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Abstract

Though vectors are the most commonly used structure to encode the meaning of
words computationally, they fail to represent uncertainty about the underlying mean-
ing. Ambiguous words can be best described by probability distributions over their
various possible meanings. Putting them in context should disambiguate their mean-
ing. Similarly, lexical entailment relationships can be characterized using probability
distributions. A word higher up in the hierarchical order is then modeled as a prob-
ability distribution over the meanings of words it subsumes. The DisCoCat model,
which is inspired by the mathematical structure of quantum theory, proposes density
matrices as word embeddings that are able to capture this structure. In quantum
mechanics, they describe systems whose states are only known with uncertainty. First
experiments have proven their ability to capture word similarity, word ambiguity, and
lexical entailment structures. An adaption of the Word2Vec model, called Word2DM,
can learn such density matrix word embeddings. To enforce that the learned matrices
possess the properties of density matrices, the model learns intermediary matrices and
derives the density matrices from them. This strategy causes the parameter updates
to be sub-optimal. This thesis proposes a hybrid quantum-classical algorithm for
learning density matrix word embeddings to resolve this issue. Exploiting the fact
that density matrices naturally describe quantum systems, no intermediary matrices
are needed, and the shortcomings of the classical Word2DM model can theoretically
be circumvented. The parameters of a variational quantum circuit are optimized
such that the qubits’ state corresponds to the word’s meaning. The state’s density
matrix description is then extracted and used as word embedding. A separate set of
parameters corresponding to its density matrix embedding is learned for each word
in the vocabulary. A first implementation has been executed on a quantum simulator
in the course of this thesis. The utilized objective function decreases the distance
between co-occurring words and increases the distance between words that do not
occur together. The training success can therefore be measured by evaluating the
similarity of the learned word embeddings. The model was trained on text corpora
with small vocabulary sizes. The learned embeddings showed the expected similarities
between the words in the text. Implementation issues on real quantum hardware like
extracting complete state representations and calculating gradients for this model
will also be discussed.
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1 I n t r o du c t i o n

1.1 Two Paradigms in Natural Language Processing

Natural language processing is a subfield of artificial intelligence that enables computers
to understand the content of written language and human speech. Therefore, different
aspects of natural language have to be incorporated, such as the meaning of words and the
grammatical structure of sentences. Two different modeling paradigms can be distinguished:
Distributional and compositional methods.
Distributional methods learn the meaning of words based on the contexts the words appear
in. Usually, word meanings are encoded into vectors and trained to be more similar to
words in whose context they occur and less similar to those they do not occur with [1, 2].
The grammatical structure of sentences can be formalized in compositional approaches
based on the composition of the words’ grammatical types [3].
Neither distributional nor compositional methods can capture both these aspects of language
at once. Furthermore, techniques that combine distributional and compositional methods
to compute the meaning of whole sentences face problems, such as the fact that the meaning
representations of two sentences with different grammatical structures live in different vector
spaces and thus cannot be compared [4].

1.2 A Quantum-Inspired Model of Language

In [5], Coecke et. al. introduced a distributional compositional model of language (DisCoCat
model) that operates in the framework of compact closed monoidal categories. It is able
to reflect both the meaning of words as well as the grammatical structure of sentences and
overcomes the issues of [4]. It depicts the meaning of words in a sentence as vectors and
composes them using the tensor product, while the grammatical structure is encoded into a
linear map. Applying this linear map to the tensor product of word meaning vectors yields
a vector that represents the meaning of the entire sentence. Since this approach is based on
the tensor product, the vector spaces in which it operates become very high-dimensional.
The capacity of classical computing power is therefore exceeded for large text corpora [6].
The model was indeed inspired by quantum protocols such as quantum teleportation [7] in
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the formulation of categorical quantum mechanics [8]. The mathematical similarity allows
translating the computations within the DisCoCat model into quantum programs, called
quantum circuits, and carrying them out on real quantum hardware [9, 10]. The meaning
of words are then quantum states, and quantum operations on these states represent the
grammatical structure. Since quantum systems are naturally composed using the tensor
product, this reduces the number of necessary qubits enormously compared to classical bits
[6].

1.3 Modeling Word Ambiguity and Lexical Entailment

with Density Matrices

The meaning of ambiguous words and hyperonyms that subsume multiple concepts can be
best described by probability distributions over their underlying word senses. Ambiguous
words like ‘bank’ are then modeled as probability distribution over their possible senses:
bank = 1/3 financial institute+ 1/3 sand bank+ 1/3 river bank. Similarly, hyperonyms
like ‘mammal’ are modeled as a probability distribution over the words that they subsume:
mammal = 1/3 dog + 1/3 dolphin+ 1/3 human.
While vectors fail to represent these phenomena, quantum states provide a solution. There
are different types of quantum states, pure and mixed ones. Pure states describe systems
whose state is known with certainty and can be depicted as vectors. States that are only
known with uncertainty are called mixed states and are represented by density matrices.
These reflect a probability distribution over possible pure states a quantum system might
be in. The use of density matrices to model word ambiguity and lexical entailment was
proposed in [11] and [12].
In [13], the widely used Word2Vec model [2] that learns meaning vectors from text corpora
based on their context was adapted to learn density matrices. This model is called the
Word2DM model. To ensure that the learned matrices have the properties of density
matrices, some intermediary matrices are learned from which the actual word embedding
density matrices are derived. Unfortunately, this strategy introduces a lot of additional
matrix multiplications into the objective function and, in some cases, causes the gradients
to become so small that the parameters cannot be updated effectively.

1.4 Quantum Density Matrix Word Embeddings

This thesis proposes a hybrid quantum-classical model to learn density matrix word em-
beddings using parameterized quantum circuits, referred to as variational quantum circuits.
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Since density matrices naturally describe quantum states, the problems of the Word2DM
model are circumvented, and no intermediary matrices are needed. For each word in the
vocabulary, a separate parameter set is learned that prepares the system into a state that
corresponds to the word’s meaning. Extracting the state’s density matrix description pro-
vides the word embedding. For training purposes, the objective function of the Word2DM
model is utilized. It aims to reduce the distance between co-occurring words and increase
the distance between words that do not occur together. Thus, the training success can be
measured by evaluating the similarity of the learned word embeddings.

1.5 Thesis Structure

The structure of this thesis follows the storyline of this introduction. Chapter two introduces
the basic concepts of quantum theory, quantum computation, and variational quantum
circuits.
The third chapter explains the DisCoCat model [4]. First, the category-theoretical back-
ground is outlined, followed by the vector space model of meaning and Lambek’s pregroup
grammar. The unification of these three components into one distributional compositional
model for sentence meanings is then demonstrated. The final section of chapter three
presents the implementation of the DisCoCat model on quantum hardware and the advan-
tage to be gained.
Chapter four first shows how density matrices can be integrated into the DisCoCat model.
Then, different similarity measures for density matrices are introduced and the ability of
density matrices to capture word ambiguity and lexical entailment is demonstrated. Two
composition methods for density matrices are additionally introduced as an alternative to
the tensor product. Finally, the widely used Word2Vec model and its adaption for learning
density matrix word embeddings, the Word2DM model, are explained.
The fifth chapter presents the achievement of this thesis: a hybrid quantum-classical algo-
rithm that learns quantum density matrix word embeddings. Architecture design choices,
the extraction of density matrices from quantum circuits, and the gradient computation
are discussed. Finally, the first implementation using a simulator is demonstrated.
Chapter 6 evaluates the learned density matrix word embeddings and discusses the results.
The last chapter summarizes this thesis and gives an outlook on further work and possible
improvements of this model.





2 Quan t um Compu t a t i o n

This chapter introduces the fundamental concepts of quantum computation following the
standard textbooks ‘Quantum Computation and Quantum Information’ [14], ‘Quantum
Machine Learning’ [15] and the Qiskit online textbook [16]. While it is not intended
to provide a complete introduction to quantum mechanics and quantum computing, but
rather a selected overview and comprehension of the principles relevant to this thesis, a
more extensive description can be found in the mentioned resources above.
Initially, the concepts of quantum bits and quantum states are introduced. Next, the
quantum mechanical rules of measurement, entanglement, and mixed quantum states are
explained using the example of qubit systems. Ultimately, an overview of quantum gates
and quantum circuits provides the necessary foundations to understand the inner workings
of the quantum density matrix word embedding model presented later in this work.

2.1 Qubits

Classical computation is based on the manipulation of bits. They can either take the value
0 or 1. In quantum computation, quantum bits are the analogous concept to bits, also
called qubits. Like the classical bit, a qubit can also assume the two states

∣∣0〉 and
∣∣1〉.

The notation ‘
∣∣...〉’ originates from the Dirac notation in quantum mechanics, otherwise

known as Bra-Ket notation. Vectors are written in these closing brackets, and their duals
are written in opening brackets

〈
...
∣∣. Hence, the notation for dual vectors is also referred

to as ‘Bra’, and that for vectors is called ‘Ket’. The states
∣∣0〉 and ∣∣1〉 are the basis vectors

of a two-dimensional complex Hilbert space and can also be described as follows:

∣∣0〉 =

(
1

0

)
,

∣∣1〉 =

(
0

1

)
(2.1)

The decisive feature of qubits is the circumstance by which they are not limited to just one
or the other of two states but can take on a full spectrum of states between

∣∣0〉 and ∣∣1〉. A
qubit in such a state is considered to be in superposition. Mathematically, a superposition
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state
∣∣ψ〉 is expressed as a linear combination of the basis states.∣∣ψ〉 = α

∣∣0〉+ β
∣∣1〉, with α, β ∈ C (2.2)

Where α and β are the amplitudes of the respective basis states. Since the state of a qubit
is always normalized,

∣∣α∣∣2 +
∣∣β∣∣2 = 1 must be fulfilled. The following state is an example

for a state in superposition:

∣∣ψ〉 =
1√
2

∣∣0〉+
1√
2

∣∣1〉 =

(
1√
2
1√
2

)

2.2 Measurement

While observing a state in one of the basis states is deterministic, the state of a qubit in
superposition is generally not fully observable. This marks another difference to classical
bits. When measuring the state of a qubit, only one of the basis states involved in the
superposition is observable. The respective basis states are measured with the probability
described by their amplitudes.∣∣〈i∣∣ψ〉∣∣2 =

∣∣αi∣∣2, with i ∈ {0, 1} and αi ∈ {α, β} (2.3)

Example 1. Measuring the state

∣∣ψ〉 =
1√
2

∣∣0〉+
1√
2

∣∣1〉
results in the observation of state

∣∣0〉 with the following probability:

∣∣〈0∣∣ψ〉∣∣2 =

∣∣∣∣ 1√
2

〈
0
∣∣0〉+

1√
2

〈
0
∣∣1〉∣∣∣∣2 =

∣∣∣∣ 1√
2

〈
0
∣∣0〉∣∣∣∣2 =

1

2

Analogously the state
∣∣1〉 is also observed with probability 1

2 .

A repeated measurement after a first measurement always yields the same result as the
first one, i.e., the first measurement changes the qubit’s state irreversibly into the measured
one. Thus, if the first measurement returned the state

∣∣0〉 in the above example, the system
would no longer be in the superposition state, but in state

∣∣0〉.
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2.3 The Bloch Sphere

Single-qubit states can also be expressed in a different form that allows illustrating them
as vectors pointing to the surface of a unit sphere. This kind of illustration is the so-called
Bloch Sphere. A quantum state is then described in the following form:∣∣ψ〉 = eiφ1α

∣∣0〉+ eiφ2β
∣∣1〉, with α, β ∈ R

= eiφ1(α
∣∣0〉+ ei(φ2−φ1)β

∣∣1〉) (2.4)

Due to the definition of the absolute square of complex numbers |z|2 = (reiφ)(r∗e−iφ), the
factor eiφ1 vanishes when calculating |

〈
ψ
∣∣ψ〉|2. Thus, the value of φ1 is not observable.

The parameters in equation 2.4 are renamed as γ := φ1 and φ = φ2−φ1. γ is the co-called
global phase of the state and φ is the so-called relative phase. Since the global phase is not
observable, states with different global phases are equivalent.∣∣ψ〉 = eiγ

∣∣ψ〉 (2.5)

Equation 2.4 can therefore be written as follows:∣∣ψ〉 = α
∣∣0〉+ eiφβ

∣∣1〉, with α, β ∈ R (2.6)

Due to the normalisation of the state
√
α2 + β2 = 1 and the trigonometric identity√

sin2x+ cos2x = 1, α and β can also be expressed in terms of one variable θ:

α = cos
θ

2
, β = sin

θ

2

Thus, single-qubit states are fully described by the following equation:

∣∣ψ〉 = eiγ
(
cos

θ

2

∣∣0〉+ eiφsin
θ

2

∣∣1〉), with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π (2.7)

As seen in equation 2.5, eiγ can be neglected and the expression reduces to:

∣∣ψ〉 = cos
θ

2

∣∣0〉+ eiφsin
θ

2

∣∣1〉 (2.8)

This term for quantum states describes all possible vectors pointing to the surface of a
three-dimensional unit sphere. θ describes the angle by which the respective vector and the
Z-axis intersect, while φ describes the angle by which the vector and the X-axis intersect.
Figure 2.1 shows an illustration of a single-qubit state in the Bloch sphere.
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Figure 2.1: Illustration of the Bloch sphere representation of a single-qubit state ψ pointing
to the sphere’s surface. The angle φ describes the angle between the state’s
vector and the X-axis. Consequently, θ describes the angle between the state
and the Z-axis. In addition to their designation, the respective basis states are
also marked on the axes.

