in the multivariate setting
with n ≥ 2, unless the points ξ1, . . . , ξr are contained in a one-dimensional subspace of
k
n, this bound can be much larger than necessary.

A more practical sufficient criterion for the evaluation map ev≤d−1 being surjective is
obtained by checking the rank of the matrix Hd−1. We can factor Hd−1 as

Hd−1 =

(︄
r∑︂

j=1

λjξ
α+β
j

)︄
|α|,|β|≤d−1

= V ⊤ diag(λ1, . . . , λr)V,

where V =
(︁
ξαj
)︁
1≤j≤r,|α|≤d−1

denotes the Vandermonde matrix associated to the points
ξ1, . . . , ξr up to degree d− 1. This matrix corresponds to the linear map

ev≤d−1 : R≤d−1 → k
r, p ↦→ (p(ξ1), . . . , p(ξr)),

12



1.3 Prony’s method

with respect to the monomial basis. As the rank of Hd−1 is at most r, it follows that
ev≤d−1 is surjective if and only if rkHd−1 = r.

As a computational reconstruction tool, Prony’s method is summarized in Algorithm 1.1.
If σ is a moment functional as before, then mα = σ(xα), α ∈ Nn, denote the moments
here.

Algorithm 1.1 Prony’s method
Input: r, d ∈ N as well as {mα}α∈Nn,|α|≤2d.
Assumptions: There exist distinct points ξ1, . . . , ξr ∈ k

n and parameters λ1, . . . , λr ∈
k \ {0} from some field k such that mα =

∑︁r
j=1 λjξ

α
j for all α ∈ Nn, |α| ≤ 2d.

Moreover, d is large enough such that Hd−1 := (mα+β)|α|,|β|≤d−1 has rank r.
Output: λj , ξj for 1 ≤ j ≤ r (up to permutation).
1: Define Hd := (mα+β)|α|,|β|≤d.
2: Compute V(kerHd) = {ξ1, . . . , ξr}.
3: Solve the linear system mα =

∑︁r
j=1 λjξ

α
j , |α| ≤ 2d, to obtain the coefficients

λ1, . . . , λr corresponding to ξ1, . . . , ξr.

Remark 1.3.2. Theorem 1.3.1 and Algorithm 1.1 are formulated in terms of the total
degree of polynomials. Another common variant of Prony’s method works with the max-
degree of polynomials, which induces a filtration of the polynomial ring. More generally,
one can work with other filtrations of the polynomial ring; see the statements in [vdOhe17,
Chapter 2].

Another variation of Prony’s method works with Toeplitz matrices of the form(︄
r∑︂

j=1

λjξ
−α+β
j

)︄
|α|∞,|β|∞≤d

instead of Hankel matrices, where the moments are usually bounded in max-degree. For
this to be defined, the points ξ1, . . . , ξr must have non-zero coordinates, so they are
contained in the algebraic torus (C∗)n. This is especially common when working in a
trigonometric setting, with points on the complex torus

Tn := {z ∈ Cn | |z1| = · · · = |zn| = 1}.

(Note that sometimes it is convenient to identify Tn with the cubes [−π, π)n or [0, 1)n

in Rn, in which case we denote it by Tn.) We will see more about this point of view in
Chapters 3 and 4. ♢

1.3.2 A multi-degree variant

In this section, we focus on a multi-degree version of Prony’s method, which is useful,
in particular, for the discussion of tensor decomposition in Section 1.5. We fix a field
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k and vector spaces Vk := k
nk of dimension nk ∈ N, 1 ≤ k ≤ m. Let N := Nm be an

indexing set. Then, for α = (α1, . . . , αm) ∈ Nn1 × · · · × Nnm and δ = (δ1, . . . , δm) ∈ N ,
we define |α| := (|α1|, . . . , |αm|) ∈ N and, using the partial order on N , we have |α| ≤ δ
if |αk| ≤ δk for 1 ≤ k ≤ m.

Further, let R≤δ :=
⨂︁m

k=1 k[x1, . . . , xnk
]≤δk and denote by xα := xα1 ⊗ · · · ⊗ xαm , where

xαk = xαk1
1 · · ·xαk,nknk

as usual. In other words, R≤δ is the polynomial ring in
∑︁r

k=1 nk
variables truncated at multi-degree δ defined by a grading of the polynomial ring induced
by N , so we can write R≤δ

∼=
⨁︁

|α|≤δ kx
α.

Given points ξjk ∈ Vk, for 1 ≤ j ≤ r, 1 ≤ k ≤ m, we use the notation ξj :=
(ξj1, . . . , ξjm) ∈ V1 × · · · × Vm and ξαj = ξα1

j1 · · · ξαm
jm . With this notation, the elements

ξ1, . . . , ξr are points in a space of dimension
∑︁r

k=1 nk, the evaluation map corresponding
to these points is given by

ev≤δ := ev≤δ,ξ1,...,ξr : R≤δ −→ k
r, xα ↦−→

(︁
ξαj
)︁
1≤j≤r

. (1.2)

For ease of notation, we omit the points ξ1, . . . , ξr from the index. The Vandermonde
matrix corresponding to this map is

V≤δ :=
(︁
ξα1
j1 · · · ξαm

jm

)︁
1≤j≤r
|αk|≤δk, 1≤k≤m

=
(︁
ξαj
)︁
1≤j≤r
|α|≤δ

∈ k
r×

(︂
(n1+δ1

n1
)···(nm+δm

nm
)
)︂
,

which we denote by V≤δ (not to be confused with the vector spaces Vk, 1 ≤ k ≤ m).

Lemma 1.3.3 ([vdOhe17, Remark 2.8]). Let σ =
∑︁r

j=1 λj evξj for λj ∈ k and ξj ∈
V1 × · · · × Vm, 1 ≤ j ≤ r. Let δ, δ′ ∈ N . Then the following properties hold:

(1) Hδ′,δ :=
(︁
σ(xα+β)

)︁
|α|≤δ′,|β|≤δ

= V ⊤
≤δ′ΛV≤δ, where Λ := diag(λj)1≤j≤r.

(2) If λ1, . . . , λr ̸= 0 and ev≤δ′ : R≤δ′ → k
r, xα ↦→ (ξαj )1≤j≤r, is surjective, then

kerV≤δ = kerHδ′,δ.

Proof. The factorization Hδ′,δ = V ⊤
≤δ′ΛV≤δ follows by direct computation. Furthermore,

if λ1, . . . , λr ̸= 0 and ev≤δ′ is surjective, then V ⊤
≤δ′Λ represents an injective map, so the

kernels of V≤δ and Hδ′,δ must agree.

Note that, if the points ξ1, . . . , ξr are not distinct, then the map ev≤δ′ : R≤δ′ → k
r can

never be surjective, so the surjectivity assumption implies in particular that the points
are distinct.

Lemma 1.3.4. Let ξj ∈ V1×· · ·×Vm, 1 ≤ j ≤ r, let δ ∈ Nm and J ⊆ {1, . . . ,m}. Then
the following are equivalent:

(1) im(ev≤δ) = im(ev≤δ′) for some δ′ = δ +
∑︁

k∈J akek, ak ∈ Z≥1,

(2) im(ev≤δ) = im(ev≤δ′) for all δ′ = δ +
∑︁

k∈J akek, ak ∈ Z≥0,

(3) im(ev≤δ) = im(ev≤δ+ek) for all k ∈ J ,

14
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where ek ∈ Nm denotes the k-th unit vector and ev≤δ denotes the truncated evaluation
map (1.2) corresponding to ξ1, . . . , ξr. Moreover, if im(ev≤δ) = im(ev≤δ−ek) for all
k = 1, . . . ,m, then im(ev≤δ) = im(evξ1,...,ξr).

Proof. First, observe that im(ev≤δ) ⊆ im(ev≤δ′) whenever δ ≤ δ′. Therefore, if (1) holds,
we have im(ev≤δ) = im(ev≤δ′′) = im(ev≤δ′) for all δ′′ ∈ Nm with δ ≤ δ′′ ≤ δ′. In
particular, this holds for δ′′ = δ+ek, k ∈ J , so (3) is satisfied. The implication (2) ⇒ (1)
is trivial. For the implication (3) ⇒ (2), we claim that

(︁
ξαj
)︁
1≤j≤r

∈ im(ev≤δ) for all
|α| ≤ δ′. This follows by induction over |α|. For this, we can assume that |α| ̸≤ δ, so
in particular α is non-zero. Choose δ̃ ∈ Nm such that |α| = δ̃ + ek for some k ∈ J .
This means, we can choose an element β such that β < α and |β| = δ̃. Applying the
inductive hypothesis, it follows that

(︁
ξβj
)︁
j
= ev≤δ(p) for some p ∈ R≤δ. Therefore,(︁

ξαj
)︁
j
= ev≤δ+ek(xlp) ∈ im(evδ+ek) = im(evδ), where l is the index in which α and β

differ, which proves the claim.

The addendum follows by considering the case J = {k} for k = 1, . . . ,m in order to
conclude that im(ev≤δ) = im(ev≤δ+ek) for all k = 1, . . . ,m.

Lemma 1.3.5. Let ξj ∈ V1 × · · · × Vm, 1 ≤ j ≤ r. If ev≤δ−ek is surjective for all
k = 1, . . . ,m, then

V(ker ev≤δ) = {ξ1, . . . , ξr}.

Proof. This follows from [vdOhe17, Theorem 2.15].

This yields the following multi-degree variant of Prony’s method. It is a variant of
[vdOhe17, Corollary 2.19] that we phrase in terms of a non-square Hankel matrix.

Theorem 1.3.6. Let σ =
∑︁r

j=1 λj evξj , where λj ∈ k \ {0}, ξj ∈ V1 × · · · × Vm for
1 ≤ j ≤ r. Let δ ∈ Nm such that ev≤δ−ek is surjective for all k = 1, . . . ,m. Then

V(kerHδ−ek,δ) = {ξ1, . . . , ξr}

for any choice of k, where Hδ−ek,δ :=
(︁
σ(xα+β)

)︁
|α|≤δ−ek,|β|≤δ

.

Proof. First observe that the hypotheses imply that the points ξ1, . . . , ξr are distinct.
Then, by Lemma 1.3.3, we have kerV≤δ = kerHδ−ek,δ and it follows from Lemma 1.3.5
that V(kerHδ−ek,δ) = {ξ1, . . . , ξr} for any k ∈ {1, . . . ,m}.
Note that, by Lemma 1.3.4, the hypothesis that the evaluation maps ev≤δ−ek , 1 ≤ k ≤ m,
are surjective is satisfied if im(ev≤δ) = im(ev≤δ−ek) for all 1 ≤ k ≤ m and the points
ξ1, . . . , ξr are distinct, as then im (ev≤δ) = im (evξ1,...,ξr)

∼= k
r.

The case m = 1 of the theorem corresponds to the ordinary form of Prony’s method with
respect to the total degree of polynomials instead of multidegree – though, in contrast
to Theorem 1.3.1, the Hankel matrix here is not square, which is a well-known optimiza-
tion of Prony’s method. Additionally, the following example shows that Theorem 1.3.6
gives a stronger statement than the variant of Prony’s method that is formulated in
Theorem 1.3.1 in terms of the total degree of polynomials.
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Example 1.3.7. Let m = 2, n1 = n2 = 1, so that V1 × V2 ∼= k
2. Moreover, let

σ = λ1 evξ1 +λ2 evξ2 be a map such that ξ11 ̸= ξ21 and ξ12 ̸= ξ22. Then

im
(︁
ev≤(0,0)

)︁
=
⟨︂(︂
ξ
(0,0)
1 , ξ

(0,0)
2

)︂⟩︂
= ⟨(1, 1)⟩

is a one-dimensional subspace of k2, so ev≤(0,0) is not surjective. However, both

im
(︁
ev≤(1,0)

)︁
=
⟨︂
(1, 1),

(︂
ξ
(1,0)
1 , ξ

(1,0)
2

)︂⟩︂
= ⟨(1, 1), (ξ11, ξ21)⟩

and
im
(︁
ev≤(0,1)

)︁
=
⟨︂
(1, 1),

(︂
ξ
(0,1)
1 , ξ

(0,1)
2

)︂⟩︂
= ⟨(1, 1), (ξ12, ξ22)⟩

are two-dimensional by choice of ξ1, ξ2, so we can apply Theorem 1.3.6 with δ = (1, 1).
Note that, in this example, both max-degree and total degree variants of Prony would
require larger Vandermonde matrices, that is, those of max-degree 2 or total degree 2.
Thus, Theorem 1.3.6 is a strictly stronger statement, in the sense that it requires fewer
moments, i. e. evaluations of σ.

For the corresponding Hankel matrix, we either use moments of degree at most (2, 1)
or (1, 2), instead of max-degree 4 or total degree 4. Thus, in total, this only requires 6
moments, whereas one would need 25 moments using max-degree or 15 moments using
total degree. ♢

Remark 1.3.8. A different kind of generalization is given by [Sau18]. For r, n ∈ N,
define the hyperbolic cross

Υr :=

{︄
α ∈ Nn

⃓⃓⃓⃓
⃓

n∏︂
i=1

(αi + 1) ≤ r

}︄
,

whose cardinality is in O
(︁
r logn−1(r)

)︁
, as follows from [PPST18, Example 8.21], for

instance. Due to [Sau18, Corollary 11], it then holds that, for every set of r points
ξ1, . . . , ξr ∈ Cn, the corresponding Vandermonde matrix

(︁
ξαj
)︁
1≤j≤r, α∈Υr

has rank r.

Define ⌈Υr⌉ as the Minkowski sum ⌈Υr⌉ := Υr + {0, e1, . . . , en}. Then, for any σ =∑︁r
j=1 λj evξj , λj ∈ C∗, ξj ∈ Cn, 1 ≤ j ≤ r, parameter recovery is possible by applying

Prony’s method to the Hankel matrix
(︁
σ
(︁
xα+β

)︁)︁
α∈Υr,β∈⌈Υr⌉. The number of required

moments is the cardinality of Υr + Υr + {0, e1, . . . , en}, which is in O
(︁
r2 logn−2(r)

)︁
for

fixed n ≥ 2, as follows from [Käm13, Corollary 4.9].

In Example 1.3.7 above, the hyperbolic cross Υ2 = {(0, 0), (0, 1), (1, 0)} is of cardinality 3.
The Hankel matrix involves the evaluations at exponents from the set Υ2+ ⌈Υ2⌉ = {α ∈
N2 | |α| ≤ 3}, which has cardinality 10. Note that this is larger than the number of
moments needed in Example 1.3.7 because the statement here holds universally for any
set of points, whereas, in the example, the choice of δ depends on the concrete instance
of a point set. ♢
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1.4 Special case of equal weights

An interesting special case of the reconstruction problem described in Section 1.3.1 arises
when the given moments correspond to evaluations of a univariate exponential sum for
which all the weights are equal. For simplicity, we can assume that all the weights are 1.
In this case, we have n = 1 and the moments are of the form

mk = ξk1 + · · ·+ ξkr , k ∈ N,

for (not necessarily distinct) points ξj ∈ k, 1 ≤ j ≤ r, where we assume that k is a field of
characteristic 0. This means that the moments are symmetric polynomials in the a priori
unknown variables ξj , as they are invariant under permutations of the points ξ1, . . . , ξr.
More specifically, these are exactly the power sums ([Mac95, Chapter 1.2]), which form a
basis of the ring of symmetric functions in r variables, so that every symmetric polynomial
in the unknowns ξj can be expressed formally in terms of the moments mk, k ∈ N. Since
the basis is compatible with the degree, any symmetric polynomial of degree d ∈ N can
in fact be expressed in terms of m0, . . . ,md.

A different basis of the ring of symmetric polynomials consists of the elementary sym-
metric polynomials ([Mac95, Chapter 1.2])

ek :=
∑︂

1≤j1<···<jk≤n

ξj1 · · · ξjk , k ∈ N.

These have the property

r∏︂
j=1

(X − ξj) = e0X
r − e1X

r−1 + · · ·+ (−1)rer.

In other words, the coefficients of the Prony polynomial
∏︁r

j=1(X − ξj) are given, up to
sign, by the elementary symmetric polynomials in terms of the points ξj .

As both the power sums and the elementary symmetric polynomials generate the ring
of symmetric polynomials, the elementary symmetric polynomials can be computed
from the power sums by a non-linear change of basis; see [Mac95, Chapter 1.2, Equa-
tion (2.14′)]. For the parameter recovery problem, this means that we can compute the
r+1 coefficients of the Prony polynomial from the moments m0, . . . ,mr, by this change
of basis.

Subsequently computing the roots of the Prony polynomial allows to recover the points
ξ1, . . . , ξr. If the points ξ1, . . . , ξr are not known to be distinct, the roots need to be
computed with multiplicity. In summary, we obtain the following statement.

Proposition 1.4.1. Let mk, k ∈ N, be moments of the form mk = ξk1 + · · · + ξkr ,
where ξ1, . . . , ξr ∈ k. Then the parameters ξ1, . . . , ξr can be recovered uniquely from the
moments m0, . . . ,mr.
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Proof. This follows from the above discussion. Note in particular that m0 = r yields the
number of summands.

This approach requires fewer moments than Prony’s method in Theorem 1.3.1 and Algo-
rithm 1.1 would use; namely, r+1 instead of 2r+1. However, this involves a non-linear
transformation for the change of basis, whereas Prony’s method would require solving a
linear problem for the computation of the kernel of a moment matrix.

Example 1.4.2. Let r = 4 and consider the moment vector given by (m0, . . . ,m4) =
(4, 14, 50, 182, 674). We want to construct the univariate Prony polynomial

f := e0X
4 − e1X

3 + e2X
2 − e3X + e4

whose coefficients are elementary symmetric polynomials. In terms of the power sums,
we have

f = p∅X
4 − p1X

3 +
(︁
1
2p1,1 − 1

2p2
)︁
X2 +

(︁
−1

6p1,1,1 +
1
2p2,1 − 1

3p3
)︁
X

+ 1
24p1,1,1,1 − 1

4p2,1,1 +
1
8p2,2 +

1
3p3,1 − 1

4p4,

where the coefficients pk1,...,kl denote the power sum basis elements, which are indexed
by partitions. Since pk1,...,kl = mk1 · · ·mkl , we obtain

f = X4 − 14X3 + 73X2 − 168X + 144 = (X − 3)2(X − 4)2.

Thus, the factorization of f shows that the moments are of the form mk = 2 · 3k + 2 · 4k
for 0 ≤ k ≤ 4. In particular this example shows that the points ξ1, . . . , ξr do not need to
be distinct. We can count the roots with multiplicities which allows for weights that are
different from 1, but are (small) positive natural numbers instead. ♢

For related works and generalizations, see for example [Tsa+20] and [MSW21].

1.5 Connection to symmetric tensor decomposition

Here, we briefly explore the relationship between Prony’s method and the decomposition
of tensors. For extensive references on this topic, we refer to [Lan12] as well as [IK99],
but also [BCMT10; BBCM13; Mou18] are relevant. We start with a short introduction
to tensors.

Let k be a field of characteristic 0. Let V = k
n+1, for some n ∈ N, be a k-vector space

and let d ∈ N. The d-fold tensor product V ⊗d is again a vector space whose elements are
called tensors of order d. Tensors of the form v1 ⊗ · · · ⊗ vd ∈ V ⊗d are called elementary
tensors or tensors of rank 1, if v1, . . . , vd ∈ V \{0}. As V ⊗d is finite-dimensional, namely
of dimension (n+ 1)d, each tensor t ∈ V ⊗d can be written as a finite sum of elementary
tensors

t =

r∑︂
j=1

vj1 ⊗ · · · ⊗ vjd, (1.3)
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where vjk ∈ V for 1 ≤ j ≤ r, 1 ≤ k ≤ d. If r is the smallest integer for which this is
possible, then r is called rank of t and (1.3) is a (rank-)decomposition of the tensor t
(also called canonical-polyadic decomposition). In general, it is difficult to compute the
rank of a tensor or a decomposition of a tensor if the order d of the tensor is larger
than 2. Tensors of order 2 correspond to matrices, for which efficient rank computations
are available.

The space of symmetric tensors Sd(V ) is defined as the
(︁
n+d
d

)︁
-dimensional subspace of

V ⊗d of tensors that are invariant under the permutation action of the symmetric group
Sd defined by v1 ⊗ · · · ⊗ vd ↦→ vπ(1) ⊗ · · · ⊗ vπ(d) for π ∈ Sd. Every symmetric tensor
t ∈ Sd(V ) can be written as

t =

r∑︂
j=1

λjv
⊗d
j (1.4)

with suitable vectors vj ∈ V and coefficients λj ∈ k, 1 ≤ j ≤ r. The minimal possible r is
called symmetric rank of t and (1.4) is a symmetric(-rank) decomposition. Note that the
symmetric rank of a symmetric tensor can be strictly larger than its rank when viewed
as a tensor in V ⊗d; see [Shi18] for an example. If the field k is algebraically closed, the
coefficients λj in the decomposition (1.4) can be omitted, as then t =

∑︁r
j=1w

⊗d
j , where

wj := d
√︁
λjvj ∈ V for 1 ≤ j ≤ r.

It is possible to identify the set of symmetric tensors Sd(V ) with k[X0, . . . , Xn]d, the set
of homogeneous polynomials of degree d in n + 1 variables. If x0, . . . , xn ∈ V is a basis
of V , then, in terms of the basis of V ⊗d, the identification is defined by the map

Sd(V ) −→ k[X0, . . . , Xn]d,∑︂
β∈Nd,|β|∞≤n

tβxβ1 ⊗ · · · ⊗ xβd
↦−→

∑︂
β

tβXβ1 · · ·Xβd
=

∑︂
α∈Nn+1,|α|=d

(︃
d

α

)︃
t̂αX

α, (1.5)

where t̂α = tβ if Xβ1 · · ·Xβd
= Xα, which is well-defined for symmetric tensors. Equiva-

lently, the correspondence is given by
r∑︂

j=1

λjv
⊗d
j ↦−→

r∑︂
j=1

λjL
d
j ,

where vj =
∑︁n

i=0 vjixi and Lj =
∑︁n

i=0 vjiXi with coefficients vji ∈ k for 1 ≤ j ≤ r, 0 ≤
i ≤ n. Thus, finding a symmetric decomposition of a tensor is equivalent to decomposing
the corresponding homogeneous degree-d polynomial as a linear combination of powers of
linear forms with the smallest possible number of summands. This is related to a classical
problem, known as Waring problem (see for instance [Lan12, Chapter 5.4]).

Remark 1.5.1. The occurrence of multinomial coefficients
(︁
d
α

)︁
in the map (1.5) illus-

trates why, for simplicity of exposition, we work over a field of characteristic 0. The
identification is also possible whenever the characteristic of the field is larger than d.
More generally, one can work with divided powers instead, which is a concept we do not
discuss here. See [IK99] for an extensive treatment of this view point. ♢
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As the rank of a tensor does not change under scalar multiplication of a tensor, it is often

convenient to work with the projective spaces P Sd(V ) ∼= P(
n+d
d )−1

k
and P(V ) ∼= Pn

k
=: Pn.

In light of this, the following definition is illustrative.

Definition 1.5.2. The d-uple Veronese embedding of Pn is given by

νd : Pn −→ P(
n+d
d )−1, [x0 : · · · : xn] ↦−→ [xα]|α|=d.

The image νd(Pn) is called Veronese variety.

Thus, the Veronese embedding projectively embeds vectors from V into the set of sym-
metric d-tensors (up to a projective isomorphism that scales the coordinates by

(︁
d
α

)︁
). The

Veronese variety is a projective variety in P(
n+d
d )−1 that parametrizes exactly the projec-

tive classes of symmetric rank-1 tensors (again up to projective isomorphism).

On the algebraic side, the Veronese embedding νd corresponds to the ring homomor-
phism

k[mα | α ∈ Nn, |α| ≤ d] −→ k[X0, . . . , Xn],

mα ↦−→ X
d−|α|
0 Xα1

1 · · ·Xαn
n ,

(1.6)

whose image is the subalgebra of the polynomial ring generated by all monomials of
degree d. The kernel of this homomorphism is the defining ideal of the Veronese variety
in P(

n+d
d )−1. The reason for our peculiar asymmetric choice of {α ∈ Nn, |α| ≤ d} as

indexing set for the variables mα is that, with this notation, generators for the ideal
defining the Veronese variety are given by the 2 × 2-minors of the (generalized) Hankel
matrix

(mα+β)|α|≤1,|β|≤d−1, (1.7)

so the ideal is generated in degree 2 and has a determinantal representation (cf. [Har87,
Exercise 1.2.12], [Lan12, Section 6.10.4]). This matrix is of size dimV × dimSd−1(V ) =
(n+ 1)×

(︁
n+d−1
d−1

)︁
. In fact, it is induced by the polarization map

Sd(V ) −→ S1(V )⊗ Sd−1(V ), v⊗d ↦−→ v ⊗ v⊗(d−1),

which views a symmetric tensor as a partially-symmetric tensor; in this case, a tensor
that is invariant under permutations of the last d − 1 factors in V ⊗d. This is called a
flattening of the symmetric tensor. More generally, one can consider flattenings of the
form Sd(V ) → Sk(V )⊗ Sd−k(V ) for 0 ≤ k ≤ d (also called (k, d− k)-flattenings), which
also give rise to some vanishing equations (cf. [Lan12, Section 3.5]).

Example 1.5.3. Let x, y ∈ k
2 be a basis and consider the symmetric 3-tensor

λ · x⊗ x⊗ x+ µ · (x⊗ x⊗ y + x⊗ y ⊗ x+ y ⊗ x⊗ x),

where λ, µ ∈ k. In terms of its slices, the tensor could also be written as(︃
λ µ µ 0
µ 0 0 0

)︃
.
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Under the mapping (1.5), this tensor corresponds to the binary 3-form

λ ·X3 + µ ·
(︁

3
2,1

)︁
X2Y = λ ·X3 + µ · 3X2Y.

The (1, 2)-flattening is

λ · x⊗ x2 + µ · x⊗ 2xy + µ · y ⊗ x2,

which is the same as the Hankel matrix(︃
λ µ 0
µ 0 0

)︃
in terms of the bases x, y and x2, 2xy, y2 of k2 and S2(k2), respectively. If µ ̸= 0, then
the 2 × 2-minors of this matrix do not all vanish, which shows that the tensor is not of
symmetric rank 1, but the symmetric rank must be larger. On the other hand, if µ = 0,
then λx⊗ x⊗ x is clearly of symmetric rank ≤ 1. ♢

As mentioned above, the Veronese variety parametrizes projective classes of symmetric
rank-1 tensors. A tensor of symmetric rank 2 is of the form t = λ1ξ

⊗d
1 + λ2ξ

⊗d
2 for

ξ1, ξ2 ∈ V with ξ1 ̸= ξ2 and λ1, λ2 ∈ k
∗. Then [t] ∈ P(V ) is contained in the projective

line spanned by the points
[︁
ξ⊗d
1

]︁
,
[︁
ξ⊗d
2

]︁
∈ P(V ), a secant line to the Veronese variety.

The Zariski closure of the union of all secant lines forms the (second) secant variety of the
Veronese variety, denoted by σ2(νd(Pn)). It is not parametrized by the set of projective
classes of symmetric rank-2 tensors, but these tensors form a Zariski-dense subset of this
secant variety. This means that not every point on the secant variety corresponds to
a tensor of symmetric rank 2, but some points correspond to tensors of possibly larger
symmetric rank – such tensors are said to have symmetric border rank 2.

More generally, one can define the r-th secant variety σr(νd(Pn)), which is the Zariski
closure of the classes of symmetric rank-r tensors. The projective point

[︁∑︁r
j=1 λjξ

⊗d
j

]︁
for λj ∈ k, ξj ∈ V , 1 ≤ j ≤ r, lies in the (r−1)-dimensional projective subspace spanned
by νd(ξ1), . . . , νd(ξr). The (r+ 1)× (r+ 1)-minors of flattenings of symmetric tensors of
order d give rise to some equations of the r-th secant variety of the Veronese variety, but
often these are not enough to generate the defining ideal and in general it is hard to find
generators of this ideal. We refer to [Lan12, Chapter 7] for an introduction to this topic.
This is also studied in detail in [IK99] in terms of the catalecticant matrix.

Similarly, we may consider general (non-symmetric) order-d tensors in V1 ⊗ · · · ⊗ Vd,
where V1, . . . , Vd are k-vector spaces of dimensions nk + 1 for some nk ∈ N, 1 ≤ k ≤ d.
These tensors can be decomposed as

r∑︂
j=1

vj1 ⊗ · · · ⊗ vjd,

with vjk ∈ Vk \ {0} for 1 ≤ j ≤ r, 0 ≤ k ≤ d and some r ∈ N. Moreover, they can
be associated with polynomials in N variables that are homogeneous with respect to a
suitable multidegree. With the identification P(Vk) ∼= Pnk , the following definition is
relevant.
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Definition 1.5.4. The Segre embedding of Pn1 × · · · × Pnd is defined as

Pn1 × · · · × Pnd −→ PN−1,

([x1,i1 ]i1 , . . . , [xd,id ]id) ↦−→ [x1,i1 · · ·xd,id ]i1,...,id ,

where N =
∏︁d

k=1(nk + 1) and ik ∈ {0, . . . , nk} for 1 ≤ k ≤ d. The image of this map is
called Segre variety.

If vk ∈ Vk, 1 ≤ k ≤ d, are vectors with coordinates vk = (xk,0, . . . , xk,nk
), then the rank-1

tensor v1⊗· · ·⊗vd has coordinates (x1,i1 · · ·xd,id)i1,...,id whose projective class is the image
of ([v1], . . . , [vk]) under the Segre embedding. As such, the Segre variety is parametrized
by projective classes of rank-1 tensors in P(V1 ⊗ · · · ⊗ Vd) ∼= PN−1. Similarly, for r ≥ 2,
classes of rank-r tensors are contained in the r-th secant variety of the Segre variety, but
do not in general fully parametrize it.

More generally, one can consider partially-symmetric tensors in Sδ1(V1)⊗ · · · ⊗ Sδd(Vd),
which are tensors of order δ1 + · · ·+ δd, where δ1, . . . , δd ∈ N. These correspond to poly-
nomials in N variables that are homogeneous of multidegree (δ1, . . . , δd), for a suitable
choice of multidegree. Analogously, one defines decompositions of partially-symmetric
tensors and the corresponding Segre-Veronese embeddings and varieties.

Remark 1.5.5. After this brief introduction to tensors, let us more closely investigate the
relationship to Prony’s method. For this, we consider the ring homomorphism (1.6) again.
In contrast to the tensor setting before, we now work with inhomogeneous coordinates.
Let S := k[mα | α ∈ Nn, |α| ≤ d] be the domain of the map (1.6) and let R :=
k[x1, . . . , xn].

Given any k-linear map σ : R → k, we may interpret the coordinates of the space
P(

n+d
d )−1, the variables mα, as representations of the moments σ(xα) for |α| ≤ d. In

other words, the restricted map σ|R≤d
factors through the evaluation homomorphism

S → k, defined by mα ↦→ σ(xα), and the k-linear map R≤d → S, xα ↦→ mα.

In particular, if σ is of the form σ(xα) = ξα, |α| ≤ d, for some ξ ∈ k
n – the moment

functional of the Dirac measure δξ supported at the point ξ – then all the 2× 2-minors
of the Hankel moment matrix (︁

σ(xα+β)
)︁
|α|≤1,|β|≤d−1

vanish. As this is the image of the matrix (1.7) under the evaluation homomorphism, the
moment vector [σ(xα)]|α|≤d ∈ P(

n+d
d )−1 corresponds to a point on the Veronese variety,

namely the point νd([1 : ξ1 : · · · : ξn]).

More generally, if σ is of the form σ(xα) =
∑︁r

j=1 λjξ
α
j for λj ∈ k, ξj ∈ k

n – the moment
functional of a signed measure supported at r points – then the moments correspond
to points on the r-th secant variety. Put differently, the moment vector (σ(xα))|α|≤d

corresponds to a symmetric tensor of symmetric rank at most r, as we may associate it
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with the homogeneous degree-d polynomial
r∑︂

j=1

λj(X0 + ξj1X1 + · · ·+ ξjnXn)
d =

∑︂
|α|≤d

(︁
d

d−|α|,α
)︁
σ(xα)X

d−|α|
0 Xα1

1 · · ·Xαn
n . (1.8)

Now it is apparent that recovery of the parameters λj , ξj of σ from its moments up to
degree d also produces a decomposition of the corresponding symmetric tensor into a
sum of at most r symmetric rank-1 tensors. Vice versa, if the symmetric tensor is of
symmetric rank r and has a unique decomposition, then this decomposition also allows
us to retrieve the parameters λj , ξj for 1 ≤ j ≤ r that define σ. The property of having
a unique decomposition is also referred to as identifiability. ♢

Example 1.5.6. Let d, r ∈ N with d ≥ 1 and r ≤
(︁
n+d−1
d−1

)︁
and let V = Cn+1 for some

n ∈ N, n ≥ 1. Let t ∈ S2d−1(V ) be a generic symmetric tensor of symmetric rank r.
Then the decomposition can be computed via Prony’s method by Theorem 1.3.6.

For this, first note that the case d = 1 is trivial as then t ∈ V . Thus, we can assume that
d ≥ 2, so t is a tensor of order at least 3. The case n = 1 corresponds to binary forms
which can be handled separately; classically this is dealt with by Sylvester’s algorithm,
which is a homogeneous formulation of the classic univariate Prony method and goes
back to [Syl86]. In this case, we have r ≤ d and t has a unique decomposition by
[IK99, Theorem 1.40]. When n ≥ 2, one checks explicitly that the tensor is of subgeneric
symmetric rank, i. e. it holds that r < 1

n+1

(︁
n+2d−1
2d−1

)︁
, which follows from our choice of r.

By [COV17], a generic symmetric tensor of subgeneric symmetric rank has a unique
decomposition, unless it belongs to a small number of exceptional cases. The exceptional
cases do not apply in this example, so we conclude that the tensor t can be decomposed
uniquely, as it is generic among the symmetric tensors of symmetric rank r.

Now that we have established the uniqueness of the decomposition, let us focus on the
recovery of parameters. Without loss of generality, we can assume that the tensor is of
the form t =

∑︁r
j=1 λj(1, ξj1, . . . , ξjn)

⊗(2d−1) for λj ∈ C∗ and distinct elements ξj ∈ Cn,
1 ≤ j ≤ r, as t was assumed to be generic. By the correspondence (1.8), we can view the
entries of t as evaluations σ(xα), |α| ≤ 2d− 1, of the functional

σ : C[x1, . . . , xn] −→ C, xα ↦−→
r∑︂

j=1

λjξ
α
j .

From this, we construct the Hankel moment matrix σ(xα+β)|α|≤d−1,|β|≤d. It can also be
obtained as the (d− 1, d)-flattening of t.

In order to apply Theorem 1.3.6, we need to assert that the Vandermonde matrix(︁
ξαj
)︁
|α|≤d−1,1≤j≤r

has rank r. As the points ξ1, . . . , ξr are generic and since we have

assumed that r ≤
(︁
n+d−1
d−1

)︁
, this requirement is satisfied, as follows from apolarity theory

by [IK99, Lemma 1.15]. Thus, finally, we are able to apply Theorem 1.3.6 with m = 1 to
retrieve the points ξ1, . . . , ξr and subsequently the weights λ1, . . . , λr, by solving a linear
system. ♢
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Remark 1.5.7. Note that the cases in which Prony’s method can successfully decompose
a symmetric tensor, as in Example 1.5.6, are, in a sense, the less interesting cases. These
correspond to cases in which flattenings give rise to equations for the r-th secant variety
of the Veronese variety. The requirement r ≤

(︁
n+d−1
d−1

)︁
means that the symmetric rank r

must be quite small compared to the order of the tensor, 2d − 1, which is not a typical
scenario in many applications of tensor decompositions. For larger ranks, it is much more
challenging to find decompositions and defining equations – in particular for tensors of
generic rank – and the search for better tools for these is an active area of research,
with a large variety of available results for specific small values of n, d and r. A direct
adaption of Prony’s method or Sylvester’s algorithm to the decomposition of symmetric
tensors of higher rank is possible using a symbolic approach by extending the Hankel
matrix in a rank-preserving way, as proposed in [BCMT10].

More generally, one can apply Theorem 1.3.6 to certain partially-symmetric tensors by
considering flattenings of the form

S2δ1−1(V1)⊗
m⨂︂
k=2

S2δk(Vk) −→
(︄
Sδ1−1(V1)⊗

m⨂︂
k=2

Sδk(Vk)

)︄
⊗
(︄

m⨂︂
k=1

Sδk(Vk)

)︄
,

for some δ := (δ1, . . . , δm) ∈ Nm and vector spaces V1, . . . , Vm, as elements in the space
on the right can be viewed as Hankel matrices whose entries have the multi-indices α+β,
|α| ≤ δ− e1, |β| ≤ δ. For the assumptions of Theorem 1.3.6 to be satisfied, the partially-
symmetric rank of the tensor must be sufficiently small, but we omit a more detailed
analysis of the requirements here.

Although the above does not cover general tensors without symmetries, there are gener-
alizations for the decomposition of general tensors such as [BBCM13], as well. Later, in
Example 4.3.16, we will also see more explicitly how to find a decomposition of a general
third-order tensor of small rank through the computation of generalized eigenvalues of
the slices of the tensor. ♢

Example 1.5.8. A frequent scenario consists of exponential sums or discrete signed
measures on the torus. For this, assume that the points ξ1, . . . , ξr lie in (C∗)m, the
m-dimensional algebraic torus over C. Let σ : C[x±1

1 , . . . , x±1
m ] → C be a C-linear map

from the Laurent polynomial ring of the form σ(xα) =
∑︁r

j=1 λjξ
α
j for some λj ∈ C∗ and

consider its moments σ(xα) for −δi ≤ αi ≤ δi, 1 ≤ i ≤ m, and some δ1, . . . , δm ∈ N, i. e.
the moments are chosen symmetrically around zero in each direction. By a translation
on the torus, we have

σ(xα) =
r∑︂

j=1

λjξ
α
j =

r∑︂
j=1

λjξ
−δ
j ξα+δ

j ,

where δ := (δ1, . . . , δm). As the exponents involving α on the right are non-negative,
the problem can be associated to the partially-symmetric tensor decomposition problem
in S2δ1(C2)⊗ · · · ⊗ S2δm(C2) corresponding to the tensor with weights λjξ−δ

j and rank-1
tensors

(1, ξj1)
⊗2δ1 ⊗ · · · ⊗ (1, ξjm)⊗2δm ,
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for 1 ≤ j ≤ r. ♢

In the context of tensor decomposition, one is often interested in finding a low-rank
approximation of a tensor. In order to quantify how well a low-rank tensor approximates
a given tensor, one needs to choose a norm on the space of tensors. The following example
explores what a reasonable choice of norm could be for symmetric tensors – a norm that
does not depend on the choice of coordinates of the underlying space.

Example 1.5.9. We consider a symmetric rank-1 tensor v⊗d′′ for some vector v ∈ V :=
Cn+1, n ∈ N, as well as an associated flattening of the form

v⊗d′′ = v⊗d ⊗ v⊗d′ ,

where d′′ = d+d′ and d, d′ ∈ N. The flattening of the tensor can be viewed as a partially
symmetric tensor in Sd(V )⊗ Sd

′
(V ) = U ⊗W .

We define a norm on the space U = Sd(V ) in terms of the Bombieri-2-norm [−]2
of homogeneous polynomials (cf. [BBEM90]). For a homogeneous polynomial f =∑︁

|α|=d fαX
α ∈ C[X0, . . . , Xn] of degree d, it is defined by

[f ]2 :=

⎛⎝∑︂
|α|=d

|fα|2(︁
d
α

)︁
⎞⎠ 1

2

.

By the correspondence (1.5), we obtain for a symmetric tensor t ∈ Sd(V ) that

[t]2 =

⎛⎝∑︂
|α|=d

(︃
d

α

)︃⃓⃓
t̂α
⃓⃓2⎞⎠ 1

2

,

where t̂α =
(︁
d
α

)︁−1
fα are the coefficients of the symmetric tensor t as defined in (1.5).

Thus, for the elementary tensor v⊗d ∈ Sd(V ), we have

[︁
v⊗d
]︁
2
=

⎛⎝∑︂
|α|=d

(︃
d

α

)︃
|vα|2

⎞⎠ 1
2

=

(︄
n∑︂

i=0

|vi|2
)︄ d

2

= ∥v∥d2.

More generally, for arbitrary symmetric tensors, this norm is invariant under isometries of
the underlying vector space V , which makes it a natural choice. A proof of this property
is given in [BC13, Theorem 16.3].

On the component W = Sd
′
(V ), we define the norm in an analogous way. Finally, we

choose a norm ∥−∥ on the space U ⊗W such that rank-1 elements satisfy

∥u⊗ w∥ = [u]2 · [w]2 (1.9)

and therefore
⃦⃦
v⊗d ⊗ v⊗d′

⃦⃦
= ∥v∥d+d′

2 . A norm that satisfies (1.9) is a cross-norm. For
instance, this property holds for the Frobenius norm and the spectral norm, but also for
the induced projective norm (cf. [Hac19, Lemma 4.51]). ♢

For further properties of norms on tensor spaces, we refer to [Hac19, Chapter 4.2].
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2 Local Dirac mixtures

The contents of this chapter are adapted from our article [GW20]. Unless stated other-
wise, we assume that k denotes an algebraically closed field of characteristic 0.

Local mixture distributions are distributions that play a role in some statistical settings;
see [Mar02; AM07]. They involve a distribution ϕξ and its derivatives ϕ(i)ξ and are of the
form

ϕξ(x) +

l∑︂
i=1

λiϕ
(i)
ξ (x),

where ξ, λi, 1 ≤ i ≤ l, are some parameters. We call this a local mixture distribution of
order l.

In this chapter, we primarily focus on the degenerate case of univariate Dirac distribu-
tions, so we consider distributions of the form

δξ + λ1δ
′
ξ + · · ·+ λlδ

(l)
ξ ,

for ξ, λi ∈ k, 1 ≤ i ≤ l, where δ′ξ, . . . , δ
(l)
ξ denote the distributional derivatives of the Dirac

distribution δξ; see [Sch73, Chapter 2]. Note that, while the Dirac distribution δξ is also
a (non-negative) measure, its derivatives are not non-negative or signed measures. As
the moments of the Dirac distribution are of a particularly simple form, the moments of a
local mixture of a Dirac distribution can be computed easily, as well. More precisely, the
k-th moment of a local mixture of a Dirac distribution δξ of order l is of the form

mk = ξk +

min{l,k}∑︂
i=1

λi
k!

(k−i)!ξ
k−i,

for k ∈ N and certain parameters ξ, λ1, . . . , λl ∈ k (cf. [Sch73, Chapter 2]). These are
algebraic expressions in the parameters ξ, λi, 1 ≤ i ≤ l, which allows us to study these
distributions from an algebraic point of view.

More generally, we consider mixtures of such distributions centered at different points,
that is, distributions of the form

r∑︂
j=1

λj0δξj + λj1δ
′
ξj
+ · · ·+ λj,ljδ

(lj)
ξj
,
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for r points ξ1, . . . , ξr ∈ k and weights λj,kj ∈ k, for 0 ≤ kj ≤ lj , 1 ≤ j ≤ r. Compared
to the finitely-supported signed measures considered in Section 1.3, this introduces ad-
ditional information that is local to each of the points ξ1, . . . , ξr.

In the course of this chapter, we first examine the moment variety corresponding to first-
order local Dirac distributions and relate it to the moment variety of Pareto distributions.
Afterwards, we investigate the problem of parameter recovery and formulate a numerical
reconstruction algorithm. We finish by illustrating the reconstruction on some concrete
examples.

2.1 Moment variety

An interesting geometric object related to a family of distributions is its moment variety.
It is the algebraic variety that is described by the set of moment vectors that can arise
for any instance of a distribution in the family. As such, it can be defined whenever
the parametric descriptions of the moments are algebraic expressions in the parameters.
Studying the moment variety allows to deduce properties such as rational or algebraic
identifiability, which are important for the parameter recovery problem which we inves-
tigate in Section 2.3. In the following, we summarize results from [GW20] about the
moment variety of local Dirac mixtures.

Definition 2.1.1. Let fα ∈ k(x1, . . . , xs), α ∈ A, be a family of rational functions, for
some finite indexing set A ⊆ Nn, n ∈ N. The Zariski closure of the set parametrized by{︁

[mα]α∈A ∈ P#A−1
⃓⃓
mα = fα(x) for x ∈ k

s, α ∈ A
}︁

(2.1)

is a projective variety of dimension at most s. If the fα are expressions for the α-th
moments of a family of n-variate distributions with s parameters, every point in the
parametrically given set is a moment vector of an element of the family and the variety
is called moment variety with respect to A of the family of distributions.

Example 2.1.2. Let d, n ∈ N and define the indexing set A := {α ∈ Nn | |α| ≤ d}. We
consider the family of Dirac distributions δξ supported at points ξ ∈ k

n, which depends
on s := n parameters, namely the coordinates of ξ. For each ξ ∈ k

n, the α-th moment of
δξ is given by

∫︁
xαδξ(x) = ξα for α ∈ A. Then, with fα := xα, the Zariski closure of the

set parametrized by (2.1), i. e. the moment variety with respect to A of the family of Dirac
distributions, is the same as the d-uple Veronese variety defined in Definition 1.5.2. ♢

From now on, we primarily focus on univariate distributions, where n = 1, with the index-
ing set A = {0, . . . , d} for some d ∈ N. In this case, the moment variety is parametrized
by moments up to degree d and we often denote this variety by X .

Algebraically, the moment variety can be described by its vanishing ideal, the moment
ideal, which we view as an ideal in the polynomial ring k[M0, . . . ,Md]. For the family of
first-order local mixtures of Diracs, the following theorem gives polynomial generators of
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the corresponding moment ideal, which was first proved in [Eis92] using methods from
representation theory. A proof employing algebraic and combinatorial methods is given
in [GW20]. The variety can also be described as the tangent variety of the Veronese
curve, the one-dimensional Veronese variety.

Theorem 2.1.3 ([Eis92, Section 3], [GW20, Theorem 3.1]). For d ≥ 6, let Jd ⊆
k[M0, . . . ,Md] be the ideal generated by the

(︁
d−2
2

)︁
relations

fi,j := (j − i+ 3)MiMj − 2(j − i+ 2)Mi−1Mj+1 + (j − i+ 1)Mi−2Mj+2,

for 2 ≤ i ≤ j ≤ d− 2. Then Jd is equal to the homogeneous ideal of the moment variety
of the family of first-order local mixtures of Dirac distributions.

2.2 Pareto distribution

In this section, we establish a connection between the moments of the Pareto distribution
and the moments of first-order local mixtures of Diracs. The Pareto distribution, named
after Vilfredo Pareto, is a probability distribution that has many useful practical appli-
cations; see for instance [Arn83]. In the univariate case, its probability density function
is given by

φ(x) :=
θξθ

xθ+1
1{x≥ξ},

where θ, ξ ∈ R>0. The moments of this distribution are

mi =

{︄
θ

θ−iξ
i, i < θ,

∞, i ≥ θ;

see [Arn83]. Below, we show that it is possible to choose a different parametrization
for the moments of the Pareto distribution in such a way that the moments are the
reciprocals of the first-order local mixtures of Diracs. We use this fact to obtain genera-
tors of the vanishing ideal of the moment variety corresponding to the family of Pareto
distributions.

2.2.1 Ideal generators

Algebraically, we are only interested in the cases in which the moments of the Pareto
distribution are finite. These are described by the image of the map

R>d × R>0 −→ Pd,

(θ, ξ) ↦−→ [m0 : · · · : md] =

[︃
θ

θ − i
ξi
]︃
0≤i≤d,

for a given d ∈ N, where Pd denotes the projective space over C. Although the image
has real coordinates, we work over the complex numbers, the algebraic closure of R.
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2.2 Pareto distribution

Note that the moments are rational functions in the two parameters θ, ξ. Thus, we can
define the moment variety of the Pareto distribution as the Zariski closure over C of the
image of the above map. Since R>d is Zariski-dense in C, we may extend the domain of
the parametrization to (C \ {0, . . . , d})×C∗ without changing the Zariski closure of the
image. Let ρ denote the extended map ρ : (C \ {0, . . . , d})× C∗ → Pd.

With this notation, the following result establishes the connection between the moment
varieties of Pareto distributions and first-order local mixtures of Dirac distributions.
Note that two varieties X ,Y are birationally equivalent if there exist two rational maps
X ‧‧➡ Y, Y ‧‧➡ X such that both compositions are the identity as rational maps. In
this case, there is an isomorphism between Zariski-dense open subsets of X and Y. For
further details, we refer to [Har87, Section 1.4].

Proposition 2.2.1. Let Y := im(ρ) ⊆ Pd be the Pareto moment variety and X ⊆ Pd the
moment variety of 1-local mixtures of Diracs, that is, the tangent variety of the Veronese
curve. Then, for a suitable choice of parametrization, X and Y are birationally equivalent
via the rational map

ψ : Pd ‧‧➡ Pd, [m0 : · · · : md] ↦−→
[︁
m−1

0 : · · · : m−1
d

]︁
.

Proof. We change the parametrization of the Pareto moment variety via the bijective
map

η : {(θ, ξ) ∈ C∗ × C∗ | −ξθ−1 ̸= 1, . . . , d} −→ (C \ {0, . . . , d})× C∗,

(θ, ξ) ↦−→
(︁
−ξθ−1, ξ−1

)︁
,

which leaves Y as the closure of the image of ρ◦η unchanged. With this parametrization,
the moments are of the form

[m0 : · · · : md] = ρ(η(θ, ξ)) =

[︃ −ξθ−1

−ξθ−1 − i
ξ−i

]︃
0≤i≤d =

[︃
1

ξi + iθξi−1

]︃
0≤i≤d,

so ψ maps points from the image of ρ◦η to moment vectors of 1-local mixtures of Diracs,
that is, to points on X . Then ψ|Y : Y ‧‧➡ X is a rational map that is an isomorphism
on the Zariski-dense subset im(ρ ◦ η) of Y, as im(ρ ◦ η) ⊆ {mi ̸= 0}. Being the tangent
variety of an irreducible variety, X is irreducible by [Lan12, Section 8.1]. Thus, the image
of ψ|Y is dense in X , which proves the claim.

Generators for the ideal defining the moment variety of Pareto distributions are given by
the following theorem. The variety is contained in Pd; we describe the affine subset with
m0 ̸= 0.

Theorem 2.2.2. For d ≥ 6, let Ĩ
inv
d ⊆ R := C[M1, . . . ,Md] be the ideal generated by the(︁

d−2
2

)︁
polynomials

(j−i+3)Mi−2Mi−1Mj+1Mj+2−2(j−i+2)Mi−2MiMjMj+2+(j−i+1)Mi−1MiMjMj+1
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for 2 ≤ i ≤ j ≤ d − 2, where M0 := 1. Then the affine Pareto moment ideal is equal to
the saturation

Ĩ
inv
d : (M1 · · ·Md)

∞.

Proof. Let Ĩd ⊆ R = C[M1, . . . ,Md] be the dehomogenization of the moment ideal of
first-order local mixtures of Diracs which was studied in Theorem 2.1.3 (cf. [GW20,
Section 3]). In order to restrict to the algebraic torus where the rational map ψ given
in Proposition 2.2.1 is defined, consider J := R[y]Ĩd + ⟨M1 · · ·Mdy − 1⟩ ⊆ R[y]. The
restriction of the map ψ to the torus agrees with the torus automorphism induced by the
homomorphism

ψ̄ : R[y] −→ R[y],

y ↦−→M1 · · ·Md,

Mi ↦−→M1 · · ·Mi−1Mi+1 · · ·Mdy, for 1 ≤ i ≤ d.

Note that we can choose an ideal I ′ ⊆ R such that in R[y] we have the equality ψ̄(J) =
R[y]I ′+⟨M1 · · ·Mdy − 1⟩ by observing that, for any f ∈ Ĩd ⊆ R, we can choose a suitable
k ∈ N such that

(M1 · · ·Md)
kψ̄(f) ≡ f ′ (mod ⟨M1 · · ·Mdy − 1⟩)

for some f ′ ∈ R. In particular, this construction establishes a bijection between the
generating set of Ĩd given in Theorem 2.1.3 and the generating set of Ĩ

inv
d . Therefore, we

choose I ′ := Ĩ
inv
d . In order to describe the affine closure of the image of ψ, we intersect

ψ̄(J) with R, which is equal to

ψ̄(J) ∩R = Ĩ
inv
d : (M1 · · ·Md)

∞

by [CLO15, Theorem 4.4.14] from which we conclude.

Note that taking the saturation in the construction is necessary, since otherwise the
variety could have additional irreducible components that are supported on the boundary
of the algebraic torus, which are not part of the Pareto moment variety.

2.3 Recovery of parameters

While in the previous sections we have focused on local mixtures of a Dirac distribution
at a single point, we now consider mixtures of local mixtures of Dirac distributions
at multiple points and study the problem of parameter recovery from moments. More
precisely, we consider distributions of the form

r∑︂
j=1

λj0δξj + λj1δ
′
ξj
+ · · ·+ λj,ljδ

(lj)
ξj
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for r points ξ1, . . . , ξr ∈ k and weights λj,kj ∈ k, for 0 ≤ kj ≤ lj , 1 ≤ j ≤ r.

In [GW20, Section 5.2], a symbolic approach for recovering the parameters of a mixture
of local Dirac mixtures from its moments is described which is based on elementary
symmetric polynomials and relies on elimination theory. This is mainly useful from
a theoretical point of view, as only small problems can be solved by this approach in
practice, due to the high complexity of the Gröbner basis computations involved in
this.

In the following, we describe an algorithm for parameter recovery that is motivated by
Prony’s method and which can be implemented numerically. Compared to the approach
based on elimination theory, this significantly widens the kind of problems that can
be solved. This is explained in more detail in Example 2.3.3 as well as Remarks 2.3.4
and 2.3.5. The contents are adapted from [GW20, Section 5.3]. We also refer to [Mou18]
for related results; in particular, we closely follow the discussion of Prony’s method
as it covers the case in which the Prony ideal has multiplicities, which we have not
addressed in Section 1.3. The variant of Prony’s method that we use here is summed up
in Theorem 2.3.1 below.

Let us first fix some notation, following the exposition in Section 1.3.1. Let R = k[X]
be the univariate polynomial ring and denote by R≤d the vector subspace of polynomials
of degree at most d ∈ N. Further, let R∗ := Hom(R,k) be the dual k-vector space of
the polynomial ring R. Given any sequence (mi)i∈N, mi ∈ k, define σ ∈ R∗ to be the
k-linear functional

σ : R −→ k, Xi ↦−→ mi. (2.2)

If the sequence (mi)i∈N is the sequence of moments of a distribution, then σ is the
moment functional of the distribution. For d, e ∈ N, denote by Hd,e the Hankel matrix
with respect to the monomial basis Xi, 0 ≤ i ≤ e, and the dual basis (Xj)∗, 0 ≤ j ≤ d,
of the map

Hd,e : R≤e −→ R∗
≤d, p ↦−→ (q ↦→ σ(pq)). (2.3)

Hence, the matrix is of the form

Hd,e = (mi+j)0≤i≤d, 0≤j≤e

and is of size (d+1)× (e+1). If (mi)i∈N is a sequence of moments of some distribution,
Hd,e is the moment matrix.

Assume now we are given an r-mixture of local Dirac mixture distributions located at r
points ξ1, . . . , ξr ∈ k. Then its moments are of the form

mi =
r∑︂

j=1

lj∑︂
kj=0

λj,kj
i!

(i−kj)!
ξ
i−kj
j =

r∑︂
j=1

(Λj(∂)(X
i))(ξj) ∈ k, i ∈ N, (2.4)

where λj,kj ∈ k, 0 ≤ kj ≤ lj , 1 ≤ j ≤ r, are suitable parameters and Λj(∂) :=∑︁lj
kj=0 λj,kj∂

kj ∈ k[∂] is a polynomial of degree lj in the variable ∂ that is applied
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to the monomial Xi as a differential operator, i. e. ∂Xi = iXi−1 for i ∈ N. We cite the
following theorem in order to rephrase it in our language. In particular, we specialize it
to the univariate case. We remark that the theorem can also be understood in terms of
the canonical form of a binary from. For a detailed treatment of this viewpoint, we refer
to [IK99] and the references therein.

Theorem 2.3.1 ([IK99, Theorem 1.43], [Mou18, Theorem 4.1]). Let k be an algebraically
closed field of characteristic 0, let R = k[X] and let m0,m1, . . . ,m2s ∈ k for some
s ∈ N. Let Hs−1,s−1, Hs,s be the corresponding Hankel matrices as in (2.3). Assume
rkHs−1,s−1 = rkHs,s = r′. Then there exists a unique mixture of local mixtures of
Diracs

µ :=
r∑︂

j=1

Λj(∂)δξj

for some r ∈ N, ξj ∈ k, 0 ̸= Λj ∈ k[∂], such that
∑︁r

j=1 1+deg(Λj) = r′ and its moments
up to degree 2s coincide with m0, . . . ,m2s. Further, as ideals of R, it holds that

⟨kerHs−1,s⟩ =
r⋂︂

j=1

⟨X − ξj⟩1+deg Λj .

Note that the condition
∑︁r

j=1 1 + deg(Λj) = r′ is due to the fact that deg(Λj) + 1 is the
dimension of the vector space spanned by Λj and all its derivatives, as we specialized
to the univariate case. Moreover, observe that this theorem can be regarded as a vari-
ant of Theorems 1.3.1 and 1.3.6. While the latter are statements about radical ideals,
Theorem 2.3.1 allows for ideals whose primary components have multiplicities.

As with Prony’s method in Algorithm 1.1, Theorem 2.3.1 leads to an algorithm for recov-
ering the parameters of the distribution µ from finitely many moments: first, compute
the points ξ1, . . . , ξr from kerHs−1,s for s sufficiently large; next, determine the weights
Λj from the linear system described by (2.4). If deg Λj = 0 for all j = 1, . . . , r, this
algorithm agrees with the classic Prony method, also referred to as Sylvester’s algorithm
in the classical algebraic geometry literature, which was discussed in Section 1.3. In the
context of this chapter, the more interesting setting is thus the case in which deg Λj ̸= 0
for some or all j = 1, . . . , r.

In the following, we refine this algorithm for the case of mixtures of local mixtures of
Diracs of fixed order l := l1 = · · · = lr where lj = degΛj for j = 1, . . . , r. In this case,
it is usually possible to recover the parameters from significantly fewer moments. (More
generally, when l1, . . . , lr are not equal, one can set l := max{l1, . . . , lr}, but the potential
of saving moments is not as high, in this case.)

Theorem 2.3.2. Let k be a field of characteristic 0 and let µ :=
∑︁r

j=1 Λj(∂)δξj be
an r-mixture of l-th-order local mixtures of Diracs, i. e. ξj ∈ k and Λj ∈ k[∂] with
deg(Λj) = l, 1 ≤ j ≤ r. Then, the parameters Λj , ξj of µ can be recovered from moments
m0,m1, . . . ,m2(l+1)r−1 of µ using Algorithm 2.1.
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2.3 Recovery of parameters

Proof. Let σ be the functional associated to µ, as defined above in (2.2). Then, it follows
from [Mou18, Theorem 3.1, Proposition 3.9] that rkHd,e = (l+1)r for all d, e ≥ (l+1)r−1.
In particular, for s := (l + 1)r, we have

rkHs−1,s−1 = rkHs,s = (l + 1)r.

The algorithm is based on the following observation. Let p ∈ R be the polynomial
p :=

∏︁r
j=1(X − ξj) = Xr +

∑︁r−1
i=0 piX

i, noting that knowledge of p is enough to recover
the points ξj . By the addendum of Theorem 2.3.1, we have pl+1 ∈ ⟨kerHs−1,s⟩ ⊗k k̄

where k̄ is the algebraic closure of k. Since also pl+1 ∈ R, it follows in particular that p
is mapped to 0 under the composition of the maps

R≤r R≤(l+1)r R∗
≤r−1,

q ql+1 Hr−1,(l+1)rq
l+1,

where the second map is the k-linear map given by the moment matrix Hr−1,(l+1)r,
which is a submatrix of Hs−1,s. The first map however is non-linear, defined by taking
the (l + 1)-th power of q viewed as a polynomial.

For the polynomial p, this yields the following polynomial system of r equations of degree
l + 1 in r variables p0, . . . , pr−1 which are the monomial coefficients of p:

Hr−1,(l+1)rp
l+1 = 0. (2.5)

Note that p is monic. By Bézout’s theorem, this system of equations either has infinitely
many or at most (l + 1)r solutions. If the solution set is infinite, we need to add more
algebraic constraints to the system in order to determine p, which is done by adding
more rows to the moment matrix.

By hypothesis, we have ξ1, . . . , ξr ∈ k. Therefore, termination of this algorithm and
correct recovery of the points ξ1, . . . , ξr follow from Theorem 2.3.1.

As for computation of the weights λjk in Step 5, note that, once the roots ξj have
been computed, the moments are a linear combination of the monomials ξij and their
derivatives given by Equation (2.4), so to compute the weights λjk, we solve the linear
system

(V1, . . . , Vr)

⎛⎜⎜⎜⎜⎜⎝
λ10
...
λ1l
...
λrl

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎝m0
...
md

⎞⎠

for d ≥ s, where (V1, . . . , Vr) is a confluent Vandermonde matrix, for which each block is
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given by

Vj =
(︁
(∂kXi)(ξj)

)︁
0≤i≤d
0≤k≤l

=

⎛⎜⎜⎜⎝
1 0 · · · 0
ξj 1 · · · 0
...

...
...

ξdj dξd−1
j · · · d!

(d−l)!ξ
d−l
j

⎞⎟⎟⎟⎠ .

Since the system is linear, uniqueness of the solution follows from the claim that the
confluent Vandermonde matrix is of full rank s. Without loss of generality, we can assume
that the confluent Vandermonde matrix is of size s× s by choosing a suitable submatrix.
Then the claim follows from the fact that the Hermite interpolation problem has a unique
solution if the points ξ1, . . . , ξr are distinct or, equivalently, from the product formula for
the determinant of a square confluent Vandermonde matrix; see [HJ94, Problem 6.1.12].

Algorithm 2.1 Parameter recovery for mixtures of local Dirac mixtures with r compo-
nents of order l
Input: The (maximum) order l ≥ 0 of the mixture components, the number of mixture

components r ≥ 1 and the moments m0, . . . ,m(l+2)r, . . .
Output: The parameters ξj and λjk for 1 ≤ j ≤ r, 0 ≤ k ≤ l, satisfying (2.4).
1: Solve the polynomial system Hr−1,(l+1)rp

l+1 = 0 for p.
2: If the solution set is infinite, increase the number of rows of the moment matrix and

repeat.
3: If there is more than one solution, use further information, such as the additional

moment m(l+2)r, to restrict to a single solution p.
4: Compute the roots ξ1, . . . , ξr of p.
5: Compute the weights λjk by solving a confluent Vandermonde system.

Note that the algorithm is designed to use as few moments as possible. See also Re-
mark 2.3.5 for a discussion of the number of moments used by this algorithm.

Example 2.3.3. For r = 2, l = 1, let m0, . . . ,m5 be the moments of a corresponding
distribution and write p = p0 + p1X +X2. Then the system of equations (2.5) is given
by the quadratic equations

(︃
m0 m1 m2 m3 m4

m1 m2 m3 m4 m5

)︃⎛⎜⎜⎜⎝
p20

2p0p1
2p0 + p21

2p1
1

⎞⎟⎟⎟⎠ = 0. (2.6)

If ξ1, ξ2 are the points of the underlying distribution, one solution of this system is
given by p = (X − ξ1)(X − ξ2), that is, p1 = −(ξ1 + ξ2) and p0 = ξ1ξ2. These are
elementary symmetric polynomials in ξ1, ξ2. Hence, computing p1 by eliminating p0 from
the system (2.6), and vice versa, is equivalent to the process of recovering the parameters
from elementary symmetric polynomials detailed in [GW20, Section 5.2]. However, with
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2.3 Recovery of parameters

the approach presented here, we need to eliminate only a single variable instead of 5,
which makes this much more viable from a computational point of view. For larger
problems, solving the non-linear polynomial system in Step 1 of Algorithm 2.1 is still a
very challenging problem, though. ♢

Remark 2.3.4. An advantage of the approach based on elimination theory in [GW20,
Section 5.2] is that it works with symbolic moments. Thus, for a particular choice of r and
l, the result gives a solution for any choice of moments. In contrast, the approach based
on Prony’s method presented here only computes a solution for a fixed set of moments,
so that only one particular instance of a parameter recovery problem is solved, but has
the advantage of being computationally more tractable. Depending on the application,
either approach may be useful. ♢

Remark 2.3.5. We discuss some of the steps involved in Algorithm 2.1 in more detail.
Solving the system in Step 1 can be done using symbolic algebraic methods, which usually
involve the computation of a Gröbner basis, or using numerical tools. In Example 2.4.2
for instance, we use a numerical solver for this which is based on homotopy continuation
methods. See for instance [Li03] for an introduction to homotopy continuation.

Restricting from finitely many solutions to a single one using the additional moment
m(l+2)r in Step 3 works by observing that p is also a solution to the larger system
Hr,(l+1)rp

l+1 = 0. If a numerical solver is used, the computed solution will only be
approximately zero, and one should assert that the selected solution is significantly closer
to zero than all other possible choices. Another common approach to check uniqueness
of the solution is to perform monodromy loop computations using a homotopy solver.

An upper bound for the number of moments used by the algorithm is 2(l+1)r, since the
moments m0, . . . ,m2(l+1)r−1 are always enough for recovery, as stated in Theorem 2.3.2.
Then solving the polynomial system in Algorithm 2.1 simplifies, since the solution is in the
kernel of H(l+1)r−1,(l+1)r which is a linear problem. In this case, the algorithm performs
the same computation as [Mou18, Algorithm 3.2], so this guarantees termination.

However, as Algorithm 2.1 solves a more specific problem, it can usually recover the
parameters using a much smaller number of moments. The polynomial system in Step 1
consists of r equations of degree l + 1 in r unknowns, so, generically, we expect finitely
many solutions in Step 2 already in the first iteration of the algorithm. This means we
expect to algebraically identify the parameters from the moments m0, . . . ,m(l+2)r−1 and
to rationally identify them using one additional moment, so usually we do not need all the
moments up to m2(l+1)r−1. This is also what we observe in practice, so we do not seem
to get infinitely many solutions for generic input if we use the moments up to m(l+2)r−1.
By a parameter count, we cannot expect to recover the parameters from fewer moments,
so the number of moments we use in practice is the minimal number possible. ♢

Here the term algebraic identifiability means that the map from the parameters to the
moments is generically finite-to-one; see for instance [ARS18]. Likewise, rational iden-
tifiability holds if the moment map is generically one-to-one. Since, by Theorem 2.3.2,
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it is possible to uniquely recover the parameters from the moments m0, . . . ,m2(l+1)r−1,
rational identifiability certainly holds if d ≥ 2(l+1)r− 1, but usually one expects this to
be the case already for much smaller d. The following proposition states that algebraic
identifiability holds as soon as d ≥ (l + 2)r − 1, so one expects rational identifiability to
hold if d ≥ (l + 2)r, as explained in Remark 2.3.5.

Proposition 2.3.6. Let d ≥ (l + 2)r − 1. Then algebraic identifiability holds for the
moment map sending the parameters ξj ,Λj to the moments m0, . . . ,md, where deg Λj = l,
1 ≤ j ≤ r.

Proof. By [CGG02, Proposition 3.1], the secant varieties of the tangent variety of the
Veronese curve are non-defective, that is, for l = 1, the dimension of the moment variety
in Pd for mixtures with r components of order l is the expected one: min(3r − 1, d). In
particular this means that the moment variety fills the ambient space sharply if d = 3r−1
and does not fill the ambient space if d > 3r − 1. Thus, the moment map is generically
finite-to-one if d ≥ 3r − 1. Note that for d < 3r − 1 the cardinality of the preimage of a
generic point is infinite for dimension reasons.

Similarly, for l ≥ 2, the moment variety is a secant variety of the l-th osculating variety
to the Veronese curve which is non-defective by [BCGI07, Section 4], so the moment map
is generically finite-to-one for d ≥ (l + 2)r − 1.

Remark 2.3.7. It would be interesting to generalize Algorithm 2.1 to the multivariate
setting. Note that in this case [Mou18, Algorithm 3.2] can be used to find the decompo-
sition. However, since this does not take into account the special structure of our input,
namely that all the mixture distributions have the same order l, this approach might
use more moments than necessary. This is similar to the univariate case as explained in
Remark 2.3.5.

Further, the algorithm in [BT20, Section 6] also computes a generalized decomposition
from a given set of moments. This algorithm differs from our Algorithm 2.1 in that it
computes parameters of any generalized decomposition explaining the given moments,
rather than the unique decomposition in which each term corresponds to the same order l.
In the one-dimensional case, when using as few moments as possible, this usually leads to
a non-generalized decomposition, which does not recover the parameters we are interested
in. See also the related discussion in [BT20, Section 7.1]. ♢

Remark 2.3.8. We briefly discuss how the problem of parameter recovery of a mixture
of 1-local mixtures of Diracs simplifies, if the mixture components δξj + θjδ

′
ξj

, 1 ≤ j ≤ r,
are known to differ only in the parameters ξj , but have a constant parameter θ := θ1 =
· · · = θr. For this, it is convenient to denote the moments of a distribution X by E(Xi)
for i ∈ N, as it underlines the algebraic relationship between the moments of the two
distributions we consider here.

Let us assume that X is a distribution which has moments that are of the form E(Xi) =∑︁r
j=1 λj(ξ

i
j + θiξi−1

j ) with a fixed parameter θ. Further, let Y be the distribution with
moments E(Y i) =

∑︁r
j=1 λjξ

i
j , so Y is a linear combination of Dirac distributions. Then
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we have
E(Xi) = E(Y i) + θiE(Y i−1)

and conversely

E(Y i) =
i∑︂

k=0

i!

k!
(−θ)i−kE(Xk).

Hence, if θ is known, this allows to recover the moments of the distribution Y from the
moments of X. The parameters of Y can then be recovered, e. g. using Prony’s method.

In case θ is fixed, but unknown, treating θ as a variable in the moment matrix Hr(Y ) :=
(E(Y i+j))0≤i,j≤r, it can be determined as one of the roots of detHr(Y ), which is a
polynomial of degree r(r + 1) in θ. ♢

2.4 Applications

2.4.1 Moments and Fourier coefficients

In this section, we show how the tools developed in this chapter can be applied to the
problem of recovering a piecewise-polynomial function supported on the interval [−π, π)
from Fourier coefficients; see [PT14]. For this, we describe how moments of a mixture
of local mixtures of Diracs arise as the Fourier coefficients of a piecewise-polynomial
function and illustrate this numerically. For simplicity, we focus on the case l = 1 of
piecewise-(affine-)linear functions.

Let tj ∈ [−π, π], 1 ≤ j ≤ r, be real points and let f : [−π, π) → C be the piecewise-linear
function given by

f(x) :=
r−1∑︂
j=1

(︁
fj + (x− tj)f

′
j

)︁
1[tj ,tj+1)(x), (2.7)

where fj , f ′j ∈ C. In particular, splines of degree 1 are of this form, but we do not require
continuity here. The Fourier coefficients of f are defined to be

ck :=
1

2π

∫︂ π

−π
f(x)e−ikxdx, k ∈ Z,

from which we obtain

ck =
1

2π(ik)2

r∑︂
j=1

(︁
ik(fj − fj−1 + (tj−1 − tj)f

′
j−1) + (f ′j − f ′j−1)

)︁
e−iktj ,

for k ∈ Z \ {0}, where f0, f ′0, fr, f ′r := 0. Further, let

ξj := e−itj ,

λj := ξ−s
j

(︁
f ′j − f ′j−1 − is(fj − fj−1 + (tj−1 − tj)f

′
j−1)

)︁
,

λ′j := ξ1−s
j i(fj − fj−1 + (tj−1 − tj)f

′
j−1).

(2.8)
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Assume now, we are given finitely many Fourier coefficients c−s, . . . , cs for some s ∈ N.
Then, for 0 ≤ k ≤ 2s, k ̸= s, we define

mk := 2π(i(k − s))2ck−s =

r∑︂
j=1

λjξ
k
j + λ′jkξ

k−1
j . (2.9)

Thus, from the knowledge of Fourier coefficients c−s, . . . , cs of f , we can compute mk,
k ̸= s, which we interpret as the moments of a mixture of 1-local mixtures of Diracs with
support points ξj on the unit circle. Extending the definition to ms, by construction we
have

ms :=

r∑︂
j=1

λjξ
s
j + λ′jsξ

s−1
j =

r∑︂
j=1

f ′j − f ′j−1 = 0.

All in all, we know the moments m0, . . . ,m2s of this 1-local mixture. Recovering the
parameters ξj , λj , λ′j via Algorithm 2.1 generically requires the moments m0, . . . ,m3r,
so we need to choose 2s ≥ 3r. Subsequently retrieving the original parameters tj , fj , f ′j
from (2.8) is straightforward.

Remark 2.4.1. The piecewise-linear function f is viewed as a periodic function on the
interval [−π, π), in the discussion above. For simplicity in presentation, we assumed
that f is constantly zero outside of [t1, tr), representing a constant line segment. More
generally, one can adapt the computation to account for an additional (non-zero) line
segment there, without changing the number of jumping points or required samples.
Thus, the function f consists of r line segments and has r discontinuities. ♢

Example 2.4.2. We apply the process described above to a piecewise-linear function
with r = 10 line segments on the interval [−π, π). The parameters tj , fj , f ′j defining
the function as in (2.7) are listed in Table 2.1. The random jump points tj are chosen
uniformly on the interval. The jump heights fj and slopes f ′j are chosen with respect
to a Gaussian distribution. The function as well as the sampling data are visualized
in Figure 2.1. Our samples consist of evaluations of the Fourier partial sum of the
function at equidistantly-spaced sampling points. By Fourier transform, these carry the
same information as the Fourier coefficients of the piecewise-linear function (cf. [PPST18,
Section 3.1.3]). The number of sampling points equals the number of Fourier coefficients
needed for reconstruction, namely 3r+ 1 = 31. From 2s ≥ 3r, we determine s = 15. We
compute the Fourier coefficients c−s, . . . , cs from the given data and add some noise to
each of these coefficients, sampled from a Gaussian distribution with standard deviation
10−12.

In order to reconstruct the piecewise-linear function from the Fourier coefficients, we
compute the moments m0, . . . ,m3r via Equation (2.9) and apply Algorithm 2.1 using
numerical tools. From the moments m0, . . . ,m3r−1, we get a system of r quadratic equa-
tions in r unknowns, which we solve using the Julia package HomotopyContinuation.jl
[BT18], version 0.3.2, from which we obtain up to 2r finite solutions. From these, we
choose the one that best solves the quadratic equation system Hr,2rp

2 = 0 induced by
the additional moment m3r. In this example, we obtain 1024 solutions, the best of which
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Figure 2.1: The piecewise-linear function of Example 2.4.2 with r = 10 line segments
(solid); the Fourier partial sum approximation of order s = 15 (dotted) and
2s+ 1 = 31 equidistantly-spaced sampling points.

has error 1.54 ·10−10 in the ℓ2-norm; the second best solution has error 3.70 ·10−4, which
is significantly larger, so we accept the solution.

Next, we compute the points ξj using the Julia package PolynomialRoots.jl [SG12], ver-
sion 0.2.0, and solve an overdetermined confluent Vandermonde system for the weights
λj , λ

′
j , for which we use a built-in least-squares solver. Lastly, we use (2.8) to compute the

parameters tj , fj , f ′j . Julia code for these computations is included in [Wag21]. The nu-
merical computations were carried out using the Julia language [BEKS17], version 1.0.0.

In this example, the total error we get for the reconstructed points t1, . . . , t10 is 3.89·10−10

in the ℓ2-norm, whereas for fj and f ′j , 1 ≤ j ≤ 9, we get 2.15 · 10−7 and 2.35 · 10−7,
respectively. Even though, in this example, one of the line segments is quite far off of

Table 2.1: The parameters of the piecewise-linear function of Example 2.4.2.
j tj fj f ′j
1 −2.814030328751694 −0.20121264876344414 −0.775069863870378
2 −2.457537611167516 −0.35221920435611676 −0.9795392068942285
3 −1.4536804635810938 −0.9254256123988903 0.26040229778962753
4 −1.1734228328971805 0.4482105605664995 −0.46848914917290574
5 −0.6568874684874002 1.11978779941218 −0.8808972481620518
6 0.54049294753688 0.3012272070859375 0.2777255506414151
7 1.0213620344785337 −0.8357295816882367 1.5239161501048377
8 1.0930147137662223 −0.2071744440917742 −1.7777276640658903
9 1.6867064885416054 0.8681006042361324 −2.9330595087256466
10 2.7678373800858678
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the Fourier partial sum, as shown in Figure 2.1, the sampling data still contains enough
information to reconstruct it. ♢

We observe that we cannot always reconstruct the randomly chosen points correctly using
homotopy continuation, but many times reconstruction is successful. We expect that the
separation distance among the points plays a major part in numerical reconstruction. If
the randomly chosen points are badly separated, it will be difficult to distinguish them
numerically by just using the moments, as is the case if l = 0; see [KN20; BDGY21].

Further, we observe that, after having obtained the points, solving the confluent Van-
dermonde system often induces additional errors of about three orders of magnitude,
resulting from the possibly bad condition of the confluent Vandermonde matrix. A de-
tailed discussion of this condition number exceeds the scope of this work, so we leave it
for further study.

Remark 2.4.3. If l > 1, one can adapt Algorithm 2.1 in a similar fashion to the re-
construction of functions that are piecewisely defined by polynomials of degree l. As
this requires solving a system of polynomial equations of degree l, the involved com-
putations are more challenging. Note however that, under additional assumptions on
the smoothness of the function, computations can be reduced to a polynomial system of
smaller degree. For example, if we let l = 3 and additionally impose C1-continuity, the
second derivative is piecewise-linear, so reconstruction can be accomplished by applying
the method outlined above. ♢

2.4.2 Local mixture distributions

In statistical applications, local mixture models can be used to account for small varia-
tions in the data that otherwise are not directly reflected in a particular statistical model.
This means the original model is enriched by a truncated Taylor expansion of the proba-
bility density function. For details, we refer to [AM07] and the references therein as well
as to [Gro21, Section 2.5].

Definition 2.4.4. For a regular exponential family ϕξ(x), its local mixture model is
defined as

ψξ(x) := ϕξ(x) +

l∑︂
i=1

θiϕ
(i)
ξ (x),

for parameters θ1, . . . , θl such that ψξ(x) ≥ 0 for all x. Here ϕ(i)ξ , 1 ≤ i ≤ l, denote the
i-th derivatives of ϕξ, which are usually not non-negative.

Since the distribution ψξ is non-negative, it is also a measure by [Sch73, Chapter 1.4,
Theorem 5]. The local mixture model is a convolution between a local mixture of Dirac
distributions and the member of the exponential family that is centered at 0, by [Sch73,
Chapter 6.3, Theorem 8]. Thus, for the distribution µ := δξ +

∑︁l
i=1 θiδ

(i)
ξ we have

ψξ = ϕ0 ∗ µ. (2.10)
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2.4 Applications

Here, the convolution ϕ0 ∗ µ is defined as a distribution satisfying∫︂
R
f d(ϕ0 ∗ µ) =

∫︂
R

∫︂
R
f(x+ y)ϕ0(y)dydµ(x),

for every compactly-supported function f ∈ C l(R) (cf. [Sch73, Chapter 6.2]).

Remark 2.4.5. Let M1(t),M2(t) be the moment generating functions of the two dis-
tributions in the convolution, respectively. Hence, in particular, M2(t) :=

∑︁
k≥0mk

tk

k!
where

mk = ξk +

min{l,k}∑︂
i=1

(−1)iθi
k!

k−i!ξ
k−i

denote the moments of the local mixture of Diracs. Note that the sign changes are due
to the property of the derivative of the Dirac distribution that∫︂

ϕ(x)dδ
(i)
ξ (x) = (−1)iϕ(i)(ξ).

Then the product M1(t)M2(t) is the moment generating function corresponding to the
convolution ψξ, so the moments mk of the underlying local Dirac mixture can be com-
puted if the moments of a probability distribution with density ψξ as well as the moments
corresponding to ϕ0 are known. Thus, we can reduce the problem of parameter inference
to the problem of parameter recovery of a local Dirac mixture. ♢

A numerical example of a local mixture of Gaussians is given in [Gro21, Section 2.5].
In the following more involved example from [GW20], we numerically apply the process
outlined above to Gaussian distributions by considering a mixture of two local mixtures
of Gaussians of order 2. The reconstruction is performed using Algorithm 2.1.

Example 2.4.6 (A mixture of two local Gaussians with known common variance). Let
ϕ0 be the density of a standard Gaussian distribution, let ϕξj be the density of Gaussians
centered at the points ξj , j = 1, 2, and let

ψ := λψξ1 + (1− λ)ψξ2

be a 2-mixture of local distributions of order 2, where ψξj = ϕξj + θj1ϕ
′
ξj
+ θj2ϕ

′′
ξj

. The
functions ϕ′ξj , ϕ

′′
ξj

are also called Hermite functions (cf. [PPST18, Section 2.2]). Recall
that ψξj can be expressed by a convolution of ϕ0 and a second-order local mixture of
Dirac distributions by (2.10).

For this example, we choose the parameters as follows:

ξ1 = −1, θ11 = 0.1, θ12 = 0.4, λ = 0.6,

ξ2 = 2, θ21 = −0.2, θ22 = 0.6.

With this choice of θji, 1 ≤ i, j ≤ 2, the functions ψξj are non-negative, so they are
indeed probability density functions; see [Mar02, Example 4]. We create a sample of size
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20,000 from this probability distribution using Mathematica [Wol18] and compute the
empirical moments of that sample. Using that, we derive the empirical moments of the
underlying 2-mixture of local Dirac distributions as explained in Remark 2.4.5 and then
apply Algorithm 2.1 to infer the parameters. We obtain the following values:

ξ1 = −0.98121, θ11 = 0.14076, θ12 = 0.39268, λ = 0.59457,

ξ2 = 1.95600, θ21 = −0.20486, θ22 = 0.62641.

These are close to the original parameters – the numerical errors are expected due to
the fact that the empirical moments only give an approximation of the true underlying
moments. Increasing the sample size can result in a better approximation.

Note that for this process the distribution ϕ0 is assumed to be known. In particular, we
need to know its standard deviation or have a way of estimating it in order to relate the
moments of the local mixture of Gaussians and Diracs as in Remark 2.4.5. The original
distribution and the reconstructed one are shown in Figure 2.2. ♢

Figure 2.2: The 2-mixture ψ = λψξ1 + (1 − λ)ψξ2 of local Gaussian distributions of
Example 2.4.6 (solid) and its two components λψξ1 , (1 − λ)ψξ2 (dashed) on
the left, as well as the reconstructions on the right, including the original
distribution for comparison (dotted).

42



3 Moment problems on
positive-dimensional varieties

In this chapter, we consider a measure that is supported on an algebraic variety of positive
(or, more generally, arbitrary) dimension and study the problem of recovering from its
moments the defining data of the measure. As this problem is too broad to be solved
in general, we focus on specific subproblems, such as recovering the algebraic variety the
measure is supported on (Section 3.4) as well as finding approximations of the measure
using only finitely many moments (Section 3.5). This constitutes a generalization of
the problem considered in Section 1.3, as Prony’s method can be viewed as a tool for
reconstructing a signed measure supported on a zero-dimensional algebraic variety from
finitely many moments.

Our primary interest pertains to measures with support contained in the n-dimensional
affine space or in the complex torus Tn. To every measure µ that has finite moments,
we can associate its moment functional σ, a k-linear map from the polynomial ring (or
Laurent polynomial ring) L to the underlying field k. More abstractly, we can start
with any functional σ : L → k, without referring to moments of a measure. This is the
approach we follow in the first sections of the chapter, as it allows us to make purely
algebraic statements without need of any measure theoretic arguments. More specifically,
if the measure µ is supported on an algebraic variety V(a) defined by an ideal a ⊆ L,
then the moment functional σ factors via L/a. Thus, we consider functionals σ : L → k

for which a ⊆ kerσ holds. The variety defined by the ideal a can be positive-dimensional,
but this also includes zero-dimensional ideals as a special case.

In Section 3.1, we start with a short general treatment of sesquilinear forms and sesquilin-
ear maps that can be associated to a functional σ. The concept of sesquilinearity is useful
in this context as it allows us to treat both cases, that of measures in affine space and
on the torus, simultaneously.

We then continue in Section 3.2 by transferring, to the more general setting of this chap-
ter, the Vandermonde factorization of Lemma 1.3.3 that is such an essential ingredient
for Prony’s method. Section 3.3 consists of a short discussion of aspects that are rel-
evant for the complex torus. In particular, this relates Toeplitz and Hankel moment
matrices.

Section 3.4 addresses one of our leading questions, that of recovering the algebraic variety
the measure µ is supported on. This can be achieved by using finitely many moments,
both for non-negative as well as signed measures, in affine space and on the complex
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torus. In case of non-negative measures, the moment matrices are positive-semidefinite
which allows for somewhat stronger statements; we illustrate this difference in some
examples.

Finally, Section 3.5 deals with measures on the torus, exclusively. We construct several
functions from a finite number of moments that reflect different aspects of the original
measure. For these functions, we prove several results about qualitative convergence as
the number of moments is increased.

Unless explicitly stated otherwise, the measures we consider are assumed to be non-
negative and are defined in terms of the Borel σ-algebra.

3.1 Sesquilinearity

In this section, we set up a framework that allows us to treat in a unified way the two
different settings of moment problems we are primarily interested in, namely moment
problems on affine space and on the torus. See [Sch17, Chapter 2] for a similar approach
to these concepts.

Definition 3.1.1. Let R be a ring with a map −◦ : R→ R satisfying

• (x+ y)◦ = x◦ + y◦ ,

• (xy)◦ = y◦x◦ ,

• 1◦ = 1,

• (x◦)◦ = x

for all x, y ∈ R. Then the map −◦ is called involution and R is an involutive ring (also
called ∗-ring).

An involutive ring A with involution −◦A that is also an (associative) algebra over a
commutative involutive ring R is an involutive algebra (also called ∗-algebra), if the
involution satisfies

(ra)◦A = r◦a◦A

for all r ∈ R and a ∈ A. As this property means that there is no ambiguity, we denote
the involution on A by −◦ as well.

A map f : A→ A is ◦-semilinear if f(a+ b) = f(a) + f(b) and f(ra) = r◦f(a) holds for
all r ∈ R and a, b ∈ A. The same definition also applies to maps between submodules of
A.

A common example for an involutive ring is the field of complex numbers C with complex
conjugation as involution. It is an involutive algebra over R, where R is endowed with
the trivial involution. More generally, quadratic field extensions give rise to non-trivial
involutive algebras over the original field. An example of a non-commutative involutive
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3.1 Sesquilinearity

algebra over C consists of square complex matrices of a given size, for which an involution
is defined by taking the conjugate transpose of a matrix. Another important example
for our discussion is given in Example 3.1.5 below. Also note that any commutative ring
(algebra) is an involutive ring (algebra) with respect to the trivial involution which leaves
every element unchanged.

Definition 3.1.2. Let k be a field and A an (associative) algebra over k. If Fd ⊆ A,
d ∈ N, is a family of k-vector subspaces satisfying

• Fd ⊆ Fe for d, e ∈ N with d ≤ e,

• A =
⋃︁

d∈N Fd,

• 1 ∈ F0,

• Fd · Fe ⊆ Fd+e for d, e ∈ N,

then A is a filtered algebra over k and the family {Fd}d∈N is called filtration of A.
For simplicity of notation, we often denote the filtered components of the filtration by
A≤d := Fd.

More generally, one can define filtered algebras over commutative rings in the same
way, but here we only make use of this notion for algebras over fields. We only work
with algebras and filtered algebras that are commutative. More specifically, we only
consider filtrations of the multivariate polynomial ring or Laurent polynomial ring over
a field.

Example 3.1.3. Let k be a field and R = k[x1, . . . , xn] be the polynomial ring in
n variables over k, for some n ∈ N. Then the total degree of polynomials gives rise to a
filtration of R where

R≤d = {p ∈ R | deg(p) ≤ d}
for d ∈ N. Similarly, we can define a filtration {Fd}d∈N, on R in terms of max-degree by

Fd =
⨁︂

α∈Nn,|α|∞≤d

kxα.

Note that all the filtered components of these two filtrations happen to be k-vector spaces
of finite dimension, which is a useful property when it comes to computations.

Now let a ⊆ R be an ideal with 1 /∈ a and define S = R/a. If {Fd}d∈N, is any filtration
of R, then

Gd := Fd/(a ∩ Fd)

is a filtration of S. For this, observe that Gd can be embedded in Gd+1, for all d ∈ N,
via the injective map p+ a ∩ Fd ↦−→ p+ a ∩ Fd+1, where p ∈ Fd. ♢

For the remainder of this section, we assume, for simplicity, that k is a field of character-
istic 0 together with an involution −◦ that endows k with the structure of an involutive
ring. Moreover, we denote by R = k[x1, . . . , xn] the polynomial ring in finitely many
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variables and fix a filtration {R≤d}d∈N that turns R into a filtered algebra over k and
has the property that R≤d is a finite-dimensional k-vector space for every d ∈ N. Addi-
tionally, we assume that R ⊆ L is a k-subalgebra of an involutive commutative algebra
L over k. The involution on L is denoted by −◦ as well. Typical examples are the
following:

Example 3.1.4. If k is any field, let L = R and define the involutions on k and L to
act trivially. The filtration on R is defined by total degree as

R≤d = {p ∈ R | deg(p) ≤ d}
for d ∈ N. Of particular interest is the case when k is the field of real numbers R (or a
subfield thereof). ♢

Example 3.1.5. If k is any field with an involution −◦ , let L = k[x±1
1 , . . . , x±1

n ] be the
ring of Laurent polynomials and define the involution on L by(︄∑︂

α

pαx
α

)︄◦

:=
∑︂
α

p◦αx
−α,

where pα ∈ k, α ∈ Zn. Indeed, this turns L into an involutive algebra as the involution
is multiplicative since

(pq)◦ =

(︄∑︂
α,β

pαqβx
α+β

)︄◦

=
∑︂
α,β

p◦αq
◦
βx

−(α+β) = p◦q◦

and satisfies
(cp)◦ =

∑︂
α

(cpα)
◦x−α = c◦p◦

for c ∈ k and Laurent polynomials p =
∑︁

α pαx
α, q =

∑︁
β qβx

β ∈ L. The other require-
ments clearly hold as well.