Example 2. State
∣∣0〉 is the vector on the positive Z-axis for which both angles in equation

2.8 are zero:∣∣0〉 = cos
0

2

∣∣0〉+ ei·0sin
0

2

∣∣1〉
State

∣∣1〉 is the vector on the negative Z-axis for which θ = π and γ = 0:∣∣1〉 = cos
π

2

∣∣0〉+ ei·0sin
π

2

∣∣1〉

Since the two states
∣∣0〉 and

∣∣1〉 form a basis of the two-dimensional complex Hilbert
space, they are called the Z-basis. The two vectors on the positive and negative X-axis
form the X-basis and are noted as

∣∣+
〉
and

∣∣− 〉. Accordingly, the vectors on the positive
and negative Y-axis form the Y-basis

∣∣ + i
〉
and

∣∣ − i〉. Any state can be expressed in
each of the three bases. For example, the basis states of the X-basis can be written in the
Z-basis as follows:

∣∣+
〉

=
1√
2

(∣∣0〉+
∣∣1〉)

∣∣− 〉 =
1√
2

(∣∣0〉− ∣∣1〉) (2.9)
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Correspondingly, the basis states of the Y-basis can be written in the Z-basis as follows:

∣∣+ i
〉

=
1√
2

(∣∣0〉+ i
∣∣1〉)

∣∣− i〉 =
1√
2

(∣∣0〉− i∣∣1〉) (2.10)

2.4 Multiple-Qubit Systems

Classical bits can be composed in systems of multiple bits. For example, a system of two
bits can be in either one of the four states 00, 01, 10, and 11. Analogously, qubits can
also be composed in systems of multiple qubits and a two-qubit system can be in one of
the four states

∣∣00
〉
,
∣∣01
〉
,
∣∣10
〉
,
∣∣11
〉
. These form the basis of a four-dimensional complex

Hilbert space. Just like single qubits, multiple qubits can also be in a superposition of the
basis states:∣∣ψ〉 = α00

∣∣00
〉

+ α01

∣∣01
〉

+ α10

∣∣10
〉

+ α11

∣∣11
〉

(2.11)

More generally, the state of a n-qubit system is described by the tensor product of the
individual states of the n qubits:∣∣ψ〉 =

∣∣ψ1

〉
⊗ ...⊗

∣∣ψn〉
=
∣∣ψ1...ψn

〉
= α1

∣∣0...0〉+ ...+ α2n
∣∣1...1〉

=
2n∑
i=1

αi
∣∣ei〉

(2.12)

Where each αi represents one amplitude of the basis states
∣∣ei〉. For a n-qubit system 2n

possible combinations of
∣∣0〉 and ∣∣1〉 exist. These form the basis states of a 2n-dimensional

complex Hilbert Space. n-qubit states
∣∣ψ〉 are also normalized, so that

∑2n

i=1

∣∣αi∣∣2 = 1.

Example 3. Consider the following two single-qubit states:

∣∣ψ0

〉
=

1√
2

∣∣0〉+
1√
2

∣∣1〉 =

(
1√
2
1√
2

)
∣∣ψ1

〉
=
∣∣0〉 =

(
1

0

)

The state of a composite system with these two qubits is the tensor product of their
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single-qubit states:∣∣ψc〉 =
∣∣ψ0

〉
⊗
∣∣ψ1

〉

=

(
1√
2
1√
2

)
⊗

(
1

0

)
=


1√
2

0
1√
2

0


=

1√
2

∣∣00
〉

+
1√
2

∣∣10
〉

For n-qubit systems the measurement rule from equation 2.3 extends to:∣∣〈i...j∣∣ψ〉∣∣2 =
∣∣αi...j∣∣2, with i, ..., j ∈ {0, 1} (2.13)

Furthermore, it is possible to measure only a sub-system of a multi-qubit system, which is
illustrated in the following example.

Example 4. Consider measuring only the first qubit of a two-qubit system in the following
state: ∣∣ψ〉 =

1√
4

∣∣00
〉

+
1√
4

∣∣01
〉

+
1√
4

∣∣10
〉

+
1√
4

∣∣11
〉

Assuming this measurement results in the first qubit to be in state
∣∣0〉, the post-measurement

state of the entire system would be:

∣∣ψ〉 =
1√
2

∣∣00
〉

+
1√
2

∣∣01
〉

Whereas the probabilities for the system being in one of the states with the first qubit in
state

∣∣1〉 become zero, and the whole state is re-normalized.

2.5 Entanglement

The multi-qubit states, shown so far, can all be obtained by the tensor product between
the states of the qubits involved as described in equation 2.12. This implies that these
states are separable. However, non-separable states exist, which cannot be represented
by the tensor product. So-called entangled states are, for instance, Bell states which are
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maximally entangled:

∣∣Φ+
〉

=
1√
2

(
∣∣00
〉

+ (
∣∣11
〉
)∣∣Φ−〉 =

1√
2

(
∣∣00
〉
− (
∣∣11
〉
)∣∣Ψ+

〉
=

1√
2

(
∣∣01
〉

+ (
∣∣10
〉
)∣∣Ψ−〉 =

1√
2

(
∣∣01
〉
− (
∣∣10
〉
)

(2.14)

The unique feature of these states is that measuring one qubit also provides information
about the state of the second qubit.

Example 5. Measuring the first qubit of the Bell state Φ+ to be in state
∣∣0〉, would result

in the post-measurement state:∣∣φ+〉
post_measurement =

∣∣00
〉

Thus, after measurement, not only the first qubit’s state would be known as
∣∣0〉, but also

the state of the second one as
∣∣0〉.

Within entangled states, the measurement of a sub-system generally reveals information
about the state of the non-measured part of the system.

2.6 Pure States, Mixed States, and Density Operator

If the state of a quantum system is known precisely, such a state is called a pure state.
States of systems with uncertainty about the system’s state are called mixed states. Mixed
states are described by density operators, otherwise known as density matrices. These
represent probability distributions over different pure states in which a quantum system
might find itself. Density matrices can also describe pure states. In this case, a density
operator is obtained by the outer product of the state vector with itself.

ρpure =
∣∣ψ〉〈ψ∣∣ (2.15)

A mixed state’s density operator is the weighted sum of pure states, in which the system
might be.

ρmixed =
∑
i

pi
∣∣ψi〉〈ψi∣∣ (2.16)
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Where pi describes the probability of the system being in state
∣∣ψi〉. The following example

illustrates how the density operators for pure and mixed states are obtained.

Example 6. A pure one-qubit state in superposition can be written in vector form as
follows:

∣∣ψ〉 = α
∣∣0〉+ β

∣∣1〉 = α

(
1

0

)
+ β

(
0

1

)
=

(
α

β

)

Computing the outer product of the vector with itself results in the following density matrix
representation:

ρpure =
∣∣ψ〉〈ψ∣∣ =

(
α

β

)(
α β

)
=

(
|α|2 αβ∗

α∗β |β|2

)

An example for a mixed state is the following probabilistic mixture of pure state density
operators:

ρmixed = |α|2
∣∣0〉〈0∣∣+ |β|2

∣∣1〉〈1∣∣ =

(
|α|2 0

0 |β|2

)

Usually, all density operators are denoted by ρ without the subscript, regardless of
whether the described state is pure or mixed.
Some important properties of density operators are:

• Hermiticity: ρᵀ = ρ

• Positive semi-definiteness:
〈
φ
∣∣ρ∣∣φ〉 ≥ 0

• Unit trace: tr(ρ) = 1

Quantum states cannot only be entirely pure or entirely mixed, but nuances exist between
both. The less uncertainty about the state of a system there is the purer its state. The
purity of a quantum state is defined as follows [16]:

purity(ρ) = tr(ρ2) (2.17)

The purity is a real number between zero and one. The smaller the purity is, the more
mixed the state. If the purity equals one, the state is entirely pure.
Mixed states can be illustrated in the same fashion as pure states in the Bloch sphere, but
with one difference. As shown in figure 2.1, pure states are located on the surface of the
Bloch sphere. In contrast to that, mixed states are located inside the sphere. The more
mixed the state is, the closer it is to the sphere’s origin. Figure 2.2 shows an example of a
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Figure 2.2: Illustration of a mixed state in the Bloch sphere. Mixed states are located
inside the Bloch sphere and not on the surface. The closer a state is to the
sphere’s origin, the more mixed it is.

mixed state in the Bloch sphere.
Later in this thesis, it will be shown how density operators can be used to model word
ambiguity and lexical entailment.

2.7 Quantum Circuits

In order to run quantum programs on a quantum computer, the instructions to be executed
are organized in so-called quantum circuits. Similar to classical computers, in quantum cir-
cuits, wires connect logical gates, which manipulate the state of qubits. The computational
basis is the Z-basis, and at the beginning, all qubits are in state

∣∣0〉. Quantum circuits are
visualized in circuit diagrams, with single wires symbolizing qubits, double lines denoting
classical bits, and boxes representing gates and other unitary operations on one or more
qubits.
Table 2.1 introduces the components of circuit diagrams with their diagrammatic and oper-
ator notation. Example 7 presents a complete circuit diagram. The first three operators in
table 2.1 are the Pauli gates. These rotate the state of a qubit by π around the respective
axes of the Bloch sphere. Since the computational basis is the Z-basis, the Pauli-X operator
corresponds to a logical NOT gate. The Pauli gates are special cases of the more general
parameterized rotation gates. These are the next three gates in the table. RX(θ), RY (θ)

an RZ(θ) rotate the state around the respective axes by the angle θ. Figure 2.3 shows the
effects of the RX, RY, and RZ gates on a state in the Bloch sphere.
The next gate in figure 2.1 is the so-called Hadamard gate. Starting from one of the
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computational basis states, it generates an equal superposition:

∣∣0〉→ 1√
2

(
∣∣0〉+

∣∣1〉) and
∣∣1〉→ 1√

2
(
∣∣0〉− ∣∣1〉)

Table 2.1: Overview of standard gates. The gate’s name is on the left, the circuit diagram
is located in the middle, and the corresponding operators can be found on the
right.
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Figure 2.3: Illustration of the impact of the RX, RY, and RZ gates on a state in the Bloch
sphere.

After the Hadamard gate, the table shows the CNOT gate, which operates on two qubits.
The one with the smaller filled black dot is the control qubit. If the control qubit is in state∣∣1〉 a NOT gate is performed on the other. This gate induces entanglement on two qubits.
Example 7 illustrates this for one of the Bell states.
The next gate in the table is the SWAP gate, which swaps the states of two qubits.
The last operation in figure 2.1 is the measurement, which is depicted by a box with a
measurement device inside. A measurement is performed in the computational basis and
the result is mapped onto a classical bit. The following example illustrates a full quantum
circuit and its operations.

Example 7. The following circuit prepares the Bell state Φ+ from equation 2.14:

The Hadamard gate transforms the first qubit’s state from
∣∣0〉 → 1√

2
(
∣∣0〉 +

∣∣1〉). The
state of the full system is then

∣∣ψ〉 = 1√
2
(
∣∣0〉+

∣∣1〉)⊗ ∣∣0〉. Applying a CNOT gate to
∣∣ψ〉

results in the the maximally entangled Bell state
∣∣Ψ+

〉
= 1√

2
(
∣∣00
〉

+ (
∣∣11
〉
).

After defining a quantum circuit, it can be compiled and executed on a simulator or a
real quantum computer.
Since all quantum gates are unitaries, all gate operations in a quantum circuit can be
summarized into the application of one unitary U to the initial state

∣∣0..0〉. This unitary
is parameterized U(θ) if the circuit contains parameterized gates. The only non-unitary
operation is the measurement. All measurements can be summarized into an observable
B at the end of the circuit. This generalized circuit representation is depicted in a circuit
diagram as follows:
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2.8 Variational Quantum Circuits

Parameterized quantum circuits can be used as machine learning models for classification
and regression tasks, similar to classical neural networks. These parameterized circuits are
also called variational quantum circuits. The model’s output is given by the expectation
value of an observable B, and the parameter optimization is carried out on classical hardware.

Figure 2.4: Scheme of a variational quantum circuit. The input data is encoded using the
parameters φ, and the parameters θ are the trainable model parameters. The
model’s output is the expectation value f(φ, θ) approximated by running the
circuit many times and averaging the measurement results. The gradients are
approximated numerically using the parameter shift rule in equation 2.19 and
the parameters are updated using classical optimization techniques.

Figure 2.4 depicts the scheme for the training of such a circuit. The unitary describing
the circuit’s gate operations can be split into two parameterized unitaries. The first one is
used to encode the input data. For example, the data can be encoded into the amplitudes
of the quantum state. However, the details of data encoding routines will not be discussed
here, as the quantum density matrix word embedding model proposed in this work does
not require data encoding. For an introduction, please refer to the book [17].
The parameters θ of the second unitary are the trainable model parameters, which are
updated using a classical optimizer. This part of a variational quantum circuit will be
relevant later for learning quantum states corresponding to word meanings.
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2.8.1 Gradients

In order to update the circuit parameters, the gradients of the quantum computations are
needed. Choosing the expectation value of an observable B as output allows to approximate
the gradients of the quantum computations on quantum hardware. However, individual
measurement outcomes cannot be used because they are probabilistic. The expectation
value of B, in contrast, is deterministic and can be estimated by averaging over many
measurement results. Analytically the expectation value is computed as follows:

f(θ) =
〈
0
∣∣U †(θ)BU(θ)

∣∣0〉 (2.18)

Since it varies smoothly with small variations of the circuit parameters, it can be used to
approximate the circuit’s gradients numerically by the parameter-shift rule:

∇θif = f(θi + ε)− f(θi − ε) (2.19)

In practice, to approximate the gradient of a parameter, the circuits’ expectation value is
estimated with a slightly increased parameter value. Additionally, the same is done with a
slightly decreased parameter value. Then the difference between the two is calculated to
approximate the parameter’s gradient. This is repeated for all circuit parameters.
On simulators, the gradients of equation 2.18 can be computed analytically.[18]





3 D i s t r i b u t i o na l Compos i t i o na l Mode l o f

Mean i n g

To computationally process natural language, it is necessary to find mathematical rep-
resentations that consider both the meaning of words and the compositional structure
of grammar. Most methods are only able to represent one of the two adequately. Dis-
tributional methods use vector spaces [1] to model word meanings, but do not take the
grammatical structure of sentences into account. Thus, these cannot be used to represent
sentence meanings as a whole. On the other hand, some models formalize grammar so
that a sentence’s grammatical validity is derived from the composition of the grammatical
types of the component words [5]. But these models do not consider the word meanings
and therefore cannot make any statement about the meaning of an entire sentence.
Clark et. al. [4] proposed a procedure to combine the two approaches by using the tensor
product and connecting meaning vectors with their roles to find a unified model for sentence
meanings. However, the sentence meanings in this model depend on the sentence’s gram-
matical structure, which implies that the meanings of sentences with different grammatical
structures do not live in the same vector space and cannot easily be compared to each
other.
The distributional compositional model of meaning (DisCoCat model, [5]) also uses the
tensor product and pairs meaning vectors with their grammatical types by combining the
vector space model of meaning with Lambek’s pregroup grammars [3], which share the
same mathematical structure of compact closed categories. In contrast to [4] the DisCoCat
model finds sentence meanings that live in the same vector space and are comparable by
using standard distance measures, like the inner product.
Indeed, the mathematical structure of quantum mechanics within its category-theoretic
formulation [8] inspired the development of the DisCoCat model. Therefore, quantum
mechanical counterparts for the model’s components can be found, which also brought up
the idea of encoding word meanings into density matrices. Furthermore, this allows to carry
out the model’s computations on quantum computers, which has established the research
field of quantum natural language processing.
This chapter introduces the distributional compositional model of meaning. First, it provides
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the category-theoretic background. Then the distributional and compositional components
are presented. Subsequently, the unification into one distributional compositional model
for sentence meaning is shown. The end of the chapter demonstrates how the model’s
computations can be executed on quantum computers and what advantage can be expected
from that.