For the filtration on R, in this situation we usually pick the one that is induced by
max-degree, namely

R≤d =

{︄∑︂
α

pαx
α ∈ R

⃓⃓⃓⃓
⃓ 0 ≤ α1, . . . , αn ≤ d

}︄
,

since L is the coordinate ring of the algebraic torus.

Of particular interest is the case k = C of complex numbers with complex conjugation
as involution. In this case, an observation that can be significant in some applications is
the following: If we restrict a Laurent polynomial p ∈ L to the complex torus Tn, then
the involution p◦ is the complex conjugate of p as a function on Tn, so we have

p◦(ξ) = p(ξ)

for all ξ ∈ Tn, since ξ−α = ξ
α for all α ∈ Zn. In particular, the Laurent polynomial p is a

real function on Tn if and only if p◦ = p, i. e. pα = p−α for all α. Furthermore, note that,
if a ⊆ L is a vanishing ideal of a set contained in Tn, then it follows that a◦ = a. ♢
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3.1 Sesquilinearity

Definition 3.1.6. Let σ : L → k be a k-linear map. Then we define the k-sesquilinear
form

⟨−,−⟩σ : L× L −→ k, (q, p) ↦−→ σ(q◦p),

which is ◦-semilinear in the first and linear in the second argument. Defining sesquilinear
forms to be semilinear in the first rather than in the second argument is an arbitrary
choice. We choose this convention as it simplifies some notation later on.

By restriction, we can also view this as a sesquilinear form on R as well as on the finite-
dimensional vector spaces R≤d, d ∈ N. Note that this is a symmetric bilinear form if the
involution is trivial.

A form ⟨−,−⟩ on a k-vector space U is Hermitian if ⟨q, p⟩ = ⟨p, q⟩◦ for all p, q ∈ U . If
the involution is trivial, as in Example 3.1.4, then this always holds for ⟨−,−⟩σ, as the
form is symmetric in that case.

When k is (a subfield of) the complex numbers C, then a Hermitian form ⟨−,−⟩σ on U
is positive-semidefinite if, additionally, ⟨p, p⟩σ ≥ 0 for all p ∈ U . Note that this never
holds if k ⊈ R and the involution is linear, rather than ◦-semilinear, unless the form is
trivial, since ⟨cp, cp⟩ = c2⟨p, p⟩ ≥ 0 cannot hold for all c ∈ k and p ∈ U . Thus, one may
primarily think of complex conjugation as involution as described in Example 3.1.5 when
considering positive-semidefiniteness. In this case, it holds in particular that ⟨cp, cp⟩ =
|c|2⟨p, p⟩ ≥ 0 for c ∈ k ⊆ C if the form is positive-semidefinite.

Remark 3.1.7. Assume that a family of monomials {xα}α∈J ⊆ R≤d for a suitable
index set J ⊆ Nn forms a basis of the finite-dimensional vector space R≤d and that the
involution −◦ is trivial. Then the Gramian matrix of ⟨−,−⟩σ with respect to this basis
is of the form (︁⟨︁

xα, xβ
⟩︁
σ

)︁
α,β∈J =

(︁
σ
(︁
(xα)◦xβ

)︁)︁
α,β∈J =

(︁
σ
(︁
xα+β

)︁)︁
α,β∈J ,

which is a (generalized) Hankel matrix.

Likewise, if {xα}α∈J ⊆ R≤d is a basis of R≤d, but L is the ring of Laurent polynomials
with involution −◦ : L → L defined as in Example 3.1.5, then the Gramian matrix with
respect to this basis is a (generalized) Toeplitz matrix of the form(︁⟨︁

xα, xβ
⟩︁
σ

)︁
α,β∈J =

(︁
σ
(︁
(xα)◦xβ

)︁)︁
α,β∈J =

(︁
σ
(︁
x−α+β

)︁)︁
α,β∈J .

One may also interpret this matrix in terms of the bilinear map

R◦
≤d ×R≤d −→ k, (q, p) ↦−→ σ(qp),

by using {x−α}α∈J as basis of R◦
≤d. ♢

Definition 3.1.8. Let V,W be vector spaces over k and let φ : V × W → k be a
sesquilinear map. Then φ is called right-non-degenerate if it holds that

{p ∈W | φ(q, p) = 0 for all q ∈ V } = 0.
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Similarly, it is left-non-degenerate if {q ∈ V | φ(q, p) = 0 for all p ∈ W} = 0 and it is
non-degenerate if it is both left- and right-non-degenerate.

For future reference, we mention the following fact.

Lemma 3.1.9. Let V,W be two k-vector spaces of the same finite dimension and with
bases B,B′, respectively. Let φ : V ×W → k be a sesquilinear map. Then the following
are equivalent:

(1) The matrix (φ(v, w))v∈B,w∈B′ is invertible.

(2) φ is left-non-degenerate.

(3) φ is right-non-degenerate.

Proof. As V and W are finite-dimensional, the map φ is right-non-degenerate (left-
non-degenerate) if and only if the matrix (φ(v, w))v∈B,w∈B′ has full column (row) rank.
As V and W have the same dimension, this is equivalent to the non-singularity of the
matrix.

Lemma 3.1.10. Let U ⊆ L be a k-vector subspace and let σ : L→ k be a k-linear map.
Then the sesquilinear form ⟨−,−⟩σ : U ×U → k defined by ⟨q, p⟩σ = σ(q◦p) is Hermitian
if and only if σ(g◦) = σ(g)◦ for all g ∈ U◦ · U .

If U = L, note in particular that U◦ · U = L.

Proof. If the form is Hermitian, write g ∈ U◦ · U as g = q◦p for suitable q, p ∈ U . Then
we have σ(g◦) = σ(p◦q) = ⟨p, q⟩σ = ⟨q, p⟩◦σ = σ(q◦p)◦ = σ(g)◦ , as the form is Hermitian.
Conversely, if q, p ∈ U , then g = q◦p ∈ U◦ · U , so it follows in a similar manner that the
form is Hermitian.

Lemma 3.1.11. Assume that σ : L → k is a k-linear map, a ⊆ L is an ideal such that
a, a◦ ⊆ kerσ. Then the sesquilinear form ⟨−,−⟩σ on L induces a sesquilinear form

R≤d/(a ∩R≤d)×R≤d/(a ∩R≤d) −→ k, (q, p) ↦−→ ⟨q, p⟩σ = σ(q◦p),

for any d ∈ N.

Here, q, p denotes the residue class of polynomials q, p ∈ R≤d modulo a ∩ R≤d. We
denote the induced sesquilinear form on R≤d/(a ∩R≤d) by ⟨−,−⟩σ again. Also note
that it follows from Lemma 3.1.10 that the requirements a ⊆ kerσ and a◦ ⊆ kerσ are
equivalent when the sesquilinear form ⟨−,−⟩σ on L is Hermitian.

Proof. Let p, q ∈ R≤d. If p ∈ a ∩R≤d, then q◦p is contained in a ⊆ kerσ, so σ(q◦p) = 0.
Likewise, if q ∈ a∩R≤d, then q◦p ∈ a◦ ⊆ kerσ, so the sesquilinear form on R≤d/(a ∩R≤d)
is well-defined.

Definition 3.1.12. If σ : L→ k is k-linear and a ⊆ L is an ideal such that a ⊆ kerσ, then
the sesquilinear form ⟨−,−⟩σ on L does not induce a sesquilinear form on the quotient
spaces R≤d/(a ∩R≤d), d ≤ N. (Observe that this would need a◦ ⊆ kerσ or require the
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3.1 Sesquilinearity

form to be Hermitian, as in Lemma 3.1.11.) However, for every vector subspace U ⊆ L,
thus in particular for U = R≤d, we can still define the sesquilinear map

ΦU
a,σ : U/(a

◦ ∩ U)× U/(a ∩ U) −→ k, (q, p) ↦−→ ⟨q, p⟩σ = σ(q◦p),

which is well-defined in the semilinear argument since σ(q◦p) = 0 for any p ∈ U and
q ∈ a◦ ∩ U , as q◦p ∈ a. It is important not to confuse this map ΦU

a,σ with a potential
sesquilinear form on U/(a ∩ U) as given in Lemma 3.1.11. If the involution is trivial,
then these two sesquilinear maps are the same, but in general they are distinct and
can have quite different properties. Although there exist non-trivial involutions such
that the quotient spaces U/(a◦ ∩ U) and U/(a ∩ U) have the same dimension, as in
Example 3.1.13, in general this is not the case, so they can be of different dimensions;
see for instance Example 3.1.15. Nevertheless, we can relate these two sesquilinear maps
by the notion of right-non-degenerateness, as is expressed in Lemma 3.1.16.

In the remainder, we refer to ΦU
a,σ as the induced sesquilinear map associated to σ or as

the map induced by the sesquilinear form ⟨−,−⟩σ on L. If σ is clear from the context,
we may also denote the map by ΦU

a or simply by Φ.

Example 3.1.13. Let R = k[x1, . . . , xn] and L = k[x±1
1 , . . . , x±1

n ] be the polynomial and
Laurent polynomial rings and define an involution on L as in Example 3.1.5. Moreover,
let U :=

⨁︁
α∈Nn,αi≤βi

kxα ⊆ R for some β = (β1, . . . , βn) ∈ Nn. Then U◦ = x−βU , so U
and U◦ have the same dimension. The map L→ L, p ↦→ x−βp, is an automorphism of L
under which a is invariant, as x−β is a unit in L. Therefore, a polynomial p is contained
in a∩U if and only if the Laurent polynomial x−βp is contained in a∩U◦ , so we conclude
that a ∩ U and a◦ ∩ U have the same dimension. ♢

Remark 3.1.14. By a similar argument as in Example 3.1.13, one can observe that an
ideal a in L is generated by Laurent polynomials p ∈ a bounded in max-degree d ∈ N
that are of the form p =

∑︁
α∈Zn,|α|∞≤d pαx

α, pα ∈ k, if and only if it is generated by
polynomials a ∩ R≤2d, where R≤2d denotes a filtered component with respect to the
filtration on R that is induced by max-degree. ♢

Example 3.1.15. Let R = k[x] and L = k[x, y]. Define the involution on L by x◦ = y
and y◦ = x, extending the trivial involution on k. Further, let a = ⟨x⟩ ⊆ L and
U = R≤d for some d ≥ 1. Then the ideal a◦ = ⟨y⟩ intersects trivially with U , so
we have dim(a◦ ∩ U) = 0, while dim(a ∩ U) > 0. Consequently, a sesquilinear map
U/(a◦ ∩ U)× U/(a ∩ U) → k cannot be non-degenerate. ♢

Lemma 3.1.16. Let σ : L → k be a k-linear map, let a ⊆ L be an ideal satisfying
a, a◦ ⊆ kerσ and let U ⊆ L be a vector subspace. Denote by ψ,Φ the sesquilinear maps

ψ : U/(a ∩ U)× U/(a ∩ U) → k, Φ : U/(a◦ ∩ U)× U/(a ∩ U) → k

that are induced by the sesquilinear form ⟨−,−⟩σ on L. Then ψ is right-non-degenerate
if and only if Φ is right-non-degenerate.
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Note that, if U is finite-dimensional and ψ is right-non-degenerate, then it is already
non-degenerate by Lemma 3.1.9.

Proof. Denote by π, π′ the natural quotient maps from U to U/(a ∩ U) and U/(a◦ ∩ U),
respectively. As both Φ and ψ are induced by ⟨−,−⟩σ, we have

Φ(π′(q), π(p)) = ⟨q, p⟩σ = ψ(π(q), π(p))

for all p, q ∈ U . Thus, it follows from the definition that Φ is right-non-degenerate if and
only if ψ is right-non-degenerate.

We frequently make use of the following simple and useful correspondence. It allows
us to switch context from degenerate sesquilinear maps in the ambient ring to right-
non-degenerate sesquilinear maps on the quotient ring modulo an ideal. Primarily, this
is needed so that involved matrices form a matrix pencil that is regular, which is a
requirement for the study of eigenvalues. This is explained in detail in Section 4.2.

Lemma 3.1.17. Let σ : L → k be a k-linear map and let a ⊆ L be an ideal such that
a ⊆ kerσ. Let U ⊆ R be a k-vector subspace and assume that the induced sesquilinear
map ΦU

a,σ is right-non-degenerate. Let p ∈ U be a polynomial. Then the following are
equivalent:

(1) p ∈ a;

(2) σ(q◦p) = 0 for all q ∈ U ;

(3) H(p) = 0, where H is the k-linear map

H : U −→ Homsemi
k

(U,k), p ↦−→ (q ↦→ σ(q◦p)).

Here, Homsemi
k

(U,k) denotes the vector space of ◦-semilinear maps from U to k.

Proof. It is clear that (2) and (3) are equivalent. Moreover, if p ∈ a, we also have
q◦p ∈ a ⊆ kerσ for all q ∈ L, thus in particular for all q ∈ U ⊆ R ⊆ L, so (1) implies
(2). Conversely, assume that σ(q◦p) = 0 for all q ∈ U . As a ⊆ kerσ, we have

ΦU
a,σ(q + a◦ ∩ U, p+ a ∩ U) = σ((q◦ + a ∩ U◦)(p+ a ∩ U)) = σ(q◦p) = 0

for all q ∈ U . Since the sesquilinear map ΦU
a,σ is right-non-degenerate, it follows that

p ≡ 0 (mod a ∩ U) and thus p ∈ a.

3.2 Factorization properties

The Vandermonde factorization of Lemma 1.3.3 is an essential aspect of Prony’s method.
Here, we analyze how to transfer it from measures on zero-dimensional to measures on
positive-dimensional algebraic varieties. The statements here are also motivated by the
study of finite-rank Hankel operators as in e. g. [Mou18]. In the positive-dimensional
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3.2 Factorization properties

setting, such operators are not of finite rank anymore, but some properties are still
valid.

Let k, R, L be as in Section 3.1, so k is a field of characteristic 0, R = k[x1, . . . , xn] is the
polynomial ring in n variables endowed with a filtration {R≤d}d∈N and L is an involutive
commutative k-algebra such that R ⊆ L.

We wish to examine more closely the following situation. Let a ⊆ L be an ideal and let
σ : L→ k be a k-linear map with the property that a ⊆ kerσ. This means that the map
σ factors via the quotient homomorphism

πa : L −→ L/a, p ↦−→ p := p+ a,

which we denote by πa, and a k-linear map σ : L/a → k, denoted by σ.

Example 3.2.1. Assume that L is the polynomial ring R and ξ ∈ k
n (or that L is the

Laurent polynomial ring in n variables and ξ ∈ (k∗)n). Then, for the maximal ideal
mξ = ⟨x− ξ⟩ ⊆ L, this gives the evaluation homomorphism at the point ξ,

πmξ
: L −→ L/mξ

∼= k, xα ↦−→ xα = ξα,

for α ∈ Nn (or α ∈ Zn), so πmξ
(p) = p(ξ) for p ∈ L. Note further that, for any k-linear

map σ : L→ k with mξ ⊆ kerσ, the linear map σ : L/mξ
∼= k→ k is determined by a sin-

gle scalar λ ∈ k, with respect to a suitable basis. Thus, σ = λπmξ
= λ evξ ∈ Homk(L,k),

which we can interpret as an exponential sum of rank 1 if λ ̸= 0 (cf. Section 1.3.1).

More generally, consider the zero-dimensional ideal a =
⋂︁r

j=1mξj , for distinct points
ξ1, . . . , ξr. Then it follows from Lemma 1.2.2 that

L/a ∼=
r⨁︂

j=1

L/mξj
∼= k

r

and πa(p) = (p(ξ1), . . . , p(ξr)) for p ∈ L. As a k-linear map with respect to the monomial
basis of L, we can view this map as being described by an infinite Vandermonde matrix
associated to the points ξ1, . . . , ξr. If σ : L→ k is a k-linear map with a ⊆ kerσ, then it is
of the form σ =

∑︁r
j=1 λj evξj with suitable parameters λ1, . . . , λr ∈ k, which corresponds

to an exponential sum of rank r if λ1, . . . , λr ̸= 0. ♢

The following example shows that the ideal a does not need to be radical, which does
not classically correspond to an algebraic variety.

Example 3.2.2. Let n = 1 and L = R = k[x] be the univariate polynomial ring. Let
ξ ∈ k and define the primary ideal a = m2

ξ = ⟨x− ξ⟩2. Then

πa : L −→ L/a ∼= k1⊕ k(x− ξ),

xα ↦−→ xα = ξα + αξα−1(x− ξ),
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Moment problems on positive-dimensional varieties

for α ∈ N. Let σ : L → k be a k-linear map with a ⊆ kerσ. Then σ is determined by
the images of the basis elements 1, x− ξ. Assume that σ(1) = λ, σ(x− ξ) = λ′ for some
λ, λ′ ∈ k. Then

σ(xα) = λξα + λ′αξα−1 = evξ((λ+ λ′∂)(xα)),

for α ∈ N, so σ is a moment functional of a first-order local mixture of a Dirac distribution,
as studied in Chapter 2. More generally, this is an example of a polynomial-exponential
series; see for instance [Mou18]. ♢

As R is endowed with a filtration {R≤d}d∈N for which each component R≤d is finite-
dimensional and since R ⊆ L, we can restrict the map πa : L → L/a to a map on
finite-dimensional vector subspaces R≤d → R≤d/(a ∩R≤d), which we denote by πa,≤d,
as explained in Example 3.1.3.

Remark 3.2.3. The isomorphy L/a ∼=
⨁︁r

j=1 L/mξj in Example 3.2.1 only holds because
the ideals mξ1 , . . . ,mξr are pairwise comaximal. For general ideals a1, . . . , ar with a =⋂︁r

j=1 aj , this does not hold.

Even if the ideals a1, . . . , ar are pairwise comaximal, it is not in general possible to find
an isomorphism between the truncated spaces R≤d/(a∩R≤d) and

⨁︁r
j=1R≤d/(aj ∩R≤d),

for any d ∈ N. This suggests that it is often more useful to consider R≤d/(a∩R≤d) rather
than

⨁︁r
j=1R≤d/(aj ∩ R≤d), even though, for any d, the latter space can be interpreted

as the codomain of the map ev≤d that appears in Theorem 1.3.1. ♢

An important ingredient of Prony’s method is that we can extract information about the
vanishing ideal from the kernel of the moment matrix, if the moment matrix is sufficiently
large; see Theorems 1.3.1 and 1.3.6 and Lemma 1.3.3. In the following, we examine what
is required to transfer this property to the setting of ideals which are possibly not of
dimension zero, but are of higher dimension. This is answered by the following theorem
as well as Corollary 3.2.5 below.

Theorem 3.2.4. Let a ⊆ L be an ideal and let σ : L → k be a k-linear map with
a ⊆ kerσ. Then the k-linear map

H : R −→ Homsemi
k

(R,k), p ↦−→ (q ↦→ ⟨q, p⟩σ),

factors as

R R/(a ∩R) Homsemi
k

(R/(a◦ ∩R),k) Homsemi
k

(R,k),

p+ a ∩R (q + a◦ ∩R ↦→ ⟨q, p⟩σ),

πa
π⊤
a◦

where π⊤a◦ (φ) = φ ◦ πa◦ for φ ∈ Homsemi
k

(R/(a◦ ∩R),k).
Moreover, the truncated map between finite-dimensional vector subspaces given by

Hd+δ,d : R≤d −→ Homsemi
k

(R≤d+δ,k), p ↦−→ (q ↦→ ⟨q, p⟩σ),
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for d, δ ∈ N, factors as

R≤d Homsemi
k

(R≤d+δ,k)

R≤d/(a ∩R≤d) Homsemi
k

(R≤d+δ/(a
◦ ∩R≤d+δ),k),

p+ a ∩R≤d (q + a◦ ∩R≤d+δ ↦→ ⟨q, p⟩σ).

πa,≤d

Hd+δ,d

Hd+δ,d

π⊤
a◦ ,≤d+δ

(3.1)

Proof. Due to the inclusion a ⊆ kerσ, we have that

σ((q + a◦ ∩R)◦(p+ a ∩R)) = σ((q◦ + a ∩R◦)(p+ a ∩R)) = σ(q◦p) = ⟨q, p⟩σ,

for all q, p ∈ R, which shows the first factorization property. The other one follows
analogously.

The truncated map Hd+δ,d is of importance for us, since we are interested in recovery
from finitely many moments. By Theorem 3.2.4, it holds that

a ∩R≤d ⊆ kerHd+δ,d

and we ask when this is an equality. This leads to the following corollary.

Corollary 3.2.5. If the map Hd+δ,d : R≤d/(a∩R≤d) → Homsemi
k

(R≤d+δ/(a
◦ ∩R≤d+δ),k)

is injective, then
ker(Hd+δ,d) = ker(πa,≤d) = a ∩R≤d.

Proof. Due to the factorization (3.1) and since the map π⊤a◦ ,≤d+δ is injective, the equality
holds if and only if the map Hd+δ,d is injective.

As the vector space dimension of the codomain of Hd+δ,d is finite and at least as large as
the dimension of the domain, saying that Hd+δ,d is injective is the same as saying that
the map Hd+δ,d has full rank. As such, this can be regarded as a variant of the statement
about the Vandermonde factorization in Lemma 1.3.3.

Remark 3.2.6. In this formalism, πa,≤d is always surjective, which is an important
difference from the Vandermonde factorization considered in Lemma 1.3.3, as the Van-
dermonde matrix considered there can be non-surjective for small d. This is explained
further in Example 3.2.7 below. There, for an ideal of the form a =

⋂︁r
j=1mξj , the di-

mension of im(πa,≤d) = R≤d/(a ∩R≤d) as vector space is at most r, but can be smaller.
Equality holds if and only if the corresponding Vandermonde matrix has rank r, which
only holds if d is sufficiently large. ♢

Note that Hd+δ,d has full rank if and only if it induces a right-non-degenerate sesquilinear
map of the form

R≤d+δ/(a
◦ ∩R≤d+δ)×R≤d/(a ∩R≤d) −→ k, (q, p) ↦−→ Hd+δ,d(p)(q).
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Moment problems on positive-dimensional varieties

Whether this is the case depends on the functional σ. We will see in Theorem 3.4.11
that this holds in particular when σ is a moment functional of a measure and a is the
vanishing ideal of its support.

Example 3.2.7. Let us revisit Example 3.2.1, so let a :=
⋂︁r

j=1mξj ⊆ L for distinct
points ξ1, . . . , ξr ∈ k

n, where now we assume that L = R = k[x1, . . . , xn] is endowed
with the trivial involution and the filtration induced by total degree.

If d is sufficiently large, πa,≤d has rank r and we have R≤d/(a∩R≤d) ∼=
⨁︁r

j=1R/mξj
∼= k

r.
Hence, we also have R≤d+δ/(a ∩ R≤d+δ) ∼= k

r for all δ ∈ N. If σ : R → k is a k-linear
map with a ⊆ kerσ, then, by Example 3.2.1, it is of the form σ =

∑︁r
j=1 λj evξj for some

λ1, . . . , λr ∈ k. Thus, the mapHd+δ,d corresponds to the diagonal matrix diag(λ1, . . . , λr)
with respect to the natural bases. Clearly, it is injective if and only if λ1, . . . , λr ̸= 0,
which illustrates the connection of Corollary 3.2.5 to Lemma 1.3.3. ♢

Although for zero-dimensional ideals as in the preceding example it is enough to consider
the case δ = 0 to infer that kerHd+δ,d = a ∩ R≤d if d is sufficiently large, this does not
hold in general (cf. Example 3.4.13). We will see a non-trivial example in Example 3.4.9,
which involves an ideal of positive dimension. In connection to that, Theorem 3.4.3 will
show that it can be useful to consider δ larger than 0.

3.3 Considerations for the complex torus

Here we briefly examine the complex torus from an algebraic point of view and list some
implications for the moment problems we are interested in. In particular, this helps
understand the relevance of Hankel and Toeplitz matrices. See also [Sch17, Chapters 15.1,
15.2] for a related, more extensive treatment.

The complex torus T1 = {z ∈ C | |z| = 1} ⊆ C is not a complex algebraic variety. It
is a Zariski-dense set in C, so its Zariski closure is the whole space C. However, it can
be viewed as the real algebraic variety with coordinate ring S := R[x, y]/⟨x2 + y2 − 1⟩.
Over the complex numbers, we have the isomorphism

C[z, z−1] = C[z, z′]/⟨zz′ − 1⟩ C[x, y]/⟨x2 + y2 − 1⟩ = S ⊗R C,

(z, z′) (x+ iy, x− iy).

∼
φ (3.2)

Over the reals, this is not possible. Set u :=
(︁
1
2(z + z−1), 1

2i(z − z−1)
)︁

and identify it
with the residue class of (x, y). We have the following simple fact, which says that this
transformation is degree compatible. In other words, we obtain a morphism of filtered
algebras.

Lemma 3.3.1. For d ∈ N, the subspaces
⟨︁
z−d, . . . , zd

⟩︁
and ⟨uα | α ∈ N2, |α| ≤ d⟩ of

C[z±1] are equal.
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3.3 Considerations for the complex torus

Proof. Observe that uα = φ−1((x, y)α) involves only the monomials z−d, . . . , zd if |α| ≤
d.

This means that, for a moment functional σ : C[z±1] → C, the moments σ(z−d), . . . , σ(zd)
contain the same information as the moments σ(uα) = σ(φ−1(xα1yα2)), α ∈ N2, |α| ≤ d,
and can be converted using the transformation φ. Analogously, Lemma 3.3.1 also holds
for the higher-dimensional torus Tn by tensorization.

Remark 3.3.2. We define an involution −◦ on C[z±1] as in Example 3.1.5 by z◦ :=
z−1 = φ−1(x− iy), extending the complex conjugation on C. Then −◦ acts trivially on
the coordinates u, so u◦1 = φ−1(x) = u1 and u◦2 = φ−1(y) = u2.

If σ : C[z±1] → C is a C-linear map such that the associated sesquilinear form ⟨−,−⟩σ is
positive-semidefinite, then, for d ∈ N, the Toeplitz matrices Td :=

(︁⟨︁
zα, zβ

⟩︁
σ

)︁
0≤α,β≤d

=(︁
σ
(︁
z−α+β

)︁)︁
0≤α,β≤d

and T ′ :=
(︁⟨︁
zα, zβ

⟩︁
σ

)︁
−d≤α,β≤d

=
(︁
σ
(︁
z−α+β

)︁)︁
−d≤α,β≤d

are positive-
semidefinite. They are the Gramian matrices of the form restricted to the subspaces
generated by the monomials 1, z, . . . , zd and z−d, . . . , zd, respectively, as discussed in
Remark 3.1.7. Observe that the Toeplitz matrix T ′ is equal to the Toeplitz matrix
T2d =

(︁
σ
(︁
z−α+β

)︁)︁
0≤α,β≤2d

. Hence, considering Toeplitz matrices with respect to the
monomials 1, . . . , zd, for d ∈ N, leads to a finer filtration than with the monomials
z−d, . . . , zd.

Furthermore, the Hankel matrix H :=
(︁⟨︁
uα, uβ

⟩︁
σ

)︁
α,β∈N2,|α|,|β|≤d

=
(︁
σ
(︁
uα+β

)︁)︁
|α|,|β|≤d

is
positive-semidefinite. Note that the elements uα, |α| ≤ d, are not linearly independent,
but generate

⟨︁
z−d, . . . , zd

⟩︁
by Lemma 3.3.1, and, for every element p =

∑︁
|α|≤d pαu

α,
pα ∈ C, we have

(pα)
∗
|α|≤dH(pβ)|β|≤d =

∑︂
|α|,|β|≤d

pαpβ
⟨︁
uα, uβ

⟩︁
σ
= ⟨p, p⟩σ ≥ 0.

Since H is Hermitian, but also symmetric, this implies in particular that H must already
be a real matrix.

In summary, this establishes a natural relationship between Toeplitz and Hankel matrices
associated to a sesquilinear form ⟨−,−⟩σ. Similarly, this works for the higher-dimensional
torus, as well. For another approach relating Toeplitz and Hankel matrices, see also
[KRvdO20] and [vdOhe21, Section 2.1]. ♢

Example 3.3.3. Let us consider an example on T2 where we identify C[z±1
1 , z±1

2 ] with
the complexification of S⊗S. We write x1 := x⊗ 1, y1 := y⊗ 1, x2 := 1⊗ x, y2 := 1⊗ y
for the elements in S ⊗ S and identify zk = xk + iyk, z−1

k = xk − iyk for k = 1, 2. Define
the Laurent polynomial

f = z−1
1 z−1

2 + 2z−1
1 + z−1

1 z2 + 2z−1
2 − 1 + 2z2 + z1z

−1
2 + 2z1 + z1z2

= (z1 + 1)(z−1
1 + 1)(z2 + 1)(z−1

2 + 1)− 5.
(3.3)

Then f = 4x1x2 + 4x1 + 4x2 − 1. In particular, the polynomial f has max-degree 1
in the variables z1, z2 and has bidegree (1, 1) in (x1, y1), (x2, y2), has real coefficients,
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so is contained in S ⊗ S, and cuts out a real variety on the torus T2. By using the
parametrization of the torus zk = e2πitk , xk = cos(2πtk), yk = sin(2πtk) for tk ∈ [0, 1),
k = 1, 2, one can visualize this trigonometric curve. It is one of the curves depicted in
Figure 4.2 in Section 4.8.3.

Assume that σ : C[z±1
1 , z±1

2 ] → C is the moment functional of the uniform measure (or
any other measure with sufficiently large support) supported on this trigonometric curve
in T2. Then the Toeplitz moment matrix(︂

σ(z−γ+γ′
)
)︂
γ,γ′∈Z2,|γ|∞,|γ′|∞≤1

is positive-semidefinite and its kernel is spanned by the polynomial (3.3). Similarly, the
kernel of the Hankel moment matrix(︁

σ((x1, y1, x2, y2)
α+β)

)︁
α,β∈N2×N2, |α1|,|α2|≤1, |β1|,|β2|≤1

contains the polynomial f = 4x1x2+4x1+4x2−1. In fact, as the degree is small, f spans
the kernel, but for larger Hankel matrices one would also find elements from the ideal
⟨x21 + y21 − 1, x22 + y22 − 1⟩ defining S⊗S in the kernel. This can be avoided by considering
the submatrix corresponding to a linearly independent subset of the monomials.

It is important to note that, even though we might work with complex-valued moments
σ(zγ) ∈ C, γ ∈ Z2, the variety we are dealing with is a real variety defined in terms of the
real ring S ⊗S ∼= R[x1, y1, x2, y2]/⟨x21 + y21 − 1, x22 + y22 − 1⟩. This ring is not isomorphic
to R[z±1

1 , z±1
2 ]. ♢

3.4 Recovery of the support from moments

In this section, we explore how to recover the underlying algebraic variety that a measure
is supported on, by using finitely many of its moments. We consider a non-negative or
signed measure µ whose support lives in the affine space Rn or the complex torus Tn

and wish to find the smallest variety that contains the support. Following the notation
of Section 3.1, we consider the following two cases, to which we also refer as affine and
trigonometric cases, respectively:

(1) Ω = Rn, k = R, L = R = R[x1, . . . , xn] with trivial involutions (cf. Example 3.1.4);

(2) Ω = Tn, k = C, R = C[x1, . . . , xn], L = C[x±1
1 , . . . , x±1

n ] with complex conjugation
and involution −◦ on L defined as in Example 3.1.5.

Additionally, we fix a filtration {R≤d}d∈N of R consisting of finite-dimensional vector
spaces. Recall that the support of a non-negative or signed measure is defined as fol-
lows.

Definition 3.4.1 (cf. [Sch73, Chapter 1.3]). Let µ be a signed measure on Ω. Then

suppµ := {ξ ∈ Ω | µ|U ̸= 0 for all open neighborhoods U ⊆ Ω, ξ ∈ U}
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is called support of µ, where µ|U denotes the restriction of µ to U .

More generally, the same definition applies to distributions. By convention, we consider
the support in terms of the standard topology on Ω. The complement of suppµ in Ω
is the union of all open sets on which µ is constantly zero and is open, so suppµ is a
closed set. When we consider the support in terms of the Zariski topology, we denote
it by suppµ (as a subset of Ω or (C∗)n). It is the smallest Zariski-closed set containing
suppµ.

This topic has been studied in various forms, usually in the real affine case with non-
negative measures (e. g. [LP15; PPL21]) and an emphasis on finitely-supported measures;
see for instance [LR12]. The case of plane algebraic curves has also been investigated in
[FAV16], with a focus on the presence of noise. The case of plane trigonometric curves on
the torus has been considered in [OJ15; OJ16]. We unify the different noise-free settings
in Theorem 3.4.11 and expand the existing results by Theorem 3.4.3, a statement for
compactly-supported signed measures.

3.4.1 Signed measures

Here, we consider a signed measure µ on Ω. If k = C, as in the trigonometric case, then
µ is a complex measure. As a consequence of the Riesz representation theorem (see e. g.
[Rud87, Theorem 6.19]), these measures can be defined as elements in the continuous
dual space of the space C0

c (Ω) of compactly-supported continuous functions from Ω to
k. We refer to [Sch73, Chapter 1.2] for an extensive treatment of this topic.

In the trigonometric case, all the moments of µ are defined, as the torus Tn is compact.
In order to speak of moments

∫︁
Ω x

αdµ, α ∈ Nn, in the affine case, we need to make
additional assumptions on the measure µ, since the monomials xα are not compactly-
supported functions on Rn. Certainly, the moments are defined when the measure µ itself
is compactly supported. More generally, all the moments are defined for signed measures
with a sufficiently rapid decay toward infinity, such as those that can be written as a
product µ = gµ0 of a Schwartz function g and a tempered distribution µ0 (see e. g. [Gra14,
Chapter 2] or [Sch73, Chapter 7]), which in particular includes mixtures of Gaussians
and mixtures of local mixtures of Gaussians, as considered in Example 2.4.6. In this
section, we focus on signed measures with compact support only, as these are determined
by their moments.

First, let us take note of the following elementary properties of the support of the product
between a measure and a continuous function.

Lemma 3.4.2. Let µ be a signed measure on Ω and let f ∈ C0(Ω) be a continuous
function. Then:

(1) D(f) ∩ suppµ ⊆ supp(fµ), where D(f) ⊆ Ω denotes the set of points in which f
does not vanish.
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(2) The measure fµ is zero if and only if f vanishes on suppµ.

Proof. For (1), let ξ ∈ suppµ be any point such that f(ξ) ̸= 0 and let U ⊆ Ω be an
arbitrary open neighborhood of ξ. We need to show that fµ|U ̸= 0. For this, let U0 ⊆ U
be an open neighborhood of ξ in which f does not have any roots. Since ξ is a support
point of µ, there exists a compactly-supported continuous function φ ∈ C0

c (U0) such
that

∫︁
U0
φdµ ̸= 0. Then ψ := φ

f ∈ C0
c (U0) can be extended trivially to a compactly-

supported function ψ ∈ C0
c (U) and we have

∫︁
U ψ d(fµ) =

∫︁
U0

φ
f d(fµ) =

∫︁
U0
φdµ ̸= 0

and thus fµ|U ̸= 0, which proves the statement. For part (2), assume that fµ is zero.
Then supp(fµ) = ∅, so f vanishes on suppµ by (1). The converse holds by [Sch73,
Chapter 3, Theorem 33, addendum].

For the remainder of this section, we fix a filtration {L≤d}d∈N of L for which all the
components are finite-dimensional vector spaces. In the affine case, we may choose
L≤d = R≤d. Additionally, we denote by BL

d and BR
d any bases of the filtered components

L≤d and R≤d, respectively. With this notation, we arrive at the following theorem.

Theorem 3.4.3. Let µ be a compactly-supported signed measure on Ω, denote by a :=
I(suppµ) ⊆ L the vanishing ideal of (the Zariski closure of) its support and let σ : L→ k

be its moment functional. Let d ∈ N. Then

a ∩R≤d = kerHd′,d

holds for all sufficiently large d′ ∈ N, where Hd′,d := (⟨w, v⟩σ)w∈BL
d′ , v∈B

R
d
.

It then follows from Hilbert’s basis theorem that a is generated by kerHd′,d if d ∈ N is
sufficiently large.

Proof. As the measure µ is compactly supported, all its moments exist. Let d ∈ N be
arbitrary and observe that

a ∩R≤d ⊆ kerHd′,d = {p ∈ R≤d | ⟨q, p⟩σ = 0 for all q ∈ L≤d′}, (3.4)

for all d′ ∈ N. Indeed, if p ∈ a, then p vanishes on the support of µ, so ⟨q, p⟩σ =∫︁
Ω q

◦p dµ = 0 for all q ∈ L, by Lemma 3.4.2 (2). More specifically, we have a descending
chain

R≤d ⊇ kerH0,d ⊇ kerH1,d ⊇ · · · ⊇ a ∩R≤d

which must stabilize, so we can fix a d′ ∈ N such that

kerHd′,d = kerHd′+δ,d (3.5)

holds for all δ ∈ N.

Assume that kerHd′,d ⊈ a ∩ R≤d. Then we can choose a polynomial p ∈ kerHd′,d with
p /∈ a, so p does not vanish everywhere on suppµ. Hence, by Lemma 3.4.2 (2), the signed
measure ν := pµ is non-zero, so there exists a compactly-supported continuous function
φ ∈ C0

c (Ω) such that ∫︂
Ω
φdν ̸= 0.
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By the Weierstrass approximation theorem (see [Con90, Chapter 5, Theorem 8.1] for the
affine real1 and [Gra14, Corollary 3.2.2] for the trigonometric version), the function φ can
be uniformly approximated by polynomials in L on a compact set containing the support
of the measure ν, which implies that not all moments of ν can be zero. Hence, there
exists a polynomial q ∈ L such that

∫︁
Ω q dν =

∫︁
Ω qpdµ = ⟨q◦ , p⟩σ ̸= 0. As q◦ ∈ L≤d′+δ

for some δ ∈ N, this implies that p /∈ kerHd′+δ,d, which is a contradiction to (3.5), by
the choice of the polynomial p.

Remark 3.4.4. In the proof of Theorem 3.4.3, the hypothesis that the support of the
signed measure µ is compact does not only guarantee that all its moments exist, but, more
importantly, it asserts that the signed measure ν = pµ is determined by its moments,
so that ν is already zero if all its moments vanish. This does not in general hold for
measures that are not compactly supported – not even for rapidly decreasing functions.
For instance, let g be a non-zero Schwartz function on Rn such that all its derivatives
vanish at the origin, i. e. (∂αg)(0) = 0 for all α ∈ Nn. Then its Fourier transform ĝ is a
non-zero Schwartz function satisfying

(−1)n(2πi)|α|
∫︂
Rn

xαĝ(x)dx = (∂αg)(0) = 0

for all α ∈ Nn (cf. [Gra14, Proposition 2.2.11 (10)]), so all the moments of ĝ are zero. ♢

Remark 3.4.5. In the affine case of Theorem 3.4.3, we can choose the filtration of L
as L≤d = R≤d for all d ∈ N. Let Hd′,d be the rectangular moment matrix satisfying the
statement of the theorem, so a ∩ R≤d = kerHd′,d. By Corollary 3.2.5, this equality can
only hold when the induced mapHd′,d on the quotient spaces, as in (3.1) of Theorem 3.2.4,
is injective. This implies d′ ≥ d, for the affine case. In contrast to the rectangular matrix
considered in Theorem 1.3.6, the moment matrix Hd′,d that we consider here has a
different shape, i. e. the dimension of the codomain is not smaller, but larger than or
equal to the dimension of the domain of the map. ♢

By Theorem 3.4.3, we can recover the vanishing ideal of the support from finitely many
moments. In particular, this means that the kernel of the non-truncated moment map
also yields the vanishing ideal, as the following statement shows.

Corollary 3.4.6. Under the assumptions of Theorem 3.4.3, we have

a ∩R = kerH,

where H denotes the map H : R→ Homsemi
k

(L,k), p ↦→ (q ↦→ ⟨q, p⟩σ).
Proof. To see this, first observe that we always have the inclusion a ∩ R ⊆ kerH, by
Lemma 3.4.2 (2). On the other hand, if p ∈ kerH, then p ∈ R≤d for some d ∈ N. In
particular, this implies ⟨q, p⟩σ = 0 for all q ∈ L≤d′ ⊆ L and arbitrary d′ ∈ N. Choosing
d′ as in Theorem 3.4.3, we therefore obtain p ∈ kerHd′,d = a ∩ R≤d, so the statement
follows.

1This argument would not hold if, in the affine case, we were to work over the field of complex numbers,
as the algebra of polynomials on Cn is not closed under conjugation.
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Remark 3.4.7. Theorem 3.4.3 does not quantify what it means for d′ ∈ N to be large
enough for the statement to hold. In general, the choice of d′ cannot be made purely
based on knowledge of the support or its vanishing ideal, but it must inherently depend
on the signed measure itself. Indeed, for arbitrarily large d, d′ ∈ N, one can construct a
signed measure with the following properties: its support is compact and Zariski-dense,
so its vanishing ideal is zero, and all the low order moments vanish so that the matrix
Hd′,d = (⟨w, v⟩σ)w∈BL

d′ , v∈B
R
d

is zero. Hence, the kernel of Hd′,d is non-zero and thus is
not a generating set of the zero ideal, the vanishing ideal of the support. In other words,
d′ is not large enough for the statement of the theorem to hold. ♢

Remark 3.4.8. In the trigonometric case, we could also state Theorem 3.4.3 in a more
symmetric fashion in terms of a matrix for which both rows and columns are indexed
by BL

d , a basis of the filtered component L≤d. We prefer to index the columns by BR
d

because it allows for a finer filtration, as discussed in Remark 3.3.2. Indexing the rows
of the matrix by BL

d′ is needed in the proof of Theorem 3.4.3 due to the use of the
Weierstrass approximation theorem. This leads to the question whether a statement
similar to Theorem 3.4.3 is possible in which rows and columns are indexed by BR

d′ , B
R
d ,

i. e. bases of components of the filtration on R instead of L. In general, this is answered
negatively by the following example, but a positive answer is possible for non-negative
measures, as will be shown in Section 3.4.2. ♢

Example 3.4.9. We consider the two-dimensional trigonometric case, so let n = 2. Let
v1 := (2, 1), v2 := (1, 2) ∈ Z2 and define the functionals

σj : L −→ C, xα ↦−→
{︄
1 if ⟨α, vj⟩ = 0,
0 otherwise,

for α ∈ Z2 and j = 1, 2. These are moment functionals of uniform measures supported
on the one-dimensional varieties in T2 that are defined by the polynomials x1 − x22 and
x21 − x2, respectively. Thus, the functional σ := σ1 − σ2 is a moment functional of a
signed measure.

Observe that ⟨xα, 1⟩σ = σ(x−α) = 0 holds for all α ∈ N2. This implies that ⟨q, 1⟩σ = 0
for all q ∈ R. Hence, for every choice of d, d′, the polynomial p := 1 is contained in the
kernel of the moment matrix Hd′,d := (⟨w, v⟩σ)w∈BR

d′ , v∈B
R
d
, where BR

d denotes a basis of
R≤d, with respect to any filtration of R. As p = 1 does not vanish on any non-empty
variety, this shows that the statement of Theorem 3.4.3 does not hold for this matrix
Hd′,d with rows indexed by BR

d rather than BL
d .

Additionally, this shows that the kernel of the non-truncated map R → Homsemi
k

(R,k),
p ↦→ (q ↦→ ⟨q, p⟩σ), is not in general an ideal in R, in the trigonometric case. For instance,
we have ⟨x22, x1⟩σ = σ

(︁
x(1,−2)

)︁
̸= 0, so x1 /∈ kerH, even though 1 ∈ kerH. ♢
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3.4.2 Non-negative measures

Let us consider the case of a (non-negative) measure. The non-negativity is an essential
property which allows us to infer stronger results than in the case of signed measures
treated in the previous section.

Lemma 3.4.10. Let µ be a measure on Ω that has finite moments and let σ : L→ k be
its moment functional. If p ∈ L, then

⟨p, p⟩σ =

∫︂
Ω
|p(x)|2dµ(x) ≥ 0.

Hence, ⟨−,−⟩σ is positive-semidefinite.

Recall that, in terms of the moment matrixHd =
(︁⟨︁
xα, xβ

⟩︁
σ

)︁
|α|R,|β|R≤d

, we have ⟨p, p⟩σ =

σ(p◦p) = p◦Hdp, if p ∈ R≤d for some d ∈ N and p is represented with respect to the
monomial basis. Then Hd is a positive-semidefinite matrix.

Proof. In the affine case, p is a real polynomial and we have σ(pp) =
∫︁
Rn p(x)

2dµ(x) ≥ 0.
In the trigonometric case, p is a trigonometric polynomial, so that p◦(ξ) = p(ξ) for
all ξ ∈ Tn, as mentioned in Example 3.1.5. Therefore, σ(p◦p) =

∫︁
Tn p(x)p(x)dµ(x) =∫︁

Tn |p(x)|2dµ(x) ≥ 0.

Note that a converse of Lemma 3.4.10 does not generally hold, i. e. if σ : L → k is any
functional such that ⟨−,−⟩σ is positive-semidefinite, we cannot conclude that there exists
a measure that has σ as moment functional, since not every non-negative multivariate
polynomial is a sum of squares. See [Sch17] for an extensive treatment of questions
pertaining to the existence of representing measures.

The following theorem is a stronger version of Theorem 3.4.3 for the case of (non-negative)
measures. If W = R≤d is a component of the total degree filtration in the affine case,
this statement can also be obtained by combining [LR12, Theorem 2.10] and [PPL21,
Lemma 5].

Theorem 3.4.11. Let µ be a measure on Ω with finite moments, let a := I(suppµ) ⊆ L
be the vanishing ideal of (the Zariski closure of) its support and let σ : L → k be its
moment functional. Let W ⊆ R be a k-vector subspace. Then ⟨−,−⟩σ induces a positive-
definite form on W/(a ∩W ).

In particular, if W is finite-dimensional and B is a basis of W , let H := (⟨w, v⟩σ)w,v∈B.
Then

a ∩W = kerH.

Furthermore, H is non-singular if and only if the elements of B are linearly independent
modulo a ∩W .

For the statement, only finiteness of the moments that occur in H is needed, so σ must
be defined on the subspace W ◦ ·W ⊆ L.
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Proof. First observe that ⟨−,−⟩σ is positive-semidefinite by Lemma 3.4.10. Then it
follows by Lemmas 3.1.16 and 3.1.17 that it is enough to show that ⟨−,−⟩σ induces a
non-degenerate form on the space W/(a ∩W ) in order to conclude that a ∩W = kerH,
as H agrees with the map from Lemma 3.1.17 (3).

From this, the addendum readily follows. If H is non-singular, we have a∩W = kerH =
0, so the elements of B are linearly independent modulo a∩W . If H is singular, we find
a non-trivial linear combination q =

∑︁
w∈B qww ̸= 0, qw ∈ k, with q ∈ kerH = a ∩W ,

so q ≡ 0 (mod a ∩W ).

By Lemma 3.1.11, ⟨−,−⟩σ induces a form on W/(a ∩W ). It remains to show that it
is non-degenerate. For this, assume that p ∈ W is a polynomial such that ⟨p, p⟩σ = 0.
Since |p|2 ≥ 0 on Ω, it follows from [Sch17, Proposition 1.23] that |p|2 vanishes on suppµ
and thus p ∈ a.

In particular, Theorem 3.4.11 holds with W = R≤d for any d ∈ N, so that

a ∩R≤d = kerH.

Again, by Hilbert’s basis theorem, the ideal a is generated by a ∩R≤d if d is sufficiently
large. Hence, for such a number d, we can fully recover the ideal a from finitely many
moments, namely from kerH, which is the statement of [LR12, Theorem 2.10].

3.4.3 Examples

We give a few examples of signed measures that illustrate that the assumption of non-
negativity is crucial for Theorem 3.4.11.

Example 3.4.12. Let µ be a signed measure supported on the real interval [−1, 1] ⊆
R with density x and denote its moment functional by σ : R := R[x] → R, so that
σ(p) =

∫︁ 1
−1 p(x)xdx for p ∈ R. In particular, this means that ⟨−,−⟩σ is not positive-

semidefinite. One checks that, due to symmetry, the even moments σ(x2α) = 0 vanish
for α ∈ N and thus det

(︁
σ
(︁
x2α+2β

)︁)︁
0≤α,β≤d

= 0 for all d ∈ N. Then it follows that
det
(︁
σ
(︁
xα+β

)︁)︁
0≤α,β≤d

= 0 if d is even, for example using the Leibniz formula or by a
suitable permutation of rows and columns.

This means that, for every even d, we find some non-zero polynomial in R≤d that lies
in the kernel of the moment matrix

(︁
σ
(︁
xα+β

)︁)︁
0≤α,β≤d

, even though the variety corre-
sponding to the Zariski closure of the support of the signed measure µ is the entire line
R, which is defined by the zero-ideal in R, and despite the fact that the monomials are
linearly independent modulo the zero-ideal. Hence, the statement of Theorem 3.4.11
cannot hold. However, note that, in this example, the non-truncated Hankel operator is
injective nevertheless, as stated in Corollary 3.4.6. ♢

In the affine setting with L≤d = R≤d, d ∈ N, and for a finitely-supported signed measure,
it follows from Lemma 1.3.3 that the statement of Theorem 3.4.3 holds with d′ := d, as
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long as d ∈ N is sufficiently large. The following example shows that this can fail for
small d.

Example 3.4.13. Let R = k[x] be the univariate polynomial ring and let a = mξ1 ∩mξ2

with two distinct points ξ1, ξ2 ∈ k. We consider the map σ = evξ1 − evξ2 . Denote byHd′,d

the corresponding Hankel matrix, for d, d′ ∈ N. By (3.4), we have a ∩ R≤d ⊆ kerHd′,d,
but equality does not hold for small d.

For instance, if d′ = d = 0, we have

a ∩R≤d = 0 ⊊ kerH0,0 = ker(0).

However, if d is sufficiently large, namely d ≥ 2, and if d′ ≥ d, we have a∩R≤d = kerHd′,d

by Lemma 1.3.3, regardless of the choice of d′. ♢

In contrast, we have seen in Example 3.4.9 that a similar statement is not possible for
infinitely-supported signed measures. More precisely, it is an example in which one has
a ∩ R≤d ̸= kerHd,d for all d ∈ N, since 1 ∈ kerHd,d, but 1 /∈ a. For a non-negative
measure, this would not be possible due to Theorem 3.4.11.

3.5 From moments to approximations of measures

As we have seen in Section 3.4, it is possible to recover the Zariski closure of the support
of a non-negative or a compactly-supported signed measure, by an algebraic computa-
tion involving finitely many moments. The next step consists of recovering the remaining
unknown data that define the measure, such as information about a density of the mea-
sure. This is still a broad problem. One way to address this is to consider measures with
densities defined by finitely many parameters, such as piecewise-constant or -polynomial
functions. This is the approach of e. g. [PT14; OJ15; OJ16; FAV16].

Here, we follow a different approach. Rather than attempting to find the defining param-
eters exactly, we construct several functions from the moments that approximate certain
aspects of the measure. On the one hand, this is related to MUSIC [Sch86], a recovery
method for finitely-supported measures. On the other hand, it is connected to Christof-
fel functions (see e. g. [Nev86] for an overview), a topic with a long history that mainly
pertains to measures that are fully supported on the whole space. Recently, Christoffel
functions have been studied in the context of measures supported on algebraic varieties,
as well (cf. [PPL21; Mar+21]). In the case of finitely-supported measures, both of these
areas are connected to beamforming techniques in signal processing; see e. g. [KV96] and
the references therein.

In this section, we focus on the trigonometric setting on the torus. Here, we identify the
complex torus with the unit cube Tn := [0, 1)n, n ∈ N. If we consider the torus embedded
into Cn, we denote it by Ω := Tn = ι(Tn) ⊆ Cn, using the parametrization

ι : Tn = [0, 1)n −→ Tn ⊆ Cn, (t1, . . . , tn) ↦−→
(︁
e2πit1 , . . . , e2πitn

)︁
.
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We use variables t, ϑ to refer to points in Tn and x = ι(t), ξ = ι(ϑ) to denote the
corresponding points in Ω. The torus Tn is endowed with the topology that is induced
by Ω.

3.5.1 Definitions and first properties

As before, let R = C[x1, . . . , xn] denote the polynomial ring and fix the filtration
{R≤d}d∈N defined by max-degree. Moreover, denote by L = C[x±1

1 , . . . , x±1
n ] the Lau-

rent polynomial ring endowed with involution −◦ as defined in Example 3.1.5. Thus, a
trigonometric polynomial

∑︁
α pαe

2πi⟨α,t⟩ =
∑︁

α pαι(t)
α with finitely many non-zero co-

efficients pα ∈ C, α ∈ Zn, is the same as the composition of the embedding ι with the
Laurent polynomial

∑︁
α pαx

α ∈ L. Also recall that p◦(ξ) = p(ξ) holds for all p ∈ L and
ξ ∈ Ω.

Definition 3.5.1. For every d ∈ N, we fix the basis Bd of R≤d defined by

Bd :=
{︂
(d+ 1)−

n
2 xα

⃓⃓⃓
α ∈ Nn, |α|∞ ≤ d

}︂
.

This basis satisfies an addition theorem of the form∑︂
w∈Bd

w◦w = (d+ 1)−n
∑︂

|α|∞≤d

x−αxα = 1. (3.6)

We use the notation Wd := R≤d to emphasize that we work with the basis Bd, rather
than with the monomial basis of R≤d.

Definition 3.5.2. For ξ ∈ Ω, define the vector

edξ :=
∑︂
w∈Bd

w(ξ)w ∈Wd,

where w(ξ) ∈ C is the evaluation of w at ξ. We denote the sesquilinear inner product on
the vector space Wd with respect to the basis Bd by

⟨−,−⟩Bd
: Wd ×Wd −→ C,

(︄∑︂
w∈Bd

qww,
∑︂
w∈Bd

pww

)︄
↦−→

∑︂
w∈Bd

qwpw.

The vector edξ ∈ Wd is dual to the evaluation functional evξ in the sense that, for any
p =

∑︁
w∈Bd

pww ∈Wd, we have

⟨edξ, p⟩Bd
=
∑︂
w∈Bd

w(ξ)pw = p(ξ)

and thus
⟨edξ,−⟩Bd

= evξ|Wd
∈W ∗

d .

This justifies the notation
e∗dξp = p(ξ),

for any p ∈Wd.
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If d is even and if ξ = ι(ϑ) for some ϑ ∈ Tn, we have

edξ(ι(t)) =
∑︂
α∈Nn

|α|∞≤d

e2πi⟨α,t−ϑ⟩

(d+ 1)n
=

n∏︂
i=1

eπid(ti−ϑi)

d+ 1
· sin((d+ 1)π(ti − ϑi))

sin(π(ti − ϑi))
,

so the trigonometric polynomial edξ ◦ ι is the product of a complex exponential and a
multivariate Dirichlet kernel centered at the point ϑ (cf. [Gra14, Section 3.1.3]).

Definition 3.5.3. If µ is a measure on Tn, we define the moment functional σ : L→ C
associated to the measure µ as follows. The α-th trigonometric moment is given by the
(−α)-th Fourier coefficient of µ (cf. [Gra14, Section 3.1]), so

σ(xα) := µ̂(−α) =
∫︂
Tn

e−2πi⟨−α,t⟩dµ(t),

for α ∈ Zn.

Note that a measure on Tn always has finite moments due to the compactness of the
torus. With the above convention, we have for instance for a Dirac measure δϑ with
ϑ ∈ Tn and ξ = ι(ϑ) ∈ Ω that the moments are of the form

σ(xα) =

∫︂
Tn

e−2πi⟨−α,t⟩dδϑ(t) = e2πi⟨α,ϑ⟩ = ξα,

as usual.

Associated to σ, we have the sesquilinear form ⟨−,−⟩σ on L, which is positive-semidefinite
by Lemma 3.4.10. For d ∈ N, we denote the moment matrix by

Hd := (⟨w, v⟩σ)w,v∈Bd
= (σ(w◦v))w,v∈Bd

.

Let Hd = UΣV ∗ be the singular value decomposition. As Hd is a positive-semidefinite
matrix, we can assume that V = U , so the singular value decomposition is of the form
Hd = UΣU∗, where U is a unitary matrix, i. e. its columns are orthonormal with respect
to ⟨−,−⟩Bd

on Wd. If Hd is real, then also U is a real matrix. Denote the ordered
non-zero singular values of Hd by ς1 ≥ · · · ≥ ςr > 0, where r = rkHd, and denote the
singular vectors, the columns of U , by u1, . . . , uN , where N := (d+1)n is the cardinality
of Bd. Moreover, denote by U1 and U0 the truncation of U to the columns u1, . . . , ur and
ur+1, . . . , uN , respectively, so in particular the column space of U0 is kerHd. We view
the singular vectors uj =

∑︁
w∈Bd

uj,ww ∈Wd as elements in the vector space Wd and we
have e∗dξuj = uj(ξ) as well as u∗jedξ = uj(ξ) for all 1 ≤ j ≤ N .

Definition 3.5.4. With the above notation, we define the following functions associated
to the moment functional σ of a (non-negative) measure on Tn:

Pd : Ω −→ R≥0, ξ ↦−→ ⟨edξ, edξ⟩σ = e∗dξHdedξ,

65



Moment problems on positive-dimensional varieties

Pd,1 : Ω −→ R≥0, ξ ↦−→
r∑︂

j=1

|uj(ξ)|2 = e∗dξU1U
∗
1 edξ,

Qd,0 : Ω −→ R>0 ∪ {∞}, ξ ↦−→
{︄

1∑︁N
j=r+1|uj(ξ)|2

if
∑︁N

j=r+1|uj(ξ)|2 ̸= 0,

∞ otherwise,

Qd,ε : Ω −→ R>0, ξ ↦−→ 1

e∗dξ

(︂
H†

d +
1
εU0U∗

0

)︂
edξ

=
1∑︁r

j=1
1
ςj
|uj(ξ)|2 + 1

ε

∑︁N
j=r+1|uj(ξ)|2

,

where ε > 0. Note that these definitions depend on our choice of the basis Bd. See
Figures 3.1 and 3.2 for a visualization of these functions.

Observe that Pd ◦ ι and Pd,1 ◦ ι are trigonometric polynomials on Tn, but Qd,0 ◦ ι and
Qd,ε ◦ ι are not. Moreover, note that Qd,0(ξ) = ∞ for all ξ ∈ Ω if Hd is non-singular.
This happens if the support of the measure is not contained in an algebraic variety or,
more specifically, if there exist no polynomials in Wd that describe algebraic relations
between the low-order moments.

The equality in the definition of Qd,ε follows from the fact that the (Moore–Penrose)
pseudo-inverse of Hd is of the form

H†
d = U1 diag

(︁
ς−1
1 , . . . , ς−1

r

)︁
U∗
1

(cf. [HJ13, Problem 7.3.P7]). In order to see that the denominator of Qd,ε is always
non-zero, note that, due to the addition theorem (3.6), we have

N∑︂
j=1

|uj(ξ)|2 = e∗dξUU
∗edξ = e∗dξedξ = ⟨edξ, edξ⟩Bd

=
∑︂
w∈Bd

w(ξ)w(ξ) =

(︄∑︂
w∈Bd

ww◦

)︄
(ξ) = 1,

(3.7)

for any choice of ξ ∈ Ω and d ∈ N, since U is unitary. Hence, there is at least one j for
which |uj(ξ)|2 > 0. Finally, observe that Qd,0 and Qd,ε are well-defined, as they do not
depend on the concrete choice of the singular vectors uj .

Remark 3.5.5. If the moment matrix Hd is regular for all d ∈ N, then Qd,ε does not
depend on ε and we simply denote it by Qd. In this case, Qd is equal to the variational
form of the Christoffel function associated to σ, that is

Qd(ξ) = min

{︃⟨p, p⟩σ
|p(ξ)|2

⃓⃓⃓⃓
p ∈Wd, p(ξ) ̸= 0

}︃
(3.8)

for all ξ ∈ Ω.
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If the matrix Hd is singular for some d ∈ N, the support of the measure is contained in an
algebraic variety of dimension less than n, by Theorem 3.4.11. In this case, different gen-
eralizations of the Christoffel function exist. See for instance [Mar+21] for an overview.
Here, we call the function Qd,ε regularized Christoffel function. The regularization we
choose here is convenient from a noise-free theoretical perspective, as it allows for the
precise statement of Proposition 3.5.11, for instance. For numerical computations, we
determine the (numerical) rank of the moment matrix Hd as the largest integer r such
that ςr ≥ ε, in which case the regularization scheme is the same as the spectral cut-off
regularization mentioned in [Mar+21]. ♢

Remark 3.5.6. In case of a finitely-supported measure, Qd,0 is the function of central
interest in the parameter recovery method MUSIC [Sch86], in a noise-free setting. In
MUSIC, the square root of Qd,0 is also referred to as imaging function, while the square
root of 1− Pd,1 corresponds to the noise-space correlation function (cf. [PPST18, Chap-
ter 10.2.1]). See also [KV96] for a broader overview. As such, our definitions of these
functions may be interpreted as generalizations thereof to the case of infinitely-supported
measures. ♢

In the remainder of this section, we list several interpolating properties and qualitative
convergence results for the functions defined above, some of which are unique to the
zero-dimensional case, that is, to finitely-supported measures on the torus. The subject
of quantifying these convergence properties in terms of explicit convergence rates is left
for further study.

We start with the following statement about Pd,1, which establishes an important link
between the support of the measure and Pd,1, for large d ∈ N.

Lemma 3.5.7. Let µ be a measure on Tn and let a := I(ι(suppµ)) ⊆ L be the vanishing
ideal of the support. Then, for any d ∈ N:

(1) 0 ≤ Pd,1(ξ) ≤ 1 for all ξ ∈ Ω.

(2) Pd,1(ξ) = 1 for all ξ ∈ ι(suppµ) ⊆ Ω.

(3) If a is generated by a ∩ R≤d and if ξ ∈ Ω, then Pd,1(ξ) = 1 if and only if ξ ∈
ι(suppµ) ⊆ Ω.

In other words, Pd,1 interpolates 1 on the smallest variety containing suppµ if d is
sufficiently large, as illustrated in Figure 3.2. Here ι(suppµ) denotes the Zariski closure
in Ω.

Proof. For all ξ ∈ Ω, we have

0 ≤ Pd,1(ξ) =

r∑︂
j=1

|uj(ξ)|2 ≤
N∑︂
j=1

|uj(ξ)|2 = 1,

where the last equality is due to (3.7).
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By Theorem 3.4.11, we have a ∩R≤d = kerHd = ⟨ur+1, . . . , uN ⟩. Thus, if ξ ∈ ι(suppµ),
then uj(ξ) = 0 for all r < j ≤ N and therefore

∑︁N
j=r+1|uj(ξ)|2 = 0, which is equivalent

to Pd,1(ξ) = 1.

Conversely, if Pd,1(ξ) = 1 and thus
∑︁N

j=r+1|uj(ξ)|2 = 0, we must have uj(ξ) = 0 for all
r < j ≤ N . Since these polynomials span a ∩R≤d, it follows that ξ ∈ ι(suppµ), as long
as a is generated by a ∩R≤d.

Remark 3.5.8. With Lemma 3.5.7, we can describe ι(suppµ) as the zero set in Ω of a
single polynomial, namely 1−Pd,1, for sufficiently large d ∈ N. This is in contrast to the
multivariate Prony method, such as Theorem 1.3.1, which uses multiple polynomials to
describe the support of a (finitely-supported) measure as a zero set.

Although we have phrased Lemma 3.5.7 only for positive measures, it can be transferred
to finitely-supported signed complex measures on Ω, as well. In this case, the moment
matrix may not be positive-semidefinite, so, if Hd = U1 diag(ς1, . . . , ςr)V

∗
1 denotes the

truncated singular value decomposition, one defines Pd,1(ξ) = e∗dξV1V
∗
1 edξ ∈ R≥0, for

ξ ∈ Ω, purely in terms of the right singular vectors V1, disregarding U1, as the right
kernel of Hd is orthogonal to V1 rather than U1. Note that statement (2) of Lemma 3.5.7
only holds for sufficiently large d, in this case, namely under the assumptions of (3), since
only then the equality a ∩ R≤d = kerHd holds which is used in the proof. As we have
seen in Examples 3.4.9 and 3.4.12, this does not directly translate to the case of signed
measures that are not finitely-supported. Though, it is possible to consider the right
singular vectors of suitable rectangular moment matrices as in Theorem 3.4.3. ♢

Also note that, if 1 − Pd,1 is extended to a Laurent polynomial on the entire algebraic
torus (C∗)n, it may have additional zeros outside of Ω. Moreover, we have the following
characterization, which is of a similar form as the variational formulation (3.8) of the
Christoffel function.

Lemma 3.5.9. Let µ be a measure on Tn and let a := I(ι(suppµ)) ⊆ L be the vanishing
ideal of the support. Then

1− Pd,1(ξ) = max

{︃ |q(ξ)|2

∥q∥22

⃓⃓⃓⃓
q ∈ a ∩Wd \ {0}

}︃
∪ {0},

for all d ∈ N and ξ ∈ Ω. The maximum is attained at q = U0U
∗
0 edξ.

Proof. If a∩Wd = 0, then the moment matrix Hd is non-singular by Theorem 3.4.11 and
thus Pd,1(ξ) = 1 by (3.7), so we can assume that a∩Wd ̸= 0. The columns of the matrix
U0 form an orthonormal basis of a∩Wd, so the polynomial q := U0U

∗
0 edξ ∈ a∩Wd is the

orthogonal projection of edξ ∈ Wd onto the subspace a ∩Wd. Similarly, if p ∈ a ∩Wd is
any polynomial, we have

q∗p = e∗dξU0U
∗
0 p = e∗dξp = p(ξ).

In particular, note that

∥q∥22 = q∗q = q(ξ) = e∗dξU0U
∗
0 edξ = 1− Pd,1(ξ). (3.9)
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Therefore, by the Cauchy–Schwarz inequality, it follows that

|p(ξ)|2 = |q∗p|2 ≤ ∥q∥22 · ∥p∥22 = (1− Pd,1(ξ))∥p∥22.
Hence, we have

1− Pd,1(ξ) ≥ max

{︃ |p(ξ)|2

∥p∥22

⃓⃓⃓⃓
p ∈ a ∩Wd \ {0}

}︃
≥ |q(ξ)|2

∥q∥22
= 1− Pd,1(ξ),

if q ̸= 0. The first inequality also holds when q = 0, in which case the result follows due
to (3.9).

Lemma 3.5.10. Let µ be a measure on Tn and let a := I(ι(suppµ)) ⊆ L. Then, for all
d ∈ N:

(1) 1
εQd,ε ≤ Qd,0 for all ε > 0.

(2) limε→0
1
εQd,ε(ξ) = Qd,0(ξ) for all ξ ∈ Ω.

(3) Qd,0(ξ) = ∞ for all ξ ∈ ι(suppµ) ⊆ Ω.

(4) If a is generated by a ∩R≤d, then Qd,0(ξ) <∞ for ξ ∈ Ω \ ι(suppµ).

Here ι(suppµ) denotes the Zariski closure of ι(suppµ) in Ω.

Proof. Part (1) follows immediately from the definitions. Moreover, if
∑︁N

j=r+1|uj(ξ)|2 =
0, then

lim
ε→0

1

ε
Qd,ε(ξ) = lim

ε→0

1

ε
∑︁r

j=1
1
ςj
|uj(ξ)|2

= ∞ = Qd,0(ξ).

Otherwise, we have

lim
ε→0

1

ε
Qd,ε(ξ) = lim

ε→0

1

ε
∑︁r

j=1
1
ςj
|uj(ξ)|2 +

∑︁N
j=r+1|uj(ξ)|2

= Qd,0(ξ) <∞,

which settles (2). Furthermore, it follows from (3.7) that we have

Qd,0(ξ) =
1

1− Pd,1(ξ)
(3.10)

for all ξ ∈ Ω, with the convention that 1
0 = ∞. Hence, the remaining properties are an

immediate consequence of Lemma 3.5.7.

We can now show that Qd,ε interpolates the weights of a finitely-supported measure on Ω
if d ∈ N is sufficiently large. A similar statement for the real affine setting can be found
in [Sch17, Theorem 18.42].

Proposition 3.5.11. Let µ =
∑︁r

j=1 λjδξj be a (non-negative) measure supported at
finitely many distinct points ξ1, . . . , ξr ∈ Ω, where λ1, . . . , λr ∈ R>0. If d ∈ N is large
enough such that rkHd = r, then

Qd,ε(ξj) = λj

for all 1 ≤ j ≤ r and ε > 0.
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Proof. By Theorem 3.2.4 and Example 3.2.7, we obtain a factorization Hd = A∗ΛA,
where Λ = diag(λ1, . . . , λr) and where A is the natural quotient map from Wd to S :=⨁︁r

j=1R/mξj if d is large enough. Note that A = (w(ξj))1≤j≤r, w∈Bd
=
(︁
edξj

)︁∗
1≤j≤r

,
which, up to a scalar factor, is a Vandermonde matrix.

As the matrix A must have full row rank r, the (Moore–Penrose) pseudo-inverse A† is
a right-inverse of A. Thus, denoting the standard basis of S by e1, . . . , er, then, for
every 1 ≤ j ≤ r, the element ℓj := A†ej ∈ Wd is a Lagrange polynomial (cf. [Isk18,
Chapter 8.1]), as it must satisfy ℓj(ξk) = δjk for all 1 ≤ k ≤ r, since Aℓj = AA†ej = ej .
In particular, for all ξ ∈ Ω, we can write

e∗dξA
† = (ℓ1(ξ), . . . , ℓr(ξ)).

As A has full row rank, the pseudo-inverse of Hd is H†
d = A†Λ−1(A∗)† (cf. [Bjö96,

Theorem 1.2.13]). Therefore, it follows that

Qd,ε(ξ) =
1

e∗dξ

(︂
A†Λ−1(A∗)† + 1

εU0U∗
0

)︂
edξ

=
1∑︁r

j=1
1
λj
|ℓj(ξ)|2 + 1

ε

∑︁N
j=r+1|uj(ξ)|2

,

for all ξ ∈ Ω. Then, due to Theorem 3.4.11, the statement follows from the observation
that, for r < j ≤ N and ξ ∈ {ξ1, . . . , ξr}, we have uj(ξ) = 0 since uj ∈ kerHd.

Remark 3.5.12. More generally, one can define the functions in Definition 3.5.4 on
other measurable spaces Ω for which an addition theorem as in (3.6) is satisfied. For
instance, this is possible on the real sphere Sn−1 ⊆ Rn as well as the rotation group
SO(3). The proofs of Lemmas 3.5.7, 3.5.9 and 3.5.10 and Proposition 3.5.11 only depend
on such an addition theorem as well as the property p◦(ξ) = p(ξ) for p ∈ L and ξ ∈ Ω,
so these statements can be transferred, as well. See for instance [KMvdO19].

Another possible generalization consists of defining the functions relatively to a suitable
reference measure, which is useful for spaces that are not compact. This approach is
pursued in [PPL21]. In our case, the reference measure is the n-dimensional Lebesgue
measure on the torus, up to normalization. ♢

3.5.2 Convergence results

In the following, we show qualitative convergence properties of the functions from Defini-
tion 3.5.4, as the degree d is increased. These statements depend on properties that are
inherent to the torus. First, observe that, for every polynomial q ∈∑︁|α|∞≤d qα

xα
√
N

∈Wd,
d ∈ N, written in the basis Bd, Plancherel’s identity (cf. [Gra14, Proposition 3.2.7]) reads
as ∫︂

Ω
|q(x)|2dx =

∑︂
|α|∞,|β|∞≤d

qαqβ
N

∫︂
Ω
xα−βdx =

∥q∥22
N

(3.11)

where N := (d + 1)n denotes the dimension of Wd. We can now prove the following
theorem about the pointwise limiting behavior of the functions Pd,1, Qd,0 and Qd,ε.
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Theorem 3.5.13. Let µ be a measure on Tn and let ε > 0. Then

lim
d→∞

Pd,1(ξ) = 0, lim
d→∞

Qd,0(ξ) = 1, lim sup
d→∞

Qd,ε(ξ) ≤ ε

for all ξ ∈ Ω \ ι(suppµ).
In particular, this means that the function Pd,1 converges pointwisely to the indicator
function of ι(suppµ), by Lemma 3.5.7 (2), where ι(suppµ) denotes the Zariski closure in
Ω.

Proof. If ι(suppµ) = Ω, there is nothing to show. Otherwise, ι(suppµ) is contained in
a variety of dimension less than n, as Ω is Zariski-dense in Cn, which is generated by a
non-zero ideal a ⊆ L. Thus, for every sufficiently large d ∈ N, we have a ∩Wd ̸= 0. In
order to prove the statement about Pd,1, it is therefore enough to show that the maximum
of
{︂

|q(ξ)|2

∥q∥22

⃓⃓⃓
q ∈ a ∩Wd \ {0}

}︂
converges to 1, for d→ ∞, due to Lemma 3.5.9.

Define the locally compact space X := Ω \ ι(suppµ) and denote by C0
0 (X) the complex-

valued continuous functions vanishing at infinity, which we identify with the continuous
functions on Ω vanishing on the boundary Ω \ X = ι(suppµ). Let f ∈ C0

0 (X) be
any function satisfying supX |f | = |f(ξ)| = 1. Note that we can view a as a (non-
unital) complex subalgebra of C0

0 (X) by restricting the Laurent polynomials to X ⊆
Ω. It is closed under complex conjugation, as a◦ = a holds for vanishing ideals of
subsets of Ω. Thus, by the Stone–Weierstrass approximation theorem for locally compact
spaces (cf. [Con90, Chapter 5, Corollary 8.3]), we can choose, for every ϵ > 0, a Laurent
polynomial h ∈ a ⊆ L that satisfies supX |f − h| ≤ ϵ

2 . We can pick a multi-index β ∈ Nn

such that p := xβh ∈ R is a polynomial. As |f(ξ)| = 1, this implies in particular that

|p(ξ)|
∥p∥∞

=
|h(ξ)|
∥h∥∞

≥ 1− ϵ
2

1 + ϵ
2

≥ 1− ϵ. (3.12)

For any d ∈ N, denote by Nd := (d + 1)n the dimension of Wd. Recall that, for edξ =∑︁
|α|∞≤d

ξ−α
√
Nd

xα
√
Nd

∈Wd, we have Nd

∫︁
Ω|edξ(x)|

2dx = 1 by (3.11).

Fix δ ∈ N such that p ∈ a ∩R≤δ. For every d ∈ N, we define the polynomial

qd :=

√
Nd√︁
Nd+δ

edξ p ∈ a ∩Wd+δ.

Then it follows from (3.11) that

∥qd∥22 = Nd+δ

∫︂
Ω
|qd(x)|2dx ≤ Nd

∫︂
Ω
|edξ(x)|2dx ∥p∥2∞ = ∥p∥2∞.

On the other hand, as edξ(ξ) = 1, we have

|qd(ξ)|2 =
Nd

Nd+δ
|p(ξ)|2.
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Hence, with (3.12), it follows that

lim inf
d→∞

1− Pd+δ,1(ξ) ≥ lim inf
d→∞

|qd(ξ)|2

∥qd∥22
≥ lim inf

d→∞

Nd |p(ξ)|2

Nd+δ∥p∥2∞
≥ (1− ϵ)2.

As we can choose ϵ arbitrarily small and since 1 − Pd,1(ξ) ≤ 1 for all d ∈ N by
Lemma 3.5.7 (1), it follows that limd→∞ 1− Pd,1(ξ) = 1.

The statement about Qd,0 follows immediately from (3.10). By Lemma 3.5.10 (1), this
implies that lim supd→∞Qd,ε(ξ) ≤ ε.

Remark 3.5.14. Assume that µ is a measure on T1 such that logµ′ ∈ L1(T1), where
µ′ is defined as the derivative of the function t ↦→

∫︁
[0,t) dµ(ϑ), for t ∈ T1. For instance,

this holds if µ has a continuous density that is strictly positive everywhere. With the
variational definition (3.8) of the Christoffel function Qd, it then holds by [MNT91,
Theorem 1] that limd→∞NQd(ι(t)) = µ′(t) for Lebesgue-almost all t ∈ T1. Thus, NQd◦ι
approximates the measure µ, for large d ∈ N. Under slightly stronger assumptions, a
similar statement for compactly-supported measures in higher dimensions is given in
[PPL21, Theorem 4], which is stated in relation to a reference measure.

By Proposition 3.5.11, the function Qd,ε interpolates the weights of any finitely-supported
measure. Additionally, Theorem 3.5.13 shows that, everywhere outside the Zariski closure
of the support, the function Qd,ε becomes small for large d ∈ N and small ε > 0.

Recall that Qd,ε = Qd holds for measures with Zariski-dense support in Tn (cf. Re-
mark 3.5.5). These observations motivate studying the function Qd,ε (with a suitable
normalization) as an approximation to a measure, even in case of measures that are
supported on a positive-dimensional variety. See also [PPL21] for related results. ♢

Example 3.5.15. We consider the uniform measure on the union of three trigonometric
algebraic curves in T2, each of which is generated by a polynomial of max-degree 1.
Figure 3.1 displays the corresponding functions Pd,1, Pd and Qd,ε for different degrees
d ∈ N, normalized such that their supremums are equal. For d → ∞, the function Pd,1

converges to the indicator function of the whole variety on the torus, by Theorem 3.5.13.
Note that Pd,1 is only non-trivial if d ≥ 3, as the variety is generated by a single poly-
nomial of max-degree 3. We observe that, for small d ∈ N and ε > 0, the function Qd,ε

seems to be better localized at the variety than Pd,1 and Pd. However, our computations
suggest that, in contrast to Pd,1, the normalized function Qd,ε

∥Qd,ε∥∞
, for d→ ∞, does not in

general converge to a function that is constant when restricted to the underlying variety,
not even when the moments come from the uniform measure supported on a variety that
is smooth on the torus. Nevertheless, Qd,ε still provides a useful approximate depiction of
the variety. This is in line with the convergence statement of level sets proved in [LP19,
Theorem 3.9] for the Tikhonov regularization of the Christoffel function. ♢

Example 3.5.16. On the one-dimensional torus T1, we consider the finitely-supported
measure

∑︁3
j=1 λjδϑj

defined by

(ϑ1, λ1) = (0.2, 1.3), (ϑ2, λ2) = (0.35, 0.7), (ϑ3, λ3) = (0.8, 1).
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d
=

5
d
=

10
d
=

20

Pd,1
Pd

∥Pd∥∞
Qd,ε

∥Qd,ε∥∞

Figure 3.1: The functions Pd,1, Pd and Qd,ε, ε = 0.01, associated to the uniform measure
on the union of three trigonometric curves in T2, for different degrees d ∈ N.
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Figure 3.2: The functions Pd,1 (dotted), Pd (dashed) and Qd,ε1 , Qd,ε2 for ε1 := 0.1, ε2 :=
0.01 (solid, dash-dotted) associated to the measure

∑︁3
j=1 λjδϑj

on T1. The
Diracs δϑj

are marked by , the weighted Diracs λjδϑj
by .

The functions Pd,1, Pd and Qd,ε, for two different choices of ε > 0, are displayed in
Figure 3.2. The image agrees with our previous observations. The function Pd,1 peaks
at the points ϑj , attaining the value 1, as stated in Lemma 3.5.7. The function Qd,ε, in
contrast, does not have local maxima exactly at the points ϑj , but instead interpolates
the weights λj at ϑj , for 1 ≤ j ≤ 3, by Proposition 3.5.11. As the degree d increases,
the location of the support points ϑj of the measure becomes clearer. Indeed, away
from the points, the function Qd,ε tends to ε, while Pd,1 goes to 0, which agrees with
Theorem 3.5.13. The behavior of Pd is explained by Lemma 3.5.19 below. ♢

Definition 3.5.17. The univariate Fejér kernel Fd of degree d ∈ N (cf. [Gra14, Defini-
tion 3.1.8]) is defined as

Fd : T −→ R≥0, t ↦−→
{︄
d+ 1 if t = 0,
sin2((d+1)πt)

(d+1) sin2(πt)
otherwise,

which is continuous on T. For n ≥ 2, the multivariate Fejér kernel is defined by ten-
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sorization as Fd(t) :=
∏︁n

i=1 Fd(ti) for t ∈ Tn. Note that, with N := (d+ 1)n, we have

Fd(t) =
n∏︂

i=1

d∑︂
αi=−d

(︃
1− |αi|

d+ 1

)︃
e2πiαiti

=
1

N

n∏︂
i=1

⃓⃓⃓⃓
⃓

d∑︂
αi=0

e2πiαiti

⃓⃓⃓⃓
⃓
2

=
1

N

⃓⃓⃓⃓
⃓⃓ ∑︂
α∈Nn,|α|∞≤d

e2πi⟨α,t⟩

⃓⃓⃓⃓
⃓⃓
2 (3.13)

for all t ∈ Tn.

Definition 3.5.18. For a function f and a (signed or non-negative) measure µ on Tn,
the convolution f ∗ µ is a function given by

(f ∗ µ)(ϑ) =
∫︂
Tn

f(ϑ− t)dµ(t),

for ϑ ∈ Tn (cf. [Sch73, Chapter 6]). It satisfies∫︂
Tn

φd(f ∗ µ) =
∫︂
Tn

(f̌ ∗ φ)dµ,

for all continuous functions φ on Tn, where f̌ denotes the reflection of f , i. e. f̌(t) :=
f(−t) for all t ∈ Tn. Recall that (f̌ ∗ φ)(ϑ) =

∫︁
Tn f̌(ϑ− t)φ(t)dt, for all ϑ ∈ Tn.

Lemma 3.5.19. Let µ be a measure on Tn. Then NPd ◦ ι = Fd ∗ µ, for d ∈ N and
N := (d+ 1)n. In particular

lim
d→∞

N

∫︂
Tn

φ(t)Pd(ι(t))dt =

∫︂
Tn

φ(t)dµ(t),

for any continuous function φ on Tn.

This property is also called weak∗ convergence of NPd ◦ ι with limit µ for d → ∞
(cf. [Kad18, Section 17.2]), which we denote by

NPd ◦ ι weak∗
−−−→
d→∞

µ.

Proof. By the choice of Bd and by (3.13), we have

|edξ(x)|2 =
1

N2

⃓⃓⃓⃓
⃓⃓ ∑︂
α∈Nn,|α|∞≤d

(︁
xξ
)︁α ⃓⃓⃓⃓⃓⃓

2

=
1

N
Fd(t− ϑ), (3.14)

where x = ι(t) and ξ = ι(ϑ), ϑ ∈ Tn. We therefore obtain that

NPd(ι(ϑ)) = Ne∗dξHdedξ =

∫︂
Tn

Fd(t− ϑ)dµ(t),
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for all ϑ ∈ Tn, which shows that NPd ◦ ι = Fd ∗ µ, since Fď = Fd.

The addendum then holds due to the weak∗ convergence of Fd ∗ µ to µ for d → ∞.
Indeed, as Fď = Fd, for a continuous function φ on Tn it holds that⃓⃓⃓⃓∫︂

Tn

φd(Fd ∗ µ)−
∫︂
Tn

φdµ

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
Tn

(Fd ∗ φ) dµ−
∫︂
Tn

φdµ

⃓⃓⃓⃓
≤
∫︂
Tn

|(Fd ∗ φ)(t)− φ(t)|dµ(t)

≤ ∥Fd ∗ φ− φ∥∞
∫︂
Tn

dµ(t)

and limd→∞∥Fd ∗ φ− φ∥∞ = 0 by [Gra14, Theorem 1.2.19, Proposition 3.1.10].

Theorem 3.5.20. Let µ be a finitely-supported measure on Tn and let N := (d + 1)n

for d ∈ N. Then

NPd,1 ◦ ι weak∗
−−−→
d→∞

∑︂
ϑ∈suppµ

δϑ,

so, for any continuous function φ on Tn, we have

lim
d→∞

N

∫︂
Tn

φ(t)Pd,1(ι(t))dt =
∑︂

ϑ∈suppµ

φ(ϑ).

Proof. For sufficiently large d ∈ N, the rank r of the moment matrix Hd is equal to the
number of support points of µ. We denote the distinct support points by ϑ1, . . . , ϑr ∈ Tn

and set ξj := ι(ϑj) for 1 ≤ j ≤ r. Next, we define the function a(t) :=
∑︁r

j=1 Fd(t− ϑj)
for t ∈ Tn. Then⃓⃓⃓⃓

⃓N
∫︂
Tn

φ(t)Pd,1(ι(t))dt−
r∑︂

j=1

φ(ϑj)

⃓⃓⃓⃓
⃓

≤
⃓⃓⃓⃓∫︂

Tn

φ(t)(NPd,1(ι(t))− a(t))dt

⃓⃓⃓⃓
+

⃓⃓⃓⃓
⃓
∫︂
Tn

φ(t)a(t)dt−
r∑︂

j=1

φ(ϑj)

⃓⃓⃓⃓
⃓

≤ ∥NPd,1 ◦ ι− a∥1 · ∥φ∥∞ +

⃓⃓⃓⃓
⃓
∫︂
Tn

φ(t)a(t)dt−
r∑︂

j=1

φ(ϑj)

⃓⃓⃓⃓
⃓,

where the latter inequality follows from Hölder’s inequality. Since a = Fd ∗
∑︁r

j=1 δϑj
, the

term on the right converges to 0 for d→ ∞ by Lemma 3.5.19. Therefore, it is enough to
show that limd→∞∥NPd,1 ◦ ι− a∥1 = 0.

For this, we define the r ×N -matrix

A = (w(ξj))1≤j≤r, w∈Bd
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3.5 From moments to approximations of measures

which, up to a scalar factor, is a Vandermonde matrix. With Equation (3.14), it follows
that

a(t) =
r∑︂

j=1

Fd(t− ϑj) =
r∑︂

j=1

N
⃓⃓
edξj (x)

⃓⃓2
= Ne∗dxA

∗Aedx,

where x = ι(t). If d is sufficiently large such that Hd has rank r, note further that

U1 diag(ς1, . . . , ςr)U
∗
1 = Hd =

(︄
r∑︂

j=1

λjv(ξj)w(ξj)

)︄
v,w∈Bd

= A∗ diag(λ1, . . . , λr)A,

for some weights λ1, . . . , λr ∈ C∗. As then A must be a matrix of rank r, the images of U1

and A∗ are the same, so we can assume that A∗ = U1C for some invertible r × r-matrix
C. Thus, we obtain

|a(t)−NPd,1(ι(t))| = N |e∗dx(A∗A− U1U
∗
1 )edx| = N |e∗dxU1(CC

∗ − Ir)U
∗
1 edx|

≤ N∥U∗
1 edx∥22 · ∥CC∗ − Ir∥2

= NPd,1(ι(t)) · ∥CC∗ − Ir∥2,
(3.15)

where x = ι(t).

Since the eigenvalues of the matrices CC∗ and C∗C are the same by [HJ13, Theo-
rem 1.3.22], also the matrices CC∗ − Ir, C∗C − Ir have equal eigenvalues. As these
matrices are Hermitian and thus normal, their singular values are equal to the absolute
values of their eigenvalues (cf. [HJ13, Problem 2.6.P15]), so we deduce that

∥CC∗ − Ir∥2 = ∥C∗C − Ir∥2. (3.16)

Further, observe that AA∗ =
(︁∑︁

w∈Bd
w(ξj)w(ξl)

)︁
1≤j,l≤r

. In particular, the diagonal
entries of this matrix are equal to 1, by the addition theorem (3.6). Additionally,
denote the minimal separation distance between the points on the torus by ϑmin :=
min1≤j ̸=l≤r max1≤i≤n|ϑji − ϑli|, where |−| denotes the induced metric on T1. Note that
0 < ϑmin ≤ 1

2 , so sin(πϑmin) ≥ 2ϑmin and therefore

1

N
Fd(ϑj − ϑl) ≤

(d+ 1)n−1

N
· 1

(d+ 1) sin2(πϑmin)
≤ 1

(d+ 1)2(2ϑmin)
2 ,

for j ̸= l. Together with (3.16), we then obtain the upper bound

∥CC∗ − Ir∥2 = ∥C∗C − Ir∥2 = ∥AA∗ − Ir∥2

≤ ∥AA∗ − Ir∥F =

(︄ ∑︂
1≤j ̸=l≤r

⃓⃓⃓⃓
⃓ ∑︂
w∈Bd

w(ξj)w(ξl)

⃓⃓⃓⃓
⃓
2)︄ 1

2

=

(︄ ∑︂
1≤j ̸=l≤r

1

N
Fd(ϑj − ϑl)

)︄ 1
2

≤
√︁
r(r − 1)

(d+ 1)2ϑmin
,
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Moment problems on positive-dimensional varieties

which converges to 0 for d→ ∞. By (3.15), this implies that

∥NPd,1 ◦ ι− a∥1 ≤
√︁
r(r − 1)

(d+ 1)2ϑmin
∥NPd,1 ◦ ι∥1.

Since ∥NPd,1 ◦ ι∥1 = r is constant by Equation (3.11), the result follows.

Remark 3.5.21. The proof of Theorem 3.5.20 does not use the fact that the weights
λ1, . . . , λr are positive. Hence, the statement can be extended to signed complex mea-
sures, as explained in Remark 3.5.8. ♢
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4 Recovery of components from
eigenvalues

In this chapter, we develop tools for recovering the underlying components of a mixture
of measures supported on algebraic varieties. For zero-dimensional algebraic varieties,
i. e. for finitely-supported measures, this problem is often addressed by solving general-
ized eigenproblems. Here, we study to which extent such an eigenvalue-based approach
can be transferred to the case of measures supported on algebraic varieties of any dimen-
sion.

After a brief exposition and motivation of the topic in Section 4.1, we start with a
thorough introduction to (generalized) eigenvalues and eigenvectors of matrix pencils
consisting of a family of matrices (∆0, . . . ,∆r) in Section 4.2, which is central for our
analysis. We collect several results about matrix pencils that are relevant for the rest of
the chapter.

In Section 4.3, we then give a first recovery algorithm, Algorithm 4.1, which is stated
generally for linear transformations of matrix pencils, i. e. without referring to moment
problems. This algorithm is not guaranteed to manage to reconstruct the components in
all cases, but it serves expository purposes of the eigenvalue-based recovery approach. We
illustrate the algorithm and its shortcomings with moment problems on zero-dimensional
and positive-dimensional varieties. The algorithms in later sections build upon it, guar-
anteeing successful reconstruction under some adaptions.

One such algorithm is presented in Section 4.4. In this section, we focus on positive-
semidefinite matrices and eigenvalues with non-negative coordinates, in which case ad-
ditional conclusions are possible due to convexity of the problem.

We then continue in Section 4.5 with an emphasis on moment problems on algebraic
varieties. By making full use of the algebraic structure of the problem we are interested
in, we develop a criterion that allows us to overcome the drawbacks of Algorithm 4.1.
As a brief interlude in Section 4.6, we illustrate by examples that the criterion developed
in the previous section is sharp. In Section 4.7, the criterion is then employed in two
improved algorithms. These are variants of Algorithm 4.1, but stated specifically for
moment problems on varieties, in which case full recovery is possible.