3.1 Category-Theoretic Background

The DisCoCat model takes advantage of the fact that compact closed monoidal categories
can capture both the quantitative meaning space of word vectors and the compositional
structure of grammar to find one unified representation of sentence meaning. Therefore the
underlying category theoretical concepts are introduced in this section. First, recall the
basic definition of a category.

Definition 1. [19] A category C consists of a family of objects ob(C), where

• for each pair of objects A,B ∈ ob(C) there is a set of morphisms C(A,B) from A to
B

• for each triple A,B,C ∈ ob(C) with morphisms f ∈ C(A,B) and g ∈ C(B,C), which
can also be written as f : A→ B and g : B → C, there is a sequential composition:

g ◦ f : A→ C

• the sequential composition is associative:

(h ◦ g) ◦ f = h ◦ (g ◦ f)

• for each object A ∈ ob(C) there is an identity morphism 1A : A→ A, such that:

f ◦ 1A = f = 1B ◦ f

Definition 2. [5] A category is a (strict) monoidal category C if it has the following
additional structure:

• a functor ⊗ : C × C → C called the tensor product, which is associative:

(A⊗B)⊗ C = A⊗ (B ⊗ C)

• a unit object I which satisfies: I ⊗A = A = A⊗ I
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• a parallel composite f ⊗ g : A ⊗ B → C ⊗ D for each ordered pair of morphisms
(f : A→ C, g : B → D)

• bifunctoriality:

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2)

The objects A of a monoidal category can be interpreted as types of systems. Elements
of an object A of the category can also be considered morphisms of the from ψ : I → A.
The following example illustrates how monoidal categories will later be used to represent
word meanings.

Example 8. The objects A will later be assigned Hilbert spaces for word meaning vectors
of different grammatical roles. There will be a Hilbert space N for nouns and another
Hilbert space S for sentences.
The meaning vectors for words or sentences of the respective types will then be elements
of these Hilbert spaces of the form ψN : I → N and ψS : I → S.
The word meaning vectors within a sentence will be composed using the vector tensor
product as a monoidal functor. The sentence ‘John likes Mary’ will be composed as follows:

~John⊗ ~likes⊗ ~Mary

Where the verb ‘likes’ is an element of the composite Hilbert space N r ⊗S ⊗N l indicating
that it needs a noun on the left as a subject and another noun on the right as an object to
produce a grammatically correct sentence. ‘John’ and ‘Mary’ are vectors in N . The whole
sentence is then a tensor in the space N ⊗N r ⊗ S ⊗N l ⊗N .

To map the sentence meaning from this composite space to the meaning space of sentences
S, the specific morphisms of compact closed monoidal categories are used.

Definition 3. [5] A monoidal category is compact closed if for each object A ∈ ob(C)

there are also adjoint objects Ar, Al ∈ ob(C) with the following morphisms:

ηl : I → A⊗Al εl : Al ⊗A→ I ηr : I → Ar ⊗A εr : A⊗Ar → I (3.1)

Which satisfy the following so-called snake equations.

(1A ⊗ εl) ◦ (ηl ⊗ 1A) = 1A (εr ⊗ 1A) ◦ (1A ⊗ ηr) = 1A (3.2)
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(εl ⊗ 1Al) ◦ (1Al ⊗ ηl) = 1Al (1Ar ⊗ εr) ◦ (ηr ⊗ 1Ar) = 1Ar (3.3)

The ε morphisms map objects with their adjoint to the unit object allowing to map
the tensor product of word meaning vectors above to the meaning space S of sentences:
N ⊗N r ⊗ S ⊗N l ⊗N → S. This procedure will be explained in more detail in section 3.4.

3.1.1 Graphical Calculus

A particularly useful feature of monoidal categories is the graphical calculus that is designed,
such that all valid equational statements between morphisms are also derivable in the
graphical calculus. Moreover, it is not only applicable to monoidal categories but also
to monoidal categories with some additional structure, like the abovementioned compact
closed monoidal categories. Thus, it provides a diagrammatic calculus in which the word
meanings can be combined with the grammatical structure. [5]

f f
f

g ￮ ff1A

g
g

A

A

A

A
A A

BB B

B

B

B

C

C

C D

B

A

C

D E

h

1A    1B⊗ f    1B⊗ f     g⊗ (f     g) ￮ h⊗

f
f g

(a) The identity morphism is a straight line. General morphisms are boxes. Sequential
composition is depicted by plugging the outgoing wire of the first morphism into the
second morphism’s incoming wire. Parallel composition is depicted as two lines or boxes
next to each other.

=
A

A
A

(b) Morphisms without in- or output and their sequential
composition

Figure 3.1: Graphical Calculus for monoidal Categories adapted from [5].
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Graphical Calculus for Monoidal Categories

Figure 3.1 shows an overview of the graphical calculus. The diagrams are read from top to
bottom. Subfigure 3.1 a depicts morphisms as boxes and the identity morphism as a straight
line. Sequential (◦) and parallel (⊗) composition are built up from these components by
arranging them one after the other and side by side. The unit object I is the empty diagram
and therefore not depicted.
Subfigure 3.1 b shows the elements of an object A of a category, which are also morphisms
ψ : I → A as triangles without input. Their duals are accordingly morphisms without
output and depicted as flipped triangles. Composing a morphism without input and a
morphism with no output results in a scalar, which in the diagrammatic calculus becomes
a rhombus.
Translating these concepts into vector spaces, the morphisms in figure 3.1 b are vectors,
their duals, and their inner product.

Compact Closed Categories

The morphisms of compact closed categories ηr, ηl, εr εl from equation 3.1 have their own
additional graphical representation. They are depicted as wires in the form of caps and
cups as shown in figure 3.2 a. This indicates that they connect types with their adjoints.
Figure 3.2 a also shows the snake equations 3.2 and 3.3 in the same order. Their graphical
depiction is explained using the first equation as an example:

(1A ⊗ εl) ◦ (ηl ⊗ 1A) = 1A

This equation is depicted by the upper left diagram in figure 3.2 a. (ηl ⊗ 1A) is shown in
the upper part of the diagram by placing a cap and a single wire next to each other. The
sequential composition of (1A ⊗ εl) is shown by adding a single wire and a cup underneath.
As the equation states, this graphical notation can be simplified into a single straight wire
corresponding to the identity map.
The reduction maps in the graphical calculus also bring the so-called swing rule with them,
illustrated in figure 3.2 b. It states that an element of an object of the category composed
with a cup can be swung around and thus equals the element’s dual.
Figure 3.2 c shows another essential property of compact closed categories. Some morphisms
composed in parallel are not separable. This will be relevant later because a transitive verb
needs to interact with both its subject and its object, and thus its compound type cannot
be decomposed into separate parts.
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AA Ar
εr:ηr:

AAr A

AAl A
εl:ηl:

AA Al

A

A A

A

=

Ar

Ar Ar

Ar

=

A

A

A

A

=

Al

Al

Al

Al

=

(a) Morphisms of compact closed categories from equation 3.1 and the snake
equations 3.2 and 3.3 in the same order.

= =

(b) Swing rule

= π
A B

ψ
A

ψ    π⊗
B

(c) Some parallelly composed objects are not
separable

Figure 3.2: Graphical Calculus for Compact Closed Categories, adapted from [5].

Example 9. The sentence ‘John likes Mary’ will be depicted in this graphical calculus as
follows:

Where the triangles are the respective meaning vectors and the cups represent the
grammatical structure to map the tensor product of word meaning vectors to the space S.
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Here the tensor for ‘likes’ is an example of a non-separable morphism.

3.2 Vector Space Model of Meaning

The word meanings within the DisCoCat model are described by vectors using the vector
space model of meaning [1]. Chapter 4 will replace the vectors with density matrices, but
the DisCoCat model is first introduced in its original form for a better understanding.
The meaning vectors are created based on the idea that ‘you shall know a word by the
company it keeps’ by John Rupert Firth. A set of context words builds the basis for the
vector space of word meanings. For example, these can be the 2000 most common words in
the corpus. Each of these is assigned a basis vector. The vectors for the non-context words
are obtained by counting the number of co-occurrences with the context words within a
given window size. These constitute the word vectors’ entries at the positions corresponding
to the respective context words. Mathematically, this is expressed in the following equation
for the word vectors ~w:

~w =

N∑
i=0

ni~ei (3.4)

Where N is the number of context words, ~ei is the basis vector of context word i, and ni
is the number of co-occurrences of context word i with word w. The following example
illustrates this procedure.

Example 10. When the context words ‘bark’, ‘sleep’ ‘ and ‘run’ build the following basis
of a vector space:

−−→
bark =

1

0

0

 ,
−−−→
sleep =

0

1

0

 , −−→run =

0

0

1


The following vectors represent the words ‘dog’ and ‘cat’:

−→
dog =

16

9

11

 ,
−→
cat =

 3

12

10


These vectors indicate that ‘dog’ occurs more often in the context of bark, while cats are

more strongly associated with ‘sleep’, and both are similarly much associated with ‘run’.
Their similarity is calculated by the inner product or the cosine similarity.
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This method finds word meaning representations based on their distribution throughout
the text. Approaches like this are also referred to as distributional methods in natural
language processing.
One drawback is that the counting of co-occurrences cannot be directly extended to calculate
the meaning of longer phrases or sentences because these usually do not occur repeatedly.

3.3 Lambek’s Pregroup Grammar

The other component of the DisCoCat model that is responsible for the grammatical
structure is Lambek’s pregroup grammar. In [3] Lambek introduced the idea to model the
compositional structure of grammar using pregroups. The definition of pregroups is based
on partially ordered monoids.

Definition 4. [3] A partially ordered monoid (P,≤, ·, 1) is a set P with

• a binary relation ≤, which is

– reflexive: a ≤ a

– antisymmetric: if a ≤ b and b ≤ a, then a = b

– transitive: if a ≤ b and b ≤ c, then a ≤ c

• a binary operation ·, which is

– associative: (a · b) · c = a · (b · c)

– has an identity element: 1 · a = a · 1 = a

A pregroup is then defined as follows:

Definition 5. [5] A pregroup (P,≤, ·, 1, (−)l, (−)r) is a partially ordered monoid, where
every element p ∈ P has a left adjoint pl and a right adjoint pr, such that:

pl · p ≤1 ≤ p · pl

p · pr ≤1 ≤ pr · p

The elements p ∈ P are called pregroup types. In the case of grammar, these are some
fixed basic grammatical roles, like nouns or sentences. Additional compound types are
formed from these basic roles by combining them with adjoints. This allows words like
transitive verbs to demand certain grammatical types on their right or left. In order to
inspect a sentence’s grammatical validity, each word is assigned its corresponding type
(basic or compound), and subsequently, pregroup reductions ≤ are applied. Grammatically
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correct sentences reduce to the type s. The following example illustrates this procedure.
From now on, the notation ≤ for reductions is replaced by arrows→, and the dot · between
the types is neglected.

Example 11. [5] Transitive sentences
English transitive sentences are modeled in the framework of pregroups by fixing the
following basic types:

• n: noun
• j : infinitive verb
• s: declarative statement
• σ: glueing type

Each word in the sentence, e.g., ‘John likes Mary’, is assigned the corresponding type. The
subject and the object are nouns with the basic type n. ‘Like’ is a transitive verb, which
needs a subject on the left and an object on the right to produce a grammatically correct
sentence. Thus it is assigned the compound type nrsnl. The adjoints of type n interact
with the subject and the object so that only the type s remains. For the sentence ‘John
likes Mary’, this is depicted as follows:

John
n nnrsnl

likes Mary

The sentence’s pregroup reductions are calculated as follows:

n(nrsnl)n→ 1snln→ 1s1→ s

Since the sentence’s grammatical types reduce to s, the sentence is grammatically correct.
For a negative transitive sentence, the following types are assigned to its components:

John does not
n nσrjjlσ σrjnlnrsjlσ

like Mary

From calculating the sentence’s reductions, it follows that this sentence is grammatically
correct as well:

n(nrsjlσ)(σrjjlσ)(σrjnl)n→ s
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3.4 Category-Theoretic Combination of Grammar and

Meaning

Lambek’s pregroup grammar formalizes a sentence’s grammatical structure. The vector
space model of meaning provides information about the meaning of words within a text
corpus. Thus, the DisCoCat model combines the two to find a sentence’s meaning based on
the meaning of its component words and its grammatical structure. This unification is pos-
sible because both finite-dimensional Hilbert spaces and pregroups share the mathematical
structure of compact closed categories.

3.4.1 Vector Spaces as Compact Closed Categories

The vector spaces spanned by the context words in the vector space model of meaning can
be considered as objects of the category FHilb of finite-dimensional real Hilbert spaces,
and the meaning vectors themselves are elements of these Hilbert spaces. The morphisms
in FHilb are linear maps, and the monoidal functor is the vector tensor product. For a
Hilbert space V with basis {

∣∣ei〉}i the caps and cups have the following form:

ηl = ηr : R→ V ⊗ V

1 7→
∑
i

∣∣ei〉⊗ ∣∣ei〉 (3.5)

εl = εr : V ⊗ V → R∑
ij

cij
∣∣vi〉⊗ ∣∣wj〉 7→∑

ij

cij
〈
vi
∣∣wj〉 (3.6)

These morphisms fulfill the snake equations 3.2 and 3.3. Since the tensor product is
commutative V ⊗W ∼= W ⊗ V , the left and right morphisms are equal, and the left and
right adjoints of an object V in FHilb are both equal to the object itself: V l = V r = V ∗ = V .
[5] Thus, V ∗ is used to denote both. In the context of language, this means that the order of
words is ignored, and the category of finite-dimensional Hilbert spaces alone cannot reflect
a sentence’s grammatical structure. [20] Non-commutative caps and cups are needed from
the category of pregroups to unite the meaning vectors with grammatical structure.

3.4.2 Pregroups as Compact Closed Categories

The structure of compact closed categories is given within the definition of pregroups. A
Pregroup P is a partially ordered monoid. The partial order provides the structure to
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consider a pregroup as a category. The objects of this category are the basic grammatical
types. The morphisms map grammatical types to other grammatical types (A→ B). The
monoidal structure is determined because it is a monoid with a monoid multiplication as a
tensor. This allows composing the basic grammatical types into compound types, as seen
before for transitive verbs nrsnl. The pregroup reductions with the left and right adjoints
provide the maps from which compact closure arises:

ηl = [1 ≤ p · pl] εl = [pl · p ≤ 1]

ηr = [1 ≤ pr · p] εr = [p · pr ≤ 1]
(3.7)

These cups and caps also fulfill the snake equations 3.2 and 3.3 [5]. In contrast to the
category FHilb, the monoidal tensor of the category P is not commutative, and the left
and right adjoints and cups and caps are not the same. Thus this category is able to reflect
the order of words within a sentence and its grammatical structure.