We finish with a discussion of details that are important for an implementation of the
algorithms and with several concrete numerical examples, in Section 4.8.
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Recovery of components from eigenvalues

The following diagram displays the suggested reading order of the sections, some of which
can be considered optional on a first reading of the chapter.

4.1 4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.1 Prologue

In case of a finitely-supported (non-negative or signed) measure, it is possible to compute
the support points from the generalized eigenvalues of matrix pencils of shifted moment
matrices, as we outline below. This is the foundation of established pencil-based recov-
ery methods such as ESPRIT. See for instance [HS90; RK90; ACdH10; Moi15]. Such
a measure is a mixture of measures supported at single points (which in particular are
zero-dimensional algebraic varieties, to which we refer as the components of the mea-
sure).

In this chapter, we want to consider measures that are mixtures of measures supported
on algebraic varieties that are allowed to be positive-dimensional. In the prototypical
example we have in mind, the individual components are varieties that are pairwise not
contained in each other, but differing dimensions are permitted. In this setting, the
eigenvalues of matrix pencils of shifted moment matrices are not enough for recovering
the underlying components.

Assume that σj : k[x1, . . . , xn] → k are the moment functionals of different components
and σ =

∑︁r
j=1 λjσj is the moment functional of the mixture, where λ1, . . . , λr ∈ k

∗. For
some d ∈ N, define the moment matrix H =

(︁
σ(xα+β)

)︁
|α|,|β|≤d

and the shifted matrices

H(i) =
(︁
σ(xix

α+β)
)︁
|α|,|β|≤d

for 1 ≤ i ≤ n. We consider the matrix pencil

H(i) − γH =
r∑︂

j=1

λj
(︁
σj
(︁
(xi − γ)xα+β

)︁)︁
|α|,|β|≤d

,

for 1 ≤ i ≤ n. Its finite eigenvalues are the values γ ∈ k that are rank-reducing, as
explained in more detail in Section 4.2.

In the zero-dimensional case, we can assume that the functionals are of the form σj = evξj
for distinct points ξj ∈ k

n, 1 ≤ j ≤ r. Then the above pencil is of the form

H(i) − γH =
r∑︂

j=1

λj(ξji − γ)
(︂
ξα+β
j

)︂
|α|,|β|≤d

,
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4.1 Prologue

where the matrices
(︁
ξα+β
j

)︁
|α|,|β|≤d

are of rank 1. If d is sufficiently large, γ is rank-
reducing if and only if γ = ξji for some j ∈ {1, . . . , r}, so the eigenvalues of the pencil
H(i) − γH are exactly the i-th coordinates of the points ξ1, . . . , ξr, which thus presents
a direct method for recovering the coordinates of the support points. We will make this
more explicit in Example 4.3.4. In particular, we will assign meaning to the corresponding
eigenvectors, as well.

While this works in case of zero-dimensional components, this is not usually possible
for positive-dimensional components, so there is no γ such that any of the matrices(︁
σj
(︁
(xi − γ)xα+β

)︁)︁
|α|,|β|≤d

, 1 ≤ j ≤ r, has smaller rank than for generic choices of
γ ∈ k. An intuitive reason for this is the well-known fact that, in the zero-dimensional
case, the shifted moment matrices give rise to commuting multiplication operators (see
e. g. [Mou18]) that are simultaneously diagonalizable (cf. [Mey00, Exercise 7.2.16] and
Remark 4.2.10) – this fails to hold in the positive-dimensional case, since the coordinate
ring of the underlying positive-dimensional variety is not a finite-dimensional vector
space.

Instead of considering pencils involving the shifted moment matrices H(i), 1 ≤ i ≤ n,
in this chapter we consider a family (M0, . . . ,Ms) of moment matrices which are of
the form Mk =

∑︁r
j=1 λkjHj , 0 ≤ k ≤ s, for suitable coefficients λkj ∈ k, where

Hj =
(︁
σj(x

α+β)
)︁
|α|,|β|≤d

are the moment matrices of individual components. We as-

sume that the matrix (λkj)kj ∈ k
(s+1)×r has full column rank. With input of this kind,

we will see that an eigenvalue-based approach can be used to recover the moment matrices
Hj , 1 ≤ j ≤ r, of the individual components. From there, one can use Theorem 3.4.11 to
recover the individual vanishing ideals of these components. In Proposition 4.3.11 and Re-
mark 4.3.13 as well as Example 4.3.16, we relate this new approach to the conventional
method that is based on the shifted moment matrices, as outlined above. A fundamental
reason for why this can work is the observation that there exist eigenvectors which can
be interpreted as polynomials that vanish on all but one of the components.

Data of the form described above arises, for example, in the field of multi-snapshot
spectral estimation (see e. g. [LZGL21]), such as direction-of-arrival estimation and time
series analysis [KV96]. In this context, one considers a time-dependent measure

ν(t) =
r∑︂

j=1

Lj(t)µj , t ∈ R,

for some functions Lj : R → k, 1 ≤ j ≤ r, where µj is some measure (such as a Dirac
measure) with moment functional σj for 1 ≤ j ≤ r. The matrices (M0, . . . ,Ms) above
can then be interpreted as the moment matrices of the measure ν(t) at multiple different
timestamps t0, . . . , ts ∈ R by setting λkj := Lj(tk) for all 0 ≤ k ≤ s. (The stability
results of [LZGL21] for the univariate case of finitely-supported measures suggest that
our assumption that the matrix (λkj)kj ∈ k

(s+1)×r is of rank r is a natural one.) Our
analysis extends the classic scenario, in which the measures µj are Diracs, to more general
measures supported on varieties of any dimension, in a noise-free setting.
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Recovery of components from eigenvalues

4.2 Generalized eigenvalues

Here, we introduce the notion of generalized eigenvalues of a regular pencil of multiple
matrices (∆0, . . . ,∆r), which is central for the rest of the chapter. The main reference on
this topic is [Atk72]. The statements in this section hold for an arbitrary field k.

4.2.1 Definitions and elementary properties

Definition 4.2.1 ([Atk72, Chapter 6], [MP09], [Car21]). Let ∆0, . . . ,∆r ∈ k
n×n, r ≥ 1,

be square matrices. Then the matrix pencil (∆0, . . . ,∆r) is called regular if there exists
a linear combination

∆ =

r∑︂
j=0

λj∆j (4.1)

with λ0, . . . , λr ∈ k such that ∆ is an invertible matrix. Otherwise, the pencil is called
singular. Thus, if k is an infinite field, a pencil is regular if and only if

det

(︄
r∑︂

j=0

zj∆j

)︄
̸= 0 (4.2)

as a polynomial in the variables z0, . . . , zr. (This does not in general hold over a finite
field, as there exist non-zero polynomials that vanish everywhere.)

For a regular matrix pencil (∆0, . . . ,∆r), a point γ = [γ0 : · · · : γr] ∈ Pr
k

is a (generalized)
eigenvalue of the pencil if there exists a vector v ̸= 0 in

r⋂︂
j=0

ker
(︁
∆−1∆j − γjIn

)︁
, (4.3)

where ∆ is an invertible matrix as in (4.1). In this case, v is a (generalized) eigenvector of
the pencil with corresponding eigenvalue γ. Thus, the eigenvector and eigenvalue satisfy

∆jv = γj∆v

for all 0 ≤ j ≤ r.

The associated eigenvalue problem is also referred to as coupled eigenvalue problem. As
there is no risk of confusion, we often refer to the generalized eigenvalues and general-
ized eigenvectors simply as eigenvalues and eigenvectors of the matrix pencil. Though,
it is important to note that a generalized eigenvector of the pencil (∆0, . . . ,∆r) is not
an ordinary eigenvector of each of the matrices ∆0, . . . ,∆r, but it is a simultaneous
ordinary eigenvector of all the matrices ∆−1∆0, . . . ,∆

−1∆r. To this end, see also Re-
mark 4.2.10.
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4.2 Generalized eigenvalues

Remark 4.2.2. For pencils (A,B) of two matricesA,B ∈ k
n×n, the theory of generalized

eigenvalues is much more developed, including the singular case. See [Dem00] for an
overview. It is very common to write such a pencil as A − zB, where z denotes a
variable. For the eigenvalues, one then chooses inhomogeneous coordinates. So, assuming
the pencil is regular, γ ∈ k ∪ {∞} is an eigenvalue if γ is a root of the polynomial
det(A− zB) in case γ is finite or if the polynomial has degree smaller than n in case γ is
infinite. In terms of homogeneous coordinates, the eigenvalue γ ∈ k ∪ {∞} of the pencil
(A,B) is [γ : 1] ∈ P1

k
if γ ̸= ∞ and [1 : 0] ∈ P1

k
if γ = ∞.

It is possible to extend the definition of eigenvalues to singular matrix pencils (see, e. g.
[Sle+00, Chapter 8.7] and [MP09]), but here we focus on regular matrix pencils. It is
worth noting that the notion of eigenvector, however, is not well-defined for singular
matrix pencils. Instead, one can define reducing subspaces, which is a generalization of
the concept of eigenspaces as well as invariant or deflating subspaces; see [Van83]. ♢

Remark 4.2.3. Since every coordinate γj is an ordinary eigenvalue of the matrix ∆−1∆j

for 0 ≤ j ≤ r, it is clear that a regular pencil (∆0, . . . ,∆r) can only have finitely
many distinct eigenvalues γ = [γ0 : · · · : γr] if the eigenvalue corresponding to a given
eigenvector is well-defined. The latter is proved in Lemma 4.2.8. A stronger bound on
the number of eigenvalues is given in Lemma 4.2.9.

Furthermore, note that an eigenvalue γ is only determined up to scaling. The repre-
sentatives γ0, . . . , γr depend on the choice of λ0, . . . , λr. Indeed, if (γ0, . . . , γr) satisfies
(4.3) for our choice of ∆, then the condition is also satisfied by c(γ0, . . . , γr) in terms
of the invertible matrix c−1∆, for any non-zero scalar c ∈ k. This justifies defining the
eigenvalue as the projective class [γ0 : · · · : γr] ∈ Pr

k
. The fact that the eigenvectors do

not depend on the choice of ∆ follows from Proposition 4.2.5 below.

Additionally, note that we have

γiγj∆v = γi∆jv = γj∆iv

for i ̸= j, if [γ0 : · · · : γr] is an eigenvalue with eigenvector v. If (∆i,∆j) is a regular
pencil, the latter equation implies that v is an eigenvector of the pencil (∆i,∆j) with
eigenvalue [γi : γj ] if γi, γj ̸= 0. However, this need not hold in general, and indeed, in
many cases of interest, (∆i,∆j) is a singular matrix pencil for some or all pairs i ̸= j, even
though the pencil (∆0, . . . ,∆r) is regular. For instance, this is the case in Example 4.2.4
below.

A method for computing the generalized eigenvalues and eigenvectors of a regular pencil,
based on the computation of a QZ-decomposition, also called generalized Schur form, is
described in [HKP04]. A variant thereof is described in more detail in Remark 4.8.9,
where we discuss a concrete implementation. ♢

Example 4.2.4. Consider the matrix pencil

(∆0,∆1,∆2) = (diag(1, 0, 0), diag(0, 1, 0), diag(0, 0, 1)).
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Recovery of components from eigenvalues

Then ∆0+∆1+∆2 is the identity matrix, so the pencil is regular, but each of the pencils
(∆0,∆1), (∆0,∆2) and (∆1,∆2) is singular. ♢

Proposition 4.2.5. Let (∆0, . . . ,∆r) be a regular matrix pencil and let v be a non-zero
vector. Then the following are equivalent:

(1) The vector v is an eigenvector of the pencil (∆0, . . . ,∆r).

(2) The subspace
⟨∆0v, . . . ,∆rv⟩

is one-dimensional.

(3) There exists a point γ = [γ0 : · · · : γr] ∈ Pr
k

such that

γi∆jv = γj∆iv

holds for all 0 ≤ i < j ≤ r. In this case, γ is the corresponding eigenvalue.

Proof. As the pencil is regular, we may assume that ∆ is a linear combination of
∆0, . . . ,∆r which is an invertible matrix. If v ̸= 0 is an eigenvector of the pencil with
eigenvalue [γ0 : · · · : γr], we may assume that the representatives γj are chosen such that

∆jv = γj∆v

holds for all 0 ≤ j ≤ r. Hence, we have ⟨∆0v, . . . ,∆rv⟩ = ⟨∆v⟩, as not all γj are zero.
Since ∆ is invertible and v ̸= 0, this space is one-dimensional, showing that (1) implies
(2).

In order to prove that (2) implies (3), we assume that ⟨∆0v, . . . ,∆rv⟩ = ⟨w⟩ is spanned
by some non-zero vector w. We choose γj such that ∆jv = γjw holds for 0 ≤ j ≤ r, so
it follows that

γi∆jv = γiγjw = γj∆iv

for all i, j. As ⟨γ0w, . . . , γrw⟩ = ⟨w⟩, we have γj ̸= 0 for at least one j, so [γ0 : · · · : γr] ∈
Pr
k
.

Assuming that γi∆jv = γj∆iv holds for all 0 ≤ i, j ≤ r as in (3), denote by ∆′ =∑︁r
j=0 λj∆j a non-singular matrix for a suitable choice of λ0, . . . , λr ∈ k. Then it follows

that

γi∆
′v = γi

r∑︂
j=0

λj∆jv =
r∑︂

j=0

λjγj∆iv

for all 0 ≤ i ≤ r. As γi ̸= 0 for some i and since ∆′ is invertible and v is non-zero, this
implies that

∑︁r
j=0 λjγj ̸= 0. Consequently, we obtain

γi∑︁r
j=0 λjγj

∆′v = ∆iv,

for all 0 ≤ i ≤ r, so v is indeed an eigenvector with eigenvalue [γ0 : · · · : γr] and thus (1)
holds.
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4.2 Generalized eigenvalues

Remark 4.2.6. The characterization of eigenvectors given in Proposition 4.2.5 (2) is
sometimes used as definition of eigenvectors of a matrix pencil, even for singular pencils
(see, e. g. [Rin17]), but this is non-standard terminology. We will only be concerned with
regular pencils, in which case the notions agree.

The proof of Proposition 4.2.5 is similar to that of [Atk72, Theorem 6.8.1], which states
that

∑︁r
j=0 λjγj ̸= 0 holds for eigenvalues [γ0 : · · · : γr] of regular pencils (∆0, . . . ,∆r)

where, as before, the matrix
∑︁r

j=0 λj∆j is non-singular. ♢

As it is sometimes important to work with a particular choice of coordinates for the
eigenvalues with respect to a fixed non-singular linear combination of the matrices of a
pencil, we emphasize the following corollary, for future reference.

Corollary 4.2.7. Let (∆0, . . . ,∆r) be a regular pencil of matrices over k and let γ =
[γ0 : · · · : γr] ∈ Pr

k
be an eigenvalue of the pencil with eigenvector v ̸= 0. If ∆ =∑︁r

j=0 λj∆j, with λ0, . . . , λr ∈ k, is any non-singular linear combination, then coordi-
nates (γ̃0, . . . , γ̃r) ∈ k

r+1 for γ are uniquely determined by the requirement ∆jv = γ̃j∆v
and they satisfy

γ̃j =
γj∑︁r

k=0 λkγk
, 0 ≤ j ≤ r.

Proof. This follows from the proof of Proposition 4.2.5.

Lemma 4.2.8. Let ∆0, . . . ,∆r ∈ k
n×n, r ≥ 1, be matrices such that the matrix pencil

(∆0, . . . ,∆r) is regular. If v ̸= 0 is an eigenvector of the pencil, then its eigenvalue in
Pr
k

is unique.

Proof. Assume that γ, δ ∈ Pr
k

with γ ̸= δ satisfy

∆jv = γj∆v = δj∆
′v, (4.4)

for all 0 ≤ j ≤ r, where ∆,∆′ are suitable linear combinations of ∆0, . . . ,∆r which
are invertible. As γ ̸= δ, without loss of generality, we may assume that (γ0, γ1) and
(δ0, δ1) are linearly independent. By Proposition 4.2.5, we have γ0∆1v = γ1∆0v and
δ0∆1v = δ1∆0v. This implies

(δ0γ1 − γ0δ1)∆0v = (δ0γ0 − γ0δ0)∆1v = 0,

so it follows that ∆0v = 0, since δ0γ1 − γ0δ1 ̸= 0 by assumption. As a consequence of
(4.4), we then have γ0 = δ0 = 0, as ∆ and ∆′ are regular matrices and v ̸= 0. This is a
contradiction to the assumption that (γ0, γ1) and (δ0, δ1) are linearly independent.

Lemma 4.2.9. Let (∆0, . . . ,∆r), r ≥ 1, be a regular pencil of matrices in k
n×n and

let s ∈ N. If γ0, . . . , γs ∈ Pr
k

are distinct eigenvalues of the pencil with corresponding
eigenvectors v0, . . . , vs ∈ k

n, then the eigenvectors v0, . . . , vs are linearly independent.

In particular, this means that the number of eigenvalues of a pencil is bounded by the
size n of the matrices.
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Recovery of components from eigenvalues

Proof. We prove the statement by induction on s. For s = 0, it is correct, so let s ≥ 1.
By the inductive hypothesis, we can assume that the vectors v1, . . . , vs are linearly in-
dependent. Let us assume that the vectors v0, . . . , vs are linearly dependent, so we can
write v0 =

∑︁s
i=1 civi for some c1, . . . , cs ∈ k. Furthermore, we can choose coordinates

(γi0, . . . , γir) for each eigenvalue γi, 0 ≤ i ≤ s, such that ∆jvi = γij∆vi holds for all
0 ≤ j ≤ r and some non-singular matrix ∆. From this, it follows that

γ0j

s∑︂
i=1

civi = γ0jv0 = ∆−1∆jv0 = ∆−1∆j

s∑︂
i=1

civi =
s∑︂

i=1

ciγijvi

for all 0 ≤ j ≤ r. As the vectors v1, . . . , vs are linearly independent, this implies γ0jci =
ciγij for all 1 ≤ i ≤ s and 0 ≤ j ≤ r. Without loss of generality, we can assume that
c1 ̸= 0. Thus, it follows that γ0j = γ1j for all 0 ≤ j ≤ r, which is a contradiction to the
hypothesis that the eigenvalues are distinct.

Remark 4.2.10. Let (∆0, . . . ,∆r), r ≥ 1, be a regular pencil of matrices in k
n×n

and let v1, . . . , vs ∈ k
n be a maximal family of linearly independent eigenvectors with

corresponding eigenvalues γ1, . . . , γs ∈ Pr
k
, which are possibly not distinct. Assume that

∆ is a non-singular linear combination of the matrices such that, for all 1 ≤ i ≤ s, the
coordinates of γi satisfy ∆−1∆jvi = γijvi, 0 ≤ j ≤ r. Denote by Z ∈ k

n×n an invertible
matrix whose first s columns are the eigenvectors v1, . . . , vs.

If s = n, then the eigenvectors form a basis in terms of which the regular pencil
(∆−1∆0, . . . ,∆

−1∆r) consists of diagonal matrices. Indeed, we have

Z−1∆−1∆jZ = diag(γ1j , . . . , γnj)

for all 0 ≤ j ≤ r, so the matrices (∆−1∆0, . . . ,∆
−1∆r) are simultaneously diagonalizable.

Otherwise, when s < n, the matrices are not simultaneously diagonalizable and we obtain
the block form

Z−1∆−1∆jZ =

(︃
Γj ∗
0 ∗

)︃
,

where Γj = diag(γ1j , . . . , γsj) is a diagonal matrix, for 0 ≤ j ≤ r. In this case, the
eigenspaces of the pencil do not span the full space kn. However, the space kn admits a
direct sum decomposition in terms of root subspaces, a generalization of the concept; see
[Atk72, Theorem 6.9.2]. ♢

4.2.2 Regularity of matrix pencils

In the following, we focus on sufficient conditions for a pencil of matrices to be regular.
We start by showing that a pencil is regular as long as the matrices are sufficiently
generic, which is the content of the following proposition.
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4.2 Generalized eigenvalues

Proposition 4.2.11. Let k be an infinite field and let V0, . . . , Vr ⊆ k
n be vector sub-

spaces. Let ∆0, . . . ,∆r ∈ k
n×n be matrices that are generic among the matrices satisfy-

ing ∆jVj = 0 for all 0 ≤ j ≤ r. Then the pencil (∆0, . . . ,∆r) is regular if and only if
V0 ∩ · · · ∩ Vr = 0.

Here, generic means that the property holds for all matrix pencils from some non-empty
Zariski-open subset (which, in particular, is Zariski-dense since k is infinite) of the space
of all matrix pencils (∆0, . . . ,∆r) that satisfy ∆jVj = 0 for 0 ≤ j ≤ r. As the Zariski
topology is rather coarse, this is a very weak assumption.

Also note that ker∆j = Vj for all 0 ≤ j ≤ r, since the matrices ∆0, . . . ,∆r are generic,
so another way to phrase Proposition 4.2.11 is that a generic such pencil (∆0, . . . ,∆r) is
regular if and only if

⋂︁r
j=0 ker∆j = 0.

Proof. If the pencil (∆0, . . . ,∆r) is regular, then clearly the spaces V0, . . . , Vr must inter-
sect trivially. This even holds for arbitrary (non-generic) matrices that satisfy ∆jVj = 0,
0 ≤ j ≤ r.

For the converse, assume that V0 ∩ · · · ∩ Vr = 0. This implies that

V ⊥
0 + · · ·+ V ⊥

r = (V0 ∩ · · · ∩ Vr)⊥ = k
n. (4.5)

We will show that the matrix ∆0 + · · ·+∆r is generically non-singular.

Denote by Wj ⊆ k
n×n the subspaces Wj = {M ∈ k

n×n | MVj = 0} for 0 ≤ j ≤ r. Note
that the rows of a matrix M ∈Wj are vectors in V ⊥

j . We claim that the map

W0 × · · · ×Wr −→ k
n×n,

(M0, . . . ,Mr) ↦−→M0 + · · ·+Mr,
(4.6)

is surjective. As the property MjVj = 0 for Mj ∈Wj imposes linear relations between the
entries of each row of Mj , it is enough to check the surjectivity on each row individually.

Let M ∈ k
n×n be an arbitrary matrix and denote the rows of M by u1, . . . , un ∈ k

n.
Due to (4.5), for every 1 ≤ i ≤ n, we can choose vectors u(j)i ∈ V ⊥

j , 0 ≤ j ≤ r, such

that
∑︁r

j=0 u
(j)
i = ui. Thus, by setting Mj :=

(︁
u
(j)
1 , . . . , u

(j)
n

)︁⊤, we have Mj ∈ Wj and∑︁r
j=0Mj =M . This proves the claim that the map (4.6) is surjective.

The matrix ∆0+ · · ·+∆r ∈ k
n×n is singular if and only if det(∆0 + · · ·+∆r) = 0. This

determinant is a polynomial in the entries of ∆0, . . . ,∆r which does not vanish on all of
W0×· · ·×Wr, since the image of the surjective map (4.6) contains non-singular matrices.
Therefore, the set

{(M0, . . . ,Mr) ∈W0 × · · · ×Wr | det(M0 + · · ·+Mr) ̸= 0}

is a non-empty Zariski-open subset of W0×· · ·×Wr. If (∆0, . . . ,∆r) is contained in this
set, then ∆0 + · · ·+∆r is non-singular, so the pencil (∆0, . . . ,∆r) must be regular.
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Recovery of components from eigenvalues

Example 4.2.12. If the matrix pencil (∆0, . . . ,∆r) in Proposition 4.2.11 is not generic,
then the statement of the proposition does not hold in general. This means that the
assumption

⋂︁r
j=0 ker∆j = 0 is not enough to conclude that an arbitrary matrix pencil

(∆0, . . . ,∆r) is regular, even though the converse is true. For instance, this becomes
apparent by observing that the left kernels of ∆0, . . . ,∆r might still have a non-trivial
intersection, in which case the determinant of any linear combination of ∆0, . . . ,∆r would
be zero. Thus, Proposition 4.2.11 implies in particular that the left kernels of generic
matrices as in the proposition must have a trivial intersection.

However, even if the left kernels intersect trivially as well, a non-generic pencil can still be
singular, as the following example of a pencil of two matrices from [Sle+00, Chapter 8.7.4]
shows. Define the matrices

∆0 =

⎛⎝1 0 0
0 0 1
0 0 0

⎞⎠ , ∆1 =

⎛⎝0 1 0
0 0 0
0 0 1

⎞⎠ .

Then the right kernels as well as the left kernels of ∆0,∆1 each have trivial intersection.
However, det(λ0∆0 + λ1∆1) = 0 for every choice of λ0, λ1, so the pencil (∆0,∆1) is
singular. Note that the right kernel of λ0∆0+λ1∆1 is spanned by the vector (−λ1, λ0, 0),
which varies for different choices of λ0, λ1.

For a singular pencil of two matrices, this can also be read off of the Kronecker Canonical
Form of the pencil; see [Sle+00, Chapter 8.7.2]. In terms of this formalism, the common
right and left kernels correspond to the blocks L0 and L⊤

0 , respectively, so the singular
structure contained in any of the blocks Lj , L

⊤
j for j > 0 is still present after removing

common kernels if any such blocks exist in the Kronecker Canonical Form of the pencil.
♢

The following lemma shows that we can drop the genericity assumption of Proposi-
tion 4.2.11 if the matrices are positive-semidefinite.

Lemma 4.2.13. Let H0, . . . ,Hr ∈ Cn×n be positive-semidefinite matrices. Then the
matrix pencil (H0, . . . ,Hr) is non-singular if and only if

⋂︁r
j=0 kerHj = 0.

Proof. If the pencil is non-singular, there exists an invertible linear combination of
the matrices H0, . . . ,Hr, so the kernels must intersect trivially. Conversely, assume
that

⋂︁r
j=0 kerHj = 0. We claim that any linear combination H =

∑︁r
j=0 λjHj with

λ0, . . . , λr > 0 is non-singular. Indeed, if p ∈ kerH, then

p∗Hp =
r∑︂

j=0

λjp
∗Hjp = 0.

Since p∗Hjp ≥ 0 and λj > 0, this implies that in fact p ∈ kerHj for 0 ≤ j ≤ r and thus
p = 0.

The positive-semidefiniteness of the matrices in Lemma 4.2.13 is important for the state-
ment. In Example 4.2.12, we have seen a counter-example involving matrices that are
not positive-semidefinite.
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4.2 Generalized eigenvalues

We end this section by looking more closely at an example for Lemma 4.2.13. It also
serves as motivation for the study of eigenvalues and eigenspaces of moment matrices
associated to measures supported on algebraic varieties, which we further pursue in the
rest of the chapter.

Example 4.2.14. Let N be the standard Gaussian distribution on R, i. e. the measure
with density 1√

2π
e−

1
2
x2

. We consider the measures µ1 := N ⊗ δ0 and µ2 := δ0 ⊗ N on
the product space R2, where δ0 denotes the Dirac measure. Then the coordinate axes in
R2 are the joint support of the measures µ1, µ2. This is an algebraic variety defined by
the ideal ⟨x1x2⟩ ⊆ R := R[x1, x2] ∼= R[x]⊗ R[x].

For i = 1, 2, let Hi :=
(︁∫︁

R2 x
α+βdµi(x)

)︁
|α|,|β|≤2

be the moment matrix truncated at
degree 2 corresponding to the measure µi. Due to symmetry, the odd moments vanish,
which we indicate by leaving the respective entries of the moment matrices empty. With
respect to the basis 1, x1, x2, x

2
1, x1x2, x

2
2, the moment matrices are

H1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 1

0 0
0 1

0 0 0 0
0 0 0 0
1 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎠ , H2 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 0 0

1 0
0 0

1 3 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

These are positive-semidefinite matrices of rank 3 that form a singular pencil. The
common kernel of H1 and H2 is one-dimensional and is spanned by x1x2 as a subspace
of R≤2. In this example, by removing the respective row and column consisting of zeros,
we obtain a regular pencil by Lemma 4.2.13. The eigenvalues of the regular pencil are
[0 : 1], [1 : 0] (each with multiplicity 2) as well as [1 : 1].

As a subspace of R≤2/(⟨x1x2⟩ ∩ R≤2), the eigenspace corresponding to the eigenvalue
[0 : 1] is spanned by the polynomials x1, x21 which vanish on suppµ2, the x2-axis. Sim-
ilarly, the eigenspace for [1 : 0] is spanned by x2, x

2
2, vanishing on the other axis. The

eigenspace corresponding to [1 : 1] is spanned by 1 − 1
3(x

2
1 + x22) which is a polynomial

that does not vanish on either of the two axes.

In summary, we observe that some of the eigenvectors are polynomials that vanish on
some component of the underlying algebraic variety, while for other eigenvectors this
is not the case. We will examine this property more closely in Section 4.5 and use it
to recover the vanishing ideals of each individual component by solving a generalized
eigenvalue problem. ♢

4.2.3 Orthogonality

Given an eigenvector p of a matrix pencil (H0, . . . ,Hr), we collect a few criteria for a
non-zero vector q to be orthogonal to all the vectors H0p, . . . ,Hrp.
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Recovery of components from eigenvalues

Lemma 4.2.15. Let (H0, . . . ,Hr) be a regular matrix pencil over k and let H be a non-
singular linear combination of H0, . . . ,Hr. Let p be an eigenvector of the pencil and let
q be any vector. Then q⊤Hp = 0 if and only if q⊤Hjp = 0 for all 0 ≤ j ≤ r.

Proof. As p is an eigenvector of the pencil, we have

Hjp = γjHp

for 0 ≤ j ≤ r and a suitable choice of the coordinates γ0, . . . , γr ∈ k. Hence, if q⊤Hp = 0,
then also q⊤Hjp = γjq

⊤Hp = 0 for all 0 ≤ j ≤ r. The converse follows immediately
from the fact that H is a linear combination of H0, . . . ,Hr.

Lemma 4.2.16. Let (H0, . . . ,Hr) be a regular pencil of complex matrices. Let H be a
linear combination of H0, . . . ,Hr which is an invertible matrix. Let p be an eigenvector
of (H0, . . . ,Hr) with eigenvalue [γ] ∈ Pr

C for some γ ∈ Cr+1 such that Hjp = γjHp for
all 0 ≤ j ≤ r. Further, let λ ∈ C and let q be an eigenvector of the matrix (H∗)−1H∗

0

with eigenvalue λ. If λ ̸= γ0, then q∗Hjp = 0 for all 0 ≤ j ≤ r.

Proof. Since q is an eigenvector with eigenvalue λ of the matrix (H∗)−1H∗
0 , we have

H∗
0q = λH∗q or, equivalently, q∗H0 = λq∗H. Then it follows that

γ0q
∗Hp = q∗H0p = λq∗Hp.

As γ0 ̸= λ, this implies that q∗Hp = 0. Then the conclusion follows from Lemma 4.2.15,
since p is an eigenvector of the pencil (H0, . . . ,Hr).

Corollary 4.2.17. Let (H0, . . . ,Hr) be a regular pencil of complex matrices and let p be
an eigenvector of the pencil with eigenvalue γ ∈ Pr

C. Then the following properties hold:

(1) If q is an eigenvector of (H∗
0 , . . . ,H

∗
r ) with eigenvalue γ′ ∈ Pr

C such that γ′ ̸= γ,
then q∗Hjp = 0 for all 0 ≤ j ≤ r.

(2) If q is an eigenvector of (H⊤
0 , . . . ,H

⊤
r ) with eigenvalue γ′ ∈ Pr

C such that γ′ ̸= γ,
then q⊤Hjp = 0 for all 0 ≤ j ≤ r.

(3) If the matrices H0, . . . ,Hr are Hermitian and γ ̸= γ, then p∗Hjp = 0 for all
0 ≤ j ≤ r.

(4) If q ∈ kerH∗
0 and γ0 ̸= 0, then q∗Hjp = 0 for all 0 ≤ j ≤ r.

Proof. For (1), we can choose representatives of γ and γ′ such that Hjp = γjHp and
H∗

j q = γ′jH
∗q for all 0 ≤ j ≤ r, where H denotes some non-singular linear combination

of H0, . . . ,Hr. As γ ̸= γ′, we can assume, without loss of generality, that γ0 ̸= γ′0, so the
result follows from Lemma 4.2.16, since (H∗)−1H0q = γ′0q.

Part (2) follows directly from (1) by observing that q is an eigenvector with eigenvalue
γ′ of the pencil (H∗

0 , . . . ,H
∗
r ) and part (3) is a special case of (1).

Finally, for (4), without loss of generality we can assume that q ̸= 0. Let H be a non-
singular linear combination of H0, . . . ,Hr as before. Since q ∈ kerH∗

0 , we have that q is
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an eigenvector of (H∗)−1H∗
0 for the eigenvalue 0. As γ0 ̸= 0, the result then follows from

Lemma 4.2.16.

Remark 4.2.18. Particularly important for us is the following consequence of Corol-
lary 4.2.17 (1) which holds by contraposition. Assume that (H0, . . . ,Hr) is a regular
pencil of Hermitian matrices and that p, q are eigenvectors with distinct eigenvalues
γ, γ′ ∈ Pr

C, γ ̸= γ′. If q∗Hjp ̸= 0 for some j ∈ {0, . . . , r}, then it follows that γ = γ′.
In particular, this implies that γ, γ′ cannot have real coordinates. See Lemma 4.2.22 for
an extension of this argument. Also note that the converse of Corollary 4.2.17 (3) is not
true in general. ♢

Example 4.2.19. Let a ∈ R>0 and define the Hermitian matrices

H0 =

(︃
−a2 i
−i 1

)︃
, H1 =

(︃
−a2 0
0 1

)︃
.

Then (H0, H1) is a regular pencil with eigenvalues γ, γ′ ∈ P1
C and respective eigenvectors

p, q where

γ = [a− i : a], γ′ = [a+ i : a], p =

(︃
1
a

)︃
, q =

(︃
1
−a

)︃
.

From this, we obtain

q∗H0p = −2a(a− i) ̸= 0 and q∗H1p = −2a2 ̸= 0,

so the statement of Corollary 4.2.17 (1) can fail if γ = γ′. ♢

4.2.4 Linear transformations of generalized eigenproblems

The following result plays an important role for the algorithms we develop later on.
It describes what happens to a regular eigenvalue problem under a linear transforma-
tion.

Proposition 4.2.20. Let H0, . . . ,Hr ∈ k
n×n, r ≥ 1, be matrices such that the pencil

(H0, . . . ,Hr) is regular. Let s ≥ r and define matrices Mi :=
∑︁r

j=0 λijHj for 0 ≤ i ≤ s,
where (λij)ij ∈ k

(s+1)×(r+1) is a matrix of rank r+1. Then the following properties hold:

(1) The pencil (M0, . . . ,Ms) is regular.

(2) A vector p ̸= 0 is an eigenvector of (H0, . . . ,Hr) if and only if it is an eigenvector
of (M0, . . . ,Ms).

(3) The matrix (λij)ij induces a 1-to-1 correspondence between the eigenvalues in Pr
k

of (H0, . . . ,Hr) and the eigenvalues in Ps
k

of (M0, . . . ,Ms).
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Proof. As (H0, . . . ,Hr) is a regular pencil, we can choose a linear combination H :=∑︁r
j=0 cjHj which is invertible for suitable cj ∈ k. Moreover, we can assume that Hj =∑︁s
i=0 µjiMi for a suitable choice of (µji)ji ∈ k

(r+1)×(s+1), since the matrix (λij)ij has
full column rank. Then

H =
r∑︂

j=0

cjHj =
s∑︂

i=0

(︄
r∑︂

j=0

cjµji

)︄
Mi

is an invertible linear combination of M0, . . . ,Ms, so the pencil (M0, . . . ,Ms) is regular.

If p ̸= 0 is an eigenvector of (H0, . . . ,Hr) with eigenvalue γ ∈ Pr such that Hjp = γjHp
for all 0 ≤ j ≤ r, then

Mip =

r∑︂
j=0

λijHjp =

(︄
r∑︂

j=0

λijγj

)︄
Hp, (4.7)

so p is an eigenvector of (M0, . . . ,Ms) with eigenvalue
[︁∑︁r

j=0 λijγj
]︁
0≤i≤s ∈ Ps

k
, which is

well-defined as (λij)ij has full rank. Conversely, if p ̸= 0 is an eigenvector of (M0, . . . ,Ms)
with eigenvalue δ ∈ Ps such that Mip = δiHp for all 0 ≤ i ≤ s, then

Hjp =

s∑︂
i=0

µjiMip =

(︄
s∑︂

i=0

µjiδi

)︄
Hp. (4.8)

If
∑︁s

i=0 µjiδi = 0 for all 0 ≤ j ≤ r, we obtain Hjp = 0 and consequently Hp = 0.
As H is invertible, this is a contradiction to the assumption that p ̸= 0. Therefore,∑︁s

i=0 µjiδi is non-zero for some j, so p is an eigenvector of (H0, . . . ,Hr) with eigenvalue
[
∑︁r

i=0 µjiδi]0≤j≤r ∈ Pr
k
.

It remains to show that (λij)ij induces a 1-to-1 correspondence between the eigenvalues
of the two pencils. Denote by Γ ⊂ Pr

k
and Γ′ ⊆ Ps

k
the set of eigenvalues of (H0, . . . ,Hr)

and (M0, . . . ,Ms), respectively. The computation above implies that (λij)ij and (µji)ji
induce well-defined maps ι : Γ → Γ′ and τ : Γ′ → Γ. The map ι is injective, but for τ this
is not clear when s > r. However, if p is an eigenvector of (M0, . . . ,Ms) with eigenvalue
δ ∈ Ps

k
, then, as shown above, p is also an eigenvector of (M0, . . . ,Ms) with eigenvalue

ι(τ(δ)) ∈ Ps
k
. As the eigenvalue for p in Ps

k
is unique by Lemma 4.2.8, this means that τ

must be injective as well, so it is the inverse of ι.

Remark 4.2.21. On the level of coordinates of the eigenvalues, the proof of Proposi-
tion 4.2.20 shows that the injective map Λ: kr+1 → k

s+1 defined by (λij)ij gives rise to a
1-to-1 correspondence between representatives in kr+1 \{0} and ks+1 \{0} of eigenvalues
of (H0, . . . ,Hr) and (M0, . . . ,Ms), respectively, as long as the coordinates are chosen with
respect to the fixed matrix H. As described in Corollary 4.2.7, this choice is uniquely
determined. Thus, if in those coordinates γ ∈ k

r+1 \ {0} and δ = Λ(γ) ∈ k
s+1 \ {0}

are representatives of eigenvalues of the two pencils for some eigenvector p, then these
coordinates satisfy Hjp = γjHp and Mip = δiHp for all 0 ≤ j ≤ r and 0 ≤ i ≤ s, as
follows from Equations (4.7) and (4.8). In other words, the map Λ is compatible with
this choice of coordinates. ♢
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Lemma 4.2.22. Let (M0, . . . ,Ms) be a regular pencil of complex matrices of the form
Mi =

∑︁r
j=0 λijHj, 0 ≤ i ≤ s, where Hj, 0 ≤ j ≤ r, are Hermitian matrices and

(λij)ij ∈ C(s+1)×(r+1) with s ≥ r is a matrix of rank r + 1. Denote by Λ: Pr
C → Ps

C the
map induced by (λij)ij. Let M be a non-singular matrix that is a linear combination of
M0, . . . ,Ms. If p, q are eigenvectors of the pencil (M0, . . . ,Ms) with eigenvalues γ, γ′ ∈ Ps

C
with γ ̸= γ′ that satisfy q∗Mp ̸= 0, then Λ−1(γ) = Λ−1(γ′). In particular,

Λ−1(γ),Λ−1(γ′) /∈ Pr
R.

Proof. Observe that (H0, . . . ,Hr) is a regular matrix pencil, since (M0, . . . ,Ms) is regular,
so M is also a linear combination of H0, . . . ,Hr. As the matrix (λij)ij has full rank, the
map Λ is injective and induces a 1-to-1 correspondence between the eigenvalues of the
pencils by Proposition 4.2.20.

As M is a non-singular linear combination of H0, . . . ,Hr and since q∗Mp ̸= 0, by
Lemma 4.2.15, we can assume that q∗Hjp ̸= 0 for some j ∈ {0, . . . , r}. Then, since
the matrices H0, . . . ,Hr are Hermitian and p, q are eigenvectors of (H0, . . . ,Hr) with
eigenvalues Λ−1(γ),Λ−1(γ′), it follows from Corollary 4.2.17 (1) that Λ−1(γ) = Λ−1(γ′).
However, since γ ̸= γ′, this implies that Λ−1(γ),Λ−1(γ′) are distinct and cannot have
real coordinates.

4.3 Hermitian and symmetric cases

In this section, we derive a first recovery algorithm, Algorithm 4.1, for the case of Hermi-
tian or complex symmetric matrices. It does not assume that the matrices are moment
matrices, but is phrased more generally for any such matrices. The algorithm is primarily
expository in nature, serving as foundation for the variants that we develop later in Sec-
tions 4.4 and 4.7. We demonstrate the use of Algorithm 4.1 as well as its shortcomings
by zero- and positive-dimensional examples in Sections 4.3.1 and 4.3.2.

For clarity, we start by mentioning the following simple equivalence.

Lemma 4.3.1. Let U,U ′ ⊆ V be submodules of a module V over a commutative ring.
Then U \ U ′ ̸= ∅ if and only if U/(U ′ ∩ U) ̸= 0.

Proof. The equality U/(U ′ ∩ U) = 0 holds if and only if U = U ′ ∩ U or, equivalently,
U ⊆ U ′, which is equivalent to U \ U ′ = ∅.

Remark 4.3.2. Thus, for a pencil (H0, . . . ,Hr) and all 0 ≤ j ≤ r, we have that⋂︁r
k=0,k ̸=j kerHk \ kerHj ̸= ∅ if and only if

⋂︁r
k=0,k ̸=j kerHk/(

⋂︁r
k=0 kerHk) ̸= 0. This is a

property that will frequently play a role, in the remainder of the chapter, as it is a pre-
requisite for the eigenvalue-based recovery approach. If additionally the pencil is regular,
the above is equivalent to

⋂︁r
k=0,k ̸=j kerHk ̸= 0. To see the latter, let p ∈ ⋂︁r

k=0,k ̸=j kerHk,
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p ̸= 0, and let H be a non-singular linear combination of H0, . . . ,Hr. Then the assump-
tion p ∈ kerHj implies that Hp = 0, which is a contradiction to the hypothesis that
p ̸= 0. Hence, we must have p /∈ kerHj . ♢

Remark 4.3.3. In later sections, we will mainly focus on situations in which the kernels
kerHj of the matrices can be viewed as certain subspaces of ideals, say aj ∩ U , where
U ⊆ R is a vector subspace and aj ⊆ R is an ideal in a polynomial ring R = k[x1, . . . , xn],
for 0 ≤ j ≤ r.

Recall that, if n = 1, a Lagrange polynomial associated to a set of distinct points
ξ0, . . . , ξr ∈ k is a polynomial that vanishes on exactly r of these points. This con-
cept is also meaningful in higher dimensions for points ξ0, . . . , ξr ∈ k

n, n ≥ 1 (cf. [Isk18,
Chapter 8.1]).

From this point of view, we can interpret a polynomial p ∈ ⋂︁r
k=0,k ̸=j kerHk \ kerHj =⋂︁r

k=0,k ̸=j(ak ∩ U) \ aj ̸= ∅ as a generalization of a Lagrange polynomial. Indeed, if the
ideals are zero-dimensional of the form ak = ⟨x1 − ξk1, . . . , xn − ξkn⟩, 0 ≤ k ≤ r, then
p vanishes at {ξ0, . . . , ξr} \ {ξj}. More generally, for arbitrary ideals, p vanishes on the
varieties V(ak) with 0 ≤ k ≤ r, k ̸= j. (In particular, some of the eigenvectors in
Example 4.2.14 are polynomials of this kind.) Note however that p may vanish at some
points of V(aj), as well. In fact, depending on the dimensions of the varieties, this is not
uncommon as the varieties can have intersection points. Though, if k is algebraically
closed and aj is a radical ideal, then p does not fully vanish on V(aj) by construction,
since p /∈ aj =

√
aj = I(V(aj)). ♢

Example 4.3.4. We consider a minimal example of two zero-dimensional components,
that is, two points ξ1 = (2, 1), ξ2 = (−5, 3) ∈ k

2. Let mξj = ⟨x− ξj⟩ ⊆ R := k[x1, x2],
j = 1, 2, be the corresponding point ideals. Then R/(mξ1 ∩ mξ2) is a two-dimensional
vector space and we can choose 1, x2 − 2 ∈ R as representatives of a vector space basis.

Let σ1 = 1
2 evξ1 , σ2 = 1

2 evξ2 . Then, in terms of the chosen basis, we can write the
Gramian matrix corresponding to the symmetric bilinear form ⟨−,−⟩σ1+σ2

, defined in
Definition 3.1.6, as

M0 = (σ1 + σ2)

(︃
1 x2 − 2

x2 − 2 (x2 − 2)2

)︃
=

(︃
1 0
0 1

)︃
.

In other words, the basis is orthonormal with respect to ⟨−,−⟩σ1+σ2
. For a weighted

functional such as τ := 3σ1 + 4σ2, we similarly obtain a matrix

M1 = τ

(︃
1 x2 − 2

x2 − 2 (x2 − 2)2

)︃
=

(︃ 7
2

1
2

1
2

7
2

)︃
.