3.4.3 Sentence Meanings

These two categories, of which one contains the structure for word meaning vectors and the
other contains the grammatical structure of a sentence, can be combined to benefit from
the features of both. To do so, a strong monoidal functor Q, which preserves the compact
closed structure, is used to map the pregroup reductions from P onto the category FHilb
[20]:

Q : P→ FHilb

Pregoup types like n and s for nouns and sentences are mapped to finite-dimensional Hilbert
spaces.

Q(n) = N Q(s) = S

Composite types, like that of transitive verbs nrsnl are constructed using the monoidal
functor in FHilb.

Q(nrsnl) = N ⊗ S ⊗N

This is an example where morphisms composed in parallel are not separable (see section
3.1.1 and figure 3.2). Splitting the compound type of a transitive verb into its components
does not make sense since it needs to interact with both a subject and an object. For
example, in the sentence ‘John drinks juice.’, the verb interacts with ‘John’ and ‘juice’ to
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build a sentence.
The morphisms α of pregoups are mapped to linear maps that interpret sentences with the
corresponding grammatical structure. The meaning of a sentence w1 w2 ... wn, where the
word meanings are given as vectors

∣∣wi〉 and their grammatical types are given as pregroup
types pi together with their reduction α : p1, p2, ..pn → s, can be expressed as follows:∣∣w1w2...wn

〉
= Q(α)(

∣∣w1

〉
⊗
∣∣w2

〉
⊗ ...⊗

∣∣wn〉) (3.8)

The following example illustrates what this means in practice.

Example 12. [20] The sentence ‘John likes Mary’ is depicted as follows in the DiCoCat
model:

nrn nnls

The nouns ‘John’ and ‘Mary’ are vectors in the Hilbert space N. The verb ‘likes’ is a rank
three tensor in the Hilbert space N ⊗ S ⊗N and the entire sentence ‘John likes Mary’ is a
tensor in the Hilbert space N ⊗ (N ⊗ S ⊗N)⊗N . The pregroup reduction corresponding
to the grammatical structure is the following linear map:

εN ⊗ 1S ⊗ εN : N ⊗ (N ⊗ S ⊗N)⊗N → S

The tensor for the transitive verb
∣∣likes〉 ∈ N⊗S⊗N can be written as sum of the subjects

ni and objects nk it connects in the sentences sj :∣∣likes〉 =
∑
ijk

cijk
∣∣ni〉⊗ ∣∣sj〉⊗ ∣∣nk〉

The meaning of the sentence is then calculated as follows:∣∣John likes Mary
〉

= εN ⊗ 1S ⊗ εN (
∣∣John〉⊗ ∣∣likes〉⊗ ∣∣Mary

〉
)

=
∑
ijk

cijk
〈
John

∣∣ni〉⊗ ∣∣sj〉⊗ 〈nk∣∣Mary
〉

=
∑
j

∑
ik

cijk
〈
John

∣∣ni〉〈nk∣∣Mary
〉∣∣sj〉

Alternatively, the sentence diagram can be simplified initially using the graphical calculus.
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Applying the swing rule from figure 3.2 c yields the following form for ‘John likes Mary’,
where the triangles of ‘John’ and ‘Mary’ are flipped around. [5]:

The flipped triangles are vectors in the dual space and are written as Bra’s using the
Dirac notation. This diagram corresponds to the following equational meaning of the
sentence:

(
〈
John

∣∣⊗ 1S ⊗
〈
Mary

∣∣) ◦ ∣∣likes〉
The vector of the verb ‘likes’ is sequentially composed with the tensor product of the dual of
‘John’, the identity in the Hilbert space S, and the dual of Mary. Evaluating this expression
for concrete vectors is much easier than the expression above.
Here one great advantage of the graphical calculus can be seen. Using the diagrammatic
transformations often provides simpler expressions to compute.

3.5 Going Quantum

The computations within the DisCoCat model take place in high-dimensional tensor product
spaces and quickly exceed the classically available computational resources. Here quantum
computers prove useful. These are naturally suited to perform computations in high-
dimensional tensor product spaces.
Indeed this is not a coincidence: the DisCoCat model was originally inspired by quantum
protocols like quantum teleportation [7] in the formalism of categorical quantum mechanics
[8]. A complete introduction to categorical quantum mechanics is provided in [21]. The
entire theory of quantum mechanics can also be formulated within the framework of compact
closed monoidal categories.
Since they share the same mathematical structure, quantum mechanical counterparts can
be found for the elements of the DisCoCat model. Comparing the form of word meaning
vectors from equation 3.4, ~w =

∑N
i=0 ni~ei, to the definition of pure quantum states in

superposition from equation 2.12,
∣∣ψ〉 =

∑2n

i=1 αi
∣∣ei〉, shows that the two are structurally

similar. Word meaning vectors can therefore be easily transferred into pure quantum states.
The co-occurrence frequencies ni are then encoded into the state’s amplitudes αi, and the



32 distributional compositional model of meaning

basis vectors for the context words ~ei, are encoded into the basis states of the quantum
system

∣∣ei〉. Thus, word meaning vectors are then quantum states and their duals are the
duals of quantum states, also called quantum effects or measurements. The caps from the
pregroup reductions can be interpreted as Bell states from equation 2.14 and cups as Bell
measurements. The following example illustrates the circuit for the sentence ‘John likes
Mary’.

Figure 3.3: Quantum circuit for the sentence ‘John likes Mary’. A sequence of parame-
terized rotation gates prepares the single-qubit states of the nouns and the
three-qubit state of the transitive verb is prepared by two IQP-layers consisting
of a row of Hadamard gates followed by a chain of controlled Z rotations each.
At the end of the circuit, the Bell measurements corresponding to the cups are
applied.

Example 13. Figure 3.3 shows a possible quantum circuit diagram for the sentence ‘John
likes Mary’. Each word is represented by an n-qubit state in the Hilbert space corresponding
to its grammatical type. For each basic type, a number of qubits is chosen to define its
Hilbert space’s dimension. In this example, nouns and sentences are assigned one qubit,
respectively. The transitive verb is assigned three qubits since it has the compound type
nrsnl in the Hilbert space N ⊗ S ⊗N .
Furthermore, circuit ansaetze have to be chosen for the word types. In this example, a
sequence of three parameterized rotation gates (RX, RZ, RX) is chosen for the single-qubit
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One transitive verb 10k transitive verbs
Classical 8× 109 bits 8× 1013 bits
Quantum 33 qubits 47 qubits

Table 3.1: This table presents the reduction of necessary qubits when using quantum hard-
ware compared to bits on classical hardware.

states, and the so-called IQP-ansatz is selected for the verb’s three-qubit state. An IQP-
layer consists of a row of Hadamard gates on all qubits followed by a chain of controlled
X rotations. In this example, two IQP-layers are used. At the end of the circuit, the Bell
measurements that correspond to the cups are applied. These are constructed similarly to
a Bell state (see example 7), but the Hadamard gate comes after the CNOT gate.
These choices are not fixed, but the basic types can be assigned any other qubit number,
and different ansaetze can be chosen for the word’s state preparations.
Such a circuit can either be used to compose already known word states together for
calculating the sentence’s meaning or as a variational circuit. In this case, a training
dataset of sentences and their respective meanings as labels are needed, and the circuit
parameters are trained to fit the expected sentence meaning. Afterwards, the meaning of
sentences built from the same vocabulary can be calculated from the learned word meanings.

3.5.1 Quantum Advantage

The primary quantum advantage of implementing the DisCoCat model on currently avail-
able quantum computers arises from the efficient encoding of high-dimensional vectors.
Since quantum states are composed by the tensor product, n-qubit systems have 2n degrees
of freedom, and thus N-dimensional vectors can be stored in log2N qubits. The following
example illustrates the saved computational resources for transitive verbs.

Example 14. [6] Transitive verbs live in the vector space N ⊗S ⊗N . Assuming the basis
of the meaning space N consists of the 2000 most common nouns in the text corpus and
the meaning spaces S and N have the same dimension, this results in a 20003 = 8 × 109

dimensional meaning space for transitive verbs. Table 3.1 shows the enormous reduction
of necessary qubits for storing transitive verbs compared to classical bits.

An additional advantage could be gained from importing the word meanings into a
quantum RAM. The word meaning states could be retrieved with complexity linear in the
number of qubits [22]. Unfortunately, this QRAM is still a topic of ongoing research and
thus is more a hypothetical future advantage. For now, the quantum advantage entirely
arises from the tensor product composition of quantum systems.[6]
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The previous chapter showed how word meaning vectors could be encoded into pure quantum
states. However, word meanings can alternatively be expressed as mixed quantum states
(see section 2.6) [20]. Recall that these are described by density matrices and represent
a statistical mixture of pure states when there is uncertainty about the system’s state.
In contrast, superposition is an inherent property of pure quantum states that does not
describe a lack of knowledge about the system but the fact that the system can be in
intermediate states between the basis states.
Using mixed states adds another level that allows representing the meaning of words that
subsume multiple concepts, like the ambiguous word ‘bank’. The basis states represent
contextual features. Different pure states in superposition describe different meanings of
the word in different contexts, and the mixed state’s density matrix reflects a probability
distribution over these different underlying meanings. A word is then described by the
following equation:

ρw =
∑
i

pi
∣∣wi〉〈wi∣∣ with

∣∣wi〉 =
∑
j

αj
∣∣cj〉 (4.1)

Where
∣∣wi〉〈wi∣∣ are the density matrices of the pure states

∣∣wi〉. These are in superposition
of the contextual features

∣∣cj〉 and αj describe the pure states’ amplitudes. pi describes
the probability that the word w means the underlying meaning wi.
This proves helpful in describing word ambiguity and lexical entailment, where words
subsume multiple concepts. Before knowing a word’s context, the word can only be thought
of as a probability distribution over possible meanings. The following examples illustrate
the use of density matrices to represent these phenomena.

Example 15. Word Ambiguity
Some words are ambiguous. When reading the word ‘bank’ without context, it cannot
be known whether the ‘financial institute’, the ‘sandbank’, or the ‘river bank’ is meant.
Therefore ‘bank’ is best modeled as a probability distribution over its possible meanings,
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where pi are the respective probabilities.

ρbank =p0
∣∣river bank〉〈river bank∣∣+ p1

∣∣financial institute〉〈financial institute∣∣
+ p2

∣∣sandbank〉〈sandbank∣∣
The meaning of the words

∣∣river bank〉, ∣∣financial institute〉 and ∣∣sandbank〉 themselves
are pure quantum states in superposition over their contextual features ci, e.g. the state∣∣river bank〉 could be described by the following state:

∣∣river bank〉 =
1

2

∣∣river〉+
1

4

∣∣bikeway〉+
1

4

∣∣promenade〉
This state is then multiplied with its own dual to receive its density matrix representation:

ρriver bank =
∣∣river bank〉〈river bank∣∣

The states for
∣∣financial institute〉 and ∣∣sandbank〉 are obtained analogously.

Example 16. [20] Lexical Entailment
Words can also be in a hierarchical relationship. For example, the word ‘pet’ is the umbrella
term for all animals that people keep at home, like dogs, cats, hamsters, birds, etc. When
reading the word ‘pet’ without any context, it cannot be known which animal is meant.
Thus hyperonyms like ‘pet’ can also be modeled by a probability distribution over the
meanings of the sub-terms (hyponyms).

ρpet = p0
∣∣dog〉〈dog∣∣+ p1

∣∣cat〉〈cat∣∣+ p2
∣∣hamster〉〈hamster∣∣+ p3

∣∣bird〉〈bird∣∣
Like in the previous example, the contributing terms’ meaning, like

∣∣dog〉, are pure quantum
states in superposition, which are then multiplied with their duals to obtain their density
matrix representation.

This chapter first integrates density matrices into the DisCoCat model by considering
them from a category-theoretic point of view. Subsequently, similarity measures for density
matrices are introduced, and their ability to capture lexical entailment and word ambiguity
is shown. Additionally, two alternative composition methods for density matrices are shortly
presented. Finally, the classical neural network architecture Word2DM for learning density
matrix word embeddings, an adaption of the Word2Vec model, is explained.
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4.1 Density Matrices as Compact Closed Category

In order to use density matrices in the DisCoCat model, a compact closed category with
density matrices as elements and morphisms between density matrices is needed. Since
density matrices are also elements of finite-dimensional Hilbert spaces, these form the
objects of the new category. Recall that elements of an object A of a category can also
be written as morphisms of the form ψ : I → A (see figure 3.1 b). Thus, density matrices
can be written as pρq : I → A∗ ⊗ A. In order to find a candidate for the morphisms of
the new category, it is useful to take a closer look at the properties of density matrices in
operator form. A density operator of a pure state

∣∣w〉〈w∣∣ has the form φ ◦φ† : A→ A with
φ† ◦ φ = idI . These are thus positive operators by definition.

Definition 6. [12] Positive Operator
An operator ρ : A→ A is positive if and only if there exists another operator √ρ such that
ρ =
√
ρ† ◦ √ρ. The cap η is the isomorphism between the two representations ρ : A→ A

and pρq : I → A∗ ⊗A. Thus, the graphical depiction of positive operators is:

Here, the boxes of morphisms are replaced by trapeziums to make the conjugates and
adjoints of the morphisms visible.

General density operators, ρ =
∑

i pi
∣∣wi〉〈wi∣∣ are also positive operators of the form

ρ : A → A [23]. Therefore, the morphisms between density matrices A∗ ⊗ A → B∗ ⊗ B
have to preserve positivity. Completely positive maps are well-suited for this task.

Definition 7. [12] Completely positive maps
A morphism f is a positive map if it preserves positivity for any positive operator ρ : ρ ≥
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0⇒ f(ρ) ≥ 0. It is said to be completely positive if (idV ⊗ f)A is positive for any positive
operator A and any space V.

The graphical depiction of completely positive maps is given by the Stinespring Dilation
Theorem.

Theorem 1. [12] Stinespring Dilation Theorem
A morphism f : A∗ ⊗A→ B∗ ⊗B is completely positive if and only if an object C and a
morphism g : C ⊗B exist such that the following graphical equation holds:

At this point, all components for a new category CPM(FHilb) have been introduced.
The objects are once more finite-dimensional Hilbert spaces, but their elements are now
density matrices pρq : I∗⊗I → A∗⊗A. The morphisms in this new category are completely
positive maps A∗ ⊗A→ B∗ ⊗B. [12]
CPM(FHilb) is a monoidal category with a completely positive identity morphism 1A∗⊗A :

A∗⊗A→ A∗⊗A. The sequential composite g◦f of completely positive maps f : A∗⊗A→
B∗ ⊗B and g : B∗ ⊗B → C∗ ⊗ C is also completely positive. The monoidal tensor is the
tensor product of density matrices f ⊗ g and is completely positive as well. [23]
CPM(FHilb) is compact closed. As in FHilb, the adjoints are equal to the objects of
the category: Ar = Al = A∗ = A. The maps from which compact closure arises are defined
as follows:

ηl = (ηrFHilb ⊗ ηlFHilb) ◦ (1A ⊗ σ ⊗ 1A)

ηr = (ηlFHilb ⊗ ηrFHilb) ◦ (1A ⊗ σ ⊗ 1A)

εl = (1A ⊗ σ ⊗ 1A) ◦ (εrFHilb ⊗ εlFHilb)

εr = (1A ⊗ σ ⊗ 1A) ◦ (εlFHilb ⊗ εrFHilb)

(4.2)

where σ is the swap map σ(v ⊗ w) = (w ⊗ v).
The concrete maps have the following form:

ηl = ηr : R→ (A⊗A)⊗ (A⊗A) :: 1 7→
∑
i

∣∣ei〉⊗ ∣∣ei〉⊗∑
j

∣∣ej〉⊗ ∣∣ej〉
εl = εr : (A⊗A)⊗ (A⊗A)→ R ::

∑
ijkl

cijkl
∣∣vi〉⊗ ∣∣wj〉⊗ ∣∣uk〉⊗ ∣∣pl〉 7→∑

ijkl

cijkl
〈
vi
∣∣uk〉〈wj∣∣pl〉
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(4.3)

In the graphical notation of FHilb, the components of CPM(FHilb) are depicted by
doubling the objects and wires as shown in the right column in table 4.1. The notation
is simplified by replacing the doubled wires with single thick wires, as shown in the left
column. Objects A∗⊗A are then also simply written as A in CPM(FHilb) and morphisms
f : A∗ ⊗A→ B∗ ⊗B as f : A→ B.

Table 4.1: Overview of the graphical notations of the components of CPM(FHilb) with
their pendant in FHilb. Doubled wires in FHilb are simplified to single thick
wires in CPM(FHilb).

This depiction can be justified by comparing the form of the morphisms in CPM(FHilb)
with their form in FHilb. The identity map in CPM(FHilb) 1A : A→ A is a single thick
wire corresponding to two wires representing its form 1A : A∗ ⊗A→ A∗ ⊗A in FHilb.
The representation of the cups can be clarified by bending the wires as follows:

This picture corresponds to sequentially composing the tensor product of two caps with
the tensor product of an identity, a swap map, and another identity, which is exactly how
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the η morphisms are defined in equation 4.2.
Density matrices I → A in CPM(FHilb) correspond to morphisms I∗ ⊗ I → A∗ ⊗ A in
FHilb. Thus, these are depicted by doubling the triangles, where the trapeziums again
indicate the adjoints. Pure states correspond to separable states in FHilb and mixed
states correspond to non-separable states in FHilb. The non-separable states have the
depicted internal wiring. With these thick wires, all rules of the original graphical calculus
are applicable. [12]

4.2 Meaning of Sentences in CPM(FHilb)

The previous section established that the category CPM(FHilb) is also compact closed
and shares the same diagrammatic calculus as FHilb, but with thick wires. Therefore,
the word meanings in CPM(FHilb) can be combined with the grammatical structure
from pregroups for calculating a sentence’s meaning in the DisCoCat model. This is done
following section 3.4.3 by using a strong monoidal functor S : P → CPM(FHilb). The
pregroup types are now mapped to spaces in CPM(FHilb), i.e. the mapping of the
noun type n is S(n) = N , where N ∈ CPM(FHilb). The morphisms α of pregroups
are mapped to completely positive maps in CPM(FHilb).The meaning of a sentence
w1, w2, ..., wn, where the word meanings are given as density matrices ŵi : I → S(pi),
and their grammatical types are given as pregroup types pi together with their reduction
α : p1, p2, ..., pn → s, can be written as:

̂w1w2...wn = S(r)(ŵq ⊗ ...⊗ ŵn) (4.4)

The hats indicate that the meaning of the words wi are now represented by density matrices
[20]. The following example illustrates this procedure in the category CPM(FHilb).

Example 17. [20] The noun space N is a real Hilbert space with the basis vectors {
∣∣ni〉}i.

The nouns below are then vectors in that space, which can be a linear combination of the
basis states. Or, using quantum terminology, they are pure states in a superposition of the
basis states.
Suppose a text corpus contains three sisters Anny, Betty and Clara. They all enjoy hot
drinks. Occasionally, they like drinking a cup of tea. But what they appreciate most is
a good cup of coffee. ‘Anny, ‘Betty’. ‘Clara’, ‘tea’ and ‘coffee’ are pure states in Hilbert
space N:∣∣Annie〉 =

∑
i

ai
∣∣ni〉, ∣∣Betty〉 =

∑
i

bi
∣∣ni〉, ∣∣Clara〉 =

∑
i

ci
∣∣ni〉
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∣∣tea〉 =
∑
i

di
∣∣ni〉, ∣∣coffee〉 =

∑
i

ei
∣∣ni〉

The transitive verbs ‘like’ and ‘appreciate’ are given by the following tensors:∣∣like〉 =
∑
pqr

Cpqr
∣∣np〉⊗ ∣∣sq〉⊗ ∣∣nr〉∣∣appreciate〉 =

∑
pqr

Dpqr

∣∣np〉⊗ ∣∣sq〉⊗ ∣∣nr〉
The following words are then a probabilistic mixture of the word vectors introduced so far.
Or, using quantum terminology again, they are mixed states represented by the following
density matrices:

̂The sisters =
1

3
(
∣∣Annie〉〈Annie∣∣+

∣∣Betty〉〈Betty∣∣+
∣∣Clara〉〈Clara∣∣)

̂hot drinks =
1

2
(
∣∣tea〉〈tea∣∣+

∣∣coffee〉〈coffee∣∣)
ênjoy =

1

2
(
∣∣like〉〈like∣∣+

∣∣appreciate〉〈appreciate∣∣)
For simplicity, the adjective-noun phrase ‘hot drinks’ is considered as one word of type n
in this example. The meaning of the sentence ‘The sisters enjoy hot drinks’ can then be
calculated as follows:

̂The sisters enjoy hot drinks = (εN ⊗ 1S ⊗ εN )( ̂The sisters⊗ ênjoy ⊗ ̂hot drinks)

Its graphical depiction in CPM(FHilb) looks exactly the same as before, but with thick
wires now:

Using the doubled notation in FHilb this corresponds to the following graphical depic-
tion:
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The mixed states are depicted by doubled morphisms connected by a cap, and the doubled
cups are sequentially composed with the word meaning states (see table 4.1).

4.3 Word Similarity with Density Matrices

One key question in natural language processing is how similar two words, phrases, or
sentences are. In vector space models, the similarity of two meaning vectors is measured
by their inner product or cosine similarity. This section presents candidates for measuring
the similarity of two word meaning density matrices.

4.3.1 Trace Inner Product

The trace inner product is the counterpart to the vector inner product for matrices. Thus,
it seems to be an intuitive choice for a similarity measure. It is defined as follows:

〈
A,B

〉
= tr(A†B) (4.5)

Unfortunately, the trace inner product of a matrix with itself does not always equal one.
However, for a useful similarity measure, it should be one to indicate that the similarity of
a matrix with itself is maximal.
For example the trace inner product of the following completely mixed state with itself
does not equal one:

ρ =
1

2
(
∣∣0〉〈0∣∣+

∣∣1〉〈1∣∣)
tr(ρ†ρ) = tr(ρ2) =

1

2
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Sometimes the trace inner product of a matrix with itself is even smaller than the trace
inner product with another matrix, e.g. for the following states:

ρ =
1

4

∣∣0〉〈0∣∣+
3

4

∣∣1〉〈1∣∣
σ =

∣∣1〉〈1∣∣
The trace inner product of ρ with itself is smaller than the trace inner product of ρ and σ:

tr(ρσ) =
3

4

tr(ρ2) =
5

8

This indicates that ρ is more similar to σ than itself. Consequently, even though it appears
to be a natural choice, it is not a suitable measure for the similarity of two matrices. [24]

4.3.2 Trace Distance

In quantum mechanics, the trace distance is a commonly used distance measure for density
matrices. It is defined as follows:

D(ρ, σ) =
1

2
tr|ρ− σ| (4.6)

Where |ρ| =
√
ρ†ρ. The trace distance of a density matrix with itself equals zero, and the

trace distance between two density matrices can have a maximum value of one:
0 ≤ D(ρ, σ) ≤ 1. Therefore, the following similarity measure can be defined:

S(ρ, σ) = 1−D(ρ, σ) (4.7)

[24]

4.3.3 Fidelity

The fidelity is another widely used distance measure for density matrices in quantum
mechanics. It is defined as follows:

F (ρ, σ) = tr

√
ρ1/2σρ1/2 (4.8)

The following properties make it a highly suitable measure of similarity:

• Symmetry: F (ρ, σ) = F (σ, ρ)
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• 0 ≤ F (ρ, σ) ≤ 1

• F (ρ, σ) = 1⇔ ρ = σ

• The fidelity of two pure states
∣∣ψ〉〈ψ∣∣ and ∣∣φ〉〈φ∣∣ is equal to the absolute value of

the inner product of their vector representations:

F (
∣∣ψ〉〈ψ∣∣, ∣∣φ〉〈φ∣∣) =

∣∣〈ψ∣∣φ〉∣∣
[24]
Examples for computing the similarity of density matrices will be provided in the lexical
entailment examples below.

4.4 Lexical Entailment with Density Matrices

The natural way in which density matrices embody probability distributions can be used
to model lexical entailment. The distributional hypothesis of hyponymy summarizes the
phenomenon of lexical entailment very accurately.

Definition 8. [12] Distributional Hypothesis for Hyponymy
‘The meaning of a word w subsumes the meaning of a word v if and only if it is appropriate
to use w in all the contexts v is used.’

This hypothesis and the meaning of subsumption become more evident when considering
a text about dogs in which the word ‘dog’ is blanked out. For each gap in the text, the
question is whether the word ‘dog’ or ‘animal’ fits in. Since ‘animal’ subsumes the meaning
of the word ‘dog’ and can be used in all cases where ‘dog’ could be used, it is impossible
to tell with certainty which of the two words belongs in the gaps.
Next, consider a text about an animal, blank out that word as well, and ask the same
question about whether the word ‘dog’ or ‘animal’ fits in the gaps. One sentence in the text
says, ‘The ___ has black and white stripes and lives in the savannah.’. In this context, it
quickly becomes clear that the word ‘animal’ and not ‘dog’ should certainly be used in the
blank. [24]
Whether a word v is subsumed by another word w, is given by the ability of the word w to
represent the meaning of v. Vice versa, the question might turn to how distinguishable the
words v and w are given some context. In the case of probability distributions or density
matrices, distinguishability can be quantified by the relative entropy.
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Definition 9. [12] The (quantum) relative entropy of two density matrices ρ and σ is
defined as follows:

N(ρ||σ) := tr(ρ logρ)− tr(ρ logσ) (4.9)

where 0 · log(0) = 0 and x · log(0) =∞ with x 6= 0, by convention

A measure for the representativeness between two density matrices can be grounded on
the relative entropy.

Definition 10. [12] The representativeness describes the degree to which ρ can be repre-
sented by σ. It is defined as follows:

R(ρ, σ) := 1/(1 +N(ρ||σ)) (4.10)

Where N(ρ||σ) is the quantum relative entropy.

The following properties of quantum relative entropy and representativeness support this
choice for a measure of representativeness:

• N(ρ||σ) > 0

• 0 ≤ R(ρ, σ) ≤ 1

• R(ρ, σ) = 1⇔ ρ = σ

• N(ρ||σ) =∞ if supp(ρ) ∩ ker(σ) 6= 0, and finite otherwise

• R(ρ, σ) = 0⇔ supp(ρ) ∩ ker(σ) 6= 0

Where supp is the support of a matrix supp(ρ) = {~v ∈ V |ρ~v 6= 0} and ker is the kernel of
a matrix ker(ρ) = {~v ∈ V |ρ~v = 0}.
In the preceding example, the sentence ‘___has black and white stripes and lives in the sa-
vannah’ renders the word ‘animal’ perfectly distinguishable from the word ‘dog’. Thus, ‘dog’
is not able to represent ‘animal’ and R(ânimal, d̂og) = 0 and supp(ânimal)∩ker(d̂og) 6= 0.
Vice versa ‘animal’ is a good representative for ‘dog’, thus R(d̂og, ânimal) > 0 and
R(ânimal, d̂og) ≯ 0 must be fulfilled. ‘Animal’ is accordingly a hyperonym of ‘dog’ and
‘dog’ is a hyponym of animal. Generally, this can be formalized as follows:

ρ ≺ σ if R(ρ, σ) > 0

ρ ∼ σ if ρ ≺ σ and σ ≺ ρ
(4.11)
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ρ is a hyponym of σ if ρ ≺ σ and ρ � σ. The value of R(ρ, σ) quantifies the degree to
which a word is a hyponym of another one. The bigger the value of R(ρ, σ), the better ρ is
represented by σ.
This quantification of hyponymy between words is also applicable to entire sentences. For
example, replacing all words in a transitive sentence with their hyponyms results in the
modified sentence being a hyponym of the original one.

Theorem 2. [12] If ρ, σ, δ, γ ∈ N∗ ⊗N are nouns, α, β ∈ N∗ ⊗N ⊗ S∗ ⊗ ⊗S ⊗N∗ ⊗N
are transitive verbs and ρ, δ and α are hyponyms of σ, γ and β according to equation 4.11,
then:

S(r)(ρ⊗ α⊗ δ) ≺ S(r)(σ ⊗ β ⊗ γ) (4.12)

Where S(r) is the strong monoidal functor from equation 4.4.

For proof of this theorem, see [12].
Two examples for lexical entailment between nouns and sentences are provided in the
following.