Since M0 is the identity matrix, in order to obtain the eigenvalues of the pencil (M0,M1),
it is enough to compute the eigenvalues of M1, which are 3 and 4, so they agree with
the weights of τ . Thus, the pencil (M0,M1) has eigenvalues [1 : 3], [1 : 4] ∈ P1

k
. The

corresponding eigenvectors can be chosen as (1,−1) = x2 − 3 and (1, 1) = x2 − 1,

94



4.3 Hermitian and symmetric cases

respectively. These polynomials vanish on the opposite component, so the eigenvector
for eigenvalue 3 vanishes on ξ2 and the one for 4 on ξ1. Hence, they are Lagrange-like
polynomials as explained in Remark 4.3.3. It will turn out that this is not a coincidence
and we will make further use of these observations in Section 4.5. ♢

Algorithm 4.1 Recovery of components from several weighted sums
Input: A natural number s ∈ N and a regular pencil (M0, . . . ,Ms) of complex matrices.
Assumptions: The matrices are of the form Mi =

∑︁r
j=0 λijHj , 0 ≤ i ≤ s, for some

r ≤ s, where H0, . . . ,Hr ∈ Cm×m are Hermitian (or complex symmetric) matrices
and where (λij)ij ∈ C(s+1)×(r+1) is a matrix of rank r + 1. Furthermore, we have⋂︁r

k=0,k ̸=j kerHk ̸= 0, for every 0 ≤ j ≤ r.
Output: r as well as [λ0j : · · · : λsj ] ∈ Ps

C and [Hj ] ∈ P(Cm×m) for all 0 ≤ j ≤ r (up to
scaling and permutation); or failure.

1: Let M be a linear combination of M0, . . . ,Ms that is a non-singular matrix.
2: Compute the set V of eigenspaces of the matrix pencil (M0, . . . ,Ms). Denote by

Γ ⊆ Ps
C the set of corresponding eigenvalues.

3: Let r be the dimension of the projective subspace spanned by Γ.
4: If Γ consists of exactly r + 1 eigenvalues, go to Line 9.
5: if in the Hermitian case then
6: for every pair γ, γ′ ⊆ Γ, γ ̸= γ′, with corresponding eigenspaces V, V ′ ∈ V do
7: If V ′ is not orthogonal to MV , remove γ and γ′ from Γ.
8: If Γ consists of more than r + 1 eigenvalues, fail.
9: With Γ = {γ0, . . . , γr}, we have [λ0j : · · · : λsj ] = γj for 0 ≤ j ≤ r (up to permutations

in j).
10: Let (λ̃0j , . . . , λ̃sj) be a representative of [λ0j : · · · : λsj ] for 0 ≤ j ≤ r and solve the

linear system
r∑︂

j=0

λ̃ijH̃j =Mi, 0 ≤ i ≤ s,

for H̃0, . . . , H̃r. Then H̃j is a representative of [Hj ] ∈ P(Cm×m) for 0 ≤ j ≤ r.

Theorem 4.3.5. Algorithm 4.1 works unless the check in Line 8 fails.

Proof. First observe that (H0, . . . ,Hr) is a regular matrix pencil, since (M0, . . . ,Ms) is
regular. As the matrix (λij)ij has full rank, then, by Proposition 4.2.20, the eigenvectors
of the two pencils agree and there is a 1-to-1 correspondence between their eigenvalues.

By assumption, the subspaces Uj :=
⋂︁r

k=0,k ̸=j kerHk are non-trivial for every 0 ≤ j ≤ r.
Let j ∈ {0, . . . , r} be arbitrary. If p ∈ Uj , p ̸= 0, then p /∈ kerHj , as explained in
Remark 4.3.2, since the pencil (H0, . . . ,Hr) is regular. Thus, p is an eigenvector of the
pencil (H0, . . . ,Hr) with eigenvalue ej := [δkj ]0≤k≤r = [0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ Pr

C,
since

Hkp = 0 ·Hjp = 0

for all 0 ≤ k ≤ r with k ̸= j. As j was arbitrary, this means that e0, . . . , er arise as
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Recovery of components from eigenvalues

eigenvalues of the pencil (H0, . . . ,Hr).

Denote by Λ: Pr
C → Ps

C the injective map induced by (λij)ij . By Proposition 4.2.20 (3),
it then follows that [λ0j : · · · : λsj ] = Λ(ej), 0 ≤ j ≤ r, are eigenvalues of (M0, . . . ,Ms),
so they are contained in the set Γ computed in Line 2. As every eigenvalue in Γ must
be contained in the image of the injective map Λ, we obtain r as the dimension of the
projective subspace spanned by Γ, in Line 3. In particular, Γ has at least cardinality
r + 1 in Line 4.

As we are only interested in those eigenvalues [λ0j : · · · : λsj ] in Γ which correspond
to the eigenvalues ej , 0 ≤ j ≤ r, of the pencil (H0, . . . ,Hr), we can filter out some
unwanted eigenvalues by the check in Line 7, in the Hermitian case. This works because
of Lemma 4.2.22, as ej = Λ−1([λ0j : · · · : λsj ]) has real coordinates. (In the symmetric
case, the corresponding check is redundant by Corollary 4.2.17 (2), so we skip it.)

We only remove pairs of eigenvalues γ, γ′ from Γ where Λ−1(γ) = Λ−1(γ′) and which do
not allow for real preimages. Therefore, removing these as early as possible in the loop
is not a problem by Corollary 4.2.17 (1), since for every other eigenvalue γ′′ ∈ Γ we must
have Λ−1(γ′′) ̸= Λ−1(γ),Λ−1(γ′).

The check in Line 8 can only fail if the cardinality of Γ is larger than r + 1; as Λ−1(Γ)
still contains e0, . . . , er, the cardinality is at least r + 1. If it succeeds, we thus find
[λ0j : · · · : λsj ], 0 ≤ j ≤ r, in Line 9.

Finally, assume that λ̃ij = cjλij , 0 ≤ i ≤ s, for some non-zero scalars cj , 0 ≤ j ≤ r.
Letting H̃j = c−1

j Hj , the linear system

r∑︂
j=0

λ̃ijH̃j =

r∑︂
j=0

λijHj =Mi, 0 ≤ i ≤ s,

in Line 10 can be solved uniquely for H̃0, . . . , H̃r, as the matrix (λ̃ij)ij is of full rank.

Remark 4.3.6. If additionally the matrices H0, . . . ,Hr in Algorithm 4.1 are positive-
semidefinite Hermitian matrices, then all the eigenvalues of the pencil (H0, . . . ,Hr) can
be chosen to be non-negative, as we show in Corollary 4.4.1. Therefore, the check in
Line 7 is redundant and can be skipped in this case. Section 4.4 gives a refinement of
the algorithm to this situation.

The algorithm may also be adapted to the case in which the matrices H0, . . . ,Hr, instead
of being Hermitian or symmetric, are arbitrary complex matrices or matrices over another
field. In this case, the check in Line 7 must then be skipped as it does not apply. See for
instance Example 4.3.16. ♢

Algorithm 4.1 can fail when there are additional eigenvalues that have real preimages
under the map induced by (λij)ij that are not unit vectors. See Example 4.3.19 for a
particular example in which this happens.
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4.3 Hermitian and symmetric cases

Remark 4.3.7. If Algorithm 4.1 fails in Line 8, a heuristic approach for picking the
correct r+1 eigenvalues might consist of choosing the r+1 eigenspaces V ∈ V of highest
dimension. The rationale behind this is that the multiplicity of the eigenvalue ej of the
pencil (H0, . . . ,Hr) is at least as large as the dimension of

⋂︁r
k=0,k ̸=j kerHk/

⋂︁r
k=0 kerHk,

which is sometimes known to be of higher dimension than 1.

For instance, if the matrices are moment matrices of measures supported on positive-
dimensional algebraic varieties given by ideals a0, . . . , ar of the polynomial ring R, then
increasing the degree leads to higher-dimensional eigenspaces. Recall that the subspaces
aj ∩ R≤d are related to the kernels of moment matrices, by Theorem 3.4.11. Under the
assumptions of Lemma 1.2.4 (1), the dimension of the space(︄

r⋂︂
k=0,k ̸=j

ak ∩R≤d

)︄
/

(︄
r⋂︂

k=0

ak ∩R≤d

)︄

then indeed grows with d ∈ N, for each 0 ≤ j ≤ r. As explained in Remark 4.3.3, we may
interpret elements of this space as Lagrange-like polynomials on the component V(aj),
vanishing on all the other components.

In cases in which the kernels correspond to vanishing ideals as above, another heuristic
could use the inclusion properties of eigenspaces for growing degree (cf. Example 4.3.14).
In Section 4.5, we expand on this idea in order to formulate a sufficient condition for
asserting that (a variant of) this algorithm does not fail. ♢

Remark 4.3.8. If in Algorithm 4.1 the matrices H0, . . . ,Hr are Hermitian matrices
of rank 1, then the kernels kerHj , 0 ≤ j ≤ r, which are of codimension 1, can be
computed from the set of eigenvectors of the pencil (M0, . . . ,Ms). This can serve as an
alternative to solving the linear system of equations in Line 10, which possibly is more
stable numerically.

For this, let p be an eigenvector of the pencil of the form p ∈ ⋂︁r
j=1 kerHj \ kerH0,

for instance. Let q be an arbitrary vector from the orthogonal complement of Mp, so
q∗Mp = 0. By Lemma 4.2.15, this implies that q∗H0p = 0. As H0 is of rank 1, the vector
H0p spans the column space of H0, so q ∈ kerH∗

0 = kerH0. Hence, the complement of
Mp recovers kerH0 and, proceeding similarly with the other r eigenvectors, one obtains
kerH1, . . . , kerHr. The case of symmetric rank-1 matrices follows by a similar argument.

♢

4.3.1 Zero-dimensional examples

As first examples, we apply Algorithm 4.1 to weighted sums of measures supported
on zero-dimensional varieties. First, we study the case in which each component is a
single point, for which reconstruction succeeds by Proposition 4.3.11 below. Recall that
the multivariate Prony method is applicable in this situation, which is summarized in
Section 1.3.1 and is covered extensively in [vdOhe17; Mou18] – here we primarily focus
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Recovery of components from eigenvalues

on the application of Algorithm 4.1. Next, in Example 4.3.14, we examine the case in
which the individual components consist of distinct sets of several points.

The following lemma provides several equivalent characterizations for the crucial require-
ment for Prony’s method (cf. Theorem 1.3.1) that a certain evaluation map is surjective.
This characterization is represented by case (4). As such, Lemma 4.3.9 gives insight into
potential interpretations in a positive-dimensional context of this important criterion.
This is discussed in more detail in Remark 4.3.10.

Lemma 4.3.9. Let ξ0, . . . , ξr ∈ Cn be distinct points and let Hj =
(︂
ξα+β
j

)︂
|α|,|β|≤d

, 0 ≤
j ≤ r, for some d ∈ N. Let R = C[x1, . . . , xn] and define the ideals mξj := ⟨x− ξj⟩ ⊆ R,
0 ≤ j ≤ r. Then the following properties are equivalent:

(1)
⋂︁r

k=0,k ̸=j kerHk/
⋂︁r

k=0 kerHk ̸= 0 for all 0 ≤ j ≤ r;

(2)
⋂︁r

k=0,k ̸=j kerHk \ kerHj ̸= ∅ for all 0 ≤ j ≤ r;

(3)
⋂︁r

k=0,k ̸=j(mξk ∩R≤d) \
(︁
mξj ∩R≤d

)︁
̸= ∅ for all 0 ≤ j ≤ r;

(4) the natural quotient map R≤d →⨁︁r
j=0R≤d/

(︁
mξj ∩R≤d

)︁
is surjective;

(5) dim
(︁
R≤d/

(︁⋂︁r
j=0mξj ∩R≤d

)︁)︁
= r + 1;

(6) rk
(︁∑︁r

j=0 λjHj

)︁
= r + 1 for all λ0, . . . , λr ∈ C \ {0};

(7) rk
(︁∑︁r

j=0 λjHj

)︁
= r + 1 for some λ0, . . . , λr ∈ C \ {0};

(8) the pencil (H ′
0, . . . ,H

′
r) is regular and has r + 1 different eigenvalues, where H ′

j :=(︁
evξj (wv)

)︁
w,v∈B for any set of polynomials B ⊆ R≤d forming a basis of the space

R≤d/
(︁⋂︁r

j=0mξj

⋂︁
R≤d

)︁
.

Note that, with respect to the monomial basis of the domain R≤d and the natural basis
of the codomain, the map in (4) corresponds to a multivariate Vandermonde matrix
associated to the points ξ0, . . . , ξr.

Proof. The equivalence of (1) and (2) is a special case of Lemma 4.3.1. Moreover, as
both kerHk and (mξk)≤d are of codimension 1 for all d ∈ N, we have the equality
kerHk = (mξk)≤d for all 0 ≤ k ≤ r, which shows equivalence with (3).

Now assume that (3) holds and fix a j ∈ {0, . . . , r}, so we can choose a polynomial
p ∈ R≤d such that p ∈ ⋂︁r

k=0,k ̸=j(mξk)≤d \
(︁
mξj

)︁
≤d

. This means that p(ξk) = 0 for
all k ̸= j and p(ξj) ̸= 0. Since j was arbitrary, we conclude that there exists a set
of Lagrange polynomials in R≤d that maps to a basis of the r + 1 dimensional space⨁︁r

j=0R≤d/
(︁
mξj

)︁
≤d

, so (4) holds. Conversely, let p ∈ R≤d be the preimage of the unit
vector ej ∈ ⨁︁r

j=0R≤d/
(︁
mξj

)︁
≤d

for some j ∈ {0, . . . , r}. Then p(ξj) ̸= 0 and p(ξk) = 0

for all k ̸= j. Hence, we have p /∈
(︁
mξj

)︁
≤d

and p ∈ (mξk)≤d for all k ̸= j, implying (3).
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Next, observe that the map in (4) naturally factors as

R≤d −→ R≤d/

(︄
r⋂︂

j=0

mξj ∩R≤d

)︄
−→

r⨁︂
j=0

R≤d/
(︁
mξj ∩R≤d

)︁
.

Therefore, as R/
(︁⋂︁r

j=0mξj

)︁
is a finite-dimensional vector space of dimension r + 1, it

follows that (4) and (5) are equivalent.

For the remaining cases, define the Vandermonde matrix V =
(︁
ξαj
)︁
0≤j≤r,|α|≤d

such that

r∑︂
j=0

λjHj = V ⊤ diag(λ0, . . . , λr)V.

As the matrix V corresponds to the map in (4) with respect to the monomial basis, its
surjectivity implies that the map V ⊤ diag(λ0, . . . , λr) is injective, so rk

(︁∑︁r
j=0 λjHj

)︁
=

rkV = r + 1, which shows that (4) implies (6).

Assume now that (7) holds, which is a special case of (6). In order to show that this
implies (8), first observe that we always have the inclusion

ker

(︄
r∑︂

j=0

λjHj

)︄
⊇

r⋂︂
j=0

mξj ∩R≤d. (4.9)

We claim that, in fact, this is an equality. The space on the right has codimension ≤ r+1
with respect to R≤d, so equality follows from the hypothesis that ker

(︁∑︁r
j=0 λjHj

)︁
has

codimension r + 1, exactly. Therefore, we have ker
∑︁r

j=0 λjH
′
j = 0, so the matrix pencil

(H ′
0, . . . ,H

′
r) is regular.

Since rk
(︁∑︁r

j=0 λjHj

)︁
= r + 1 by hypothesis, then due to the inclusion (4.9) this means

that rk
(︁∑︁r

j=0 λjH
′
j

)︁
= r + 1 as well. As kerH ′

k has codimension 1 for all 0 ≤ k ≤ r,
it follows that Uj :=

⋂︁r
k=0,k ̸=j kerH

′
k has at most codimension r, so dimUj ≥ 1 for all

0 ≤ j ≤ r. Thus, the spaces U0, . . . , Ur are contained in distinct eigenspaces of the
regular pencil (H ′

0, . . . ,H
′
r), as explained in detail in the proof of Theorem 4.3.5. By

Lemma 4.2.9, there cannot exist more than r + 1 eigenvalues, as the matrix
∑︁r

j=0 λjH
′
j

has rank r + 1. Hence, (8) holds.

Finally, assume that (H ′
0, . . . ,H

′
r) is a regular pencil of m × m-matrices with r + 1

different eigenvalues, for some m ∈ N. As the corresponding eigenvectors must be linearly
independent by Lemma 4.2.9, we must have m ≥ r + 1. However, as m cannot exceed
the dimension of R/

(︁⋂︁r
j=0mξj

)︁
, which is of dimension r+ 1 as a vector space, it follows

that m = r + 1 and therefore (8) implies (5).

Remark 4.3.10. The equivalences in Lemma 4.3.9 only hold in a zero-dimensional
setting and illustrate that, in the context of positive-dimensional varieties, the conditions
(1) to (3) serve as a replacement (for instance, in Algorithm 4.1) for other common
descriptions that only hold for the union of finitely many points.
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Recovery of components from eigenvalues

For example, there is no meaningful positive-dimensional interpretation of the Van-
dermonde matrix being surjective, as in (4), for a variety that consists of infinitely
many points. Likewise, the coordinate ring of a positive-dimensional variety is infinite-
dimensional as a vector space. The dimension of the truncated coordinate ring, as in (5),
is the affine Hilbert function. Evaluating it for several degrees can reveal the dimension
of the variety (cf. [CLO15, Theorem 9.3.8]), but a property like (5) cannot hold. For a
similar reason, a matrix of the form as in (6) usually has larger rank than r + 1, under
the assumption of conditions (1) to (3) in a positive-dimensional setting.

The description based on eigenvalues as in (8) does not directly transfer to the positive-
dimensional case either, since, in that case, the matrix pencil can have more than r + 1
eigenvalues. However, in Section 4.4 as well as Section 4.5, we develop criteria that
assert that the number of eigenvalues satisfying certain extra conditions does not exceed
r + 1. ♢

The following proposition serves as illustration of a direct application of Algorithm 4.1 to
the zero-dimensional situation. The statement can be further improved, as is discussed
in Remark 4.3.13.

Proposition 4.3.11. Let ξ0, . . . , ξr ∈ Cn be distinct points and λ0, . . . , λr ∈ C \ {0}.
Let Hj =

(︂
ξα+β
j

)︂
|α|,|β|≤d

, 0 ≤ j ≤ r, for some d ∈ N large enough so that the condition⋂︁r
k=0,k ̸=j kerHk \ kerHj ̸= ∅ is satisfied. Let σ =

∑︁r
j=0 λj evξj and define the shifted

matrices

M (ν) :=
(︁
σ(xα+β+ν)

)︁
|α|,|β|≤d

=
r∑︂

j=0

ξνj λjHj , ν ∈ Nn.

Let ν0 := 0, ν1, . . . , νs ∈ Nn for some s ≥ r and assume that the matrix
(︁
ξνij
)︁
ij

∈
C(s+1)×(r+1) is of rank r+ 1. Given M (ν0), . . . ,M (νs), then ξ0, . . . , ξr and λ0, . . . , λr can
be recovered using Algorithm 4.1.

Proof. Before being able to apply Algorithm 4.1, we need to construct a regular matrix
pencil from the given matrices. For this, note that each matrix Hj has rank 1, so
the matrices M (νi) have rank at most r + 1. By Lemma 4.3.9 (6), the matrix M (0) =∑︁r

j=0 λjHj has rank exactly r + 1.

Thus, we may choose a set of polynomials B ⊆ R that forms a basis of R≤d/(a≤d∩R≤d),
where a :=

⋂︁r
j=0mξj , for example by selecting r+1 monomials of degree at most d such

that the corresponding (r + 1)× (r + 1)-submatrix of M (0) still has rank r + 1.

More generally, with respect to the basis B, we define the (r + 1)× (r + 1)-matrices

H ′
j :=

(︁
evξj (wv)

)︁
w,v∈B, 0 ≤ j ≤ r,

M ′
i :=

r∑︂
j=0

ξνij λjH
′
j = (σ(xνiwv))w,v∈B, 0 ≤ i ≤ s,
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where the matrices M ′
i can be constructed from the given matrices M (νi). As explained

above, the matrix M ′
0 has rank r + 1, so the pencil (M ′

0, . . . ,M
′
s) is regular. Moreover,

the matrix
(︁
ξνij
)︁
ij

has full rank by hypothesis, so the same holds for the weighting matrix(︁
ξνij λj

)︁
ij
=
(︁
ξνij
)︁
ij
diag(λ0, . . . , λr).

We are now in a position to apply Algorithm 4.1 to the symmetric matrices M ′
0, . . . ,M

′
s.

By Proposition 4.2.20 (2), the pencils (M ′
0, . . . ,M

′
s) and (H ′

0, . . . ,H
′
r) have the same

eigenvectors. Hence, due to Lemma 4.3.9 (8), there are exactly r+1 distinct eigenspaces,
which implies that the check in Line 8 does not fail.

Thus, we can use Algorithm 4.1 to obtain [H ′
j ] and

[︁
ξν0j λj : · · · : ξνsj λj

]︁
for 0 ≤ j ≤ r.

We can choose representatives H̃
′
j and (c0j , . . . , csj), for which we can assume that

r∑︂
j=0

cijH̃
′
j =

r∑︂
j=0

ξνij λjH
′
j =M ′

i , 0 ≤ i ≤ s,

holds. Since we know that ξν0j = 1, we can further assume that cij = ξνij and consequently
H̃

′
j = λjH

′
j . From this, we uniquely recover ξj and λj for 0 ≤ j ≤ r using the fact that

ker H̃
′
j = kerH ′

j =
(︁
mξj

)︁
≤d
/a≤d.

Remark 4.3.12. The assumption in Proposition 4.3.11 that
⋂︁r

k=0,k ̸=j kerHk \ kerHj ̸=
∅, 0 ≤ j ≤ r, is satisfied is equivalent to the property that the Vandermonde matrix(︁
ξαj
)︁
0≤j≤r,|α|≤d

is of rank r + 1, as follows from Lemma 4.3.9. Thus, if we choose the
shifts ν0, . . . , νs suitably, this guarantees that the other condition of Proposition 4.3.11
is fulfilled, namely that the matrix

(︁
ξνij
)︁
0≤i≤s,0≤j≤r is of rank r + 1. This holds when

{ν0, . . . , νs} ⊇ Nn
≤d, in which case one has r ≤

(︁
n+d
n

)︁
− 1 ≤ s. However, this is merely

a sufficient condition that is not quite sharp, in many situations, and as such may not
represent an optimal choice. A better bound can be obtained by choosing the indices
from a hyperbolic cross Υr, as in Remark 1.3.8. ♢

Remark 4.3.13. The conventional multivariate Prony method using matrix pencils
requires the matrix M (0) as well as the shifted moment matrices M (e1), . . . ,M (en), where
e1, . . . , en ∈ Nn denote the standard basis elements. Compared to this, Proposition 4.3.11
needs fewer moments if s < n (for suitable choice of ν1, . . . , νs), but more if s > n, which
is certainly the case when r > n. Moreover, Proposition 4.3.11 is only applicable if the
matrix

(︁
ξνij
)︁
ij
∈ C(s+1)×(r+1) is of full rank, which is a further restriction.

Let us more closely investigate the relationship to Prony’s method. Due to the structure
of the problem, we can refine the process for the case that s = n < r by using only the
indices ν0 := 0, ν1 := e1, . . . , νs := en ∈ Nn. These are exactly the indices needed for
the ordinary matrix pencil method (cf. Section 4.1). This represents an optimal choice
of the indices ν0, . . . , νs, as it requires the least amount of moments. Since s < r, the
requirements of Algorithm 4.1 are not satisfied though, as the matrix

(︁
ξνij λj

)︁
ij

is of rank
smaller than r + 1, so the algorithm cannot be applied directly. However, we know that
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Recovery of components from eigenvalues

the matrix M ′
0 =

∑︁r
j=0 λjH

′
j is non-singular by construction, so the pencil (M ′

0, . . . ,M
′
s)

is regular. Then equation (4.7) shows that
[︁
ξν0j λj : · · · : ξνsj λj

]︁
∈ Ps

C is an eigenvalue of
the pencil (M ′

0, . . . ,M
′
s) for every 0 ≤ j ≤ r, as the coordinate ξν0j λj = λj is non-zero.

For this eigenvalue, we can uniquely choose the coordinates (1, ξj1, . . . , ξjn) ∈ Cn+1.
As the pencil (M ′

0, . . . ,M
′
s) has no more than r + 1 eigenvalues, we obtain exactly the

points ξ0, . . . , ξr ∈ Cn from its eigenvalues. Alternatively, Remark 4.3.8 can be used to
accomplish this.

Since s < r, we cannot solve the linear system in Line 10 of Algorithm 4.1. However, in
this example, the points ξ0, . . . , ξr, that are retrieved as eigenvalues, already completely
determine the matrices H0, . . . ,Hr. Thus, we can recover the weights λ0, . . . , λr by
solving a Vandermonde linear system as in Algorithm 1.1. This explains why, in this
particular situation, full recovery is possible from fewer shifted matrices than stated in
Proposition 4.3.11. ♢

Example 4.3.14. We now consider the situation of point clusters, in the univariate case
n = 1. Let ξjk ∈ C, |ξjk| = 1, 1 ≤ j ≤ r, 1 ≤ k ≤ m, be distinct points on the unit circle,
where r ≥ 2, and let µjk ∈ C \ {0} be complex weights. Set d = (r− 1)m and define the
matrices

Hj =

(︄
m∑︂
k=1

µjkξ
α+β
jk

)︄
|α|,|β|≤d

∈ C(d+1)×(d+1)

for 1 ≤ j ≤ r. Then each Hj is a complex symmetric matrix of rank m.

Next, let (λij)ij ∈ Cr×r be an invertible matrix and define

Mi =

r∑︂
j=1

λijHj

for 1 ≤ i ≤ r. There exist linear combinations of the matrices Hj , 1 ≤ j ≤ r, that are
of full rank, which implies that the matrix pencil (M1, . . . ,Mr) is regular, as (λij)ij is
invertible.

By choice of d, we have that Uj :=
⋂︁r

k=1,k ̸=j kerHk is at least one-dimensional for every
1 ≤ j ≤ r. Thus, the requirements for Algorithm 4.1 are satisfied and we may apply it to
the matrix pencil (M1, . . . ,Mr) in order to obtain the matrices Hj up to scaling, as long
as Line 8 succeeds. Considering kerHj , this is enough to recover the points ξj1, . . . , ξjm
for 1 ≤ j ≤ r using the ordinary Prony method. In a final step, the weights µjk may be
recovered from the given data.

Here, we cannot rule out that Line 8 might fail, but for r ≥ 3 this does not seem to
happen in practice with generic input.

A special situation occurs when r = 2. In this case, we consider only a pencil (M1,M2)
of two matrices. This means that the eigenspaces in Line 2 are just the generalized
eigenspaces of this pencil, in the usual sense. We know that there are the two eigenval-
ues [λ1j : λ2j ], j = 1, 2, which usually occur with multiplicity 1, but we are unable to
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4.3 Hermitian and symmetric cases

distinguish them from all the other generalized eigenvalues, of which there may be d+ 1
in total. Hence, Line 8 usually fails.

If in our approach we set d := (r − 1)m + 1 instead, it follows that Uj is at least 2-
dimensional and, thus, the eigenvalues [λ1j : λ2j ] have multiplicity at least 2 for every
j = 1, 2. If all the other eigenvalues have smaller multiplicity (or, otherwise, we in-
crease d further), this gives a method to detect the [λ1j : λ2j ] among all the generalized
eigenvalues. Then, the subsequent recovery of the points ξjk works as outlined above. ♢

Remark 4.3.15. In Example 4.3.14, we may also work with Toeplitz matrices

Hj =

(︄
m∑︂
k=1

µjkξ
−α+β
jk

)︄
|α|,|β|≤d

if all the points ξjk lie on the complex torus. These matrices are not Hermitian (unless
the µjk are real), but they satisfy a condition that allows us to adapt Algorithm 4.1 to
this situation.

Let q ∈ ⋂︁r
j=2 kerHj \ kerH1 be an eigenvector of the pencil (H1, . . . ,Hr). Denote by

Vj :=
(︁
ξβjk
)︁
kβ

the Vandermonde matrices, so that we have Hj = V ∗
j diag(µj1, . . . , µjs)Vj

for all j. Then H∗
j = V ∗

j diag(µj1, . . . , µjs)Vj and it follows that q ∈ kerVj and thus
q ∈ kerH∗

j for 2 ≤ j ≤ r.

Now, if p is another eigenvector of the pencil such that p ∈ ⋂︁r
j=1,j ̸=l kerHj for some

l ̸= 1 with an eigenvalue γ ∈ Pr−1
C , we must have γl ̸= 0. It then follows from Corol-

lary 4.2.17 (4) that q∗Hjp = 0 for all 1 ≤ j ≤ r, so checking for orthogonality as in Line 7
of Algorithm 4.1 is still applicable. ♢

As another instructive application, we demonstrate how the computation of generalized
eigenvalues of a matrix pencil can solve a simple tensor decomposition problem in case
of a generic tensor of small rank.

Example 4.3.16. Let r, s, n,m ∈ N, 1 ≤ r ≤ min{s, n,m}, and let k be an infinite field.
Assume that u1, . . . , ur ∈ k

s, v1, . . . , vr ∈ k
n and w1, . . . , wr ∈ k

m are generic vectors
and define the third-order tensor

r∑︂
j=1

uj ⊗ vj ⊗ wj ∈ k
s ⊗ k

n ⊗ k
m. (4.10)

We consider the slices

Mi :=

r∑︂
j=1

uji ·Hj , 1 ≤ i ≤ s,

of this tensor, where Hj := vj ⊗ wj , 1 ≤ j ≤ r, are n×m-matrices of rank 1. Since the
vectors uj and the rank-1 matrices Hj are generic and k is infinite, the intersections of
the left and right kernels of the matrices M1, . . . ,Ms are of codimension r and we can
construct a regular pencil (M ′

1, . . . ,M
′
s) of r× r-matrices of the form M ′

i =
∑︁r

j=1 ujiH
′
j ,
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Recovery of components from eigenvalues

1 ≤ i ≤ s, where the matrices H ′
1, . . . ,H

′
r are r×r-matrices of rank 1 that form a regular

pencil as well (cf. Proposition 4.2.11). In particular, it holds that
⋂︁r

k=1,k ̸=j kerH
′
k ̸= 0.

As the vectors u1, . . . , ur are linearly independent due to the genericity assumption, we
can apply Algorithm 4.1 as explained in Remark 4.3.6. Since the pencil (M ′

1, . . . ,M
′
s)

can have at most r eigenvalues by Lemma 4.2.9, the algorithm cannot fail. Thus, we
retrieve the eigenvalues [uj ] = [uj1 : · · · : ujs] ∈ Ps−1

k
, 1 ≤ j ≤ r, which, up to scaling

and permutation, agree with the original vectors u1, . . . , ur.

Additionally, we obtain the rank-1 matrices H̃
′
j ∈ k

r×r which up to scaling agree with
H ′

j , 1 ≤ j ≤ r. By switching back to the larger vector spaces kn,km, we then find
Hj ∈ k

n×m (up to scaling) and recover the remaining vectors vj , wj ∈ k
n corresponding

to uj , which again are only determined up to scaling.

In summary, computing the eigenvalues from the slices of the tensor (4.10) yields a
decomposition of the tensor. The rank of the tensor in this example is r which is less
or equal to s, n,m, the dimensions of the vector spaces involved. Though, notice that in
general tensors can have larger rank in which case we cannot find a decomposition by
computing the eigenvalues like this. We also remark that this approach treats all the
slices in an equivalent manner, without the need to single out one or two particular slices
that are handled specially. ♢

Note that, in general, a tensor can have a much higher rank than considered in Exam-
ple 4.3.16, in which case finding a decomposition is more difficult; see [Lan12, Chap-
ter 12] for an overview. A classic method for this problem is known under the names
PARAFAC and CANDECOMP, which is eigenvalue-based as well. It is more general in
that it can also be applied to certain tensors of rank r with 2 ≤ s < r ≤ n,m. See e. g.
[LRA93].

4.3.2 A positive-dimensional counter-example

Here we develop an example of positive-dimensional varieties for which we can show that
recovery by Algorithm 4.1 fails if the measures supported on the varieties satisfy certain
symmetry conditions.

Lemma 4.3.17. Let d ∈ N, let chark ̸= 2 and let σ : k[x, y]/⟨x2 + y2 − 1⟩ → k be a
k-linear map, which is invariant under the ring homomorphisms (x, y) ↦→ (−x, y) and
(x, y) ↦→ (x,−y). Then there exists a non-zero univariate polynomial p(x) of degree at
most d such that σ(xαyβp(x)) = 0 for all α, β ∈ N with α+ β ≤ d− 1.

Proof. Due to the symmetries, we have σ(xαyβ) = (−1)ασ(xαyβ) = (−1)βσ(xαyβ) for
any α, β ∈ N, which implies σ(xαyβ) = 0 whenever α or β is odd, as k is not of
characteristic 2. Therefore, it is enough to consider the image of σ on the subalgebra

k[x2, y2]/
⟨︁
x2 + y2 − 1

⟩︁
= k[u, v]/⟨u+ v − 1⟩ ∼= k[u],
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4.3 Hermitian and symmetric cases

where we identify u = x2 and v = y2. Also note that there is nothing to show if d = 0
and that we can choose p(x) = x if d = 1, since then σ(p(x)) = σ(x) = 0 due to the
symmetries. For the remainder, let us assume that d ≥ 2.

We construct a polynomial q(u) such that p(x) = q(x2) if d is even and xp(x) = q(x2) if
d is odd. In the latter case, this means in particular that the constant term of q must be
0. We claim that σ(uαvβq(u)) = 0 for all α, β ∈ N with α+ β ≤

⌊︁
d
2

⌋︁
− 1. In particular,

if d is even, this implies that σ(x2αy2βp(x)) = 0 for 2α + 2β ≤ d− 1, while for odd d it
implies σ(x2αy2βxp(x)) = 0 for 2α+ 2β + 1 ≤ d− 1. Hence, the statement follows from
the claim.

To prove the claim, it is enough to show σ(uαq(u)) = 0 for 0 ≤ α ≤
⌊︁
d
2

⌋︁
− 1, since

v ≡ 1 − u (mod ⟨u+ v − 1⟩). As q(u) is a polynomial of degree at most
⌈︁
d
2

⌉︁
, we can

construct q from the non-trivial kernel of the Hankel matrix(︂
σ(uα+α′

)
)︂
0≤α≤⌊ d

2⌋−1, 0≤α′≤⌈ d
2⌉
.

Due to the dimensions of this matrix, its kernel is at least one-dimensional if d is even
and two-dimensional if d is odd. This means that, for odd d, we can choose q in such a
way that the additional linear requirement of its constant term being 0 is satisfied.

Proposition 4.3.18. Let d, k, σ and p be as in Lemma 4.3.17 and define

Hj =
(︁
σ((x, y − ξj)

α+β)
)︁
|α|,|β|≤d

for distinct ξj ∈ k, 0 ≤ j ≤ r. Then H0p = · · · = Hrp.

In particular, p is an eigenvector of the pencil (H0, . . . ,Hr) if the pencil is regular.

Proof. In order to show H0p = · · · = Hrp, it is enough to assert that

σ((x, y)αp(x, y)) = σ((x, y + ξ)αp(x, y + ξ))

holds for all |α| ≤ d and arbitrary translations ξ ∈ k. As, by construction, p is constant
in y, this is equivalent to showing

σ(xα1((y + ξ)α2 − yα2)p(x)) = 0

for |α| ≤ d. For α2 = 0, this is trivial. Otherwise, we have

σ(xα1(y + ξα2 − yα2)p(x)) =

α2−1∑︂
k=0

(︃
α2

k

)︃
ξα2−kσ

(︁
xα1ykp(x)

)︁
,

which vanishes by Lemma 4.3.17.

The addendum follows from Proposition 4.2.5 (3), as p ̸= 0 by Lemma 4.3.17.
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Recovery of components from eigenvalues

Example 4.3.19. We construct an example corresponding to positive-dimensional vari-
eties for which Algorithm 4.1 fails. For this, we consider r + 1 different circles in R2 of
equal radius such that the centers of the circles lie on a line. Without loss of generality,
we can assume that the radius is 1 and that the line is a coordinate axis. We consider the
moments with respect to the uniform measure on these circles. For this, let R := C[x, y]
and let σ : R → C be the complexification of the moment functional of the unit circle.
Note that σ satisfies the invariance properties of Lemma 4.3.17.

Denote by aj := ⟨x2 + (y − ξj)
2 − 1⟩, 0 ≤ j ≤ r, the vanishing ideals of the circles.

Assume that d ∈ N such that 2r ≤ d < 2(r + 1). Then for every 0 ≤ j ≤ r, we find a
non-zero polynomial of degree at most d in

⋂︁r
k=0,k ̸=j ak ̸= 0 which is not contained in

aj ∩R≤d.

The corresponding moment matrices Hj , 0 ≤ j ≤ r, are of the form as in Proposi-
tion 4.3.18. It follows from Theorem 3.4.11 that Hj induces a positive-definite matrix on
the truncated coordinate ring R≤d/(aj ∩R≤d), which means that kerHj = aj ∩R≤d, for
all 0 ≤ j ≤ r. Thus, we have

r⋂︂
k=0
k ̸=j

kerHk =

r⋂︂
k=0
k ̸=j

ak ∩R≤d ̸= 0.

Additionally, by choice of d, we have

r⋂︂
k=0

kerHk =

r⋂︂
k=0

ak ∩R≤d = 0,

so that the pencil (H0, . . . ,Hr) is regular by Lemma 4.2.13. This means the conditions
on Hj for Algorithm 4.1 are satisfied.

Thus, with a matrix (λij)ij ∈ C(s+1)×(r+1) of rank r + 1, where s ≥ r, and Mi :=∑︁r
j=0 λijHj , 0 ≤ i ≤ s, we may attempt to apply Algorithm 4.1. We obtain the r + 1

distinct points [λ0j : · · · : λsj ] ∈ Ps
C, 0 ≤ j ≤ r, as eigenvalues of the pencil (M0, . . . ,Ms).

In addition, by Proposition 4.3.18, the polynomial p constructed in Lemma 4.3.17 occurs
as an eigenvector with eigenvalue [

∑︁r
k=0 λ0k : · · · :∑︁r

k=0 λsk] ∈ Ps
C, as it is the image

of the eigenvalue [1 : · · · : 1] ∈ Pr
C of the pencil (H0, . . . ,Hr) under the map induced by

(λij)ij , by Proposition 4.2.20. Since (λij)ij has full rank, we have

[λ0j : · · · : λsj ] ̸= [
∑︁r

k=0 λ0k : · · · :∑︁r
k=0 λsk]

for all 0 ≤ j ≤ r. Therefore, we always obtain at least r + 2 different spaces in Line 8 of
Algorithm 4.1, so that the recovery fails.

If the centers of the circles do not lie on a line, Proposition 4.3.18 does not apply and,
in practice, one indeed only obtains r + 1 different spaces in Line 8 for generic input, so
that the recovery algorithm works. ♢
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Example 4.3.19 illustrates that, as a consequence of Proposition 4.2.20, we can think of
the cases in which recovery by Algorithm 4.1 succeeds as exactly those cases in which the
matrices Hj , 0 ≤ j ≤ r, have the property that the eigenvalues of the pencil (H0, . . . ,Hr)
are exactly the r + 1 unit vectors. In other words, the eigenvectors are contained in the
kernel of all but one matrix Hj . Note, in particular, that this does not depend on the
weights λij , but only on the matrices Hj . We will come back to this example with a
more explicit computation later, in Example 4.8.12.

4.4 Positive-semidefinite case

In the case of positive-semidefinite matrices, it is possible to infer additional information
about the eigenvalues of a matrix pencil. We will show that the subset of eigenvalues we
want to reconstruct are the vertices of the convex polytope that is spanned by the set of
all eigenvalues, as long as we make a suitable choice of coordinates. Based on that, we can
formulate a more advanced algorithm that resolves the shortcomings of Algorithm 4.1.
As we work over the complex numbers here, the convex polytopes we consider live in
Cr+1 and are the image of real convex polytopes under a C-linear map.

Before presenting the new algorithm, we first take note of a few general results for
pencils of positive-semidefinite matrices. Let us start with the following consequence of
Lemma 4.2.13, pertaining to the choice of coordinates for the eigenvalues.

Corollary 4.4.1. Let (H0, . . . ,Hr) be a regular pencil of positive-semidefinite matrices
in Cn×n. If γ ∈ Pr

C is an eigenvalue of the pencil, then one can choose real non-negative
coordinates for γ.

Proof. By the proof of Lemma 4.2.13, the matrix H :=
∑︁r

j=0 λjHj is non-singular for
arbitrary λ0, . . . , λr > 0. Assume that p ∈ Cn, p ̸= 0, is an eigenvector of the pencil for
the eigenvalue γ. Then we can choose coordinates γ0, . . . , γr for γ such that Hjp = γjHp
for all 0 ≤ j ≤ r. Thus, we have p∗Hjp ≥ 0, as Hj is positive-semidefinite, as well as
p∗Hp > 0, since H is non-singular, so we conclude that γj ≥ 0, for all 0 ≤ j ≤ r.

Note, however, that a regular pencil of Hermitian matrices may have non-real eigenvalues,
despite the fact that the ordinary eigenvalues of an individual Hermitian matrix are real;
see for instance Example 4.2.19.

Remark 4.4.2. Corollary 4.4.1 shows that we can choose non-negative coordinates for
the eigenvalues of a regular pencil of positive-semidefinite matrices. In particular, we can
normalize them such that they sum to 1.

On the other hand, we can uniquely choose coordinates with respect to a fixed non-
singular matrix H which is a linear combination of the matrices H0, . . . ,Hr. If we
choose H =

∑︁r
j=0Hj , which is non-singular by the proof of Lemma 4.2.13, then by
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Corollary 4.2.7 the respective coordinates of an eigenvalue γ ∈ Pr
C are

1∑︁r
j=0 γj

(γ0, . . . , γr),

so they sum to 1, as well. A direct consequence of this is that, in these coordinates, the
eigenvalue is a convex combination of the r+1 unit vectors. More generally, the following
property holds for a concrete choice of coordinates of an eigenvalue. ♢

Lemma 4.4.3. Let H0, . . . ,Hr be positive-semidefinite matrices in Cn×n and let H =∑︁r
j=0 cjHj be any linear combination with c0, . . . , cr ∈ R>0. Let γ ∈ Cr+1 and p ∈

Cn \ kerH such that Hjp = γjHp for all 0 ≤ j ≤ r. Then

γ ∈ conv

{︃
e0
c0
, . . . ,

er
cr

}︃
,

where e0, . . . , er ∈ Cr+1 denote the standard basis vectors.

Note that [γ] ∈ Pr
C is an eigenvalue if the pencil (H0, . . . ,Hr) is regular. Under the

additional assumption that the matrices H0, . . . ,Hr satisfy
⋂︁r

k=0,k ̸=j kerHk \ kerHj ̸= ∅
for all 0 ≤ j ≤ r, then also the points [e0], . . . , [er] ∈ Pr

C are eigenvalues of the pencil,
as the elements in

⋂︁r
k=0,k ̸=j kerHk \ kerHj , 0 ≤ j ≤ r, are corresponding eigenvectors.

With the above choice of coordinates, these eigenvalues are represented by e0
c0
, . . . , ercr in

Cr+1. Hence, in this case, every eigenvalue of the pencil is a convex combination of the
representing coordinates of this distinguished set of r + 1 eigenvalues.

Proof. First observe that H is a positive-semidefinite matrix, as it is a linear combination
of positive-semidefinite matrices with positive coefficients c0, . . . , cr. As p /∈ kerH, we
therefore have p∗Hp > 0 and it follows that

γj =
p∗Hjp

p∗Hp
≥ 0,

for all 0 ≤ j ≤ r. By definition of H, this also implies that

r∑︂
j=0

cjγj =
r∑︂

j=0

cjp
∗Hjp

p∗Hp
= 1.

Moreover, we have

γ =

r∑︂
j=0

γjej =

r∑︂
j=0

cjγj
ej
cj
.

Since cjγj ≥ 0, this is a convex combination of e0
c0
, . . . , ercr .

By a similar proof, we obtain the following result, which extends Lemma 4.4.3 to the
case of linear transformations.
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Lemma 4.4.4. Let H0, . . . ,Hr be positive-semidefinite matrices and let H =
∑︁r

j=0 cjHj

be any linear combination with c0, . . . , cr ∈ R>0. Let s ≥ 0 and let Mi =
∑︁r

j=0 λijHj

for 0 ≤ i ≤ s, where (λij)ij ∈ C(s+1)×(r+1) is an arbitrary matrix. Further, define
ηj :=

1
cj
(λ0j , . . . , λsj) ∈ Cs+1 for 0 ≤ j ≤ r. Then the following properties hold.

(1) If γ ∈ Cs+1 such that Mip = γiHp, 0 ≤ i ≤ s, for some vector p /∈ kerH, then

γ ∈ conv{η0, . . . , ηr}.

(2) If the matrix (λij)ij is of rank r + 1, then, for every 0 ≤ k ≤ r, the point ηk is a
non-redundant point of the convex hull, so

ηk /∈ conv{η0, . . . , ηk−1, ηk+1, . . . , ηr}.

(3) If η0 /∈ conv{η1, . . . , ηr} and if q is any vector, the following are equivalent:

(a) q ∈ ⋂︁r
j=1 kerHj \ kerH0,

(b) q /∈ kerH and Miq = η0iHq for all 0 ≤ i ≤ s.