Example 18. [12] Entailment and Similarity between Nouns
Let the words ‘pub, ‘pitcher’ and ‘tonic’ span the basis of a noun space N. The words
‘lager’ and ‘ale’ can be expressed in that basis as pure states as follows:∣∣lager〉 = 6 ·

∣∣pub〉+ 5 ·
∣∣pitcher〉+ 0 ·

∣∣tonic〉∣∣ale〉 = 7 ·
∣∣pub〉+ 3 ·

∣∣pitcher〉+ 0 ·
∣∣tonic〉

Their density matrix representation is then as follows:

l̂ager =
∣∣lager〉〈lager∣∣

âle =
∣∣ale〉〈ale∣∣

To highlight the different levels of words represented as basis vectors, pure states, and
mixed states, these are referred to as basis words, atomic words, and non-atomic words.
‘pub’, ‘pitcher’ and ‘tonic’ are then the basis words and ‘lager’ and ‘ale’ are atomic words.
According to the taxonomy, beer = lager + ale, the word ‘beer’ is a non-atomic word that
subsumes the two words ‘lager’ and ‘ale’ and can be embodied by a mixed state.
The density matrix of non-atomic words is obtained by counting co-occurrences with tuples
of the basis words ‘pub’, ‘pitcher’, and ‘lager’ in a window, in which the other basis words
do not occur. The co-occurrences Cij are counted for all tuples of basis words

∣∣bi〉〈bj∣∣.



4.4 lexical entailment with density matrices 47

Density matrices of non-atomic words are thus computed as follows:

ρnon−atomic =
∑
ij

Cij
∣∣bi〉〈bj∣∣

If ‘beer’ is observed 6 times with ‘pub’ only, seven times with both ‘pub’ and ‘pitcher’, and
never with ‘tonic’, its density matrix has the following form:

b̂eer = 6 ·
∣∣pub〉〈pub∣∣+ 7 · (

∣∣pub〉+
∣∣pitcher〉)(〈pub∣∣+

〈
pitcher

∣∣)
= 13 ·

∣∣pub〉〈pub∣∣+ 7 ·
∣∣pub〉〈pitcher∣∣+ 7 ·

∣∣pitcher〉〈pub∣∣+ 7 ·
∣∣pitcher〉〈pitcher∣∣

Then all density matrices are normalized by ρ
tr(ρ) .

The similarity between ‘beer’ and ‘lager’ can be computed using the fidelity from equation
4.8:

F (l̂ager, b̂eer) = tr(

√
l̂ager

1
2 · b̂eer · l̂ager

1
2 ) = 0.93

As was to be expected, the two words are very similar. The representativeness between
‘lager’ and ‘beer’ is:

R(l̂ager, b̂eer) =
1

1 + tr(l̂ager · log(l̂ager)− l̂ager · log(b̂eer))
= 0.82

and the representativeness between ‘beer’ and ‘lager’ is

R(b̂eer, l̂ager) = 0

Thus l̂ager ≺ b̂eer and l̂ager � b̂eer and ‘lager’ is a hyponym of ‘beer’.

Example 19. [12] Entailment between sentences
Now, the noun space N of the previous example is extended by the basis words ‘patient’,
‘mental’ and ‘surgery’. The words ‘psychiatrist’ and ‘doctor’ can be described by the
following density matrices:

̂psychiatrist = 2 ·
∣∣patient〉〈patient∣∣+ 5 ·

∣∣mental〉〈mental∣∣
d̂octor = 5 ·

∣∣patient〉〈patient∣∣+ 2 ·
∣∣mental〉〈mental∣∣+ 3 ·

∣∣surgery〉〈surgery∣∣
The fidelity between ‘psychiatrist’ and ‘doctor’ is:

F ( ̂psychiatrist, d̂octor) = 0.76
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This indicates the two words are very similar. Their representativeness is:

R( ̂psychiatrist, d̂octor) = 0.49 R(d̂octor, ̂psychiatrist) = 0

Thus, ̂psychiatrist ≺ d̂octor and ̂psychiatrist � d̂octor and ‘psychiatrist’ is a hyponym of
‘doctor’.
Since transitive verbs have the type nrsnl, they are tensors in the meaning space N⊗S⊗N .
Thus, they are higher-order tensors than nouns, which are elements of the meaning space
N . To obtain a transitive verb’s tensor, a matrix is constructed such that each entry (i, j)

reflects the verb’s co-occurrence frequency with a subject related to the ith basis word and
an object related to the jth basis word. Afterwards, the outer product of this matrix with
itself raises it to the required higher-order tensor in the space of density matrices. In this
example, the relevant part of this matrix for the verb ‘drink’ could look like this:

∣∣drink〉 pub pitcher tonic

patient 4 5 3
mental 6 3 2
surgery 1 2 1

The outer product of which provides the final meaning representation of the verb:

d̂rink =
∣∣drink〉〈drink∣∣

With these components the sentences ‘Psychiatrist is drinking lager’ and ‘Doctor is drinking
beer’ can be examined for their hyponymy relationship. Diagrammatically the sentence
‘Psychiatrist is drinking lager’ is depicted as follows:

Using the swing rule from 3.2 b, the subject’s and object’s triangles can be swung around,
resulting in the following diagram:
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The diagram of ‘Doctor is drinking beer’ is visualized analogously to the graphical
representation above. Therefore, these sentences’ density matrices are calculated as follows:

̂Psychiatrist is drinking lager = d̂rink ◦ ( ̂psychiatrist⊗ l̂ager)
̂Doctor is drinking beer = d̂rink ◦ (d̂octor ⊗ b̂eer)

The fidelity and represenativeness for the two sentences are as follows:

F ( ̂Psychiatrist is drinking beer, ̂Doctor is drinking beer) = 0.81

R( ̂Psychiatrist is drinking beer, ̂Doctor is drinking beer) = 0.53

R( ̂Doctor is drinking beer, ̂Psychiatrist is drinking beer) = 0

The high fidelity indicates that the two sentences are very similar and from the representa-
tiveness follows:

̂Psychiatrist is drinking lager ≺ ̂Doctor is drinking beer

̂Psychiatrist is drinking lager � ̂Doctor is drinking beer

Thus, the sentence ‘Psychiatrist is drinking lager’ is a hyponym of the sentence ‘Doctor
is drinking beer’. This emphasizes the statement from theorem 2 that replacing words
(‘doctor’, ‘beer’) in a sentence by their hyponyms (‘psychiatrist’, ‘lager’) results in the new
sentence being a hyponym of the original one.

4.5 Density Matrices for Word Ambiguity

Word ambiguity is another phenomenon where the ability of density matrices to capture
probability distributions is useful. The information content of a probability distribution
is measured by its entropy. With word meaning density matrices, the information con-
tent translates directly into a measure of word ambiguity. In quantum mechanics, the



50 word meaning with density matrices

information content of a density matrix is measured by the von Neumann entropy. [11]

Definition 11. [11] Von Neumann Entropy
For a density matrix ρ with eigendecomposition ρ =

∑
i λi
∣∣ei〉〈ei∣∣, where

∣∣ei〉 are the
eigenvectors and λi are the eigenvalues of ρ, the von Neumann Entropy is defined as
follows:

S(ρ) = −tr(ρ ln ρ) = −
∑
i

λi ln λi (4.13)

A word is highly ambiguous if its density matrix has a large von Neumann entropy.
As a word’s context can provide more information about its meaning, the word can be
disambiguated by composing it into phrases. The von Neumann entropy of the phrase or
sentence is then smaller than that of the individual word. For the quantum states described
by these density matrices, this means that the phrase’s state is less mixed or purer than that
of the single word. Therefore, word meaning disambiguation corresponds to a purification
of the word’s quantum state.

Example 20. Let the noun space N be spanned by the two basis words ‘metal’ and ‘horn’.
The word ‘nail’ can either describe a piece of metal for hammering into a wall or a structure
made of horn growing at a finger’s tip. Before composition with another word, the word
‘nail’ is described by the following density matrix:

n̂ail = 0.5
∣∣metal〉〈metal∣∣+ 0.5

∣∣horn〉〈horn∣∣
The von Neumann entropy of which is as follows:

S(n̂ail) = 0.69

After composition with the word ‘rusty’, it is clear that the piece of metal is meant and
not the part of a finger. Thus, the density matrix nears the pure state

∣∣metal〉〈metal∣∣:
̂rusty nail = 0.9

∣∣metal〉〈metal∣∣+ 0.1
∣∣horn〉〈horn∣∣

The von Neumann entropy of this phrase is then:

S( ̂rusty nail) = 0.33

It becomes evident that the phrase ‘rusty nail’ is significantly less ambiguous than the word
‘nail’.
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In [11] it has been shown that the von Neumann entropy of individual ambiguous words
is larger than after composition with other words, which provide context that should disam-
biguate the word’s meaning. In general, the states after composition and disambiguation
are not entirely pure but less mixed.

4.6 Meaning Updating of Density Matrices

In order to calculate sentence meanings, investigate entailment relationships between
phrases, or study the disambiguation abilities of context words, words need to be com-
posed into phrases and sentences. So far, this was done by calculating the tensor product
of the word meaning vectors or density matrices and applying the reduction maps that
originate from the sentence’s grammatical structure. However, other interesting composi-
tion methods exist for density matrices. These can be introduced using the diagrammatic
calculus. So far, diagrams of transitive sentences looked like this:

However, other possible representations for different types of words were introduced
within the DisCoCat model. In [25] the following form of transitive verbs was proposed:

For the purposes of this section, the grey dot can be thought of as a placeholder for an
unknown arbitrary operation, which composes the words’ meaning representations.
To demonstrate this with an example, a simpler phrase is considered. The verb ‘be’ is
a so-called ‘linking’ verb. Linking verbs connect a subject with an object that provides
information about the subject. Using the new graphical notation, the diagram of the
sentence ‘John is a dog’, can be depicted as follows:
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Now, different operations can be considered as candidates for the grey dot. The sim-
plest one, matrix multiplication, is not an option since the result is not a density matrix.
Moreover, elementwise multiplication is commutative and thus does not respect the words’
order, which disqualifies it for sentences with grammatical structure. Another candidate
originates from the Birkhoff-von Neumann logic [26]. It states that ‘any proposition about
a physical system corresponds to a subspace A, or its corresponding projector PA’ [27]. In
natural language, a proposition is the meaning of a declarative sentence. Following this
argument [28, 29], propositions like ‘being a dog’ can be considered projectors. Thus the
proposition ‘being a dog’ can be imposed onto ‘John’ by a projector as follows:

Pdog ◦ John ◦ Pdog

The resulting matrix of such a term will not be normalized. Therefore, the term density
matrix will also be used for sub-normalized and super-normalized positive matrices in the
following. If ‘John’ was a density matrix and ‘dog’ was a projector, this would be the new
composition method. But ‘dog’ is not a projector but a density matrix as well. Fortunately,
density matrices can be represented as follows as weighted sums over projectors in the form
of their eigendecomposition:

ρ =
∑
i

xiPi (4.14)

Based on this, the following two composition methods have been proposed:

ρ�σ :=
∑
i

xi(Pi ◦ ρ ◦ Pi) with σ :=
∑
i

xiPi

ρ∆σ := (
∑
i

xiPi) ◦ ρ ◦ (
∑
j

xjPj) with σ :=
∑
i

x2iPi
(4.15)

The first one, denoted by �, was introduced in [30, 31] and is called ‘fuzz’. The second
one was initially introduced in quantum theory for bayesian inference [32, 33, 34] and is
called ‘phaser’. Since the results of these operations are not necessarily normalized, they
need to be re-normalized after each update. Neither the fuzz nor the phaser are completely
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positive maps and thus no morphisms in the category CPM(FHilb). However, especially
the phaser showed promising results as a composition method in practice [20, 13]. Since the
DiCoCat formalism claims to have a unique update mechanism and work entirely within the
framework of compact closed monoidal categories, the authors of [27] find another meaning
category of ‘doubled’ density matrices in which the composition methods of the fuzz and
phaser can be unified such that the new composition method is a morphism within that
new category.
Presenting this unification in detail goes beyond the scope of this thesis. The results of the
provided implementation of quantum density matrix word embeddings are not evaluated on
tasks where words need to be composed. These methods are introduced for completeness
only, as they were used in the paper, this thesis is based on [13]. Further work would have
to use these methods to be comparable.

4.7 Learning Density Matrices Classically

So far, only the theoretical concept of constructing word embeddings, based on co-occurrence
frequencies with context words, was considered. In the case of density matrices, the
probability distributions over underlying meanings were built manually based on taxonomies
like beer = lager + ale.
In practice, these embeddings are learned using machine learning models. In [13] the
artificial neural network architecture Word2DM was introduced to learn density matrix
word embeddings. It is an adaption of the widely used artificial neural network architecture
Word2Vec that learns word meaning vectors [2]. To understand the Word2DM model, the
concept of Word2Vec is introduced first. There are two versions of the Word2Vec algorithm.
Both are trained on tasks, which cause the network’s weights to reflect the co-occurrence
statistics of words in the text. Thus, the weights can be used as word embedding vectors.
The first of the two algorithms is called Continuous-Bag-of-words. It is trained to predict
the occurrence of a word based on context words within a window around the word itself.
The second version of the Word2Vec algorithm is called Continuous Skip-gram. This version
is trained to predict the context words of a word within a specific range based on the word
itself.
The Word2DM model [13] is an adaption of the Continuous Skip-gram model that learns
density matrices as word embeddings instead of vectors. It forms the basis for the quantum
density matrix word embedding model that will be proposed in the next chapter.
This section introduces the Word2Vec Skip-gram model and the modifications within the
Word2DM model.
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4.7.1 Word2Vec Continuous Skip-gram

This section explains the concept behind the Word2Vec Skip-gram model with negative
sampling, based on the online tutorial [35]. The goal is to learn word embedding vectors
from a text corpus. Therefore a neural network is trained on a particular task, and the
weights of the trained neural network provide the actual word embeddings. The sentences
in a text corpus are processed one by one. A word in the sentence is chosen as the target
word and another word that occurs within a window around the target word is selected as
a context word. Figure 4.1 illustrates the procedure for finding target-context word pairs
with window size two. The context words are picked from the two words before and after
the target word.

Figure 4.1: Procedure for finding target-context word pairs with window size two. Context
words are selected within a window size 2 before and after the target word.

The neural network is then trained as a classifier with the target words as input and the
context words as labels that shall be predicted. The output is a probability distribution
over all words in the vocabulary of being the chosen context word, corresponding to the
given target word.
Figure 4.2 illustrates the network’s architecture. The target word is encoded into a one-hot
vector of length V , representing the vocabulary size, and fed into the neural network as input.
The network has one linear hidden layer and a linear output layer with a softmax activation
function. The output is a vector of length V , representing the probability distribution over
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Figure 4.2: Skip-gram architecture. The input is the target word’s one-hot vector. The
network has one linear hidden layer and a linear output layer with a softmax
activation function. The output is a probability distribution over all words in
the vocabulary of being the context word corresponding to the given target
word. The loss between the output and the true context word’s one-hot vector
is computed to update the network’s weights. The rows of the hidden layer’s
weight matrix provide the word embedding vectors after training.

all words being the context word corresponding to the current word pair. The loss between
this output vector and the one-hot vector of the true context word is computed to update
the neural network’s weights. Feeding the network all target-context word pairs occurring
in the text teaches it the words’ co-occurrence statistics. After training, the network is
no longer used for the task it is initially trained on, but instead, the rows of the weight
matrix of the hidden layer provide the words’ embedding vectors. This is possible because
multiplying the target word vector with this weight matrix returns the row of the weight
matrix corresponding to the input as a result of the hidden layer. As the weight matrix
has the dimension V × N , the number of neurons in the hidden layer N determines the
embedding size.
This neural network architecture embodies the aforementioned idea of John Rupert Firth
that ‘you shall know a word by the company it keeps’. Words that occur together are
trained to have similar word embedding vectors.
A drawback is that the weight matrices become very large for extensive vocabulary sizes.
For example, a vocabulary size V = 10.000 and an embedding size N = 300, result in
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three million weights, both in the hidden and the output layer. Training such a network
is computationally infeasible. Additional routines on top of the architecture reduce the
consumption of computational resources. [35]

Subsampling

The first such routine is called subsampling. By subsampling very frequently occurring
words, the number of training samples is reduced. In the example from figure 4.1, even
though the word ‘the’ does not tell much about the meaning of the word ‘dog’, it will appear
very frequently in its context and in the context of every other noun in the text. Thus,
there will be many more samples for the word ‘the’ than are needed to learn its embedding
vector. Subsampling introduces a probability for words in the text to be deleted that is
proportional to their occurrence frequency. Not all instances of a word are deleted at once,
but each instance of the word is kept or deleted depending on that probability. This results
in fewer instances of very frequently occurring words in the text.
The probability for keeping a word is given by:

P (wi) = (

√
z(wi)

b
+ 1) · b

z(wi)
(4.16)

Where wi is the respective word and z(wi) is the occurrence frequency of that word in the
corpus. A sampling parameter b controls how big or small the probability of keeping a
word is. The smaller it is, the more likely words are deleted. Deleting specific instances
of words from the text results in deleting the training samples, including them, and thus
reduces the number of overall training samples to economize computational resources. [35]

Negative Sampling

Another routine to reduce the consumption of computational resources is negative sampling.
As was seen above, the number of weights in the neural network can become very large. In
general, the network’s output is trained to be a vector with only a single one at the position
corresponding to the correct context word and zeros in all the other positions. Therefore,
all weights in the output layer need to be updated in every training step, which is infeasible
for large numbers of weights. With negative sampling, not all other positions are trained to
be zero in every step, but instead, only a small number of zero-valued positions are chosen
for training in each step. Hence, only the weights contributing to the selected positions are
updated.
For example, with five negative samples per training step and 300 × 10.000 = 3 million
weights in the output layer, only the weights corresponding to the five negative samples
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and the one positive sample would be updated. Thus, only the weights for six of the output
neurons would be updated instead of all. This means only 300× 6 = 1800 weights in the
output layer are updated in each training step instead of 3 million.
The negative samples are picked randomly from the text corpus. Therefore, words with
more occurrences in the text are chosen more often as negative samples. The probability
for a word being selected as a negative sample is given by:

P (wi) =
f(wi)

3/4∑n
j=0(f(wj))3/4

(4.17)

Where f(wi) is the absolute number of occurrences of the word wi in the text corpus.
Assigning these frequencies the power of 3/4 was found to work well because it tends to
choose less frequently occurring words a bit more often as negative samples and more
frequently occurring words a bit less often. [2]
This routine reduces the number of updated weights in the output layer. For the weights
in the hidden layer, no such procedure is needed. Due to the one-hot encoded input, only
a small fraction of the weights corresponding to the input word’s embedding vector are
updated in the hidden layer.
Subsampling and negative sampling reduce the use of computational resources and even
provide higher quality word embedding vectors. [2]
Essentially, the skip-gram model with negative sampling optimizes the following objective
function:

L(θ) = log σ(vᵀt vc) +
K∑
k=1

log σ(−vᵀt vnk
) (4.18)

Where vt is the embedding vector of the target word, vc is the embedding vector of the
context word, and vnk

are the embedding vectors of the K negative samples. Subsampling
happens within the text’s pre-processing.

4.7.2 Word2DM

The Word2DM model [13] adapts the skip-gram model with negative sampling to learn
density matrices as word embeddings instead of vectors. Therefore the vectors in the
objective function from equation 4.18 are replaced by density matrices.

L(θ) = log σ(tr(AtAc)) +
K∑
k=1

log σ(−tr(AtAnk
)) (4.19)
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Where At is the density matrix of the target word, Ac is the density matrix of the context
word, and Ank

are the density matrices of the K negative samples.
Without further adjustment, the matrices A are just arbitrary. To be useful for experiments
with word ambiguity and lexical entailment, they need to be density matrices that encode
probability distributions. Therefore, the properties of density matrices, such as hermiticity,
positive semi-definiteness, and unit trace (see section 2.6), need to be enforced. For this
purpose, intermediary matrices B are learned, and the actual embedding density matrices
are computed as A = BBᵀ, because the product BBᵀ is positive semi-definite for any
matrix B.
Including these intermediary matrices in the training procedure results in 3(k + 1) matrix
multiplications that must be carried out in each training step. By optimizing the form
of the objective function, the authors of [13] manage to reduce this number to K + 1

matrix multiplications per training step. However, this still increases the consumption of
computational resources compared to the very efficient original skip-gram model. While
this would still be acceptable, unfortunately, the use of these intermediary matrices results
in sub-optimal training updates. Especially when the density matrices of positive target-
context samples are very dissimilar before training, the form of the gradients causes the
updates to be so small that the target and context words’ density matrices do not become
significantly more similar. [13]
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This thesis proposes a hybrid quantum-classical algorithm for learning density matrix word
embeddings. Since density matrices describe quantum states, the idea of extracting them
from quantum hardware seems obvious. By doing so, the use of intermediate matrices
becomes obsolete. The density matrices are extracted at the end of a variational quantum
circuit that is capable of learning multi-qubit mixed states. The circuit’s parameters are
optimized, such that the qubits are prepared into a state corresponding to the density
matrix representation of a word’s meaning. A separate set of circuit parameters is learned
for each word. The parameters are updated using the objective function of the Word2DM
model from equation 4.19.

Figure 5.1: Architecture for learning quantum density matrix word embeddings. A param-
eterized unitary is applied to all qubits. Afterwards a sub-system is traced
out in order to put the other qubits into a mixed state. The remaining qubits’
state is extracted at the end of the circuit and the parameters are optimized
according to equation 4.19.

Figure 5.1 illustrates the model’s architecture. U(θ) is a unitary containing all gate op-
erations in the circuit. After applying the unitary, a sub-system of the circuit is traced
out by measuring some qubits and discarding the result. This procedure allows placing
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the remaining qubits in a mixed state. The box with the small Bloch Sphere on the upper
qubits indicates that their state is extracted from the circuit.
In each training step, the circuit is executed once with the target word’s parameters θt,
once with the context word’s parameters θc, and K times for the K negative samples with
their respective parameters θnk

. The extracted density matrices are then used to update
the parameters according to equation 4.19.
In the following sections, the necessary number of qubits is first discussed. Subsequently,
the key points to consider when choosing a circuit ansatz for U(θ) are introduced. Fur-
ther, the state’s extraction from the circuit and the gradient calculation for the model are
discussed. Ultimately, the choices for the first implementation are presented.

5.1 Number of Qubits

N ×N dimensional density matrix embeddings can be learned by extracting the state of
log2(N) qubits. Current quantum computing models are based on manipulating pure states
using unitary gates. Therefore, preparing a mixed state is not trivial. Section 2.6 already
mentioned that measuring a sub-system of an entangled multi-qubit state also influences the
unmeasured qubits’ state. Discarding the measurement result instead of revealing it leaves
the observer with uncertain knowledge about the state of the non-measured qubits. Thus,
these qubits find themselves in a mixed state. Hence, for the preparation of a mixed state,
not only log2(N), but M additional qubits are required for learning N × N dimensional
word embedding density matrices. No definite indication of the number M to be selected
could be identified in the literature.

5.2 Choice of Circuit Ansatz

From the necessity of additional qubits that have to be entangled with the qubits whose
state is extracted at the end of the circuit, follows that the ansatz for U(θ) has to contain
entangling layers.
Further, the optimal ansatz for this task would be able to prepare the qubits into an
arbitrary n-qubit state to provide maximal flexibility for the representation of the word
meanings. Such an ansatz would necessitate a lot of gates and thus be very deep. Currently,
only noisy intermediate-scale quantum computers (NISQ devices) exist whose states are
not stable and therefore decay over short periods of time. The circuit’s results would
consequently be highly corrupted. When using simulators, computational resources are
also limited. Therefore, this kind of ansatz is not feasible for implementation, and a useful
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trade-off between flexibility and complexity must be found.
A suitable circuit should not be too deep but still, cover enough of the state space so that
the learned states reflect the different meanings of the words in the text corpus.
In summary, the following key points have to be considered when choosing an ansatz for
U(θ):

• feasible circuit depth

• enough flexibility to reflect word meanings in the given text corpus

• entanglement with additional qubits to allow for mixed state

5.3 Extraction of Density Matrices from the Circuit

The biggest challenge for the implementation on real quantum hardware is the extraction
of the state’s density matrix at the end of the quantum circuit. Since measuring a quantum
system causes its state to collapse into one of the basis states, the information on superpo-
sition and mixture of the state is not observable. On real quantum hardware, a system’s
full state can be reconstructed using a method called quantum state tomography. With
simulators, on the other hand, the state is available at any time during the simulation.

5.3.1 Quantum State Tomography

The state of a quantum system can be reconstructed by carrying out different measurement
runs on many copies of the state. Therefore, the measurement operators have to build an
operator basis in the system’s Hilbert space. The state can then be reconstructed from the
measurement statistics.
The objective function in equation 4.19 depends on the density matrices of the target
word, the context word, and the K negative samples. All these states would have to be
reconstructed using quantum state tomography. Thus, on real quantum hardware, the
circuit would have to be executed T (2 + K) times in each training step, where T is the
number of measurement runs needed for each state reconstruction.

5.3.2 Simulators

The underlying density matrix of the circuit can easily be extracted on simulators, as the
system’s current underlying state is tracked throughout the entire simulation. Therefore,
the circuit must be executed only (2+K) times on a simulator.
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5.4 Gradients

Section 2.8.1 addressed challenges regarding the computation of gradients for variational
quantum circuits on simulators and real quantum hardware. As this model extracts the
density matrix representation of a sub-system as a result of the variational circuit, its
mathematical expression is different from that in equation 2.18.
The model’s circuit consists of a composite system of two sub-systems A and B with the
Hilbert spaces HA and HB. The qubits whose state is extracted belong to sub-system A,
while the qubits that are traced out belong to sub-system B. The state of the full system
is then

∣∣ψ〉 ∈ HA ⊗HB.
Initially, the entire system is in state

∣∣0...0〉. Applying the unitary U(θ) puts the system
into the state

∣∣ψ(θ)
〉

= U(θ)
∣∣0...0〉. Since unitaries preserve the purity of states, its density

matrix can be written as ρS(θ) =
∣∣ψ(θ)

〉〈
ψ(θ)

∣∣. To put subsytem A in a mixed state,
sub-system B is traced out. This corresponds to taking the partial trace of ρS(θ) over the
basis of sub-system B.

ρA(θ) = TrB(ρS(θ)) :=

NB∑
j

(IA ⊗
〈
j
∣∣
B

)(
∣∣ψ(θ)

〉〈
ψ(θ)

∣∣)(IA ⊗ ∣∣j〉B) (5.1)

Where NB is the dimension of Hilbert space HB, IA is the identity operator in HA and∣∣j〉
B

are the basis states of HB.
The partial derivatives ∇θρ(θ) of this expression have to be computed for updating the
circuit parameters. While the expectation value of an observable B varies smoothly with
small variations in the parameter values, this is not the case for the extracted density matrix
representation of the underlying state. Thus, on real quantum hardware, the gradients of
this expression cannot be estimated using the parameter-shift rule. Finding a procedure
to compute the gradients for a density matrix of a sub-system is still a topic of ongoing
research, and no common strategy could be identified in the literature.
As discussed in section 2.8.1, the situation is different on simulators. Here, the gradients
can be computed analytically.

5.5 Implementation

The model was implemented using a simulator. Thus, density matrices can be extracted,
and gradients are analytically computable.
This work did not focus on finding the most suitable circuit ansatz for the given task
but rather on testing the concept of the approach. The BasicEntanglerLayer ansatz is a
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commonly used ansatz for quantum machine learning models that is provided as a template
in the quantum computing Python package Pennylane. One layer of this ansatz is illustrated
in figure 5.2. Initially, parameterized X-rotation gates are applied to all qubits, followed by
a ring of CNOT gates that induce entanglement. Several of these layers can be executed
in succession to increase the circuit’s complexity.

Figure 5.2: A single layer of the BasicEntanglerLayer ansatz. Parameterized X-rotation
gates are applied to all qubits, followed by a ring of CNOT gates.

In the first iteration, a single BasicEntanglerLayer is used on a total of five qubits. Three
of them are traced out, and the state of the remaining two is extracted at the end of the
circuit, yielding 4× 4-dimensional density matrix word embeddings. Figure 5.3 illustrates
the entire circuit diagram used in the implementation.

Figure 5.3: Full circuit diagram of the implemented model with a single BasicEntangler-
Layer. First, the operations of BasicEntanglerLayer are applied to all five qubits.
Afterwards three qubits are traced out, and the density matrix representation
of the other two qubits’ state is extracted at the end of the circuit.

The same setup is used in a second iteration, but with two BasicEntanglerLayers. In each
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iteration, the model is trained in 10 independent training runs of 100 epochs each.
The implementation uses parts of the code provided with the Word2DM model [13] to
preprocess the training data and evaluate the similarity of the learned density matrix word
embeddings.

5.5.1 Choice of Package

The two quantum computing Python packages Qiskit and Pennylane, were considered
and investigated for implementation. Both provide an intuitive approach to composing
quantum circuits and an interface for parameter optimization with PyTorch. Moreover,
Pennylane has automatic differentiation implemented for circuits with density matrices as
output when using simulators. This was the decisive factor for realizing the implementation
in Pennylane. This section provides a short overview of the two libraries.