Proof. As H is positive-semidefinite and Hp ̸= 0, we have p∗Hp > 0, so it follows for
0 ≤ i ≤ s that

γi =
p∗Mip

p∗Hp
=

r∑︂
j=0

λij
cj
aj , (4.11)

where we define aj := cj
p∗Hjp
p∗Hp for 0 ≤ j ≤ r. These parameters satisfy aj ≥ 0 and

a0 + · · ·+ ar = 1, so, in view of (4.11), we infer that the equation

γ =
r∑︂

j=0

ajηj

expresses γ as a convex combination of η0, . . . , ηr, which proves (1).

For (2), assume that η0 ∈ conv{η1, . . . , ηr}, which means that

conv{η1, . . . , ηr} = conv{η0, . . . , ηr}. (4.12)

However, conv{η0, . . . , ηr} is the image of the convex polytope conv{ e0
c0
, . . . , ercr } under

the map defined by (λij)ij ; cf. Lemma 4.4.3. By hypothesis, this map is injective, so the
image of the polytope is of real dimension r and cannot be defined by less than r + 1
points, contradicting (4.12). Thus, we conclude that η0 /∈ conv{η1, . . . , ηr} and the result
follows.

For (3), let us assume that q ∈ ⋂︁r
j=1 kerHj \ kerH0. Then in particular q /∈ kerH, since

c0 ̸= 0. Additionally, we have for all 0 ≤ i ≤ s that

Miq = λi0H0q = η0ic0H0q = η0iHq,
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by definition of η0.

For the converse, we first show that q ∈ kerHj for 1 ≤ j ≤ r. By the previous part of
the proof, we can write η0 as a convex combination

η0 =
r∑︂

j=0

ajηj ,

with parameters aj := cj
q∗Hjq
q∗Hq ≥ 0, 0 ≤ j ≤ r, for which a0+ · · ·+ar = 1. Assuming that

a0 ̸= 1, it follows that η0 = 1
1−a0

∑︁r
j=1 ajηj . As

∑︁r
j=1

aj
1−a0

= 1, this is a contradiction
to the hypothesis that η0 /∈ conv{η1, . . . , ηr}. Therefore, we must have a0 = 1 and
a1 = · · · = ar = 0, which implies that q ∈ kerH1, . . . , kerHr. Finally, observe that
assuming q ∈ kerH0 leads to a contradiction to the hypothesis that q /∈ kerH, so we
conclude that q /∈ kerH0.

Remark 4.4.5. Note that the statements (1) and (3) of Lemma 4.4.4 do not assume that
the matrix (λij)ij is of rank r+1, unlike results with similar hypotheses in other sections.
In particular, the case s = 0 is allowed, in which we consider only a single Matrix M0 and
η0, . . . , ηr are just complex numbers. Moreover, it is not necessary that H is invertible
or that (H0, . . . ,Hr) is a regular matrix pencil, which would be a requirement for the
notion of eigenvalues we work with. ♢

Now we can refine our previous reconstruction algorithm, Algorithm 4.1, for the case of
positive-semidefinite matrices. This is specified in Algorithm 4.2.

Algorithm 4.2 Positive-semidefinite recovery from several weighted sums
Input: A natural number s ∈ N and a regular pencil (M0, . . . ,Ms) of complex matrices.
Assumptions: The matrices are of the form Mi =

∑︁r
j=0 λijHj , 0 ≤ i ≤ s, for some

r ≤ s, where H0, . . . ,Hr are positive-semidefinite matrices and where (λij)ij ∈
C(s+1)×(r+1) is a matrix of rank r + 1. Additionally, we have that λ0j ∈ R>0 and⋂︁r

k=0,k ̸=j kerHk ̸= 0, for every 0 ≤ j ≤ r.
Output: r as well as [λ0j : · · · : λsj ] for all 0 ≤ j ≤ r (up to scaling and permutation).
1: Let H :=M0, which is a positive-definite matrix.
2: Compute the set of eigenvalues of the matrix pencil (M0, . . . ,Ms). Denote by Γ ⊆

Cs+1 the set of their representatives, by choosing coordinates with respect to the
matrix H (cf. Corollary 4.2.7).

3: Compute the set of vertices of the convex polytope conv Γ and denote it by Γ′.
4: Set r := #Γ′ − 1.
5: With Γ′ = {γ0, . . . , γr}, we have [λ0j : · · · : λsj ] = [γj ] for 0 ≤ j ≤ r (up to permuta-

tions in j).

Remark 4.4.6. In contrast to Algorithm 4.1, note that Algorithm 4.2 cannot fail. Any
eigenvalues that would lead to the failure of Algorithm 4.1 are filtered out in this refined
algorithm by using the additional piece of information that those particular eigenvalues
cannot be extreme points of the convex hull of all eigenvalues of the pencil.
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It is important that the coordinates for the eigenvalues in Line 2 are chosen with respect to
the single fixed matrix H. The algorithm crucially depends on the fact that H is positive-
definite. In fact, if we were to choose new coordinates with respect to a different non-
singular matrix, the new coordinates would, in general, not be expressible as the product
of a fixed scalar and the original coordinates, so the computation of the eigenvalues needs
to make sure to choose the coordinates correctly and consistently.

If we assume that λij ≥ 0 for all i, j, we can drop the assumption that λ0j > 0 for all
0 ≤ j ≤ r. In this case, all the Mi are positive-semidefinite, so we can choose H as
H =

∑︁s
i=0Mi instead, for example. Indeed, this matrix is positive-semidefinite and it is

regular by Lemma 4.2.13, since the pencil (M0, . . . ,Ms) is regular.

More precisely, observe that the assumption λ0j > 0 for 0 ≤ j ≤ r is equivalent to assum-
ing that M0 is positive-definite. This follows from the hypothesis that

⋂︁r
k=0,k ̸=j kerHk ̸=

0 for all 0 ≤ j ≤ r. As such, it is enough to replace H by any positive-definite linear
combination of M0, . . . ,Ms. However, without further assumptions on the coefficients
λij , this can be difficult to find in general. The tools of semidefinite programming may
provide a possible approach for this problem. See [VB96, Section 6] for an overview of
the real situation.

If the pencil (M0, . . . ,Ms) is singular, then, since the matrices are linear combinations
of positive-semidefinite matrices and since the matrix (λij)ij has full column rank, it
follows from Lemma 4.2.13 that one can construct a regular pencil from this by dividing
out the common kernel of the matrices. This preprocessing step therefore allows to apply
Algorithm 4.2 in the case of a singular pencil as well. This is explained in more detail in
the proof of Theorem 4.7.4, as Algorithm 4.3 makes use of this.

In a postprocessing step, we may reconstruct the matrices H0, . . . ,Hr (up to scaling) or
the kernels of these matrices, by the computation in Line 10 of Algorithm 4.1. ♢

Theorem 4.4.7. Under the given assumptions, recovery by Algorithm 4.2 works.

Proof. The proof of Lemma 4.2.13 shows that any linear combination of H0, . . . ,Hr with
positive coefficients is a non-singular matrix. Therefore, H = M0 =

∑︁r
j=0 λ0jHj is

positive-definite, as claimed.

Define γj := 1
λ0j

(λ0j , . . . , λsj) ∈ Cs+1. In particular, we have the equality [γj ] =

[λ0j : · · · : λsj ] in Ps
C, for all 0 ≤ j ≤ r, as is claimed in Line 5. Then, by Lemma 4.4.4 (1),

it follows for the set Γ computed in Line 2, which represents the eigenvalues of the pencil
(M0, . . . ,Ms) in terms of coordinates with respect to the matrix H, that

Γ ⊆ conv{γ0, . . . , γr}.

Denote by e0, . . . , er ∈ Cr+1 the standard basis vectors. By Lemma 4.3.1, we have⋂︁r
k=0,k ̸=j kerHk \ kerHj ̸= ∅ for every 0 ≤ j ≤ r, since the kernels of H0, . . . ,Hr

intersect trivially, as the pencil (H0, . . . ,Hr) is regular. Therefore, [e0], . . . , [er] ∈ Pr
C

are eigenvalues of the pencil (H0, . . . ,Hr) and, as a consequence of Proposition 4.2.20,
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[γ0], . . . , [γr] ∈ Ps
C are eigenvalues of (M0, . . . ,Ms). For the representing coordinates, this

implies by Remark 4.2.21 that
γ0, . . . , γr ∈ Γ,

as the coordinates are unique by Corollary 4.2.7, and thus conv Γ = conv{γ0, . . . , γr}. As
the points γ0, . . . , γr are non-redundant by Lemma 4.4.4 (2), they must be the vertices
of the polytope conv Γ. Hence, we have Γ′ = {γ0, . . . , γr}.

4.5 A sufficient condition

In this section, we develop a sufficient criterion for Algorithm 4.1, or variants thereof, to
succeed. The new algorithms based on this criterion are introduced in Section 4.7.

We now focus on the situation of moment problems on algebraic varieties, for which we
use the framework from Section 3.1 in order to handle both the affine and torus case.
Hence, in the following, we assume that the field k and the rings R,L are chosen as in
Section 3.1. The following remark introduces the main concepts of this section in terms
of a two-component example.

Remark 4.5.1. Consider two k-linear maps σ1, σ2 : L → k with ideals aj ⊆ L such
that aj , a

◦
j ⊆ kerσj for j = 1, 2. Let B ⊆ R be polynomials that form a basis of the

quotient space R≤d/(a1 ∩ a2 ∩R≤d). Denote by H1, H2 the Gramian matrices describing
the sesquilinear forms on the quotient space with respect to the basis B which are induced
by the sesquilinear forms associated to σ1, σ2 as explained by Lemma 3.1.11, i. e. we have
Hj = (σj(w

◦v))w,v∈B, j = 1, 2. Then the matrix pencil (H1, H2) is regular if and only if
the induced sesquilinear form of some linear combination of σ1, σ2 is non-degenerate (or
equivalently, right-non-degenerate) on R≤d/(a1 ∩ a2 ∩R≤d).

This means that, for generic choices of γ ∈ k, the matrix H1 − γH2 is regular. This is
equivalent to saying that, if there exists a polynomial p ∈ R≤d satisfying

σ1(q
◦p) = γσ2(q

◦p) (4.13)

for all q ∈ R≤d, then we already have p ∈ a1 ∩ a2, by Lemma 3.1.17.

However, for a particular (non-generic) choice of γ, this need not hold – namely for the
eigenvalues of the pencil (H1, H2). In that case, the corresponding p satisfying (4.13) is
an eigenvector of the pencil, unless of course p is zero. Indeed, this becomes apparent
in terms of the basis B, so write p as p =

∑︁
w∈B pww with coefficients pw ∈ k. Then

Equation (4.13) gives

H1p = (σ1(w
◦v))w,v∈B(pv)v∈B = γ(σ2(w

◦v))w,v∈B(pv)v∈B = γH2p,

showing that p is an eigenvector. In particular, the vector space

(a1 ∩R≤d)/(a1 ∩ a2 ∩R≤d)
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is a subspace of the eigenspace with γ = 0, since, if p ∈ a1, then also q◦p ∈ a1 ⊆ kerσ1
for every q. Therefore, its vector space dimension is a lower bound for the dimension of
the corresponding eigenspace. In many cases we consider, these dimensions are in fact
equal. ♢

As the size of the matrices in Remark 4.5.1 is dim(R≤d/(a1 ∩ a2 ∩R≤d)), this implies that
the maximal number of extraneous eigenvalues, i. e. eigenvalues that do not correspond
to eigenvectors in the spaces

(aj ∩R≤d)/(a1 ∩ a2 ∩R≤d), j = 1, 2, (4.14)

is bounded by the quantity in Lemma 1.2.4 (2), if we assume that the hypotheses of
the lemma are satisfied. Hence, if s ∈ N is the dimension of the components, then, by
Lemma 1.2.4, the dimension of the spaces (4.14) is in Θ(ds), while the maximum number
of extraneous eigenvalues is in O(ds−1), which is of strictly smaller order. Similarly, this
holds for more than two components, as well. Note that this also explains why in the
zero-dimensional case, where s = 0, such a problem does not arise.

As we are primarily interested in finding criteria that rule out the existence of extraneous
eigenvalues, let us expand on Remark 4.5.1. The discussion motivates the following
lemma, which, under slightly stronger assumptions, gives further insight into the nature of
the eigenvectors of a pencil as in Remark 4.5.1. It yields a sufficient condition for asserting
that extraneous eigenvectors as in Algorithm 4.1 and illustrated in Example 4.3.19 do not
exist, which is made precise in Theorem 4.5.4. The stronger hypothesis states that not
only p, but also certain polynomial multiples hp occur as eigenvectors for the eigenvalue
γ of the pencil.

Lemma 4.5.2. Let σ1, σ2 : L → k be k-linear maps and let a1, a2 ⊆ L be ideals such
that aj ⊆ kerσj, j = 1, 2. Let d, δ ∈ N and assume that there exists a linear combination
σ of σ1, σ2 such that the induced sesquilinear map Φ

R≤d+δ
a1∩a2 (defined in Definition 3.1.12)

associated to σ is right-non-degenerate.

Let γ ∈ k and p ∈ R≤d such that

σ1(g
◦hp) = γσ2(g

◦hp)

for all g ∈ R≤d+δ and h ∈ R≤δ. Additionally, assume that one of the following conditions
holds for the ideals a1, a2:

(1) a1 is prime and there exists a polynomial q ∈ a2 ∩R≤δ \ a1;
(2) a1 = p1 ∩ · · · ∩ pm for prime ideals p1, . . . , pm ⊆ L and there exists a polynomial

q ∈ a2 ∩R≤δ \
⋃︁m

i=1 pi;

(3) a1 is prime with a1 ⊉ a2 and a2 is generated by a2 ∩R≤δ;

(4) a1 = p1 ∩ · · · ∩ pm for prime ideals pi ⊆ L with pi ⊉ a2, 1 ≤ i ≤ m, and the ideals
a2 and pi are generated by a2 ∩ R≤d0 and pi ∩ R≤di , respectively, for d0, di ∈ N,
1 ≤ i ≤ m− 1, such that

∑︁m−1
i=0 di ≤ δ;
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(5) a1, a2 are comaximal and a2 is generated by a2 ∩R≤δ.

Then p ∈ a1.

Proof. Case (1) is a special case of (2), so we assume that (2) is satisfied. Then it follows
from q ∈ a2 ⊆ kerσ2 and q ∈ R≤δ that

σ1(g
◦qp) = γσ2(g

◦qp) = 0

for all g ∈ R≤d+δ. In particular, this means that σ(g◦qp) = 0 for all g ∈ R≤d+δ, so
Lemma 3.1.17 implies that qp ∈ a1 ∩ a2 ∩R≤d+δ. In particular, we have qp ∈ pi for every
1 ≤ i ≤ m. Since pi is prime and q /∈ pi, we conclude that p ∈ pi for every 1 ≤ i ≤ m
and therefore p ∈ a1.

Case (3) is a special case of (4) with m = 1.

For (4), we use prime avoidance to construct an element q ∈ a2 \
⋃︁m

i=1 pi with q ∈ R≤δ,
so that the statement follows from (2). Note that we can assume that no inclusions exist
among the prime ideals, so, for all 1 ≤ i, j ≤ m, we have pi ⊈ pj , since otherwise pj
would be redundant in the decomposition of a1 as an intersection of prime ideals.

We use induction over m to construct the polynomial q. The case m = 0 is trivial. If
m = 1, it follows from a2 ⊈ p1 that some generator q of a2 is not contained in p1. As a2
is generated by elements in R≤d0 , we can assume that q ∈ R≤d0 ⊆ R≤δ.

Next, assume that m > 1 and that the inductive hypothesis is satisfied for m− 1. Thus,
since in particular

∑︁m−2
i=0 di ≤ ∑︁m−1

i=0 di ≤ δ, we find a polynomial q ∈ a2 \ ⋃︁m−1
i=1 pi

with q ∈ R≤δ. If q /∈ pm, then q already has the desired property, so we assume that
q ∈ pm. As pm is a prime ideal and since a2, p1, . . . , pm−1 ⊈ pm by assumption, it follows
by Lemma 1.2.3 that

a2p1 · · · pm−1 ⊈ pm.

Since
∑︁m−1

i=0 di ≤ δ, the ideal product a2p1 · · · pm−1 is generated by elements in R≤δ and,
additionally, not all generators are contained in pm. Hence, we can choose an element
q′ ∈ a2p1 · · · pm−1 \ pm such that q′ ∈ R≤δ. Then q + q′ is a polynomial in R≤δ that is
also contained in a2 \

⋃︁m
i=1 pi.

In case (5), fix an arbitrary element q ∈ a2 ∩ R≤δ. Similarly to case (2), it follows
that σ(g◦qp) = 0 for all g ∈ R≤d+δ and therefore qp ∈ a1 ∩ a2 by Lemma 3.1.17. As
a2 is generated by a2 ∩ R≤δ and since q was an arbitrary element from a2 ∩ R≤δ, this
implies that ⟨p⟩a2 ⊆ a1 ∩ a2. Hence, as a1, a2 are comaximal, this means that p ∈ a1 by
Lemma 1.2.1.

Remark 4.5.3. The proof of Lemma 4.5.2 shows that we can formulate cases (1) and (2)
under the weaker assumption that σ1(g◦hp) = γσ2(g

◦hp) for g ∈ R≤d+δ and for h = q.
In practice, this property is difficult to check without knowing q explicitly, which is why
the formulation of the lemma seems more useful, in most situations. ♢
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Theorem 4.5.4. Let σj : L → k, 0 ≤ j ≤ r, be k-linear maps and let aj ⊆ L be
ideals such that aj ⊆ kerσj. Let d, δ ∈ N and assume that, for every 0 ≤ i < j ≤ r,
the induced sesquilinear map Φ

R≤d+δ
ai∩aj associated to some linear combination of σi, σj is

right-non-degenerate.

Let γ = [γ0 : · · · : γr] ∈ Pr
k

and p ∈ R≤d such that, for all 0 ≤ i, j ≤ r,

γiσj(g
◦hp) = γjσi(g

◦hp) (4.15)

holds for all g ∈ R≤d+δ, h ∈ R≤δ and such that, for each pair of ideals ai, aj with i ̸= j,
one of the conditions (1)–(5) listed in Lemma 4.5.2 is satisfied.

If p /∈ a0 ∩ · · · ∩ ar, then there exists an index k ∈ {0, . . . , r} such that p ∈ ⋂︁r
j=0,j ̸=k aj

and γj = 0 for all 0 ≤ j ≤ r with j ̸= k.

Proof. Since γ ∈ Pr
k
, we can choose k such that γk ̸= 0. Without loss of generality, we

can assume that k = 0. Then

σj(g
◦hp) =

γj
γ0
σ0(g

◦hp)

holds for all g ∈ R≤d+δ, h ∈ R≤δ and j ̸= 0. Thus, by Lemma 4.5.2, it follows that p ∈ aj
for all j ̸= 0.

It remains to show that γj = 0 for j ̸= 0. Assuming that γj ̸= 0 for some j ̸= 0, we
have σ0(g◦hp) = γ0

γj
σj(g

◦hp) for g ∈ R≤d+δ, h ∈ R≤δ and may apply Lemma 4.5.2 again
in order to deduce that p ∈ a0. This however is a contradiction to the assumption that
p /∈ a0 ∩ · · · ∩ ar, so we conclude that γ = [1 : 0 : · · · : 0].
Remark 4.5.5. Our main application of Theorem 4.5.4 is the case in which each pair of
ideals satisfies property (3) of Lemma 4.5.2: the ideals a0, . . . , ar are prime ideals that are
generated by polynomials of degree at most δ and which satisfy ai ⊈ aj for all 0 ≤ i, j ≤ r
with i ̸= j. When working with a degree-induced filtration, under this assumption, δ can
often be chosen relatively small in comparison to d, since d is a bound on the degree of
the polynomial p ∈ ⋂︁r

j=0,j ̸=k aj for some k ∈ {0, . . . , r}, a polynomial vanishing on many
distinct varieties, and therefore commonly needs to be quite large.

Note that condition (3) of Lemma 4.5.2 is a special case of the strictly weaker condition
(1). Indeed, every generator of a2 is contained in R≤δ and at least one of them must not
be contained in a1 in order that a1 ⊉ a2 can be satisfied. For convenience and simplicity
of exposition, we primarily work with condition (3), rather than (1), but it is worth
noting that the latter may allow to infer better bounds on δ, in certain examples.

Furthermore, note that the assumption in Theorem 4.5.4 that, for every pair i, j with 0 ≤
i < j ≤ r, there exists a linear combination of σi, σj such that the induced sesquilinear
map Φ

R≤d+δ
ai∩aj is right-non-degenerate does not necessarily imply that there exists a linear

combination σ of σ0, . . . , σr such that the induced sesquilinear map Φ
R≤d+δ
a0∩···∩ar,σ is right-

non-degenerate.
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What is more, if we assume for simplicity that the sesquilinear forms ⟨−,−⟩σj
are Hermi-

tian, then we cannot conclude that the pencil (H0, . . . ,Hr) is regular, where Hj denotes
the matrix of ⟨−,−⟩σj

with respect to some basis of R≤d+δ/(a0 ∩ · · · ∩ ar ∩R≤d+δ). In-
deed, a generic linear combination

∑︁r
j=0 cjHj can be of rank strictly smaller than the

dimension of the latter space, as the kernel of such a linear combination can vary with
the parameters cj ∈ k, 0 ≤ j ≤ r, as noted in Example 4.2.12.

However, if k ⊆ C and the sesquilinear forms ⟨−,−⟩σj
are positive-semidefinite on R≤d,

it does follow that the pencil is regular, as stated in Corollary 4.5.6 below. This is one
of the main motivations for focusing on the situation in which these forms are positive-
semidefinite, as it allows us to infer the regularity of the pencil. Another motivation is the
fact that non-negative measures give rise to positive-semidefinite forms which therefore
pose an interesting and relevant class of examples.

Also note that, under the assumption that the pencil (H0, . . . ,Hr) is regular, then, up
to a change of basis, the properties of (4.15) in particular describe what it means for p
(as well as its polynomial multiples hp for h ∈ R≤δ) to be an eigenvector with eigenvalue
γ of the pencil; cf. Proposition 4.2.5. ♢

Corollary 4.5.6. Assume that k ⊆ C with complex conjugation as involution −◦ . Let
d, δ ∈ N, let σj : L→ k, 0 ≤ j ≤ r, be k-linear maps and let pj ⊆ L be prime ideals such
that pj ⊆ kerσj and pi ⊈ pj for all i ̸= j. Assume that, for each 0 ≤ j ≤ r, the ideal pj
is generated by pj ∩R≤δ and the sesquilinear form ⟨−,−⟩σj

associated to σj on R≤d+δ is
positive-semidefinite.

Additionally, assume that one of the following conditions holds:

(1) the induced sesquilinear form on R≤d+δ/(pj ∩R≤d+δ) associated to σj is non-
degenerate for every 0 ≤ j ≤ r;

(2) the induced sesquilinear form on R≤d+δ/(pi ∩ pj ∩R≤d+δ) associated to some linear
combination of σi, σj is non-degenerate for all 0 ≤ i < j ≤ r.

For 0 ≤ j ≤ r, denote by Hj the Gramian matrix of the induced sesquilinear form
associated to σj with respect to some basis of U := R≤d+δ/(p0 ∩ · · · ∩ pr ∩R≤d+δ). Then
the matrix pencil (H0, . . . ,Hr) is regular.

If there exists γ ∈ Pr
k

and an element p ∈ U , p ̸= 0, represented by a polynomial p ∈ R≤d

such that qp ∈ U is an eigenvector with eigenvalue γ of the pencil (H0, . . . ,Hr) for all
q ∈ R≤δ that satisfy qp ̸= 0 in U , then there exists a k ∈ {0, . . . , r} such that γj = 0 for
all 0 ≤ j ≤ r with j ̸= k and it holds that p ∈ ⋂︁r

j=0,j ̸=k pj.

In the statement above and in the proof below, g denotes the residue class modulo
p0 ∩ · · · ∩ pr ∩R≤d+δ of a polynomial g ∈ R≤d+δ and not complex conjugation. Further-
more, note that the sesquilinear forms associated to σ0, . . . , σr on R≤d+δ are positive-
semidefinite, so in particular they are Hermitian, which means that the induced sesquilin-
ear forms on the quotient spaces above are well-defined by Lemma 3.1.11. Additionally,
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recall that, by Theorem 3.4.11, assumption (1) holds for any moment functional σj of a
non-negative measure if the ideal pj is the vanishing ideal of its support.

Proof. First, observe that (1) implies (2). Indeed, for every 0 ≤ i < j ≤ r, we
may consider the matrices H ′

i, H
′
j describing the induced sesquilinear form of σi, σj on

R≤d+δ/(pi ∩ pj ∩R≤d+δ). As these matrices are positive-semidefinite, it follows from
Lemma 4.2.13 that (H ′

i, H
′
j) forms a regular pencil if the kernels of these matrices in-

tersect trivially. Condition (1) implies by Lemmas 3.1.16 and 3.1.17 that the kernels of
H ′

i, H
′
j are represented by elements in pi, pj , respectively. Thus, the intersection of kerH ′

i

and kerH ′
j is represented by elements in pi∩pj , so, in the space R≤d+δ/(pi ∩ pj ∩R≤d+δ),

the intersection of the kernels is trivial. This means that there exists a linear combina-
tion ofH ′

i, H
′
j which is regular and therefore describes a non-degenerate sesquilinear form.

Hence, we may assume that condition (2) is satisfied.

In this case, it follows by a similar argument that the matrix pencil (H0, . . . ,Hr) is
regular. Indeed, if there exists a u ∈ ⋂︁r

j=0 kerHj , then u has a representative in pi ∩ pj
for all 0 ≤ i < j ≤ r by Lemmas 3.1.16 and 3.1.17 and therefore u = 0 in U . Thus, the
pencil is regular by Lemma 4.2.13.

As the ideals p0, . . . , pr are generated by elements in R≤δ, each pair of them satisfies
condition (3) of Lemma 4.5.2. Then the conclusion follows from Theorem 4.5.4, together
with Lemma 3.1.16, if we can show that the properties of (4.15) are satisfied.

Note that qp = 0 if and only if q = 0 in U , as p0, . . . , pr are prime ideals and p ̸= 0 by
assumption. If qp ̸= 0 is an eigenvector with eigenvalue γ for all q ∈ R≤δ with q ̸= 0, we
therefore have

γiσj(g
◦qp) = γjσi(g

◦qp)

for all g ∈ R≤d+δ and all q ∈ R≤δ, as pj ⊆ kerσj for all j. This means we can apply
Theorem 4.5.4 with degrees d and δ.

Example 4.5.7. For illustration, let us apply Theorem 4.5.4 to the zero-dimensional case
of distinct points ξ0, . . . , ξr ∈ k := C. For simplicity, we focus on the affine situation, so
let L = R = C[x1, . . . , xn] with trivial involution and with the filtration induced by total
degree. The ideals are of the form aj := mξj = ⟨x− ξj⟩, 0 ≤ j ≤ r. For every 0 ≤ j ≤ r,
the maps σj : R → C are arbitrary C-linear maps such that aj ⊆ kerσj . As discussed
in Example 3.2.1, this implies that σj is of the form σj = λj evξj for some λj ∈ C, that
is, σj(p) = λjp(ξj) for all p ∈ R. We further assume that σj is not the zero-map, which
means that λj ̸= 0 for all 0 ≤ j ≤ r.

The ideals aj are generated by polynomials of degree 1, so we can pick δ = 1. Therefore,
as the ideals are pairwise comaximal, condition (5) of Lemma 4.5.2 is satisfied for each
pair of the ideals.

Next, let us check the right-non-degenerateness requirement. If d ∈ N and 0 ≤ i < j ≤ r,
we need to show that there exists a linear combination σ := ciσi + cjσj with ci, cj ∈ C
for which the sesquilinear map Φ

R≤d+δ
ai∩aj ,σ is right-non-degenerate. As the involutions are
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trivial in this example, this map is a bilinear form on the space R≤d+δ/(ai ∩ aj ∩R≤d+δ),
which is a two-dimensional vector space as ξi and ξj differ in at least one coordinate and
R/(ai ∩ aj) is two-dimensional. This bilinear form is induced by the bilinear form ⟨−,−⟩σ
on R≤d+δ, which we can represent more concretely in terms of the Hankel matrix(︂

ciλiξ
α+β
i + cjλjξ

α+β
j

)︂
|α|,|β|≤d+δ

.

Clearly, for any ci, cj ∈ C \ {0} and d ∈ N, this matrix has rank 2. Then it follows from
the characterization in Lemma 4.3.9 (8) that Φ

R≤d+δ
ai∩aj ,σ is non-degenerate for some choice

of ci, cj . (Alternatively, this follows from Theorem 3.4.11 applied to the measure δξi+δξj ,
which has the moment functional λ−1

i σi+λ
−1
j σj , giving rise to a positive-definite bilinear

form on R≤d+δ/(ai ∩ aj ∩R≤d+δ).)

Thus, for point ideals aj = mξj = ⟨x− ξj⟩, 0 ≤ j ≤ r, all the requirements of Theo-
rem 4.5.4 are satisfied as long as λ0, . . . , λr ̸= 0.

Now, if p ∈ R≤d satisfies the eigenvalue-eigenvector-type condition (4.15) for some γ ∈
Pr
C, then the statement of Theorem 4.5.4 is that p either vanishes at all the points
ξ0, . . . , ξr or it vanishes at all but one of the points. In the latter case, p is a Lagrange-
like polynomial in the sense of Remark 4.3.3. Beyond that, no other polynomial can
satisfy this condition.

Since non-zero polynomials vanishing at r or r+1 points cannot usually exist if the degree
d is very small (depending on the point configuration), by contraposition, we conclude
that there only exist polynomials satisfying the eigenvector-type condition (4.15) if the
degree d is sufficiently large. ♢

4.6 Sharpness results

So far, it is not clear whether the bounds on the degrees in Lemma 4.5.2, Theorem 4.5.4
or Corollary 4.5.6 are sharp. To this end, we would like to investigate whether, with
the notation of Lemma 4.5.2, there exist examples such that σ1(g◦hp) = γσ2(g

◦hp) is
satisfied for all g ∈ R≤d+δ−1 and h ∈ R≤δ−1, while p /∈ a1 holds. The following provides
a result in this direction, for the univariate case where n = 1.

Example 4.6.1. Let k = C with complex conjugation as involution. Let R = C[x] and
L = C[x±1] be the univariate polynomial and Laurent polynomial ring. In addition, we
define the involution on L as in Example 3.1.5 and choose the degree-induced filtration
on R.

Furthermore, let r ≥ 2 be a natural number and denote by ξj := exp
(︁2πij

r

)︁
∈ T ⊆ C for

0 ≤ j < r the r-th roots of unity. Thus, the set of points is described by the ideal

a1 :=
r−1⋂︂
j=0

⟨x− ξj⟩ ⊆ L.
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4.6 Sharpness results

Additionally, choose ω ∈ C with |ω| = 1 such that ω is not an r-th root of unity and
define the ideal

a2 :=
r−1⋂︂
j=0

⟨x− ωξj⟩ ⊆ L.

The corresponding zero-dimensional varieties are displayed in Figure 4.1. By choice of
the parameter ω, the ideals a1, a2 are comaximal. Observe that a1, a2 are generated by
polynomials of degree r, so they are generated by a1 ∩R≤r and a2 ∩R≤r, respectively.

Figure 4.1: The point sets V(a1),V(a2), denoted by and , on the unit circle T, for r = 3
and arbitrary parameter ω.

We define the moment functionals

σ1 : L −→ C, xα ↦−→
r−1∑︂
j=0

ξαj , σ2 : L −→ C, xα ↦−→
r−1∑︂
j=0

(ωξj)
α,

for all α ∈ Z. First, observe that the r × r-Toeplitz matrices (cf. Remark 3.1.7)

Tk := σk
(︁
x−α+β

)︁
0≤α,β≤r−1

, k = 1, 2,

are positive-definite, which can be seen from the Vandermonde decompositions of these
matrices. Therefore, the matrix pencil (T1, T2) is regular and the induced sesquilinear
form on R≤δ/(a1 ∩ a2 ∩R≤δ) associated to convex combinations of σ1, σ2 is positive-
definite, so in particular non-degenerate, for all δ ∈ {0, . . . , r − 1}. As the form is Her-
mitian, also the induced sesquilinear maps Φ

R≤δ
a1∩a2 are non-degenerate by Lemmas 3.1.9

and 3.1.16.

Next, let d = 0 and let p = 1 ∈ R≤d ⊆ R, so p is a polynomial of degree 0 which is not
contained in the ideal a1, in particular. We claim that, for any δ ∈ {0, . . . , r − 1}, we
have

σ1(g
◦hp) = σ2(g

◦hp)

for all g, h ∈ R≤δ. Note that, if this were true for δ = r, then, since d = 0, the statement
of Lemma 4.5.2 (5) would imply that p is contained in a1, which is a contradiction.
In other words, this example shows that the bounds on the degrees in Lemma 4.5.2,
Theorem 4.5.4 and Corollary 4.5.6 are sharp, in this case.

To prove the claim, it is enough to show it for the monomial basis of R≤δ, so we have to
prove that

σ1(x
−α+β) = σ2(x

−α+β)
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Recovery of components from eigenvalues

for 0 ≤ α, β ≤ δ. For this, we need to show that σ1(xα) = σ2(x
α) for −δ ≤ α ≤ δ or,

equivalently, that

(σ1 − σ2)(x
α) =

r−1∑︂
j=0

ξαj − (ωξj)
α = (1− ωα)

r−1∑︂
j=0

ξαj (4.16)

is zero. The factor (1 − ωα) vanishes for α = 0, the other factor on the right for α ̸≡ 0
(mod r) as the points ξ0, . . . , ξr−1 are the r-th roots of unity. Indeed, this follows from

r−1∑︂
j=0

ξαj =
r−1∑︂
j=0

ξαj1 =
ξαr1 − 1

ξα1 − 1
= 0

for α ̸≡ 0 (mod r). Hence, since δ < r, the expression (4.16) vanishes in particular for
−δ ≤ α ≤ δ as claimed. ♢

Next, let us elaborate on the results proved in Section 4.5, from a different point of view.
We have formulated all the statements in terms of an involution −◦ on L, for which
we primarily think of one of the two cases where either the involution extends complex
conjugation to the Laurent ring L and R is the polynomial ring as in Example 3.1.5 or
the involution is trivial and L = R is the polynomial ring as in Example 3.1.4. In the
first case, it is useful to think of Toeplitz moment matrices, whereas one can think of
Hankel matrices in the second case, as explained in Remark 3.1.7.

These two cases are not entirely unrelated. As established by Section 3.3, in particular
Lemma 3.3.1, a Toeplitz matrix conveys essentially the same information as a Hankel ma-
trix of corresponding size. The converse is not necessarily true – geometrically speaking,
this stems from the fact that the natural embedding of the algebraic torus in affine space
is not invertible, so that a Toeplitz matrix cannot encode certain information coming
from outside the torus.

A natural question that arises from this is whether the results for the Toeplitz case proved
in Section 4.5 already follow from the results for the Hankel case. Here, we explain why
this is not the case. Thus, the additional complexity introduced by considering these cases
simultaneously actually pays off, as either case provides useful new information.

For simplicity, we again focus on the univariate situation where n = 1.

Example 4.6.2. We consider two cases.

(1) Let R = C[z], L = C[z±1], and

(2) let R′ = C[x, y], S = R′/⟨x2 + y2 − 1⟩.
These cases are related via the isomorphism φ : L

∼→ S defined by (3.2) in Section 3.3.
Moreover, we fix the filtrations on R and R′ that are induced by total degree and fix the
involution −◦ on L as defined in Example 3.1.5 as well as a trivial involution on R′.

Note that this means that the involution on R′ is not compatible with the involution
on L under φ, since the one on L extends complex conjugation of the ground field C,
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whereas the one on R′ does not. This is in contrast to the discussion in Remark 3.3.2,
but this distinction is not important for the purpose of this example. Our choice here
has the advantage that it allows us to define bilinear forms on the quotient spaces
R′

≤d+δ/(qi ∩ qj ∩R′
≤d+δ), as we do below.

We first discuss case (1). Let r ∈ N and let ξj ∈ C with |ξj | = 1, 0 ≤ j ≤ r, be
distinct points on the torus T. We define the maximal ideals pj := ⟨z − ξj⟩ ⊆ L and the
functionals σj : L→ C, zα ↦→ ξαj , which are the evaluation homomorphisms at the points
ξj and to which we associate sesquilinear forms on L. In particular, we have pj ⊆ kerσj .
Additionally, note that pj is generated by pj ∩R≤1, so we set δ := 1.

We wish to study this example in view of Theorem 4.5.4. One readily checks that pj
and σj , 0 ≤ j ≤ r, satisfy the criteria of that theorem. Now, let d ∈ N and assume that
p ∈ R≤d, p /∈ p0 ∩ · · · ∩ pr, is a polynomial satisfying the assumptions of Theorem 4.5.4,
for some γ ∈ Pr

C. Then it follows that p ∈ p1 ∩ · · · ∩ pr and p /∈ p0, where, without loss
of generality, we assume that k = 0.

The main question we are interested in is what the minimal degree of a polynomial p
with such properties can be, so we wish to choose d as small as possible. Clearly, p is
divisible by

∏︁r
j=1(z − ξj), so we conclude that d ≥ r. As the latter polynomial vanishes

on all the components defined by p1, . . . , pr, there exists a polynomial of degree equal to
r with those properties, so we can assume that d = r, in the best case.

For case (2) on the other hand, we may consider this example in terms of S or its cover
ring R′. The ideals φ(pj) ⊆ S are of the form qj := ⟨x−ℜ(ξj), y −ℑ(ξj)⟩, but in light
of Theorem 4.5.4 it is convenient to view these ideals qj as prime ideals in R′. Denote
by τj : R′ → C, 0 ≤ j ≤ r, the C-linear maps defined by τj(q) = σj(φ

−1(q)) for q ∈ R′,
so in particular qj ⊆ ker τj . Again observe that qj is generated by qj ∩R′

≤δ, where δ = 1
as before. In this case, we associate bilinear forms on R′ to τj , 0 ≤ j ≤ r.

Let d′ ∈ N. Then R′
≤d′+δ/(qi ∩ qj ∩ R′

≤d′+δ) is a two-dimensional vector space for any
0 ≤ i, j ≤ r with i ̸= j and one checks that linear combinations of τi, τj give rise to
non-degenerate bilinear forms on this space; see for instance Lemma 4.3.9 (8).

Now, if p′ ∈ R′
≤d′ , p

′ /∈ q0 ∩ · · · ∩ qr, is a polynomial that satisfies the assumptions of
Theorem 4.5.4 with respect to qj and τj for 0 ≤ j ≤ r and for some γ′ ∈ Pr

C, then it
follows that p′ ∈ q1 ∩ · · · ∩ qr and p′ /∈ q0, assuming that k = 0 as above. We are again
interested in a lower bound on the degree d′ of such a polynomial p′.

As p′ /∈ q0 ∩ · · · ∩ qr, it is evident that p′ does not vanish identically on the circle.
However, it vanishes at the r points (ℜ(ξj),ℑ(ξj)), 1 ≤ j ≤ r, which lie on the circle.
As a consequence of Bézout’s theorem, it follows that 2 deg(p′) ≥ r, so we conclude that
d′ ≥

⌈︁
r
2

⌉︁
. Since any two points on the circle are uniquely cut out by a line, it is clear

that there actually exists a polynomial in R′ of degree equal to
⌈︁
r
2

⌉︁
that vanishes exactly

at those r points, so we can assume that d′ =
⌈︁
r
2

⌉︁
, in the best case.

Finally, let us compare the two cases. Working with the monomial bases as in Re-
mark 3.1.7, we can assume that the relevant data in case (2) is given in terms of the
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Recovery of components from eigenvalues

Hankel matrices (︁
τj((x, y)

α+β)
)︁
α,β∈N2,|α|,|β|≤d′+δ

,

for 0 ≤ j ≤ r. By Lemma 3.3.1, these matrices convey the same information as the
Toeplitz matrices

T ′
j =

(︁
σj(z

−k+l)
)︁
−(d′+δ)≤k,l≤d′+δ

=
(︁
σj(z

−k+l)
)︁
0≤k,l≤2d′+2δ

(see also Remark 3.1.14). Similarly, in case (1), we can assume that the data is given in
terms of the Toeplitz matrices

Tj =
(︁
σj(z

−k+l)
)︁
0≤k,l≤d+δ

.

From here, we see that the matrices Tj are smaller than T ′
j . More precisely, the difference

between the degree bounds is

(2d′ + 2δ)− (d+ δ) = 2
⌈︁
r
2

⌉︁
− r + δ =

{︄
1 if r is even,
2 if r is odd.

Thus, the formulation in case (1) allows for a sharper and thus stronger result than in
case (2). ♢

Example 4.6.2 can be transferred to the multivariate setting where n > 1 by embedding
T1 in Tn. This means that there exist certain point configurations in Tn, e. g. when all
points lie in a one-dimensional subspace, for which the degree of the polynomial p satisfy-
ing the properties of Theorem 4.5.4 (as well as the size of the involved moment matrices)
can be chosen to be smaller in the Toeplitz formulation than in the corresponding Hankel
formulation.

4.7 Revised algorithms

The sufficient condition developed in Section 4.5 allows us to make refinements to Algo-
rithm 4.1, for the case of moment matrices of measures supported on algebraic varieties.
Based on that, we present two new algorithms here, Algorithms 4.3 and 4.4, that allow
for successful recovery of the underlying components.

In this section, we assume that k is R or C. On the one hand, this has practical reasons
because algorithms derived here rely on the numerical computation of eigenvalues, a task
most commonly performed over the real or complex numbers. On the other hand, we
assume that the sesquilinear forms associated to the k-linear maps σj in Algorithm 4.3
are positive-semidefinite, which limits the reasonable choices of k; see Definition 3.1.6.
Recall that one of the advantages of the sesquilinear forms being positive-semidefinite is
that they can be viewed as sesquilinear forms on the quotient spaces R≤d/(pj ∩R≤d) as
long as pj ⊆ kerσj by Lemma 3.1.11. Therefore, in this section, we require that one of
the following two hypotheses holds:
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(1) k = R, L = R = R[x1, . . . , xn] with trivial involutions (cf. Example 3.1.4), or

(2) k = C, R = C[x1, . . . , xn], L = C[x±1
1 , . . . , x±1

n ] with complex conjugation and
involution −◦ on L defined as in Example 3.1.5.

For the filtrations on R, we choose one that is induced by total degree or max-degree.
This conveniently allows us to pick the monomials as bases for the vector spaces R≤d,
which simplifies the implementations to some extent. We use the notation

|α|R := min{d ∈ N | xα ∈ R≤d}

for α ∈ Nn to signify the degree with respect to the chosen filtration of R – either total
degree or max-degree – so the monomials {xα}|α|R≤d form a basis of R≤d.

Remark 4.7.1. Although in principle it is possible to consider L = R = C[x1, . . . , xn]
together with an involution defined by (

∑︁
α pαx

α)◦ =
∑︁

α pαx
α for

∑︁
α pαx

α ∈ L, where
the involution on C is complex conjugation, this case is not usually of particular interest.
To see this, let σ : L → C be a C-linear map such that the sesquilinear form ⟨−,−⟩σ is
positive-semidefinite on R≤d for some d ∈ N. Let H be the Gramian with respect to
the monomial basis of R≤d. Then H is Hermitian, as it is positive-semidefinite, and it is
symmetric since it is a Hankel matrix as discussed in Remark 3.1.7. In particular, this
means that H is already a real matrix, so instead we can work with k = R in the first
place. ♢

Remark 4.7.2. The results in this section are proved with Corollary 4.5.6 in mind,
which forces us to work with positive-semidefinite forms. The positive-semidefiniteness is
primarily used as a sufficient criterion for asserting that the constructed matrix pencils are
regular, as follows from Lemma 4.2.13. If, in some settings, the regularity of the involved
pencils can be established by different means (cf. Section 4.2.2), then it is possible to
rephrase the results here in terms of Theorem 4.5.4, which does not assume positive-
semidefiniteness. ♢

Remark 4.7.3. In Algorithm 4.3, we allow the weights λij ∈ C, 0 ≤ i ≤ s, 0 ≤ j ≤ r,
to be complex numbers, even when k = R, by replacing the R-linear maps σj by their
complexification. If in fact the weights λij ∈ R are all real, then the computations can
be performed over R instead. ♢

We can now prove the correctness of Algorithm 4.3.

Theorem 4.7.4. Algorithm 4.3 works and requires the moments

τi
(︁
(xα)◦xβ

)︁
, |α|R, |β|R ≤ d+ δ,

for 0 ≤ i ≤ s.