Qiskit

Qiskit was first considered for implementation. Variational quantum circuits can be easily
implemented in Qiskit. It offers several circuit ansatz templates and the TorchConnector,
allowing variational quantum circuits to be used as layers in PyTorch. Thus, quantum layers
can be combined with classical PyTorch layers to build hybrid quantum-classical algorithms.
The model parameters can then be updated using PyTorch’s automatic differentiation. In
order to be interfaced via the TorchConnector, the circuit has to be implemented as an
instance of the NeuralNetwork class of Qiskit. In this class, the forward and backward
methods for the model have to be specified. The forward method takes instances of the
circuit parameters as input, executes the circuit, and returns the circuit’s output. The
backward method computes the gradients of the circuit parameters for optimization. Qiskit
provides several pre-implemented NeuralNetwork instances that can be used as templates
for building quantum models. These are based on the evaluation of quantum mechanical
observables and the measurement statistics of a circuit, but none of them implement a
circuit described by equation 5.1. Thus, a custom instance of the NeuralNetwork class
would have to be implemented according to equation 5.1, with its gradient computation in
the backward method.

Pennylane

Pennylane has a stronger focus on the implementation of quantum machine learning models.
The PyTorch interfacing and the gradient computation are more advanced than in Qiskit,
which improves the usability. Furthermore, automatic differentiation for circuits of the form
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of equation 5.1 is pre-implemented for simulators, making Pennylane the obvious choice
for implementing the proposed model.
Variational circuits are implemented as instances of the qnode class. The circuit’s param-
eters can be implemented as PyTorch variables and optimized using PyTorch’s training
procedure. The desired gradient calculation method and the device on which the circuit
is to be executed, whether real quantum computer or simulator, can be set as parameters
of the qnode. Compared to Qiskit, Pennylane provides a broader range of circuit ansatz
templates.

5.6 Evaluation - Choice of Similarity Measure

The used objective function of the Word2DM model (equation 4.19) aims to increase the
similarity of co-occurring words and decrease the similarity of those that do not occur
together. Thus, the model’s training success can be measured by evaluating the word
similarities between the learned meaning density matrices.
Section 4.3 discussed different possible candidates for a similarity measure with their re-
spective advantages and disadvantages. It was found that the trace inner product is not a
good choice to measure the similarity of two density matrices.
Nevertheless, it is used in the implemented model to evaluate the learned density matrices
since the objective function of the Word2DM model is based on the trace inner product.
In order to use a different similarity measure for evaluation, the model would have to be
trained using another objective function, designed accordingly.

5.7 Data

This section describes the different datasets used for training. For the first validation, a
dummy dataset was developed. Afterwards a slightly bigger dataset with actual words was
used.

5.7.1 ABC Dataset

The first dataset will be referred to as the ABC dataset. It consists of the following three
‘sentences’ with three dummy words respectively:

a1 a2 a3
b1 b2 b3
c1 c2 c3
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For training with this dataset, context words were chosen within a window size of two. No
subsampling was used, and one negative sample was considered in each training step.
After training, the ai should be similar, the bi should be similar, and the ci should be
similar while ai should not be similar to the bi and ci and also the bi and ci should not be
similar.

5.7.2 Animal Dataset

The second dataset will be referred to as the animal dataset. It consists of the following
nine sentences with a total vocabulary size of 25.

dogs enjoy cuddling
cats prefer being alone
dogs depend on humans
cats are independent
dogs bark
cats meow
cats and dogs live in houses
lions belong into the wild
lions hunt antelopes

For training with this dataset, context words were selected within a window size of two.
No subsampling was used, and one negative sample was considered in each training step.
Ultimately after training, the words occurring within a sentence should be more similar
than those not occurring within the same sentence.



6 Re su l t s and D i s c u s s i o n

In a functional learning model, density matrix embeddings of co-occurring words should be
more similar than those that do not occur together. In the following, co-occurring words
are referred to as ii-word pairs, and words that do not occur together are referred to as
ij-word pairs. ii-word pairs should ideally be highly similar, while ij-word pairs should not
be similar.
The following sections present the results for the different datasets and circuit ansaetze.

6.1 ABC Dataset

6.1.1 Single BasicEntanglerLayer

Table 6.1 shows the average word similarities of the first training iteration on the ABC
dataset with a single BasicEntanglerLayer. The average word similarities of the ii- and ij-
word pairs were computed for each run and overall.

run ii similarity ij similarity
1 0.78 0.00
2 0.99 0.00
3 0.69 0.14
4 0.63 0.12
5 0.66 0.15
6 0.78 0.00
7 0.78 0.41
8 0.83 0.17
9 0.45 0.13
10 0.50 0.13

overall average 0.71 0.08

Table 6.1: Average word similarity of density matrix word embeddings on the ABC dataset
with a single BasicEntanglerLayer

These results demonstrate that the density matrices learned by the proposed model can
reflect the word similarities within the ABC-corpus. The trace inner product between
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density matrices of ii-word pairs becomes very large, on average 0.71, while that between
density matrices of ij-word pairs becomes very small, on average 0.08. The difference
between the average similarity of the ii- and ij-word pairs is 0.71 − 0.08 = 0.63. This
indicates a clear distinguishability. Furthermore, these 4× 4 density matrices were learned
with only five model parameters, which is considerably less than the 16 model parameters
needed in the Word2DM model.
Table 6.2 shows the detailed results for the second run of this iteration as an example. The
second run had the most significant difference between the similarities of ii- and ij-word
pairs. The average trace inner product of ii-word pairs is 0.99 and that of ij-word pairs
smaller than 10−5.

word 1 word 2 similarity
a1 a2 0.99
a1 a3 0.99
a2 a3 0.99
b1 b2 0.99
b1 b3 0.99
b2 b3 0.99
c1 c2 0.99
c1 c3 0.99
c2 c3 0.99

word 1 word 2 similarity
a1 b1 1.93 · 10−9

a1 b2 2.27 · 10−9

a1 b3 1.17 · 10−9

a2 b1 1.56 · 10−9

a2 b2 1.89 · 10−9

a2 b3 8.02 · 10−10

a3 b1 1.53 · 10−8

a3 b2 1.56 · 10−8

a3 b3 1.45 · 10−8

word 1 word 2 similarity
a1 c1 2.03 · 10−5

a1 c2 1.62 · 10−6

a1 c3 9.53 · 10−7

a2 c1 2.05 · 10−5

a2 c2 1.80 · 10−6

a2 c3 1.13 · 10−6

a3 c1 2.18 · 10−5

a3 c2 3.12 · 10−6

a3 c3 2.45 · 10−6

word 1 word 2 similarity
b1 c1 7.25 · 10−6

b1 c2 3.47 · 10−7

b1 c3 5.06 · 10−7

b2 c1 7.06 · 10−6

b2 c2 1.63 · 10−7

b2 c3 3.22 · 10−7

b3 c1 1.20 · 10−5

b3 c2 5.12 · 10−6

b3 c3 5.28 · 10−6

Table 6.2: Detailed word similarities of density matrix embeddings of the best run on the
ABC dataset with a single BasicEntanglerLayer

6.1.2 Two BasicEntanglerLayers

Table 6.3 shows the results of an iteration with two BasicEntanglerLayers on the ABC
dataset. Compared to the single BasicEntanglerLayer, the ii-word pairs are less similar, and
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the ij-word pairs are more similar. These results suggest that adding layers increases the
complexity but not the model’s flexibility. This might be because the BasicEntanglerlayer
only contains rotations around the X-axis. Adding layers does not add new degrees of
freedom but only complexity to the rotations around one axis.

run ii similarity ij similarity
1 0.56 0.48
2 0.87 0.13
3 0.51 0.28
4 0.70 0.43
5 0.70 0.30
6 0.70 0.39
7 0.80 0.30
8 0.77 0.49
9 0.62 0.37
10 0.80 0.32

overall average 0.70 0.35

Table 6.3: Average word similarity of density matrix word embeddings on the ABC dataset
with two BasicEntanglerLayers

6.2 Animal Dataset

After the model showed the expected results for the ABC dataset, the larger animal dataset
was used. Table 6.4 shows the corresponding results. A significantly higher similarity
could be observed among the ii-word pairs than among the-ij word pairs. The difference
between the overall average of the two amounts to 0.46 − 0.17 = 0.29. While this still
indicates a clear distinguishability between the two, it also suggests that increasing the size
of the dataset decreases the model’s performance. It can be concluded that the flexibility
of a single BasicEntanglerLayer is not sufficient to reflect structures within even larger
datasets. Table 6.5 shows the results for the best run of this iteration as an example. It
shows that the words occurring in the same sentence are on average, always more similar
than those that do not occur within the same sentence. However, the absolute amount
of these similarities varies greatly. For example, while the similarity of the words ‘dogs’
and ‘cuddling’ amounts to 0.99, the similarity of ‘dogs’ and ‘bark’ is only 0.25. This also
indicates that the model’s flexibility is too limited to represent structures within larger text
corpora. Another cause of these inconsistencies might be the inadequacy of the trace inner
product as a measure of similarity.
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run ii similarity ij similarity
1 0.59 0.11
2 0.49 0.20
3 0.33 0.24
4 0.39 0.25
5 0.34 0.15
6 0.43 0.15
7 0.60 0.11
8 0.45 0.19
9 0.56 0.13
10 0.38 0.17

overall average 0.46 0.17

Table 6.4: Average word similarity of density matrix word embeddings on the Animal
dataset with a single BasicEntanglerLayer

word 1 word 2 similarity
dogs cuddling 0.99
cats cuddling 0.04
lions cuddling 0.10
dogs depend 0.87
cats depend 0.13
lions depend 0.14
dogs bark 0.25
cats bark 0.15
lions bark 0.08
dogs alone 0.25
cats alone 0.36
lions alone 0.23

word 1 word 2 similarity
dogs independent 0.00
cats independent 0.91
lions independent 0.10
dogs meow 0.25
cats meow 0.59
lions meow 0.23
dogs wild 0.00
cats wild 0.16
lions wild 0.42
dogs hunt 0.25
cats hunt 0.16
lions hunt 0.80

Table 6.5: Detailed word similarities of density matrix embeddings of the best run on the
Animal dataset with a single BasicEntanglerLayer
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7.1 Summary

The DisCoCat model formalizes linguistic structures using mathematical concepts of quan-
tum mechanics. It operates in high-dimensional tensor product spaces and thus requires
a high amount of computational resources. However, the shared mathematical structure
allows to find quantum-mechanical counterparts for word meaning vectors and grammatical
structure and perform the computations on quantum hardware. Furthermore, the DisCo-
Cat model suggests using density matrices as word embeddings. Their ability to capture
probability distributions over different states proves helpful in modeling natural language
phenomena like word ambiguity and lexical entailment.
Enforcing properties of density matrices in a classical neural network architecture has
brought with it the need to learn intermediary matrices. These cause sub-optimal parame-
ter optimization.
This thesis tackles this problem by proposing a hybrid quantum-classical algorithm for
learning density matrix word embeddings. Preparing a variational quantum circuit into
a state corresponding to a word’s meaning and extracting its state yields valid density
matrices without the need for intermediary matrices.
To learn N×N -dimensional density matrix word embeddings, log2N+M qubits are needed.
Tracing the additional M qubits out allows preparing a mixed state on log2N qubits. The
first implementation is executed on a quantum simulator to test the concept of this ap-
proach. A basic circuit ansatz with an X-rotation on every qubit and a ring of CNOT gates
is implemented on five qubits. Tracing out three of them and extracting the state of the
remaining two yields 4×4-dimensional density matrices. Only five parameters were needed,
while the classical Word2DM model needs 16 parameters for the same density matrices.
The similarities of the learned density matrices demonstrate the model’s ability to capture
linguistic structure within very small text corpora. Co-occurring words are more similar
than words that do not occur together. However, the results also show the limitations of the
chosen circuit ansatz. With increasing vocabulary size, the model’s performance decreases.
Another shortcoming of this approach is the sub-optimal choice of the trace inner product
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as a similarity measure.

7.2 Further Work

This thesis has laid the foundation for learning word embedding density matrices on quan-
tum computers. While the obtained results are promising, there is still much to be explored.

7.2.1 Circuit Design

First of all, the choice of the circuit ansatz must be optimized and theoretically substantiated.
The optimal number M of additional qubits to be traced out (see section 5.1) should be
explored and different entangling patterns should be tested. Furthermore, the optimal
trade-off between flexibility and complexity that was shortly discussed in section 5.2 should
be investigated.
Finding a highly suitable circuit ansatz for the given task should allow to process larger
and more complex text corpora.

7.2.2 Similarity Measure and Objective Function

The used objective function from equation 4.19 is based on the trace inner product as a
similarity measure. Thus, this measure also has to be used in the evaluation. Section
4.3.1 presented the shortcomings of this choice and proposed different candidates with clear
advantages for a similarity measure. Designing new objective functions based on more
suitable similarity measures like the fidelity might improve the performance not only of
this but also of the Word2DM model and other architectures proposed in [13].
The learned density matrices should be evaluated on word similarity datasets like [36, 37,
38, 39, 40]. Comparing the results to state-of-the-art architectures should provide detailed
information on the model’s quality.

7.2.3 Word Ambiguity and Lexical Entailment

Furthermore, it would be interesting to evaluate the learned density matrices in word
ambiguity and lexical entailment tasks. Therefore, also the composition properties of the
learned density matrices should be explored for different composition methods like those
introduced in section 4.6. Comparing the results to those in [13] should provide further
information about the model’s quality.
Since the used objective function optimizes word similarities, designing better suitable
objective functions for word ambiguity and lexical entailment based on measures like the
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Von Neumann Entropy (see section 4.5) or the representativeness (see section 4.4) could
improve the model’s performance.

7.2.4 Implementation on Real Quantum Hardware

This thesis demonstrated the feasibility of learning density matrices with a quantum-hybrid
algorithm using a quantum simulator. It would be interesting to further investigate the
realization of this implementation on real quantum hardware. Therefore, a method for
estimating the gradients of circuits of the form of equation 5.1 on real quantum hardware
is needed.
In addition, the extraction of the density matrices at the end of the circuit must be reconsid-
ered. Since performing quantum state tomography in each training step is computationally
costly, the evaluation of components of the objective function on quantum hardware should
be explored. If the trace of the product of two density matrices can be evaluated on a
quantum computer, the density matrices would not have to be extracted in each training
step, but only once at the end of the training process for further use. The impact of this
on the gradient computation would also have to be investigated.
Regardless of whether a reduction in computational resources can be achieved by an imple-
mentation on quantum hardware, it would be interesting to compare the learned density
matrices’ ability to reflect linguistic structures to classically learned ones.
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