Proof. First, note that it follows from Lemma 1.2.3 that
⋂︁r

k=0,k ̸=j(pk ∩R≤d) \ pj is not
empty for any 0 ≤ j ≤ r if d is sufficiently large. If L = R, this is immediately clear since⋃︁

d∈NR≤d = R. Likewise, if L is the Laurent ring, we may restrict to the polynomial
ring R and apply the same argument by Lemma 1.2.5.
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Recovery of components from eigenvalues

Algorithm 4.3 Recovery of weights from several weighted sums (degree of generators
known)
Input: Natural numbers s, d, δ ∈ N and C-linear maps τi, 0 ≤ i ≤ s.
Assumptions: The maps are of the form τi =

∑︁r
j=0 λijσj for some r ≤ s, where

(λij)ij ∈ C(s+1)×(r+1) is a matrix of rank r + 1 and σj : L→ k are k-linear maps for
which the associated sesquilinear forms ⟨−,−⟩σj

are positive-semidefinite on R≤d+δ.
Additionally, assume that there exist prime ideals pj ⊆ L with pj ⊆ kerσj for
0 ≤ j ≤ r such that the induced sesquilinear form on R≤d+δ/(pj ∩R≤d+δ) associated
to σj is non-degenerate and such that pk ⊈ pj for all k ̸= j. Moreover, assume that
d and δ are sufficiently large such that

⋂︁r
k=0,k ̸=j(pk ∩R≤d) \ pj ̸= ∅ holds and pj is

generated by pj ∩R≤δ for all 0 ≤ j ≤ r. Denote a := p0 ∩ · · · ∩ pr.
Output: r as well as [λ0j : · · · : λsj ] for 0 ≤ j ≤ r (up to permutations in j).
1: Set Mi :=

(︁
τi((x

α)◦xβ)
)︁
|α|R,|β|R≤d+δ

for every 0 ≤ i ≤ s.
2: Compute

s⋂︂
i=0

kerMi = p0 ∩ · · · ∩ pr ∩R≤d+δ = a ∩R≤d+δ. (4.17)

3: For 0 ≤ i ≤ s, let M ′
i be the Gramian matrix of the induced form associated to τi

with respect to some basis of R≤d+δ/(a ∩R≤d+δ). Then (M ′
0, . . . ,M

′
s) is a regular

matrix pencil.
4: Compute the set V′ of eigenspaces of the pencil (M ′

0, . . . ,M
′
s).

5: Set Γ := ∅.
6: for V ′ ∈ V′ do
7: Set V := V ′ + a ∩R≤d+δ ⊆ R≤d+δ.
8: Compute

W :=
⋂︂

α∈Nn,|α|R≤δ

V ∩ xαR≤d

xα
= {q ∈ R≤d | qxα ∈ V for |α|R ≤ δ}.

9: Set W ′ :=W/(a ∩R≤d+δ ∩W ).
10: If W ′ ̸= 0, add the eigenvalue corresponding to V ′ to the set Γ.
11: Set r := #Γ− 1.
12: Return r and Γ = {[λ0j : · · · : λsj ] ∈ Ps

C | 0 ≤ j ≤ r}.
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We define the matrices Hj := σj((x
α)◦xβ)|α|R,|β|R≤d+δ, which are positive-semidefinite

by assumption on ⟨−,−⟩σj
and satisfy Mi =

∑︁r
j=0 λijHj for 0 ≤ i ≤ s. Since the matrix

(λij)ij is of full rank, we have
s⋂︂

i=0

kerMi =
r⋂︂

j=0

kerHj .

It is clear that pj ∩ R≤d+δ ⊆ kerHj for every 0 ≤ j ≤ r as pj ⊆ kerσj . Due to the
assumption that the induced sesquilinear form on R≤d+δ/(pj ∩R≤d+δ) associated to σj
is non-degenerate, Lemma 3.1.17 implies in conjunction with Lemma 3.1.16 that, in fact,
we have pj ∩R≤d+δ = kerHj for all j. This establishes the equality (4.17).

Denote by H ′
j the matrices corresponding to Hj with respect to a basis of the space

R≤d+δ/(a ∩R≤d+δ). As these matrices are positive-semidefinite and since a ∩ R≤d+δ is
the intersection of the kernels of Hj , the matrices (H ′

0, . . . ,H
′
r) form a regular matrix

pencil by Lemma 4.2.13. As the matrix (λij)ij is of rank r + 1, the pencil (M ′
0, . . . ,M

′
s)

is regular as well by Proposition 4.2.20 (1), as claimed in Line 3 of the algorithm.

By hypothesis, we have
⋂︁r

k=0,k ̸=j(pk ∩R≤d) \ pj ̸= ∅. This means, for every 0 ≤ j ≤ r,
the regular pencil (H ′

0, . . . ,H
′
r) has a non-trivial eigenspace for the eigenvalue ej :=

[0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ Pr
k

which is non-zero at position j only. Indeed, if pj ∈⋂︁r
k=0,k ̸=j(pk ∩R≤d) \ pj and p′j denotes its residue class in R≤d+δ/(a ∩R≤d+δ), then

pj ̸≡ 0 (mod a∩R≤d+δ) since pj /∈ pj , so p′j ̸= 0. Furthermore, we have σk((xα)◦pj) = 0
for all k ̸= j and all |α|R ≤ d+ δ, since (xα)◦pj ∈ pk ⊆ kerσk. Thus,

H ′
kp

′
j = 0 ·H ′

jp
′
j = 0,

so, by Proposition 4.2.5, p′j is an eigenvector with eigenvalue ej as claimed. If k ̸= C, we
now switch to the complexification of the matrices H ′

0, . . . ,H
′
r as well as the eigenvectors.

Then, due to Proposition 4.2.20, the eigenvectors of (H ′
0, . . . ,H

′
r) and (M ′

0, . . . ,M
′
s) are

the same. This means that the pencil (M ′
0, . . . ,M

′
s) has at least r+1 different eigenvalues

and eigenspaces, which are computed in Line 4.

It follows from Corollary 4.5.6 that the non-trivial spaces W ′ computed in Lines 6 to 10
are subspaces of exactly the r + 1 eigenspaces referred to above.

Therefore, the subset Γ of the eigenvalues of (M ′
0, . . . ,M

′
s) has cardinality r + 1 and,

by Proposition 4.2.20 (3), consists of the image of e0, . . . , er under the map induced by
(λij)ij , namely the points

[λ0j : · · · : λsj ] ∈ Ps
C, 0 ≤ j ≤ r, (4.18)

as claimed in Line 12.

Remark 4.7.5. Algorithm 4.3 and Algorithm 4.4 described below are primarily based
on the following idea. The elements contained in the non-empty sets

r⋂︂
k=0
k ̸=j

(pk ∩R≤d+δ) \ pj , 0 ≤ j ≤ r,
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are Lagrange-like polynomials in the sense of Remark 4.3.3. They are representatives
of eigenvectors of the pencils (M ′

0, . . . ,M
′
s) and (H ′

0, . . . ,H
′
r) (as defined in the proof of

Theorem 4.7.4). The eigenvalues of (M ′
0, . . . ,M

′
s) corresponding to these eigenvectors

are exactly the values listed in (4.18).

However, in some rare cases, the two pencils can have additional eigenvalues with eigen-
vectors that are not of this form. For example, this can happen when the varieties cor-
responding to p0, . . . , pr satisfy particular symmetry conditions, which can be regarded
as an exceptional situation (cf. Example 4.3.19). Therefore, we seek to find subspaces of
the eigenspaces that have additional structure, in order to guarantee that we are able to
detect those eigenvectors that correspond to the eigenvalues (4.18), only.

The main observation is that, for an element p ∈ ⋂︁r
k=0,k ̸=j(pk ∩R≤d) \ pj , we also have

xαp ∈ ⋂︁r
k=0,k ̸=j pk ∩ R≤d+δ for all |α|R ≤ δ, so p has the property that all its multiples

xαp, |α|R ≤ δ, are representatives of eigenvectors in a fixed eigenspace of the pencils, as
long as xαp /∈ pj . If on the other hand xαp ∈ pj , then xαp ≡ 0 (mod a ∩ R≤d+δ), so it
trivially represents an element of the eigenspace, as well. Now, the results of Section 4.5
show that, for suitable choice of δ, the elements from the sets

r⋂︂
k=0
k ̸=j

(pk ∩R≤d) \ pj , 0 ≤ j ≤ r,

are the only eigenvectors with this additional property, which allows us to filter out those
eigenspaces of (M ′

0, . . . ,M
′
s) that do not correspond to the eigenvalues listed in (4.18). ♢

Remark 4.7.6. By Theorem 3.4.11, the assumptions on non-degenerateness in Algo-
rithm 4.3 are satisfied, in particular, when σ0, . . . , σr are the moment functionals of mea-
sures with Zariski-dense support in the varieties corresponding to the ideals p0, . . . , pr. ♢

Remark 4.7.7. Algorithm 4.3 recovers the weights [λ0j : · · · : λsj ] up to scaling and
permutation in j. From this, we can recover the moment matrices

Hj := σj
(︁
(xα)◦xβ

)︁
|α|R,|β|R≤D

,

for some D ∈ N, corresponding to the individual components, up to scaling, by solving
the linear system

Mi =
r∑︂

j=0

λijHj , 0 ≤ i ≤ s, (4.19)

as the matrix (λij)ij has full column rank. Thus, when pj ∩ R≤D = kerHj we obtain
the generators of pj of degree at most D. As explained in the proof of Theorem 4.7.4,
the requirement pj ∩ R≤D = kerHj is satisfied when the induced sesquilinear form on
R≤D/(pj ∩R≤D) is non-degenerate. Due to the assumption of positive-semidefiniteness,
this holds for all D that are chosen to be smaller than the concrete bound d + δ in the
algorithm.
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An alternative approach for computing pj ∩ R≤δ for δ ∈ N is based on the following
observation. Assume that p ∈ ⋂︁r

k=0,k ̸=j pk ∩ R≤d, so p is an eigenvector as computed
in Line 8. Without loss of generality, we can assume that p /∈ pj . Additionally, let
q ∈ R≤δ such that σj((xα)◦qp) = 0 for all |α|R ≤ d+ δ. As σj induces a non-degenerate
sesquilinear form on R≤d+δ/(pj ∩R≤d+δ), this implies that qp ∈ pj and therefore q ∈ pj .
Conversely, if q ∈ pj∩R≤δ, then also σj((xα)◦qp) = 0 holds, due to (xα)◦qp ∈ pj ⊆ kerσj ,
so the two conditions on q are equivalent.

Note further that Mi(qp) = (λijσj((x
α)◦qp))|α|R≤d+δ, since (xα)◦qp ∈ pk ⊆ kerσk for all

0 ≤ k ≤ r with k ̸= j. As the matrix (λij)ij has full column rank, there exists an index i
for which λij ̸= 0, so it follows from the above characterization that q ∈ pj ∩R≤δ if and
only if Mi(qp) = 0 for all i. In summary, starting from the eigenvectors computed in
Line 8, we may compute the elements q ∈ R≤δ with this property to obtain generators
of pj ∩R≤δ. ♢

In particular special cases, there can be other algorithms that directly recover the com-
ponents pj , 0 ≤ j ≤ r, instead of solving the linear system (4.19). For instance, the
multi-snapshot ESPRIT algorithm deals with the case in which the ideals pj correspond
to single points in dimension n = 1; see [LZGL21]. Despite not solving the linear system
(4.19), their algorithm requires that the weighting matrix (λij)ij has full column rank as
well, so this seems to be a natural assumption.

Remark 4.7.8. The argument in Remark 4.7.7 only involves a single polynomial p ∈⋂︁r
k=0,k ̸=j pk ∩ R≤d. As the property σj((x

α)◦qp) = 0 holds for q ∈ pj ∩ R≤δ and for
arbitrary p ∈ ⋂︁r

k=0,k ̸=j pk ∩ R≤d, we would like to decrease the necessary degree bound
on α by quantifying over all p (possibly to |α|R ≤ δ if pj is generated by pj ∩R≤δ). This
problem seems difficult to approach, so we leave it for further investigation. ♢

If an upper bound on the degrees of generators of the involved ideals is not known, then
Algorithm 4.3 is not applicable. Instead, recovery is possible by Algorithm 4.4, as is
proved in the following. The main difference from the previous algorithm is that the new
one includes a loop which successively increments the degree δ until it is large enough
for reconstruction.

Theorem 4.7.9. Algorithm 4.4 works and requires finitely many moments of τ0, . . . , τs.
If D ∈ N is the smallest number such that the ideals pj are generated by pj ∩R≤D for all
0 ≤ j ≤ r, then the moments at (xα)◦xβ for |α|R, |β|R ≤ d+D are sufficient.

Proof. The proof is similar to that of Theorem 4.7.4. Observe that, if d is sufficiently
large, then

r⋂︂
k=0
k ̸=j

(pk ∩R≤d) \ pj
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Algorithm 4.4 Recovery of weights from several weighted sums (degree of generators
unknown)
Input: Natural numbers s, d ∈ N and C-linear maps τi, 0 ≤ i ≤ s.
Assumptions: The maps are of the form τi =

∑︁r
j=0 λijσj , for some r ≤ s, where

(λij)ij ∈ C(s+1)×(r+1) is a matrix of rank r + 1 and σj : L → k are k-linear maps
for which the associated sesquilinear forms ⟨−,−⟩σj

are positive-semidefinite on R.
Additionally, assume that there exist prime ideals pj ⊆ L with pj ⊆ kerσj for
0 ≤ j ≤ r such that the induced sesquilinear form on R≤d+δ/(pj ∩R≤d+δ) associated
to σj is non-degenerate for δ = 0, 1, 2, . . . and such that pk ⊈ pj for all k ̸= j.
Moreover, assume that d is sufficiently large such that

⋂︁r
k=0,k ̸=j(pk ∩R≤d) \ pj ̸= ∅

for all 0 ≤ j ≤ r. Denote a := p0 ∩ · · · ∩ pr as well as Mi,e :=
(︁
τi((x

α)◦xβ)
)︁
|α|R,|β|R≤e

for every 0 ≤ i ≤ r and e ∈ N.
Output: r as well as [λ0j : · · · : λsj ] for 0 ≤ j ≤ r (up to permutations in j).
1: Set δ := 0.
2: Compute

⋂︁s
i=0 kerMi,d+δ = p0 ∩ · · · ∩ pr ∩R≤d+δ = a ∩R≤d+δ.

3: For 0 ≤ i ≤ s, let M ′
i be the Gramian matrix of the induced form associated to τi

with respect to some basis of R≤d+δ/(a ∩R≤d+δ). Then (M ′
0, . . . ,M

′
s) is a regular

matrix pencil.
4: Compute the set V′ of eigenspaces of the pencil (M ′

0, . . . ,M
′
s). Denote the set of

corresponding eigenvalues by Γ ⊆ Ps
C.

5: if δ = 0 then
6: Let r be the dimension of the projective subspace spanned by Γ.
7: if #Γ > r + 1 and δ ≥ 1 then
8: for V ′ ∈ V′ do
9: Set V := V ′ + a ∩R≤d+δ ⊆ R≤d+δ.

10: Compute

W :=
⋂︂

α∈Nn,|α|R≤δ

V ∩ xαR≤d

xα
= {q ∈ R≤d | qxα ∈ V for |α|R ≤ δ}.

11: Set W ′ :=W/(a ∩R≤d+δ ∩W ).
12: If W ′ = 0, remove the eigenvalue corresponding to V ′ from the set Γ.
13: If Γ consists of more than r + 1 eigenvalues, increment δ by 1 and go to Line 2.
14: Return Γ = {[λ0j : · · · : λsj ] ∈ Ps

C | 0 ≤ j ≤ r}.
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is non-empty for all 0 ≤ j ≤ r by Lemma 1.2.3. In that case, also

r⋂︂
k=0
k ̸=j

(pk ∩R≤d+δ) \ pj

is non-empty for all 0 ≤ j ≤ r and all δ ∈ N.

Following the arguments in the proof of Theorem 4.7.4, we infer that V′, computed in
Line 4, consists of at least r + 1 eigenspaces, for any δ ∈ N. Every eigenvalue of these
eigenspaces is contained in the image of the injective map Pr

C → Ps
C induced by (λij)ij .

As at least the r + 1 distinct elements [λ0j : · · · : λsj ], 0 ≤ j ≤ r, occur as eigenvalues,
this implies that r must be equal to the dimension of the projective subspace spanned by
Γ, in Line 6. Thus, in Line 7, the cardinality of Γ is at least r + 1 and the computation
can finish if the cardinality is exactly r + 1.

Otherwise, by the computation in Lines 7 to 12, we filter out undesirable eigenvalues that
do not satisfy the property described in Remark 4.7.5. The eigenvalues [λ0j : · · · : λsj ],
0 ≤ j ≤ r, are retained by this operation. When δ = 0, this computation is redundant
and can be skipped, so we only carry it out if δ ≥ 1.

If in Line 13 the set of eigenvalues still has cardinality larger than r+1, we start over and
repeat the computations for δ + 1. As each space W computed in Line 10 in iteration
δ + 1 is contained in one of the spaces computed in the previous iteration and since
a∩R≤d+δ ⊆ a∩R≤d+δ+1, it is clear that the cardinality of Γ in Line 13 does not grow when
δ increases. However, if δ is sufficiently large such that all the ideals pj , 0 ≤ j ≤ r, are
generated by elements in pj∩R≤δ, then Γ has cardinality exactly r+1 by Theorem 4.7.4.
Thus, the cardinality of Γ in Line 13 is a weakly monotonically decreasing sequence in δ
that stagnates at the value r + 1, which shows that the algorithm terminates.

Remark 4.7.10. In practice, we expect that Algorithm 4.4 already terminates for small
δ, usually δ = 0 or in some cases δ = 1, so the computation does not commonly need all
the moments up to the upper bound given in Theorem 4.7.9. ♢

Remark 4.7.11. In Algorithm 4.4, we require that, for 0 ≤ j ≤ r, the induced sesquilin-
ear form on R≤d+δ/(pj ∩R≤d+δ) associated to σj is non-degenerate for all δ ∈ N. This
condition only needs to be satisfied for the values of δ that actually arise in the compu-
tation, so, in the worst case, it is sufficient if this criterion is met for all δ ∈ {0, . . . , D},
where D is chosen as in Theorem 4.7.9.

In practice, such a condition may be difficult to ascertain, but sometimes this will be
clear by other information about an application, for example in case of non-negative
measures that are densely supported on irreducible varieties with respect to the Zariski
topology. ♢

Remark 4.7.12. For simplicity of exposition, Algorithms 4.3 and 4.4 assume that the
underlying ideals are prime. More generally, we can extend this to the case of ideals that
are not necessarily prime, but satisfy the assumptions of Theorem 4.5.4, most notably
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property (4) of Lemma 4.5.2. From a geometric point of view, this corresponds to com-
ponents that are unions of irreducible varieties, so each component is a possibly reducible
variety. More precisely, the r+1 components are defined by ideals a0, . . . , ar of the form

aj = pj,1 ∩ · · · ∩ pj,mj ,

where pj,k are prime ideals for 0 ≤ j ≤ r and 1 ≤ k ≤ mj . Additionally, the components
must not overlap, meaning that pj,k ⊉ pj′,k′ whenever j ̸= j′ or k ̸= k′. The components
may be of different dimensions, though.

In a sense, the bound on δ prescribed by condition (4) of Lemma 4.5.2 is larger than
in the case of irreducible components, condition (3): for irreducible components, δ is
bounded by the maximum degree of generating polynomials of each component; in the
case of reducible components, the bound can be almost twice as large. However, in
Algorithm 4.4, the theoretical bound on δ is merely a sufficient criterion that is not
attained in practice, as usually small values like δ = 0 or δ = 1 seem to be enough
already. Therefore, we expect that it does not play a major role that, in the reducible
case, the bound on δ can be almost twice as large as in the irreducible case. ♢

Remark 4.7.13. Another potential improvement of Algorithm 4.4 involves the computa-
tion of eigenspaces and eigenvalues. In each iteration of the algorithm, all the eigenvalues
and eigenspaces of the pencil are recomputed. Depending on the concrete implementa-
tion for this computation, it may be possible to avoid some of this computational effort
by taking into account the eigenvalues from the previous iteration. Only those eigenval-
ues that are contained in the set Γ in Line 13 are relevant for the computation, so, for
efficiency, the following iteration may omit the computation of eigenspaces that do not
correspond to eigenvalues in Γ.

Note that, in general, it seems difficult to determine a suitable degree d, a priori. If d is
chosen too small, one might find fewer than r + 1 eigenspaces, so that reconstruction is
not possible using the algorithm. ♢

4.8 Numerical implementation

This section addresses details that are relevant for an implementation of the algorithms
developed in the preceding sections. This concerns the computation of intersections of
vector spaces as well as the computation of eigenvalues of a pencil. We finish with a
demonstration of the algorithms on some examples, in Section 4.8.3.

4.8.1 Intersection of vector subspaces

A crucial ingredient for Algorithms 4.3 and 4.4 is the computation of intersections of
vector subspaces. Here we briefly discuss how this can be implemented.
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Definition 4.8.1. Assume that V denotes a complex matrix with linearly independent
columns. Then

πV := V (V ∗V )−1V ∗

is the orthogonal projection matrix onto the column space of V ; see [Mey00, Chap-
ter 5.13]. Indeed, its image is contained in the column space of V , it satisfies πV V = V
and πV w = 0 for any vector w in the orthogonal complement of the column space of V .

Lemma 4.8.2. If V1, . . . , Vr are complex matrices with linearly independent columns
each, then a vector v is contained in the intersection of their column spaces if and only if

πV1 · · ·πVrv = v.

Otherwise, it holds that
∥πV1 · · ·πVrv∥ < ∥v∥.

Proof. As πVj is a projection matrix for 1 ≤ j ≤ r, we have
⃦⃦
πVjv

⃦⃦
≤ ∥v∥ for any vector

v and
⃦⃦
πVjv

⃦⃦
< ∥v∥ if and only if v is not contained in the column space of Vj , as a

consequence of the triangular inequality. Therefore, it follows that ∥πV1 · · ·πVrv∥ < ∥v∥
if v is not contained in some of the column spaces. If, on the other hand, v is contained
in the intersection of the column spaces of V1, . . . , Vr, then we have πV1 · · ·πVrv = v.

This allows us to compute the intersection of vector subspaces, numerically.

Lemma 4.8.3. Let V1, . . . , Vr be complex matrices with linearly independent columns.
Then the intersection of their column spaces is spanned by those right singular vectors of
the matrix πV1 · · ·πVr for which the corresponding singular values are equal to 1.

Proof. Assume that πV1 · · ·πVr =
∑︁n

i=1 uiςiv
∗
i is the singular value decomposition with

singular values ςi ≥ 0 and left and right singular vectors ui, vi, 1 ≤ i ≤ n, respectively.

First, observe that all the singular values are contained in the interval [0, 1]. Indeed,
assuming that the largest singular value ς1 is greater than 1, then, for the corresponding
left and right singular vectors u1 and v1, it follows that

∥πV1 · · ·πVrv1∥ = ∥u1ς1v∗1v1∥ = ς1 > 1 = ∥v1∥,

which is a contradiction to Lemma 4.8.2.

In order to prove the statement, we consider an arbitrary linear combination of the right
singular vectors v =

∑︁n
i=1 civi with ci ∈ C, 1 ≤ i ≤ n, for which we obtain

∥πV1 · · ·πVrv∥2 =
⃦⃦⃦⃦
⃦

n∑︂
i=1

uiςiv
∗
i

n∑︂
k=1

ckvk

⃦⃦⃦⃦
⃦
2

=

⃦⃦⃦⃦
⃦

n∑︂
i=1

uiςici

⃦⃦⃦⃦
⃦
2

=

n∑︂
i=1

ς2i |ci|2.

On the other hand, we have

∥v∥2 =
n∑︂

i=1

|ci|2.
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By Lemma 4.8.2, the vector v is contained in the intersection of the column spaces of
V1, . . . , Vr if and only if these two expressions are equal. As all the singular values are
less than or equal to 1, this is the case if and only if, for every 1 ≤ i ≤ n, either ςi = 1
or ci = 0, which proves the claim.

Remark 4.8.4 (Intersection of column spaces). Thus, by computing the singular vectors
of the matrix πV1 · · ·πVr with singular values equal to (or numerically close to) 1, we
obtain an orthonormal basis of the intersection of the column spaces of V1, . . . , Vr; see
also [GV96, Chapter 12.4.4].

In practice, we first choose orthonormal bases for the column spaces of V1, . . . , Vr, for
example by QR-decomposition. IfQ1, . . . , Qr are matrices with orthonormal columns and
that have the same column spaces as those of V1, . . . , Vr, respectively, then we merely
need to compute a singular value decomposition of

πV1 · · ·πVr = Q1Q
∗
1 · · ·QrQ

∗
r , (4.20)

since we have πVj = VjV
†
j = QjQ

∗
j for 1 ≤ j ≤ r (cf. [Mey00, Equation (5.13.4)]).

A small optimization of this procedure consists of computing the singular value decom-
position of the matrix

Q∗
1Q2Q

∗
2 · · ·Qr−1Q

∗
r−1Qr (4.21)

instead of (4.20) (cf. [GV96, Algorithm 12.4.3]). This is made precise in Lemma 4.8.5.
Compared to the approach outlined above, this avoids one matrix multiplication by Q1

and only requires the singular value decomposition of the matrix (4.21), which has smaller
size than (4.20). To this end, it seems economical to choose an order for the matrices
Q1, . . . , Qr under which Q1 and Qr are matrices with few columns, so that only the
singular value decomposition of a small matrix is computed. ♢

Lemma 4.8.5. Let Q1, . . . , Qr be complex matrices with orthonormal columns and let
v1, . . . , vs be those right singular vectors of the matrix (4.21) for which the corresponding
singular values are equal to 1. Then the vectors Qrv1, . . . , Qrvs form an orthonormal
basis of the intersection of the column spaces of Q1, . . . , Qr.

Proof. Assume that
∑︁n

i=1 uiςiv
∗
i is the singular value decomposition of (4.21) with singu-

lar values ςi ≥ 0 and left and right singular vectors ui, vi, 1 ≤ i ≤ n, respectively, where
s ≤ n. Then we claim that

Q1Q
∗
1 · · ·QrQ

∗
r =

n∑︂
i=1

(Q1ui)ςi(Qrvi)
∗

is a singular value decomposition. Indeed, we have

(Qrvi)
∗Qrvj = v∗i vj = δij

for 1 ≤ i, j ≤ n, so the vectors Qrv1, . . . , Qrvn and, similarly, Q1u1, . . . , Q1un are or-
thonormal. Thus, the statement follows from Lemma 4.8.3 and the equality (4.20).
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If we are interested in computing the intersection of the kernels of complex matrices
A1, . . . , Ar (rather than the intersection of their column spaces), one way to accom-
plish this is by first computing an orthonormal basis of kerAj , for each 1 ≤ j ≤ r,
and then computing the intersection

⋂︁r
j=1 kerAj , as outlined above in Remark 4.8.4

and Lemma 4.8.5. A more direct approach for computing the intersection of matrix
kernels employs the following basic fact from linear algebra.

Lemma 4.8.6. Let Z ∈ Cn×m be a matrix with orthonormal columns and let A ∈ Cs×n.
If the columns of a matrix W ∈ Cm×q form an orthonormal basis of ker(AZ), then the
columns of ZW are an orthonormal basis of im(Z) ∩ ker(A).

The proof is essentially the same as that of [GV96, Theorem 12.4.1], which we provide
here for completeness.

Proof. Clearly, (ZW )∗ZW is the identity matrix, so the matrix ZW has orthonor-
mal columns. Moreover, we have im(ZW ) ⊆ im(Z) and AZW = 0, so im(ZW ) ⊆
im(Z) ∩ ker(A). For the converse, let x ∈ im(Z) ∩ ker(A). Then there exists a y ∈ Cm

with Zy = x. Due to 0 = Ax = AZy, this means that y ∈ ker(AZ) and thus there exists
a z ∈ Cq with Wz = y. Therefore, we have x = ZWz ∈ im(ZW ).

Remark 4.8.7 (Intersection of kernels). Lemma 4.8.6 allows us to compute the inter-
section of the kernels of complex matrices A1, . . . , Ar that have the same number of
columns. First, we compute a singular value decomposition to obtain an orthonormal
basis of kerA1. Denote by Z1 the matrix whose column vectors are this orthonormal
basis, so imZ1 = kerA1. Then, repeatedly apply Lemma 4.8.6 to the matrices Zj−1 and
Aj for 2 ≤ j ≤ r in order to construct a matrix Zj whose columns form an orthonor-
mal basis of

⋂︁j
k=1 kerAk. Thus, in particular, the columns of Zr are an orthonormal

basis of
⋂︁r

k=1 kerAk. This approach is a straightforward generalization of [GV96, Algo-
rithm 12.4.2] to possibly more than two matrices. ♢

4.8.2 Computation of eigenvalues of a pencil (∆0, . . . ,∆r)

A fundamental part of the implementation is the computation of generalized eigenvalues
of a regular matrix pencil. For this, we use two approaches, which we outline below.

Remark 4.8.8. A quick approach for computing the eigenvalues of a regular matrix
pencil (∆0, . . . ,∆r) under some genericity assumptions is based on the following. Assume
that ∆ is a linear combination of ∆0, . . . ,∆r which is invertible. For instance, we can
choose a random linear combination if the pencil is regular, since by (4.2) the set of linear
combinations that are singular is a Zariski-closed proper subset and, hence, has measure
zero. Then we compute a QZ-decomposition, the generalized Schur form, of the pencil
(∆0,∆) such that

Q∗(∆0,∆)Z = (T0, T ), (4.22)

where Q,Z are unitary and T0, T are upper triangular matrices. The ratios between the
diagonal entries of T0, T are the eigenvalues of (∆0,∆). We denote these eigenvalues
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by γ1, . . . , γm ∈ P1. (Note that these contain the 0-th coordinates of the eigenvalues of
the full pencil (∆0, . . . ,∆r).) For each of these eigenvalues, we estimate the multiplicity
and then compute the corresponding right eigenspaces. For a fixed eigenvalue, say γ1
with multiplicity t1 ∈ N, this can be accomplished by rearranging (4.22) (for example by
Givens rotations) such that the t1 leading diagonal entries of T0, T correspond exactly to
the multiple eigenvalue γ1. Then the first t1 columns of Z span the right eigenspace of
γ1. Denote this submatrix by Z1.

Generically, there is at most one eigenvalue of (∆0, . . . ,∆r) that has γ1 as 0-th coordinate
with respect to ∆. If there exists such an eigenvalue of (∆0, . . . ,∆r), the corresponding
eigenvector must be contained in the span of Z1, so we can test whether or not such an
eigenvalue exists for the coordinate γ1. If so, we can compute the remaining coordinates
of the eigenvalue by considering the pencils (∆j ,∆) for 1 ≤ j ≤ r.

There are some drawbacks to this approach. If the matrices are not generic, then several
different eigenvalues of (∆0, . . . ,∆r) can have the same 0-th coordinate, which then
cannot be distinguished directly. However, it is possible to refine and iterate this by
considering ∆1,∆2, . . . in order to separate those eigenvalues that are equal in the 0-th
coordinate. For more details on this, see for example [HKP04, Section 2]. Alternatively,
one may replace the pencil by one that is perturbed by a random linear transformation,
which separates all the coordinates of distinct eigenvalues, and obtain the eigenvalues of
the original pencil based on Proposition 4.2.20. This mimics a commonly used technique
for computing the joint eigenvectors of simultaneously diagonalizable matrices; see for
instance [LR12, Section 2] or [Mou18, Corollary 3.1].

Another drawback is a numerical issue. It may happen that two eigenvalues of the
pencil (∆0, . . . ,∆r) have 0-th coordinates that are very close to each other, so that these
eigenvalues are difficult to distinguish by considering just the 0-th coordinate. In this
case, it may be more appropriate to first consider another coordinate – however, one
cannot detect this a priori and, additionally, other eigenvalues might be close in terms
of the other coordinates. This motivates a refined procedure described in Remark 4.8.9
below. ♢

Remark 4.8.9. In order to overcome the numerical problem that results from projecting
onto a single coordinate when computing the eigenvalues of a regular pencil (∆0, . . . ,∆r),
we employ the following variant of the approach described in Remark 4.8.8. A similar
strategy is described in [CPS12], for the case of jointly diagonalizable and, thus, com-
muting matrices.

Instead of computing each eigenvalue of (∆0,∆) with multiplicity (which is difficult in
the presence of numerical noise if two eigenvalues are close), we split the set of eigenvalues
into two well-separated clusters. If this is not possible, we consider a different coordinate
instead. For each cluster, we compute the deflating subspaces containing the correspond-
ing eigenspaces (see e. g. [Dem00, Chapter 2.6.2]), which is numerically more stable than
computing all the individual eigenspaces, since the two clusters are well-separated. In
this case, the deflating subspaces are insensitive to small perturbations of the matrix
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entries, whereas the individual eigenspaces can be very sensitive to small perturbations.

This is accomplished by computing an ordered QZ-decomposition as in (4.22) in such
a way that the leading diagonal entries of the triangular matrices correspond to the
eigenvalues of the cluster, in which case the leading columns of Q,Z span the left and
right deflating subspaces. Denote the submatrices spanning the deflating subspaces by
Q1, Z1. Then this allows to reduce to a smaller problem by considering the pencil

Q∗
1(∆0, . . . ,∆r)Z1. (4.23)

Indeed, if v is an eigenvector of (∆0, . . . ,∆r) with eigenvalue γ such that ∆jv = γj∆v for
0 ≤ j ≤ r and such that γ0 belongs to the cluster, then v is contained in the span of Z1.
Thus, we can write v = Z1w for some vector w and it follows thatQ∗

1∆jZ1w = γjQ
∗
1∆Z1w

for 0 ≤ j ≤ r. Note that Q∗
1∆Z1 is an upper triangular matrix with non-zero entries

on the diagonal, so in particular it is regular. Hence, w is an eigenvector with the same
eigenvalue γ of the smaller matrix pencil (4.23).

Rather than further subdividing the cluster with respect to the 0-th coordinate, we
continue with the next coordinate, as this makes it more likely to find well-separated
clusters of eigenvalues. (It would also be possible to optimize this a bit by choosing the
coordinate in which the best-separated two clusters exist, but this comes at the cost of
computing multiple additional eigenvalues, so we do not pursue this path.) Repeating
this process until no two well-separated clusters of eigenvalues can be found in any
coordinate eventually yields (at most) a single eigenvalue of (∆0, . . . ,∆r) together with
its multiplicity, for each sequence of clusters considered.

To determine whether two eigenvalues γ, γ′ ∈ P1
C of a pencil of two matrices are close to

each other, we use the chordal metric (cf. [Dem00, Chapter 2.6.5]), which is induced by
the identification of P1

C with the two-dimensional sphere. It is defined by the quantity

|γ0γ′1 − γ1γ
′
0|,

if the coordinates of the eigenvalues are normalized such that |γ0|2 + |γ1|2 = 1 =
|γ′0|2 + |γ′1|2. ♢

Remark 4.8.10. To be able to detect the generalized eigenvalues, it is important to
choose a suitable tolerance threshold. This presents us with a numerical dilemma: If the
tolerance is too large, two eigenvalues that are close but different may be detected as a
single eigenvalue; if it is too small, an eigenvalue with multiplicity may be detected as
several distinct ones or it may not be detected as an eigenvalue at all. Therefore, if the
errors in the input data are too large, we cannot expect to correctly identify the desired
eigenvalues, but, if the errors are sufficiently small, then computing the eigenvalues is
possible in practice. ♢
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4.8.3 Numerical examples

Here we demonstrate the recovery algorithms developed in this chapter in terms of con-
crete numerical examples. The computer code for these and several other examples is
available in the repository [Wag21], including examples for Algorithms 4.2 to 4.4. The
implementation uses the software SageMath [Sag21]; many of the numeric computations
are performed by NumPy [Har+20], SciPy [Vir+20] as well as Arb [Joh17]; the eigenvalue
computations are performed by LAPACK [And+99].

Example 4.8.11. We consider an example on the two-dimensional torus that involves
several algebraic components that are generated by polynomials of max-degree 2. For the
measures, we choose the uniform measures µ0, . . . , µr supported on these trigonometric
algebraic varieties on the torus, where r + 1 is the number of components. We compute
to machine precision the moments of several signed measures νi :=

∑︁r
j=0 λijµj , for

0 ≤ i ≤ r, which we use as input to Algorithm 4.4. Here, the weights λij ∈ C are random
complex numbers. To compute the moments, we locally parametrize the curves, which
allows us to compute the desired integrals numerically.

As there are no particular symmetries between the components, we expect that the algo-
rithm succeeds already in the first iteration with δ = 0. Moreover, since the components
are generated by polynomials of degree 2, it is sufficient to choose the parameter d as
d = 2r in order to satisfy the requirement

⋂︁r
k=0,k ̸=j(pk ∩R≤d) \ pj ̸= ∅ for 0 ≤ j ≤ r.

For the tolerance threshold parameter described in Remark 4.8.10, we choose a value of
10−8. Then, up to small numerical errors, the algorithm successfully finds the correct
eigenvalues and recovers the weights [λ0j : · · · : λsj ], 0 ≤ j ≤ r, up to scaling. From there,
we reconstruct the moment matrices associated to µ0, . . . , µr, again up to scaling, by
solving a linear system as described in Remark 4.7.7, which allows us to infer information
about the individual components.

Figure 4.2 illustrates the successful reconstruction in case of 3 components; Figures 4.3
and 4.4 show the case of 6 components. For the purpose of visualization, we display
Qd,ε, defined in Definition 3.5.4, even in the case of data that is not positive-semidefinite
(cf. Remark 3.5.8). For small ε > 0, this produces images that are better localized at the
varieties than what is obtained by using the functions Pd or Pd,1 as approximations, as
noted in Example 3.5.15.

Observe that, with d = 2r, the degree is not large enough for the existence of non-zero
polynomials that vanish on all of the components. In this case, the function Pd,1 is
constant and does not provide any information, at all. This is a major contributing
factor to the blurriness of the subfigures visualizing the input data in terms of Qd,ε,
which is especially pronounced in Figure 4.2. Although some features of the varieties are
recognizable beforehand, the details only become visible after reconstruction, as displayed
in the subfigures in the center and bottom row of Figure 4.2 and in Figure 4.4. Finally,
note that some of the irreducible algebraic components shown in the figures consist of
two disconnected parts on the torus. ♢
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4.8 Numerical implementation

Figure 4.2: The top row displays Qd,ε for d = 4, ε = 0.01 (as defined in Definition 3.5.4),
associated to the measures ν0, ν1, ν2 from Example 4.8.11, supported on three
trigonometric algebraic curves on T2; the center row shows Qd,ε associated
to each of the three reconstructed measures, normalized to equal heights; the
bottom row combines the reconstructions into a single image.
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Recovery of components from eigenvalues

Figure 4.3: The function Qd,ε for d = 10, ε = 0.01, associated to the measures ν0, . . . , ν5
from Example 4.8.11, which are supported on six trigonometric algebraic
curves on T2 and are used as input for Algorithm 4.4; the reconstruction is
shown in Figure 4.4.
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4.8 Numerical implementation

Figure 4.4: The function Qd,ε for d = 10, ε = 0.01, associated to each of the six measures
on T2 that are reconstructed from the ones displayed in Figure 4.3, normalized
to equal heights; the bottom picture combines all the recovered components
into a single image.
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Recovery of components from eigenvalues

As eigenvalues can be computed symbolically for small matrices, it is possible to imple-
ment a symbolic variant of the algorithms. We use that to obtain exact results in the
following small example.

Example 4.8.12. Let us revisit Example 4.3.19 more explicitly. We consider three
circles in the affine plane whose center points lie on a single line through the origin.
As explained in detail in Example 4.3.19, it is then expected that Algorithm 4.1 or
Algorithm 4.3 for δ = 0 are not able to recover the components because there are more
than three eigenvalues. However, if δ is at least 2, reconstruction is guaranteed to work.

We choose the prime ideals pj = ⟨fj⟩, 0 ≤ j ≤ 2, generated by the polynomials

f0 = x21 + x22 − 1,

f1 = (x1 + 3)2 +
(︁
x2 − 3

2

)︁2 − 1,

f2 = (x1 − 2)2 + (x2 + 1)2 − 1.

As f0f1 ∈ p0 ∩ p1, but f0f1 /∈ p2, we infer that we can choose d = 4 to meet the
requirement (pk ∩ pl ∩R≤d) \ pj ̸= ∅ for all k, l, j ∈ {0, 1, 2} with k ̸= l ̸= j ̸= k. We set
s := 3 and choose, for illustration, the weights

(λij)0≤i≤s, 0≤j≤2 =

⎛⎜⎜⎝
1 1 1
2 3 6

−1 3 5
2 1 −2

⎞⎟⎟⎠ , (4.24)

which is a matrix of rank 3. The moments of the uniform measure supported on the
three circles are rational numbers, up to a normalization constant, and can be computed
symbolically as well.

Applying Algorithm 4.3 with δ = 0, we obtain the four eigenvalues[︁
1
2 : 1 : −1

2 : 1
]︁
, [1 : 3 : 3 : 1],

[︁
−1

2 : −3 : −5
2 : 1

]︁
, [3 : 11 : 7 : 1],

indeed more than the number of components. The first three of these eigenvalues are
homogeneous coordinates for the columns of (4.24), while the fourth eigenvalue has co-
ordinates equal to the sum of the columns of (4.24), which we expected in view of
Example 4.3.19. So far, however, we did not know whether this would be the only such
extraneous eigenvalue, in this case. The eigenvectors corresponding to the first three
eigenvalues are the polynomials f1f2, f0f2, f0f1, respectively, of total degree 4, which are
Lagrange-like polynomials in the sense of Remark 4.3.3. The eigenvector for the fourth
eigenvalue is the polynomial

x41 + 8x31x2 + 24x21x
2
2 + 32x1x

3
2 + 16x42 − 5x21 − 20x1x2 − 20x22 +

25
8 ,

which is the polynomial of interest in Proposition 4.3.18.

Next, applying the algorithm for δ = 1 allows to eliminate the fourth eigenvalue. This
means that the sufficient bound on δ from Corollary 4.5.6 (i. e. δ ≥ 2 as p0, p1, p2 are
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4.8 Numerical implementation

generated by polynomials of degree 2) is not sharp in this case. Solving the linear system
as described in Remark 4.7.7, we obtain matrices H̃0, H̃1, H̃2 (which, up to permutation
and scaling, agree with the moment matrices H0, H1, H2 from Example 4.3.19) in terms
of the basis consisting of the 21 monomials of total degree at most d+δ = 5. For instance,
the kernel of H̃0 is spanned by the polynomials

−x41 − 2x21x
2
2 − x42 + 1, −x41 − x21x

2
2 + x21, −x51 − x31x

2
2 + x31,

−x51 − 2x31x
2
2 − x1x

4
2 + x1, −x31x2 − x1x

3
2 + x1x2, −x41x2 − x21x

3
2 + x21x2,

−x41x2 − 2x21x
3
2 − x52 + x2, −x21x22 − x42 + x22, −x31x22 − x1x

4
2 + x1x

2
2,

−x21x32 − x52 + x32.

Using algebraic methods such as the computation of a Gröbner basis, we can determine
that these polynomials generate the ideal p0 = ⟨x21 + x22 − 1⟩. ♢
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Glossary of symbols

N natural numbers {0, 1, 2, . . .}
Z integers
R real numbers
C complex numbers
k field
k
∗ non-zero elements of k, algebraic torus

Pn
k

projective space of dimension n
T complex torus: unit circle in C
T complex torus: periodic unit interval [0, 1)

δij Kronecker delta function of i, j ∈ Z
−! factorial
⌊−⌋ floor function
⌈−⌉ ceiling function
#− cardinality of a set

char(−) characteristic of a field
conv(−) convex hull
diag(−) diagonal matrix
dim(−) dimension of a vector space or variety
im(−) image of a map or matrix
ker(−) kernel of a map or matrix
rk(−) rank of a matrix or tensor
supp(−) support of a function, measure or distribution

⟨−⟩ vector subspace or ideal spanned by some elements
πV projection map to a vector subspace V
V ⊥ orthogonal complement of a vector subspace V
V ∗ algebraic dual space of a vector space V
Homk(V,k) linear maps from a vector space V to k
Homsemi

k
(V,k) semilinear maps from a vector space V to k

In identity matrix of size n× n
−⊤ transpose of a matrix or map
−∗ conjugate transpose of a matrix
− conjugate of a matrix or vector, residue class
−† Moore–Penrose pseudo-inverse of a matrix

|−| absolute value
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Glossary of symbols

|α| total degree of α ∈ Nn

|α|∞ max-degree of α ∈ Zn

|α|R degree with respect to a filtration of R
∥−∥2 2-norm of a vector, spectral norm of a matrix
∥−∥1 L1-norm of a function
∥−∥∞ supremum norm, L∞-norm of a function
∥−∥F Frobenius norm of a matrix
⟨−,−⟩ Euclidean scalar product

f (k) k-th derivative of a function f
Ck(Ω) k-times continuously differentiable functions from Ω to k
C0

c (Ω) compactly-supported continuous functions on Ω
C0
0 (Ω) continuous functions on Ω vanishing at infinity

O(−) big O
Θ(−) big Theta

δξ Dirac measure located at a point ξ ∈ k
n

evξ evaluation homomorphism at a point ξ ∈ k
n

mξ ideal associated to a point ξ ∈ k
n

√− radical of an ideal
I(−) vanishing ideal of a set
V(−) algebraic variety generated by a set of elements
‧‧➡ rational map
νd d-uple Veronese embedding
Sd(−) symmetric tensors of order d
[v0 : · · · : vn] homogeneous/projective coordinates of v ∈ Pn

k

R≤d d-th component of a filtration of R
−◦ involution
⟨−,−⟩σ sesquilinear form associated to a functional σ
ΦU
a,σ, ΦU

a sesquilinear map associated to a functional σ, subspace U and ideal a

ι embedding of Tn into Tn

edξ see Definition 3.5.2
Bd basis of d-th component of a filtration
Fd Fejér kernel of degree d
Pd, Pd,1 see Definition 3.5.4
Qd,0, Qd,ε see Definition 3.5.4, regularized Christoffel function
Qd see Remark 3.5.5, Christoffel function

−̂ Fourier transform/coefficients of a function or measure
−̌ reflection of a function
− ◦ − composition of functions
− ∗ − convolution
−|U restriction to a set U
1U indicator function of a set U
weak∗
−−−→ weak∗ convergence
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